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Abstract 

As of 2005, electricity generators in Europe operate under the European Union Emission Trading 

System (EU ETS). At the same time, European Member States have launched support mechanisms to 

stimulate the deployment of renewable electricity sources (RES-E). RES-E injections displace CO2 

emissions within the sectors operating under the EU ETS and they reduce the demand for European 

Union Allowances (EUAs), therefore reducing the EUA price. This paper presents the results of an ex-

post analysis to quantify the impact of RES-E deployment on the EUA price and CO2 emissions in the 

Western and Southern European electricity sector during the period from 2007 to 2010. This study 

shows that the CO2 displacement from the electricity sector to other ETS sectors due to RES-E 

deployment can be up to more than 10 % of historical CO2 emissions in the electricity sector. The 

EUA price decrease caused by RES-E deployment varies between zero and multiple times the 

historical EUA price. 
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1. Introduction

As of 2008, European Union (EU)-wide binding targets for CO2 emissions
and deployment of renewable energy sources (RES) exist. The EU aims to
reduce greenhouse gas (GHG) emissions with 20 % by 2020 compared to
1990, which is equivalent to a 14 % reduction of GHG emissions compared to
2005. All large industrial installations, including power plants, are subject
to a CO2-emission cap set by the European Union Emission Trading System
(EU ETS), equivalent to a reduction of GHG emissions with 21 % by 2020
compared to 2005 emission levels (European Commission, 2010a). At the
same time, the EU pursues a 20 % share of renewable energy sources in
final energy consumption by 2020 with a 10 % share of renewable energy
specifically in the transport sector. To achieve these targets, the EU imposes
binding targets to each Member State (European Commission, 2010c). A
10 % RES share target for the transport sector implies that the electricity
sector and/or the heating sector will end up with a RES share above 20 %
in 2020.

Launched in 2005, the EU ETS is the first and largest cap and trade
mechanism in the world for CO2 emissions (Ellerman and Joskow, 2008)1.
It sets a cap on the total amount of CO2 emitted by installations operating
under the EU ETS. Within the cap, participants receive, buy or sell emission
permits, also referred to as European Union allowances (EUAs). A partici-
pant can sell allowances and reduce its emissions when the market price for
allowances is higher than the CO2 abatement cost of its last emitted ton CO2.
Vice versa, a participant can buy allowances when the EUA market price is
lower than its own marginal CO2 abatement cost. Currently, the EU ETS
covers almost half of the EU’s CO2 emissions and 40 % of the EU’s GHG
emissions (European Commission, 2010b). The electricity sector represents
around 60 % of the CO2 emissions covered by the EU ETS (Neuhoff et al.,
2011).

Unlike European CO2 mitigation policy, where electricity generation is
subject to one Europe-wide system2, European policy with regard to elec-
tricity from renewable energy sources (RES-E) is much more diffuse. Each
Member State is free to choose its own incentives to stimulate deployment

1The EU ETS was launched before the 2020 targets were set.
2National fossil fuel taxes are not considered as a policy instrument to reduce CO2

emissions.
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of RES-E. One can distinguish two main types of support mechanisms. The
first type covers quantity-based mechanisms. In quantity regulation, con-
sumers or suppliers have the obligation to redeem tradable green certificates
(TGC) which can be gathered by producing renewable electricity or by pur-
chasing them on the market. The second type of support mechanisms are
price-regulated mechanisms. In price regulation, a fixed financial payment
per unit of generated renewable energy is awarded to the generator. Feed-in
tariffs (FIT) and feed-in premiums (FIP) are price-regulated mechanisms.
Besides these two types of regulation, policy makers can set up additional
measures to make investments in renewables more attractive, e.g. through
R&D grants, fiscal incentives and tendering (Ecofys, 2011).

The electricity market, the EU ETS and RES-E deployment are linked in
multiple ways as shown in figure 1. Both the EU ETS and RES-E deployment
influence CO2 emissions from electricity generators. The EU ETS caps CO2

emissions of all ETS sectors, including the electricity sector, and puts a
price on the emission of CO2. The generation of CO2-free electricity from
renewable sources due to RES-E support schemes reduces CO2 emissions
needed to satisfy electricity demand. As the aggregated CO2 emissions of all
installations operating under the EU ETS are set, RES-E deployment does
not cause a reduction in CO2 emissions but it displaces CO2 emissions within
the ETS sectors - both within the electricity sectors itself and between the
electricity sector and other ETS sectors.

The reduction in demand for EUAs due to generation from RES-E trans-
lates into a lower EUA price. The other way around, the EU ETS reduces
the need for RES-E support mechanisms. By putting a price on CO2 emis-
sions, the EU ETS narrows the cost gap between renewable technologies and
conventional technologies. The latter effect is however much smaller than
the first effect.

This paper deals with CO2 displacement and EUA price reductions caused
by RES-E deployment. Although electricity price effects are not considered
further in this paper, electricity price interdependencies are briefly mentioned
in this paragraph for the sake of completeness. The EU ETS increases elec-
tricity prices as generators take the CO2-emission cost into account in the
marginal electricity generation cost, regardless of how they were acquired, i.e.
grandfathered or bought. Allowances have a market value and thus repre-
sent an opportunity cost for the generators. The effect of RES-E deployment
on electricity prices is ambiguous. On the one hand, wholesale electricity
prices are lowered because of the low marginal generation cost of renewable
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Figure 1: Schematic presentation of the interdependencies between the European electric-
ity market, the EU ETS and RES-E deployment. Solid lines indicate price interdependen-
cies, dotted lines indicate CO2 interdependencies. Figure results from elaboration of the
authors based on del Ŕıo González (2007).

power plants. On the other hand, the cost of RES-E support schemes is
often passed on to the customer in the form of higher tariffs. RES-E de-
ployment also influences electricity prices indirectly by decreasing the EUA
price. Hence RES-E causes a decrease in wholesale electricity prices but the
effect on final electricity prices is less clear.

The EU ETS and RES-E deployment are both important pillars of the
EU policy regarding electricity generation. A review of the existing literature
shows that a lot of work has been done on the topic of electricity generation
under the EU ETS and with RES-E deployment. However, at the time of
writing, no ex-post analysis is available. As the EU ETS and RES-E deploy-
ment are rather recent phenomena, literature on the topic is mainly aiming
to outline prospective scenarios. Hindsberger et al. (2003) and Unger and
Ahlgren (2005) perform ex-ante analyses to quantify the impact of renewable
electricity generation on the CO2 emission cost.

Today, after some years of electricity generation with RES-E deployment,
it is imperative to assess the effective impact of this policy instrument. This
paper aims to quantify, for the period 2007 to 2010, the impact of RES-E
deployment on the EUA price and on CO2 emissions in the Western and
Southern European electricity sector. As the impact of RES-E deployment
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is partly determined by the EU ETS, this paper closely considers the EU
ETS as well.

This paper differs from the existing literature in two aspects. First, this
study focuses on both RES-E deployment and the EU ETS, unlike much
of the literature in which the effect of only one policy instrument is exam-
ined and the other instrument is not considered. Delarue and D’haeseleer
(2008) and Delarue et al. (2010) solely address the effect of EU ETS on
CO2 emissions in the European electricity sector. Jensen and Skytte (2002)
examines the interdependencies between the power sector and the green cer-
tificate market. Second, the conclusions presented in this paper result from
a quantitative analysis based on an extended simulation model of the Euro-
pean electricity market. Research results presented in the existing literature
often follow from theoretical qualitative descriptions or theoretical quantita-
tive models. Examples of papers applying the first approach are Boots et al.
(2001), Morthorst (2001) and Sorrell et al. (2003) whereas Jensen and Skytte
(2003), Rathmann (2007) and De Jonghe et al. (2009) apply the second ap-
proach.

The methodology applied to achieve the aim of this paper is discussed
in section 2. Section 3 deals with the simulation model. Subsequently, the
simulation results are presented in section 4. Finally, conclusions are drawn
in section 5.

2. Methodology

This section deals with the methodology used to quantify the impact of
RES-E deployment on the EUA price and CO2 emissions in the electricity
sector. The analysis covers the period 2007 - 2010 and includes 12 European
Union Member States (EU MS) in Western and Southern Europe3. Only
the electricity sectors in these 12 EU MS are represented in the model. All
the other sectors operating under the EU ETS and the electricity sectors
in countries which are not considered, are not taken into account. These
sectors are further referred to as non-modeled ETS sectors. Electricity from
wind energy, photovoltaic energy and bio-energy - biogas and biomass - is
considered as renewable electricity due to RES-E support schemes. These

3Austria, Belgium, Denmark, France, Germany, Ireland, Italy, Luxembourg, the
Netherlands, Portugal, Spain, the United Kingdom.
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forms of renewable electricity are supported by all European Member States
(Ecofys, 2011).

2.1. Analysis plan

The amount of CO2 emissions emitted in the electricity sector and the
EUA price are interdependent. An EUA price change translates into a change
in CO2 emissions in the electricity sector and vice versa. As only part of the
EU ETS is considered in the analysis, it is impossible to properly model the
full interdependency. Therefore, CO2 emissions in the electricity sector and
the EUA price are considered independent of one another in the first part
of the analysis. In a first step, the EUA price is considered as an invariable
parameter and the CO2 emissions in the electricity sector vary according
to the presence of RES-E deployment. This assumption is referred to as
ETS-price assumption. In a second step, the aggregated CO2 emission of
the modeled electricity sectors is considered as an invariable parameter and
the EUA price varies according to the presence of RES-E deployment. This
assumption is referred to as ETS-cap assumption. These first two steps can
be seen as extreme cases. In a final step, the results of the previous steps are
taken together to determine the actual impact of RES-E deployment on the
EUA price and on the CO2 emissions in the electricity sector.

2.1.1. ETS-price assumption

According to the ETS-price assumption, the EU ETS is modeled as an
exogenous and invariable EUA price imposed on electricity generators. In
this case, RES-E deployment causes CO2 displacement between the modeled
electricity sectors and other ETS sectors but it does not reduce the EUA
price. This assumption corresponds to a situation in which CO2 abatement
in the non-modeled ETS sectors is possible without additional cost at the
current EUA price. As this is not the case in reality, the CO2 displacement
due to RES-E deployment starting from this assumption is an outer limit
of the impact of RES-E deployment on the CO2 emissions in the electricity
sector.

2.1.2. ETS-cap assumption

According to the ETS cap assumption, the EU ETS is modeled as an ex-
ogenous CO2 emission cap imposed on the electricity generators. Within this
emission cap, the trade mechanism determines the EUA price. The intro-
duction of RES-E deployment decreases this EUA price but does not cause
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CO2 displacement from the electricity sector to other ETS sectors as emis-
sions are capped. This assumption corresponds to a situation in which CO2

abatement in the non-modeled ETS sectors is impossible. As this is not the
case in reality, the EUA price reduction due to RES-E deployment starting
from this assumption is an outer limit of the impact of RES-E deployment
on the EUA price.

2.1.3. Combination of both assumptions

The ETS-price assumption and the ETS-cap assumption sketch two ex-
treme cases. In reality, RES-E deployment affects CO2 emissions and the
EUA price at the same time, which corresponds to a situation in which CO2

abatement in the non-modeled ETS sectors is possible at non-zero additional
cost. The extreme assumptions, however, define the range in which the ac-
tual impact of RES-E deployment on both CO2 emissions in the electricity
sector and the EUA price is situated.

2.2. Analysis tool: scenario analysis

The analysis tool is a scenario analysis performed with a newly devel-
oped simulation model of the electricity market. Two different scenarios are
considered:

• OBS scenario. The observed scenario represents the actual market
outcome as observed in the period from 2007 to 2010. In the OBS
scenario, both the EU ETS and RES-E deployment are in place.

• NORES scenario. In the NORES scenario, only the EU ETS is in place
and RES-E generation due to RES-E support schemes is set to zero.
EU ETS can be modeled according to:

– the ETS-price assumption, i.e. as an invariable EUA price.

– the ETS-cap assumption, i.e. as an exogenous CO2 emission cap.

First, the impact of RES-E deployment on CO2 emissions in the elec-
tricity sector is determined as the difference in CO2 emissions between the
NORES scenario, starting from the ETS-price assumption, and the OBS sce-
nario. The EUA price is considered to be the same in both scenarios and
equal to the historical observed EUA price. Second, the impact of RES-E
deployment on the EUA price is determined as the difference in EUA price
between the NORES scenario, starting from the ETS-cap assumption, and
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the OBS scenario. The CO2 emission cap is considered to be the same in both
scenarios and equal to the historical observed aggregated CO2 emission. The
difference between the ETS-cap assumption and the ETS-price assumption is
only reflected in the NORES scenario. The OBS scenario reproduces histor-
ical data, regardless whether the EU ETS is perceived as a price mechanism
or as a quantity mechanism.

2.3. Scope of the analysis

12 European Member States are incorporated in the analysis: Austria,
Belgium, Denmark, France, Germany, Ireland, Italy, Luxembourg, the Nether-
lands, Portugal, Spain and the United Kingdom. These countries are part of
the EU ETS and have at the same time significant RES-E injections due to
RES-E support schemes. From 2007 to 2010, 91 % of the supported RES-
E generation in EU-27 originated from Member States represented in this
analysis. Further in this paper, these countries are referred to as MS12.

Switzerland is also included in the analysis in order to build a complete
model of the Western and Southern European electricity market, although it
is not part of the EU ETS and does not join in the renewable energy target of
the EU. Therefore, Switzerland is considered as a dummy country, meaning
that in every scenario electricity in Switzerland is generated in absence of
the EU ETS but with RES-E injections.

The analysis covers the period from January 1 2007 till December 31
2010. During this time range, the electricity sector was subject to changes
in electricity demand, conventional generation capacity and generation from
renewables due to RES-E support schemes. Aggregated annual electricity
demand in MS12 grew from 2,406 TWh in 2007 to 2,482 TWh in 2010. This
equates to an average demand growth of 0.8 % per year. Five countries
represent 85 % of total electricity demand, i.e. Germany (24 %), France
(20 %), the United Kingdom (15 %), Italy (14 %) and Spain (12 %). The
largest change in the conventional power plant portfolio is the increase of
combined cycle capacity with 18 GW during the considered period. Installed
cogeneration capacity increased from 85 GW in 2007 to 89 GW in 2010.
Other conventional generation capacity remained more or less constant.

Electricity generation from supported renewable energy sources increased
significantly over the period 2007-2010 (see figure 2). Wind energy generation
increased from 99 TWh in 2007 to 136 TWh in 2010, solar energy generation
rose from 4 TWh in 2007 to 20 TWh in 2010 and electricity generation from
biomass and biogas increased from 52 TWh to 70 TWh. Wind energy is
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the most important supported RES-E, generating 62 % of the supported
renewable electricity from 2007 to 2010. Biomass and biogas fired power
plants generate 32 % of supported renewable electricity during this period
and solar energy contributes only 6 %. However, solar energy is the renewable
energy source with the largest relative growth in generation, increasing with
more than a factor 5 in four years. Wind energy shows the largest absolute
growth, increasing produced electricity with 37 TWh from 2007 to 2010.
Germany and Spain are by far the largest producers of supported renewable
electricity. In 2010, Germany is responsible for 34 % and Spain for 23 % of
the supported renewable electricity in the model.
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Figure 2: Evolution of renewable electricity generation in MS12 due to support schemes
(EURELECTRIC, 2010).

The period 2007-2010 can be divided in three subperiods based on the
EUA price and fuel prices (see figure 3). The first subperiod covers 2007,
which is characterized by a very low EUA price and steadily increasing fuel
prices. The second subperiod starts at the beginning of 2008 and runs till
mid-2009. Early 2008, the EUA price and fuel prices show a strong upsurge to
peak mid-2008. Subsequently, the EUA price and fuel prices fall dramatically
due to economic recession to stabilize in the first half of 2009. The third
subperiod runs from mid-2009 to the end of 2010 and is characterized by
a stable EUA price on an average price level of 14 EUR/tCO2 and slowly
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Figure 3: Evolution of fuel prices and the EUA price. Subperiods run from January 1, 2007
till December 31, 2007; January 1, 2008 till June 30, 2009 and July 1, 2009 till December
31, 2010. The coal price is a quarterly future, the gas price is day ahead, the oil price is
a monthly future and the EUA price is the spot price (EEX, 2011; ICE, 2011; Powernext,
2011; APX-ENDEX, 2011; Nord Pool, 2011; Index Mundi, 2011; BlueNext, 2011).

increasing fuel prices.

3. Simulation model

The scenario analysis is performed with an electricity generation simula-
tion model, specifically built for the purpose of this study. The model allows
to simulate electricity generation in the countries incorporated in the analysis
from 2007 to 2010. Two settings are possible with regard to RES-E deploy-
ment - with or without RES-E deployment - and two with regard to the EU
ETS - EUA price or CO2 emission cap. This way, all required scenarios and
assumptions described in the previous section can be simulated. The model
returns hourly generation of each power plant type in each country, hourly
CO2 emissions of each power plant type in each country, hourly electricity
price in each country and hourly cross border transmission.

The model considers only short term operational aspects. This implies
that the conventional power plant portfolio is assumed to be the same in
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absence of RES-E deployment.

3.1. Description

The model is based on the principle of overall operational cost minimiza-
tion. The demand for electricity is considered inelastic. The model has
one objective function, i.e. to minimize total generation and transmission
cost. The electrical network is modeled as a trade-based network in which
neighboring countries are connected through an interconnection with limited
capacity.

The model is formulated as a linear programming problem in the General
Algebraic Modeling System (GAMS, Brooke et al. (2008)) and solved using
the CPLEX solver (ILOG Inc, 2007). The input and output of the linear
optimization problem is processed in Matlab. As a full year optimization
is not solvable in one model run, each year is divided and solved in weekly
blocks, which are then attached to each other.

All the power plants of the same type and same rated efficiency are
grouped per country and considered as one effective power plant with a set
of characteristics and a power output ranging from zero to the installed ca-
pacity. The efficiency of a power plant type is considered to be the rated
efficiency, independently from the load level4. 19 different power generating
technologies are incorporated in the model. To ensure an accurate analysis,
the installed capacity coal fired power plants and the installed capacity gas
fired combined cycle power plants are each divided in three groups with dif-
ferent rated efficiency. This results in 23 different types of effective power
plants per country represented in the model.

The objective function is

min

(∑
i,j,t

MCi,j,t ∗ geni,j,t +
∑
j,j2,t

|cbtj,j2,t| ∗ TC
)

(1)

with i the type of power plant, j the country and t the time. MCi,j,t is
the marginal generation cost of a power plant type in EUR/MWh, geni,j,t

the generated electricity in MWh/h, cbtj,j2,t the cross border transmission
in MWh/h from country j2 to country j and TC the transmission cost in

4As power plants are grouped on technology basis, load dependence of efficiency is not
considered in the model.
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EUR/MWh5. The marginal generation cost follows from

MCi,j,t =
FPt,j

ηi
+

EFi ∗ EUA pricet
ηi

(2)

with FPt,j the fuel price in EUR/MWhprim, EFi the emission factor of the
power plant type in tCO2/MWhprim, ηi the rated efficiency of the power plant
type and EUA pricet the EUA price in EUR/tCO2 if applicable.

The solution of the objective function has to satisfy the following con-
straints:
Demand constraint:

∀j, t
∑
i

geni,j,t +
∑
j2

cbtj,j2,t = demt,j − relt,j + chart,j (3)

Power constraint:

∀i, j, t 0 ≤ geni,j,t ≤ capi,j ∗ AFi,j (4)

Cross border transmission constraints:

∀j, j2, t |cbtj,j2,t| ≤ NTCj,j2 (5)

∀j, j2, t cbtj,j2,t = −cbtj2,j,t (6)

Ramping constraints:

∀j, j2, t geni,j,t ≤ geni,j,t−1 + capi,j ∗RFi,j (7)

∀j, j2, t geni,j,t ≥ geni,j,t−1 − capi,j ∗RFi,j (8)

with demt,j the electricity demand in MWh/h, relt,j and chart,j respectively
the releasing rate and charging rate of the dual storage unit in MWh/h, capi,j
the installed capacity of the power plant type in MW, AFi,j the availability
factor of the power plant type, NTCj,j2 the net transfer capacity from country
j2 to j in MW and RFi,j the ramping factor of the power plant type.

Dual storage is implemented in the cost minimization based on Wood and
Wollenberg (1996). Dual storage units consume electricity to store energy.

5A small transmission cost is imposed to the model in order to roughly calibrate cross
border transmission.
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The dual storage units considered in the model are water-pumping units. The
energy content of a water-pumping unit at the end of the simulation must
be equal to the initial energy content. Besides, maximum and minimum
charging rate, releasing rate and energy content must be respected at all
times. This results in four additional constraints:

Energy balance constraint:

∀j
∑
t

relt,j =
∑
t

chart,j ∗ η (9)

Power and energy content constraints:

∀t, j 0 ≤ relt,j ≤ cap dual storagej (10)

∀t, j 0 ≤ chart,j ≤ cap dual storagej
η

(11)

∀t, j 0 ≤ pump energyt,j ≤ pump energy maxj (12)

with cap dual storagej the installed storage capacity in MW, pump energy maxj

the maximum energy content of the water-pumping unit in MWh, pump ent,j

the energy content in MWh and η the total efficiency of the water-pumping
unit. The releasing efficiency and charging efficiency are assumed to be the
same. The energy content of the water-pumping unit is given by

∀j, t pump ent,j = pump ent−1,j + chart,j ∗ √η − relt,j√
η

(13)

A CO2 emission cap constraint is added in a scenario with a CO2 emission
cap imposed on the electricity sector. The exogenous EUA price EUA pricet
is then set to zero.
CO2 emission cap constraint:

∑
i,j,t

geni,j,t ∗ EFi

ηi
≤ CO2 cap (14)

with CO2 cap the CO2 emission cap in tCO2/year. The CO2 emission cost
in this case is derived as the dual of the CO2 emission cap constraint.

In a scenario without the EU ETS, the EUA price is set to zero and the
CO2 emission cap constraint is not considered. In a scenario without RES-E
deployment, renewable capacity due to support schemes is set to zero.
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The modeling of renewable power generation and power generation through
cogeneration requires a specific approach. Unlike conventional power plants,
the power output of renewable power plants and cogeneration plants is often
not driven by electricity demand but by other factors such as meteorologi-
cal conditions or heat demand. Wind power, photovoltaic power, geother-
mal power and power from cogeneration are implemented as negative loads.
This means that generation from these power sources is subtracted from the
electricity demand. Wind energy, photovoltaic energy and bio-energy are
modeled based on historical generation data in order to accurately study the
impact of RES-E deployment. Hydro energy from run-of-river plants is not
modeled as a negative load but incorporated in the cost minimization.

Single storage is also modeled as a demand correction. Single storage units
are power plants where energy is stored without electricity consumption, e.g.
a water dam. Single storage units are mainly used as seasonal storage and
tend to smoothen out the electricity demand on an annual basis.

3.2. Input data

Three different types of input data are required. A scenario is needed,
consisting of a year, a setting for the EU ETS and a setting for RES-E
deployment, data per country and overall data. The data sources of the
model are listed in appendix.

3.3. Calibration and validation

The model is calibrated in order to match the simulation results in the
OBS scenario with historical observed data. The calibration of the model
consist of 5 steps:

1. The hourly demand data from ENTSO-E are scaled to match peak de-
mand data and aggregated demand data from EURELECTRIC. Wind
data, cogeneration profiles and solar profiles were scaled so that the
sum of the hourly produced electricity from these sources matches the
aggregated EURELECTRIC data. This is needed to overcome the de-
viation between different data sources.

2. Generation of power plant types whose power output is independent
from RES-E injections or the presence of the EU ETS, is set to his-
torical generation levels. In this work, this is assumed to be the case
for nuclear power plants, lignite fired plants, wind power plants, pho-
tovoltaic power plants, biomass and biogas power plants, run-of-river
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plants, power plants based on waste, electric energy from cogeneration
units, geothermal power plants and single storage units. This can be
done as the generation of these power plant types is the same in all sce-
narios - or is zero for wind energy, photovoltaic energy and bio-energy
in a scenario without RES-E deployment.

3. A small transmission cost of 0.50 EUR/MWh is imposed to do a rough
calibration of international transmission.

4. An additional constraint is added to calibrate peak power plant types,
i.e. gas turbines units and internal combustion units. The constraint
imposes a minimum generation level on the peak power plant types.
Otherwise, peak power plant types are never used as no unscheduled
unavailabilities occur. The minimum production level is set to leave
open the possibility that peak power plants produce more in scenarios
without RES-E deployment.

5. In a final step, generation of coal fired power plants and gas fired com-
bined cycle power plants is calibrated by adjusting rated efficiency of
these power plant types, correcting fuel prices and changing power plant
availabilities. Coal power plants and gas fired combined cycle power
plants have one out of three possible efficiencies, i.e. 32 %, 36 % and
40 % for coal power plants and 45 %, 48 % and 51 % for gas fired
combined cycle power plants. The total installed capacity is divided
per country over the different efficiency levels in a way that departure
from historical generation data is reduced and a logic evolution of the
average efficiency is induced. To correct for the underproduction of coal
power plants in 2009 and 2010 in the uncalibrated model, the coal price
of EEX is replaced by the coal price of ICE, which was slightly lower at
that time. The overproduction of gas fired combined cylce power plants
during the same years in the uncalibrated model is reduced by increas-
ing the natural gas price with 15 % from March 20 2009 to March 19
2010. The availability of coal power plants and combined cycle power
plants is adjusted per country, ranging from 60 % to 100 %.

A comparison of the OBS scenario of the calibrated model with historical
generation data shows that simulated generation from nuclear power plants,
lignite fired power plants, run-of-river power plants and supported RES-E
sources matches historical generation (see table 1). Generation from coal
fired power plants is underestimated by the model with 1.3 % to 5.3 % and
generation from gas fired power plants is underestimated with 0.5 % to 2.9 %.
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The reason for generation of both power plant types being underestimated
is that dual storage is barely used in the model. Therefore less electricity
generation is needed.

As the model reproduces historical electricity generation with an accept-
able accuracy, simulated CO2 emission data are accurate as well.

[TWh/year] Nucl. Coal Lign. Gas Oil RoR RES CHP Stor.
2007
historical 741 397 158 405 36 116 153 398 141
simulated 741 392 158 399 36 116 153 390 82
2008
historical 739 358 148 437 34 119 174 399 146
simulated 739 343 148 428 37 119 174 399 86
2009
historical 743 357 143 432 31 103 198 414 154
simulated 743 338 143 430 33 103 198 415 97
2010
historical 747 357 137 419 27 125 227 429 166
simulated 747 341 137 407 27 125 227 435 100

Table 1: Historical electricity generation and simulated electricity generation. Aggregated
annual data for MS12.

4. Simulation results

4.1. Outer limit of impact on CO2 emissions

This section discusses the impact of RES-E deployment on CO2 emis-
sions in the electricity sector. The impact of RES-E deployment is expressed
in terms of CO2 displacement from the modeled electricity sector to non-
modeled ETS sectors. The results presented in this section are based on the
ETS-price assumption. This implies that the CO2 displacement presented
in this section is an outer limit for the actual CO2 displacement caused by
RES-E deployment.

Figure 4a shows CO2 emissions in the electricity sector in the MS12. It
is evident that a scenario without RES-E deployment (NORES scenario)
results in higher CO2 emissions in the electricity sector than the historical
scenario (OBS scenario). Figure 4b shows the CO2 displacement due to RES-
E deployment from the modeled electricity sector to the non-modeled ETS
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Figure 4: Annual CO2 emissions in the modeled electricity sector and annual CO2 dis-
placement from the modeled electricity sector to non-modeled ETS sectors. Data for
MS12.
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sectors. This CO2 displacement follows from the difference in CO2 emissions
between the NORES scenario and the OBS scenario.

In 2007, total CO2 displacement due to RES-E deployment is 100 million
tCO2 or 10 % of historical CO2 emissions. In 2008, 116 million tCO2 or 13
% of historical CO2 emissions is displaced. In 2009 and 2010, respectively
143 million tCO2 or 16 % of historical CO2 emissions and 129 million tCO2

or 15 % of historical CO2 emissions is displaced.
The same analysis can be done for each type of supported RES-E sep-

arately. Over the considered period, generation of all types of supported
RES-E increased (see figure 5a). The impact of wind energy, solar energy
and bio-energy on CO2 emissions in MS12 is presented in figure 5b. The
impact on emissions is determined as the increase in CO2 emissions in the
electricity sector when generation from this particular RES-E is removed.
The impact on emissions follows the same pattern as the amount of RES-
E injections, although some variations are noticeable. From 2008 to 2009,
RES-E injections increased by 12 % whereas the CO2 abatement due to these
injections increased by 27 %. The larger CO2 abatement per injected unit of
renewable energy is due to a smaller gap in marginal generation cost between
coal power plants and gas power plants. In 2008, the average marginal gen-
eration cost of a coal power plant is 2.7 EUR/MWh lower than the marginal
generation cost of a gas power plant whereas in 2009, this cost gap is nar-
rowed to on average 1.2 EUR/MWh. Consequentely, relatively more coal
power plants are pushed out of the merit order by RES-E injections in 2009,
resulting in a larger impact on CO2 emissions. In 2010, the impact of RES-
E injections decreases as the gap in marginal generation cost between coal
power plants and gas power plants increases again.

CO2 displacement is the direct consequence of changes in fuel shares
caused by RES-E deployment. Figure 6 shows the gas share and coal share
in MS12 in the different scenarios. RES-E injections decrease the coal share
and the gas share in MS12 with 0.9 to 4.1 %-points and 4.1 to 8.3 %-points,
respectively. RES-E injections have a larger effect on the gas share than on
the coal share. RES-E replaces conventional generation starting with the
most expensive generating power plant, being most of the time natural gas
fired power plants.
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Figure 5: Historical RES-E injections from wind energy, bio-energy and solar energy and
the impact of these RES-E injections on CO2 emissions expressed as the increase in CO2

emissions compared to the OBS scenario. Data for MS12.
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Figure 6: Coal share and gas share in electricity generation in MS12, starting from the
ETS-price assumption.
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4.2. Outer limit of impact on the EUA price
This section discusses the impact of RES-E deployment on the EUA price.

The impact of RES-E deployment is expressed in terms of a reduction in
EUA price. The results presented in this section are based on the ETS-
cap assumption, implying that the EUA price reduction presented in this
section is an outer limit for the actual EUA price reduction caused by RES-
E deployment.

To limit CO2 emissions in the electricity sector to historical emission levels
in absence of RES-E injections, the EUA price should be significantly higher.
In 2007, an average EUA price of 15 EUR/tCO2 is needed while the historical
EUA price is only 0.79 EUR/tCO2. In 2008 an increase in average EUA price
from 22 EUR/tCO2 to 68 EUR/tCO2 is required and in 2010 an increase in
average EUA price from 14 EUR/tCO2 to 474 EUR/tCO2 is needed. In
2009, historical CO2 emissions cannot be reached without RES-E injections.
This translates mathematically into an infinite EUA price. In summary, the
simulation results indicate that RES-E injections due to support schemes
reduce the EUA price by maximum 15 EUR/tCO2 in 2007, 46 EUR/tCO2

in 2008 and 460 EUR/tCO2 in 2010. In 2009, RES-E injections were needed
to reach the historical CO2 emission level.

The same analysis can be done for each type of supported RES-E type
separately. Figure 7a gives an overview of the historical RES-E injections
in MS12 and figure 7b shows the impact on the EUA price of each type of
supported RES-E. The EUA price impact is determined as the increase in
EUA price when generation from this particular RES-E is removed starting
from the OBS scenario. It becomes clear that the larger the amount of RES-
E injections, the larger the impact on the EUA price. The sum of the EAU
price increases in absence of each RES-E type separately does not equal the
total EUA price increase in absence of all supported RES-E injections. The
impact of RES-E injections on the EUA price is hence a nonlinear effect.

RES-E deployment also induces a change in fuel shares (see figure 8). Gas
shares are increased with 10.7 to 18.9 %-points and coal shares are decreased
with 4.4 to 10.6 %-points when RES-E injections are removed. As the CO2

intensity of gas fired power plants is lower than the CO2 intensity of coal fired
power plants, RES-E injections are replaced as much as possible with gas fired
power plants. Besides, gas fired power plants also replace some of the original
coal based generation to compensate for the extra CO2 emissions needed to
replace RES-E injections. 2009 is not included in figure 8 as the historical
emissions in the modeled electricity sector cannot be reached without RES-E
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Figure 7: Historical RES-E injections from wind energy, bio-energy and solar energy and
the EUA price increase in absence of these RES-E injections. Data for MS12.
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Figure 8: Coal share and gas share in electricity generation in MS12, starting from the
ETS-cap assumption. 2009 data is not available as the NORES scenario is not feasible in
2009.
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injections. Note the difference between figure 8 and figure 6. Figure 6 shows
the fuel shares starting from the ETS-price assumption. As CO2 emissions of
the modeled electricity sector are not capped according to that assumption,
both gas fired generation and coal fired generation replace RES-E injections
in the NORES scenario. On the other hand, figure 8 shows the fuels shares
staring from the ETS-cap assumption, meaning that CO2 emissions from the
modeled electricity sector are capped. Hence gas fired generation replaces the
RES-E injections in the NORES scenario while coal fired generation reduces.

4.3. Combined impact

So far, the electricity sector is considered, consecutively, starting from the
ETS-price assumption and starting from the ETS-cap assumption. According
to the first assumption, the impact of RES-E deployment is expressed as an
outer limit of CO2 displacement between the modeled electricity sectors and
the non-modeled ETS sectors. According to the ETS-cap assumption, the
impact of RES-E deployment is expressed as an outer limit of the EUA price
change. The combination of both assumptions defines the range in which the
actual impact of RES-E deployment is located.

Table 2 summarizes the results presented in section 4.1 and in section
4.2. The outer limit of the CO2 displacement caused by RES-E deployment
follows from the difference in CO2 emissions between the NORES scenario
under the ETS-price assumption and the OBS scenario. Analogously, the
outer limit of the EUA price impact follows from the difference in EUA price
between the NORES scenario under the ETS-cap assumption and the OBS
scenario.

Figure 9 gives an overview of possible combinations of CO2 displace-
ment and EUA price changes due to RES-E deployment. The x-axis shows
the increase in EUA price when supported RES-E injections are removed,
starting from the OBS scenario. The y-axis shows the corresponding CO2

displacement from the non-modeled ETS sectors to the modeled electricity
sectors when supported RES-E injections are removed. CO2 displacement
at zero EUA price increase corresponds to the ETS-price assumption (see
points P in figure 9) and EUA price increase at zero CO2 displacement cor-
responds to the ETS-cap assumption (see points C in figure 9). The curves
between these extrema are determined by simulating the NORES scenario
with different constant EUA prices imposed on the electricity generators.
Note that CO2 displacement only refers to CO2 emissions shifted from the
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OBS scenario NORES scenario
ETS-price ETS-cap

2007
CO2 emissions [Mio tCO2] 957 1057 957
EUA price [EUR/tCO2] 0.79 0.79 15.01
2008
CO2 emissions [Mio tCO2] 906 1022 906
EUA price [EUR/tCO2] 22.06 22.06 67.56
2009
CO2 emissions [Mio tCO2] 874 1017 874
EUA price [EUR/tCO2] 13.15 13.15 infinite
2010
CO2 emissions [Mio tCO2] 854 983 854
EUA price [EUR/tCO2] 14.31 14.31 474.25

Table 2: Overview of the aggregated annual CO2 emissions in MS12 and the year average
EUA price.

non-modeled ETS sectors to the modeled electricity sectors. Emissions dis-
placed within the modeled electricity sector itself can be determined as the
difference between the CO2 displacement from the non-modeled ETS sectors
in the ETS-price assumption (point P) and the actual CO2 abatement from
the non-modeled ETS sectors.

The larger the amount of historical RES-E injections, the larger the range
of possible EUA price increases and CO2 displacements if these RES-E in-
jections are removed. In 2007, total RES-E injections are 156 TWh, in 2008
176 TWh, in 2009 202 TWh and in 2010 226 TWh.

Figure 9 is only valid at the historical CO2 emission cap imposed by
the EU ETS on all ETS sectors. If this emission cap would change, the
OBS scenario, which is the reference point with which the impact of RES-E
deployment is compared, would change as well and hence figure 9 is no longer
valid.

The intersection of figure 9 with the marginal abatement cost curve
(MACC) of the non-modeled ETS sectors, starting at the historical EUA
price, gives the actual impact of RES-E deployment. This can be under-
stood as follows: consider figure 9d, an EUA price increase of 20 EUR/tCO2

corresponds to a CO2 displacement of about 50 million tCO2 from the non-
modeled ETS sectors to the modeled electricity sectors. If this point would
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Figure 9: Possible impact of RES-E deployment on the EUA price and CO2 displace-
ment from the non-modeled ETS sectors to the modeled electricity sectors when RES-E
injections are removed, starting from the OBS scenario.
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represent the actual impact of RES-E deployment, it means that the non-
modeled ETS sectors reduce their emissions with about 50 million tCO2

extra due to an EUA price increase of 20 EUR/tCO2. Put differently, an
increase in CO2 emissions in the modeled electricity sectors with about 50
million tCO2 when supported RES-E injections are removed, corresponds to
an EUA price increase of 20 EUR/tCO2 needed to displace these emissions
from the non-modeled ETS sectors to the modeled electricity sectors. Due
to this EUA price increase, about 79 million tCO2 is displaced within the
electricity sectors itself. This 79 million tCO2 is determined as the difference
in CO2 displacement according to the ETS-price assumption (i.e. 129 million
tCO2) and the actual CO2 abatement in this example (i.e. about 50 million
tCO2).

If CO2 abatement in the non-modeled ETS sectors is possible at low cost,
the aggregated MACC of the non-modeled ETS sectors intersect figure 9 close
to point P. If CO2 abatement in the non-modeled electricity sector is only
possible at high cost, the aggregated abatement curve of the non-modeled
ETS sectors intersect figure 9 close to point C.

5. Conclusion

This paper studies the impact of RES-E deployment on the EUA price
and the CO2 emissions in the European electricity sector. The analysis covers
12 EU Member States in Southern and Western Europe during the period
from 2007 to 2010. Within the CO2 emission cap set by the EU ETS, RES-E
deployment releases CO2 emissions in the electricity sector and displaces part
of these CO2 emissions within the electricity sector itself and part from the
electricity sector to other ETS sectors. As such, RES-E deployment lowers
the demand for EUAs and thus reduces the EUA price.

First, the outer limit of the CO2 displacement between the modeled elec-
tricity sector and the non-modeled ETS sector is determined. The simulation
results show that without RES-E injections due to support schemes, the CO2

emissions in the electricity sector would be up to 10 % higher in 2007, 13
% in 2008, 16 % in 2009 and 15 % in 2010. Subsequently, this paper deter-
mines the outer limit of the EUA price decrease due to the introduction of
RES-E deployment. The simulation results indicate that RES-E injections
due to support schemes reduce the EUA price by maximum 15 EUR/tCO2

in 2007, 46 EUR/tCO2 in 2008 and 460 EUR/tCO2 in 2010. In 2009, RES-E
injections were needed to reach the historical CO2 emission level. Finally, all
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possible combinations of CO2 displacement and EUA price change between
the outer limits are defined. The intersection of these curves with the MACC
of the non-modeled ETS sectors give the actual impact of RES-E deployment
on the EUA price and the CO2 emissions in the electricity sector.
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Appendix

The electricity generation system used in the model is based on data
presented by EURELECTRIC (2010) and specified for each year. The used
power plant characteristics are taken from Voorspools (2004).

Hourly electricity demand data originates from ENTSO-E (2011) for the
countries on the European mainland, from EirGrid (2011) for Ireland and
from the National Grid Company (2011) for the United Kingdom. These orig-
inal demand data are adapted to take into account neglected import/export
between countries included in the model and countries excluded of the model.

The hourly wind energy production is taken from national TSO’s EirGrid
(2011), REN (2011), REE (2011), Terna (2011), Amprion (2011), EnBW
Transportnetze AG (2011), 50 Hz (2011), Tennet (2011), Energinet.dk (2011)
and Elia (2011). The wind production in Luxembourg, Switzerland, the
United Kingdom, France, Austria and the Netherlands is obtained as the ca-
pacity weighted average of wind production in the neighboring countries. The
cogeneration profile is based on Voorspools (2004). The multiplication of the
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installed cogeneration capacity and the cogeneration profile gives the hourly
electricity generation from cogeneration plants. The solar profile is based on
data from the Photovoltaic Geographical Information System (2011). The
multiplication of the installed photovoltaic capacity and the solar profile gives
the hourly electricity generation from photovoltaic installations.

Day ahead natural gas prices are taken from APX-ENDEX (2011), Nord
Pool (2011), Powernext (2011), EEX (2011) and ICE (2011). Quarterly coal
futures are taken from EEX (2011) and ICE (2011). The Brent monthly
future, available on Index Mundi (2011), is used as oil price. The price for
lignite, uranium, biomass and biogas is considered as constant. Finally, the
EUA price originates from BlueNext (2011) and the NTC data from ENTSO-
E (2011).
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