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ABSTRACT 

This paper relies on wavelet multiresolution analysis to capture the dependence structure of currency 

markets and reveal the complex dynamics across different timescales. It investigates the nature and direction 

of causal relationships among the most widely traded currencies denoted relative to the United States Dollar 

(USD), namely Euro (EUR), Great Britain Pound (GBP) and Japanese Yen (JPY). The timescale analysis 

involves the estimation of linear vis-à-vis nonlinear and spectral causality of wavelet components and 

aggregate series as well as the detection of short- vs. long-run linkages and cross-scale correlations. 

Moreover, this study attempts to probe into the micro-foundations of across-scale heterogeneity in the 

causality pattern on the basis of trader behavior with different time horizons. New stylized properties 

emerge in the volatility structure and the implications for the flow of information across scales are inferred. 

The examined period starts from the introduction of the Euro and covers the dot-com bubble, the financial 

crisis of 2007-2010 and the Eurozone debt crisis. Technically, this paper presents an invariant discrete 

wavelet transform that deals efficiently with phase shifts, dyadic-length and boundary effects. It also 

proposes a new entropy-based methodology for the determination of the optimal decomposition level. 

Overall, there is no indication of a global causal behavior that dominates at all timescales. When the 

nonlinear effects are accounted for, the evidence of dynamical bidirectional causality implies that the pattern 

of leads and lags changes over time. These results may prove useful to quantify the process of integration as 

well as influence the greater predictability of currency markets.  
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1. INTRODUCTION 

Since the pioneering work of Grossman and Morlet (1984) wavelet methodology, a 

refinement of Fourier analysis, has been introduced in the literature as an alternative for analysing 

nonstationary data with “irregularities”. Their contribution was followed by the development of 

multiresolution analysis by Mallat (1989) and the introduction of orthogonal wavelet bases by 

Daubechies (1992). Even though the wavelet methodology has widespread application in the 

natural sciences, it is a rather unexplored area in economics, with the exception of financial 

applications4. The wavelet multiscale decomposition, allowing for simultaneous analysis in the 

time and frequency domain, is a valuable means of exploring the complex dynamics of financial 

time series, which are inherently characterized by chaotic patterns, fat tails and long-memory, 

particularly at high sampling frequencies.  

In this study we use the wavelet methodology to investigate the nature and direction of 

causality among foreign exchange (FX) markets at different timescales. During the Great 

Moderation period5 and in particular during the nineties, currency markets have grown more 

similar and FX rate volatility decreased (Laopodis, 1998)6. More recently, the Euro behavior against 

the US dollar has seriously altered the prior state of market interrelations (Bénassy-Quéré et al., 

2000; Wang et al., 2007). Given the status of the US dollar and Euro as anchor currencies, it is 

interesting to examine the nature of the causal linkages between them, as well as with other 

currencies7. The existence of causal linkages would suggest that news originating in a specific 

market is not country-specific and idiosyncratic, but efficiently transmitted to other foreign 

markets, thus providing support to the “meteor shower” notion introduced by Engle et al. (1990).  

                                                 

4 See for example Greenblatt (1998), Jensen (2000), Davidson et al. (1998) and Fernandez (2005). A more detailed literature overview is 

provided in Appendix I. 

5 According to Stock and Watson (2003) the Great Moderation period initiated around the mid-1980s and lasted until the beginning of 

the 2000s. During that period, the growth variance of the G7 countries was considerably lower, from 50% to 80% in comparison to the 

pre- and the post –Great Moderation period.  

6 A rich empirical literature exists on the volatility spillover mechanism of the USD across other currency markets. The nature of the 

transmission mechanism as well as the degree of price information efficiency was already investigated during the 1980s in the 

beginning of the higher integration of FX rates vis-à-vis the USD (Hogan and Sharpe, 1984; Ito and Roley, 1987). Additional empirical 

evidence by Koutmos and Booth (1995) and Laopodis (1997) suggests that the size or sign of an innovation in USD, in response to a 

variation in the Federal Reserve interest rate, may significantly affect the extent of dependence across markets. 

7 The transactions involving USD-Euro amount approximately to 40% of global trading (BIS Triennial Survey, 2007). 
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However, it is necessary to go beyond linearity when examining the exchange rate linkages. Meese 

and Rogoff (1983) reported in their seminal work the failure of linear exchange rate models, and 

several more recent studies have provided further evidence against linearity. According to Ma and 

Kanas (2000) nonlinear structures may account for bubbles with self-fulfilling expectations 

(Blanchard and Watson, 1982), target zone models (Krugman, 1991), nonlinear monetary policies 

(Flood and Isard, 1989) and noise trading (Black, 1986). However, empirical studies that tested for 

these kinds of nonlinearities have rather failed to support them (Lindberg and Soderlind, 1994). 

Hence, we need to resort to a more general framework, provided by wavelet analysis. 

The aim of our paper is to test for the existence of linear, nonlinear and spectral causal 

relationships among the three most heavily traded currencies (“FX majors”) denoted relative to  

the United States dollar (USD), namely the Euro (EUR), Great Britain Pound (GBP) and Japanese 

Yen (JPY)8. This is implemented via the use of the wavelet methodology, which reveals the 

inherent dynamics across different timescales. The nature and direction of causality is investigated 

for each component of the time series as resulting from the wavelet analysis, and it is compared 

against the causality results obtained with the original “aggregate” series. The “palette” of tests 

utilized covers the major types of causality reported in the literature, namely the linear Granger 

test (Granger, 1969) the Baek and Brock (1992) parametric causality test for nonlinear dynamic 

causality and the frequency-domain test by Breitung and Candelon (2006). The investigated time 

period covers diverse regimes and “extreme” events including the rise and fall of the tech-market 

bubble and the financial crisis of 2007-2010. It also includes the EU debt crisis in early 2010, 

associated with the widening of bond yield spreads and the rise of credit default swaps, 

concerning Eurozone countries such as Greece, Ireland, and Portugal. This crisis had a significant 

effect primarily on the USD-EUR but also on the USD-GBP rate, partly due to the high UK trade 

deficit and debt. An attempt is made to shed light on the impact of these events on FX market 

linkages. 

                                                 

8 The prime motivation for choosing these particular exchange rates comes from them being the most liquid and widely traded currency 

pairs in the world. On the spot market, according to the Bank of International Settlements (BIS, 2007), the USD was involved in 86.3% of 

transactions, followed by the EUR (37.0%), the JPY (17.0%) and the GBP (15.0%). Volume percentages for all individual currencies 

should add up to 200%, as each transaction involves two currencies..   
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The paper contributes to the literature in various ways. First, rather than using several 

datasets at different temporal frequencies, we rely on the wavelet decomposition of daily data to 

analyze the dependence structure of the FX markets at different time scales. The results provide 

evidence of complex heterogeneous dynamics across and within different scales and strongly 

indicate that the interactions between FX markets have different characteristics at different 

horizons.  

Second, we attempt to probe into the micro-foundations of the detected heterogeneity 

across time scales, on the basis of trader behavior.  We focus on the impact of the actions of long-

and short-term traders, as it is plausible that they may have different time horizons for different 

trading decisions. Once the causality structure is identified from low-to-high frequency, this has 

implications for the flow of information across timescales. In one sense, this idea is just a 

generalization of Friedman’s original concept as mentioned in Ramsey and Lampart (1998b)9. The 

propagation characteristics of the heterogeneous-driven behavior are investigated by studying the 

statistical properties of the information flow across scales.  

Third, we introduce new practical guidelines in wavelet implementation methodology. 

Specifically, we propose an invariant transform that enables point-to-point comparison among all 

scales, contains no phase shifts, relaxes the strict assumption of a “dyadic-length” time series and 

deals effectively with “boundary effects”. In addition, beyond the existing practice that has utilized 

either economic rationale or subjective judgement in considering the appropriate “depth” of the 

wavelet analysis, we introduce a new entropy-based methodology to determine the optimal level 

of decomposition. Overall, we show that our new approach unveils the dependence structure of 

FX markets in succinctly capturing the non-Gaussian dynamic features of currency rates by 

simultaneously modeling multiple time horizons.  

The paper develops as follows: section 2 briefly describes the wavelet methodology and 

elaborates on our proposed shift-invariant discrete wavelet transform. It also proposes new 

practical guidelines in wavelet implementation. Section 3 describes the data and provides a 

                                                 

9 Friedman’s idea essentially was to propose a new concept of “horizon” to reconcile the short- and long-run empirical results on the 

permanent-income hypothesis (Friedman, 1963). 
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preliminary statistical analysis. Section 4 presents the empirical results of the wavelet analysis of 

the foreign exchange rates. Section 5 reviews causality testing and studies causality among both 

the aggregate and wavelet-disaggregated FX returns and volatility series. Finally, section 6 

summarizes and concludes. A set of Appendices provide more technical material. 

 

2. WAVELET MULTISCALE ANALYSIS  

The multiresolution features of the wavelet decomposition can be useful in econometric 

analysis. Often, in financial and macroeconomic applications, the main focus is on the long-run 

equilibrium relationships and their interaction. Through wavelet decomposition, the low-

frequency content of the data that “captures” the relevant long-run interactions can be extracted, 

and the high-frequency fluctuations that distort the underlying market dependencies can be 

removed.  

Among the plethora of useful properties of wavelets, three other major facets should be 

highlighted namely, the ability to handle nonstationarities, the localization in time, and the 

decomposition in various timescales10. The evaluation of the effects of time scaling on the 

relationships among economic variables is also crucial to the present study. In the following 

subsection we introduce an invariant discrete wavelet transform. After that, we suggest new 

practical guidelines for wavelet implementation, and expand the literature that has utilized 

subjective reasoning in estimating the appropriate “depth” of the resolution, by proposing a new 

entropy-based methodology for the determination of the optimal decomposition level. An outline 

of necessary introductory concepts in wavelet analysis is provided in the technical Appendix I. 

 

2.1 The Shift-Invariant Discrete Wavelet Transform (SIDWT) 

The classical, decimated Discrete Wavelet Transform (DWT) involves subsampling of the 

output of the high- and low-pass filters h  and g , to half their original length11. This leads to a 

                                                 

10 The nonstationarity describes a broader notion than merely the existence of a unit-root, such as time variation, structural breaks, 

singularities as well as locally temporal effects. 

11 The ( )
0 1
, ...,

M
h h h

−
=  finite length wavelet filter and the ( )

0 1
, ...,

M
g g g

−
=  complement low-pass (scaling) filter satisfy the 

quadrature mirror relationship ( ) 1

1
1    for   0, ..., 1

m

m M m
g h m M

+

− −
= − = − (see technical Appendix I for details) 
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serious drawback, namely the transform is not invariant in the real-axis. Specifically, the DWT of a 

shifted signal is not the shifted version of the DWT of the signal12. Alternatively, an undecimated 

DWT can be implemented without the subsampling technique13. According to Coifman and 

Donoho (1995) undecimated versions of the DWT present some advantages compared to DWT. 

Primarily, they can handle any sample size T , while the J -th order DWT restricts the sample size 

to a multiple of 2J . In addition, since the coefficients of an undecimated DWT are associated with 

zero phase filters, the original time series is properly aligned with the wavelet components. 

Moreover, they are invariant to circularly shifting the time series, a property that does not hold for 

the DWT. Finally, the undecimated wavelet variance estimator is asymptotically more efficient 

than the DWT estimator (Percival, 1995). In this study, we propose a new variation of the 

undecimated DWT, namely the Shift-Invariant DWT (SIDWT).  

The T -length vector of the wavelet coefficients w  for a time series { }
1

T

t t
y

=
=y  with dyadic 

length ( )2JT =  is obtained as =w Wy  according to the DWT (see Appendix I). Formally, the 

SIDWT is defined as follows: The ( )1J T+ - length vector of SIDWT coefficients wɶ  is obtained as 

=w Wyɶɶ , where Wɶ  is a ( )1J T T+ ×  matrix. The SIDWT coefficient vector, as in DWT,  is 

organized into 1J +  vectors  

                
1 2
, , ..., ,

T

J J
 =   w w w w sɶ ɶ ɶ ɶ ɶ       (1)  

where 
j
wɶ  is a 2jT - length vector of wavelet coefficients associated with the scale of length 

12j
j
a −=  and 

J
sɶ  is a 2JT - length vector of scaling coefficients corresponding to a length scale of 

2 2J

J
a= . The direct conversion to DWT could be implemented for a dyadic length ( )2JT =  

sample, via subsampling and rescaling of the SIDWT. The converted DWT wavelet coefficients are 

( )
2

, ,2 1 1
2 j

j

j t j t
w w

+ −
= ɶ  with 0,..., 2 1jt T= − , and the scaling coefficients 

                                                 

12 Shifting a signal simply means delaying its start in the real-axis. Mathematically, delaying a function is represented by ( )f t d− . 

13 Some undecimated versions of the DWT are encountered in the statistical literature, such as the “maximal overlap DWT“ (Percival 

and Mofjeld, 1997; Allan, 1966) and the “stationary DWT” (Nason and Silverman, 1995). 
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( )
2

, ,2 1 1
2  J

J

J t J t
s s

+ −
= ɶ 0,..., 2 1Jt T= − . In correspondence to the orthonormal matrix of the DWT, 

the SIDWT matrix Wɶ  comprises 1J +  submatrices of T T×  dimension expressed as 

2
  ...  

T

J J
 =   1

W W W W Sɶ ɶ ɶ ɶ ɶ . The SIDWT utilizes the rescaled filters from DWT, 2j
j j
=h hɶ  and  

2J
J J
=g gɶ  with ( )1,...,j J= . The T T×  submatrix 

1
Wɶ  is constructed by circularly shifting the 

rescaled wavelet filter vector 
1
hɶ  by integer units to the right, i.e.,  

( ) ( ) ( ) ( ) ( )1 2 3 2 1

1 1 1 1 1 1 1
, , ,..., , ,

T
T T− − 

=  
  

W h h h h h hɶ ɶ ɶ ɶ ɶ ɶ ɶ  and it can be interpreted as the circularly shifted version 

of DWT submatrix 
1
W . The other matrices 

2
,...,

J
W Wɶ ɶ  are similarly constructed through replacing 

1
hɶ  by 

j
hɶ .  

The SIDWT implementation algorithm starts with the data 
t
y , that is no longer limited to 

dyadic length as opposed to the classical “pyramid algorithm” introduced by Mallat (1989), and 

filters with 
1
hɶ  and 

1
gɶ  to obtain the T -length vectors of wavelet and scaling coefficients 

1
wɶ  and 

1
sɶ , 

yet without utilizing the downsampling operation14. In the first step the data is convolved with 

each filter to obtain the wavelet 
1

1, mod
0

M

t m t m T
m

w h y
−

−
=

= ∑ ɶɶ  and scaling coefficients 

1

1, mod
0

M

t m t m T
m

s g y
−

−
=

= ∑ɶ ɶ  where 0,1,..., 1t T= − . The second step of the SIDWT algorithm uses the 

“new” data, namely the scaling coefficients 
1
sɶ  from the previous step, and proceeds with the 

application of filtering to obtain the second level of wavelet and scaling coefficients i.e., 

1

2, 1, mod
0

M

t m t m T
m

w h s
−

−
=

= ∑ ɶɶ ɶ and 
1

2, 1, mod
0

M

t m t m T
m

s g s
−

−
=

= ∑ɶ ɶ ɶ with 0,1,..., 1t T= − . The resulting T -length 

decomposition is 
1 2 2

T =   w w w sɶ ɶ ɶ ɶ . The procedure is repeated up to ( )2
logJ T=  times in order to 

provide the full vector of SIDWT coefficients in Eq. (1). In the Inverse transform the final-level 

wavelet and scaling coefficients are convolved with their respective filters and the resulting vectors 

                                                 

14 See Appendix I for a detailed description of Mallat’s algorithm. 
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are added up. Therefore, the vectors 
J
wɶ  and 

J
sɶ  of the final level are filtered and combined to 

produce the vector of scaling coefficients 
1J−sɶ  in 1J −  level 

1 1

1, , mod , mod
0 0

M M

J t m J t m T m J t m T
m m

s h w g s
− −

− + +
= =

= +∑ ∑ɶ ɶɶ ɶ ɶ  where 0,1,..., 1t T= − . The length of 
1J−sɶ  is the 

same as 
J
sɶ . The algorithm is repeated until the first level of coefficients produces the original 

vector of observations 
1 1

1, mod 1, mod
0 0

M M

t m t m T m t m T
m m

y h w g s
− −

+ +
= =

= +∑ ∑ɶ ɶ ɶ ɶ  with 0,1,..., 1t T= − . 

The SIDWT, in the same way as the classical DWT, results in the additive decomposition of 

the time series. Let T

j j j
=D W wɶ ɶ ɶ  define the wavelet detail for the SIDWT corresponding to changes 

in the time series y  at scale 
j
a  for the level 1,...,j J= . The multiscale decomposition is defined 

for each observation 
t
y  as the linear combination of wavelet SIDWT detail coefficients, i.e., 

1

,
1

,     0,..., 1
J

t j t
j

y D t T
+

=

= = −∑ ɶ , where 
,j t

Dɶ  is the t -th element of 
j
Dɶ  for 1,...,j J= . Similarly, 

1

1

J

j k
k j

+

= +

= ∑A Dɶ ɶ  is the cumulative sum of the variations of the details and is defined as the j -th level 

SIDWT wavelet approximation for 0 j J≤ ≤  with 
1J+A

ɶ  being a vector of zeros. The j -th level 

wavelet rough 
1

j

j k
k=

=∑R Dɶ ɶ , 1 1j J≤ ≤ +  incorporates the remaining lower-scale details. Overall, 

the vector of observations may be decomposed as 

1

j

j j j j
k=

= + = +∑y A D A Rɶ ɶɶ ɶ    (2)  

It is emphasized that the SIDWT associates the wavelet coefficients with zero-phase filters, thus the 

details and approximations correspond directly to the original sample in perfect alignment. 

Percival and Mofjeld (1997) proved that undecimated transforms are energy (variance) preserving 

transforms. Thus, SIDWT is an efficient transform and the total variance of the time series is given 

by 
22 2

1

J

j J
j=

= +∑y w sɶ ɶ .  
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2.2 New practical guidelines in wavelet implementation 

It was shown that SIDWT is time-invariant as opposed to the classical DWT which exhibits 

some translation in time even after applying a “signal extension” process15. Furthermore, SIDWT is 

not an orthogonal basis, thus it produces an over-determined (redundant) representation of the 

series that has advantages in regards to statistical inference. Because the SIDWT entails zero-phase 

filtering, the details and approximation at each timescale contain the same number of observations 

and line up in time with the original series. This property makes SIDWT a particularly useful tool 

in the analysis of time-dependent processes.  

The selection of a particular wavelet filter class is not trivial in practice and depends upon 

the complexity of the spectral density function and the underlying features of the data in the time 

domain.  If the spectral density is dynamic, longer filters should be employed in order to 

distinguish the frequency activity between scales. Optimally, in most data sets a balance between 

frequency localization and time localization should be pursued. According to Gençay et al. (2001) 

and Gençay et al. (2002), a moderate length wavelet filter (e.g., length eight) adequately captures 

the stylized features of financial data. Moreover, in case the wavelet filter bears no “similarity” 

with the underlying features, then the decomposition will be quite inefficient. Given that the 

wavelet basis functions are used to represent the information contained in the time series, they 

should “mimic” its underlying features16. Usually, smoothness and (a)symmetry are the most 

crucial factors in selecting suitable wavelet basis functions (Gençay et al., 2002; Ramsey and 

Lampart, 1998b). The SIDWT coefficients in this study are calculated from the Daubechies family 

of compactly supported wavelet filters, which are well localized in time (Daubechies, 1992). 

Specifically, the Daubechies filter of length eight, (db8) is selected in order to balance smoothness, 

length and symmetry (Jensen and Whitcher, 2000; Gençay et al., 2001). This is a widely used 

wavelet and is applicable in a wide variety of data types. It achieves an “ideal compromise” 

                                                 

15 In order to deal with time series of non-dyadic length, a “signal extension” process is usually employed for DWT, which involves 

"padding" the time series with values and increase its length to the next power of two. Ogden (1997) reports various methods such as 

padding with zeros, using higher-order polynomials, periodic extension, and numerical integration. 

16 For instance, if the data appear to be constructed of piecewise linear functions, then the Haar wavelet may be the most appropriate 

choice, while if the data is fairly smooth, then a longer filter such as the Daubechies asymmetric wavelet filter may be desired (see 

Appendix I for a description of Haar and Daubechies filter families). 
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between competing requirements in that it has reasonably narrow support, is fairly smooth, is 

twice differential, nearly symmetric and has a moderate degree of flexibility17.  

Furthermore, the application of the DWT to finite-length time series brings up the crucial 

issue of “boundary distortions”, which concerns the problematic estimation of the remaining 

wavelet coefficients when the end of the series is encountered in the wavelet transform18. To deal 

with boundary effects in this study, SIDWT employs a specialized “periodic extension” pattern. 

Specifically, if the series length is odd, the series is first extended by adding an extra-sample equal 

to the last value on the right. Then a minimal periodic extension is performed on each side 

(Pesquet et al., 1996). The extension mode used for the inverse SIDWT is the same to ensure a 

perfect reconstruction. In addition, using these boundary coefficients, the SIDWT retains its 

numerically stability (Herley, 1995). 

Finally, in the literature the depth (level) of the multiscale wavelet decomposition is usually 

determined arbitrarily or based on some subjective (economic) rationale with regard to the 

examined time scales. Alternatively in this study the optimal level of multiscale decomposition is 

pursued with respect to the minimization of the Shannon entropy-related criterion19. It is estimated 

on the basis of the sample length, the selected wavelet class and the boundary-distortion method. 

The entropy of each level is estimated step-wise and it is compared with the one from the previous 

level. If it is decreased then the new decomposition “reveals” interesting, non-redundant 

information and the decomposition continues (Coifman and Wickerhauser, 1992). The optimal 

level is determined at the minimum value of the entropy-related criterion20. In the following 

expressions y  is the signal and 
i
c  represents the details and the j -th level approximation 

                                                 

17 Alternative choices of wavelet classes were also applied in the empirical study, but the results were very robust to such changes and 

the current selection appeared to be the most balanced. 

18 Although various theoretical methods are available to tackle with this issue, they are rather inefficient from a practical viewpoint 

(Cohen et al., 1993). A common technique applied in Fourier analysis involves the entire series to be duplicated around the last obs. This 

may be reasonable for some series with strong seasonal effects, but cannot be applied in general (Strang and Nguyen, 1996). 

19 Classical entropy-based criteria describe information-relevant properties for an accurate representation of a given signal. 

20 The Shannon criterion shows a downward trend until a minimum value-corresponding to a “threshold” scale level-is reached and 

then it begins to rise revealing that further signal decomposition “contains” redundant information. The maximum level of 

decomposition tried in this study is ten, based on the “translation” of the wavelet scales into economic time horizons, as mentioned in 

the empirical section.  
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coefficient of y  for scales 1,...,j J=  in an orthonormal basis21. The entropy E must be an additive 

function such that (0) 0E =  and ( ) ( )
j

j

E y E c=∑ . The Shannon entropy for the coefficients in each 

level is defined as 

2 2( ) log( )
Shannon j j j
E c c c= − ⋅         (3)  

and thus for the entire signal it is 2 2( ) log( )
Shannon j j

j

E y c c=− ⋅∑ , with the convention 0 log(0) 0⋅ = .  

 

3. DATA DESCRIPTION AND PRELIMINARY ANALYSIS 

The data comprise three time series of daily closing currency rates denoted relative to 

United States dollar (USD), namely Euro (EUR), Great Britain Pound (GBP) and Japanese Yen 

(JPY). The exact ratios represent EUR/USD, GBP/USD and USD/JPY22. The foreign exchange 

returns are defined as ( ) ( )1log logt t tr P P−= − , where 
t
P  is the closing level on day t , while the 

volatility series is defined as the absolute value of the returns t tu r=  as in Jensen and Whitcher 

(2000) and Gencay et al. ( 2002) . The data span a time period from January 5, 1999 to May 10, 2010 

(2960 observations), namely from the introduction of the Euro until the EU ministers and the ECB 

agreed on a program of bond purchases and an unprecedented defence package of 750 billion€, 

with the contribution of the IMF, in order to deal with the 2010 Eurozone sovereign-debt crisis. 

Moreover, the robustness of the results is examined in sub-periods based on economic rationale as 

well as identified by the application of stability tests for structural breakpoints. Specifically, three 

breakpoints are initially considered for the identification of the sub-periods, hence setting a 

platform for departure for causality tests. The first structural break is March 10, 2000 and 

corresponds to the date when the dot-com bubble “burst” (Greenspan, 2007). On that day the 

technology NASDAQ Composite index peaked at 5,048.62 (intra-day peak 5,132.52), more than 

double its value just a year before. Moreover, the financial crisis of 2007-2010 is examined. It was 

                                                 

21
 Based on the wavelet decomposition, the reconstructed signal comprises the j -th level wavelet approximation and the details in all 

levels. Consequently, these are used to estimate the Shannon entropy criterion.  

22 These are the most liquid and widely traded currency pairs in the world (“FX majors”) with 27% market turnover share for 

EUR/USD, 13% for USD/JPY and 12% for GBP/USD (BIS Triennial Survey, 2007). 
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triggered by a liquidity shortfall in the US banking system, which resulted in the collapse of large 

financial institutions, the "bail out" of banks by national governments and turbulence in stock 

markets around the world (Krugman, 2009). The crisis began to affect the financial sector in 

February 22, 2007, when HSBC, the world's largest bank of 2008, wrote down its holdings of 

subprime-related mortgage-backed-securities by $10.5 billion, the first major subprime related loss 

to be reported. This particular date is used as the second breakpoint23. Finally, the EU sovereign 

debt crisis in the end of 2009 is also investigated. It led to a crisis of confidence as well as the 

widening of bond yield spreads and rise of credit default swaps for Eurozone countries such as 

Greece, Ireland and Portugal, which further intensified the fear of a global contagion24. The crisis 

deepened towards the end of 2009 when there was an abrupt increase in the spreads due to the 

downgrading of Greece's credit rating by all three major international credit agencies (Fitch, 

Moody's and S&P). In this paper December 8, 2009 is set as the third breakpoint, corresponding to 

the first Greek rating cut by Fitch. 

In addition to the economic rationale, the breakpoint selection is statistically tested via the 

application of Chow's test (Chow, 1960) for known (imposed) breaks and the cumulative sum 

(CUSUM) test (Brown et al., 1975) for unknown points. These tests are sequentially applied both on 

return series and on absolute returns of each currency to investigate also for volatility breaks 

(McConnell and Perez-Quiros, 2000; van Dijk et al., 2005). The results from the Chow’s test, 

indicate that in the majority of cases for the FX returns one breakpoint is statistically identified at 

the 5% level of significance, namely February 22, 2007. The CUSUM test also detects parameter 

instability at the 5% significance level mostly around the same breakpoint. In case of all volatility 

series, the null of no structural change can be rejected for both Chow’s and CUSUM test at the 1% 

level. The structural break of February 22, 2007 is finally selected for the return and volatility series 

                                                 

23 On September 15, 2008, the Lehman Brothers Holdings filed for bankruptcy following drastic losses in its stock and devaluation of its 

assets by credit rating agencies. The filing marked the largest bankruptcy in U.S. history. 

24 At the beginning of 2010, a failed bond auction in Portugal increased the fear of a Portuguese debt default (Blackstone et al., 2010). 

The euro was weakened and a global stock and commodity sell off occurred in February 2010 and the following months. Greece was the 

focal point of the crisis. The Greek government searched for a bailout plan in case it failed to raise the money to fill its budget gap 

through the credit markets. The provided plan failed to reassure investors, thus leading to an agreement on a defence package of 750 

billion€ by the EU and the IMF, in order to prevent the relentless speculative attacks on the euro and eventually restore stability. 
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of all FX rates, thus combining statistical and economic rationale25. Overall, the examined sub-

periods are the following: P1: January 5, 1999 to February 21, 2007 (2122 obs.), P2: February 22, 2007 

to May 10, 2010 (838 obs.). In addition, the entire sample period PTotal: January 5, 1999 to May 10, 

2010 (2960 obs.) is comparatively investigated.  

The descriptive statistics for the return and volatility series of each currency are presented 

in Table 1. The return series are zero mean-reverting with low corresponding variance. The Jarque-

Bera statistic for all FX rates in all periods is statistically significant, thereby implying that the 

return distributions are not normal. In general, kurtosis for returns in all periods is larger than 

normal, which indicates the presence of fat tails, extreme observations and possibly volatility 

clustering. Kurtosis is also significantly higher than normal for the distribution of the absolute 

returns for all currencies. As indicated by skewness, EUR return series are symmetric while JPY 

and GBP have a longer left tail. The volatility series are not normally distributed with a fat right 

tail. Based on the Ljung-Box Q-statistic, the hypothesis that all correlation coefficients of the 

returns up to 12 are jointly zero is rejected in the majority of cases. Therefore, it can be inferred that 

the return series present some linear dependence. In addition, the statistically significant serial 

correlations in the volatility series imply nonlinear dependence due possibly to clustering effects or 

conditional heteroscedasticity. The differences between the two periods P1 and P2 are quite evident 

in Table 1, where a significant increase in variance can be observed in P2 for all exchange rates as 

well as increased fat-tailedness of the return and volatility distributions reflected in the higher 

kurtosis. Additionally, P2 witnessed many occasional negative spikes as it can be inferred from the 

                                                 

25
 In Chow's breakpoint testing, all possible calendar combinations are examined, i.e. one imposed breakpoint of March 10, 2000, 

February 22, 2007 or December 8, 2009 separately, then two points (3 cases) and finally all three points/dates of structural change. The 

Chow test in this paper uses the methodology of McConnell and Perez-Quiros (2000) who estimate an AR(1) model with a constant for 

each sub-sample separately, to see whether there are significant differences in the estimated equations. Two statistics for the Chow test 

are used, namely the log-likelihood ratio ( 2χ ) and the F-statistic, which are both based on the comparison of the restricted and 

unrestricted sum of squared residuals. For EUR, GBP and JPY, the null hypothesis of no structural change for the one break of February 

22, 2007 as well as for the specific case of the two breaks of February 22, 2007 and December 8, 2009, is rejected at the 5% (for GBP is 

rejected at 10% significance level). The CUSUM test is based on the cumulative sum of the recursive residuals. In case of EUR and GBP 

rates it detects parameter instability at 5% level though marginally, around the region of the February 22, 2007 break (e.g., 1950 – 2150 

observations). For JPY no structural change is observed. Regarding all volatility series, the Chow test rejects the null of no structural 

change at 1% level for the February 22, 2007 breakpoint. Moreover, it does not reject the null hypothesis for the one break of December 

8, 2009 for all currencies. In addition, for EUR it rejects the null for all date combinations not including March 10, 2000 and for GBP and 

JPY, not including December 8, 2009. Finally, the CUSUM test strongly detects parameter instability for all currencies around the 

February 22, 2007 breakpoint. The selected breakpoints have also been verified with the Bai and Perron (2003) and Andrews and Zivot 

(1992) tests for unknown dates. These results are available upon request.   
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skewness of GBP and JPY returns, as opposed to a longer right tail for the EUR. Volatility series 

also present more spikes in P2.   

Table 1 also reports the contemporaneous correlation matrix for each period. Significant 

sample cross-correlations are noted for EUR and GBP returns, indicating a high interrelationship 

between the two markets. JPY shows a low negative correlation (or uncorrelatedness in P2) with 

EUR and GBP returns, while all volatility series are positively correlated for all currencies in both 

periods. However, since linear correlations cannot be expected to fully capture the linear/nonlinear 

linkages in a reliable way, these results should be interpreted with caution. Consequently, what is 

needed is a detailed causality analysis, conducted both at the aggregate foreign exchange rates and 

on each of the wavelet components. In the following section we present the results of the wavelet 

analysis, while in section 6 we focus on the causality analysis. 

 

4. A WAVELET ANALYSIS OF THE FOREIGN EXCHANGE RATES 

As the evaluation of the “scaling” effects on the relationships among FX markets is 

fundamental to the present study, in this section we offer a thorough investigation of the FX 

market dynamics across and within all scales both for returns and volatility via the wavelet 

multiscale decomposition analysis introduced in section 2. As mentioned, this technique allows for 

locally temporal effects, sharp cusps, structural breaks, time variation and regime switches. We 

then identify the impact of changes in long term dynamics, and analyze the implications for the 

flow of information across time scales. 

 

4.1 Minimum entropy wavelet decomposition  

The results of the optimal minimum-entropy decomposition for the FX returns and 

volatility are presented in Table 3. The entropy in each level is compared to that of the raw time 

series and to that estimated at the previous level. In most cases for the FX returns the optimal 

decomposition level is the seventh, while for the volatility series the minimum value of the 

Shannon entropy criterion is calculated at the fourth scale26.  

                                                 

26 The 8th scale is the optimal for EUR returns in period P1 and the 6th for GBP in P2 and JPY in Ptotal. Regarding the volatility series, the 

3rd scale provides the minimum entropy for JPY in P2.  
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Additionally, economic reasons can also be identified in considering the appropriate 

“depth” of the wavelet analysis, based also on the “translation” of the wavelet scales into time 

horizons. Table 4 “translates” the wavelet scales into appropriate time horizons, thus providing 

insight on the relation between SIDWT levels and time scales for the time series. Each scale 

corresponds to a frequency interval and it is associated with a range of time horizons that span 

from several days to one year. For instance, the detail 
2
D is associated with a frequency range of 4-

8 days (0.8-1.6 weeks), while 
4
D with approximately one month. Scale level 7j =  corresponds to a 

cycle length between 2.1 to 4.3 quarters, or equally between a semester and a yearly variation. 

Thereafter the notation 
j
D (and not the 

j
Dɶ used in Section 2) corresponds to the SIDWT details, to 

enhance readability.  

To sum up, the FX returns series are decomposed at scale level 7j = , therefore 

“containing” up to yearly frequencies, while the volatility series are analyzed up to the 4j =  scale, 

which is associated with a frequency range of 0.8-1.6 weeks. Also in economic terms it is 

reasonable to investigate causality relationships for the returns from daily to yearly frequencies, 

whereas up to monthly variations for the volatility. In real world applications, quarterly or yearly 

volatility is not interesting for the economic analysis of high-frequency (daily) FX series, nor 

“traded” in FX markets, as opposed to daily, weekly and monthly volatility. On the contrary, the 

causality analysis of the returns up to yearly variations can be very useful in detecting FX market 

linkages with macroeconomic fundamentals and in producing multi-step ahead return or price 

forecasts. 

 

4.2 Scale-dependent descriptive analysis  

Figures 1-2 present the SIDWT wavelet approximation and details estimated from the 

Daubechies (db8) class, for the returns and volatility series on EUR. Figures III.1-4 in the Appendix 

III provide the same information for the other currencies. To distill information from the wavelet 

components, it is crucial to recall that nonzero wavelet coefficients correspond to activity in a 

particular range of frequencies over time. Consequently, when the details are rapidly changing, 
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this implies that its corresponding frequency interval contains important information about the 

original process27. 

For the EUR return series, for all periods there are no significant differences in high- and 

low-scale dynamics. All components display a non-cyclical pattern with fairly low oscillation 

amplitude. Essentially, there is no notable “activity” in high scales at all levels, which can be 

interpreted as a direct result of the trend-removal procedure, albeit in P2 the return fluctuations are 

slightly amplified after the first quarter of 2008, i.e. after entering the financial crisis period. A 

similar regime switch is also observed in the details of the PTotal and P1. The increased variability is 

mostly evident in detail 
1
D  of the EUR absolute return series in P2, which is associated with 

oscillations of 2-4 days period length, but also in the second, third and fourth scale corresponding 

to oscillations with a period of approximately 1 week, 1.6-3.2 weeks and 0.8-1.6 months 

respectively. Additionally, in PTotal for the EUR volatility there is an increased variability pattern in 

the high frequency harmonic (first detail) associated with 2-4 days, which might be interpreted as 

the dominant market dynamics and can be attributed to traders with short-term trading horizons. 

The regime switch appearing in the EUR return details immediately after the crisis burst is 

also depicted in the P2 details of the EUR volatility28. Interestingly, persistent oscillations are 

present in all detail components of the EUR volatility in P1, indicating a near-cyclical pattern in low 

scales for the pre-crisis period and probably “neutral” mean-reverting trading behavior. This is 

also depicted in the 
4
A  approximation in the volatility series in P1, but not in P2 (and consequently 

not at the end of PTotal), where a break in the long-run trend component signifies the entry in the 

high volatility regime of the 2007-2010 financial crisis. The same applies for the 
7
A  low frequency 

component of the EUR return series, yet in a smaller extent.  

                                                 

27 When viewing the SIDWT decomposition, it is evident that the wavelet details display a complicated structure that cannot be 

attributable to an oscillation at a single frequency. This is due to the fact that the underlying spectrum of these processes is rapidly and 

dynamically changing within the frequency intervals induced by the wavelet transform. 

28
 The occurrence of the structural changes in the wavelet approximations mentioned throughout Section 9 have also been tested with 

the Chow's test (Chow, 1960) for known (imposed) breaks, with the cumulative sum (CUSUM) test (Brown et al., 1975) for unknown 

points as well as with the Bai and Perron (2003) and Andrews and Zivot (1992) tests. In addition for the details, the switching regimes 

have been verified via a Markov-switching model with two regimes. In each regime an AR(1) specification was used.   
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The qualitative characteristics of the low- and high-frequency components of GBP returns 

and volatility are directly comparable and analogous to that of EUR. Finally, the Japanese currency 

market has almost no high-scale dynamics and only the wavelet scales (
1
D -

4
D ) of the JPY 

volatility exhibit some activity in P2. The latter demonstrates that agents with short trading 

horizons (daily-monthly) are mostly affected by the crisis break.  

 

4.3 Heterogeneous market dynamics and micro-foundations  

The motivation behind the investigation of “vertical” (across scales) heterogeneity in the 

variability pattern comes from comparative observation. For example, for JPY returns (Figure III.3) 

the first two finest scales mostly affect the dynamics appearing in the raw data, while for EUR 

(Figure 1) and GBP (Figure III.1) all scales seem to contribute to the raw series variability. Likewise, 

the detail 
1
D  of the GBP volatility (Figure III.2) in all periods dominates the aggregate raw series 

oscillation amplitude, whereas other frequency components embed lower information. It is also 

noticeable that a low frequency shock (displayed in the long-run approximation wavelet 

component), might lead to a high frequency response by a short time span, as in the case of the 

crisis emergence depicted in the GBP and JPY volatility series (Figures III.2 and III.4). This vertical 

heterogeneity suggests the presence of trader behavior with different time horizons. At the highest 

approximation scale the trading mechanism “comprises” fundamentalists who trade on longer 

time horizons. Then, at low scales short-term traders and market makers operate with time 

horizons of a few days up to a month. Each trader class may possess a homogeneous behavior, but 

it is the combination of these classes in all scales that generates the aggregate time series. 

Therefore, the underlying dynamics are heterogeneous due to the interaction of all trader classes at 

different time scales. In such a market, a low-frequency shock infiltrates through all scales, while a 

high-frequency shock runs out quickly and might have no impact whatsoever in the long-run 

dynamics. Probably, a characteristic example of a low-frequency shock which penetrated all scales 

and market “behaviors” is that of the Eurozone sovereign debt crisis observed in all wavelet 

components of the examined currency series.  
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Another aspect worthy of investigation is the scale-dependent duration of regime switches. 

Specifically, a high volatility regime initiated by a market information flow appears to persist 

longer at the lower frequency associated also with longer trading horizons, as opposed to a high-

frequency horizon. For example, this is demonstrated for the JPY volatility in PTotal and P2. Overall, 

the duration of regimes seems to be longer for high-scale (low-frequency) trading horizons, 

whereas low-scale behavior results in short and frequent regime switching.  

Moreover, the “vertical” causality of the regime structure is one-way, in that a low regime 

variability state at low frequencies identically affects the oscillation state at higher frequencies. 

Indeed, the results in section 4.2 indicate that if e.g., a low volatility regime is observed at a 

monthly frequency, it is more likely that there is also a low volatility pattern at the weekly or daily 

scale. On the contrary, high variability at a low frequency does not necessarily entail a high 

volatility at higher frequencies (e.g., as in the case of JPY market in P1). This result is in accordance 

with the empirical evidence that markets “cool off” after a shock at higher frequencies in a much 

shorter period than after a lower-frequency, “structural” change. 

 

4.4 Impact of extreme events and structural breakpoints across time scales 

The impact of the stock market dot-com bubble is initially investigated, in particular after 

the breakpoint of March 10, 2000 (obs. 309 of PTotal). The estimated sequence of wavelet 

approximations and details, as depicted in Figures 1-2 for the EUR and III.1-4 (Appendix III) for 

GBP and JPY, indicates that the currency markets were not affected seriously by the tech-bubble 

“burst” which partly coincided with the after-Euro era. The volatility regime in all FX rates is 

relatively “flat” across the scales.  

Another extreme event was the terrorist attack at the World Trade Center on September 11, 

2001 (obs. 701), which lead to a sharp drop in stock prices worldwide. The analysis of the impact 

on the currency markets in all scales (both on returns and volatility series) reveals that it was a 

relatively short one with practically imperceptible consequences, thus no evidence of contagion 

across scales was observed.  
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Next, the financial crisis of 2007-2010 occurred, starting from the HSBC write-down in 

February 22, 2007 (obs. 2123). A close assessment of the wavelet components in Figures 1-2 and 

III.1-4 indicates that the effect of the subprime crisis is not as evident in currency markets as in the 

stock markets, except for the case of the JPY volatility. Due to the structural break in the long-run 

component (
4
A ), the Japanese market is gradually entering into a high volatility regime 

(associated with all four scales, 
1
a -

4
a ).  

Finally, the Eurozone sovereign debt crisis after December 8, 2009 and during 2010 is 

analyzed. The first Greek credit rating cut by Fitch corresponds to obs. 2851 in PTotal. Interestingly, 

it can be inferred that international FX markets are experiencing since then a large ongoing 

turmoil. The estimated wavelet components at all scales clearly indicate that the EUR, GBP and 

JPY markets entered into a high volatility state since the end of 2008. Moreover, the high volatility 

state is not uniform across the scales; at lower scales and especially at the finest scale, the time span 

of the regime becomes wider29. This could be safely considered as a warning, precursor signal of an 

escalating crisis. 

 

5. TIMESCALE CAUSALITY INVESTIGATION  

5.1 Causality testing 

We perform causality detection via the Granger test, the modified Baek-Brock test and the 

Breitung-Candelon test. The conventional approach of causality testing is based on the Granger 

test (Granger, 1969), which assumes a parametric, linear model for the conditional mean. This 

specification is simple and appealing as the test is reduced to determining whether the lags of one 

examined variable significantly enter into the equation of the other, albeit it requires the linearity 

assumption. Baek and Brock (1992) noted that the parametric linear Granger causality test has low 

power against certain nonlinear alternatives or higher moments. As a result, nonparametric 

                                                 

29 For example, for return and volatility detail 
1
D  (approximately 2-4 days) of all currencies in periods PTotal and P2, the estimated 

wavelet coefficients display a high volatility regime all through the end of the sample. At scales 2-4 (0.8-1.6 weeks to 0.8-1.6 months) the 

high state is observed with smaller amplitude. In other words, for short-term traders the currency turbulence continues within 2010, 

whereas for longer horizon traders or investors, the turmoil mostly lasts from 2009 until the first quarter of 2010. In fact, there were 

several bursts of different oscillation range and amplitude since the end of 2008 and during the period of the Eurozone crisis. 
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causality tests have been introduced in the literature, directly focusing on predictive power 

without imposing a linear functional form. Hiemstra and Jones (1994) proposed a causality-in-

probability test for nonlinear dynamic relationships which is applied to the residuals of vector 

autoregressions and it is based on the conditional correlation integrals of lead–lag vectors of the 

variables. This test relaxes Baek and Brock’s assumption of i.i.d time series and instead allows each 

series to display weak (or short-term) temporal dependence. It can detect the nonlinear causal 

relationship between variables by testing whether past values influence present and future values. 

Finally, a test for causality-in-frequency (spectral causality) is also applied. Geweke (1982) and 

Hosoya (1991) originally proposed a causality measure based on the decomposition of the spectral 

density, while Yao and Hosoya (2000) developed a Wald-type test procedure based on a 

complicated set of nonlinear restrictions on the parameters of vector autoregressions. In a latter 

study, Yao and Hosoya (2000) applied a numerical method to estimate the nonlinear function of 

the autoregressive parameters and the asymptotic covariance matrix. Recently, Breitung and 

Candelon (2006) proposed a simplified test procedure that is based on a set of linear hypotheses on 

the parameters of a bivariate vector autoregressive model. It allows testing for short- and long-run 

causality at a specified range of frequencies. The test by Breitung and Candelon (2006), as well as 

those by Geweke (1982) and Hosoya (1991) upon which the Breitung and Candelon test is based, 

provides very good causality results – in terms of size and power properties – only at some pre-

specified frequency range, which depends on the input data frequency. Applying wavelet analysis 

could provide an efficient means of overcoming the constraint of reaching a threshold in the lowest 

possible frequency investigated, namely probing further in the “long-run” behavior (i.e., in this 

study reaching closer to business cycle fluctuations). The three causality tests are formally 

described in Appendix II. 

 

5.2 Empirical analysis 

The proposed empirical analysis involves three steps. In the first step, the short- and long-

run spectral causal relationships are explored at a pre-specified range of frequencies applying the 

Breitung-Candelon test on the aggregate log-differenced time series. Next, the Granger causality 
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test is employed on the original and on the “disaggregated” wavelet components in order to 

investigate the linear dynamic linkages at various scales. Lastly, bivariate vector autoregressive 

filtering is implemented on the raw and decomposed series and the residuals are examined 

pairwise by the nonparametric modified Baek-Brock test. Thus, the nature and direction of 

causality explored for each scale component of the return and volatility series is compared against 

the causality results of the aggregate series. 

Linear and spectral causality are investigated in a VAR representation. VAR modelling is 

also applied for the volatility series in accordance with previous results derived by Nikkinen et al. 

(2006)30. The results from the SIC criterion, taking into consideration many lag specifications for the 

bivariate VAR modelling as in Engel and West (2005), indicate in most of the cases two lags for the 

FX return series and their wavelet components in all periods. Similarly, four lags are chosen for the 

volatility series and the corresponding components. Finally, for the nonlinear causality test, in 

what follows the common lag lengths used are 1==
YX
ℓℓ . The test is applied on the VAR 

residuals derived from the pairwise linear causality testing and the distance measure is set to 

1.5ε = , as suggested by Hiemstra and Jones (1994)31.   

The FX multiscale causality results from all tests employed in the study are reported in 

Tables 5 and 6. The simplifying notation “ ** ” is used to indicate that the corresponding p-value of 

a particular causality test is smaller than 1% and “ * ” that the p-value of a test is in the range 1-5%. 

This was necessitated in order to overcome the difficulty of presenting large tables with numbers. 

                                                 

30 The results from testing nonstationarity with the Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root tests show that 

FX log-levels log-levels are (1)I  processes, whilst the returns and volatility series are stationary. In addition, the trace and maximum 

eigenvalue statistics (Johansen, 1988; Johansen and Juselius, 1990) applied on the log-prices series did not identified any cointegrating 

vectors and the null of no cointegration was not rejected (Table 2). The lag lengths for testing nonstationarity were selected using the 

Schwartz Bayesian Information Criterion (SIC), while for the PP test the bandwidth was automatically selected using Newey and West 

(1994) method with Bartlett kernel. ADF and PP tests indicate that the null of a unit root cannot be rejected at 1% for all currency log-

levels in all periods, regardless of whether a constant and linear trend or only a constant is included in the deterministic component. 

Furthermore, both tests show that the log-returns and volatility series are stationary as the null can be soundly rejected for all currencies 

and periods. Due to the nature of volatility, it is assumed that there is no time trend in the series in the long run (Nikkinen et al, 2006). 

However, the unit root tests were also performed with a time trend and the results remain unchanged. Moreover, the test results are 

generally not sensitive to the number of lags used. Based on these results and in order to identify the correct model specification for the 

investigation of linear and spectral causality (i.e., VAR or VECM), the trace and maximum eigenvalue statistics were further applied to 

the log-prices series to explore possible effects of cointegration. For all pairs the Johansen tests did not identified any cointegrating 

vectors and the null of no cointegration was not rejected (Table 2). Thus, linear and spectral causality are investigated with a VAR 

representation. 

31 In the estimation 0.5ε =  and 1ε =  were also considered, with no qualitative difference in the results. In addition, evidence from 

the second and third common lag lengths did not significantly modified the nonlinear causality results.  
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Directional causalities in the text are denoted by the functional representation  “ → ”. The causality 

linkages are also depicted diagrammatically in Figures 3 and 4 where strong unidirectional or 

bidirectional causality (“ ** ”) is denoted by a double one-sided or two-sided arrow respectively. In 

addition, the corresponding results on the cross-correlation of the return and volatility wavelet 

components are displayed in Table 7, while the spectral causal relationships of the Breitung-

Candelon test are graphically illustrated in Figures III.5 and III.6 (Appendix III). These figures 

report the test statistics along with their 5% and 1% critical values (broken lines) for all frequencies 

in the x-axis interval 0,π     as in Breitung and Candelon (2006)32. This interval, based on the 

frequency of the input raw data (i.e., daily), corresponds to a frequency range from 1 day to 16 

days, or 0.0 0.8 −    months.  The right value represents the lowest frequency upon which the 

Breitung-Candelon test can infer on causality. Hence, the results of the frequency-domain test for 

the aggregate series can be comparatively analyzed against those of up to the 
4
a  scale for the 

return and volatility series.  

The hypothesis of no causality for the Breitung-Candelon spectral test in case of the 

unidirectional EUR→GBP return relationship is rejected at the 5% level in the period P1 for 

frequencies in the x-axis 2.4, 3.2    , corresponding to a range of 1-2 days or roughly to scale 
1
a  in the 

wavelet decomposition. In the same period JPY causes GBP for return series in 1.2,2.0    , which 

corresponds to a frequency range of 3-6 days or scale 
2
a . The volatility series for P1 reveal a strong 

causal linkage of JPY→EUR (1% significance level) in the range of 8-16 days directly associated 

with the 
3
a  wavelet scale. In all other periods (P2 and PTotal) after investigating volatility series, 

strong causal relationships are detected (1% level) among all currencies mostly in the frequency 

range of 0.0,1.2    , or 6-16 days (comparable to 
3
a ). Instead, inferring upon the returns, the results 

vary across periods. In P2, a bidirectional linkage GBP↔JPY emerges at the 1% level at the range of 

2-8 days and a univariate relationship JPY→EUR     (3-16 days), while in PTotal causalities run from 

                                                 

32 It follows from Breitung and Candelon (2006) that for frequencies in ( )0, π  the effect of the coefficient c (section 6.3) in the size and 

power of the test is minimal and the empirical power is very close to the asymptotic power.  
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GBP to JPY (3-16 days) and EUR (6-8 days) as well as from JPY to EUR (3-8 days) at weaker 

significance levels.  

Next, the analysis is unfolded on the basis of each wavelet scale. The long-run linkages 

exhibit the following characteristics: in case of returns, linear and nonlinear feedback relationships 

are observed for the 
7
A  component in all periods except for the absence of the EUR-JPY causality 

in P2. The volatility component 
4
A  provides strong statistical evidence on linear and nonlinear 

bidirectional linkages in all periods, with the exception of P2 when only EUR↔GBP is observed. 

The correlation of the long-run component is stronger (positively or negatively higher) for plain 

and absolute returns compared to the one of the details, for the majority of the examined currency 

pairs. The low-frequency components 
5
D -

7
D  for the return series present identical 

interdependencies. Specifically, the causalities run from EUR to GBP in P1, in both directions for 

GBP-JPY in P2, while they “add-up” in PTotal. There is also evidence of unidirectional nonlinear 

relationships from EUR to GBP and JPY in P1, and strong feedback nonlinear links in P2 and PTotal 

for all pairs. Instead, cross-correlation in these high scales is positively high only for EUR-GBP, 

whereas around -0.3 for the other two pairs. Furthermore, the third and fourth wavelet scales (
3
a  

and 
4
a ) display the same features in terms of investigated causalities. Firstly regarding returns, 

linear unidirectional linkages are observed from EUR to JPY and GBP in P1 and a bidirectional 

relationship for the GBP-JPY pair in P2.  In PTotal all links observed in P1 and P2 exist. The nonlinear 

feedback causalities for all pairs observed in P2 are identical to the ones in PTotal, while in P1 a 

sequential pattern emerges from EUR to JPY, to GBP and back to EUR   Secondly, in terms of 

absolute returns, the 
3
a  and 

4
a  scales reveal absence of linear causality in P1, and only a strong 

bidirectional link EUR↔JPY in P2 and PTotal. The nonlinear linkages EUR→GBP and EUR→JPY are 

observed in P1, while all currencies present bidirectional causalities in the other two periods. The 

correlation at 
3
a  and 

4
a  scales is similar to the one observed for raw series, but different compared 

to the long-run component. At the second wavelet scale 
2
a  linear bidirectional relationships exist 

in all periods, as well as nonlinear bidirectional causalities for all pairs. In volatility series, no 
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currency Granger causes the other in P1 and only a strong EUR↔JPY link is observed in the other 

periods. Again, nonlinear links dominate PTotal and P2 , while EUR causes GBP and JPY in P1. 

Finally, at the finest scale
1
a (highest frequency) the same as in 

2
a  applies for the volatility series 

regarding the nature and direction of the interdependencies. In the case of returns, a feedback 

relationship emerges for the EUR-JPY and GBP-JPY pairs in P2 and PTotal, whereas nonlinear 

linkages appear for all pairs, with the exception of GBP-JPY in P1. In addition, the cross-correlation 

of the wavelet components for the two finest scales both for returns and volatility, has 

approximately the same value as in 
3
a ,  albeit somewhat lower for the more “noisy” scale 

1
a  

(highest frequencies).     

Overall, the evidence provided in this section leads to the conclusion that spillovers and 

interactions between FX markets have different characteristics at different timescales33.  Especially 

when the nonlinear effects are accounted for, the evidence of dynamical bidirectional causality 

implies that the pattern of leads and lags changes over time. The market agents filter information 

relevant to their positions as new information arrives and, at any time point, one FX market may 

lead the other and vice versa. Overall, there is no indication of a “global causality” behavior or a 

“prevailing pattern” of interdependencies dominating at all scales.  

 

6. CONCLUSIONS  

Multiscale wavelet decomposition could become a valuable means of exploring the 

complex dynamics of economic time series, as it allows for temporal and frequency analysis at the 

same time. In contrast to simple disaggregation at different time horizons, this study relied on 

wavelet multiresolution to analyze the controversial issue of the dependence structure of the FX 

markets. The aim of the paper was to test for the existence of causal relationships among the most 

liquid and widely traded currencies in the world (“FX majors”), namely the EUR, GBP and JPY. 

The nature and direction of causality was investigated for each component of the raw return and 

volatility series corresponding to a different sampling frequency and was compared against the 

                                                 

33 The inferred results seem also to corroborate with Genҫay et al (2002) and Ramsey and Lampart (1998a) on multi-scale linkages 

between macroeconomic variables. 
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results of the original aggregate series. Causality detection was performed with the use of the 

linear Granger test, the modified Baek-Brock test for nonlinear causality and the frequency domain 

Breitung-Candelon test. The explored period, starting from the introduction of the Euro, covers 

diverse regimes including the rise and fall of the “dot-com” bubble, the financial crisis of 2007-2010 

and the Eurozone sovereign debt crisis in early 2010. The timescale causality investigation, 

including wavelet cross-scale correlation, proceeded complementarily albeit distinctly both on the 

basis of period as well as of wavelet scale. It involved the comparative examination of the 

aggregate versus component-based causality, of linear vis-à-vis nonlinear and spectral causality as 

well as of short- versus long-run linkages.  

Moreover, this study attempted to probe into the micro-foundations of across-scale 

heterogeneity in the variability pattern, on the basis of trader behavior with different time horizons 

and information flow across time scales. The trading pattern of fundamentalists is reflected at the 

highest approximation wavelet scale, while at lower scales short-term traders and market makers 

operate. Each trader class may possess a homogeneous behavior, but the aggregate underlying 

market dynamics are heterogeneous due to the interaction of all trader classes at different time 

scales. In such a market, a low-frequency shock infiltrates through all scales, while a high-

frequency shock runs out quickly and might have no impact whatsoever in the long-run dynamics. 

The propagation properties of this heterogeneous-driven behavior were investigated, the causality 

structure from low-to-high frequency was identified, and the implications for the flow of 

information across time scales in the FX markets were inferred. In addition, the scale-dependent 

duration of regime switches was highlighted. Specifically, a high volatility regime initiated by a 

market information flow appeared to persist longer at the lower frequency associated also with 

longer trading horizons, as opposed to a high-frequency horizon. Finally, an asymmetry in 

volatility dependence across different time horizons was identified as an important stylized 

property. The across-scale causality of the various regime structures is one-way, in that a low 

regime variability state at low frequencies identically affected the oscillation state at higher 

frequencies. On the contrary, high variability at a low frequency did not necessarily entail a high 
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volatility at higher frequencies. This result is in accordance with the empirical evidence that 

markets “cool off” after a shock at higher frequencies in a much shorter period than after a 

significant structural change. 

In technical terms, the present work introduced new practical guidelines for wavelet 

implementation and expanded the relevant literature by presenting an invariant discrete wavelet 

transform that contains no phase shifts, relaxes the assumption of a “dyadic-length” time series, 

enables multi-scale point-to-point comparison and copes effectively with “boundary effects”. 

Beyond the existing practice that has utilized subjective judgement or economic reasoning in 

estimating the appropriate “depth” of the wavelet analysis, a new entropy-based methodology 

was introduced for the determination of the optimal decomposition level.  

Overall, the results strongly indicate that interactions between currency markets have 

different characteristics at different timescales and that there is no “global causal behavior” that 

prevails at all time horizons. When the nonlinear effects are accounted for, neither FX market leads 

or lags the other consistently, namely the pattern of leads and lags changes over time. Given that 

causality can vary from one direction to the other, a finding of bidirectional causality over the 

sample period may be taken to imply a changing pattern of leads and lags over time. In particular, 

market participants filter information relevant to their positions as new information arrives and, at 

any time point, one FX market may lead the other and vice versa.  

An interesting subject for future research is the nature and source of the nonlinear linkages, 

as it was shown that volatility effects might partly induce nonlinear causality. Conditional 

volatility or statistically significant higher-order moments may account for a part of the 

nonlinearity in daily exchange rates, but only in some cases as it is already known by many 

studies, including Scheinkman and LeBaron (1989) and Bekiros and Diks (2008). In general, the 

detailed knowledge of the nature of interdependency between the currency markets and the 

degree of their integration at different timescales will expand the information set available to 

practitioners and policymakers. The results of this study, apart from offering a much better 

understanding of the dynamic heterogeneous relationships underlying the major currency 
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markets, may have important implications for market efficiency. In that, they may be useful in 

future research to quantify the process of financial integration or may influence the greater 

predictability of these markets.  
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TABLE 1: DESCRIPTIVE STATISTICS   
 

Return Statistics 

EUR GBP JPY 
Statistic 

PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 

Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Std. dev. 0.007 0.006 0.007 0.006 0.005 0.008 0.007 0.006 0.008 

Skewness 0.128 0.074 0.218 -0.379 -0.008 -0.553 -0.105 -0.017 -0.141 

Kurtosis 4.447 3.722 5.255 5.844 3.640 5.547 6.742 5.576 6.456 

JB test 266.18* 48.10* 184.28* 1068.48*  36.28* 269.17* 1732.19* 586.74* 419.92* 

Q(12) 12.23  14.85 10.74 11.38  9.24 16.52 33.91* 4.64 37.05* 
 

Return Correlation matrix 

 PTotal P1 P2 

 EUR GBP JPY EUR GBP JPY EUR GBP JPY 

EUR 1   1   1   

GBP 0.658 1  0.681 1  0.638 1  

JPY -0.232 -0.126 1 -0.356 -0.345 1 -0.039 0.139 1 
 

Volatility Statistics 

EUR GBP JPY 
Statistic 

PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 

Mean 0.005 0.005 0.005 0.004 0.004 0.006 0.005 0.005 0.006 

Std. dev. 0.004 0.004 0.005 0.004 0.003 0.005 0.005 0.004 0.006 

Skewness 1.588 1.293 1.883 2.042 1.250 1.978 2.270 1.955 2.207 

Kurtosis 6.669 4.862 7.852 10.191 4.720 8.316 12.650 9.995 11.409 

JB test 2905.27* 898.17* 1317.05* 8433.69* 814.37* 1532.96* 14027.58* 5678.53* 3149.45* 

Q(12) 365.54* 53.49* 378.50* 832.81* 42.96* 465.12* 403.88* 60.91* 209.61* 
 

Volatility Correlation matrix 

 PTotal P1 P2 

 EUR GBP JPY EUR GBP JPY EUR GBP JPY 

EUR 1   1   1   

GBP 0.485 1  0.483 1  0.495 1  

JPY 0.291 0.307 1 0.226 0.198 1 0.376 0.387 1 
 

 

Notation: The FX exchange returns are defined as ( ) ( )
1

log log
t t t
r P P

−
= − , where  

t
P  is the closing level on day t , while the volatility series as the absolute value of the 

returns
t t
u r=    as in Jensen and Whitcher (2000) and Gencay et al. ( 2002). (*) denotes significance at 5% confidence level. The periods are P1: 01/05/1999-02/21/2007, P2: 02/22/2007-

05/10/2010 and PTotal: 01/05/1999-05/10/2010. 
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TABLE 2: UNIT ROOT AND COINTEGRATION TESTS 
 

Unit Root tests 

Periods PTotal P1 P2 

ADF PP ADF PP ADF PP 
Variables 

ADFc ADFτ PPc PPτ ADFc ADFτ PPc PPτ ADFc ADFτ PPc PPτ 

Pt 0.76 0.23 0.77 0.23 0.88 0.21 0.87 0.17 0.49 0.77 0.47 0.76 

rt 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* EUR 

ut 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 

Pt 0.65 0.94 0.65 0.93 0.87 0.43 0.88 0.42 0.87 0.77 0.87 0.76 

rt 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* GBP 

ut 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 

Pt 0.57 0.49 0.49 0.44 0.21 0.49 0.23 0.53 0.52 0.18 0.51 0.25 

rt 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* JPY 

ut 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 

 

Cointegration tests 

Pair Trace statistic Maximum Eigenvalue statistic 

PTotal P1 P2 PTotal P1 P2 
X Y 

0r =  1r ≤  0r =  1r ≤  0r =  1r ≤  0r =  1r ≤  0r =  1r ≤  0r =  1r ≤  

EUR GBP 0.993 0.489 0.501 0.343 0.766 0.457 0.997 0.489 0.004 0.343 0.761 0.459 

EUR JPY 0.473 0.152 0.622 0.716 0.801 0.319 0.629 0.152 0.551 0.716 0.851 0.319 

GBP JPY 0.641 0.243 0.825 0.800 0.645 0.362 0.729 0.243 0.769 0.800 0.665 0.362 

 
Notation: Price variables are in logarithms and reported numbers for the augmented Dickey–Fuller (ADF) and Phillips-Perron (PP) test are p-values (both are one-sided tests of the null 

hypothesis that the variable has a unit root). The index c indicates that the test allows for a constant, while τ for a constant and a linear trend. The number of lags for the ADF was selected 

using the Schwarz information criterion. The lag truncation for the PP test was selected using Newey and West (1994) automatic selection with Bartlett kernel. Reported numbers for the 

trace and max. eigenvalue statistics are the MacKinnon-Haug-Michelis (1999) p-values. (*) denotes significance at 1% confidence level. The periods are P1: 01/05/1999-02/21/2007, P2: 

02/22/2007-05/10/2010 and PTotal: 01/05/1999-05/10/2010 
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TABLE 3: OPTIMAL MINIMUM-ENTROPY DECOMPOSITION  

 
EUR/USD GBP/USD USD/JPY 

Returns Volatility Returns Volatility Returns Volatility 
WL 

Level 
PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 

Raw  1.172 0.780 0.392 1.172 0.780 0.392 0.966 0.538 0.428 0.966 0.538 0.428 1.228 0.726 0.502 1.228 0.726 0.502 

1 1.274 1.164 0.436 0.551 0.508 0.187 0.998 0.789 0.446 0.429 0.328 0.199 1.404 1.131 0.628 0.616 0.528 0.248 

2 1.215 1.074 0.458 0.519 0.475 0.181 1.033 0.768 0.503 0.453 0.357 0.205 1.318 1.087 0.564 0.622 0.522 0.264 

3 1.066 0.964 0.422 0.474 0.441 0.184 0.988 0.698 0.530 0.448 0.364 0.204 1.278 1.057 0.567 0.575 0.519 0.277 

4 1.180 1.109 0.383 0.454 0.387 0.141 1.062 0.777 0.523 0.392 0.289 0.193 1.091 1.057 0.549 0.683 0.474 0.293 

5 1.071 0.859 0.523 0.456 0.448 0.174 1.000 0.863 0.435 0.424 0.295 0.227 1.283 1.012 0.494 0.717 0.483 0.404 

6 1.291 1.044 0.546 0.507 0.414 0.207 0.942 0.912 0.367 0.573 0.494 0.287 0.962 0.954 0.506 1.261 0.673 0.898 

7 0.995 0.942 0.298 1.345 0.920 0.956 0.715 0.456 0.407 1.377 0.643 1.203 0.985 0.622 0.201 2.238 1.525 1.480 

8 1.468 0.719 0.887 2.514 0.708 1.796 1.623 0.533 1.224 3.009 0.512 2.500 1.200 1.347 0.328 2.110 1.707 1.039 

9 1.199 1.256 0.724 8.573 3.789 5.997 1.244 0.788 0.803 7.482 1.320 6.648 1.116 0.937 0.379 4.308 2.964 4.160 

10 2.353 1.433 1.111 10.867 5.428 8.625 1.629 0.939 1.296 15.405 2.029 9.764 1.536 0.974 0.379 7.491 2.914 6.820 

 

Notation: Shaded numbers report the corresponding optimal level of decomposition for each time series. It indicates the minimum value of the Shannon entropy criterion for the wavelet 

details and j -th level approximation.  
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TABLE 4: TRANSLATION/CONVERSION OF WAVELET SCALES INTO TIME HORIZONS  

 
 Time Horizons 

WL Scale  Days Weeks Months Quarters Years 

1
a  2-4     

2
a  4-8 0.8-1.6    

3
a  8-16 1.6-3.2    

4
a  16-32 3.2-6.4 0.8-1.6   

5
a  32-64 6.4-12.8 1.6-3.2 0.5-1.1  

6
a  64-128 12.8-25.6 3.2-6.4 1.1-2.1  

7
a  128-256 25.6-51.2 6.4-12.8 2.1-4.3 0.5-1.1 

 
Notation: Each scale of the SIDWT corresponds to a frequency interval, or conversely an interval of periods, and thus each scale is associated with a range of time horizons. The time 

horizons are expressed in base units (daily frequency) as follows: Week=5 trading days, Month=20 trading days, Quarter=60 trading days, Year=240 trading days. 
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TABLE 5: CAUSALITY RESULTS (RETURN SERIES) 

 

EUR ↔ GBP EUR ↔ JPY GBP ↔ JPY 

Spectral 

Causality 

Linear Granger 

Causality 

NonLinear 

Causality 

Spectral 

Causality 

Linear Granger 

Causality 

NonLinear 

Causality 

Spectral 

Causality 

Linear Granger 

Causality 

NonLinear 

Causality 

X→Y Y→X X→Y Y→X X→Y Y→X X→Y Y→X X→Y Y→X X→Y Y→X X→Y Y→X X→Y Y→X X→Y Y→X 

WL 

Component 

PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 

Raw  *  *   * **     ** * ** **  **    *  **       ** ** ** **  ** **  *  * **   * **  * **  ** **  ** 

A7 ** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** ** ** **  * **  ** ** ** ** ** **  ** * **  ** 

D1  *     ** * ** ** * ** *  * **  ** ** * ** *  ** **  ** **  ** **  ** **  ** 

D2 ** **  * *  **  ** ** * ** **  ** *   ** * ** ** * ** * * ** **  ** **  ** ** * ** 

D3 * **     **  ** ** * ** * *     ** * ** **  **   ** **  ** **  ** ** * ** 

D4 * **     **  ** ** * **       **  ** **  **   * **  * **  ** ** * ** 

D5 * *     ** * ** **  **       ** * ** **  **   ** **  * **  ** **  ** 

D6 * *     ** * ** **  **       ** * ** **  **   ** **  * **  ** **  ** 

D7 

 

* **     ** * ** **  ** 

 

      ** * ** **  ** 

 

  ** **  * **  ** **  ** 

 
Notation: X→Y: rx does not Granger cause ry.  Statistical significance represents 5% (*) and 1% (**). The foreign exchange rates Euro (EUR), Great Britain Pound (GBP) and Japanese Yen 

(JPY) are denoted relative to United States dollar (USD). The exact ratios represent EUR/USD, GBP/USD and USD/JPY respectively. The periods are P1: 01/05/1999-02/21/2007, P2: 

02/22/2007-05/10/2010 and PTotal: 01/05/1999-05/10/2010. The spectral causality is tested only on the raw series as in Breitung and Candelon (2006). For all pairs the Johansen tests did not 

identified any cointegrating vectors and the null of no cointegration was not rejected (Table 2). Thus, linear and spectral causality are investigated with a VAR representation. The results 

from the SIC criterion, taking into consideration many lag specifications for the bivariate VAR modelling, as in Engel and West (2005), indicate in most of the cases two lags for the FX 

return series and their wavelet components in all periods. Finally, for the nonlinear causality test in what follows, the common lag lengths used are 1
X Y
= =ℓ ℓ  . The nonlinear test is 

applied on the VAR residuals derived from the pairwise linear causality testing and the distance measure is set to 1.5ε =  , as suggested by Hiemstra and Jones (1994). 
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TABLE 6: CAUSALITY RESULTS (VOLATILITY SERIES)  

 
EUR ↔ GBP EUR ↔ JPY GBP ↔ JPY 

Spectral 

Causality 

Linear Granger 

Causality 

NonLinear 

Causality 

Spectral 

Causality 

Linear Granger 

Causality 

NonLinear 

Causality 

Spectral 

Causality 

Linear Granger 

Causality 

NonLinear 

Causality 

X→Y Y→X X→Y Y→X X→Y Y→X X→Y Y→X X→Y Y→X X→Y Y→X X→Y Y→X X→Y Y→X X→Y Y→X 

WL 

Component 

PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 

Raw **  ** **  ** **  ** **  ** **  ** *  ** *  ** ** ** ** ** ** ** *  ** **  ** **  ** **  * **  ** **  ** **   **  ** **  ** 

A4 ** ** ** ** ** ** ** * ** ** ** * ** ** ** ** ** ** ** **  *   ** ** ** ** ** ** ** **  ** **  

D1    *   ** ** ** **  ** *  ** *  ** ** ** ** **  **       **  ** **  ** 

D2   **    ** ** ** ** ** ** **  ** *  ** ** ** ** **  ** **  *   * ** * ** **  ** 

D3       ** * ** **  ** **  ** **  ** ** * ** **  **       ** * ** **  ** 

D4 

 

      ** * ** **  ** 

 

** ** **   ** **  ** **  ** 

 

*      **  ** **  ** 

 
Notation: X→Y: rx does not Granger cause ry.  Statistical significance represents 5% (*) and 1% (**). The foreign exchange rates Euro (EUR), Great Britain Pound (GBP) and Japanese Yen 

(JPY) are denoted relative to United States dollar (USD). The exact ratios represent EUR/USD, GBP/USD and USD/JPY respectively. The periods are P1: 01/05/1999-02/21/2007, P2: 

02/22/2007-05/10/2010 and PTotal: 01/05/1999-05/10/2010. The spectral causality is tested only on the raw series as in Breitung and Candelon (2006). For all pairs the Johansen tests did not 

identified any cointegrating vectors and the null of no cointegration was not rejected (Table 2). Thus, linear and spectral causality are investigated with a VAR representation. The results 

from the SIC criterion, taking into consideration many lag specifications for the bivariate VAR modelling, as in Engel and West (2005), indicate in most of the cases four lags for the FX 

volatility series and their wavelet components in all periods. Finally, for the nonlinear causality test in what follows, the common lag lengths used are 1
X Y
= =ℓ ℓ  . The nonlinear test is 

applied on the VAR residuals derived from the pairwise linear causality testing and the distance measure is set to 1.5ε =  , as suggested by Hiemstra and Jones (1994). 
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TABLE 7: CROSS-SCALE CORRELATION RESULTS (RETURN AND VOLATILITY SERIES)  
 

Returns 

EUR - GBP EUR - JPY GBP - JPY 

Cross-correlation Cross-correlation Cross-correlation 
WL 

Component 
PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 

Raw 0.658 0.681 0.638 -0.232 -0.356 -0.039 -0.126 -0.345 0.139 

A7 0.831 0.831 0.891 -0.289 -0.465 -0.026 -0.085 -0.624 0.372 

D1 0.671 0.689 0.652 -0.238 -0.389 -0.001 -0.144 -0.383 0.155 

D2 0.654 0.675 0.635 -0.227 -0.362 -0.020 -0.137 -0.354 0.129 

D3 0.655 0.676 0.638 -0.230 -0.358 -0.032 -0.125 -0.344 0.140 

D4 0.655 0.677 0.638 -0.225 -0.353 -0.026 -0.122 -0.342 0.143 

D5 0.655 0.677 0.637 -0.229 -0.353 -0.038 -0.125 -0.341 0.137 

D6 0.656 0.679 0.636 -0.231 -0.353 -0.040 -0.128 -0.343 0.134 

D7 0.656 0.680 0.634 -0.231 -0.354 -0.039 -0.127 -0.343 0.137 

 
Volatility 

EUR - GBP EUR - JPY GBP - JPY 

Cross-correlation Cross-correlation Cross-correlation 
WL 

Component 
PTotal P1 P2 PTotal P1 P2 PTotal P1 P2 

Raw 0.485 0.483 0.495 0.291 0.226 0.375 0.307 0.198 0.387 

A4 0.768 0.533 0.921 0.585 0.302 0.746 0.569 0.076 0.672 

D1 0.382 0.475 0.246 0.172 0.201 0.121 0.207 0.183 0.241 

D2 0.408 0.479 0.306 0.210 0.208 0.219 0.229 0.199 0.267 

D3 0.418 0.479 0.333 0.218 0.204 0.247 0.237 0.199 0.287 

D4 0.424 0.478 0.349 0.235 0.216 0.273 0.248 0.208 0.302 

 
Notation:  Reported values indicate the wavelet cross-correlation between all pairs of exchange rate returns and volatility. 
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FIGURE 1: WAVELET MULTI-SCALE ANALYSIS (EUR RETURNS) 
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Notation: The results of SIDWT (db8) multiresolution wavelet analysis include the 
1 7
D D−  wavelet details and the 7-th level 

approximation 
7
A . The raw signal is also displayed.  
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FIGURE 2: WAVELET MULTI-SCALE ANALYSIS (EUR VOLATILITY SERIES) 
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Notation: The results of SIDWT (db8) multiresolution wavelet analysis include the 
1 4
D D−  wavelet details and the 4-th level 

approximation 
4
A . The raw signal is also displayed.  
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FIGURE 3: DIAGRAMMATICAL REPRESENTATION OF DIRECTIONAL CAUSALITIES (RETURNS) 
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FIGURE 4: DIAGRAMMATICAL REPRESENTATION OF DIRECTIONAL CAUSALITIES (VOLATILITY) 
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Notation (Figure 3 and Figure 4):  

The light grey line represents spectral casual relationships; the dotted and solid lines depict linear and nonlinear causal linkages 

respectively. 

                    denote unidirectional and bi-directional causality corresponding to 5% ≤  p-value < 1% 

                    denote unidirectional and bi-directional causality corresponding to p-value ≤  1% 
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APPENDIX I: WAVELET ANALYSIS 

I1. LITERATURE REVIEW 

The interest in economic applications of wavelets emerged in the mid-90s, mostly 

stimulated by the work of Ramsey and his collaborators. Ramsey and Lampart (1998a, 1998b) used 

a wavelet-based scaling method to investigate the relationship and causality between money, 

income and expenditure. Further work on long memory processes and fractional integration in 

financial data can be found in Greenblatt (1998) and Jensen (2000). Davidson et al. (1998) used 

wavelets in introducing a semiparametric approach for analysing commodity prices. Wong et al. 

(2003) provided an example of using wavelets in forecasting exchange rates, wherein other 

conventional time series models were also used in order to compare against the wavelet-based 

methodology. In recent works, Almasri and Shukur (2003) address the causal relation between 

spending and revenue at different timescales, while Gençay et al. (2002) look into dependencies 

between growth and inflation. Fernandez (2005) deals with the estimation of systematic asset risk. 

Finally, it is also worth mentioning a stream of papers utilizing wavelet methodology to address 

theoretical econometric issues, such as Pan and Wang (2000), Stengos and Sun (2001), Lee and 

Hong (2001), Hong and Kao (2004) and Fan and Gençay (2010).  

In economics the notion of timescale is related to time period segmentation and the 

examined relationships are described as short-run and long-run, or broadly under the term scaling 

laws (Brock, 1999). The scale decomposition often reveals the presence of deterministic regularities 

or statistical properties of the conditional moments that are seemingly independent of the scale 

details. However, in the wavelet literature the concept of time scaling is quite different from that in 

economics. Based on the selected function space, the time series are analysed into “fine” and 

“coarse” resolution components, namely into low- and high-frequency parts of a signal 

respectively. Although at first sight timescale could directly correspond to frequency there is only 

an indirect connection between these two concepts, as indicated by Priestley (1996). Intuitively, in a 

naïve interpretation, wide-support wavelets can be associated with low frequencies, while high-

frequency analysis can be provided by narrow-support components. However, the link between 
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scale and frequency can be directly interpretable only when the data is stationary. In general, a 

multiscale decomposition could be estimated by a bank of filters with varying frequencies and 

widths. Yet, selecting the proper filters and their parameters so as not to discard important features 

of the underlying series is a difficult, subjective task, lacking a solid methodology. The wavelet 

analysis provides a sound mathematical framework for designing filters which eventually provide 

an adaptive partition of the time-frequency domain.  

Fourier and wavelet methods involve the projection of a signal onto an orthonormal set of 

components. Fourier projections are most naturally defined for functions restricted to ( )2 0,2L π  i.e., 

the set of square integrable functions in the interval ( )0,2π . Based on the complex superposition of 

individual harmonics, the hypothesis is that over any segment of the time series the exact same 

frequencies hold at the same amplitudes, namely the signal is homogeneous over time. On the 

contrary, the basis functions in wavelet analysis are defined in ( )2L ℝ  and are not necessarily 

homogeneous over time, meaning that they have narrow compact support so that they rapidly 

converge to zero as time approaches infinity. The most widely used classes of wavelets are the 

orthogonal ones namely the haar wavelets, daubechies, symlets and coiflets (Percival and Walden, 

2000).  

 

I2. TECHNICAL OVERVIEW 

I2.1 Preliminaries 

A function ( ).ψ  that is real-valued and continuous such that ( ) 0t dtψ
∞

−∞
=∫  and 

( )2 1t dtψ
∞

−∞
=∫  defines a wavelet. Considering that ( )0 1

,...,
M

h h h −=  is a finite wavelet filter with 

length M , the properties of continuous wavelet functions such as integration to zero and unit 

energy, in discrete time are equivalently given by 
1

0

0
M

m
m

h
−

=

=∑  and 
1
2

0

1
M

m
m

h
−

=

=∑ . If ( )0 1
,...,

M
g g g −=  

denotes the complement low-pass (scaling) filter of the wavelet (high-pass) filter then according to 

Gençay et al. (2002) and Percival and Walden (2000), the scaling filter coefficients are estimated 
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based on the quadrature mirror relationship ( ) 1

1
1    for   0,..., 1
m

m M m
g h m M

+

− −= − = − . The 

properties of the scaling filter are 
1

0

2
M

m
m

g
−

=

=∑  and 
1
2

0

1
M

m
m

g
−

=

=∑ . The T -length vector of the 

wavelet coefficients w  for a time series { }
1

T

t t
y

=
=y  with dyadic length ( )2JT =  is obtained as 

=w Wy . The T T× orthonormal matrix W  defines the Discrete Wavelet Transform (DWT). The 

vector of wavelet coefficients can be further decomposed into 1J +  vectors  

1 2
, ,..., ,

T

J J
 =   w w w w s      (I.1) 

where 
j
w  is a 2jT -length vector of wavelet coefficients corresponding to the scale of length 

12j
j
a −=  and 

J
s  is a 2JT -length vector of scaling coefficients associated with scale 2

J
a . The W  

matrix comprises the wavelet and scaling filter coefficients on a row-by-row representation. 

Hereby, the vector of zero-padded unit scale wavelet filter coefficients is defined in reverse order 

by 
1 1, 1 1, 2 1,1 1,0

, ,..., ,
T

T T
h h h h− −
 =   h . If 

1
h  is circularly shifted by factors of two e.g., 

( )2
1 1,1 1,0 1, 1 1, 2 1,3 1,2

, , , , ..., ,
T

T T
h h h h h h− −
 =   h  etc., then the 2T T×  matrix 

1
W  is defined as the collection 

of 2T  circularly shifted versions of 
1
h , namely 

( ) ( ) ( )2 12 4

1 1 1 1 1
, , ..., ,

T
T − 

 =
  

W h h h h . In general, 

matrices 
j

W  are defined by circularly shifting the vector 
j
h  (the vector of zero-padded scale j  

wavelet filter coefficients) by factors of2j . Additionally, 
J
S  is a column vector with all elements 

equal to 1 T  (McCoy and Walden, 1996). The T T×  dimensional matrix W  is 

1 2
  ...  

T

J J
   W W W W S= . From matrix W  the wavelet filter coefficients for scales 1,...,J  are 

computed via the Inverse Discrete Fourier Transform (IDFT).  
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I2.2 Implementation of the Discrete Wavelet Transform (DWT) 

The implementation algorithm of the DWT was introduced by Mallat (1989). The time 

series 
t
y  is filtered using 

1
h  and 

1
g , then the outputs are subsampled to half their original lengths 

and the subsampled filter output from 
1
h  accounts for the wavelet coefficients.  This process is 

repeated on the subsampled output from the 
1
g  filter. Specifically, the first step of the pyramid 

algorithm begins by convolving the data with each filter to obtain the wavelet 

1

1, 2 1 mod
0

M

t m t m T
m

w h y
−

+ −
=

= ∑  and scaling coefficients 
1

1, 2 1 mod
0

M

t m t m T
m

s g y
−

+ −
=

= ∑ , 0,1,..., 2 1t T= − . 

This also includes a downsampling operation. Consequently, the T -length vector of observations 

has been high-and low-pass filtered to obtain 2T  coefficients. The second step of the algorithm 

starts by “initializing” the sample now to be the scaling coefficients 
1
s  and apply the 

aforementioned filtering procedure to obtain the second level of wavelet and scaling coefficients. 

By saving all wavelet coefficients and the final level of scaling coefficients the decomposition 

becomes 
1 2 2

T =   w w w s . This procedure is repeated up to ( )2
logJ T=  times and provides the 

vector of wavelet coefficients  in Eq. (I.1). The inversion of the DWT is performed by upsampling 

the final wavelet and scaling coefficients, convolving them with their respective filters and adding 

the resulting vectors. Upsampling the vectors 
J
w  and 

J
s  of the final DWT level produces the new 

vectors 0
,0

0 
T

J J
w =   w  and 0

,0
0 

T

J J
s =   s . Now the vector of scaling coefficients 

1J−s  is given by 

1 1
0 0

1, , mod2 , mod2
0 0

M M

J t m J t m m J t m
m m

s h w g s
− −

− + +
= =

= +∑ ∑  with 0,1t =  and it is twice that of 
J
s . This is 

repeated until the first level of all coefficients has been upsampled, in order to produce the original 

vector of data observations, i.e., 
1 1

0 0
1, mod 1, mod

0 0

M M

t m t m T m t m T
m m

y h w g s
− −

+ +
= =

= +∑ ∑  0,1,..., 1t T= − .  

The DWT results in the additive decomposition of the time series. Let T

j j j
=D W w  define 

the wavelet detail corresponding to changes in the time series y  at scale 
j
a  for the level 1,...,j J= . 
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The coefficients T

j j
W w  represent the part of the signal attributable to scale 

j
a . The final wavelet 

detail 
1

T

J J J+ =D S S  is equal to the sample mean of the 2JT =  observations (Gençay et al., 2002). 

Considering that for each observation, 
1

,
1

   0,..., 1
J

t j t
j

y D t T
+

=

= = −∑  is the linear combination of 

wavelet detail coefficients, then 
1

1

J

j k
k j

+

= +

= ∑A D  is the cumulative sum of the variations of the 

details defined as the j -th level wavelet approximation for 0 j J≤ ≤  with 
1J+A  being a vector of 

zeros. The j -th level wavelet rough 
1

j

j k
k=

=∑R D , 1 1j J≤ ≤ +  incorporates the remaining lower-

scale details. The time series may be decomposed as 

1

j

j j j j
k=

= + = +∑y A D A R       (I.2) 

Orthonormality of the matrix W  implies, as in the case of Discrete Fourier Transform, that 

the DWT is an efficient, variance preserving transform i.e.,  

( )2 2TT T T T= = = = =y y y Ww Ww w W Ww w w w . As T T

j j j j
=D D w w  and T T

J J J J
=A A s s  apply 

for 1 j J≤ ≤  (due to orthonormality of W  and S ), an equal decomposition is 

22 2

1

J

j J
j=

= +∑y D A .  

 

I2.3 Wavelet classes:  Haar and Daubechies 

In case of a time series { }
1

T

t t
y

=
=y , the Haar wavelet and scaling coefficients are  

( ) ( )1, 2 2 1
1 2

t t t
w y y −= ⋅ −  and ( ) ( )1, 2 2 1

1 2
t t t

s y y −= ⋅ +  respectively. Although the Haar filter is 

easy to visualize and implement, it is inadequate for real-world applications as it provides a poor 

approximation to an ideal band-pass filter (Gençay et al., 2002). Instead the Daubechies wavelets 

improve the frequency domain characteristics of the Haar and also are compactly supported. In 



6 

general the wavelet and scaling coefficients of the Daubechies class are  
1

1, 2
0

M

t m t m
m

w h y
−

−
=

= ∑  and 

1

1, 2
0

M

t m t m
m

s g y
−

−
=

= ∑  respectively with 2,  1 2,..., 2  t M M T= + . For example, the Daubechies with 

length 4M =  have as wavelet coefficients 0 1 3 4 2h = − , 1 3 3 4 2h = − + , 2 3 3 4 2h = +  

and 3 1 3 4 2h = − − . 
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APPENDIX II: CAUSALITY TESTS 

II1. LINEAR CAUSALITY (PARAMETRIC TEST) 

The linear Granger causality test (Granger, 1969) is based on a reduced-form vector 

autoregression (VAR) model. If 
1
, ...,

t t t
y y =   y

ℓ
 is the vector of endogenous variables and ℓ  the 

number of lags, the VAR( ℓ )  model is given by 

1
t s t s t

s

ε−
=

= Φ +∑y y
ℓ

      (II.1) 

where 
s
Φ  is the ×ℓ ℓ  parameter matrix and 

t
ε  the residual vector, for which ( )  

t
E ε = 0 and 

'    
( )  

      t s

t s
E

t s
ε
ε

ε ε
  = =   ≠  0

. In case of two stationary time series { }tx  and { }ty  the bivariate VAR 

model is given by 

                 ,

,

( ) ( )
       1,2,...,

( ) ( )
t t t x t

t t t y t

x x y
t N

y x y

ε

ε

= Φ +Χ +
=

= Ψ +Ω +
ℓ ℓ

ℓ ℓ
     (II.2)  

where ( ), ( ), ( )Φ Χ Ψℓ ℓ ℓ  and ( )Ω ℓ  are lag polynomials with roots outside the unit circle and the error 

terms are i.i.d. processes with zero mean and constant variance. The test whether y  strictly 

Granger causes x  is simply a test of the joint restriction that all coefficients of the lag polynomial 

( )Χ ℓ  are zero, whilst a test of whether x  strictly Granger causes y  is a test regarding ( )Ψ ℓ . In the 

unidirectional case the null hypothesis of no Granger causality is rejected if the exclusion 

restriction is rejected, whereas if both ( )Χ ℓ  and ( )Ψ ℓ  joint tests for significance are different from 

zero the series are bi-causally related.  

However, in order to explore possible effects of cointegration a vector autoregression 

model in error correction form (Vector Error Correction Model-VECM) is estimated using the 

methodology developed by Engle and Granger (1987) and expanded by Johansen (1988) and 

Johansen and Juselius (1990). The bivariate VECM model has the following form 

    
1 1 1 ,

2 1 1 ,

1  ( ) ( )
   1,2,...,

1  ( ) ( )

T

t t t t t x t

T

t t t t t y t

x p y x x y

t N

y p y x x y

λ ε

λ ε

− − ∆

− − ∆

     ∆ = − − ⋅ +Φ ∆ +Χ ∆ +         =     ∆ = − − ⋅ + Ψ ∆ +Ω ∆ +        

ℓ ℓ

ℓ ℓ

      (II.3)  
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where 1 λ −     the cointegration row-vector and λ  the cointegration coefficient. Thus, in case of 

cointegrated time series { }tx  and { }ty  linear Granger causality should be investigated on ( )Χ ℓ  

and ( )Ψ ℓ  via the VECM specification.  

 

II2. NONLINEAR CAUSALITY (NONPARAMETRIC TEST) 

Let ( )1t t
F x −Θ  denote the conditional probability distribution of 

t
x  given the information 

set 
1t−Θ , which consists of an 

x
L -length lagged vector of 

t
x , ( )1 1

, , ...,x

x xx

L

t L t L tt L
x x x− − + −−

≡x  and an 

y
L -length lagged vector of 

t
y , ( )1 1

, , ...,y

y yy

L

t L t L tt L
y y y− − + −−

≡y . Hiemstra and Jones (1994) consider 

testing for a given pair of lags 
x
L  and 

y
L  the following null hypothesis 

   ( )0 1 1
: y

y

L

t t t t t L
H F x F x− − −

 Θ = Θ −   
y      (II.4)  

Denoting the m -length lead vector of ( )1 1
, ,...,m

t t t t m
x x x+ + −≡x ,  for t ∈ Z , the claim made by 

Hiemstra and Jones (1994) is that the null hypothesis given in Eq. (II.4) implies for all 0ε >  

       

,

                          

                         

y yx x

x x y y

x x

x x

l Ll Lm m

t s t L s L t L s L

l Lm m

t s t L s L

P

P

ε ε ε

ε ε

− − − −

− −

  − < − < − <    = − < − <   

x x x x y y

x x x x      (II.5)  

For the time series of realizations { }tx  and { }ty , 1,...,t T= , the nonparametric test consists of 

choosing a value for ε  typically in 0.5,  1.5    after unit variance normalization, and testing Eq. (II.5) 

by expressing the conditional probabilities in terms of the corresponding ratios of joint 

probabilities  

            

( )
( )

( )

( )

1

2

3

4

, , ,

, , ,

,

,

y yx x

x x y y

y yx x

x x y y

x x

x x

x x

x x

L Lm L m L

x y t L s L t L s L

L LL L

x y t L s L t L s L

m L m L

x t L s L

L L

x t L s L

C m L L P

C L L P

C m L P

C L P

ε ε ε

ε ε ε

ε ε

ε ε

+ +
− − − −

− − − −

+ +
− −

− −

 + ≡ − < − <   
 ≡ − < − <   

 + ≡ − <   
 ≡ − <   

x x y y

x x y y

x x

x x

       (II.6)  

Thus, Eq. (II.5) can be formulated as 
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( )
( )

( )
( )

1 3

42

, , ,

,, ,

x y x

xx y

C m L L C m L

C LC L L

ε ε

εε

+ +
=        (II.7)  

Using correlation-integral estimators and under the assumptions that { }tx  and { }ty  are strictly 

stationary, weakly dependent and satisfy the mixing conditions of Denker and Keller (1983), 

Hiemstra and Jones (1994) show that  

                
( )
( )

( )
( ) ( )( )1 3 2

42

, , , , ,
0, , , ,

, ,, , ,

x y x

x y

xx y

C m L L n C m L n
n N m L L

C L nC L L n

ε ε
σ ε

εε

 + +   −    
∼      (II.8)  

with ( )2 , , ,
x y

m L Lσ ε  as given in their appendix. One-sided critical values are used based on this 

asymptotic result, rejecting when the observed value of the test statistic in Eq. (II.8) is too large.  

 

II3. SPECTRAL CAUSALITY (FREQUENCY DOMAIN TEST) 

A two-dimensional vector of time series observed at 1, ,t T= …  is denoted as ,
T

t t
x y    . It is 

assumed that it has a finite-order VAR representation as ( ) ,
T

t t t
L x y ε Θ ⋅ =    where 

( ) 1
p

p
L I L LΘ = −Θ − −Θ⋯  with , ,

T Tk

t t t k t k
L x y x y− −

   ⋅ =       , and that ( ) 0
t
εΕ =  and ( )t t

ε ε′Ε = Σ  

with Σ  positive definite. Let Q  be the lower triangular matrix of the Cholesky decomposition 

1Q Q −′ = Σ  such that ( )t t
Iη η ′Ε =  and 

t t
Qη ε= . If the system is assumed to be stationary, its MA 

representation is the following 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )
1 111 12 11 12

2 221 22 21 22

t t
t t t

t t

L L L L
z L L

L L L L

ε η
ε η

ε η

      Ξ Ξ Ψ Ψ      = Ξ = = Ψ =      Ξ Ξ Ψ Ψ            
       (II.9)  

with ( ) ( ) 1L L
−

Ξ = Θ and ( ) ( ) 1L L Q−Ψ = Ξ . Thus, the spectral density of 
t
x  can be expressed as 

( ) ( ) ( )
2 2

11 12

1

2

if if

x
S f e e

π

− −
   = Ψ + Ψ    

. The measure of spectral causality suggested by Geweke 

(1982) and Hosoya (1991) is ( ) ( ) ( )
2

11
log 2 if

y x x
M f S f eπ −

→

 
 = Ψ   

,  or equally 
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( ) ( ) ( )
2 2

12 11
log 1 if if

y x
M f e e− −

→

   = + Ψ Ψ      
    (II.10)  

The null hypothesis that y  does not cause x  at frequency f  is given by ( )0
: 0

y x
H M f→ = . Yao 

and Hosoya (2000) suggested estimating ( )y x
M f→  by replacing ( )11

ife−Ψ  and ( )12
ife−Ψ  in Eq. 

(II.10) with estimates obtained from a fitted VAR model. Considering that ( )1
, , ,

p
vecγ = Θ Θ Σ…  

represents the vector of parameters, the estimated causality measure is 

� ( ) ( ) ( ) ( ) 1 2
y x y x p

M f M f D o T
γ
γ γ γ

−
→ →

 ′ = + − +   
ɵ , where ( )D

γ
γ  denotes the vector of derivatives 

of ( )y x
M f→ . Under suitable regularity conditions the asymptotic distribution of the Wald statistic 

for the null is given by � ( ) ( ) ( ) ( )
2

2
1

ˆ ˆ ˆy x

d
W T M f D V D

γ
γ γ γ χ→

   ′ =      
→ , where ( )ˆV γ  is the 

asymptotic covariance matrix of γ̂ . However, the expression ( )12
ife−Ψ  is a complicated nonlinear 

function of the VAR parameters and ( )ˆD
γ
γ  is difficult to evaluate (Yao and Hosoya, 2000).  

Recently, Breitung and Candelon (2006) proposed a simple approach to test the null 

hypothesis. Considering from Eq. (II.10) that ( ) 0
y x

M f→ =  if ( )12
0ife−Ψ = , then 

( ) ( ) 1 1L L Q
− −Ψ = Θ  and specifically ( ) ( ) ( )22

12 12
L q L LΨ = − Θ Θ  where 

22
q  is the   (1,2)-element 

of 1Q−  and ( )LΘ  the determinant of ( )LΘ . They proved that y  does not cause x  at frequency f  

if ( ) ( ) ( )12 12, 12,
1 1

cos sin 0
p p

if

k k
k k

e kf kf iθ θ−

= =

Θ = − =∑ ∑ , where 
12,k
θ  is the (1,2)-element of 

k
Θ . 

Hence, a necessary and sufficient set of conditions for ( )12
0ife−Θ =  is   ( )12,

1

cos 0
p

k
k

kfθ
=

=∑    and   

( )12,
1

sin 0
p

k
k

kfθ
=

=∑  . By denoting 
11,j j

κ θ=  and 
12,j j

µ θ=  the VAR equation for 
t
x  is written as 

1 1 1 1 1t t p t p t p t p t
x x x y yκ κ µ µ ε− − − −= + + + + + +⋯ ⋯  and thus the hypothesis ( ) 0

y x
M f→ =  is 
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equivalent to the following linear restriction ( )0
: 0R f µΗ = , with 

1
, ,

p
µ µ µ

′ =   …  and 

( ) ( ) ( ) ( )
( ) ( ) ( )

cos cos 2 cos

sin sin 2 sin

f f pf
R f

f f pf

 
 =  
  

⋯

⋯
. A cointegrating framework is also applicable if 

t
x  is 

replaced by 
t
x∆ . To study the local power they considered the simple model ( ) 1t f t t

x b L y u−= +  

where the gain function of the filter  ( ) ( ) 21 2 cos
f
b L f L Lα  = − +  

 is a Gegenbauer polynomial 

and { } { },  
t t
y u  are mutually independent white noise processes with ( )2 2

t y
y σΕ =  and ( )2 2

t u
u σΕ = . 

Breitung and Candelon (2006) proved that when the frequency being tested converges to the true 

frequency at a suitable rate under the sequence of local alternatives 
0T

f f c T= + , the Wald 

statistic for the null ( )0 0
: 0R f µΗ =  is asymptotically distributed as non-central 2χ  with 

parameter ( ) ( )
2 22 2 2

0 0
2 sin 1 2 cos

y u
c f fλ σ α σ

    = +        
. This test is used to detect causality and to 

explore the short- and long-run relationships in a particular range of frequencies, which is 

determined by the input data frequency.  
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APPENDIX III: ADDITIONAL FIGURES 

FIGURE III.1: WAVELET MULTI-SCALE ANALYSIS (GBP RETURNS) 
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Notation: The results of SIDWT (db8) multiresolution wavelet analysis include the 

1 7
D D−  wavelet details and the 7-th level 

approximation 
7
A . The raw signal is also displayed.  
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FIGURE III.2: WAVELET MULTI-SCALE ANALYSIS (GBP VOLATILITY SERIES) 
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Notation: The results of SIDWT (db8) multiresolution wavelet analysis include the 
1 4
D D−  wavelet details and the 4-th level 

approximation 
4
A . The raw signal is also displayed.  
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FIGURE III.3: WAVELET MULTI-SCALE ANALYSIS (JPY RETURNS) 
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Notation: As in Figure III.1 
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FIGURE III.4: WAVELET MULTI-SCALE ANALYSIS (JPY VOLATILITY SERIES) 
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Notation: As in Figure III.2 
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FIGURE III.5: SPECTRAL CAUSALITY (RETURN SERIES) 
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Notation: The blue (dotted) line corresponds to 95% confidence level for the Breitung and Candelon (2006) frequency domain causality test, while the red (solid) to 99%.  
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FIGURE III.6: SPECTRAL CAUSALITY (VOLATILITY SERIES) 
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Notation: As in Figure III.5 
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