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Abstract 
 
We present an indirect estimation approach for elliptical stable distributions which 
relies on the use of a multivariate Student-t distribution as auxiliary model. This 
distribution is also elliptical and we show that its parameters have a one-to-one 
relationship with those of the elliptical stable, therefore making the proposed indirect 
approach particularly suitable. We analyze the finite sample behaviour of the estimators 
via a comprehensive Monte Carlo study. An application to 27 emerging markets stock 
indexes concludes the paper. 
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Indirect Estimation of

Elliptical Stable Distributions

Marco J. LOMBARDI∗ and David VEREDAS†

January 2008

1 Introduction

In the recent years, the modelling of multivariate data has received increasing attention among
researchers and practitioners. In the field of financial time series, the assumptions underly-
ing multivariate modelling typically refer to the specification of the first two moments and of
the distribution from which the data is assumed to be generated. Researchers have mainly
focussed on conditional moments and have proposed the use of VAR and GARCH types of
models, such as BEKK, CCC and DCC (cf. Bauwens, Laurent and Rombouts, 2006). As
for the distribution, many financial models rely on the multivariate Gaussian distribution as
a building block – for instance, the classical CAPM, factor models or the Black and Scholes
option pricing equation. The reason behind this choice is twofold: on the one hand the pres-
ence of the central limit theorem in a sense justifies the appearance of a Gaussian distribution
whenever the phenomenon of interest can be thought of as the aggregation of a large number
of micro-contributions; on the other hand, the fact that the Gaussian family of distributions
has a number of useful properties, which are very helpful in establishing theoretical results.
However, using multivariate Gaussian distributions has a major shortcoming: the tails of the
distribution are seldom able to accommodate for extreme gains and losses that are frequently
observed on financial markets. Some alternatives have been proposed in the literature. Mul-
tivariate Student-t and its skewed version (cf. Bauwens and Laurent, 2005) are two of them.
However, although they provide a clear improvement in the fit of the distribution, Student-t
has the shortcoming of not belonging to a family which is close under summation; this fact
makes the derivation of theoretical results much more cumbersome. An alternative is the use
of copulas (cf. Patton, 2004, and references therein), which circumvents the choice of the mul-
tivariate distribution, given that the dependence structure is constructed via the specification
of appropriate marginal distributions and a suitable copula function.
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Among other possible heavy-tailed alternatives, the multivariate stable distribution (cf.
Samorodnitsky ad Taqqu, 1994) plays a special role. It originates from a generalization of the
central limit theorem in which the assumption on the finiteness of the variance of the compo-
nents is replaced by a much less restrictive one concerning somewhat regular tail behaviour
(cf. Ibragimov and Linnik, 1971). As a consequence, stable distributions enjoy many of the
properties of the Gaussian family, including closeness under summation. Therefore, a number
of theoretical results in asset allocation and option pricing are available (cf. Fama, 1965a, and
1965b; Ortobelli, Huber and Schwartz, 2002; Ortobelli and Rachev, 2005; McCulloch, 2003;
and the survey by Bradley and Taqqu, 2001).

Notwithstanding the appealing properties of stable distribution, estimation has always been
challenging as it is defined via the characteristic function, and the density function cannot
in general be expressed in a closed form. Several techniques have been proposed for the
estimation of univariate distributions (cf. the survey in Garcia, Renault and Veredas, 2006,
and references therein), such as the use of characteristic functions, quantiles or approximated
maximum likelihood.

At the multivariate level characteristic function methods are not operational for dimensions,
say, higher than three. Neither are quantile methods applicable as the concept of multivariate
quantile itself is not clear-cut. As for maximum likelihood, it is a complex issue even in the
univariate case, due to the absence of the density function in closed form, and this carries over
and amplifies at the multivariate level. In fact, most of the available results refer solely to the
estimation of the so-called spectral measure, that is, a measure that contains information on
the scale and skewness of the process.1 Two approaches have been employed for the estimation
of the spectral measure: the first is based on the multivariate characteristic function (Nolan,
Panorska and McCulloch, 2001, and Pivato and Seco, 2003); the second approach is based
on one-dimensional projections of the multivariate process (Nolan, Panorska and McCulloch,
2001; Rachev and Xin, 1993; and Cheng and Rachev, 1995). The only paper, to our knowledge,
that estimates all the parameters of the multivariate stable distribution is Nolan (2005) which
extends the above-mentioned results based on projections to the location and tail index.

These estimation difficulties have hindered the use of multivariate stable distributions in
applied work and call for the use of simulation-based methods. Since random numbers from
stable distributions can be obtained straightforwardly, simulation-based methods such as the
Indirect Inference of Gourieroux, Monfort and Renault (1993) and Efficient Method of Moments
-EMM hereafter- of Smith (1993) and Gallant and Tauchen (1996) are especially appealing.
These two methods will be refereed to in what follows as indirect estimation methods. In the
univariate case, indirect approaches have been proposed independently by Garcia, Renault and
Veredas (2006) and Lombardi and Calzolari (2008). In this paper we move a step forward,
considering an indirect approach to the estimation of elliptical stable distributions.

Elliptical stable distributions, ESD hereafter, are nested in the class of elliptical distribu-
tions, introduced by Kelker (1970).2 This class is particularly relevant as it contains important
distributions, some of them already mentioned (Gaussian, Student-t and ESD), and it possesses
many of the attractive properties like the Gaussian and the stable. For instance, they are in-
variant to affine transformations, their marginal and conditional distributions are also elliptical,
and they are closed under convolution. The fact that the elliptical class of distributions includes
the Student-t and the ESD suggests that an indirect estimation approach could be fruitful.

1As pointed out in Pivato and Seco (2003), the spectral measure should be called Feldheim measure, after
Feldheim (1937), and not spectral as it is unrelated to any other ”spectral measures” currently existent in
statistics.

2See Cambanis, Huang and Simons (1981) and Fang, Kotz and Ng (1990) for further references. A good,
short and concise survey is chapter one of Frahm (2004).
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According to indirect methods, an auxiliary model, easy to estimate, replaces the model of
interest, and simulations performed under the latter are then used to match the estimates
obtained on real and simulated data. The fact that the model of interest and the auxiliary
model belong to the same family and share the same structure is helpful in establishing the
asymptotic properties, as the parameters have a natural one-to-one relationship.

Standard asymptotic theory of indirect estimation can be applied, as the information con-
tent on the parameters of Student-t is sufficient to identify the parameters of the ESD and
the score of the Student-t distribution is asymptotically Gaussian. However, in finite sample
asymptotics do not apply. The problem, highlighted in Garcia, Renault and Veredas (2006)
and Lombardi and Calzolari (2008), is that as the tail index of the stable distribution ap-
proaches two, and hence the distribution approaches the Gaussian, the degrees of freedom of
the Student-t are attracted by infinity. While this should not be a problem asymptotically,
it entails important estimation difficulties with finite samples. To avoid it, we constraint the
degrees of freedom to remain below an upper bound, therefore resorting to the constrained
indirect estimation of Calzolari, Fiorentini and Sentana (2004).

A comprehensive Monte Carlo study for different values of the tail index, in two and
five dimensions shows that the finite sample properties of the estimates are reasonably good,
unbiased in virtually all cases and with root mean square errors that decrease with the number
of indirect optimizations. The empirical application is on weekly Morgan Stanley Corporate
Indexes (MSCI) of 27 emerging markets. We estimate the ESD on standardized residuals,
demeaned and filtered by a GARCH(1,1) model, and we show that the tail index is below two
and the estimated scatter matrix mimics the empirical correlation matrix.

The plan of the paper is as follows. Section 2 introduces elliptical distributions and, in
particular, ESD and Student-t. Section 3 presents the indirect estimation methods and proves
its asymptotic properties in our setting as well as the one-to-one relationship between the
parameters of the two distributions. A detailed simulation study highlights the small sample
properties of the estimators in Section 4. Next, we illustrate the method by applying it to 27
emerging markets indexes and Section 6 concludes and gives directions for further research.

2 Elliptical Distributions

A k dimensional random vector X is elliptically distributed if

X =d µ + RΛU(k),

where µ is a k dimensional vector of location parameters, Λ is a k × k full rank arbitrary
matrix of scale parameters and U(k) is a k dimensional random vector uniformly distributed
in the unit sphere with k − 1 dimensions

Sk−1 =
{

x ∈ R
k : ‖x‖2 = 1

}

.

R is the so-called generating variate of X. It is a non-negative random variable stochasti-
cally independent of U(k) . The starting point in the construction of an elliptically distributed
random variable is U(k), which is radial. It is premultiplied by Λ, such that ΛU(k) is no longer
radial but rather elliptical, with the generating variate R giving the thickness, or thinness, of
the tails of RΛU(k). The vector µ shifts the location of the density. If Λ equals the identity
matrix, the density of X remains radial. Λ is a matrix such that Σ = ΛΛ′ is a positive
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definite matrix of rank k and Σ is called the dispersion or scatter matrix of X. We are ulti-
mately interested in Σ, though elliptical distributions are expressed in terms of Λ. In fact, the
decomposition of Σ in terms of Λ is itself irrelevant as Λ is not identified.3

Some important multivariate densities belong to the class of elliptical distributions: Gaus-

sian, Student-t and ESD among others.4 We obtain a Gaussian distribution if R =
√

χ2
k.

Similarly, a Student-t is obtained if R =
√

νχ2
k/χ

2
ν where χ2

k and χ2
ν are stochastically in-

dependent. Finally, we obtain an ESD if R =
√

χ2
k

√

Sα/2, where Sα/2 is a positive, and

hence totally skewed to the right, α/2 stable distributed random variable and χ2
k and Sα/2 are

stochastically independent.

From these examples it is evident that there is a close connection between Student-t and
ESD. The location and scale parameters play the same role in both distributions. The tail
parameter, either α or ν, enters in both cases through the generating variate. This leads to the
intuitive idea, proven in the next section, that if the true data generating process is stable but
the assumed distribution is Student-t, a change in the location of the elliptical stable process
will lead to a change in the location in Student-t, and likewise for a change in the scale.

The class of elliptical distributions possesses a number of useful properties, among which
we highlight its closeness to affine transformations, conditional, and marginal distributions
being also elliptical and closeness to aggregation (cf. Fang, Kotz and Ng, 1990, for further
details.). As for the last property, it is worth stressing the difference between elliptical and
stable distributions. Indeed, the sum of i.i.d. elliptically distributed random vectors remains
elliptical in the sense that the resulting distribution belongs to the elliptical class, but not
necessarily to the same family as that of their addends. The latter property is instead possessed
by stable distributions.

Another important property of elliptical distributions is that the density function can be
expressed in terms of the density function of the generating variate. More precisely, the pdf of
X is given by

fX(x) =
√

|Σ−1|gR
(

(x− µ)′Σ−1(x − µ)
)

(1)

where |·| denotes the determinant,

gR(t) =
Γ
(

k
2

)

(2π)k/2

√
t
−(k−1)

fR(
√

t)

and fR is the pdf of the generate variate. For instance in the case of Student-t

fR(t) =
2t

k
fF

(

t2

k

)

,

where fF represents the pdf of a Fk,ν distributed random variable and hence fR(t) is the p.d.f.
of the random variable

√

kFk,ν . After some arrangements the pdf of X takes the form

fX(x) =
Γ
(

k+ν
2

)

Γ
(

ν
2

)

( |Σ−1|
(νπ)k

)1/2(

1 +
(x− µ)′Σ−1(x − µ)

ν

)− k+ν

2

, (2)

3Indeed, let T be an orthonormal matrix. Then Σ = ΛΛ
′ = ΛTT

′
Λ

′ = Λ
∗
Λ

∗′ and therefore Λ and Λ
∗

generate the same scatter matrix.
4Hereafter we will skip the term multivariate. Nonetheless, the reader should always keep in mind that R is

a random variable and U
(k) is a random vector, thus X is a random vector as well.
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which is a Student-t density with ν degrees of freedom and µ and Σ are the location and scale
parameters. Unfortunately, an equivalent closed form expression of (2) for ESD does not exist.
However, the fact that Student-t and ESD are elliptical paves the road to the use of indirect
methods.

3 Indirect Estimation

Let x be a sample of T i.i.d. copies from an ESD. Given (1), its log likelihood is5

ln ℓ⋆(θ,x) =
1

2
ln |Σ−1| + ln gR

(

(x − µ)′Σ−1(x− µ)
)

,

where θ = (α,Σ,µ) ∈ Θ =]0, 2[×R
k×k
++ × R

k, α is the tail index, Σ a k × k positive defi-
nite scatter matrix, µ a k × 1 location parameter vector and gR is the generating variate of
√

χ2
k

√

Sα/2. This is the model of interest. However, as previously noted, this log likelihood

does not admit a closed-form expression and is therefore difficult to evaluate.6 Instead, we
assume, mistakenly but on purpose, that x follows a Student-t distribution with density (2)
and therefore we can easily maximize its log likelihood:

ln ℓ̃(ζ,x) = ln
Γ
(

ν+k
2

)

Γ
(

ν
2

) +
1

2
ln

( |Ψ−1|
(νπ)k

)

− k + ν

2
ln

(

1 +

(

(x − δ)′Ψ−1(x− δ)
)

ν

)

,

where ζ = (ν,Ψ, δ) ∈ Z =]0,∞[×R
k×k
++ × R

k, ν is the tail index, Ψ a k × k positive definite
scatter matrix and δ a k × 1 location parameter vector. This is the auxiliary model.7 Since
this model is misspecified, the estimators that maximize the above log-likelihood, ζ̂(x), are not
necessarily consistent. The central idea of indirect methods is to exploit simulations under the
model of interest to find parameter values that match the estimates of the auxiliary parameters
obtained on actual data.

Let xs(θ), s = 1, . . . , S, be a simulated sample of T i.i.d. copies from an ESD and for a
given arbitrary parameter vector θ. And let

ζ̂s(θ) = arg max
ζ∈Z

ln ℓ̃(ζ;xs(θ))

be the maximum likelihood estimator of the Student-t distribution. Furthermore let

ζ̂S(θ) =
1

S

S
∑

s=1

ζ̂s(θ).

The Indirect Inference estimates, θ̂(x), are the values for which the following distance is
minimized:

[

ζ̂(x) − ζ̂S(θ)
]

Ω
[

ζ̂(x) − ζ̂S(θ)
]

,

5From this section on, we slightly change the notation, denoting differently the location and scatter param-
eters of each law.

6It should be emphasized that difficult does not imply impossible. Nolan (2005) shows how to compute the
log-likelihood numerically.

7Admittedly, Student-t is not the only good candidate for the auxiliary model. For instance, the symmetric
generalized hyperbolic distribution is also appropriate. The choice of Student-t motivated by Demarta and
McNeil (2005), Frahm, Junker and Szimayer (2005), and Frahm (2006) who suggest this distribution as a
reference model for elliptically contoured distributions.
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where Ω is a symmetric non-negative matrix defining the metric.8 Alternatively, EMM con-
siders directly the score of Student’s t

T
∑

t=1

∂ ln ℓ̃(ζ;x)

∂ζ
.

The EMM estimates, θ̌(x), are the values for which the following distance is minimized:

{

S
∑

s=1

∂ ln ℓ̃ (ζ;xs(θ))

∂ζ

}′

Υ

{

S
∑

s=1

∂ ln ℓ̃ (ζ;xs(θ))

∂ζ

}

,

where Υ is a symmetric non-negative definite matrix. Gourieroux, Monfort and Renault (1993)
shown that, choosing the weighting matrices appropriately, the two methods are asymptotically
equivalent in the sense that their estimators have the same asymptotic distribution.

In order to identify θ it is necessary for the dimension of ζ to be at least as big as that of
θ. If both dimensions are equal, as is the case of the elliptical distributions considered in this
article, θ̌(x) does not depend on Υ and one can choose the Indirect Inference or the EMM
estimators that best suits the best for the practical problem to be analyzed. For instance,
EMM is especially useful when an analytic expression for the gradient of the auxiliary model
is available, since it allows us to avoid the numerical optimization routines in the estimation
of the auxiliary model. 9

The asymptotic behaviour of the log-likelihood of the auxiliary model is

lim
T→∞

1

T
ln ℓ̃(ζ;xs(θ)) = Eθ

[

ln ℓ̃(ζ;xs(θ))
]

,

and the solution of the maximization problem is

b(θ) = arg max
ζ∈Z

Eθ

[

ln ℓ̃(ζ;xs(θ))
]

.

That is ζ̂S(θ) is a consistent estimator of b(θ), the binding function that maps the param-
eters space of the true model onto the parameter space of the auxiliary model. The indirect
estimator of θ is thus based on the evaluation of the binding function at the true optimum
θ0. b(θ) defines the pseudo-true value of the Student-t parameters when the true probability
distribution is ESD. The fact that the model of interest and the auxiliary model belong to the
same family of elliptical distributions allows us to devise a one-to-one relationship between the
binding function and θ. Intuitively, the location parameters are the same for both distributions
and the difference in the tail behaviour between the two generating variates is exclusively given
by α and ν. Hence, Ψ is very informative for estimating Σ. Following Garcia, Renault and
Veredas (2006), we denote

b1(α,µ,Σ) = ν

b2(α,µ,Σ) = δ

b3(α,µ,Σ) = Ψ

The following proposition proves that the relationship is one to one.

8Typically, the optimal matrix is the inverse of the product of the scores.
9Because they are equivalent, hereafter we will use them indistinguishably although we will favour the EMM

estimator for reasons that will become clear at the end of this section.
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Proposition Let a ∈ R
k be a k dimensional random vector sampled from an elliptical density

and ∆ ∈ R
k×k an arbitrary matrix of full rank. Then for any k dimensional vector µ ∈ R

k

and scatter matrix Σ such that Σ = ΛΛ′, Λ ∈ R
k×k,

b1(α,µ + a,∆Σ∆′) = ν

b2(α,µ + a,Σ) = δ + a

b3(α,µ,∆Σ∆′) = ∆Ψ∆′.

That is δ ↔ µ, Ψ ↔ Σ and α ↔ ν.

Proof Consider an elliptically-distributed random vector

X =d µ + RSΛU(k),

where RS =
√

χ2
k

√

Sα/2. Its characteristic function corresponds to

ϕXS (t) = exp(it′µ)

∫ ∞

0
ϕU(r2t′Σt)dFRS (r),

where ϕU(·) is the characteristic function of U(k) and FRS is the cdf of
√

χ2
k

√

Sα/2.

Consider instead the integration with respect to FRSt , the cdf of
√

νχ2
k/χ

2
ν

ϕXSt(t) = exp(it′µ)

∫ ∞

0
ϕU(r2t′Σt)dFRSt(r).

A change in the location and the scale Y := a + ∆X, corresponds to

ϕYS (t) = E[exp(it′(a + ΛX))]

exp(it′(µ + a))

∫ ∞

0
ϕd(r

2t′∆Σ∆′t)dFRS (r),

and as well to

ϕYSt(t) = E[exp(it′(a + ΛX))]

exp(it′(µ + a))

∫ ∞

0
ϕd(r

2t′∆Σ∆′t)dFRSt(r),

which are the characteristic functions of the elliptically distributed random vectors,
YSt =d (µ + a) + RSt∆ΛU(k) and YS =d (µ + a) + RS∆ΛU(k), with identical lo-
cation and scatter matrices.�

This means that a change in the location only affects the location parameter and a scale
change only affects the scatter matrix. Moreover, the generating variate of the transformed

vector remains the same. Therefore even if we estimate with R =
√

νχ2
k/χ

2
ν , the affine trans-

formation does not affect the tail index. In other words, the location and scale parameters of
the Student-t carry over exclusively information on the location and scale parameters of the
ESD respectively: δ ↔ µ and Ψ ↔ Σ. Hence the tail index is not modified by location and
scale changes but by the stability index: α ↔ ν.

Under the C regularity conditions (see Appendix), the EMM estimator θ̌(x) is consistent
for fixed S and T → ∞. Furthermore, θ̌(x) is asymptotically Gaussian for fixed S and T → ∞
and the asymptotic variance-covariance matrix of

√
T (θ̌(x) − θ0) is

7



where

W(S,Υ) =

(

1 +
1

S

)

[

∂2Eθ[ln ℓ̃(ζ,x(θ))]

∂ζ∂θ′

′∗

Υ∗ ∂2Eθ[ln ℓ̃(ζ,x(θ))]

∂ζ∂θ′

]−1

(3)

where

Υ∗ = lim
T→∞

V ar

{

√
T

∂ ln ℓ̃ [b(θ);x]

∂ζ

}

.

A consistent estimator for W̌ is10

W̌(S,Υ) =

(

1 +
1

S

)

[

∂2 ln ℓ̃(ζ;x)

∂θ∂ζ ′

′

Υ̌∗∂2 ln ℓ̃(ζ;x)

∂θ′∂ζ

]−1

where

Υ̌∗ =
1

T





∂ ln ℓ̃(ζ;x)′

∂ζ

∣

∣

∣

∣

∣

ζ=ζ̂

∂ ln ℓ̃(ζ;x)

∂ζ ′

∣

∣

∣

∣

∣

ζ=ζ̂



 .

Indirect estimators are asymptotically well-behaved because the information content on
the parameters of Student-t is sufficient to identify the parameters of ESD and the score of
Student-t distribution is asymptotically Gaussian. However, in finite samples the information
content in ν is not sufficient to identify α as it approaches 2 because ν̌ tends to infinity. To
avoid this we constrain ν to remain below an upper bound ν̄. Let

β̂(x) = arg max
β∈Z×R

ln ℓ̃(ζ;x(θ)) + (ν − ν̄)ρ

be the constrained estimator of the Student’s t distribution that satisfies the inequality restric-
tion plus the slackness restriction (ν − ν̄)ρ = 0. The parameter set is β = (ζ, ρ) ∈ Z × R and
ν̄ is the upper bound for ν. Equivalently for β̂(θ).

Calzolari, Fiorentini and Sentana (2004) have shown that the EMM estimator in the pres-
ence of constraints is analogous to that derived by Gallant and Tauchen (1996) and the weight-
ing matrix remains the same. The reason why theoretical results for EMM remain unchanged
is that the score is taken with respect to ζ and not with respect to ρ and hence θ remains
exactly identified. However, results change for Indirect Inference as the multiplier ρ is also
minimized and therefore θ is overidentified and an optimal weighting matrix is needed. Fur-
thermore, this optimal matrix takes a complicated form as it accounts for the inequalities and
the slackness condition. All in all, the inclusion of constraints in Student-t distribution does
not change standard EMM estimation while it does in Indirect Inference. For this reason we
choose the former method for the Monte Carlo study and the empirical illustration.

4 Monte Carlo study

Simulating from an ESD is fairly simple. This is due to the fact that the tail index appears only
in the generating variate, which is univariate. In order to simulate random numbers from an

10The following expressions are specific to the i.i.d. case. The general expressions for serial dependence can
be found in Appendix 2 of Gourieroux, Monfort and Renault (1993).
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ESD it suffices to simulate from its univariate counterpart – using, for instance, the Chambers,
Mallows and Stuck (1976) method. The ESD can be rewritten as

X =d µ +
√

Sα/2G, (4)

where G =
√

χ2
kΛU(k) ∼ N (0,Σ). Therefore to simulate X we only need to simulate from a

multivariate Gaussian density and from a univariate stable density. More precisely, if

A ∼ Sα/2

(

(

cos
πα

4

)2/α
, 1, 0

)

and G ∼ N (0,Σ) independent of A, then A1/2G ∼ Sα (Σ, 0, µ). Notice that if α approaches

2, then
√

Sα/2

√

χ2
k →

√

χ2
k. This is a counter-intuitive result as A has a location parameter

0 and a scale that equals 0 for α = 2. However, A converges to a Dirac delta measure. To see
this, take the Laplace transform of X defined in (4):

E (exp(−γA)) = exp(−γα/2).

As α → 2, exp(−γα/2) → exp(−γ), which is the Laplace transform of a Dirac delta function.
That is,

√

Sα/2 converges in distribution to a degenerate random variable with value 1. Because
an elliptical stable random vector can be viewed as scale mixture of a normal random vector,
it is also referred to as a sub Gaussian random vectors.

We use this procedure for the Monte Carlo study. To check the finite sample properties
of the estimators, we choose three different values of α: 1.7, 1.9 and 1.95. The upper bound
ν̄ is set to 100. Note that whether the bound is higher or lower is not important (cf Garcia,
Renault and Veredas, 2006) as what matters is that the estimated degrees of freedom are not
attracted by infinity. We simulate 500 draws of 500 observations for a grid of different values
for α, two different dimensions (2 and 5) and two different values of the indirect draws (S equal
to 1 and 5). The location parameter vector µ is set to zero. For dimension two, the scatter
matrix is set to

Σ =

(

0.5 0.9
0.9 2

)

and for dimension five, Σ is set the following block-diagonal structure:

Σ =













0.25 0.25 0.4 0 0
0.25 0.5 0.4 0 0
0.4 0.4 1 0 0
0 0 0 2 2.55
0 0 0 2.55 4













In the two-dimensional case, the off-diagonal element can be seen, loosely speaking, as a
correlation (or, more precisely, a standardized covariation), as one of the diagonal elements
is the inverse of the other. Likewise, for the 5-dimensional case the random variables are
positively block correlated.11 Monte Carlo results for alternative parameter configurations are
available in Lombardi and Veredas (2007) and are not presented here for the sake of brevity.

11In fact, the off-diagonal values have been chosen such that the standardized covariation matrices are,
approximately,

Ξ =

















1 0.7 0.8 0 0
0.7 1 0.6 0 0
0.8 0.6 1 0 0
0 0 0 1 0.9
0 0 0 0.9 1

















This case may correspond to a portfolio composed of a risk-free and a risky subset of assets, with positive
covariation in-between but not within.
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Figure 1: Densities of the estimated parameters of one the Monte Carlo scenarios for dimension
2.

Table 1 shows the results for the two dimensional case while Tables 2 and 3 display results in
five dimensions. Due to space constraints we only report mean, median, root mean square error
(RMSE), the mean absolute error (MAE) and, for α, the coverage rates of the asymptotic and
Monte Carlo confidence sets (defined as the proportion, over 500, of the true alpha lying within
the 5% confidence interval).12 We first remark that, due to the presence of some pathological
cases, the mean estimate and the RMSE are sometimes altered, and the median (and the
associated MAE) proves to be a more robust alternative. In general, the results indicate that
the estimators are unbiased. Furthermore, small biases present when S = 1 are apparently
corrected when S = 5. Admittedly, a closer look at higher moments – not reported here –
such as skewness and kurtosis, reveals that the distribution is not exactly Gaussian. Yet, this
is not surprising as ours is a finite sample exercise. Nonetheless, the density of the estimators
are, in some sense, well behaved. Figure 1 shows the kernel densities for one of the scenarios
in dimension 2. Though not Gaussian, they do not present remarkable skewness or kurtosis.

In some cases, as α approaches 2, MAE tends to decrease, but this comes at the cost
of an increased RMSE. This could be a signal that a value of α close to its bound raises
problems of convergence that affect the performance of RMSE. This is also related to the
poor performance of the asymptotic coverage rates of 95% asymptotic confidence intervals,
which tend to deteriorate as α approaches 2, meaning that asymptotic standard errors are
underestimated. Instead, if one uses the Monte Carlo standard errors (i.e. the standard
deviation of the Monte Carlo distribution of the estimator), the issue seems to be solved and
coverage rates appear correct. The lesson is therefore that one should be very careful in

12More detailed results, including standard deviation, maximum and minimum are available upon request.
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estimating the asymptotic standard errors when the estimated parameter is near the boundary
region.

5 Illustration

We illustrate the method with an application to 27 MSCI (Morgan Stanley Composite Index)
emerging markets indexes. The MSCI indexes are free float-adjusted market capitalization
indexes that are designed to measure equity market performance. The emerging markets areas
and countries we consider are: East Asia (Philippines, Sri Lanka, Pakistan, China, South
Korea, India, Indonesia, Russia, Thailand, Taiwan and Malaysia), Eastern Europe (Poland,
Czech Republic and Hungary), South America (Mexico, Colombia, Chile, Argentina, Brazil,
Venezuela and Peru), Africa (South Africa, Egypt and Morocco) and Middle East (Israel,
Turkey and Jordan).

Figure 2: MSCI indexes for a selection of countries.

We use weekly returns generated by prices expressed in USD, between April 2001 to April
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2006; we hence used 261 observations per country. Figure 2 shows the indexes for a sample of six
countries: 2 East Asian and 1 for the other areas. Volatility behaviour is very heterogeneous.
Some countries display strong clustering, like Jordan and the Czech Republic, while others
present large deviations but not clusters, like Malaysia and Sri Lanka. It is known (Ghose and
Kroner, 1995) that heavy tails generated by GARCH effects can be mistakenly interpreted as
evidence in favour of stable distributions. To safeguard against this, we consider demeaned
standardized GARCH(1,1) residuals such that the remaining heteroskedasticity is not due to
dynamic conditional volatility. Denote as ξ̂ the QML estimated parameters with variance-
covariance matrix taking the traditional sandwich form J −1

ξ IξJ −1
ξ . Lombardi and Veredas

(2008) show that, despite the fact that we are estimating an elliptical stable distribution
on estimated residuals, denoted by X(ξ̂), the EMM point estimates, under the D regularity
conditions, are not affected.

Figure 3: Standardized GARCH(1,1) residuals .

Figure 3 shows the standardized residuals for the same indexes as in the previous figure.
The volatility clustering has disappeared, as it is clearly visible for the Czech Republic and
Jordan. However, they do not appear to be Gaussian. The kurtosis coefficients range from 3.56
for Mexico to 7.93 for Sri Lanka, meaning that a fat-tailed distribution can be an appropriate

12



choice. Figure 4 shows a heat map of the empirical correlations of the standardized residu-
als. Clusters by geographical areas are very clear. For instance Eastern European and Latin
American countries are very related. Others, like Israel (the second from the upper right) and,
surprisingly, China (the fourth from the left bottom), are not correlated at all with any other
country.

Figure 4: Heat map of the empirical correlations of standardized residuals. The darker (lighter)
the higher (lower) the empirical correlations. Black corresponds to correlations around 0.6 and
white close to 0. For representation purposes, main diagonal has been replaced by zeros, and
hence the white.

Admittedly, this application has a number of drawbacks. First, the tail index α is the
same for all countries. We estimated univariate stable distributions for each country and, as
expected, the tail indexes are not constant across countries. They vary from 1.5 to 2. Yet this
shortcoming is in fact applicable to any multivariate distribution like Student-t, skewed-t or
Gaussian (for which the tail index is fixed at 2). Second, data are skewed yet we do not allow
for asymmetries. Last we consider constant correlation, which may not be the case for the
MSCI indexes. Despite all these shortcomings, this estimation exercise is purely illustrative
and an application in a dynamic and asymmetric context is beyond the scope of the paper;
though it would be an interesting research avenue, as explained in the conclusions.

The estimated tail index is 1.75, implying thicker tails than in the Gaussian case. The
estimated degree of freedom for Student’s t is 7.19 , which produces a mismatch in the existence
of moments with respect to the stable distribution. Figure 5 shows the estimates for the location
vector. They all vary around zero, which makes sense as the standardized residuals have mean
equal to zero. As for the correlation matrix, we do not show all the results for reasons of
space.13 Instead, we present the estimated covariations for the six countries considered above,

13Detailed results are available upon request.
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Figure 5: Estimated location parameters

which are the solid lines in Figure 6, while the dotted lines are the empirical correlations. The
estimated covariations are very closed to the sample correlations in all cases. We may compare
then with the estimated correlations matrices of Student-t, plotted in Figure 7. Clearly the
estimated correlation matrix of Student-t distribution has a worst fit than that of the stable
distribution. In fact, one can observe that, for Student-t, they are higher than one, which is
not sensible.

6 Conclusions

In this paper we propose indirect estimation methods for multivariate elliptical stable distri-
butions. Theoretical results prove that Student-t distribution is an adequate auxiliary model
and standard asymptotics of indirect methods apply; a Monte Carlo study shows that even
in small samples the estimator performs reasonably well. Finally, an empirical study further
illustrates the proposed method.

Further research can take several directions. First, an obvious generalization is to allow
for skewness. The reader may be tempted to extend the indirect methods to asymmetric
stable distributions. However, we do not think that this will be a fruitful path as in the
asymmetric case, skewness and scatter are merged into the so-called spectral measure, which
takes very complicated forms. Furthermore, simulation from an asymmetric multivariate stable
distributions turns out to be difficult. This of course hinders the use of indirect estimation
methods, which were designed for situations in which simulating from the model of interest is
straightforward.14 An alternative is to use a recent method proposed by Nolan (2005), which

14Nonetheless, it is worth noticing that simulation of multivariate stable distributions is possible, cf. Modarres
and Nolan (1994).
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Figure 6: Results for the stable distribution. Estimated covariations (solid line) and empirical
correlations (dotted line) of standardized residuals for six countries.

is based on projections parameter functions. Another alternative is the use of generalized
elliptical distributions (cf. Frahm, 2004), which share many of the properties of the elliptical
distributions.

Another direction for further research is the extension to a time series context. In particular,
allow the location vector and the scatter matrix to be time varying. For instance VAR and
multivariate GARCH types models are natural choices. On these grounds, one should be careful
of the way the VAR and GARCH models are defined, as the inexistance of moments of orders
higher that α entails some difficulties. For instance, univariate GARCH models under stable
distribution have been analyzed by Mittnik, Paolella and Rachev (2002). This extension seems
appropriate, given that most of the economic processes are time dependent. Furthermore,
from a theoretical perspective it is feasible, since Gourieroux, Monfort and Renault (1993) and
Calzolari, Fiorentini and Sentana (2004) do not assume i.i.d. returns in their analysis.
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Figure 7: Results for the Student-t distribution. Estimated covariations (solid line) and em-
pirical correlations (dotted line) of standardized residuals for six countries.

A Assumptions

C1. X is strictly stationary and ergodic.

C2. ln ℓ̃(ζ,x) is twice continuously differentiable with respect to ζ.

C3. Eθ[ln ℓ̃(ζ,x)] is twice continuously differentiable with respect to θ and ζ and has an
unique maximum at θ = θ0.

C4. b(θ) is unique for θ.

C5.

∂2 ln ℓ̃(ζ,x)

∂ζ∂ζ ′
−H0 = op(1)

√
TEθ[ln ℓ̃(ζ,x)] →d N (0,I0)
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C6. The asymptotic covariance between the gradients of two units s1 and s2 of the simulated
sample is constant.

D1. X(ξ̂) is strictly stationary and ergodic.

D2. ln ℓ̃(ζ,x(ξ̂)) is twice differentiable with respect to ζ and ξ̂.

D3. Eθ[ln ℓ̃(ζ,x(ξ̂))] is twice continuously differentiable with respect to θ and ζ and ξ̂, and
has an unique maximum at θ = θ0.

D4. b(θ, ξ̂) is unique for θ.

D5.

∂2 ln ℓ̃(ζ,x(ξ̂))

∂ζ∂ζ ′
−H0 = op(1)

√
TEθ[ln ℓ̃(ζ,x(ξ̂))] →d N (0,I0 − Ξ)

where

Ξ = BJ −1
ξ IξJ −1

ξ B′ + GB′ + BG′

B = lim
T→∞

E

(

∂2 ln ℓ̃(ζ,x(ξ̂))

∂ζ∂ξ̂′

)

,

G = E

(

∂ ln ℓ̃(ζ,x(ξ̂))

ζ̂
ξ̂

)

D6. The asymptotic covariance between the gradients of two units s1 and s2 of the simulated
sample is constant.
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Table 1: Simulation Results with k = 2.

S = 1 S = 5
α True 1.7 1.9 1.95 1.7 1.9 1.95

Mean 1.7267 1.8648 1.9304 1.7719 1.9196 1.9492
Median 1.7211 1.8810 1.9439 1.7843 1.9307 1.9561
RMSE 0.0753 0.0644 0.0810 0.1395 0.0517 0.0330
MAE 0.0604 0.0329 0.0192 0.0630 0.0443 0.0217
Asymp Coverage 0.7853 0.4749 0.4427 0.0402 0.0091 0.0103
MC Coverage 0.9294 0.9498 0.9402 0.7488 0.9848 0.9349

σ11 True 0.5 0.5 0.5 0.5 0.5 0.5
Mean 0.8609 0.5866 0.5214 0.7556 0.5854 0.5851
Median 0.5001 0.4997 0.5012 0.7737 0.5976 0.6051
RMSE 6.8028 1.4322 0.1161 0.1304 0.2105 0.1893
MAE 0.4481 0.1525 0.0518 0.0872 0.1784 0.1419

σ22 True 2 2 2 2 2 2
Mean 1.8488 2.0666 2.0505 2.0252 1.8069 1.9858
Median 1.8744 2.0064 2.0046 2.0296 1.8200 2.0203
RMSE 0.1773 0.2764 0.1672 0.4239 0.5826 0.5688
MAE 0.1400 0.1020 0.0706 0.2411 0.5091 0.4189

σ12 True 0.9 0.9 0.9 0.9 0.9 0.9
Mean 0.6997 0.9061 0.9187 0.7575 0.7482 0.8450
Median 0.8063 0.9027 0.9009 0.7805 0.7433 0.8538
RMSE 1.9783 0.3055 0.1051 0.5037 0.2293 0.2373
MAE 0.1695 0.0763 0.0462 0.1246 0.1992 0.1741

µ1 True 0 0 0 0 0 0
Mean -0.0114 0.0202 0.0445 0.1689 0.0669 0.0525
Median 0.0107 0.0089 0.0050 0.0542 0.0558 0.0210
RMSE 0.6816 0.3008 0.1182 1.5248 0.1292 0.1341
MAE 0.0904 0.0698 0.0615 0.1791 0.1018 0.0930

µ2 True 0 0 0 0 0 0
Mean 0.0830 0.0706 0.0811 0.0179 0.1146 0.0778
Median 0.0066 0.0025 0.0002 0.0763 0.0819 0.0106
RMSE 0.7047 0.2172 0.2559 1.0416 0.2743 0.2877
MAE 0.1472 0.1126 0.1231 0.2070 0.2132 0.1934
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Table 2: Simulation Results with k = 5.

S = 1 S = 5
α True 1.7 1.9 1.95 1.7 1.9 1.95

Mean 1.6840 1.8775 1.9412 1.6892 1.8840 1.9346
Median 1.6917 1.8913 1.9438 1.6958 1.8928 1.9465
RMSE 0.0930 0.1381 0.0254 0.0850 0.0961 0.1141
MAE 0.0306 0.0270 0.0073 0.0276 0.0214 0.0162
Asymp Coverage 0.4512 0.2543 0.2231 0.3541 0.2032 0.1011
MC Coverage 0.9728 0.9249 0.9782 0.9687 0.9394 0.9574

σ11 True 0.25 0.25 0.25 0.25 0.25 0.25
Mean 0.5893 0.4852 0.2521 0.3081 0.5438 0.4590
Median 0.2515 0.2517 0.2505 0.2505 0.2518 0.2502
RMSE 5.2882 2.6483 0.0240 0.5655 3.1190 3.7549
MAE 0.3446 0.2406 0.0091 0.0667 0.2984 0.2157

σ22 True 0.5 0.5 0.5 0.5 0.5 0.5
Mean 0.5749 0.6587 0.6096 0.5596 0.6767 0.5589
Median 0.5127 0.5033 0.5054 0.5101 0.5028 0.5072
RMSE 0.7932 2.6387 1.9218 0.5816 2.4458 0.6869
MAE 0.0906 0.1911 0.1154 0.0764 0.2042 0.0670

σ33 True 1 1 1 1 1 1
Mean 1.0420 1.2141 1.1910 1.1107 1.3601 1.0627
Median 1.0060 1.0033 1.0058 1.0012 1.0018 1.0033
RMSE 0.4469 2.5589 2.6972 1.2229 3.2985 0.7168
MAE 0.0784 0.2417 0.2031 0.1512 0.3918 0.0809

σ44 True 2 2 2 2 2 2
Mean 2.0471 2.0403 2.2014 2.2007 2.2349 2.0966
Median 2.0112 2.0004 2.0014 2.0153 1.9995 2.0105
RMSE 0.6089 0.8294 2.7130 1.8715 2.9724 1.0452
MAE 0.0880 0.1085 0.2129 0.2245 0.3061 0.1017

σ55 True 4 4 4 4 4 4
Mean 4.1734 4.1306 4.1878 4.1257 4.2664 4.1699
Median 4.0002 4.0009 4.0018 3.9994 4.0001 4.0003
RMSE 1.8511 1.4261 2.6971 1.9573 3.1187 2.0141
MAE 0.2078 0.1888 0.1971 0.1963 0.3070 0.1787

µ1 True 0 0 0 0 0 0
Mean 0.0010 -0.0681 0.0280 0.0100 -0.0351 -0.0298
Median 0.0008 0.0036 0.0021 0.0018 0.0035 0.0015
RMSE 0.4878 1.0461 0.2734 0.6206 0.4344 0.3987
MAE 0.0775 0.1201 0.0333 0.0989 0.0656 0.0451

µ2 True 0 0 0 0 0 0
Mean 0.0264 0.0162 0.0091 0.0025 0.0191 0.0484
Median 0.0027 0.0042 0.0008 0.0011 0.0029 0.0000
RMSE 0.4172 0.5426 0.2756 0.5014 0.4220 0.9474
MAE 0.0768 0.1048 0.0444 0.0805 0.0778 0.0812

µ3 True 0 0 0 0 0 0
Mean -0.0015 0.0069 -0.0089 -0.0145 -0.0183 -0.0312
Median 0.0005 0.0014 -0.0006 -0.0031 0.0007 -0.0012
RMSE 0.4053 0.7578 0.2808 0.4953 0.5562 0.2764
MAE 0.0844 0.1274 0.0454 0.0895 0.0919 0.0502

µ4 True 0 0 0 0 0 0
Mean 0.0660 0.0286 0.0124 -0.0228 0.0382 0.0155
Median 0.0007 -0.0012 -0.0004 0.0069 -0.0012 0.0074
RMSE 0.6611 1.3595 0.2742 0.7870 0.5531 0.1050
MAE 0.0939 0.1626 0.0389 0.0747 0.0787 0.0353

µ5 True 0 0 0 0 0 0
Mean -0.0201 -0.0911 -0.0125 0.0289 0.0209 -0.0198
Median -0.0004 0.0011 0.0004 -0.0052 0.0010 -0.0048
RMSE 0.6233 1.1853 0.2730 0.5308 0.5586 0.0836
MAE 0.0821 0.1371 0.0339 0.0485 0.0680 0.0265
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Table 3: Simulation Results with k = 5, continued.

S = 1 S = 5
α True 1.7 1.9 1.95 1.7 1.9 1.95

σ12 True 0.25 0.25 0.25 0.25 0.25 0.25
Mean 0.8001 0.3143 0.1996 0.3270 0.2646 0.2247
Median 0.2484 0.2492 0.2501 0.2522 0.2499 0.2512
RMSE 10.0136 0.6661 0.8108 1.3074 0.8857 1.1987
MAE 0.6000 0.1001 0.0648 0.1634 0.1296 0.0993

σ13 True 0.4 0.4 0.4 0.4 0.4 0.4
Mean 0.6825 0.3861 0.4636 0.4344 0.4650 0.5358
Median 0.3993 0.4009 0.4030 0.3995 0.3997 0.4018
RMSE 4.8737 0.8970 0.8141 0.6182 1.2563 2.2305
MAE 0.3462 0.1187 0.0694 0.0944 0.1679 0.1553

σ14 True 0 0 0 0 0 0
Mean -0.8002 -0.0028 -0.0011 0.0041 0.0213 -0.0293
Median -0.0037 -0.0027 -0.0008 -0.0003 -0.0018 -0.0019
RMSE 0.8829 1.0609 0.8141 0.5449 1.0631 1.1364
MAE 0.0905 0.1250 0.0677 0.0809 0.1359 0.1111

σ15 True 0 0 0 0 0 0
Mean 0.0992 0.0344 -0.0651 0.0009 -0.0244 -0.0245
Median -0.0069 -0.0070 -0.0038 0.0016 -0.0058 0.0036
RMSE 1.5185 0.8649 0.8143 0.3018 1.1487 1.7979
MAE 0.1523 0.1207 0.0689 0.0850 0.1547 0.1649

σ23 True 0.4 0.4 0.4 0.4 0.4 0.4
Mean 0.0656 0.3768 0.4673 0.3916 0.3545 0.5555
Median 0.3891 0.4004 0.4041 0.4026 0.4014 0.4061
RMSE 5.6644 1.1492 0.8196 1.3310 1.2731 1.9799
MAE 0.3831 0.1717 0.0744 0.1783 0.1728 0.1598

σ24 True 0 0 0 0 0 0
Mean 0.0277 0.0171 -0.0467 0.2356 0.0139 0.0022
Median -0.0074 -0.0021 -0.0006 0.0026 -0.0019 -0.0002
RMSE 0.9995 0.6997 0.8201 4.5781 1.1107 0.2963
MAE 0.1190 0.0950 0.0735 0.2979 0.1392 0.0390

σ25 True 0 0 0 0 0 0
Mean -0.1053 -0.0261 -0.0148 0.2958 -0.1193 0.0045
Median -0.0198 -0.0141 -0.0053 0.0029 -0.0142 0.0019
RMSE 1.5437 0.5355 0.8185 6.5364 1.3771 0.2672
MAE 0.1596 0.0885 0.0730 0.4116 0.1546 0.0359

σ34 True 0 0 0 0 0 0
Mean -0.0285 -0.1261 -0.0012 -0.1392 0.0254 -0.0259
Median -0.0009 -0.0016 -0.0005 -0.0011 -0.0007 0.0009
RMSE 0.5776 1.2267 0.8137 2.7696 1.3337 0.4995
MAE 0.0958 0.1443 0.0705 0.1989 0.1661 0.0480

σ35 True 0 0 0 0 0 0
Mean -0.0171 0.0034 0.0438 -0.1806 -0.1686 -0.0533
Median -0.0037 -0.0024 0.0001 -0.0026 -0.0011 -0.0029
RMSE 0.6957 1.0714 0.8185 3.4287 2.6061 0.7032
MAE 0.1103 0.1679 0.0762 0.2532 0.3127 0.0679

σ45 True 2.55 2.55 2.55 2.55 2.55 2.55
Mean 2.5206 2.3702 2.5084 2.6777 2.6605 2.6521
Median 2.5407 2.5481 2.5497 2.5517 2.5509 2.5570
RMSE 1.4091 3.7083 0.8346 1.9161 3.1640 1.0382
MAE 0.1827 0.2960 0.0763 0.1953 0.3505 0.1059
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