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Abstract. A central issue of monetary policy analysis is the specification of
monetary policy shocks. In a structural vector autoregressive setting there
has been some controversy about which restrictions to use for identifying
the shocks because standard theories do not provide enough information to
fully identify monetary policy shocks. In fact, to compare different theories
it would even be desirable to have over-identifying restrictions which would
make statistical tests of different theories possible. It is pointed out that
some progress towards over-identifying monetary policy shocks can be made
by using specific data properties. In particular, it is shown that changes in
the volatility of the shocks can be used for identification. Based on monthly
US data from 1965-1996 different theories are tested and it is found that as-
sociating monetary policy shocks with shocks to nonborrowed reserves leads
to a particularly strong rejection of the model whereas assuming that the
Fed accommodates demand shocks to total reserves cannot be rejected.
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1 Introduction

Over the last two decades, a large literature has developed which evaluates
monetary policy within a structural vector autoregressive (SVAR) frame-
work (see, e.g., Christiano, Eichenbaum and Evans (1999), henceforth CEE).
A central question in evaluating monetary policy is how to identify the mon-
etary policy shocks. Various competing economic theories have been used to
formulate restrictions which help in identifying the shocks. Unfortunately,
the implied restrictions do not suffice for a full identification of the shocks
in some of these models. Hence, additional restrictions have to be formu-
lated which are often ad hoc and do not have a convincing theoretical foun-
dation. Even if theoretical considerations suffice to identify the monetary
policy shocks, there may be no over-identifying information which could be
used to test different theories against the data.

In this paper we will argue that sometimes the statistical properties of
the data can be used to identify the shocks. In particular, using an idea of
Klein and Vella (2000), Rigobon (2003) has shown that a change in volatility
in the shocks can be used as identifying information. We will adapt his
result to our needs. Our general model setup is that of CEE, that is, we
use an SVAR model. These authors also argue that there may have been
changes in the volatility of the US monetary policy shocks over their sample
period from 1965-1996 but that the remaining structure of the model is found
to be time invariant. Thus we will also assume that the DGP is a VAR
with constant parameters apart from changes in the volatility of shocks.
This assumption will be used to identify the shocks and thereby we can test
theoretical assumptions that cannot be checked by formal statistical tests in
the CEE framework.

More specifically, we will consider a monthly VAR model for the US with
six variables, real GDP, the GDP deflator, a spot commodity prices index,
the federal funds rate, nonborrowed reserves and total reserves. Such a model
was also considered by Bernanke and Mihov (1998b) (henceforth BM). The
first three variables are viewed as nonpolicy variables whereas the monetary
policy shocks are determined from the last three variables. BM consider a
model for the federal funds market to find identifying restrictions for the
monetary policy shocks. Unfortunately, this model does not fully identify
the shocks and CEE question the additional restrictions imposed. CEE also
find evidence for a change in the volatility of the monetary policy shocks. We
will confirm this finding with further statistical tests and then use these data
properties to over-identify the shocks. Thereby the assumptions of different
models which can be embedded in this framework become testable. Our setup
will enable us to perform such tests and we find that the data are at odds
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with some identifying schemes which have been used in previous publications
whereas other identification schemes cannot be rejected. Thus, we are able
to use statistical tools for discriminating between competing models.

The structure of the paper is as follows. In the next section the model
setup is presented and identification issues are discussed. In Section 3 the
empirical analysis is considered. Conclusions are drawn in Section 4. A
mathematical result concerning the identification of shocks via changes in the
volatility and details of our estimation method are presented in the Appendix.

2 Model Setup

2.1 The Statistical Model

The general setup is an SVAR model. More precisely, an AB-model in the
terminology of Amisano and Giannini (1997) is used (see also Lütkepohl
(2005, Chapter 9)):

Ayt = A1yt−1 + · · ·+ Apyt−p + Bεt, (2.1)

where yt is a K-dimensional vector of observable variables, εt is a K-dimen-
sional vector of structural innovations with mean zero and identity covariance
matrix, i.e., εt ∼ (0, IK), and A, B and Ai (i = 1, . . . , p) are (K ×K) param-
eter matrices. The model in (2.1) is a structural form with corresponding
reduced form error term ut = A−1Bεt ∼ (0, A−1BB′A−1′). The reduced form
error terms can be estimated from the data. To obtain estimators of the
structural errors εt, a one-to-one mapping from the reduced form error co-
variance matrix to A and B is required. Identifying restrictions have to be
imposed on A and B to obtain a unique relation.

2.2 Economic Setup

In our empirical model the observable variables will be divided in two groups.
The first one contains variables whose current values are in the monetary
authority’s information set and are not influenced instantaneously by policy
decisions. The second group contains variables which are determined within
the money market. The first set of variables is y1t = (gdpt, pt, pcomt)

′, where
gdpt, pt and pcomt denote logs of real GDP, the log implicit GDP deflator
and an index of commodity prices, respectively. The money market variables
are collected in y2t = (TRt, NBRt, FFt)

′, where TRt, NBRt and FFt denote
total reserves, nonborrowed reserves and the federal funds rate, respectively.
Thus, K = 6 and y1t and y2t are both three-dimensional, as in BM.
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Our partitioning of yt = (y′1t, y
′
2t)

′ implies that we can choose

A =

[
I3 0
−A21 I3

]
, (2.2)

and vt = (v′1t, v
′
2t)

′ = Bεt has a block-diagonal covariance matrix. Hence, B
is also block-diagonal,

B =

[
B11 0
0 B22

]
, (2.3)

where the Bii’s (i = 1, 2) are both (3 × 3). In this model setup the matrix
A21 can be estimated by OLS from

y2t = A21y1t + A2,1yt−1 + · · ·+ A2,pyt−p + v2t, (2.4)

where A2,i consists of the last three rows of Ai (i = 1, . . . , p). Moreover, since
we are just interested in identifying the monetary shocks, we just need to re-
cover the money market innovations ε2t. In other words, we need restrictions
which ensure a one-to-one mapping from E(v2tv

′
2t) = B22B

′
22 to B22.

Following BM and CEE the demand for total reserves is specified as

TRt = −αFFt + fTR(policy information) + σdε
d
t ,

the demand for borrowed reserves is given by

BRt = βFFt − γNBRt + fBR(policy information) + σbε
b
t

and the Fed policy rule for setting nonborrowed reserves is

NBRt = fNBR(policy information) + φdσdε
d
t + φbσbε

b
t + σsε

s
t ,

where εs
t is the exogenous monetary policy shock. The policy information

consists of all lagged variables and the current values of gdpt, pt and pcomt.
The functions f∗(·) are all linear functions and α, β, γ, φd, φb, σd, σb and σs

are parameters.
Using TR = NBR + BR, CEE derive from these relations that

B22 =




σd
β − φdαγ + φdα

β + α
−ασs

γ − 1

β + α
−ασb

−1 + φbγ − φb

β + α

σdφ
d σs σbφ

b

σd
φdγ − φd + 1

β + α
σs

γ − 1

β + α
σb
−1 + φbγ − φb

β + α




. (2.5)
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Thus, the nine elements of B22 are determined by eight free parameters
ψ = (α, β, γ, φd, φb, σ2

d, σ
2
b , σ

2
s)
′. These parameters are not identified in a

model with time invariant covariance matrix Σv2 = E(v2tv
′
2t) because this

matrix is symmetric and, thus, has six distinct elements only. Hence, further
restrictions are needed. CEE consider different specifications of policy shocks
and derive the following restrictions (see also BM):

• FF policy shock: φd = 1/(1 − γ) and φb = −φd. These restrictions
mean that the monetary shocks are induced through the federal funds
rate and correspond to the assumption of Bernanke and Blinder (1992)
that the Fed targets the federal funds rate.

• NBR policy shock: φd = φb = 0. The assumption that policy shocks can
be associated with the errors in the equation for nonborrowed reserves
was made by Christiano and Eichenbaum (1992).

• NBR/TR policy shock: α = φb = 0. BM derived this restriction from
the assumption made by Strongin (1995) that shocks to total reserves
are demand shocks which are accommodated by the Fed.

• BR policy shock: φd = 1, φb = α/β and γ = 0. These restrictions are
obtained if the Fed is assumed to target borrowed reserves, as e.g. in
Cosimano and Sheehan (1994).

Unfortunately, these restrictions still do not over-identify the shocks. Con-
sequently, they are not sufficient to actually test the underlying assumptions
against the data in CEE’s framework. Therefore BM assume in addition
that γ = 0 to obtain over-identified models. As CEE pointed out, such an
approach is unsatisfactory because rejection of a particular set of restrictions
may then be caused by the ad hoc assumption rather than false restrictions
derived from theory.

In our empirical analysis there is, however, a way out of this dilemma.
Both BM and CEE find that over the sample period considered there is some
change in the structure of the relations. BM actually fit models to different
sample periods while CEE find that there may have been a change in the
volatility of the shocks whereas the remaining structure is unaffected. Even
with the minimal changes diagnosed by CEE we may be able to identify B22

as we will argue now.
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2.3 Identification of Shocks via a Change in Volatility

Suppose there is just one change in the volatility of the shocks during the
sample period, say in period TB, so that

E(v2tv
′
2t) =

{
B22B

′
22 for t = 1, . . . , TB − 1,

B22ΩB′22 for t = TB, . . . , T,
(2.6)

where Ω = diag(ω1, ω2, ω3) is a (3×3) diagonal matrix with positive diagonal
elements ωi and T is the sample size. Here the diagonal elements of Ω
represent the changes in the variances of the shocks after the possible change
in volatility has occurred. If the ωi’s are different from one, there is a change
in volatility. Proposition A in the Appendix implies that B22 is (locally)
identified if all ωi’s are distinct. It generalizes a result by Rigobon (2003) for
bivariate systems. Thus, all we need to know is whether the volatility changes
in different shocks are proportional. If they are not, then B22 is identified. In
fact, the volatility in one of the shocks may not change at all, that is, one of
the ωi’s may be unity. The crucial condition is that they are all distinct. If
there are other restrictions on B22, as in the present analysis, identification
is already obtained if there are enough distinct ωi’s. The advantage of this
setup is that changes in the variances can be investigated with statistical
means, as we will see in Section 3.2, and, hence, we do not have to rely
exclusively on information from economic theory to ensure identification.

Local rather than global identification is obtained only in this case be-
cause it is always possible to reverse the signs of all elements in a single
column of B22 without affecting the likelihood. For practical purposes this is
no problem, of course, because it just means that, to obtain identification,
we have to specify whether a shock is positive or negative. For estimation
and deriving asymptotic results local identification is sufficient.

In the empirical analysis we will actually allow for the possibility of var-
ious changes in volatility. Suppose there are n + 1 different regimes and
the covariances in the different regimes are B22B

′
22, B22Ω1B

′
22, . . . , B22ΩnB′22,

where the Ωi’s are all diagonal matrices. Then local identification is ensured,
for example, if the diagonal elements in only one of the Ωi matrices are
all distinct. Again this result is analogous to a bivariate result of Rigobon
(2003).

One may argue that the assumption of a time invariant B22 is a strong
one because this matrix represents the instantaneous effects of shocks and
these may change as well if the volatility changes. Clearly, there may even
be changes in some or all of the other VAR parameters. Such changes can be
checked by formal statistical tests, however. Of course, our model is useful
only if it is consistent with the data. We have used the rather restrictive
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change in volatility here because even such a small change suffices to get
identification and it was argued by CEE and Bernanke and Mihov (1998a)
that structural changes found by other authors in the data set underlying
our empirical study may have been due to just this kind of change rather
than a change in the whole dynamic structure. We will address this issue
in the empirical analysis. Of course, identification of the shocks can also be
obtained if more substantial structural changes have occurred. In that case
the impulse responses may be affected, however, and this fact has to be taken
into account in the evaluation of the model.

If a change in the volatility of shocks is diagnosed and identification of B22

is ensured by the data properties, then all the restrictions from the economic
theories are over-identifying and, hence, can be tested. Since there are only
eight elements in the vector of economic parameters ψ while B22 has nine
elements, there is in fact already one restriction implied by the overall general
model which nests the others, provided the ωi’s of at least one Ωj matrix
are distinct. If there are only two different ωi’s, then an over-identifying
restriction may not be available in the general model while the additional
restrictions implied by the different theories can still be tested under suitable
conditions. In the next section we present the empirical analysis and discuss
these issues in the context of our model.

3 Empirical Analysis

3.1 The Data

Monthly US data from BM for the period 1965M1-1996M12 are used in our
empirical analysis. The monthly data for gdp and p are constructed from
lower frequency data. These data were also used by CEE and BM. Hence,
our results are directly comparable to those of the earlier studies. Using
the same sample period, although longer time series are available, has the
advantage that the results are not driven by the extended sample period but
differences to the other studies are a direct consequence of the alternative
methods used.

3.2 Estimation and Testing

Estimation under our assumption of a change in volatility is done by a multi-
step iterative procedure. In the first step equation wise OLS is applied to
a model such as (2.4) with an additional constant term. We denote the
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residuals by ṽ2t and define

Σ̃1 =
1

TB − 1

TB−1∑
t=1

ṽ2tṽ
′
2t and Σ̃2 =

1

T − TB + 1

T∑
t=TB

ṽ2tṽ
′
2t.

Then the following concentrated log likelihood type function is maximized
with respect to ψ, ω1, ω2 and ω3:

log l = −TB − 1

2

(
log |B22B

′
22|+ tr

{
Σ̃1(B22B

′
22)

−1
})

−T − TB + 1

2

(
log |B22ΩB′22|+ tr

{
Σ̃2(B22ΩB′22)

−1
})

(3.1)

and thereby we obtain estimators B̃22 and Ω̃ of B22 and Ω, respectively.
Although (3.1) looks like a Gaussian log likelihood function, the OLS

estimators of the VAR coefficients from (2.4) are not ML estimators due to
the assumed heteroskedasticity. Therefore, in the next step the estimators
B̃22 and Ω̃ obtained in this way are used to perform a feasible multivariate
GLS estimation of the VAR coefficients in (2.4). These are then used again in
(3.1) to obtain new estimates of the structural parameters and this procedure
is iterated. Gaussian ML estimators are obtained upon convergence. Details
of this estimation procedure are provided in the Appendix.

Although we have presented the estimation method for two different
regimes only for convenience, it is straightforward to apply it when there
are more than two regimes. In our empirical analysis we have used models
with up to three different regimes. Moreover, Rigobon (2003) shows that a
slight misspecification of the times where the regimes change, does not affect
the identification so that the time invariant parameters can be estimated
consistently under usual assumptions even in this case.

Having the ML estimators opens up the possibility to perform likelihood
ratio (LR) tests. Some tests are of particular importance in the present
context. Assuming again two different regimes for illustrative purposes and
denoting the reduced form residual covariance matrices in the two regimes
by Σ1 and Σ2, respectively, a test of interest is, for example,

H0 : Σ1 = Σ2 vs. H1 : Σ1 6= Σ2. (3.2)

In other words, the null hypothesis specifies that there is no regime change.
Since we consider reduced form parameters here, there is no identification
problem. For our three-equation model (2.4) the asymptotic null distribu-
tion of the corresponding LR statistic is χ2(6), provided that LR tests have
standard asymptotic properties. Given that the data generation process may
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have unit roots and may be cointegrated, the asymptotic properties of LR
tests are in general not necessarily standard. For the present case, standard
asymptotic properties are obtained, however, because the cointegration prop-
erties do not affect the estimator of the residual covariance matrix asymp-
totically (see, e.g., Lütkepohl (2005, Chapter 7)). The test is in fact a Chow
type test. Its small sample properties may not be ideal, as pointed out by
Candelon and Lütkepohl (2001). According to these results the test may
reject a true null hypothesis too often in small samples. This property may
be useful to keep in mind in our empirical analysis.

If the null hypothesis in (3.2) is rejected, a further hypothesis of interest
will be that only the variances have changed while the correlation structure
and hence the B22 matrix is constant across regimes. Recall that some previ-
ous authors have indicated that only the volatility of the shocks and not the
impulse responses of the system may have changed. To check that hypothesis
we may use a principle components decomposition Σi = PiΩiP

′
i (i = 1, 2),

where Ωi = diag(ωi1, ωi2, ωi3) with ωik being the kth largest eigenvalue of Σi

and Pi is the corresponding matrix of eigenvectors. Note that Pi is an or-
thogonal matrix. The principal components decomposition is locally unique
if all ωik’s are distinct, that is, Pi is unique apart from a possible reversal of
signs of its columns (e.g., Magnus and Neudecker (1988, Chapter 17)). Thus,
we can test

H0 : P1 = P2 vs. H1 : P1 6= P2, (3.3)

provided Ω1 and Ω2 both have distinct diagonal elements. Because the Pi’s
are orthogonal (3×3) matrices, the corresponding LR statistic has an asymp-
totic χ2(3) distribution under H0. Since the value of the likelihood function
does not change if any other decomposition of the covariance matrices is
used, it is clear that a test of (3.3) is effectively a test of a time invariant B22

matrix.

3.3 Results

We have estimated a set of different VAR models for the levels variables by
the ML procedure described in the previous subsection. All models have
13 lags as in BM’s study. In Table 1 LR tests for the number of regime
changes in the volatility are provided. Different authors have expressed a
range of views and presented corresponding evidence on where regime shifts
may have occurred. There seems to be some consensus in the literature
that the Volcker era differs from the pre- and post-Volcker periods, at least
as far as monetary policy is concerned. Therefore we consider structural
breaks in 1979M10 and 1984M2. These breaks were also considered by BM.
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Table 1: LR tests for regime changes

H0 (type (3.2)) Break(s) Test statistic p-value
Σ1 = Σ2 = Σ3 1979M10, 1984M2 334.617 2.457e-64
Σ1 = Σ2 1979M10 26.026 0.0002
Σ2 = Σ3 1984M2 220.535 8.003e-45
Σ1 = Σ3 1979M10, 1984M2 260.596 2.227e-53

H0 (type (3.3)) Break(s) Test statistic p-value
P1 = P2 = P3 1979M10, 1984M2 39.068 6.941e-7
P1 = P2 1979M10 10.103 0.0177
P2 = P3 1984M2 3.243 0.3557
P1 = P3 1979M10, 1984M2 33.773 2.212e-7

We have checked the break dates and present the results in Table 1. They
confirm that using models with regime changes in 1979M10 and 1984M2 is
reasonable. On the basis of the p-values we clearly reject constant reduced
form covariance matrices throughout the full sample period at any common
significance level. Notice that in the table, Σ1, Σ2 and Σ3 denote the residual
covariance matrices corresponding to the periods until 1979M9, 1979M10 –
1984M1 and from 1984M2 – 1996M12, respectively. Even though the tests
may be biased in small samples and reject too often, the p-values are too
small to defend constant covariance matrices.

The tests in the lower half of Table 1 check whether the correlation struc-
ture associated with the residual covariance matrices is constant through time
so that the nonconstancy is due only to changes in volatility. In other words,
hypotheses of the type (3.3) are tested. It turns out that there may in fact
be a change in the correlation structure in 1979M10 whereas there is little
evidence for such a change in 1984M2. This result is in line with CEE’s view
that the crucial difference between the monetary shocks in the Volcker- and
post-Volcker-periods is in the higher volatility in the former regime. Thus,
there is some evidence that the 1984M2 break is consistent with our model
assumptions while the pre-Volcker break may have induced more substantial
changes in the reduced form error term.

To identify the shocks it is, of course, enough that there is one break
point of the sort discussed in Section 2.3. Therefore the following analysis is
based on a model where all three Σi’s (i = 1, 2, 3) are distinct and P2 = P3.
Thus, we consider a model where Σ2 = B22B

′
22 and Σ3 = B22ΩB′22 with Ω =

9



T
ab

le
2:

E
st

im
at

es
of

st
ru

ct
u
ra

l
p
ar

am
et

er
s

w
it

h
st

an
d
ar

d
er

ro
rs

in
p
ar

en
th

es
es

P
ar

am
et

er
u
n
re

st
ri

ct
ed

F
F

N
B

R
N

B
R

/T
R

B
R

α
0.

31
65

(0
.1

63
9)

0.
19

67
(0

.1
53

9)
68

.4
31

2
(7

2.
84

82
)

0.
00

00
0.

19
12

(0
.1

50
4)

β
3.

87
85

(1
.9

46
4)

0.
37

30
(0

.1
82

8)
0.

44
03

(
0.

17
86

)
14

.2
85

6
(6

.2
24

8)
13

.1
71

7
(5

.6
37

2)
γ

−0
.0

96
6

(0
.0

82
1)

−0
.1

81
9

(0
.0

42
5)

0.
08

12
(

0.
03

69
)
−0

.0
37

5
(0

.2
03

9)
0.

00
00

φ
b

−0
.1

67
4

(0
.1

99
9)

−0
.8

46
1

(0
.0

30
4)

0.
00

00
0.

00
00

0.
01

45
(0

.0
13

2)
φ

d
0.

83
13

(0
.0

28
3)

0.
84

61
(0

.0
30

4)
0.

00
00

0.
84

20
(0

.0
27

5)
1.

00
00

σ
b

0.
02

66
(0

.0
10

2)
0.

01
84

(0
.0

01
9)

0.
01

34
(

0.
00

14
)

0.
09

26
(0

.0
42

0)
0.

08
56

(0
.0

38
2)

σ
d

0.
00

77
(0

.0
00

8)
0.

00
78

(0
.0

00
8)

0.
46

51
(

0.
49

70
)

0.
00

80
(0

.0
00

8)
0.

00
77

(0
.0

00
8)

σ
s

0.
01

64
(0

.0
02

3)
0.

00
32

(0
.0

01
4)

0.
01

63
(

0.
00

16
)

0.
01

61
(0

.0
01

6)
0.

01
66

(0
.0

01
6)

ω
1

1.
73

95
(0

.3
96

5)
1.

67
43

(0
.3

81
9)

0.
05

59
(

0.
01

28
)

1.
59

69
(0

.3
63

8)
1.

73
77

(0
.3

96
2)

ω
2

0.
03

75
(0

.0
08

5)
0.

05
66

(0
.0

12
9)

0.
29

30
(

0.
06

68
)

0.
04

25
(0

.0
09

7)
0.

04
58

(0
.0

10
4)

ω
3

0.
06

73
(0

.0
15

3)
0.

04
55

(0
.0

10
4)

0.
08

04
(

0.
01

95
)

0.
05

97
(0

.0
13

7)
0.

06
03

(0
.0

13
8)

10



diag(ω1, ω2, ω3) while Σ1 is left unrestricted. The estimates of the parameters
of primary interest for our purposes for the unrestricted and several restricted
models are shown in Table 2.

One question of particular interest is whether the Ω matrix has distinct
diagonal elements because this identifies the shocks and opens up the possi-
bility to test the alternative structural restrictions from the economic models
discussed in Section 2.2. Clearly, the estimates and their standard errors in
the last subperiod are such that one may suspect that they are different.
Notice that one-standard error intervals around the estimates for the unre-
stricted model do not overlap. Clearly, one may feel that this criterion is not
strong enough to conclude that all ωi’s are distinct. After all, this assump-
tion is the basis for our parameter identification and, thus, the validity of
our subsequent tests rests on it. Therefore it may be worth pointing out that
the evidence for at least two different diagonal elements of Ω is quite strong
in all models. In the following we will also consider the possibility that only
two of the three ωi’s may be distinct. Even then we have over-identifying
restrictions which can be tested.

Since our previous results suggest that all the identification schemes pre-
sented in Section 2.2 can be tested against the data, we present the cor-
responding LR tests in Table 3. In the table p-values for two alternative
degrees of freedom (d.f.) of the corresponding χ2 distributions are reported.
The first one is obtained under the assumption that all ωi’s are distinct. For
example, for the FF scheme we have two d.f. in this case. The second col-
umn of p-values for a χ2 distribution with one d.f. represents the worst case
situation if only two ωi’s differ. In this case, there is at least one restriction
and possibly more. Thus, the first column of p-values in Table 3 considers
the most favorable case for the models whereas the last column of p-values
considers the most difficult scenario for the models to conform with the data.

Based on the asymptotic p-values in Table 3 it turns out that both the
NBR and BR schemes can be strongly rejected at common significance levels
even in the most favorable situation for the models (d.f. = 2 and 3 for NBR
and BR, respectively). In contrast, the FF and NBR/TR schemes cannot
be rejected at the 5% level even under the least favorable scenario for the
models (d.f. = 1).

In Table 2 also the estimates of the structural parameters obtained under
the different sets of restrictions are given. Clearly, the NBR scheme produces
some very different parameter estimates from the other identification schemes
even if sampling uncertainty is taken into account. In particular, restricting
the parameter φd to zero seems to have a strong effect. This parameter is
clearly different from zero in all the other identification schemes. In other
words, eliminating the innovations εd

t from the equation for nonborrowed
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Table 3: LR tests of over-identifying restrictions

Identification p-values
scheme H0 LR statistic d.f.= no. of restr. d.f.=1
FF φd = 1/(1− γ) and φb = −φd 3.116 0.211 0.078
NBR φd = φb = 0 62.476 2.713e-14 2.697e-15
NBR/TR α = φb = 0 3.191 0.203 0.074
BR φd = 1, φb = α/β and γ = 0 18.476 0.0004 1.721e-5

reserves and thereby imposing that the εd
t shocks have a delayed impact on

nonborrowed reserves only is problematic.
It may also be worth pointing out that in the unrestricted model the

parameter γ is not significantly different from zero judged on the basis of
its t-ratio. On the other hand, it becomes significant in the FF scheme
where other restrictions are imposed. Recall that BM used the restriction
γ = 0 to obtain over-identified models and thus a possibility for statistical
model comparison. Given that this parameter becomes significant in the FF
scheme sheds doubt either on the restriction or on the identification scheme.
Other reasons why the restriction γ = 0 may be problematic were discussed
by CEE. We estimated an additional FF model with γ = 0 (hence, φd = 1
and φb = −1). This restriction produced a p-value of 0.0003 and, hence, was
clearly rejected by the LR test. This result reinforces the conclusion that φd

to some extent drives the results. The parameter φd is freely estimated only
in the NBR/TR scheme (with an estimate very close to the estimated value
in the unrestricted model), and this scheme cannot be rejected. Likewise, in
the FF scheme the estimated value is close to the unrestricted estimate, but
once γ is forced to equal zero and, hence, φd is set to unity, this model is
rejected. In the BR model φd also equals unity and this model is rejected.
These results suggest that the assumption that the Fed fully accommodates
reserves demand shocks (φd = 1) is not supported by the data. On the
other hand, the NBR identification scheme with φd = 0 is also rejected.
Hence, the results seem to be most sensitive to the value of φd which is
also estimated with a very small standard error in the unrestricted model.
The FF scheme has the drawback that γ has to be smaller than zero for φd

to be smaller than one. Thus, in the FF scheme γ has the wrong sign if
φd < 1 as indicated by our estimation results. In this respect the NBR/TR
scheme is preferable because it is acceptable even without taking the effect
of nonborrowed reserves on banks’ borrowing into account (i.e., γ is not
significantly different from zero).

In Figure 1 we present the monetary policy shocks implied by the differ-
ent models. Notice that these shocks are only identified from 1979M10 on-

12



wards because our identification scheme applies only after the first subperiod.
Therefore only the shocks from 1979M10 – 1996M12 are displayed in Figure
1. The shocks associated with the NBR scheme are quite different from the
monetary shocks implied by the other identification schemes. In particular,
the NBR shocks are considerably more volatile after the mid-1980s. On the
other hand, the unrestricted and the NBR/TR and BR shocks appear to be
quite similar at first glance. To some extent also the FF shocks fall roughly
in this group although they do not display the spikes in 1984 which can be
seen in the NBR/TR and BR shocks.

We have also determined the impulse responses induced by a monetary
policy shock and present the graphs in Figures 2 and 3. These are the re-
sponses to a 25 basis points reduction in the federal funds rate on impact.
Thus, an expansionary monetary policy shock is considered. On the left-hand
side of Figure 2 the impulse responses from a model where the parameter vec-
tor ψ is unrestricted are shown with bootstrapped 95% confidence intervals.2

Given the estimation uncertainty reflected in these intervals, the impulse
responses of the FF , NBR/TR and BR schemes which are shown on the
right-hand side of Figure 2 are quite similar. The FF impulse responses are
overall closest to those obtained from the unrestricted model. The NBR/TR
and BR impulse responses are almost identical because both models restrict
the first two elements in the last column of the B22 matrix to zero (see (2.5)).
In Figure 2 they are so close together that they are almost indistinguishable.
All these impulse responses are plausible reactions to an expansionary mon-
etary policy shock. In particular, there is a significant increase in GDP and
the commodity price index. Moreover, the GDP deflator increases, although
not significantly in the unrestricted model. All other effects are generally
insignificant or become insignificant after a few months.

The impulse responses obtained from the NBR scheme are quite different
from the other ones. Therefore they are shown separately in Figure 3 together
with the 95% confidence intervals obtained for the unrestricted model. This
way the substantial differences of the NBR scheme to the other identification
schemes becomes apparent (notice the change in the scales of the graphs).

The overall message from our analysis is that the data resist both the
NBR and BR schemes proposed by Christiano and Eichenbaum (1992) and
Cosimano and Sheehan (1994), respectively. While the monetary policy
shocks implied by the BR scheme are still close to those from models which
are not rejected by the data, using the NBR scheme for monetary policy
analysis is clearly problematic. In some respects, the preferred specification

2The intervals are determined by Hall’s percentile method as proposed by Benkwitz,
Lütkepohl and Wolters (2001) using 2000 bootstrap replications.
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is Strongin’s (1995) NBR/TR identification scheme. It is not rejected by the
data, produces sensible estimates of the structural parameters and delivers
plausible impulse responses.

4 Conclusions

A large body of literature has discussed the question how to identify monetary
policy shocks for the US. Clearly, this is an important problem for assessing
monetary policy. Different money market models have been proposed and
the corresponding shocks have been derived and estimated. The fact that
there is still disagreement as to which shocks actually reflect the effects of
monetary policy is a consequence of the problem that the different theories
do not provide sufficient restrictions for an empirical model to be able to
check them by statistical tests.

Given this state of affairs we have proposed a setup where identifying
information from changes in the volatility of the shocks can be used to obtain
unique specifications of the shocks. Using monthly data for the US from 1965
to 1996 as in BM and CEE we find with statistical tools that the Volcker
period displays larger volatility of the shocks and we have used this statistical
information in specifying monetary policy shocks. The fact that there was a
decrease in volatility after the Volcker period was also found by other authors
and actually seems to be a widely accepted view in the related literature.

Using the statistical information on the volatility of the shocks opens
up the possibility to test different theoretical assumptions against the data.
In particular, we have tested four different identification schemes proposed
by Bernanke and Blinder (1992) (FF ), Christiano and Eichenbaum (1992)
(NBR), Strongin (1995) (NBR/TR) and Cosimano and Sheehan (1994)
(BR) which have also been considered and further investigated by other
authors. In these identification schemes monetary policy shocks enter via the
federal funds rate, nonborrowed reserves, total reserves or borrowed reserves,
respectively. So far the empirical results have been inconclusive or otherwise
not fully satisfactory. In our framework it turns out that the NBR and BR
schemes are clearly rejected by the data whereas FF and NBR/TR cannot
be rejected at common significance levels. Even though BR is overall rejected
by our formal statistical test, the implied impulse responses associated with
a monetary policy shock are very similar to those implied by the NBR/TR
identification scheme. In contrast, the FF scheme results in slightly different
impulse responses and it also produces an implausible value for at least one
of the structural parameters.

In summary, the NBR scheme is clearly problematic from the point of
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view of monetary policy analysis. At least for the time period under consid-
eration in this study, the NBR scheme cannot be recommended for policy
analysis. On the other hand, the NBR/TR scheme is overall the most plau-
sible one. It is not rejected by the data, produces structural parameters of
expected sign and results in plausible responses to monetary shocks.

Appendix

A.1 An Identification Result

In this appendix we prove that a change in volatility can be used to identify
shocks in a structural VAR. The crucial result for this purpose is stated in
the following proposition.

Proposition A. Let Σ1 and Σ2 be two symmetric positive definite (n × n)
matrices and let Ω = diag(ω1, . . . , ωn) be an (n×n) diagonal matrix. If there
exists an (n × n) matrix B such that Σ1 = BB′ and Σ2 = BΩB′, then B
is locally unique (i.e., B is unique apart from possible sign reversal of its
columns), if all ωi’s (i = 1, . . . , n) are distinct. ¤

Proof: Let the (n×n) matrix Q be such that BB′ = BQQ′B′ and BΩB′ =
BQΩQ′B′. The first relation implies that Q is orthogonal and the second
relation implies Ω = QΩQ′ and, hence, QΩ = ΩQ or, denoting the ijth
element of Q by qij, ωiqij = ωjqij (i, j = 1, . . . , n). Thus, qij = 0 for i 6= j
if ωi 6= ωj. In other words, if all diagonal elements of Ω are distinct, Q is a
diagonal matrix with ±1 on the diagonal because the diagonal elements of
a diagonal matrix are its eigenvalues and the eigenvalues of an orthogonal
matrix are all ±1. This proves Proposition A.

A.2 ML Estimation with a Change in Volatility

In this section we provide details on our estimation procedure. The point
of departure is the Gaussian log likelihood function (apart from additive
constants)

log l = −1

2

T∑
t=1

log |Σt| − 1

2

T∑
t=1

tr(v2tv
′
2tΣ

−1
t ),

where

Σt = E(v2tv
′
2t) =

{
Σ1 = B22B

′
22 for t = 1, . . . , TB − 1,

Σ2 = B22ΩB′22 for t = TB, . . . , T,
(A.1)
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and v2t = y2t−CZt. Here C is the matrix of all VAR parameters in (2.4) and
a constant and Zt contains all the regressors from (2.4) plus the deterministic
term used in our empirical analysis. The normal equations for C are

T∑
t=1

Σ−1
t (y2t − CZt)Z

′
t = 0 (A.2)

(see Lütkepohl (2005, Sec. 17.2.2)). Using (A.1) and standard rules for the
column vectorization operator vec, it follows that the ML estimator for C
satisfies

vec(C̃) =

[
TB−1∑
t=1

(ZtZ
′
t ⊗ Σ̃−1

1 ) +
T∑

t=TB

(ZtZ
′
t ⊗ Σ̃−1

2 )

]−1

×
[

TB−1∑
t=1

(Zt ⊗ Σ̃−1
1 )y2t +

T∑
t=TB

(Zt ⊗ Σ̃−1
2 )y2t

]
, (A.3)

where Σ̃i denotes the ML estimator of Σi (i = 1, 2). If some other estimators

Σ̃i are used instead, C̃ is a feasible multivariate GLS estimator of C. Using
such an estimator of C and plugging the resulting ṽ2t = y2t− C̃Zt into (3.1),
we obtain estimators of the structural parameters in B22 and Ω by maximizing
the resulting “concentrated” log likelihood (3.1) in the usual way. From these
estimators new estimators of Σ1 and Σ2 may be obtained and used again in
(A.3) and so on. The procedure can be used to compute the Gaussian ML
estimators by continuing the iterations until convergence. This method was
used in Section 3.

References

Amisano, G. and Giannini, C. (1997). Topics in Structural VAR Economet-
rics, 2nd edn, Springer, Berlin.

Benkwitz, A., Lütkepohl, H. and Wolters, J. (2001). Comparison of bootstrap
confidence intervals for impulse responses of German monetary systems,
Macroeconomic Dynamics 5: 81–100.

Bernanke, B. S. and Blinder, A. (1992). The federal funds rate and the chan-
nels of monetary transmission, American Economic Review 82: 901–921.

Bernanke, B. S. and Mihov, I. (1998a). The liquidity effect and long-run neu-
trality, Carnegie-Rochester Conference Series on Public Policy 49: 149–
194.

16



Bernanke, B. S. and Mihov, I. (1998b). Measuring monetary policy, Quarterly
Journal of Economics 113: 869–902.

Candelon, B. and Lütkepohl, H. (2001). On the reliability of Chow-type tests
for parameter constancy in multivariate dynamic models, Economics
Letters 73: 155–160.

Christiano, L. J. and Eichenbaum, M. (1992). Identification and the liquidity
effect of a monetary policy shock, in A. Cukierman, Z. Hercowitz and
L. Leiderman (eds), Political Economy, Growth, and Business Cycles,
MIT Press, Cambridge, MA, pp. 335–370.

Christiano, L. J., Eichenbaum, M. and Evans, C. (1999). Monetary policy
shocks: What have we learned and to what end?, in J. B. Taylor and
M. Woodford (eds), Handbook of Macroeconomics, Vol. 1A, Elsevier,
Amsterdam, pp. 65–148.

Cosimano, T. and Sheehan, R. (1994). The federal reserve operating pro-
cedure, 1984-1990: An empirical analysis, Journal of Macroeconomics
16: 573–588.

Klein, R. and Vella, F. (2000). Employing heteroskedasticity to identify
and estimate triangular semiparametric models, mimeograph, Rutgers
University.

Lütkepohl, H. (2005). New Introduction to Multiple Time Series Analysis,
Springer-Verlag, Berlin.

Magnus, J. R. and Neudecker, H. (1988). Matrix Differential Calculus with
Applications in Statistics and Econometrics, John Wiley, Chichester.

Rigobon, R. (2003). Identification through heteroskedasticity, Review of Eco-
nomics and Statistics 85: 777–792.

Strongin, S. (1995). The identification of monetary policy disturbances: Ex-
plaining the liquidity puzzle, Journal of Monetary Economics 35: 463–
498.

17



Figure 1: Estimated monetary policy shocks.
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Figure 2: Responses to different monetary policy shocks (left-hand column:
impulse responses from unrestricted model with 95% confidence intervals;
right-hand column: — NBR/TR, − ·− BR, · · · · · · FF impulse responses).

19



Figure 3: Responses to NBR monetary policy shocks with 95% confidence
bands from unrestricted model.
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