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Chapter 2

Summary

In this thesis, I discuss how asset prices are influenced by the decisions of heteroge-
neous investors. Asset prices are conventionally explained through a representative-
investor whose risk-aversion fluctuates or who faces fluctuating fundamental uncer-
tainty. Much progress has been made in describing how such an investor influences
prices. Yet, such work poses considerable difficulties. In particular, empirical stud-
ies document that trade volume predicts asset prices and investors infer information
from prices. Furthermore, the burgeoning household finance literature documents
patterns in portfolio allocations across investors. While models with heterogeneous
investors can address such shortcomings, more work is needed to understand them.
In particular, little is known about how differentially informed investors learn in fi-
nancial markets and how their opinions affect prices. I describe how disagreement
affects volatility in my chapter one of my thesis. I also examine how asymmetrically
informed investors learn from prices in chapter two. Finally, Joao Brogueira and I
made a theoretical contribution in our published paper which is contained in chap-
ter 3 of my thesis. I describe each chapter briefly.

In chapter one, I provide conditions underwhichdisagreement about dividendgrowth
forecasts amplifies stock market volatility, in line with empirical evidence. In a fric-
tionless economy with two Epstein-Zin investors, I model disagreement as exoge-
nous heterogeneity in beliefs: one investor is pessimistic, the other is not. I show that
disagreement amplifies volatility only if investors switch beliefs, that is if an investor
is only temporarily optimistic. If instead one investor is permanently pessimistic,
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prices are less volatile than dividends, and higher disagreement lowers volatility âĂŤ
in contradiction with evidence. Finally, I provide empirical support for switching
beliefs among investors, using cross-sectional data from the Survey of Professional
Forecasters.

In chapter two I discuss the relationship between trade volume and stock market re-
turns. There is substantial evidence that high trading volume predicts low returns,
both in the cross-section but also across several years. To permit information-based
trade among asymmetrically informed investors, economic models conventionally
include noise traders. However, these models cannot explain the observed relation-
ship between trade and returns. As noise traders demand random quantities, they
generate a too volatile trade volume compared to the empirical low-frequency vari-
ations. I argue in “Trade Volume, Noise Traders and Information Acquisition with
Neural Networks” that neural networks can be used to describe the empirical evi-
dence. I first characterize elementary properties of neural networks. I then show
in a model of trade among differentially informed investors, that neural networks
permit information inference from prices at arbitrary precision but that information
asymmetry can persist evenwithout noise traders. Finally, I outline how suchmodels
might be able to explain why trade volume predicts excess years ahead.

Finally, chapter 3 contains a paper I wrote together with Joao Brogueira. Our note
presents a proof of the existence of a unique equilibrium in a Lucas (1978) economy
when the utility function displays constant relative risk aversion, and the logarithm
of dividends follow a normally distributed autoregressive process of order one with
positive autocorrelation. We provide restrictions on the coefficient of relative risk
aversion, the discount factor and the conditional variance of the consumptionprocess
that ensure the existence of a unique equilibrium.
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Chapter 3

Disagreement, Changing Beliefs, and
StockMarket Volatility

Fabian Schuetze1

3.1 Introduction

The influence of disagreement among investors on asset prices has been discussed
for a long time. Already Keynes (1936) discussed if stock markets should be closed
because disagreement among investors sparks so much volatility to make long-term
investments untenable. Savage (1954) examined how disagreement among equally
informed investors arises. Similar debates continue until today. The president of the
NY-Fed, Dudley (2017), expects higher market volatility due to widespread disagree-
ment. The European Central Bank (2017) warns about its adverse effects on financial
stability. This paper investigates how disagreement affects portfolio allocations and
asset prices.

Despite the long tradition of discussing the influence of disagreement, asset prices
1 I am deeply indebted to Piero Gottardi, Rody Manuelli and, in particular, Ramon Marimon

for encouragement and discussion. I also want to thank Caio Almeida, Hajorat Bhamra, Joao
Brogueira,WeiCui, Darell Duffie, Erik Eyster, Axelle Ferriere,WilliamFuchs,Wouter denHaan, Julien
Hugonnier, Felipe Iachan, Marcin Kacperczyk, Loukas Karabarbounis, Albert Marcet, and Dimitri
Vayanos.
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are currently commonly explained through a representative-investor whose effec-
tive risk-aversion fluctuates orwho faces changing fundamental volatility and growth
rates. Although such models replicate asset pricing statistics superbly, they face con-
siderable difficulties in domains related to asset prices. For example, a puzzle in
the macro-finance literature is that trade volume predicts excess returns years ahead
but representative-investor models do not generate any trade. Cochrane (2016) calls
models of heterogeneous investors trading assets to be the “great unresolved prob-
lem of financial economics” and my paper attempts some steps in illuminating them.
As I document in Section 3.2, increases in disagreement among investors are signifi-
cantly related to future volatility and expected excess returns even when controlling
for measures of time-varying risk-aversion or fundamental volatility. Disagreement
thus seems to be related to asset prices in a way that is not captured by the conven-
tional explanations.

I then examine if the empirical evidence can be replicated theoretically. I concentrate
on the effects of disagreement on volatility. To understand the findings presented
below, I briefly outline how volatility is calculated in general. In any closed exchange
economy, stock prices equal dividends relative to the average consumption-wealth
ratio. The average is calculated using relative wealth as weights. Suppose there is
a positive dividend shock. As investors disagree about expected growth, they hold
different portfolios and one investor gains relative wealth. For prices to rise beyond
the level indicated by higher dividends, the average consumption-wealth ratio needs
to fall — the investor with a lower consumption-wealth ratio needs to gain relative
wealth. The empirical evidence that higher disagreement is associated with higher
volatility thus constrains the role of disagreement in asset pricing models.

As I show in Section 3.3, constant disagreement, in which one investor forecasts av-
erage dividend growth correctly whilst the other is pessimistic, is not compatible
with the empirical evidence.2 Themore optimistic investor shouldersmore aggregate
risk, and, as excess returns are positive, reaps higher portfolio returns. To avoid that

2I assume the investor with subjective beliefs is pessimistic, in accordance with the literature
analysing the role of expectations for asset prices (the disaster-risk and ambiguity-aversion literature).
To illustrate, suppose the average dividend growth rate is 2%. The investor with accurate (pessimistic)
beliefs expects a growth rate of 2% (1.5%).
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this investor eventually owns (almost) all wealth and determines asset prices alone,
both investors need to have identical wealth growth rates. As wealth growth equals
the portfolio returns minus the consumption-wealth ratio, the pessimistic investor
compensates for her relatively poor portfolio returns through a lower consumption-
wealth ratio. In sum, as the optimistic investor is more exposed to aggregate risk
she gains relative wealth in response to positive dividend shocks and has a higher
consumption-wealth ratio, which lowers volatility.

I provide conditions in Section 3.4 so that disagreement is compatible with the em-
pirical evidence. Suppose one investor is temporarily more optimistic. Then, she
temporarily reaps higher portfolio returns and gains relative wealth in response to
dividend shocks. Whether she has a lower consumption-wealth ratio as well de-
pends on how disagreement affects the consumption-wealth ratios of both investors.
I characterize in an approximate log-linear solution three channels through which
disagreement influences the consumption-wealth ratios:

1. Portfolio Channel: As market prices reflect average beliefs, each investor thinks
she can form a more profitable portfolio than the other. If an investor is more
pessimistic (optimistic) than the average belief reflected in market prices, she
shorts (holds a long position in) the asset.

2. Expected Returns Channel: In contrast to the Portfolio Channel, the Expected Re-
turns Channel depends on the type of disagreement: For a fixed portfolio, a
more optimistic (pessimistic) investor expects higher (lower) returns fromhold-
ing the asset.

3. Utility Distortion channel: The previous two channels affect the consumption-
wealth ratio indirectly through expected portfolio returns. Subjective beliefs
affect the consumption-wealth ratio also directly: Expected utilities under sub-
jective beliefs can be expressed as expectations of a distorted utility under ob-
jective beliefs. If the investor expects high (low) dividend growth, her consumption-
wealth ratio decreases (increases).

The portfolio channel (if the elasticity of intertemporal substitution exceeds one, which
I assume) biases each investor’s consumption-wealth ratio downwards, irrespective
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ofwhether she is optimistic or pessimistic. To, however, guarantee that the optimistic
investor has a particularly low consumption-wealth ratio, the portfolio channel must
not be too influential. Proposition 2 states that if risk aversion exceeds disagreement
by some margin, disagreement amplifies volatility, as investors do not re-structure
their portfolios too aggressively. Taken together, Section 3.3 and Section 3.4 docu-
ment that disagreement amplifies volatility only if investors switch beliefs, that is if
an investor is only temporarily optimistic.

I examine the empirical predictions of the model discussed above in Section 3.5 nu-
merically. The main finding is that higher disagreement is indeed associated with
higher volatility and expected excess returns: An increase in disagreement by one
standard deviation leads to an increase of volatility (expected excess return) by one-
third (one-tenth) of a standard deviation. The model broadly matches historical asset
prices. The annual risk premium is 7.4% and its volatility is 15%. The average risk-
free rate is 2.3% with a volatility of 1.7%.

As argued, disagreement amplifies volatility only if investors are temporarily opti-
mistic. Using data from the Survey of Professional Forecasters, I show in Section 3.6
that such expectations are compatiblewith the empirical evidence. If a forecaster’s ex-
pectation about next quarters profit growth exceeds themedian forecast, she switches
to a negative forecast (a forecast below the median) in the subsequent period with a
probability of 40%. Furthermore, she switches to a negative forecast over the next
two (three) periods at least once with a probability of 60% (70%).

Finally, I comparemy paper to the literature in Section 3.7 but summarizemy contri-
bution below. The literature explaining the effects of disagreement on volatility re-
lies on different auxiliary assumptions. One common assumption are short-sale con-
straintswhich imply that prices reflect only the viewsof optimistic investors. Another
assumption are finite-lives of investors which ensures that all investors have enough
wealth to trade assets irrespective of their past portfolio returns. Without these as-
sumptions, the literature does not generate a non-degenerate wealth distribution in
which disagreement amplifies volatility. I exploit the analysis of Borovicka (2015)
and use Epstein-Zin preferences to avoid a non-degenerate wealth distributionwhen
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infinitely-lived investors with heterogeneous beliefs trade assets and examine mar-
ket volatility and excess returns in a frictionless economy. The first main finding of
the paper in Section 3.3 is that disagreement lowers volatility when investors do not
switch beliefs, which I show to be in contradiction with empirical evidence I pro-
vide in Section 3.2, The second main finding of the paper is that I provide conditions
under which disagreement amplifies volatility when investors switch beliefs in Sec-
tion 3.4 and Section 3.5 Finally, I provide empirical support for switching beliefs in
Section 3.6.

3.2 Empirical Motivation

In this section, I present the empirical motivation for studying the effects of disagree-
ment on stock market volatility and expected excess returns. I show that higher dis-
agreement is associated with higher volatility and expected returns, even when con-
trolling for measures of time-varying risk aversion or business cycle conditions. I
measure disagreement as the standard deviation among professional forecasters’ ex-
pected aggregate profit growth. I use data from the Survey of Professional Forecast-
ers because of the long duration of the series. I show that an increase of disagreement
by one standard deviation about next quarter’s profit growth is associated with an
increase by one-fifth (one-third) of a standard deviation of next quarter’s volatility
(expected excess returns). All estimates are significant at the 5 % level, even when
controlling for measures of time-varying risk aversion, fundamental volatility and
business cycle conditions. I describe the individual series in Section 3.2.1 and the
regression results in Section 3.2.2.

3.2.1 Data Description

I describe the data for individual forecasts, followed by excess returns and close with
volatility. All data is quarterly from 1969Q4–2015Q4 which spans the availability of
forecasting data3.

3The data and associated computer programs can be downloaded from my website.
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Disagreement In the following, I analyse forecasts for dividend growth and its re-
lationship with the actual series. Dividend growth, labelled Dt, is the one-period
growth rate of corporate dividends. Every quarter, private sector forecasters submit
beliefs about corporate after-tax profits. I denote the expectation of dividend growth
as the growth rate of these forecasts. I label asFt the median forecast and by dist, the
standard deviation among forecasters. Panel A of Table 3.1 contains selected sum-
mary statistics. The first column of Table 3.1 shows summary statistic for historical

Table 3.1: Summary Statistics

Dt Ft dist RMSFE volt µR

Panel A Univariate Summary Statistics

Mean 1.93% 1.41% 2.89% 4.69% 6.87% 1.16%

Stdv 4.84% 2.07% 1.282% 3.77% 3.5% 0.66%

Autocorr. −0.24 0.67 0.42 0.68 0.55 0.98

Panel B Correlation

Dt 1.00 0.11 −0.15 −0.10 −0.25 −0.01

Ft 1.00 −0.11 −0.14 −0.24 0.01

dist 1.00 0.32 0.23 0.38

RMSFEt 1.00 0.13 −0.00

volt 1.00 −0.16

µR,t 1.00

The table states summary statistic for the dividend growth, Dt, the median of the dividend growth
forecasts, Ft, the disagreement among forecasters dist, and the root-mean-squared forecast error,
RMSFE. The top panel shows the estimates of the mean, standard deviation and autocorrelation.
The bottom panel shows cross-correlations of the variables.

dividend growth. Dividends grew, on average, at close to 2%. The standard devia-
tion is more than twice its mean, and the autocorrelation is negative. On average, the
median forecast is slightly lower than the actual mean, as seen in the second column.
The median forecasts do not exhibit much volatility and evolve smoothly. That fore-
casts are smoother than the forecasted data has also been observed by Piazzesi et al.
(2009). Moments about disagreement are stated in the third column. On average, the
standard deviation of forecasters is almost 2%. Disagreement is not very volatile, but
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spikes occasionally and is moderately persistent. Finally, the fourth column reports
the median root-mean-squared forecast error. Panel B states the correlations across
the series. Most notably, the median forecast is positively correlated with the actual
dividend growth and disagreement among forecasters is low whenever actual divi-
dend growth is high. Such counter-cyclicality among forecasts has been mentioned
extensively, see, for example, VanNieuwerburgh et al. (2006) or Veronesi (1999). Fur-
thermore, the median forecast error is low whenever growth is high and high dis-
agreement usually entails larger errors.

Excess Returns In this paragraph, I describe how I estimated expected excess re-
turns. I used quarterly data from 1969Q1–2016Q4 for real stock returns, the risk-
free interest rate, and the dividend-price ratio. The data comes from Robert Shiller’s
website and has been used first in his book “Market Volatility”, Robert J Shiller (1992).
Expected excess returns are the fitted values of regressing excess returns at time t+1

on a constant and the (log) dividend-price ratio at time t. Using the dividend-price
ratio as forecast for excess returns was pioneered by Campbell and Robert J. Shiller
(1988) and Fama et al. (1988). The univariate statistics for quarterly data and their
correlations with the other variables can be seen in the last column of Table 3.1.

Volatility I describe how I estimated stockmarket volatility in this paragraph. The
data comes from Yahoo Finance and contains daily stock market prices for 1969Q4–
2016Q4. Volatility is calculated, in general, by estimating from daily volatility a mea-
sure of raw quarterly volatility. As this estimate is a noisy measure of the underlying
fundamental volatility, I filtered the data. In more detail, I calculated raw quarterly
volatility as the squared sum of the demeaned log price changes within the quarter.
This measure of raw volatility is called realized volatility and was calculated first by
Schwert (1989). I transformed the estimate into logs to reduce the kurtosis and skew-
ness of the data. Bollerslev et al. (2016) argue that anARMA(1, 1)model for realized
volatility delivers good estimates of underlying volatility in the presence of such noisy
raw volatility. For robustness purposes, I also estimated the underlying volatilitywith
an AR(1) process and by using the seasonal de-trending procedure of Gallant et al.
(1992). The estimates for the underlying volatility were similar and are omitted. The
univariate statistics and the correlation of volatility are stated in the fifth column of
Table 3.1. A striking result is that the estimate for volatility and the expected excess
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return are negatively correlated, with an estimated value of −0.16. In theory, one
expects the correlation to be positive. However, econometric evidence for a positive
correlation is difficult to obtain, see French et al. (1987).

Control Variables: Time-VaryingRiskAversion, GDPGrowth andFundamen-
tal Volatility I used several variables to check if the correlation between disagree-
ment, volatility and expected excess returns are due to a correlation with an omit-
ted variable. Disagreement, volatility, and expected excess returns are all counter-
cyclical. I thus control for GDP growth in the regressions in Section 3.2.2. Further-
more, Campbell and Cochrane (1999) explain asset prices through time-varying risk
aversion. I calculated ameasure for time-varying risk aversion (the surplus consumption-
ration) following Cochrane (2011). The variable has a correlation of 0.53 (0.00) with
expected excess returns (stock market volatility). Finally, Bansal et al. (2004) explain
asset prices through fluctuating conditional volatility. I calculated the volatility of
consumption growth as the fitted values of anAR(1) process of the absolute value of
the residual of anAR(1)process ofGDPgrowth. This estimate ismotivated by Schw-
ert (1989) who estimated the conditional volatility of monthly production growth
similarly. The correlation between fundamental volatility and expected excess re-
turns (stock market volatility) is 0.3 (0.09).

3.2.2 Facts

In this subsection, I discuss the empirical evidence about the relationship between
disagreement among professional forecasters, expected excess returns and volatility.
I show that an increase of disagreement by one standard deviation about next quar-
ter’s dividend growth is associated with an increase by one-fifth (one-third) of a stan-
dard deviation of next quarter’s volatility (expected excess returns). The estimates are
significant at the 5 % level, even when controlling for measures of time-varying risk
aversion, fundamental volatility and business cycle conditions.

Fact 1: Higher Disagreement is associated with higher Volatility In this para-
graph, I consider the relationship between volatility and disagreement among fore-
casters. The time series for volatility and disagreement are plotted in Figure 3.1. I
regress volatility at time t on disagreement about time t dividend growth (which is

13



Figure 3.1: Disagreement and Volatility

The figure shows the standard deviation of the forecasts for next quarters aggregate profit growth
and the estimated underlying volatility. At any point in time, the data refers to the forecast for that
time and the estimate of the underlying volatility at that time. The plot is standardized to facilitate
inspecting the co-movement between the series.

measured at time t− 1). Some regressions allow for covariates. In formal terms:

v̂olt = β0 + β1disagreementt|t−1 + β2controlt + εt (3.1)

The estimates of this regression are presented in Panel A of Table 3.2. An increase
in disagreement by one standard deviation is associated with an increase of volatility
by 0.23 standard deviations. The estimate is significant at the 5% level and remains
significant when I control for GDP growth (regression number 2), time-varying risk
aversion (regression number 3), or fluctuating conditional volatility (row number 4).
Interestingly, the estimate for time-varying risk aversion is not significantly different
from 0.

The relationship between disagreement and stock market volatility has been exam-
ined in great detail. Most prominently, Bloom (2009) showed that uncertainty is as-
sociated with higher stock market volatility; one indicator for uncertainty was dis-
agreement among forecasters. Following the work of Bloom, many researchers stud-
ied the implications for uncertainty in financial markets. Brogaard et al. (2015) doc-
ument that uncertainty about governmental policy leads to higher market volatility.
Jurado et al. (2015) studied different measures of uncertainty, among them disagree-
ment of forecasters, and showed that they are closely related. Carlin et al. (2014) use
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Table 3.2: Regression Results

# Disagreementt|t−1 GDPt Riskt GDP − V olt R2

Panel A: Volatility

1 0.23
(2.81)

0.05

2 0.19
(2.5)

-0.22
(−2.89)

0.09

3 0.25
(2.90)

−0.08
(−0.77)

0.05

4 0.22
(2.84)

0.06
(0.77)

0.05

Panel B: Expected Excess Returns

1 0.38
(3.69)

0.14

2 0.4
(3.67)

0.6
(0.74)

0.14

3 0.25
(2.84)

0.47
(6.2)

0.34

4 0.34
(3.59)

0.25
(4.03)

0.2

Standard errors are calculated with 4 HAC White (1980) correction. The data is standardized to
facilitate comparison between regressors. The last column contains the adjustedR2. Estimates which
are significant at the five-percent level are printed in bold-face. T-values are in parenthesis.

micro-data about expected repayment in an Mortage-Backed-Security market and
document that disagreement among forecasters is associated with higher volatility.

Fact 2: Expected Returns increase with larger Disagreement The time series
for expected excess returns and disagreement is shown in Figure 3.2. The estima-
tion results are shown in Panel B of Table 3.2. An increase in disagreement by one
standard deviation is associated with an increase of expected returns by roughly 0.3

standard deviations and remains significant in the presence of the four control vari-
ables.

Expected returns have long been studied in relation to individual forecasts. I follow
Greenwood et al. (2014) and related econometric expectations of excess returns, cal-
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Figure 3.2: Disagreement and StockMarket Volatility

The figure shows the standard deviation of the forecasts for next quarters aggregate profit growth
and the estimated underlying volatility. At any point in time, the data refers to the forecast for that
time and the estimate of the underlying volatility at that time. The plot is standardized to facilitate
inspecting the co-movement between the series.

culated by using the price-dividend ratio as forecaster, to expectations of individual
forecasters. Carlin et al. (2014) document that excess returns in theMortage-Backed-
Security market increase with disagreement about repayment rates. Anderson et al.
(2009) use the same data as I use, but a more elaborate procedure to uncover dis-
agreement among forecasters, to show that disagreement is a statistically significant
forecaster for excess returns. While these papers document a positive relationship
between returns and disagreement, several other papers document a negative rela-
tionship. For instance, Diether et al. (2002) sort stock according to the extent of
disagreement about their returns and show that average returns are decreasing in
disagreement. The finding validates Miller (1977) who suggests stock prices reflect
the opinion of optimistic investors when short-sales are prohibited: Optimistic in-
vestors’ bid-up prices of stocks leading to high contemporaneous but low future re-
turns. Yu (2011) indeed documents that disagreement is positively associated with
high contemporaneous but low future aggregate returns. This pattern is especially
strong for growth stocks (the price of these stocks is sensitive to changes in discount
rates, Campbell and Vuolteenaho (2004)). Sadka et al. (2007) confirm the negative
empirical relationship between disagreement and future returns and document fur-
thermore that such future returns are particularly low for stock which are difficult
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to trade. In contrast to the papers above, Buraschi et al. (2013) studies how a stock
return’s exposure to disagreement is compensated. While Diether et al. (2002) and
Yu (2011) sort stocks according to disagreement, Buraschi et al. (2013) sorts stocks
according to how sensitive their returns are to changes of disagreement. The au-
thors document that returns increase for stocks which are more sensitive to changes
in disagreement. In contrast to the literature cited above, I estimate the relationship
between expected excess returns (instead of excess returns) and disagreement. As a
robustness check4, I also sort excess returns according to the disagreement measure I
use and show that disagreement is not systematically related to future excess returns.
I think, the data I use does not contain a significantly negative relationship between
excess returns and disagreement because I measure disagreement based on forecasts
about aggregate corporate profit growth and do not construct a disagreement mea-
sure as a weighted sum of disagreement about each stock, as done by Yu (2011).

3.3 A Frictionless Economy with two Types

I document in this section that the empirical evidence that higher disagreement is
associated with higher volatility and expected returns cannot be replicated in a fric-
tionless economy with two types of investors. Instead, the return volatility is be-
low (i) dividend volatility, (ii) the return volatility when beliefs are homogeneous
and that (iii) higher disagreement causes lower volatility. The finding is obtained as
follows: The model is set in continuous-time with Epstein-Zin investors. One in-
vestor forecasts mean dividend growth accurately, the other expects lower growth
rates. The investors trade a risky-asset in positive net supply and borrow and lend
from each other. As in any closed economy, stock prices equal dividends relative
to the average consumption-wealth ratio. The average is calculated using relative
wealth as weights. Suppose there is a positive dividend shock. As the investors dis-
agree about expected growth, they hold different portfolios and one investor gains
relative wealth. For prices to rise beyond the level indicated by higher dividends,
the average consumption-wealth ratio needs to fall — the investors with a lower
consumption-wealth ratio needs to gain relative wealth. However, instead, the in-
vestor with a higher consumption-wealth ratio gains relative wealth in response to a

4whose results can be seen on the publically available computer program on my website
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dividend shock, lowering volatility: The optimistic investor shoulders more aggre-
gate risk, and, as excess returns are positive, reaps higher portfolio returns. The indi-
vidual wealth growth rates need to be identical for both investors to retain a wealth
share bounded away from zero. As wealth growth equals the portfolio returns minus
the consumption-wealth ratio, the pessimistic investor compensates for her relatively
poor portfolio return through a lower consumption-wealth ratio. I document in nu-
merical simulations that whenever the investor with pessimistic beliefs forecasts a
12% lower annual dividend growth rate than the investor with accurate beliefs, the
return volatility is 10% below the dividend volatility. When disagreement doubles,
return volatility is 13% lower than dividend volatility. I begin by describing the econ-
omy in detail.

Dividend Growth The model is set in continuous time and dividends evolve as:

dD

D
= µDdt+ σDdWt (3.2)

withWt being a standard Brownianmotion, σD the instantaneous standard deviation
of dividend growth, and µD its mean.

Investors’ Beliefs There are two types of investors in the standard economy. Type
“A” expects dividends to evolve according to the actual process, (3.2). The other type
thinks dividends follow:

dD

D
= µ̃Ddt+ σDdW̃ . (3.3)

The investor presumes dividends grow on average with µ̃D instead of µD . While she
believes W̃ has a mean of zero, it actually contains a drift term:

dW̃ =
µD − µ̃D
σD

dt+ dW ≡ edt+ dW

The drift term guarantees that the dividend realizations according to the subjective
process (3.3) equal the realization of the actual process (3.2). Although there are in-
finitelymany investors of each type, each investor of one typemakes the same choice.
Thus, I only differentiate between types.
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Preferences Each investor has Epstein-Zin preferences, characterized in continu-
ous time by Duffie et al. (1992):

Vt = E

∫ ∞
t

f(cs, Vs)ds, (3.4)

with Vt being the current value and f :

f(c, V ) =
ϕ

ϕ− 1
β

c1−1/ϕ((1− γ)V )
1+

1− ϕ
(1− γ)ϕ − (1− γ)V

 .
The coefficient of relative risk aversion is γ, the Elasticity of Intertemporal Substitu-
tion (EIS) ϕ, and the time discount factor is β. When ϕ = γ−1, preferences resemble
CRRA utility.

TradedAssets andBudget Constraint The dynamic budget constraint for wealth
w faced by an type “A” investor is:

dwt = wt {[(1− θt)rt + θt(µR,t + rt)] dt+ θtσR,tdW} − ctdt (3.5)

The budget constraint can be interpreted as follows: The part in curly brackets de-
scribe wealth gains from the investor’s portfolio and −ct wealth losses due to con-
sumption. The investor invests a fraction 1 − θt of her wealth into a riskless asset
and receives, with certainty, a payoff of rdt. The other fraction θ is invested in a risky
asset which delivers, in expectations, a return of µR,t + rt, the excess return plus the
return on riskless assets. However, as dividend payments are risky, returns fluctu-
ate by σR,tdW , the conditional volatility of returns. The budget constraint for an
investor of type “B” is identical, except that wealth, consumption and the fraction of
wealth invested in risky assets are denoted by w̃t, c̃t and θ̃t respectively.

Optimizing A type “A” investors maximizes her life time utility (3.4) by choosing
the optimal fraction of wealth invested in risky assets θ and her consumption c:

sup
θi,c

E
∫ ∞

0

f(cs, vs)ds (3.6)

subject to (3.5). In contrast, a type “B” investormaximizes her expected utility, subject
to her budget constraint, under her subjective expectations. Her expectation opera-
tor is denoted as Ẽ. Girsanov’s theorem implies that the maximization under the
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subjective and true measure are related as:

sup
θ,c

Ẽ
∫ ∞

0

f(cs, vs)ds = sup
θ,c

E
∫ ∞

0

M(s)f(cs, vs)ds (3.7)

withM(s) being the Radon-Nikodym derivative:

M(t) = exp

(
−
∫ t

0

esdWs −
1

2

∫ t

0

es
2ds

)
(3.8)

The Value Function The value function for solving (3.4) can be written as:

Vt = β
−
ϕ(1− γ)

1− ϕ cw

1− ϕ
1− γ
t

w1−γ
t

1− γ
(3.9)

with cw being the consumption-wealth ratio, cw = ct/wt. Whenever cw(1−ϕ)/(1−γ)

is high, utility is high for a given level of net worthwt. The consumption-wealth ratio
evolves as:

dcwt = µcwtdt+ σcwtdW (3.10)

Equilibrium Denote by Pt the price of a claim on the dividends of the risky asset.
The equilibrium in this economy is defined as:

Definition 1. A competitive equilibrium is a set of stochastic processes for the risk free
interest rate {rt}∞0 , the excess return {µR,t}∞0 , its volatility {σR,t}∞0 the consumption

and asset holdings for each agent {ct, c̃t}∞0 ,
{
θt, θ̃t

}∞
0

and a process for relative wealth

{λt}∞0 such that:

i The investors choose ct(c̃t), θt(θ̃t) to maximize (3.4) subject to the budget constraint
(3.5), taking processes for r, σR and µR as given.

ii Markets clear, i.e.:

ct + c̃t = Dt

wtθt + w̃tθ̃t = Pt

By Walras’ law, the market for risk-free debt clear automatically. I endow both in-
vestors at time zero with the same number of shares, which influences how relative
wealth evolves. However, I concentratemy analysis around the stochastic steady state
of the relative wealth distribution which is independent of the initial allocation of
stocks.
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Solving the Equilibrium In equilibrium, all variables areMarkovian functions of
relative wealth, which is:

λ =
w

w + w̃
(3.11)

In equilibrium, the relative wealth share evolves as the Ito process

dλ = µλ(λ)dt+ σ(λ)dW. (3.12)

The sign of σλ(λ) represents which investor gains relative wealth after a positive
shock dW : If σλ(λ) > 0, investor “A” gains. I now describe asset prices.

3.3.1 Asset Prices

The equilibrium predictions are stated in the following Proposition

Proposition 1. Suppose there exists an equilibrium. Then, the conditional excess return
and its variance are:

µR(λ) = γσR(λ)2 + (1− λ)eσR(λ)− 1− γ
1− ϕ

σcw(λ)σR(λ) (3.13)

σR(λ) = σD −
∆cw(λ) + cwλ(λ)

cw(λ)
σλ(λ) (3.14)

with σcw(λ) = λσcw+(1−λ)σ̃c̃w , cw(λ), and cwλ(λ) being similarly defined weighted
averages. The risk-free interest rate is defined in the Appendix Section A

I describe at first the volatility and then excess returns.

The conditional return volatility The price of a claim on the risky asset equals
the dividend relative to the average consumption-wealth ratio:

P =
D

λcw(λ) + (1− λ)c̃w(λ)
. (3.15)

A shock dW changes the price due to a fundamental effect, a change in allocation, and
a change in valuation: The shock changes dividends by σD and the numerator of
the pricing equation fluctuates; the fundamental effect. The shock also changes rel-
ative wealth by σλ(λ) which affects the average consumption-wealth ratio cw =

λcw(λ) + (1 − λ)c̃w(λ) in two ways. First, fix cw(λ) and c̃w(λ). Then, cw(λ)
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changes by cw(λ) − c̃w(λ) = ∆cw(λ); a change in allocation. Second, because the
consumption-wealth ratios are functions of λ, cw(λ) changes by cwλ(λ); a change
in valuation. The change in allocation and change in valuation affect the denominator
of the pricing equation (3.15). Suppose there is a positive dividend shock. Then D
increases which exerts upward pressure on the price. If the average consumption-
wealth ratio falls, prices increase even more. The derivative of the price with respect
to the shock dW equals the volatility of returns:

σR(λ) = σD︸︷︷︸
Fundamental

− ∆cw(λ)

cw(λ)
σλ(λ)︸ ︷︷ ︸

Change in Allocation

− cwλ(λ)

cw(λ)
σλ(λ)︸ ︷︷ ︸

Change in Valuation

(3.16)

Numerical simulations across a wide range of parameter values documented that the
change in valuation term is of neglegible size. I thus approximate return volatility as:

σR(λ) ≈ σD︸︷︷︸
Fundamental

− ∆cw(λ)

cw(λ)
σλ(λ)︸ ︷︷ ︸

Change in Allocation

The sign of σλ(λ) represents which investor gains relative wealth after a positive div-
idend shock: If σλ(λ) > 0, investor “A” gains. The volatility of returns σR(λ) ex-
ceeds the volatility of dividends σD if the investor gaining from the shock has a lower
consumption-wealth ratio, i.e. ∆cw(λ)σλ(λ) < 0. I document below that investor
“A” gains from a positive dividend shock but that she has a lower consumption-wealth
ratio. Thus, the return volatility is below the volatility of dividends, contrary to the
empirical evidence conveyed by Robert J. Shiller (1981). Before examining the return
volatility in detail, I describe the excess returns.

Excess Returns The excess return has three components, which can be classified
as:

µR(λ) = γσR(λ)2︸ ︷︷ ︸
Aggregate Risk

+ (1− λ)eσR(λ)︸ ︷︷ ︸
Skewed Beliefs

− 1− γ
1− ϕ

σcw(λ)σR(λ)︸ ︷︷ ︸
Average Hedging Demand

The first part, γσR(λ)2, is a compensation for aggregate risk. Holding the risky assets
exposes each investor’s wealth to dividend fluctuations. The investors are compen-
sated (in proportion to their risk aversion) by positive excess returns for facing such
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risks. The Skewed Beliefs element, (1− λ)eσR(λ), originates from the subjective be-
liefs of type “B”. If she is pessimistic e > 0. For any given price of the asset, lower
expected dividend growth reduces the allure of holding the asset. To induce the pes-
simistic investor to hold the asset, the price must be reduced which increases returns.
The increase is proportional to her influence on the asset’s price as measured by her
wealth 1 − λ. The last element, σcw = λσcw + (1 − λ)σ̃cw, is a compensation for
average hedging demands. Suppose each investor’s hedging demand is positive. As the
asset is valued so much, the price for the asset increases which lowers its return.

3.3.2 Why Return Volatility is below Dividend Volatility

As discussed, σR(λ) exceeds σD if the investor gaining from a dividend shock has a
lower consumption-wealth ratio, i.e. ∆cw(λ)σλ(λ) < 0. The investor with accu-
rate beliefs (which is also more optimistic) invests more of her wealth in the risky
asset than the pessimistic investor. As the excess return is positive, this investors
gains, on average, higher returns from her portfolio than the other investor. Fur-
thermore due to the larger exposure to the risky asset, she gains relative wealth in
response to a dividend shock. However, for both investors to retain a relative wealth
share bounded away from zero, the individual wealth growth rates need to be equal.
The pessimistic investor can compensate for her lower portfolio return by a lower
consumption-wealth ratio, lowering volatility. The conditions under which both in-
vestors hold a positive wealth share have been analysed by Borovicka (2015); docu-
menting its implications for volatility and excess returns is one contribution of my
paper. I discuss this mechanism in detail below.

Economic Mechanism that guarantees a positive Wealth Share for both In-
vestors I document how each investor retains a wealth share bounded away from
zero by describing the different components of the diffusion equation for λ:

corollary 1. The process for relative wealth is a diffusion process:

dλ = λ(1− λ) {µλ(λ)dt+ σλ(λ)dW}
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with the coefficients satisfying the following equations:

σλ(λ) = ∆θ(λ)σR(λ) (3.17)

µλ(λ) = ∆θ(λ)µR(λ)−∆cw(λ)− σλ(λ)σR(λ) (3.18)

To guarantee existence of a stable steady state (a steady state with 0 < λ < 1) the
drift term µλ(λ) needs to cross zero from above: Suppose there exist a point λ̄ :

µλ(λ̄) = 0. At that point, relative wealth does not vary deterministically. If µλ(λ) >

0 (µλ(λ) < 0) for λ < λ̄ (λ > λ̄), type “A” gains (loses) relative wealth below (above)
λ̄. The elements of the drift term can be grouped as:

µλ(λ) = ∆θ(λ)µR(λ)︸ ︷︷ ︸
Portfolio Gains

− ∆cw(λ)︸ ︷︷ ︸
consumption-wealth

−σλ(λ)σR(λ)︸ ︷︷ ︸
Ito Term

(3.19)

Thedifference inPortfolioGains influence relativewelath. Relativewealth also changes
due to different consumption-wealth ratios. If a “type A” investor consumes more out
of her wealth than the other, ∆cw > 0 and she loses relative wealth. The Ito Term is
small in magnitude. Such a situation is depicted in the left pane of Figure 3.3.5 The
solid line shows µλ(λ) as function of λ. As can be seen, the line crosses zero from
above. The dashed line shows ∆cw(λ).

Effect of the Mechanism that guarantees a positive Wealth share on Volatility
The volatility of excess returns is, again:

σR(λ) = σD︸︷︷︸
Fundamental

− ∆cw(λ)

cw(λ)
σλ(λ)︸ ︷︷ ︸

Change in Allocation

− cwλ(λ)

cw(λ)
σλ(λ)︸ ︷︷ ︸

Change in Valuation

As type “B” investor is pessimistic ∆θ(λ) > 0. As σλ(λ) = λ(1 − λ)∆θ(λ)σR(λ),
σλ(λ) > 0 as well. As ∆cw(λ) > 0 ∆,−cw(λ)σλ(λ) < 0. Return volatility is thus
below dividend volatility. Such situation is depicted in Figure 3.3. Around the point
λ̄, σR(λ) < σD . The return volatility also equals dividend volatility when both in-
vestors have the same expectation.

5The parameters for the figure can be found in Table 3.3.
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Figure 3.3: The Relationship between µλ(λ) and σR(λ)

This figure plots the functions forµλ(λ),∆cw(λ) andσR(λ) as function ofλ. The right line indicates
the attracting point of the differential equations. As can be seen, the difference in consumption-wealth
ratio is positive and the return volatility is below the dividend volatility.

The argument so far relied on the difference in consumption-wealth ratios. The dif-
ference can be explained, approximately, as function of the underlying preference pa-
rameters and the equilibrium prices. The explanation highlights why the optimistic
investor decides to consume more than the other. As derived in the appendix, the
consumption wealth ratio satisfies the following differential equation:

c̃w(λ) = βϕ

+ (1− ϕ)

r(λ) + θ̃(λ) [µR(λ)− σR(λ)e]︸ ︷︷ ︸
Expected Portolio Return

− 1

2
γ
[
σR(λ)θ̃(λ)

]2

︸ ︷︷ ︸
Risk adjustment

+
1− γ
1− ϕ

σc̃w(λ)σR(λ)θ̃(λ)︸ ︷︷ ︸
Hedging Motive


+ µc̃w(λ) +

1

2

ϕ− γ
1− ϕ

σc̃w(λ)2 − σc̃w(λ)e (3.20)

At first, the consumption-wealth ratio is equal to the time discount factor times the
elasticity of intertemporal substitution. The second line equals one minus the EIS
times the certainty equivalent of the expected portfolio returns. The portfolio re-
turns are calculated under the subjective probability measure, as indicated by the
presence of e. The last line contains the derivatives c̃w′(λ) and c̃w′′(λ). Through log-
linear approximations, Campbell (1993), Campbell and Viceira (1999) and Hansen et
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al. (2007) show that the consumption-wealth ratio equals the present-value of risk-
adjusted expected portfolio returns. Although in general no analytical solution exists
for the consumption-wealth ratio exist, at λ → {0, 1} one can, however, derive the
consumption-wealth ratio analytically. The ratio then equals the certainty equivalent
of expected portfolio returns. One could thus interpret the finding that investor A
has a higher consumption ratio as saying that investor A expects lower risk-adjusted
portfolio returns from holding the asset. The interpretation is confirmed by the nu-
merical solution: At the stable point λ ≈ 0.75, the investor with pessimistic beliefs
expects a negative excess return µR(λ) − σR(λ)e < 0. She shorts the asset and in-
vests a fraction of−2.6 times herwealth in the risky asset. The high expected returns,
with an EIS larger than one, lead her to consume very little.

Numerical SimulationwhenDisagreement is constant The finding that return
volatility is below dividend volatility is at oddswith historical patterns of asset prices,
Robert J. Shiller (1981). Empirically, the model predicts a volatility of 8.9% in the
baseline calibration of e = 0.1 as seen in Figure 3.3 and Table 3.3. As can be seen in

Table 3.3: Empirical Evaluation when Disagreement is constant

Model Data
Variable e = 0.1 e = 0.2 Mean Stderr

Panel A: Asset Prices

E(re) 0.5% 0.77% 6.3% 2.15%

σ(re) 8.9% 8.88% 19.42% 3.07%

The calibration is chosen to obtain a positive wealth share of both investors and realistic aggregate
consumption growth rate: The EIS and RA are ϕ = 3.3 and γ = 2. respectively. The annual mean
dividend growth rate is 2%with standard deviation of 3%. The investorwith subjective beliefs expects
a growth rate of 1.25%. In the appendix, I show what other preference parameters satisfy a non-
degenerate wealth distribution. All asset pricing values are reported with a leverage ratio of 3, as
chosen by Bansal et al. (2004).

Table 3.3, increasing disagreement from e = 0.1 to e = 0.2 lowers volatility slightly,
contrary to the empirical motivation in Section 3.2.
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Excess Return As term σR(λ) enters all three components of the excess return, a
low volatility immediately leads to a low excess return. The excess return cannot be
large because the “portfolio gains” for themore optimistic investorwould be too large
to be conformable with guaranteeing a positive wealth share for the other investor.
The excess return is virtually zero in numerical simulations. As e increases from 0.1

to 0.2, the investor with subective beliefs becomes more pessimistic, which lowers
the price of the risky asset and thus increases returns.

3.4 Investors with switching Beliefs

I extend the model in this section so that disagreement amplifies volatility. Sup-
pose one investor is temporarilymore optimistic. Then, she temporarily reaps higher
portfolio returns and gains relative wealth in response to dividend shocks. Whether
she has a lower consumption-wealth ratio as well depends on how disagreement af-
fects the consumption-wealth ratios of both investors. I characterize, in an approxi-
mate log-linear solution, three channels through which disagreement influences the
consumption-wealth ratios:

1. Portfolio Channel: As market prices reflect average beliefs, each investor thinks
she can form a more profitable portfolio than the other. If an investor is more
pessimistic (optimistic) than the average belief reflected in market prices, she
shorts (holds a long position in) the asset.

2. Expected Returns Channel: In contrast to the Portfolio Channel, the Expected Re-
turns Channel depends on the type of disagreement: For a fixed portfolio, a
more optimistic (pessimistic) investor expects higher (lower) returns fromhold-
ing the risky asset.

3. Utility Distortion channel: The previous two channels affect the consumption-
wealth ratio indirectly through expected portfolio returns. Subjective beliefs
affect the consumption-wealth ratio also indirectly: Expected utilities under
subjective beliefs can be expressed as expectations of a distorted utility un-
der objective beliefs. If the investor expects high (low) dividend growth, her
consumption-wealth ratio decreases (increases).

27



The portfolio channel (if the elasticity of intertemporal substitution exceeds one, which
I chose as baseline calibration) biases each investor’s consumption-wealth ratio down-
wards. To, however, guarantee that the investor gaining wealth in response to a div-
idend shock has a particularly low consumption-wealth ratio, the portfolio channel
must not be too important. Proposition 2 states that if risk aversion exceeds dis-
agreement by some margin, disagreement amplifies volatility, as investors do not re-
structure their portfolios too aggressively. I begin by describing the extended econ-
omy, which allows each investor to be temporarily more optimistic.

Modified Dividend Growth The mean dividend growth rate is not fixed any-
more, as:

dD

D
= µD(x)dt+ σDdW (3.21)

and that x varies as the continuous time analogue to aAR(1) process:

dx = κx(x̄− x)dt+ σxdW. (3.22)

The variable x reverts to its mean x̄ at speed κx. Its conditional volatility is σx. In
accordance with Bansal et al. (2004), I define µD(x) = x.

Modified Beliefs The investor with subjective beliefs thinks dividends grow as:

dD

D
= µ̃D(x)dt+ σDdW̃ . (3.23)

The investors presumes the dividendgrow in themean at rate µ̃D(x) insteadofµD(x).
While investor “B” believes W̃ has a mean of zero, it actually contains a drift term:

dW̃ =
µD(x)− µ̃D(x)

σD
dt+ dW ≡ e(x)dt+ dW

All other elements of Section 3.3 remain as before.

3.4.1 TheConditionunderwhichReturnVolatilityExceedsDiv-
idend Volatility

Disagreement amplifies volatility if the investor with a lower consumption-wealth
ratio gains relative wealth in response to a dividend shock. Both the consumption-
wealth ratio and the function for relative wealth gains do not admit an analytical
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solution. To examine how disagreement affects volatility, I instead obtain approxi-
mate solutions of both functions. The approximation proceeds in three steps: First,
I argue that the optimistic investor gains relative wealth after a dividend shock. Sec-
ond, I discuss how to obtain the consumption-wealth ratios as a function of disagree-
ment. Finally, I discuss the three channels through which disagreement affects the
consumption-wealth ratio.

Why the optimistic investor gains relativewealth fromadividend shock The
investors who gains relative wealth in response to a dividend shock is effectively de-
termined by who is optimistic. The function for relative wealth gains is:

σλ(x, λ) = λ(1− λ)σR(x, λ)∆θ(x, λ)

The investor with accurate beliefs gains (loses) relative wealth if σλ(x, λ) is positive
(negative). The sign of σλ(x, λ) equals the sign of ∆θ(x, λ), which is:

∆θ(x, λ) =
1

γσR(x, λ)2

 1− γ
1− ϕ

∆σcw(x, λ)︸ ︷︷ ︸
Differece in hedging Demands

+σR(x, λ)e︸ ︷︷ ︸
Disagreement


TheDifference in hedging demands captures long-term investmentmotives, see Camp-
bell andViceira (1999). TheDifference in hedging demands does not admit an analytical
solution. I didmanynumerical simulations across a broad range of preference param-
eters and theDifference in the hedging demands (induced by disagreement e) was always
smaller than the Disagreement term eσR(x, λ). Hence, I presume the sign σλ(x, λ)

equals the sign of disagreement e.

Finding an approximate solutionwhenwealth is concentrated in the hands of
one investor The consumption-wealth ratios are, in general, a solution to a sys-
tem of coupled partial differential equations. However, when (almost) all wealth is
concentrated in the hands of one investor, that investor holds all risk and prices the
asset, as in Lucas (1978). The investor with marginal wealth takes price as given and
forms an optimal portfolio without repercussions on prices, as inMerton (1971). The
consumption-wealth ratios are then functions of the state x and linear and quadratic
terms of disagreement. Using log-linear approximation to study asset prices when
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one investor prices the asset is an established technique in the literature, see Bansal
et al. (2004). In contrast to Bansal and Yaron, I describe the effect of disagreement on
consumption-wealth ratios.

The three channels throughwhichdisagreement affect the consumption-wealth
ratios The effects of disagreement dependonwhich investor holds almost allwealth
in the economy andwhether the investors with subjective beliefs is optimistic or pes-
simistic. To illustrate the effects of disagreement, suppose the investor with accurate
beliefs holds (almost) all wealth. Her consumption-wealth ratio is:

cw(x) = βϕ

+ (1− ϕ)

r(x) + µR(x)θ(x)︸ ︷︷ ︸
Expected Portfolio Return

− γ
2

[σR(x)θ(x)]2︸ ︷︷ ︸
Risk Adjustment

+
1− γ
1− ϕ

σcw(x)σR(x)θ(x)︸ ︷︷ ︸
Hedging Motive


+ µcw(x) +

1

2

ϕ− γ
1− ϕ

σcw(x)2 (3.24)

The elements of the consumption-wealth ratio canbedescribed similarly as above, (3.20).
To describe the consumption-wealth ratio, I log-linearly approximate the left hand
side of the equation above by cw ≈ h0 + h1 log ĉw, similarly to Chacko et al. (2005).
I guess the solution to the approximated equation is:

ĉw = exp (A0 + A1x) .

Under the approximation, the excess return and the volatility are constant, as inBansal
et al. (2004). Given these returns, there exist values of A0, A1 solving the approxi-
mated equation. Todescribewhether the optimistic investor has a lower consumption-
wealth ratio, I solve the consumption-wealth ratio of the other investor below.
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The consumption-wealth ratio for the investor with subjective beliefs is:

c̃w(x, e) = βϕ

+ (1− ϕ)

r(x) + θ̃(e) [µR − σRe]︸ ︷︷ ︸
Expected Portolio Return

− 1

2
γ
[
σRθ̃(e)

]2

︸ ︷︷ ︸
Risk adjustment

+
1− γ
1− ϕ

σc̃wσRθ̃(e)︸ ︷︷ ︸
Hedging Motive


+ µc̃w(x) +

1

2

ϕ− γ
1− ϕ

σ2
c̃w − σc̃we (3.25)

The marginal investor chooses a portfolio without influencing prices. Suppose (after
the log-linear approximation) her consumption-wealth ratio is:

ˆ̃cw = exp(Ã0 + Ã1x+ Ã2e+ Ã3e
2)

The quadratic terms of disagreement are captured by the portfolio channel and equal:

∆θ̃(e)∆µR(e)− 1

2

[
σR∆θ̃(e)

]2

,

with∆θ̃(e) (∆µR(e)) being the difference in demands (expected returns) among two
investors. The difference in risk-adjusted returns due to the different portfolios is
0.5e2/γ. If the EIS exceeds one, higher portfolio returns reduce the consumption-
wealth ratio by (1− ϕ). The term Ã3 is:

Ã3 = (1− ϕ)
1

h1

1

2

1

γ

As the term is negative, the portfolio channel lowers the consumption-wealth ratio.
The linear effects of disagreement are captured by the expected returns channel and
the utility distortion channel. Whilst the actual expected excess return is µR, the in-
vestorwith subjective beliefs expectsµR−σRe. For the same portfolio as the investor
with accurate beliefs, disagreement thus creates a difference in expected portfolio
returns; expected returns channel. The last line of the equation (3.25) shows that the
consumption-wealth ratio is correlated with disagreement through the term −σF e;
utility distortion channel. The sum of the two channels determines the parameter Ã2.
After inserting the equilibrium solutions for returns, one gets:

Ã2 = −(1− ϕ)

[
σD +

1

h1 + κx
σx

]
1

h1
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If the EIS is larger then one, the coefficient Ã2 is positive. The coefficients Ã0, Ã1

equal the coefficient for the investor with accurate beliefs.

After the individual consumption-wealth ratios have been approximated, one can ex-
amine if the optimistic investor has a lower consumption-wealth ratio. Consider first
the situation when the investor with subjective beliefs is temporarily optimistic (e <
0). As Ã3 is negative and Ã2 is positive, her consumption-wealth decreases. Thus the
optimistic investor has a lower consumption-wealth ratio, increasing volatility. On
the other hand, the difference in consumption-wealth ratios is ambiguous when the
investor is pessimistic. While the return channel and belief distortion channel increase
her consumption-wealth ratio, the portfolio channeldecreases her consumption-wealth
ratio. To guarantee that the optimistic investor (which is the investor with accurate
beliefs) has a lower consumption-wealth ratio, the portfolio channel must not be too
important. Proposition 2 states under which conditions the portfolio channel is not
too important.

Proposition 2. Suppose λ → {0, 1}, that the economy is solved trough a log-linear ap-
proximation, that the elasticity of intertemporal substitution is larger than one, and that the
optimistic investor gains relative wealth after a dividend shock. Assume furthermore, that
the following inequality is satisfied:

2γ

(
σD +

σx
h1 + κx

)
> |e| (3.26)

with h1 being the average consumption-wealth ratio of the investor pricing the asset, h1 =

exp(log(c)− log(w)). Then, disagreement amplifies return volatility σR.

One can interpret the parameters as follows: If risk-aversion exceeds disagreement
by some margin, investors do not re-structure their portfolios too aggressively. The
proof of Proposition 2 is in the appendix. Figure 3.5 shows the parameter values for
the coeficient of risk-aversion and the extent of disagreement which are compatible
with amplified volatility. The blue area denotes the set of comaptabile parameters
and the green are the set of incompatible parameters. The red area shows the set of
parameters in which disagreement amplifies volatility in the non-linear numerical
solution which I describe in Section 3.5.
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3.4.2 Asset Prices

After having described under which conditions return volatility exceeds dividend
volatility in a log-linear approximation, I briefly present the equilibrium prices in
Proposition 3:

Proposition 3. Suppose there exists an equilibrium. Then, the conditional excess return
and its variance are:

µR(λ, x) = γσR(λ, x)2 + (1− λ)e(x)σR(λ, x)− 1− γ
1− ϕ

σcw(λ, x)σR(λ, x)

(3.27)

σR(λ, x) = σD −
∆cw(λ, x) + cwλ(λ, x)

cw(λ, x)
σλ(λ, x) +

cwx(λ, x)

cw(λ, x)
σx (3.28)

The interpretation of the function for the asset prices and the behaviour of individual
investors remains as before. The only difference is that the results are nowMarkovian
function of (x, λ) instead of only λ.

3.5 Simulation

In this section, I describe the quantitative evaluation of the extendedmodel. I describe
at firstwhich parameters for disagreement I use andhow the numerical solution com-
pares to the approximate solution of Section 3.4. Finally, I describe the quantitative
predictions of the model.

Calibration I calibrate the model at a monthly frequency and report annualized
values. The average annual consumption growth is 1.8% with a standard deviation
of 3.9%. I assume the investors forecast growth as plotted in Figure 3.4. I set the elas-
ticity of intertemporal substitution to 1.75. Figure 3.5 shows under which conditions
the consumption-wealth ratio of the investor gaining relative wealth in response to a
dividend shock is indeed smaller. The x-axis denotes the extent of disagreement and
the y-axis the coefficient of risk-aversion. The blue area highlight the set of parame-
ters in which the log-linear solution, Proposition 2, predicts that the investor gaining
wealth in response to a dividend shock has a lower consumption-wealth ratio. The
red area, in contrast, denotes the range for which the numerical solution predicts

33



Figure 3.4: Dividend Growth Forecasts

The figure plots the individual forecasts of both investors. The statex is plotted on the horizontal axis,
and the two forecasts are plotted as the two lines. Investor “A” forecasts growth accurately, investor
“B” is for low values of x too pessimistic, then optimistic and finally pessimistic again.

such outcome. The red area is smaller because, numerically, the consumption-wealth
ratios, when the investor with accurate beliefs prices the asset, do not cross as often
as predicted by the log-linear solution. In fact, for the numerical solution, I required
the investor gaining from a dividend shock to have a lower consumption-wealth ratio
only when x < 0.04 and not over the entire interval. When the investor with accu-
rate beliefs prices the asset, only the consumption-wealth ratio of the investor with
subjective beliefs is affected by disagreement. I suspect such narrow impact of dis-
agreement leads to the limited effect of disagreement. In contrast, when the investor
with subjective beliefs prices the asset, the currently optimistic investor has a lower
consumption-wealth ratio, as predicted by the log-linear solution.

EstimationResults The simulation results of themodel are presented inTable 3.4.
The model broadly matches asset prices. The volatility of the risky asset is 15.4%,
slightly lower than in the data. In contrast, the simulated excess return is 8% and
exceeds the historical excess return of 6.3%. Both estimates are, however, within
two standard deviations of the historical averages. The moments about the risk-free
rate are matched broadly too. Both the mean and its standard deviation are slightly

34



Figure 3.5: Admissible Sets

The x-axis denotes the extent of disagreement and the y-axis the coefficient of risk-aversion. The blue
area highlights the set of parameters in which the log-linear solution, Proposition 2, predicts that the
investor gaining wealth in response to a dividend shock has a lower consumption-wealth ratio. The
red area, in contrast, denotes the range for which the numerical solution predicts such outcome. The
green area denotes the range of parameters which are not compatible with Proposition 2.

higher than in the data. The impact of disagreement on the volatility and expected
excess return are presented in Table 3.5. As one can see, increases in disagreement
lead to a larger volatility and a large expected excess return. I computed the excess
return, as in the empiricalmotivation, Section 3.2, by using the price-dividend ratio as
forecasting variable. An increase of disagreement by one standard deviation increases
volatility (expected excess returns) by one-third (one-tenth) of a standard deviation.
To facilitate comparison, I repeated empirical estimates from Table 3.2 in the second
row. The model predicts relatively too strong results.

3.6 ProfessionalForecaster areonly temporarilymore
optimistic than their peers

The previous section assumed one investor is only temporarily more optimistic than
the other. I document that such behaviour resembles the empirical evidence as ob-
served in the Survey of Professional Forecasters. The estimates presented in this
section differ from previous studies. While Mankiw et al. (2003) or Bhandari et al.
(2016) examine the accuracy of individual forecasts, little is known about whether
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Table 3.4: Empirical Evaluation of the ExtendedModel

Model Data
Variable e = 0.45 Mean Stderr

Panel A: Asset Prices

E(re) 8.0% 6.3% 2.15%

E(rf ) 1.9% 0.8% 0.42

σ(re) 15.4% 19.42% 3.07%

σ(rf ) 1.7% 0.97% 0.28%

Panel B: Individual Statistics

E(λ) 0.18

σ(λ) 0.1

This table shows the simulation results of the extended model. The coefficient of EIS is 1.75 and
the risk-aversion coefficient is 10. The annual consumption growth has a mean of 1.8 and a standard
deviation of 3.9. I simulated the economy twice over 10, 000 years, discarded the initial 1, 000 years
and computed the average of both sample means. Historical data are taken from Bansal et al. (2004).

individual forecasters remain consistentlymore optimistic than their peers. The only
other papers studying persistence of optimism relative to peers is Patton et al. (2010).
However, these authors conclude that forecasters remain indeed constantlymore op-
timistic. The authors use data from Consensus Economics. Their Figure 3 highlights
that Bear Sterns (the Economic Intelligence Unit) was constantly more optimistic
(pessimistic) than the median forecaster. I interpret the difference between my and
their paper with strategic behaviour: Whilst the forecasters in the sample I use are
anonymous, the forecasters surveyed by Patton et al. (2010) communicate forecasts
under a brand name.

To investigate if forecasters switch from being optimistic, I calculate the probability
that a currently optimistic forecaster remains optimistic in the subsequent periods.
In particular, for each date, t, t + 1, . . ., I assign each forecaster into a set of opti-
mistic (pessimistic) forecasters if her forecast exceeds (is below) the median forecast.
I then calculate the switching probabilities as the probability of switching from the
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Table 3.5: Regression Results of the ExtendedModel

# Disagreementt|t−1 GDPt R2

Panel A: Volatility

Model: 0.37
(13.6)

-0.22
(−9.1)

0.16

Data: 0.19
(2.5)

-0.22
(−2.89)

0.09

Panel B: Expected Returns

Model: 0.11
(9.91)

-0.57
(−50.7)

0.44

Data: 0.4
(3.67)

0.6
(0.747)

0.14

The data is standardized to facilitate comparison between regressors. The last column contains the
R2.

set of optimistic (pessimistic) to pessimistic (optimistic) forecasters in two consecu-
tive periods. I calculate switching probabilities for a horizon of three (four) quarters
as the probability of switching at least once from an optimistic (pessimistic) set to
an pessimistic (optimistic) set. The estimates of the calculation are plotted in Fig-
ure 3.6. The probability of switching from being relatively optimistic (pessimistic)
to pessimistic (optimistic) forecast increases over time. While only 40% of currently
optimistic forecasters become pessimistic in the next period, more than 70% switch
at least once over three periods. In fact, the switching probability within one year is
roughly 80%.

3.7 Literature Review

In this section, I review the literature. I organize the discussion among the three
groups my paper is related to the literature of asset pricing under belief disagreement,
asset pricing with heterogeneous preferences and representative-agent asset pricing. Addi-
tionally, I relate my paper to previous work studying the effects of disagreement on
the wealth distribution. I discuss several papers in the first group, as they are the core
reference.
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Figure 3.6: Probabilities of Remaining Optimistic or Pessimistic

The figure plots the switching from an optimistic (pessimistic) forecast to an pessimistic (optimistic)
forecast. The x-axis denotes the horizon and the y-axis shows the probability of switching.

Asset pricing under disagreement In general, my work relates to other papers
describing asset pricing under disagreement as follows: I illustrate that disagreement
amplifies volatility when the investors gaining from a dividend shock has a lower
consumption-wealth ratio in frictionless economy. I provide conditions for such am-
plifications and discuss how investors retain a positive wealth share. No other paper
has examined the role of disagreement, volatility, and the wealth distribution in such
a way. Several papers discuss how disagreement affects asset prices in various other
economies. Building on the seminal contributions by Miller (1977) and Harrison et
al. (1978), Scheinkman et al. (2003) illuminate the effect of disagreement under short
sale-constraints on volatility. Two investors disagree about a time-varying dividend
growth rate. Investors are risk neutral and have infinite wealth, so each is willing to
pay at least her subjectively expected dividend stream for the stock. Due to the short
sale constraint, investors are willing to pay more as they expect to re-sell the stock
to a more optimistic investor. As a consequence, prices commonly exceed each in-
vestors’ valuation. Scheinkman et al. (2003) show that the resulting stock prices are
more volatile than the underlying dividends. I assume constraints contrary to the
ones used in these papers: I allow short selling and introduce budget constraints.
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Several papers characterize various effects of disagreement on asset prices. For ex-
ample, Barberis et al. (2015) study its pricing implications when a rational investor
trades with an investor extrapolating returns from recent observations. In response
to a positive dividend shock, extrapolators expect higher returns, which amplifies the
pressure on prices to appreciate. In contrast to themechanism discussed inmy paper,
price volatility does not stem from the interaction among investors but the behaviour
of the extrapolator. Cujean et al. (2017) explain why stock returns can be forecasted
better in recessions than in expansions. The authors use a continuous-time model
with two investorswhich use differentmodels to forecast future returns. Cujean et al.
(2017) discuss underwhich conditions the resulting disagreement is counter-cyclical.
The authors show that returns are functions of disagreement and that elasticity or
returns with respect to disagreement increases with higher disagreement. Because
disagreement is largest in recessions and persistent, the autocorrelation in returns
increases in recessions. While the authors explain how disagreement affects returns,
it is not clear how both investors can retain a positive wealth share over time. In con-
trast, I describe how disagreement affects returns in a stationary steady state. Kubler
et al. (2012) discuss the effects of disagreement on volatility in anOLGmodel. Due to
the OLG structure, cohorts have different demands for the financial asset. Due to the
differential demands, return volatility exceeds dividend volatility in an OLG econ-
omy with homogeneous beliefs, as shown by Huffman (1987). Kubler et al. (2012)
document that stock market volatility is amplified further if investors within cohorts
disagree about future returns and markets are complete.

Asset pricing with heterogeneous preferences Instead of using heterogeneous
beliefs to induce different portfolio holdings, one can also assume heterogeneous
preferences, as done by Garleanu et al. (2015). The authors the same economy as I
do in Section 3.3. In the model, the less risk-averse investor holds the majority of
aggregate risk and reaps high portfolio returns. The equation for return volatility
equals (3.14). As I described in this paper, return volatility exceeds dividend volatil-
ity if the investor gaining relative wealth in response to a dividend shock has a lower
consumption-wealth ratio. Because the less risk-averse investor has a higher EIS, her
consumption-wealth ratio is indeed below the one of the other investor. To prevent
the less risk-averse investor to own all wealth in the economy, Garleanu et al. (2015)
impose random deaths among investors. Gomez (2017) highlights that such mecha-
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nism leads to a counter-factual wealth distribution among living investors.

Representative-Agent asset pricing Conventionally asset prices have been ex-
plained in representative-agent model through time-varying risk aversion or fluc-
tuating conditional volatilities of dividend growth rates. Campbell and Cochrane
(1999) assume that investors have so-called “habit-formation” preferenceswhich value
consumption relative to a moving average of past consumption (the habit). When-
ever current consumption is close to the historical average, marginal utility is high.
High marginal utility can equivalently be thought of a temporarily high coefficient
of risk aversion. Campbell and Cochrane (1999) show that a representative-agent
model with such preferences can replicate observed asset prices. Motivated by such
a successful finding, other papers evaluate whether habit-formation preferences are
compatible with micro-data. These preferences predict that an investor holds more
risky asset when her wealth increases. Brunnermeier et al. (2008) do not find evi-
dence for such behaviour in the Survey of Consumer Finance. However, Guiso et al.
(2013) indeed measure an increase in risk-aversion among Italian retail investors af-
ter the recent financial crisis but explained such behaviour due to the emotional stress
investors’ experienced. Another explanation for historical asset prices has been pro-
posed by Bansal et al. (2004). The authors explain historical asset prices in a model
in which the average dividend growth rate fluctuates (and is very persistent) and the
volatility of dividend growth is stochastic. As argued by Beeler et al. (2012) themodel
by Basal and Yaron counter-factually suggests that the price-dividend ratio is a good
predictor of dividend growth.

Disagreement and the Wealth Distribution Investors assembly different port-
folios when they disagree. The portfolios earn different returns which influence the
wealth distribution. Sandroni (2000) shows that investors with wrong beliefs lose
constantly wealth when investors have expected utility preferences and aggregate re-
sources are bounded. When investors have Epstein-Zin preferences (and the coef-
ficient of risk-aversion does not equal the inverse of the elasticity of intertemporal
substitution) investors with wrong beliefs may however indefinitely hold a positive
wealth share, as shown by Borovicka (2015). I follow Borovicka and use Epstein-Zin
preferences to ensure that thewealth distribution is indeednon-degenerate. Borovicka
obtains his results by studying a social planner solution and derives asset prices in the
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limiting case when (almost) all wealth is held by one investor. I instead derive asset
prices in a competitive economy and characterize asset prices as a function of relative
wealth.

3.8 Conclusion

I provided conditions under which disagreement about dividend growth forecasts
amplifies stock market volatility, in line with empirical evidence. In a frictionless
economy with two Epstein-Zin investors, I model disagreement as exogenous het-
erogeneity in beliefs: one investor is pessimistic, the other is not. I show that dis-
agreement amplifies volatility only if/ investors switch beliefs, that is if an investor is
only temporarily optimistic. If instead one investor is permanently pessimistic, prices
are less volatile than dividends, and higher disagreement lowers volatility — in con-
tradiction with evidence. Finally, I provide empirical support for switching beliefs
among investors, using cross-sectional data from the Survey of Professional Fore-
casters. While disagreement seems a fruitful channel to describe much work remains
to be done: At first, evaluating the empirical validity of different channels which sup-
posedly determine asset prices would be interesting. Second, my work assumes ex-
ogenous forecasts and does not allow for any learning. Why investor disagree and
how to best describe such disagreement remains an open challenge.
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Chapter 4

Trade Volume, Noise Traders and
Information Acquisition with
Neural Networks

Fabian Schuetze1

4.1 Introduction

There is substantial evidence that high stockmarket trading volume (and relatedmea-
sures) predict low stock returns. Measures of trade volume predict cross-sectional
stock returns, Amihud and Mendelson (1986) or Pastor et al. (2003). Trade volume
predicts returns years ahead too, Amihud (2002) or Jones (2002). Existing models of
trade in financial markets face considerable difficulties explaining why trade volume
predicts returns. This paper discusses existing work of trade in financial markets and
describes how neural networks can be used to motivate trade among asymmetrically
informed investors. I argue why neural network could describe the empirical rela-
tionship between trade volume and excess returns.

Differences in preferences, endowments or information are commonmechanisms to
1I am deeply indebted to RamonMarimon for constant encouragement and discussion. I alsowant

to thank Joao Brogeueira, Piero Gottardi, Wouter den Haan, Mathijs Janssen, andMarcin Kacperczyk.
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generate trade among investors. Salient patterns of trade are, however, difficult to
reconcile through preferences or endowments. Such patterns are, for instance, that
trade of stocks is pro-cyclical and increases around public announcements, Kandel
et al. (1995). Alternatively, investors trade because their assessment about the re-
turns of stocks differs. Yet, Milgrom et al. (1982) argue such trades should not oc-
cur: Suppose one investor receives information which leads her to believe a stock
is undervalued. As soon as she attempts to purchase the stock, the potential seller
reasons private information motivated the offer and the stock is undervalued. Prices
should increase until no investor wants to trade. Several mechanisms prevent such
information inferences. For example, Kandel et al. (1995) and Harris et al. (1993)
assume investors interpret information differently and refuse to learn from prices.
While such mechanisms serve as shortcuts to generate trade, Weller (2016) and San-
tosh (2016) argue empirical evidence suggests investors indeed learn from prices. If
prices reflect other influences besides private information, investors can learn from
prices while differences in information persist. For example, Grossman et al. (1980)
introduce traders demanding random quantities which shade the informativeness of
prices: Prices could be high because investorswith private information value the asset
highly, or due to high randomdemands. Alternatively,Wang (1993) suggests investors
have private investment opportunities whose returns are correlated with commonly
available assets and thus influence the demand for these assets.

Although noise traders or private investment opportunities generate trade among
asymmetrically informed investors, such mechanisms face considerable difficulties
explaining why trade volume predicts returns. Trade volume does not predict excess
returns if asymmetric information is sustained exclusively by noise traders: Suppose
there is high trade volume because noise traders demand much (or little, i.e. supply
the asset), then current prices rise (falls) but will fall (rise) in the next periods. Thus
high trade volume is accompanied by high and low returns, contrary to the empir-
ical evidence. Wang (1993) sustains asymmetric information by private investment
opportunities. He shows theoretically high trade volume accompanied by high (low)
returns predicts low (high) returns if trade occurs because investment opportunities
change. Campbell, Grossman, et al. (1993) expand Wang’s model to explain daily au-
tocorrelations among returns. The authors document that daily returns are in gen-
eral positively correlated but the correlations fall in periods of high trade volume.
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Although the authors explain daily correlations of returns and its relationship with
trade volume, it is not clear how one can explain the empirical cyclicality of trade
volume.

To explain why trade volume predicts excess returns, I propose tomodel information
acquisition by neural networks. As I document in Section 4.2, a neural network can
be thought of as a continuous piecewise linear function which can approximate any
continuous function on a compact domain to an arbitrary degree. Neural networks
permit trade among asymmetrically informed investorswithout any further elements
(such as noise traders) as follows: Suppose the pricing function (with private informa-
tion as argument) is non-linear. As neural networks are piecewise linear, uninformed
investors infer private information imperfectly but to an arbitrary degree. I describe
a related example in Section 4.3. I argue neural networks can be used to generate
persistent information inference. If such persistent inference induce persistent de-
mands, one might be able to describe why trade volume predicts excess returns.

Neural Networks have been discussed earlier: Sargent (1993) describes its elemen-
tary structure and relate it to bounded rationality. Cho (1995) introduce neural net-
works in a Prisoner’s Dilemma, and Marimon et al. (1990) study equilibrium selec-
tion in exchange economies. Recent advances in machine learning greatly increase
the practical usefulness of neural networks. I describe the elementary capabilities of
a state-of-the-art neural network in the next section.

4.2 Description of Neural Networks

This section contains an illustration of elementary capabilities of a neural network
used in the current standard software such as Theano and TensorFlow and discussed
in corresponding textbooks, Goodfellow et al. (2016). A neural network is a function

f : P → S (4.1)

used for estimating s ∈ S given a vector of p ∈ P as precisely as possible. In the con-
text of information acquisition among asymmetrically informed investors, p refers
to prices and s to private information. The function f is a composition of affine and
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Figure 4.1: Neural Network with One Hidden Layer

x ∈ X F (x; θ)

Hidden
layer

Input
layer

Output
layer

non-affine functions. A prototypical neural network is depicted in Figure 4.1. The
idea behind the neural network is as follows: There is a signal which is processed
in the “input layer” and send to elements of the “hidden layer”. Elements of the hid-
den layer are neurons. A subset of these neurons will be activated (depending on the
strength of the input signal). Active neurons will establish a connection among the
input layer and the output layer. The mathematical representation of the network is:

f(p) = fout ◦ g ◦ fin(p). (4.2)

The function fin : P → RH is affine and called a “pre-activation function”. The
function sends input to the “hidden layer” and is:

fin,j(p) = wjp+ bj

The elements of the second function g : RH → RH constitute the “hidden layer” and
are called “activation functions” as they are meant to represent the neural activities.
A commonly used form are “rectifier activation functions”, Nair et al. (2010):

gj(p) = max {0, fin,j(p)} . (4.3)

The function can be understood as follows: A neuron is activated upon a strong
enough stimulus fin,j(p). Finally, the output function fout : RH → R transforms
activities into output:

fout(p) = β0 +
H∑
j=1

βjgj(p). (4.4)
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The parameters of the network are θ = {w, b, β}. Proposition 4 and Proposition 5
describe the properties of a neural network. The first Proposition documents that
the neural network can be thought of as a piecewise linear function:

Proposition 4. Suppose the neural networks hasH neurons and that the input dimension
is P ⊂ R. Then, one can find parameters θ such that the f : P → S is continuous and
piecewise linear with at mostH + 1 changes of the slope.

Proof. Set all wj = 1 and order the different “pre-activation functions” fin so that
if fin,j(p) > 0, fin,j−1(p) > 0 as well; that is when neuron j is activated, neuron
j − 1 is activated as well. I will now go through the domain of P and document how
the function fout behaves. First, for all p < −b1, fout = β0. Consider now instead
p ∈ P : fin,1 > 0, fin,2(p) < 0. Define p̄1 = −b1 and ∆p1 = p − p̄1. Then, the
output of the neural network is:

fout(p) = β0 + β1 (p+ b1)

= β0 + β1∆p1

That is, the neural network is β0 for all values p < −b1 and then increases with slope
β1 afterwards. Now, consider the value p ∈ P : fin,2 > 0, fin,3 < 0. Define, similar
as before p̄2 = −b1 and ∆p2 = p − p̄1. With a slight abuse of notation, re-define
the values considered above to ∆p1 = p̄2 − p̄1. Then output of the neural network
is then:

fout(p) = β0 + β1 (p+ b1) + β2 (p+ b2) (4.5)

= β0 + β1∆p2 + β2 (∆p2 + ∆p1) (4.6)

= β0 + β1∆p1 + (β1 + β2) ∆p2 (4.7)

The neural network isβ0+β1∆1 up to the pointwhere the second neuron is activated
and the slope than changes to β1 + β2. The proof can be continued for every j >
2.

A neural network with three neurons is illustrated in Figure 4.2. Intuitively, the net-
work accumulates slope coefficients as p increases. Its domain is P = [0, 10]. All
wi = 1, and b1 = −1, b2 = −3, b3 = −5, and β0 = 1, β1 = 1, β2 = 2, β3 = −3.
The idea behind the piecewise linearity is that the output function is linear and the
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Figure 4.2: ANeuronal Network with Rectifier Activation units

transformation function g is piecewise linear (zero for some inputs and with a dif-
ferent constant slope for other values). The functional form of the neural network
has been analysed in great generality by Montufar et al. (2014). The next property
shows that neural networks can approximate any continuous function to arbitrary
precision. The proof is a special case of the more general Theorem 1 presented in
Hornik (1991).

Proposition 5. Take any ε > 0 and any continuous and bounded function g. Then there
exits a number of neuronsH? ∈ R+ : ∀H > H?

sup
p∈P
|g(p)− f(p)| < ε (4.8)

Proof. The proof is constructive. I show how to construct a sequence of functions
fi(p) differing in the number of neurons. Increasing the amount of neurons mono-
tonically increases the approximation capacity. Take a function g. Such a function
has a finite number of local maxima and minima. Define the parameters θ such that
f0(p) linearly interpolates the minima and maxima. The maximum error of the in-
terpolation occurs at the point

p?1 = arg max
p∈P

|g(p)− f0(p)|,

with an associated error of δ0. Now, if one adds an interpolation point at p? the error
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at the point is zero and the maximum error falls to

δ1 = sup
p∈P
|g(p)− f1(p)| (4.9)

Again, one can define the to δ1 corresponding point p?2 and generate a new interpo-
lation. The process continues until δi < ε.

An example of the Proposition is illustrated in Figure 4.3 The function which is to be

Figure 4.3: ANeuronal Network with Rectifier Activation units

approximated is plotted in blue. The yellow function has one neuron, with β0 = 0. A
neural network with one neuron corresponds to a linear function. I then calculated
the point

p?1 = arg max
p∈P

|g(p)− f0(p)|,

which denotes the arg max of the approximation error of the neural network. The
activation threshold for the second neuron are set at this point b2 = −p?1. The ap-
proximation error at this point thus collapses to zero.

4.3 Inference from Prices with Neural Networks

In this section, I show through an example that neural networks can be used to de-
scribe information acquisition in a model of asymmetric information with arbitrary
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precision without noise traders. The uninformed investor infers private informa-
tion from prices to an arbitrary degree and stock prices not fully reveal private in-
formation (except in the limit of full information acquisition). The economy can be
summarized as follows: There are two types of investors which trade a claim to an
outstanding risky-asset and borrow and lend from each other. Each investor chooses
how much risky assets to hold, how much to invest in the risk-free asset and how
much to consume to maximize expected discounted utility subject to a budget con-
straint. The investors have CRRA preferences and the economy evolves in discrete
time. I show that the equilibrium pricing function is a non-linear function of the
fundamental and uninformed investors approximate the fundamental.

Dividend Growth At each time t the risky-asset pays a dividend dt which evolves
as:

dt = ft + σdut (4.10)

log ft+1 = α log ft + σfεt+1, (4.11)

with ut and εt being i.i.d. normally distributed. The dividend dt equals a fundamental
ft plus a noise term ut. The fundamental evolves according to anAR(1) log-normal
process.

Information Set The two investors are differently informed about the fundamen-
tal ft. The informed investor knows the fundamental ft. The uninformed investor
does not observe the fundamental but infers it from the price.

Traded Asset and Budget Constraint The budget constraint of each investor is:

cit + πit+1pt + bit+1 ≤ πitdt + πitpt +Rtb
i
t (4.12)

The investor allocates her resources to consumption cit, risky-asset πit+1, and bond
bit+1 purchases. The superscript i = {I, U} represents the informed or the unin-
formed investor. The price of the risky-asset is pt and the return for borrowing and
lending isRt.

Optimizing The investors have CRRA preferences with a risk-aversion coefficient
γ and discount factor β. The investor maximizes her expected life-time utility by
choosing consumption and asset allocations subject to their budget constraint.
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Relative Wealth The equilibrium variables are functions of the relative wealth of
each investor. For now, I avoid this by assuming that almost all wealth is concentrated
in the hands of the informed investor. This means the informed investor assumes
(almost) all aggregate risk and thus prices the asset, as in Lucas (1978). In contrast,
the choice of assets of the uninformed investor does not influence asset prices, as in
Merton (1971). While such an assumption is clearly a simplification, it allows me to
concentrate on the description of information acquisition.

Information Inference from Prices Because of the assumption that almost all
wealth is concentrated in the hands of the informed investors, the economy can be
solved as in Lucas (1978). The stock price is then exclusively a function of the fun-
damental f . Such a price is plotted in Figure 4.4. Figure 4.4 shows the equilibrium

Figure 4.4: Example for Filtering

The figure plots the fundamental on the y-axis as function of the equilibrium price on the x-axis in
red. The figure also plots the approximated fundamental by the uninformed investors in blue. The
inference in done by a neural-network with one hidden layer and two neurons.

price on the horizontal axis and the underlying fundamental on the vertical axis in
red. The blue line shows what information the uninformed investor infers from the
price. The inference is done by a neural network with one layer and two neurons, as
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described in Section 4.2. One can see that the inferred information is more precise
in when prices are high than when prices are low.

4.4 Future Work

In showed through an example that neural networks can be used to describe informa-
tion acquisition in a model of asymmetric information at arbitrary precision without
noise traders. As stated in the introduction, I would like to use neural networks to
describe why trade volume predicts returns. In comparison to a model with noise
traders, I hope information acquisition with neural networks allows to make indi-
vidual demandsmore persistent and therefore smooth trade volume. If prices are au-
tocorrelated, uniformed investors infer similar information within a specific amount
of time which might lead to more persistent demand functions. My next step will
be to characterize the equilibrium. In general, the uniformed investor infers private
information for prices which influences her demand function. This demand func-
tion, in turn, influences the pricing function again. Such repercussions need to be
addressed in a definition of the equilibrium.
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Chapter 5

Existence and uniqueness of
equilibrium in Lucas’ Asset Pricing
model when utility is unbounded

João Brogueira and Fabian Schütze

5.1 Introduction

We prove the existence of a unique equilibrium in a Lucas (1978) economy when the
utility function displays constant relative risk aversion (CRRA) and log dividends fol-
low a normally distributed AR(1) process with positive auto-correlation. The equi-
librium in the economy is characterized by a pricing function for the Lucas tree and
a value function for the representative consumer. Our result is obtained after we
restict the set of candidate equilibria to a space of functions which are bounded with
respect to a particular weigthed supremum norm, as specified in Section 5.3. Under
the assumption of a bounded utility function, Lucas proves the existence of a unique
equilibrium by showing that the pricing and value functions are fixed points of func-
tional equations. Lucas resorts to the sufficient conditions of Blackwell (1965) to
document that Banach’s fixed point theorem (e.g. p. 176 of Ok (2007)) guarantees
the existence of a unique solution to each of the functional equations. Alas, Black-
well’s conditions do not hold when the utility function displays the CRRA property.
The conditions require utility being bounded in the sup-norm, which does not hold
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when the consumption space is equal to the positive real numbers and the investor
displays CRRA preferences. Fortunately, Blackwell’s conditions are only sufficient.
We exploit the extension of Blackwell’s conditions by Boyd (1990) and document un-
der which circumstances Banach’s theorem can be applied. In particular, we provide
a joint restriction on the coefficient of relative risk aversion, the discount factor and
the conditional variance of the consumption process under which an equilibrium in
the economy exists and is unique.

Our solution method serves the same purpose as the local contraction methods (see
Martins-da-Rocha et al. (2010), Matkowski et al. (2011) and the references therein),
which provide conditions under which a functional equation has a unique solution
in an unbounded setting. In short, local contraction arguments rewrite the domain
of the elements of the functional space under consideration as a countable union of
always increasing compact subsets. A function is then said to be bounded if it is
bounded in every such subset of its domain. Local boundedness is implied by re-
strictions on the co-domain of the transition function for the state variable. In non-
stochastic problems, the strictest version of such restrictions is simply to require to-
morrow’s state to be an element of the same subset of the state space as today’s state
variable. For stochastic problems, Matkowski et al. (2011) write the state space as
a sequence of increasing (in the sense of inclusion) subspaces. The probability dis-
tribution that characterizes the transition of the state is such that with probability
one tomorrow’s state lies in the strictly larger but smallest subspace relative to the
smallest subspace that includes today’s state. These assumptions about how the state
traverses imply that if today’s value function is locally bounded, tomorrow’s value
function is locally bounded too. In our application, the state traverses according to
a log-normal distribution. This probability distribution has an unbounded support,
precluding the application of the argument outlined above.

Calin et al. (2005) suggest yet another way to solve a variant of Lucas’ asset pricing
model with unbounded utility. Nevertheless, our paper and their paper differ slightly
in their methodology and in their focus. Our paper supposes that the log of dividend
growth follows and AR(1) process whilst their paper considers the (commonly used)
specification of the dividend growth rate adherring to an AR(1) process. Following
Lucas’ we phrase the euqilibirum asset pricing function as a solution to a functional
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equation. To guarantee a solution to such equation, we draw on extensions to Black-
swell’s sufficient conditions. Our approach thus conforms with the practice of solv-
ing such asset pricingmodel models by iterating until convergence of an initial guess.
Calin et al. (2005) pursue a very inspiring path: They show that a unique equilibrium
exists when the set of candidate equilibrium pricing functions is restricted to func-
tions which are integrable with respect to a particular measure. Under a condition
on model parameters, the equilibrium price-dividend ratio is shown to be uniquely
defined as an analytic function The authors also such that such a solution needs be an
analytical function. Analytic functions can be approximated to an abitrary precision
by a covergent power series. Calin et al. show that the coefficients of such a power
series can be found by solving a system of linear equations.

This note is a complement to Kamihigashi (1998), who provides sufficient conditions
for uniqueness of equilibrium prices in a Lucas (1978) economy, presuming existence
of the equilibrium. He shows that utility functions which are continuous and un-
bounded below can lead to non-uniqueness of asset prices, and that a transversal-
ity condition is not sufficient to guarantee uniqueness. The sufficient conditions for
uniqueness of equilibrium in Kamihigashi (1998) are in the form of a bound on the
growth rate of marginal utility when consumption goes to zero and to infinity, inde-
pendently of the process governing dividends. CRRA utility functions satisfy such a
bound on the growth rate of marginal utility and hence the equilibrium is unique. In
contrast, we formulate the optimization problem recursively as in Lucas (1978). We
show that, for a particular endowment process, an equilibrium exists and is unique:
the value of the problem and the asset pricing function are uniquely defined, and a
transversality condition on the value function holds. Alvarez et al. (1998) analyses
dynamic programming problems with homogeneous return functions and transition
functions that are homogeneous of degree one. Using similar arguments as theirs,
we consider an optimization problem with a transition function that is not homoge-
neous of degree one.

The structure of this note is as follows: In the next Section, we provide a brief descrip-
tion of the economy and a definition of equilibrium in the asset pricing problem. Sec-
tion 3 presents the main result of the note and discusses an extension to Blackwell’s
sufficient conditions for a given operator on a metric space to be a contraction that
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is useful in our argument. We prove the existence and uniqueness of the equilibrium
and study properties of the pricing function in Section 4. Section 5 concludes.

5.2 The economy and definition of equilibrium

We describe the equilibrium as in Lucas (1978). Let us denote next period’s share
holdings by x′ ∈ X, withX = [x, x̄], 0 < x < 1 < x̄, and current consumption by
c ∈ R+. Let y ∈ Y = R++ be the current dividend of a Lucas-tree. The transition
equation for next period’s dividend isG(y, z′) = yαz′ with α ∈ (0, 1) and log z′ ∼
N(0, σ2), σ > 0. Let Q be the probability density over z′. Instantaneous utility is
given by u(c) = c1−γ/(1 − γ), with γ > 0; β ∈ (0, 1) is a discount factor. We use
the following equilibrium definition:

Definition 1. An equilibrium is a continuous function p(y) : Y → R+ and a continuous
function v(y, x) : Y ×X→ R+ such that:

v(y, x) = max
c,x′∈Γ(y,x)

{
u(c) + β

∫
Z

v(G(y, z′), x′)Q(dz′)

}
(5.1)

with
Γ(y, x) = {(c, x′) ∈ Y ×X : c+ p(y)x′ ≤ yx+ p(y)x} ,

and
for each y, v(y, 1) is attained by c = y and x′ = 1, and satisfies

lim
t→∞

E0

[
βtv(xt, yt)

]
= 0

where E0 is the expectation operator conditional on the initial period information, which is
the initial endowment y0 ∈ Y and asset holdings x0 ∈ X.

5.3 Sufficient conditions for the existenceof aunique
equilibrium

The following proposition is the crux of our note:
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Proposition 1. Take β ∈ (0, 1), σ ∈ (0,∞). Suppose that for all γ ∈ (0, 1):

β

[
0.5 +

∫ ∞
1

(z′)
1−γ

Q(dz′)

]
< 1. (5.2)

Alternatively, for all γ > 1, suppose that:

β

[∫ 1

0

(z′)
1−γ

Q(dz′) + 0.5

]
< 1. (5.3)

Finally, suppose that log(β)+(1−γ)2σ2/2 < 0. Then there exists a unique equilibrium.
That is:

(1) There exists a unique non-negative continuous pricing function p(y),

(2) There exists a unique function v(y, x),

in accordance with Definition 1.

The inequalities (5.2) and (5.3) will be described at the end of this section. Given a
value function v, we first study the existence of a unique pricing function. We be-
gin by deriving a variant of an Euler equation following Lucas (1978), given by (5.4)
below. Let us assume that for each y, v(y, x) is an increasing, concave and differ-
entiable function with respect to x. Defining f(y) = p(y)∂u(y)/∂y and using the
equilibrium conditions x = x′ = 1 and c = y allows formulating the stochastic
Euler equation as:

f(y) = h(y) + β

∫
Z

f(G(y, z′))Q(dz′), (5.4)

with h(y) = β

∫
Z

[
∂u(G(y, z′))

∂y′
G(y, z′)

]
Q(dz′) = βyα(1−γ) exp

(
(1− γ)2σ2/2

)
.

Lucas uses Blackwell’s sufficient conditions to show that the operatorT , defined such
that (5.4) is equivalent to Tf = f , is a contraction and then applies Banach’s fixed
point theorem. To employBlackwell’s conditions, Lucas assumes that the utility func-
tion u and thereby the function h is bounded with the sup-norm. With CRRA utility
and a dividend process inR++, the function h is unbounded with the sup-norm. Im-
portantly, boundedness is a characteristic that is closely linked to the employed met-
ric. In the following subsection we study a norm with respect to which the function
h in (5.4) is bounded.
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5.3.1 A weighted norm approach

Boyd (1990) extends Blackwell’s sufficient conditions by generalizing themetric from
a sup-norm to a weighted sup-norm. We denote the set of continuous functions f :

Y → R+ by S, and take ϕ ∈ S with ϕ > 0. Then f is ϕ-bounded with respect
to the weighted sup-norm ||f ||ϕ = supy∈Y {|f(y)|/ϕ(y)} if ∃ B ∈ R+ such that
||f ||ϕ < B. Let Sϕ ⊂ S be the set of continuous and ϕ-bounded functions. Let us
define the metric dϕ(f, g) := ||f − g||ϕ on Sϕ. Note that (Sϕ, dϕ) is a complete
metric space (see e.g. Theorem 12.2.8 in Stachurski (2009)). We have the following
lemma, which is a corollary to theWeighted ContractionMapping Theorem in Boyd
(1990):

Lemma 1 (Boyd’s sufficient conditions). Let T : Sϕ → S and suppose:

1. (monotonicity) T is monotone, that is ∀f, g ∈ Sϕ, f ≥ g implies Tf ≥ Tg;

2. (discounting) For any A ∈ R++, there exists θ ∈ (0, 1) such that: T (f + Aϕ) ≤
Tf + θAϕ;

3. (self-map) T (0) ∈ Sϕ .

Then T is a contraction in (Sϕ, dϕ) with modulus θ.

The discounting and self-map property of operator T involve the weighting func-
tion explicitly. The self-map property requires the function h to be bounded with a
weighted sup-norm: ||h||ϕ < B for someB ∈ R+. To develop some intuition about
our proposal for such aϕ, we consider the functional formofh(y) = κyα(1−γ), where
κ = β exp ((1− γ)2σ2/2). For a given α ∈ (0, 1), if γ < 1, h is a strictly increasing
and concave function; alternatively, if γ > 1, h is strictly decreasing and convex. Any
positive continuous functionϕwhich is weakly above h inY is a weighting function
that makes h ϕ-bounded. One such function is given by:

ϕ(y) = κ ·max
{

1, y1−γ} . (5.5)

When γ ∈ (0, 1), the function above is equal to κ while 0 < y ≤ 1 and then grows
strictly above h for all y > 1. When γ > 1, the weighting function in (5.5) is above h
while 0 < y < 1 and stays at κ when y ≥ 1.
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In our framework, the restriction implied by Boyd’s discounting property is equiva-
lent to:

β

∫
Z
ϕ(G(y, z′))Q(dz′)

ϕ(y)
< 1,∀y ∈ Y. (5.6)

Similarly to the discussion of dynamic programming techniques with homogeneous
return functions in Alvarez et al. (1998), inequality (5.6) places a bound on the ex-
pected growth rate of the weighting function. If ϕ was a constant function, (5.6)
would be trivially satisfied (since β < 1). However, as discussed above, in order to
bound h the weightϕ has to be above h, that decreases or increases with y depending
on γ. This observation motivates using another weighting function arbitrarily close
to and greater than h: relative to the weight in (5.5), such a weighting function in-
creases the range of parameters β, γ, σ that satisfy condition (5.6). Instead, for the
sake of simplicity, we proceed with our analysis using (5.5) and illustrate the restric-
tion on the parameter space imposed by (5.6). To that end, takeγ ∈ (0, 1). To evaluate
(5.6), for a given y ∈ Y, consider realizations of z′ in the interval (0, y−α). Since in
this intervalG(y, z′) = yαz′ < 1, ϕ(G(y, z′)) = 1. Conversely, for z′ ∈ [y−α,∞),
ϕ(G(y, z′)) = G(y, z′)1−γ . The following lines place an upper bound on the left
hand side of (5.6):

β

∫
Z
ϕ(G(y, z′))Q(dz′)

ϕ(y)
= β

∫ y−α
0

Q(dz′) + yα(1−γ)
∫∞
y−α

(z′)1−γQ(dz′)

ϕ(y)

≤


β
[∫ y−α

0
Q(dz′) +

∫∞
y−α

z′1−γQ(dz′)
]

1
if 0 < y < 1,

yα(1−γ)β
[∫ y−α

0
Q(dz′) +

∫∞
y−α

z′1−γQ(dz′)
]

y(1−γ)
if y ≥ 1,

≤ β

[∫ y−α

0

Q(dz′) +

∫ ∞
y−α

z′1−γQ(dz′)

]
∀y ∈ Y

≤ β

[∫ 1

0

Q(dz′) +

∫ ∞
1

z′1−γQ(dz′)

]
∀y ∈ Y

= β

[
0.5 +

∫ ∞
1

z′1−γQ(dz′)

]
.

In the numerator, after the first equality sign, we split the support of z′ in two inter-
vals to consider the two branches in (5.5) separately. The inequalities in the second
line hold as 1 > yα(1−γ) for 0 < y < 1 and yα(1−γ) ≥ 1 for y ≥ 1. The inequality
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Figure 5.1: Illustration of the set of (γ, σ) values satisfying the conditions in Propo-
sition 1. The grey regions represent the combinations of (γ, σ) satisfying inequalities 5.2 and 5.3 in Proposition 1. The
region above (respectively below) the blue line corresponds to parameter combinations that satisfy the additional restriction in
Proposition 1, when γ < 1 (resp. γ > 1). β is 0.99.

in the third line follows since yα(1−γ) < y1−γ for y > 1. Finally, the last inequality
holds because the term in square brackets is the greatest at y = 1. Accordingly, in-
equality (5.2) of Proposition 1 guarantees that, if γ < 1, Boyd’s discounting property
is satisfied. A similar arguments holds for values γ > 1, when inequality (5.3) holds.
As an illustration, the shaded region in Figure 5.1 documents which parameter pairs
(σ, γ) satisfy conditions (5.2) and (5.3), when β is 0.99. When γ = 1, u(c) = log(c)

and a solution to (5.4) can be calculated analytically. A lower value of β enlarges the
admissible region. In the following, the proof of Part (1) of Proposition 1will be com-
pleted.

5.4 Proof of the Proposition

In this section we formally prove the existence and uniqueness of equilibrium in the
economy described in Section 2. Following Proposition 1,we proceed in two steps.
We first solve for a unique pricing function, p, taking as given a value function v (part
(1) in Proposition 1). Then, taking p as given, we complete the proof by showing that
there is a unique value function v (part (2)), in accordance with Definition 1.

Proof. (Part (1) of Proposition 1.) The proof begins by showing that T is a map from
Sϕ toS. We show first that for any f ∈ Sϕ, Tf is continuous. Take a sequence yn →
y and some f ∈ Sϕ. We define the difference |Tf(yn)−Tf(y)| = |h(yn)−h(y) +
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β
∫

(f(G(yn, z
′))− f(G(y, z′)))Q(dz′)|. By the triangle inequality, the right hand

side expression is majored by:

|h(yn)− h(y)|+ β|
∫

(f(G(yn, z
′))− f(G(y, z′)))Q(dz′)|.

The first term above converges to zero as yn → y since theh is a continuous function.
Now we define gn(z) ≡ f(G(yn, z)) and g(z) ≡ f(G(y, z)). Because f is a con-
tinuous function, we know that gn(z) converges pointwise to g(z). Let u(z) denote
the supremum of the sequence of functions ϕn(z) ≡ ϕ(G(yn, z)). Since f ∈ Sϕ,
it is bounded by ϕ, and we have that |gn(z)| ≤ u(z). Since u(z) is integrable, by
Lebesgue’s dominated convergence theorem:

lim
n→∞

∫
f(G(yn, z

′))− f(G(y, z′)) Q(dz′) = 0

and hence the second term multiplying β above converges to zero. Hence, Tf(yn)

converges toTf(y): the operatorT is continuous andwewriteT : Sϕ → S. Wenow
study the monotonicity of T . The operator T is monotone since for any f, g ∈ Sϕ

with f ≥ g,
∫
f(G(y, z′))Q(dz′) ≥

∫
g(G(y, z′))Q(dz′), so Tf ≥ Tg. Therefore

condition 1 of Lemma 1 holds. Under assumption (5.2), condition 2 of Lemma 1 is
satisfied for 0 < γ < 1, as the argument in section 5.3.1 shows. It remains to be
shown that this condition holds for γ > 1. For these values of γ, we observe the
following:

β

∫
Z
ϕ(G(y, z′))Q(dz′)

ϕ(y)
= β

yα(1−γ)
∫ y−α

0
(z′)1−γQ(dz′) +

∫∞
y−α

Q(dz′)

ϕ(y)

≤


β
yα(1−γ)

[∫ y−α
0

z′1−γQ(dz′) +
∫∞
y−α

Q(dz′)
]

y1−γ if 0 < y < 1,

β

[∫ y−α
0

z′1−γQ(dz′) +
∫∞
y−α

Q(dz′)
]

1
if y ≥ 1,

≤ β

[∫ y−α

0

z′1−γQ(dz′) +

∫ ∞
y−α

Q(dz′)

]
∀y ∈ Y

≤ β

[∫ 1

0

z′1−γQ(dz′) +

∫ ∞
1

Q(dz′)

]
∀y ∈ Y

= β

[∫ 1

0

z′1−γQ(dz′) + 0.5

]
.
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The reasoning for each condition is analogous to the one made for the case 0 < γ <

1. Under (5.3), condition 2 in Lemma 1 holds for γ > 1. The third condition of
Lemma 1 requires h to be bounded with the weighted sup-norm. Hence, since:

||h||ϕ = β exp
(
(1− γ)2σ2/2

)
sup
y∈Y

{
yα(1−γ)

ϕ(y)

}
= β exp

(
(1− γ)2σ2/2

)
,

T (0) ∈ Sϕ and point 3 of Lemma 1 holds. Note that, under Lemma 1, the operator T
is a self-map (maps the spaceSϕ into itself).1 Concluding, sinceT is a contraction over
(Sϕ, dϕ), Banach’s fixed point theorem guarantees that a unique function f ∈ Sϕ

satisfying (5.4) exists. The solution is non-negative and continuous. Therefore the
pricing function p(y) = f(y)/u′(y) is non-negative and continuous as well.

After having shown that there exists a unique pricing function p given v, the converse
remains to be shown. The following argument completes the proof of Proposition 1.

Proof. (Part (2) of Proposition 1). We define the operatorH such that:

Hv(y, x) = max
c,x′∈Γ(y,x)

{
u(c) + β

∫
Z

v(G(y, z′), x′)Q(dz′)

}
. (5.7)

The weighting function, now denoted by φ, can be defined similarly as:

φ(y, x) = κ ·max{1, y1−γ}. (5.8)

Let us assume that the function p is as in part (1) of Proposition 1, and p ∈ Sφ.2 To
prove that a unique fixed pointH exists, one can resort to Lemma 1 to show thatH is
a contraction and then use Banach’s theorem to establish existence and uniqueness of
the fix point. We begin by showingH : Sφ → S. For any v ∈ Sφ and u continuous,
u(c) + β

∫
Z
v(G(y, z′), x)Q(dz′) is continuous. Since for each (y, x) the budget

correspondence is compact valued and continuous, Berge’s theorem (Theorem 3.6
in Stokey et al. (1989)) guarantees that Hv is continuous. Hence H : Sφ → S.
Monotonicity ofH holds. Discounting ofH can then be established as in the proof
of part (1) of Proposition 1, above. Finally one needs to show thatH has the self-map
property. In mathematical terms,H(0) ∈ Sφ if there is someB ∈ R+ such that:

sup
(y,x)∈Y×X

{
|maxc,x′∈Γ(y,x) u(c)|

φ(y, x)

}
< B. (5.9)

1See proof in p.6, Section 3, in Boyd (1990).
2Sφ is defined as Sϕ, with ϕ replaced by φ.
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To show that (5.9) holds we consider two cases: γ ∈ (0, 1) and γ > 1. For any
γ ∈ (0, 1) condition (5.9) is equivalent to:

sup
(y,x)∈Y×X

{
(p(y)x+ xy)1−γ

φ(y, x)

}
< B ⇔ sup

y∈[1,∞)

{(
p(y)

y
+ 1

)1−γ
}
< B.

(5.10)
Nowwe note that, by definition, p(y) = f(y)yγ and as shown in Part (1) of the proof,
for all y ∈ [1,∞) (and all x ∈ X): f(y)yγ ≤ φ(y, x)yγ = κy. Therefore it follows
that

sup
y∈[1,∞)

{(
p(y)

y
+ 1

)1−γ
}
≤ (κ+ 1)1−γ < B (5.11)

holds for someB ∈ R+, which proves that (5.9) holds for all γ ∈ (0, 1). The proof for
the complementary case γ > 1 follows directly from (5.9) and for brevity we omit
the argument.3 Concluding, we showed that H is a contraction and Banach’s fixed
point theorem establishes that it has a unique solution.

At this stage, a characterization of function f that solves (5.4) is in order. The follow-
ing lemma documents some of its properties:

Lemma 2. Take f ∈ Sϕ such that Tf = f . Then:

1. For any f0 ∈ Sϕ, ||T nf0 − f ||ϕ → 0 as n→∞;

2. Suppose 0 < γ < 1. Then, bothh and f are strictly increasing and concave. Suppose
otherwise 1 < γ. Then both h and f are strictly decreasing and convex.

Proof. Point 1 of Lemma 2 follows directly from the fact that T is a contraction on
a complete metric space and hence, for brevity, will not be proved here. Point 2 is
proved in the Appendix of this note.

Properties of v assumed in Section 5.3 can be shown by arguments similar to Lucas
(1978) (see propositions 1 and 2). The proof that the fixed point v of the operatorH
satisfies the limit condition in Proposition (1) is in Appendix B. This concludes the
proof of Proposition 1.

3In the case γ > 1 the assumption x ≥ x with x > 0 is needed to show thatH has the self-map
property.
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5.5 Conclusion

Wepresent a proof of the existence and uniqueness of equilibrium in a pure exchange
economy of Lucas (1978), when the utility function takes the CRRA form and the div-
idend stream follows an autoregressive process of order one with positive autocorre-
lation. An interesting extension of the argument presented in this note, that we leave
for future research, is to consider the case inwhich innovations affect the growth rate
of dividends instead of the level.
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Appendices

Appendix for “Disagreement, ChangingBeliefs, andStock
Market Volatility”

For the sake of a brief notation, I will use the following definitions ξ1 = ρ/(1−ρ), ξ2 = 1−ϕ
1−γ

and ξ3 = 1/(1−ρ) in the appendix. At first, I will document how the value functions of both
investors can be rewritten. Take any two states, y and w, the value function of the informed
investor is, by definition:

V (yt, wt) = sup
C,θ

E
[∫ t+h

t
f(c, v)ds+ v(yt+h, wt+h)

]
Ito’s integral rule allows to rewrite the future value function as:

v(yt+h, wt+h) = v(yt, wt)

+

∫ t+h

t

∂v(ys, ws)

∂ws
dws +

1

2

∂2v(ys, ws)

∂w2
s

(dws)
2

+
∂v(ys, ws)

∂ys
dys +

1

2

∂2v(ys, ws)

∂y2
s

(dys)
2

+
∂v(ys, ws)

∂ysws
dwsdys

The value function for the second agent need to be adapated to account for the subjective
beliefs. This is done by using Girsanov’s theorem. By Girsanov’s theorem, one can write the
value function as:

Mtv(xt, wt) = sup
C,θ

E
[∫ t+h

t
Msf(cs, vs)ds+Mt+hv(xt+h, wt+h)

]
(12)

withM being the Radon-Nikdoym derivative (??). One can again write the future value func-
tion by Ito’s integral rule in a similar way.
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A Proof of Proposition 1

Guess that the value function can be written as:

V (λ,w) = β−ϕ/ξ2F (λ)1/ξ2w1−γ 1

1− γ

WithF a function who’s functional form is unknown. After rewriting the value function, the
HJB equation for the agent with accurate beliefs can be written as:

0 = sup
C,θ

f(c, V ) + β−ϕ/ξ2F (λ)1/ξ2w1−γ(r − cw + θµR) (13)

+ β−ϕ/ξ2F (λ)1/ξ2w1−γ 1

1− ϕ

{
Fλ(λ)

F (λ)
µλ +

1

2

Fλ,λ(λ)

F (λ)
σ2
λ

}
+ β−ϕ/ξ2F (λ)1/ξ2w1−γ 1

2

1

1− ϕ

(
1

ξ2
− 1

)(
Fλ(λ)

F (λ)

)2

σ2
λ

− β−ϕ/ξ2F (λ)1/ξ2w1−γ 1

2
γθ2σ2

R

+ β−ϕ/ξ2F (λ)1/ξ2w1−γ 1

ξ2

Fλ(λ)

F (λ)
σλσRθ (14)

The optimal consumption choice is:

c = wF (x, λ) (15)

Inserting optimal consumption and the guessed value function into the felicity functionf(C, V )

gives:

f(C, V ) = F (λ)1/ξ2w1−γβ−ϕ/ξ2
(
F (λ)

ϕ

1− ϕ
− β ϕ

1− ϕ

)
(16)

Inserting this felicity function, the optimal consumption choice, and making use of the fol-
lowing two definitions:

µF (λ) =
Fλ(λ)

F (λ)
µλ +

1

2

Fλ,λ(λ)

F (λ)
σ2
λ

σF (λ) =
Fλ(λ)

F (λ)
σλ

into the HJB equation gives:

0 = sup
θ
F (λ)1/ξ2βγ/ρw1−γ

{
F (λ)

1

ϕ− 1
− β ϕ

ϕ− 1
+ r + µRθ −

1

2
γσ2

Rθ
2

+
1

1− ϕ
µF +

1

2

1

1− ϕ

(
1

ξ2
− 1

)
σ2
F +

1

ξ2
σFσRθ

}
(17)
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The HJB equation for the second agent is very similar. Apart from potential differences in
preferences, subjective beliefs introduce covariances. The consumption decision is again c̃ =

F̃ w̃ The HJB equation for the agent can be written as:

0 = sup
θ
F̃ (λ)

1/ξ2
βγ/ρw1−γ

{
F̃ (λ)

1

ϕ− 1
− β ϕ

ϕ− 1
+ r + µRθ̃ −

1

2
γσ2

Rθ̃
2

+
1

1− ϕ
µF̃ +

1

2

1

1− ϕ

(
1

ξ2
− 1

)
σ2
F̃

+
1

ξ2
σF̃σRθ̃ −

1

1− ϕ
σF̃ e(x)− θ̃σRe(x)

}
(18)

The optimal portfolio choice for the agents is then:

θ =
1

γσ2
R

[
µR +

1

ξ2
σFσR

]
θ̃ =

1

γσ2
R

[
µR +

1

ξ2
σ̃FσR − σRe(x)

]
The differential equations for the consumption-wealth ratio of the investor with accurate
beliefs can then be written as:

F (λ) = βϕ+ (1− ϕ)

{
r + µRθ −

1

2
γσ2

Rθ
2 +

1

ξ2
σFσRθ

}
+ µF +

1

2

(
1

ξ2
− 1

)
σ2
F

And the consumption-wealth ratio for the investor with subjective beliefs is:

F̃ (λ) = βϕ+ (1− ϕ)

{
r + µRθ̃ − θ̃σRe−

1

2
γσ2

Rθ̃
2 +

1

ξ2
σFσRθ

}
+ µF̃ +

1

2

(
1

ξ2
− 1

)
σ2
F̃
− σF̃ e

Finally, by inserting the demand functions, the consumption-wealth ratios can be written
even shorter:

F (λ) = βϕ+ (1− ϕ)

(
r +

1

2
γσ2

Rθ
2

)
+ µF +

1

2

(
1

ξ2
− 1

)
σ2
F

F̃ (λ) = βϕ+ (1− ϕ)

(
r +

1

2
γσ2

Rθ̃
2

)
+ µF̃ +

1

2

(
1

ξ2
− 1

)
σ2
F̃
− σF̃ e

These two equations need to be solved. Unfortunately, there exist no analytical solution to
these two equations but they can be solved numerically using finite difference methods with
upwinding, as in Achdou et al. (2015). I will now describe how one can obtain the excess
return, volatility, and the risk-free rate.

λθ + (1− λ)θ̃ = 1 (19)
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Inserting the demand functions and solving for µR(λ) gives the excess return, as provided in
equation (3.3.1). The market clearing condition for the risky asset prescribes asset prices of

P =
D

λcw(λ) + (1− λ)c̃w(λ)

The price is used to calculate the conditional return volatility σR and the risk free interest
rate. In equilibrium, returns satisfy:

E
[
dP

P
+
D

P

]
= µR + r (20)

Ito’s lemma provides the following diffusion equation for the price: dP/P = µPdt+σPdW

with σP = σR. The terms σR is as in equation XX in the main text. The equation for µP is:

µP (λ) = µD −
∆cw(λ) + cwλ(λ)

cw(λ)
µλ(λ)

+

[(
∆cw(λ) + cwλ(λ)

cw(λ)

)2

− 2∆cwλ(λ) + cwλλ(λ)

cw(λ)

]
σλ(λ)2

+−∆cw(λ) + cwλ(λ)

cw(λ)
σλ(λ)σD (21)

Reorganizing the equation for the return and using the fact that E(dP/P +D/P ) = µP +

D/P gives the risk-free rate.

B Proof of Corollary 1

The relative wealth share is: λ = w/(w + w̃). Ito’s lemma allows calculating the diffusion
equation for wealth as:

dλ = λ(1− λ)

{
dw

w
− dw̃

w̃
+ (1− λ)

(
dw̃

w̃

)2

− λ
(
dw

w

)2

+ (2λ− 1)
dw

w

dw̃

w̃

}
The dt terms in this equation are:

µλ = (1− λ)λ

[
dw

w
− dw̃

w̃
+ σ2

R

(
(1− λ)θ̃2 − λθ + (2λ− 1)θθ̃

)]
Inserting the solution (3.3.1) into the demand equations for the risky asset gives:

θ =
1

(1− γ)σ2
R

[
(1− γ)σ2

R + (1− λ)

(
σRe(x) + σRσλ

(
Fλ(x, λ)

F (x, λ)
− F̃λ(x, λ)

F̃ (x, λ)

))]

θ̃ =
1

(1− γ)σ2
R

[
(1− γ)σ2

R − λ

(
σRe(x) + σRσλ

(
Fλ(x, λ)

F (x, λ)
− F̃λ(x, λ)

F̃ (x, λ)

))]
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The difference between these two terms is:

θ − θ̃ =
1

(1− γ)σR

[
e(x) + σλ

(
Fλ(x, λ)

F (x, λ)
− F̃λ(x, λ)

F̃ (x, λ)

)]

Inserting the solutions for θ and θ̃ in (1− λ)θ̃2 − λθ + (2λ− 1)θθ̃ gives:

− 1

(1− γ)σR

[
e(x) + σλ

(
Fλ(x, λ)

F (x, λ)
− F̃λ(x, λ)

F̃ (x, λ)

)]
=− (θ − θ̃)

The drift term of the relative wealth equation can thus be written as (??). Inserting the differ-
ence between the demand functions and solving the equation for σλ gives (??).

C Proof of Proposition 3

The proof of this proposition is very similar to the one above. The main difference is that the
function F in the two value function are now functions of x and λ and not only λ anymore.
This difference implies that the function µF and σF are now:

µF (x, λ) =
Fλ(x, λ)

F (x, λ)
µλ(x, λ) +

Fx(x, λ)

F (x, λ)
µx(x) (22)

+
1

2

Fλ,λ(x, λ)

F (x, λ)
σλ(x, λ)2 +

1

2

Fx,x(x, λ)

F (x, λ)
σx

2 +
Fλ,x,(x, λ)

F (x, λ)
σλ(x, λ)σx (23)

and

σF (x, λ) =
Fλ(x, λ)

F (x, λ)
σλ(x, λ) +

Fx(x, λ)

F (x, λ)
σx (24)

inserting these variables in the equations (17) and (18) allows one to obtain the equilibrium
variables as

D Proof of Proposition 2

This section proves Proposition 2. To do so, I derive the asset prices and consumption-wealth
ratio for the two investors when λ → {0, 1}. As shown by Borovicka (2015) when relative
wealth approaches the boundaries, the consumption-wealth ratios approach the consumption-
wealth ratios at the boundaries. At the boundaries, the consumption-wealth ratios are func-
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tions of x. The consumption-wealth ratio for the investors with accurate beliefs is:

cw(x) = βϕ

+ (1− ϕ)

r(x) + µR(x)θ(x)︸ ︷︷ ︸
Expected Portfolio Return

− γ
2

[σR(x)θ(x)]2︸ ︷︷ ︸
Risk Adjustment

+
1− γ
1− ϕ

σF (x)σR(x)θ(x)︸ ︷︷ ︸
Hedging Motive


+ µcw(x) +

1

2

ϕ− γ
1− ϕ

σcw(x)2 (25)

and the consumption-wealth ratio for the investor with subjective beliefs is:

c̃w(x, e) = βϕ

+ (1− ϕ)

r(x) + θ̃(e) [µR − σRe]︸ ︷︷ ︸
Expected Portolio Return

− 1

2
γ
[
σRθ̃(e)

]2

︸ ︷︷ ︸
Risk adjustment

+
1− γ
1− ϕ

σc̃wσRθ̃(e)︸ ︷︷ ︸
Hedging Motive


+ µc̃w(x) +

1

2

ϕ− γ
1− ϕ

σ2
c̃w − σc̃we (26)

I proceed in the similar way as Chacko et al. (2005): I log-linearly approximate the left hand
side of the two equations above by cw ≈ h0 +h1 log ĉw and the use a equation for cwwhich
solves the resulting differential equation. I look at first at λ→ 1 and then at the other end.

Rational Investor prices the Asset

Suppose the linearly approximated equation (25) can be solved by the following equation:

ĉw = exp (A0 +A1x)

As λ → 1, the investor with objective beliefs assumes all aggregate risk. The volatility and
excess return can then be written (the terms are derived using the same methods as in the
proof of Proposition 1):

σR = σD −A1σx

µR = γσ2
R −

1− γ
1− ϕ

A1σxσR

Such constant excess return and volatility have also been derived by Bansal et al. (2004) in
their log-linear approximation. The risk-free asset can be derived from the pricing equation

µR,t = Et
[
dPt
Pt

+
Dt

Pt
dt

]
− rt (27)
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By rewriting the terms in expectations, one can write the risk-free rate as r(x) = µp(x) +

F (x)− µR with µP being:

µP (x) = µD(x)− µF (x) + σ2
F − σFσD (28)

Inserting the consumption-wealth ratio into the pricing equation for the risk-free asset gives:

r =
1

ϕ
x+ Φ (29)

with Φ being a constant.

cw ratio for the agent with accurate beliefs The guess for the consumption-wealth
ratios of the investor with subjective beliefs allowed calculating the excess return, volatility
and risk-free rate. The guess can now be verified. I describe at first how to solve forA1. Using
equation (25), there are two instances involving the state x, the risk-free rate and the term for
µF . The valueA1 that sets all terms to zero is:

A1 =
1− ϕ
ϕ

1

h1 + κ
(30)

All other terms are constants andA0 can be chosen appropriately.

cw for the Investor with Subjective Beliefs The consumption-wealth ratio for the
agent with subjective beliefs is slightly different. First, the agent can choose the optimal de-
mand θ taking prices as given. Second, the consumption-wealth ratio also contains elements
for the disagreement e. Suppose the function for the cw ratio is:

ˆ̃cw = exp(Ã0 + Ã1x+ Ã2e+ Ã3e
2) (31)

The terms Ã0, Ã1 are as before. As seen from the equation (26) the quadratic effects of belief
disagreement are contained in the terms

θ̃(e) [µR − σRe]︸ ︷︷ ︸
Expected Portolio Return

− 1

2
γ
[
σRθ̃(e)

]2

︸ ︷︷ ︸
Risk adjustment

(32)

Disagreement increases the risk-adjusted returns by 0.5e2/γ. With an EIS larger than one,
the higher risk-adjusted portfolio return reduces the consumption-wealth ratio by (1 − ϕ).
The term Ã3 is:

Ã3 = (1− ϕ)
1

h1

1

2

1

γ
(33)
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The linear effects can be summarized by the expected returns channel and the utility distortion
channel. Whilst the actual expected excess return is µR, the investor with subjective beliefs
expects an excess return of µR − σRe; the effect on disagreement on the difference between
the expected returns represent the expected returns channel. Belief distortion also correlates
with the consumption-wealth ratio through−σF e. The sum of the two channels determines
the parameter Ã2:

Ã2 = −[(1− ϕ)σR + σF̃ ]
1

h1

The difference in log consumption-wealth ratios The inequality log ∆cw(x)e <

0 is: (
−Ã2e− Ã3e

2
)
e < 0 (34)

which can be written as: Ã2 + Ã3e > 0. The term Ã2 contains endogenous variables, the
return volatility σR and the volatility of the consumption-wealth ratio σF . Inserting the ap-
proximate solutions transforms the inequality above to:

1

2

1

γ
e−

[
σD + σx

1

h1 + κx

]
< 0 (35)

The term in square brackets is always positive. Thus whenever the investor with subjective
beliefs is optimistic (e < 0) the inequality is satisfied for all values of e. However, when the
investor is pessimistic, the inequality is only satisfied if the following inequality holds:

2γ

[
σD + σx

1

h1 + κx

]
> e (36)

Agent with subjective beliefs prices the asset

One can proceed in the same way as above when λ → 0. However, the asset prices are now
a function of the disagreement term:

σR = σD −A1σx (37)

µR = γσ2
R −

1− γ
1− ϕ

A1σxσR + eσR (38)

r =
1

ϕ
(x− σDe) + Φ (39)

Cw for rational agent Because prices contain a part e, the cw ratio of the agent with
rational beliefs contains a part for e as well:

ĉw = exp(A0 +A1x+A2e+A3e
2) (40)
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The terms for A0, A1, A3 are the same as Ã0, Ã1, Ã3. However, the terms for the linear
effects of disagreementA2 are different from before. That term is:

A2 = (1− ϕ)
1

h1
[σR −

1

ϕ
σD] (41)

Cw for agent with subjective beliefs The cw-ratio of the investor with subjective
beliefs does not contain a quadratic element for e any more, as the investor cannot choose
the optimal risky-share any more. The cw ratio is now:

ˆ̃cw = exp(A0 +A1x+A2e) (42)

The linear effects for disagreement are:

A2 =
1

h1

[
ϕ− 1

ϕ
σD − σF

]

The difference in consumption-wealth ratios The condition ∆ log cw(x)e < 0

can be written as: (
A2e+A3e

3 − Ã2e
)
e < 0 (43)

Inserting the solution for the terms, one can rewrite the condition to:

σD + σx
1

h1 + κx
+

1

2

1

γ
e > 0 (44)

The equation is always satisfied whenever the investor with subjective beliefs is pessimistic,
e > 0. However, when the investor is optimistic, the inequality is only satisfied when the
condition stated in Proposition 2 holds.

Appendix for “Existence anduniquenessof equilibrium
inLucas’AssetPricingmodelwhenutility isunbounded”

E Proof of Part 2 of Lemma 2

Proof. (Part 2 of Lemma 2) As in the main text, denote by Sϕ the set of continuous and ϕ-
bounded functions. The set S′ϕ is the set of continuous, ϕ-bounded, non-decreasing and
concave functions, and S′′ϕ ⊂ S′ϕ imposes additionally strict monotonicity and concavity.
We want to show that the contraction operator T maps any function f̃ ∈ S′ϕ into the subset
S′′ϕ. As the solution to the functional equation is characterized by Tf = f and S′ϕ is a closed
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set, if the operator T transforms any non-decreasing and concave function into a strictly
increasing and concave function, then f is strictly increasing and concave (Corollary 1 of the
Contraction Mapping Theorem in Stokey et al. 1989, p.52). To show the desired result, we
suppose first that h is strictly increasing and concave and pick any f̃ ∈ S′ϕ. To begin, let us
study whether T f̃ is strictly increasing. For any pair ŷ, y ∈ Y with ŷ > y, the function T f̃
satisfies:

T f̃(ŷ) = h(ŷ) + β

∫
Z
f̃(G(ŷ, z′))Q(dz′)

> h(y) + β

∫
Z
f̃(G(y, z′))Q(dz′)

= T f̃(y).

The inequality holds becauseG and h are strictly increasing and f̃ is non-decreasing. Hence,
T f̃ is strictly increasing. To analyse concavity, define yω = ωy+(1−ω)y′, for any y, y′ ∈ Y ,
y 6= y′, and 0 < ω < 1. The strict concavity form ofh andG, together with f̃ being concave,
ensure that:

T f̃(yω) = h(yω) + β

∫
Z
f̃(G(yω, z

′))Q(dz′)

> ω

[
h(y) + β

∫
Z
f̃(G(y, z′))Q(dz′)

]
+ (1− ω)

[
h(y′) + β

∫
Z
f̃(G(y′, z′))Q(dz′)

]
= ωT f̃(y) + (1− ω)T f̃(y′).

The functionT f̃ is strictly concave. Taken together, we know that for any f̃ ∈ S′ϕ, T f̃ ∈ S′′ϕ.
Hence, f (such that Tf = f ) must be an element of the set S′′ϕ, guaranteeing that f has the
same functional form as h. Now, suppose h is convex and falling. We could again define
the operator T as Tf(y) = h(y) + β

∫
Z f(G(y, z′))Q(dz′) and study into which subset a

candidate solution is mapped into. To facilitate analysis though, take a different route. Look
at the modified operator Tf− = h− + β

∫
Z f−(G(y, z′))Q(z′), with h− = −h and f− =

−f . Under the same assumptions guaranteeing a unique solution to the original contraction
mapping, there exists a unique solution to themodified contractionmapping. Ash− is strictly
increasing and concave, the proof above applies to the modified contraction mapping. As
f− is strictly increasing and concave, f is strictly decreasing and convex and inherits the
properties of h.
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F Limit condition on v

Let us take v ∈ Sφ sucht thatHv = v, with the operatorH as defined in Section 5.4 of the
main text. Our initial aim is to characterise lower and upper bounds on v in the functional
space Sφ. We will now argue that when v ≥ 0 (respectively ≤ 0), v can be bounded below
(resp. above) using the zero function and above (resp. below) using functionφ (respec.−φ). To
this end, we consider any γ ∈ (0, 1). Define the setS′φ = {f ∈ Sφ : f ≥ 0}. This is a closed
subset of Sφ (its complement in Sφ is open). We pick any f ∈ S′φ. Since the utility function u
takes on positive values,Hf ≥ 0Thus, since f was arbitrary,H : S′φ → S′φ. Then by Corol-
lary 1 of the CMT (p.52) in Stokey et al. 1989 v ∈ S′φ, i.e. v ≥ 0. A similar argument shows
that for any γ > 1, v ≤ 0. The remainder of this section shows that the discounted expected
vale of the upper bound converges to zero, implying that limt→∞ E0

[
βtv(xt, yt)

]
= 0. We

consider any γ ∈ (0, 1) (For γ > 1, the condition is equivalent, as the constant in the bound
changes the sign of the bound.) Then for any t, xt ∈ X and yt ∈ Y :

E0

[
βtv(xt, yt)

]
≤ E0

[
βtφ
]

= κβt E0

[
Et−1

[
max

{
1, y1−γ

t

}]]
≤ κβt E0

[
0.5 + y

α(1−γ)
t−1

∫ ∞
0

Q(dz′)(z′)1−γ
]

≤ κβt
[
0.5 + y1−γ

0 exp
(
t(1− γ)2σ2/2

)]
= κ

[
βt0.5 + y1−γ

0 exp
(
t
[
log(β) + (1− γ)2σ2/2

])]
The first line follows from the fact that v ∈ Sφ. The second line uses the definition of φ and
the law of iterated expectations. The third line bounds the the term in brackets. The strategy
is identical to the one used in the proof of Proposition 1. The fourth lines iterates until time
zero and uses the fact that α ∈ (0, 1). The fifth line factors βt in. The entire sums converges
to zero with t→∞ if log(β) + (1− γ)2σ2/2 < 0. The proof for γ > 1 is analogous.
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