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Existence and uniqueness of equilibrium in
Lucas’ Asset Pricing model when utility is

unbounded∗

João Brogueira and Fabian Schütze†

April 2, 2015

Abstract

This note proves existence of a unique equilibrium in a Lucas
(1978) economy when the utility function displays constant relative
risk aversion and log dividends follow a normally distributed AR(1)
process with positive auto-correlation. In particular, the note provides
restrictions on the coefficient of relative risk aversion, the discount
factor and the conditional variance of the consumption process that
ensure existence of a unique equilibrium.

Keywords: Asset Pricing, Exchange Economy, Dynamic Program-
ming, Equilibrium Conditions.

JEL: C61, C62, D51, G12.

1 Introduction

This note proves existence of a unique equilibrium in a Lucas (1978) economy
when the utility function displays constant relative risk aversion (CRRA)

∗This note evolved out of a conversation with Thomas Sargent and John Stachurski.
We want to thank them for constant encouragement and especially John Stachurski for
detailed comments on earlier drafts. We are grateful to Ramon Marimon for invaluable
advice during the entire process of writing this note.
†Both authors are at the European University Institute, Florence. Corresponding au-

thor: joao.brogueira@eui.eu.
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and log dividends follow a normally distributed AR(1) process with posi-
tive auto-correlation. The equilibrium in the economy is characterized by a
pricing function for the Lucas-tree and a value function for the representa-
tive consumer. Under the assumption of a bounded utility function, Lucas
proves existence of a unique equilibrium by showing that the pricing and
value functions are fixed points of functional equations. Lucas resorted to
the sufficient conditions of Blackwell (1965) to document that Banach’s fixed
point theorem guarantees existence of a unique solution to the functional
equations. Alas, Blackwell’s conditions do not hold when the utility function
displays the CRRA property. The conditions require utility being bounded
in the sup-norm, which does not hold when the consumption space is equal
to the positive real numbers and the investor displays CRRA preferences.
Fortunately, Blackwell’s conditions are only sufficient. We exploit the exten-
sions of Blackwell’s conditions by Boyd (1990) and document under which
circumstances Banach’s theorem can be applied. In particular, we provide
a joint restriction on the coefficient of relative risk aversion, the discount
factor and the conditional variance of the consumption process that ensure
existence of a unique equilibrium. This paper is a complement to Kamihi-
gashi (1998). He proved that any equilibrium in a Lucas-type economy with
CRRA utility is unique. Our paper documents under which conditions such
an equilibrium exists. Alvarez and Stokey (1998) analyses dynamic program-
ming problems with homogeneous return functions and transition functions
that are homogeneous of degree one. In this note we use similar arguments
as they do and consider a transition function that is not homogeneous of
degree one. The outline of this note is as follows. In Section 2 we provide a
brief description of the economy and the definition of equilibrium in the asset
pricing problem. Section 3 presents a restriction on the parameter space that
ensures existence and uniqueness of equilibrium and discusses an extension
to Blackwell’s sufficient conditions for a given operator on a metric space
to be a contraction that is useful to our argument. We establish existence
and uniqueness of equilibrium and study properties of the pricing function
in Section 4. Section 5 contains concluding comments.

2 The economy and definition of equilibrium

This note describes the equilibrium in the same way as Lucas does. Denote
by x′ ∈ X next period’s share holdings, with X = [0, x̄], x̄ > 1 and current
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consumption by c. Let y ∈ Y = R++ be the current dividend of a Lucas-
tree. The transition equation for next period’s dividend is G(y, z′) = yαz′

with α ∈ (0, 1) and log z′ ∼ N(0, σ2). Let Q be the probability density
over z′. Instantaneous utility is given by u(c) = c1−γ/(1 − γ), γ > 0. An
equilibrium is formally defined as:

Definition 1. An equilibrium is a continuous function p(y) : Y → R+ and
a continuous function v(y, x) : Y ×X → R+ such that:

v(y, x) = max
c,x′∈Γ (y,x)

{
u(c) + β

∫
Z

v(G(y, z′), x′)Q(dz′)

}
(1)

with
Γ (y, x) = {(c, x′) ∈ Y ×X : c+ p(y)x′ ≤ yx+ p(y)x}

and
for each y, v(y, 1) is attained by c = y and x′ = 1.

3 Sufficient conditions for the existence of a

unique equilibrium

The following proposition states under which conditions a unique equilibrium
exists:

Proposition 1. Take β ∈ (0, 1), σ ∈ (0,∞).

(A1) Suppose that for γ ∈ (0, 1):

β

[
0.5 +

∫ ∞
1

(z′)
1−γ

Q(dz′)

]
< 1.

(A2) Suppose that for γ > 1:

β

[∫ 1

0

(z′)
1−γ

Q(dz′) + 0.5

]
< 1.

Then there exists a unique equilibrium. That is:

(i) There exists a unique non-negative continuous pricing function p(y).
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(ii) There exists a unique non negative function v(y, x).

Inequalities (A1) and (A2) will be described at the end of this section.
Given a value function v, we first study existence of a unique pricing function.
Assume that for each y, v(y, x) is an increasing, concave and differentiable
function with respect to x. The first order conditions of the representative
agent’s maximization problem are:

∂u(c)

∂c
p(y) = β

∫
Z

∂v(G(y, z′), x′)

∂x′
Q(dz′) (2)

c+ p(y)x′ = yx+ p(y)x

The derivative of v with respect to x′ is:

∂v(G(y, z′), x′)

∂x′
=
∂u(G(y, z′))

∂y′
[G(y, z′) + p(G(y, z′))]

Using the condition above, defining f(y) = p(y)∂u(y)/∂y and using the equi-
librium conditions x = x′ = 1 and c = y allows reformulating the stochastic
Euler equation (2) as:

f(y) = h(y) + β

∫
Z

f(G(y, z′))Q(dz′), (3)

with h(y) = β

∫
Z

[
∂u(G(y, z′))

∂y′
G(y, z′)

]
Q(dz′) = βyα(1−γ) exp

(
(1− γ)2σ2/2

)
.

Lucas uses Blackwell’s sufficient conditions to show that the operator T , de-
fined such that (3) is equivalent to Tf = f , is a contraction and then applies
Banach’s fixed point theorem. To employ Blackwell’s conditions, Lucas as-
sumes that the utility function u and thereby the function h is bounded with
the sup-norm. Unfortunately, with CRRA utility and a dividend process in
R++, the function h is unbounded with the sup-norm. Importantly, bound-
edness is a characteristic that is closely linked to the employed metric. In
the following subsection we study a norm with respect to which the function
h in (3) is bounded.

3.1 How to guarantee uniqueness of the equilibrium

Boyd (1990) extended Blackwell’s sufficient conditions by generalizing the
metric from a sup-norm to a weighted sup-norm. Denote the set of continuous
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functions f : Y → R+ by S. Take ϕ ∈ S, ϕ > 0. Then f is ϕ–bounded with
respect to the weighted sup-norm ||f ||ϕ = supy∈Y {|f(y)|/ϕ(y)} if ∃ B ∈ R+

such that ||f ||ϕ < B. Let Sϕ ⊂ S be the set of continuous and ϕ-bounded
functions. Note that (Sϕ, ϕ) is a complete metric space. Boyd’s sufficient
conditions are:

Lemma 1 (Boyd’s sufficient conditions). Let T : Sϕ → S and suppose:

(B1) (monotonicity) T is monotone, that is ∀f, g ∈ Sϕ, f ≥ g implies Tf ≥
Tg;

(B2) (discounting) For any A ∈ R++, there exists θ ∈ (0, 1) such that:
T (f + Aϕ) ≤ Tf + θAϕ;

(B3) (self-map) T (0) ∈ Sϕ .

Then T is a contraction with modulus θ.

The discounting and self-map property involve the weighting function
explicitly. The self-map property requires the function h to be bounded with
a weighted sup-norm. The restriction implied by the discounting property is
satisfied if the following inequality holds:

β

∫
Z
ϕ(G(y, z′))Q(dz′)

ϕ(y)
< 1. (4)

Similarly to the discussion of dynamic programming techniques with homo-
geneous return functions in Alvarez and Stokey (1998), the inequality places
a bound on the expected growth rate of the weighting function. Some intu-
ition for the weight ϕ we will use can be gleaned from studying the ratio in
(4). Let γ ∈ (0, 1); then for all z′ ∈ (0, y−α), y1−γ < G(y, z′)1−γ. Furthermore
for z′ > y−α, G(y, z′)1−γ < y1−γ. The integral of the function G(y, z′)1−γ over
Q (times β) is equivalent to the function h. This observation suggests that
h can be bounded with:

ϕ(y) = max
{

1, y1−γ
}
. (5)
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More explicitly, using (5) the left hand side of (4) satisfies (yet γ ∈ (0, 1)):

β

∫
Z
ϕ(G(y, z′))Q(dz′)

ϕ(y)
= β

∫ y−α

0
Q(dz′) + yα(1−γ)

∫∞
y−α(z′)1−γQ(dz′)

ϕ(y)

≤


β
[∫ y−α

0
Q(dz′) +

∫∞
y−α z

′1−γQ(dz′)
]

1
if 0 < y < 1

yα(1−γ)β
[∫ y−α

0
Q(dz′) +

∫∞
y−α z

′1−γQ(dz′)
]

y(1−γ)
if y ≥ 1

≤ β

[∫ y−α

0

Q(dz′) +

∫ ∞
y−α

z′1−γQ(dz′)

]
∀y ∈ Y

≤ β

[∫ 1

0

Q(dz′) +

∫ ∞
1

z′1−γQ(dz′)

]
∀y ∈ Y

= β

[
0.5 +

∫ ∞
1

z′1−γQ(dz′)

]
∀y ∈ Y

In the numerator of the first equality, the integral is split into two subdomains
and the weighting function is written explicitly. The inequalities in the second
line hold as 1 > yα(1−γ) for 0 < y < 1 and yα(1−γ) ≥ 1 for y ≥ 1. The
inequality in the second line follows as yα(1−γ) < y1−γ for y > 1. Finally,
the last inequality holds because the term in square brackets is maximized
at y = 1. If the condition in (A1) is fulfilled, the argument above shows
that the weighting function (5) guarantees that (B2) holds. (A1) and (A2)
represent a restriction on the parameters (σ, γ, β). The shaded region in
Figure 1 documents which parameter pairs (σ, γ) satisfy the conditions in
Proposition 1 when β = 0.99. When γ = 1, u(c) = log(c) and a solution to
(6) can be calculated analytically. Figure 1 reveals that the admissible region
for σ increases when γ → 1. Lower values of β enlarge the admissible region.
In the following, the proof of Part i of Proposition 1 will be completed.

4 Proof of existence and uniqueness of equi-

librium.

In this section we formally prove existence and uniqueness of a pricing func-
tion in the economy described in Section 2.
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The shaded region represent the area combinations of (γ, σ) satisfying the restriction of Proposition 1.
The white region documents combinations of (γ, σ) violating the restriction.

Figure 1: Contour plots for the set of (γ, σ) satisfying the Conditions in
Proposition 1.

Proof. (Part (i) of Proposition 1.) The proof begins by showing that T :
Sϕ → S. As both h and the integral over f are continuous, Tf is con-
tinuous. Hence T : Sϕ → S. The operator T is monotone since for any
f ≥ g,

∫
f(G(y, z′))Q(dz′) ≥

∫
g(G(y, z′))Q(dz′), so Tf ≥ Tg and (B1)

holds. Under assumption (A1) condition (B2) is satisfied for 0 < γ < 1, as
the argument in section 2.2 shows. It remains to be shown that this condition
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holds for γ > 1. For these values of γ, we observe the following:

β

∫
Z
ϕ(G(y, z′))Q(dz′)

ϕ(y)
= β

[
yα(1−γ)

∫ y−α

0

z′1−γQ(dz′) +

∫ ∞
y−α

Q(dz′)

]

≤


yα(1−γ)

[∫ y−α

0
z′1−γQ(dz′) +

∫∞
y−α Q(dz′)

]
y1−γ

if 0 < y < 1,[∫ y−α

0
z′1−γQ(dz′) +

∫∞
y−α Q(dz′)

]
1

if y ≥ 1.

≤ β

[∫ y−α

0

z′1−γQ(dz′) +

∫ ∞
y−α

Q(dz′)

]
∀y ∈ Y

≤ β

[∫ 1

0

z′1−γQ(dz′) +

∫ ∞
1

Q(dz′)

]
= β

[∫ 1

0

z′1−γQ(dz′) + 0.5

]
The reasoning for each condition is analogue to the one made for the case
0 < γ < 1. Under (A2), condition (B2) holds for γ > 1. The third condition
of Lemma 1 requires h to be bounded with the weighted sup-norm. Hence,
since:

||h||ϕ = β exp
(
(1− γ)2σ2/2

)
sup
y∈Y

{
yα(1−γ)

ϕ(y)

}
= β exp

(
(1− γ)2σ2/2

)
,

T (0) ∈ Sϕ and (B3) of Lemma 1 holds. Concluding, T is a contraction and
by Banach’s fixed point theorem a unique function f satisfying (3) exists.
The solution is non-negative and continuous. Therefore the pricing function
p(y) = f(y)/u′(y) is continuous and non-negative as well.

After having shown that there exists a unique pricing function p given
v, the converse remains to be shown. The following argument completes the
proof of Proposition 1.

Proof. (Part (ii) of Proposition 1). Define the operator H such that:

Hv(y, x) = max
c,x′∈Γ (y,x)

{
u(c) + β

∫
Z

v(G(y, z′), x′)Q(dz′)

}
, (6)
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To prove that a unique fixed point Hv = v exists, one can resort to Lemma 1
to show that H is a contraction and then use Banach’s theorem to establish
existence and uniqueness of the fix point. Begin by showing H : Sϕ → S. As
before, u(c) + β

∫
Z
v(G(y, z′), x)Q(dz′) is continuous. Since for each y, the

budget correspondence is compact valued and continuous, Berge’s theorem
guarantees that Hv is continuous. Hence H : Sϕ → S. Monotonicity of H
holds. The weighting function can be defined similarly as:

ϕ(y, x) = ϕ(y) = max{1, y1−γ}. (7)

Discounting of H can thus be established as in the proof of Part (i) of Propo-
sition 1, above. Finally, one needs to show that H is a self-map. In mathe-
matical terms, H(0) ∈ Sϕ if:

sup
(y,x)∈Y×X

{
| maxc,x′∈Γ (y,x) u(c)|

ϕ(y, x)

}
< +∞ (8)

By the definition of the weighting function || maxc,x′∈Γ (y,x) u(c)||ϕ = |1− γ|.
Hence H is a contraction and Banach’s fixed point theorem establishes that
it has a unique solution.

At this stage, a characterization of function f that solves (3) is in order.
The following Lemma documents some of its properties:

Lemma 2.

1. For any f0 ∈ Sϕ, limn→∞ T
nfo = f .

2. Suppose 0 < γ < 1. Then, both h and f are strictly increasing and
concave. Suppose otherwise 1 < γ. Then both h and f are strictly
decreasing and convex.

Proof. Point 1 of Lemma 2 follows directly from the fact that T is a contrac-
tion and hence will not be proved here. Point 2 is proved in the Appendix
to this note.

Properties of v assumed in section 2.1 can be shown by arguments sim-
ilar to Lucas (1978) (in propositions 1 and 2). This concludes the proof of
Proposition 1.
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5 Conclusion

This paper presents a proof of existence and uniqueness of equilibrium in
a pure exchange economy of Lucas (1978), when the utility function takes
the CRRA form and the dividend stream follows an autoregressive process
of order one with positive autocorrelation. We leave for further research the
extension of our proof to the case in which innovations affect the growth
rate of dividends, instead of the level, a common specification of Lucas’ asset
pricing model.

Appendix

Proof. (Part ii of Lemma 1) As in the text, denote by Sϕ the set of continuous
and ϕ-bounded functions. The set S ′ϕ is the set of continuous, ϕ-bounded,
nondecreasing and concave functions, and S ′′ϕ ⊂ S ′ϕ imposes additionally
strict monotonicity and concavity. We want to show that the contraction
operator T maps any function f̃ ∈ S ′ϕ into the subset S ′′ϕ. As the solution
to the functional equation is characterized by Tf = f and S ′ϕ is a closed
set, if the operator T transforms any nondecreasing and concave function
into a strictly increasing and concave function, then f is strictly increasing
and concave (Corollary 1 of the Contraction Mapping Theorem in Stokey
and Lucas (1989), p.52). To show the desired result, suppose first that h
is strictly increasing and concave and pick any f̃ ∈ S ′ϕ. To begin, study

whether T f̃ is strictly increasing. For any pair ŷ, y ∈ Y with ŷ > y, the
function T f̃ satisfies:

T f̃(ŷ) = h(ŷ) + β

∫
Z

f̃(G(ŷ, z′))Q(dz′)

> h(y) + β

∫
Z

f̃(G(y, z′))Q(dz′)

= T f̃(y).

The inequality holds because G and h are strictly increasing and f̃ is non-
decreasing. Hence, T f̃ is strictly increasing. To analyze concavity, define
yω = ωy + (1 − ω)y′, for any y, y′ ∈ Y , y 6= y′, and 0 < ω < 1. The strict
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concavity form of h and G, together with f̃ being concave, ensure that:

T f̃(yω) = h(yω) + β

∫
Z

f̃(G(yω, z
′))Q(dz′)

> ω

[
h(y) + β

∫
Z

f̃(G(y, z′))Q(dz′)

]
+ (1− ω)

[
h(y′) + β

∫
Z

f̃(G(y′, z′))Q(dz′)

]
= ωT f̃(y) + (1− ω)T f̃(y′).

The function T f̃ is strictly concave. Taken together, we know that for any
f̃ ∈ S ′ϕ, T f̃ ∈ S ′′ϕ. Hence, f must be an element of the set S ′′ϕ, guar-
anteeing that f has the same functional form as h. Now, suppose h is
convex and falling. We could again define the operator T as Tf(y) =
h(y)+β

∫
Z
f(G(y, z′))Q(dz′) and study into which subset a candidate solution

is mapped into. To facilitate analysis though, take a different route. Look
at the modified operator Tf− = h− + β

∫
Z
f−(G(y, z′))Q(z′), with h− = −h

and f− = −f . Under the same assumptions guaranteeing a unique solution
to the original contraction mapping, there exists a unique solution to the
modified contraction mapping. As h− is strictly increasing and concave, the
proof above applies to the modified contraction mapping. As f− is strictly
increasing and concave, f is strictly decreasing and convex and inherits the
properties of h.
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