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Can stabilization policies be efficient?

Aurélien Saidi

Abstract

This paper makes use of optimal control relaxed problems to prove the absence
of optimal trajectory in continuous time models with social increasing returns to
scale where indeterminacy occurs. Although an efficient optimal policy does not
exist, some chattering stabilization policies can mimic trajectories whose criterion
functional approximates the supremum of the relaxed problem. This configuration is
closely related to indeterminacy: by contrast, when the steady state is determined,
an optimal policy is likely to exist.

Key words: Increasing returns, Indeterminacy, Stabilization policy, Relaxed
problems.
JEL classification: C61, C62, K32, E6, H61, O4.

1 Introduction

In the literature on sunspot equilibria in a representative agent framework,
various authors proposed economic policies that can pin down self-fulfilling
fluctuations when the non-convexities of the social production set are suf-
ficient to make the stationary equilibrium locally indeterminate.! Guo and
Lansing [1998], for instance, specify a tax policy in a one-sector model a la
Benhabib and Farmer [1994] that is able to stabilize the economy. They show
that a sufficiently strong progressive tax on output is necessary to get local
determinacy of the stationary equilibrium. This policy plays the role of an
automatic stabilizer: it taxes away extra returns resulting from belief-driven
fluctuations in expansion phases (taxes increase as the production external-
ity raises) whereas in recession phases taxes decrease in order to dampen the

Email address: aurelien.saidi@eui.eu.
1 These social increasing returns to scale come from productive externalities in the
aggregate level of production whereas returns to scale are assumed to be constant in
the private level of the firm. As already shown by Benhabib and Farmer [1994], an
equivalent pattern can be obtained in a different setup emboying monopoly powers.



diminution of the after-tax income. Consequently, the tax schedule smoothes
business cycle fluctuations and stabilizes the economy.

In framing their stabilization policy, Guo and Lansing [1998] pay attention
to the local properties of the stationary equilibrium but do not estimate the
impact of the policy on the representative agent’s welfare. As pointed out by
Christiano and Harrison [1999], due to the concavity of the utility function,
for the same level of productive externalities fluctuations in expectations are
welfare-reducing (concavity effect) in contrast with increasing returns to scale
that improve welfare: by bunching hard work agents may jointly increase the
average level of consumption and decrease the average level of labor effort
(bunching effect). This leads to an uncertain conclusion as to the overall wel-
fare effect of the stabilization policy. They give examples in which consumers
are better-off in a situation of stochastic sunspot equilibria than in a situa-
tion of purely deterministic equilibrium. Thus, Guo and Lansing’s objective
to break the concavity effect and prevent the economy from fluctuations may
deteriorate the welfare-improving bunching effect.

The first-best allocation of their economy, simulated by Dupor and Lehnert
[2002] in a discrete time framework, provides an important benchmark for
judging the desirability of any stabilization policy. The purpose of this paper is
to prove the absence of such an allocation in a slightly different setup.? We use
a continuous time model that exhibits indeterminacy under plausible values of
the increasing returns to scale, i.e. returns to scale compatible with the earlier
estimates: those of Basu and Fernald [1995, 1997], Burnside, Eichenbaum and
Rebelo [1995] or Burnside [1997], among others. The selected framework is
the Wen model [1998] modifying the original Benhabib and Farmer one-sector
model by integrating a capacity utilization. In the continuous time version
developed in this paper, indeterminacy occurs for almost constant returns to
scale provided the elasticity of labor supply is perfectly elastic and the cost
structure on capacity utilization is barely convex.

Although an optimal allocation does not exist in a continuous time framework,
it will be shown however that there is a sequence of “chattering” consump-
tion/investment plans converging to a supremum. This supremum is not a
feasible trajectory of the original problem but is the optimum of an artificially
convexified problem, usually denoted by generalized or relaxed problem.? This

2 The conclusions we find also apply to the canonical continuous time Benhabib
and Farmer model [1994] studied in discrete time by Guo and Lansing [1998] or
Dupor and Lehnert [2002].

3 Relaxed systems have been extensively studied, for instance by Gamkrelidz [1965],
McShane [1967], Young [1969] and Warga [1972], and more recently by Cesari [1983].
They regularly appear in environmental economics, especially in fishing or harvest-
ing puzzles, as in Clark [1976] or Davidson and Harris [1981]. Lewis and Schmatensee
[1982] provides a good survey of models of renewable resources with nonconvexities



problem may be viewed as a limiting case of the original problem since the
difference between the optimal relaxed solution and some specific feasible al-
location can be made uniformly as small as we wish: both criterion functionals
have approximately the same value. Thus, even though any trajectory of the
initial problem is welfare-dominated by another trajectory closer to the supre-
mum, we are able to determine the behavior-type of any near-optimal solution
of this economy and compare it to the standard stabilization policies proposed
in the literature.

We can conclude from this comparison that standard stabilization policies,
like those of Guo and Lansing [1998, 2002], appear to be inefficient in twofold.
On the one hand, in absence of optimal trajectory any stabilizing policy is
dominated by another stabilizing policy that makes the agents better-off. On
the other hand, since the near-optimal trajectories consist of arbitrary fast
jumps of the labor effort (switching between zero and full labor effort) that
mimic the optimal relaxed solution, a smooth stabilization scheme fails to
replicate this erratic behavior. Whilst the standard policy rules were designed
to break up the topological stability of the steady state and make a (mono-
tonic) saddle-path equilibrium to appear, it will be seen in the paper that the
trajectories mimicking the optimal relaxed solution are actually cycling. Thus,
focusing a particular topological structure of the dynamic system is likely to
coordinate expectations in case of indeterminacy but does not help to resorb
the market failure inherited from the existence of external effects. It is note-
worthy however that this inefficiency of the economic policy only occurs under
indeterminacy. Under perfect determinacy of the steady state an optimal tra-
jectory may be proved to exist in the initial problem and a Guo and Lansing
policy [2002] consisting in subsidizing the economy with a constant subsidy
rate that eliminates the wedge between the social and private marginal prod-
ucts of capital and labor manages to pin down expectations on the optimal
trajectory. Agents are compelled to internalize the non-convexities of the pro-
duction set: in this context, the aim of economic policy is not stabilization but
Pareto-efficiency. Thus, when the economic policy is efficient there is no need
to stabilize the expectations. But when indeterminacy occurs, stabilization
policies fail to reach efficiency.

These results are based on the absence of optimal trajectory, which occurs
only in the continuous time model. However, the conclusions concerning the
standard (smooth) stabilization policies are robust whether the model is dis-
crete or continuous, and whether the condition for indeterminacy requires a
high or low level of increasing returns.

The remainder of this paper is organized as follows. Section 2 describes the
model setup. The definitions of the maximization problem and the associated

in production.



relaxed problem are exposed in section 3 and an existence theorem of a re-
laxed optimal solution is provided. We show in section 4 that although there
is no optimal trajectory in the original framework, the optimal relaxed tra-
jectory can be approximated by a sequence of admissible trajectories for the
non-relaxed problem. The economic consequences for stabilization policies are
formulated in section 5 where it will be seen that inefficiency of the (stabi-
lization) economic policy relies intrinsically on the presence of indeterminacy.
Section 6 concludes.

2 The model

The framework is a continuous-time version of Wen [1998], which integrates
capacity utilization in the standard Benhabib and Farmer model [1994].

The economy is characterized by a continuum of identical competitive firms,
with the total number normalized to one, whose production function has con-
stant returns to scale and depends on two factors, capital (K) and labor (L):

Y(t) =AW [u(t)K(H)]"L(t)*  with 0<a<landa+b=1,
A(t) = [a(t) K ()] L(t)™ with v > 0,

where Y denotes the total output, u € (0,1) capacity utilization and A is a
productive externality expressed as a function of the average economy-wide
levels of capital (K), labor (L) and capacity utilization (). In a symmetric
equilibrium K = K, L = L and u = u then the aggregate production function
is:

Y (1) = [w) KO HVL)" M = [u(t) K (5)]*L(t)°, (1)

which obviously exhibits increasing returns to scale since ao + 3 > 1.
The economy is populated by a unit measure of identical infinitely lived con-

sumers. The representative consumer, owner of capital, is endowed with one
unit of time (L < 1) and maximizes:

max 7(] (C(t), L(t))e " dt, (2)
with: Lo\
U(C(0, 1(0) = ogC(0) — 51"

where C' and L are the consumer’s consumption and hours worked. Under
the assumption that market factors are perfectly competitive, the budget con-
straint faced by the representative consumer is:



K(t) = (r(t) = 6(t) K(t) + w(t)L(t) - C(1), (3)
6(t) = tu(t)? with0 <7 <1andf>1, (4)

where y > 0 is the inverse of the Frisch elasticity of labor supply, p > 0 is
the discount rate and §(¢) the depreciation rate at time ¢. Consumers derive
income by supplying capital and labor services to firms, taking factor prices
r, the rate of return on capital, and w, the real wage, as given.

The restriction # > 1 differs from Baxter and King [1990] or Benhabib and
Farmer [1994]: when 6 < 1 the optimal capacity utilization is always u = 1
and the depreciation rate is constant in contrast with our setup. Introducing
capacity utilization amplifies and propagates business cycle: capital is more
intensively used during economic booms when its marginal product is high.
Empirical analysis of the key role of capacity utilization can be found in Green-
wood, Hercowitz and Krusell [1988], Shapiro [1993], or Burnside, Eichenbaum,
and Rebelo [1995]. However, the introduction of this component in the model
is mainly a matter for plausibility of the condition for indeterminacy, requir-
ing an amount of increasing returns coherent with the recent estimates, by
contrast with others models dealing with multiple equilibria.

JFrom now, it will be assumed that the model exhibits indeterminacy. This
means that a continuum of equilibrium paths converges to the steady state
(which is topologically stable) and that public intervention is required to coor-
dinate agents and pin down their expectations on a unique equilibrium path.
This assumption holds under specific values of the parameters:

0
ﬂfa>1+x. (5)

This condition for indeterminacy although only necessary in the discrete time
model of Wen [1998] is necessary and sufficient in the continuous time version
and makes indeterminacy more likely to appear with smaller levels of the
increasing returns. In the limit case when x = 0 (Hansen’s [1985] indivisible
labor) and @ tends to 1 the condition for indeterminacy collapses to v > 0:
indeterminacy occurs for almost constant returns to scale.

3 Relaxed and non-relaxed optimization problem

Assume a central planner maximizing the representative consumer’s utility (2)
subject to the aggregate law of motion of capital, that is:

K () = [ut) K (D)) L(t)” — Tu(t)’K(t) — C(t),



with the control variable restriction:

(t) = (u(t), C(t), L(t)) € T C [0,1] x R, x [0, 1].

Since Mangasarian [1966], it is well know that the necessary conditions are also
sufficient for a global maximum if the maximand (here the utility function)
and the constraint (the law of motion of capital) are both differentiable and
jointly concave in the variables (K, u,C, L) and if the costate A(t) > 0 at any
period. The traditional sufficiency condition does not hold here since the law
of motion of capital is no longer jointly concave in K, v and L (the produc-
tion function is quasi-concave). Arrow and Kurz [1970] provide a generalized
sufficiency condition for optimality that can be used in some problems where
the traditional concavity assumptions do not hold.* It can be shown that this
theorem does not apply in our setup.?®

To solve the model, we then introduce a more general problem in which convex
combinations of the initial production set vectors are authorized. More pre-
cisely: in the original problem, for any triple z € T and for a predetermined
stock of capital K, the representative firm can produce up to [uK]*L? units
of output. We now extend the production set and consider that the firm is
able to produce m[u; K]*LY 4 (1 — 7)[uy K]* L units of output with the vector
of inputs mz1 + (1 — 7)xg, for any m € [0,1] and any (z1,2) € T2 We then
force the production set to satisfy the definition of a convex set (while the pro-
duction function is only quasi-concave) and make the optimization problem
easier. This method of relaxed or generalized problem gave raise to an ex-
tended literature in the field of mathematics, like Young [1969], Warga [1972]
or Cesari [1983] for the most basic results, and appears in the economics lit-
erature under the guise of formal derivations in Davidson and Harris [1981].°
Once the initial production set has been “convexified” by adding its convex
hull to the set of feasible allocations, the relaxed problem of the social planner

4 For a formal proof of the theorem, see Seierstad and Sydsaester [1977] or Seierstad
and Sydsaester [1987], theorems (2.5) and (3.14).

® The maximized Hamiltonian we define further is only piecewise convex but not
globally convex when the condition for indeterminacy does not hold. Derivations
are available from the author upon request.

6 Clark [1976] alluded the possibility of optimal chattering solutions but does not
provide a sufficient rigorous treatment of such solutions.



becomes: ”
max /O - > pU(i(t)e "t (6)
subject to: .
K(t) =3 pilui(t) K ()] Li(t)” — mpua ()’ K (t) — piCi(t) (7)

=0

with the control variable restrictions:

v(t) = (w1(t), 2o(t), p1(t), p2(t)) € V = Y2 x [0, 1]? (8)
p(t) + pa(t) = 1. 9)

Since the convexity of the control set is so easily obtained for relaxed problems,
the following proposition can be shown:

Proposition 1 There exists an optimal pair (K*(t),v*(t)) to the optimization
problem (6)-(9).

Proof. This is an application of the Filippov-Cesari theorem.® See Appendix
82. m

While the assumptions of the Filippov-Cesari theorem hold in the case of the
relaxed problem, no existence theorem can apply in the case of the non-relaxed
problem due to the large non-convexities of the production set. However, it
will be seen in the next section that there exists in the original optimization
problem a sequence of trajectories whose criterion functional converges to the
criterion of the optimal relaxed solution. This relationship will be used to
prove the absence of optimal solution in the non-relaxed problem.

7 When the objective function is not concave, it is necessary to convexify the con-
trol set to prove the existence of a solution in the relaxed maximization problem.
In our model, the utility function is already concave: this procedure is not neces-
sary. However, we express the relaxed problem in the more general way to fit the
formulation usually adopted by the relevant literature. An alternative formulation
consists in maximizing [ U(v(t))e P'dt. It can be proved that the optimal solution
is a chattering corner solution: the (limit) value of the maximand will then be the
same whatever the objective function we chose.

8 For a complete proof of the theorem can be found in Cesari [1983], chapter 9. The
simplified version presented in this paper is due to Seierstad and Sydsaeter [1987],
theorem 2.8.



4 Pseudo-optimal trajectories

The following proposition establishes the possible approximation of relaxed
trajectories, whether optimal or not, by ordinary trajectories of the initial
problem.

Proposition 2 Let {K*(t),v*(t)} be an admissible pair for the relaxed opti-
mal control problem. Then, there exists a sequence {K;(t),u;(t)}2, of admis-
sible pairs for the initial non-relaxed problem such that the sequence of admis-
sible trajectories {K;(t)} converges uniformly to K*(t) on compact subsets of
[0, +00).

Proof. This is an extension by Carlson [1993], theorem 4.2, of Berkovitz [1974]
and Cesari [1983] to the case of infinite-horizon problems. See appendix 8.3
for the application. m

The proposition above is based on the proof that when maximizing on [0, T]| C
[0, 400), the difference between the functional criterion of the optimal relaxed
solution and the criterion of an approximate non-relaxed trajectory tends to
zero as the upper bound 7' tends to infinity. In other words, the relaxed optimal
solution is the limit of a sequence of suboptimal trajectories for any finite
interval problem defined on [0, T']. It is then possible to enlarge the compact set
as much as possible to get a sequence of trajectories whose criterion functional
has the same value as the supremum of the relaxed problem.

It is worth noting that the set of admissible trajectories for the initial problem
can be expressed as a set of degenerated trajectories in the relaxed problem,
with p; =1 and p; =0, i,j = {1,2} and j # . Thus, an optimal non-relaxed
trajectory, if any, performs at the very most as good as the optimal relaxed
trajectory. In case of indeterminacy, as shown in appendix 8.1, the non-relaxed
trajectory must exhibit an alternation of periods of full labor effort and periods
of zero labor effort. The argument can be proved by reducing it to absurdity:
assume the optimal trajectory is an “interior” solution and embodies quantities
of labor L € (0,1). For optimal values of the state and costate variables, by
choosing either . = 0 or L = 1 we can increase the criterion functional. Then
the trajectory with 0 < L < 1 cannot be optimal.

Can this chattering non-relaxed trajectory constitute the optimal solution of
the relaxed problem?

Proposition 3 The optimal relaxed solution cannot be a degenerated solution
when indeterminacy occurs.

Proof. See appendix 8.4. m



The immediate consequence of propositions 2 and 3 is that there is no optimal
trajectory in the original problem since for any admissible trajectory approx-
imating the optimal relaxed solution one may select another trajectory whose
criterion functional gets closer to the supremum: actually, the sequence of
non-relaxed trajectories never reaches the supremum. The intuition for these
findings relies on the welfare improvement properties of the chattering solu-
tions. By switching from periods of zero labor effort to periods of full labor
effort, the social planner may manage to mimic more or less faithfully the
optimal relaxed trajectory. Since this trajectory is not degenerated, it is clear
that a faster labor switching at some periods of time can make the economy
closer to the relaxed optimal solution.

However, due to the convergence of the sequence of trajectories, it is also
clear that adding more switchings to an already highly chattering trajectory
has very few impact on welfare improvement. For an artificially low error e
and a supremum value J we can define a set of original trajectories whose
criterion functional is included in [J — ¢, J). These trajectories will be said
pseudo-optimal: their criterion functional have almost the same value as the
supremum and they exhibit a similar behavior for capital, consumption and
labor.

5 Continuous vs. discrete time model

In a discrete time version of the Benhabib and Farmer model [1994], the ex-
istence of a non-relaxed solution has been established by Dupor and Lehnert
[2002] for a perfectly elastic labor supply.? They show for @ < 1 that the
optimal investment, employment and consumption policies feature discontin-
uous jumps and endogenous cycles. So do the pseudo-optimal trajectories in
our continuous time model. The main difference comes from the absence of
optimal trajectory in the continuous time model while there is a solution in
discrete time.

The intuition for the role played by time continuity in this apparent contradic-
tion is tantamount to understanding how the supremum of the relaxed prob-
lem can be approximated. Since lotteries or convex combinations, although
optimal in the relaxed problem, are not permitted in the original non-relaxed
problem, the social planner can try to mimic the supremum using chattering
solutions. Assume for simplicity that the supremum consists in targeting a
constant optimal stock of capital K* (the argument remains of course valid

9 The proof has been generalized in Saidi [2007] for alternative values of the Frisch
elasticity of labor supply. Results can easily been extended to the discrete time Wen
framework [1998].



when the optimal capital stock is cycling). In the non-relaxed problem main-
taining K(t) = K* for any ¢t € [0,+00) is not possible since optimal labor
effort may only switch between zero and 1. When the capital stock at period
to is higher than K™ it is optimal for the representative agent to stop working
so as to decrease the capital stock down to K* or even below: the optimal
labor effort is L*(ty) = 0. When it is lower than K* at period to + ¢ it is
optimal for the representative agent to work hard so as to increase the capital
stock up to K* or even higher: L*(ty + t) = 1. It should be noticed however
that the representative agent could mimic the supremum even better if she
stopped working at period ty —t/3 where K is already greater than K* and if
she started working again at period ¢y + 2¢/3 where K is also lower than K*.

By switching faster and faster labor effort, she can manage to get closer to
the supremum and minimize the departure from K = K*. In the continuous
time framework there is no limit to time division: any solution is then welfare-
dominated by another for which the switch between zero and full labor effort is
made faster. As a consequence, there is no optimal solution. By contrast, in a
discrete time model the number of switches in labor effort on a finite interval of
time is by definition limited and so is the ability of a pseudo-optimal trajectory
to mimic and approximate the relaxed supremum. The optimal solution is then
straightforward: at time ¢, if the capital stock is greater than K™ the optimal
labor effort is L; = 0; at time t + 1 if the capital stock is still greater than K*
the optimal labor effort is L;1; = 0, otherwise it is L;y1 = 1, etc.

The ability to increase the chattering behavior of a pseudo-optimal trajectory
and then improve welfare is related to time continuity. Thus, while there is a
non-relaxed optimal solution in the discrete time framework there is none in
the continuous time model.

10



6 Optimal economic policy, indeterminacy and continuous time

Real indeterminacy associated with time continuity makes economic policies
inefficient. This inefficiency is twofold.

First, in absence of optimal solution, each pseudo-optimal trajectory is welfare-
dominated by another one closer to the optimal relaxed solution. Then, for any
stabilization policy there exists another policy performing better by pinning
down the expectations on an equilibrium path that improves the representative
agent’s welfare.

Second, the difference in utility between two pseudo-optimal trajectories is
small. One can think that stabilizing the economy on a path close enough to
the optimal relaxed solution is likely to make the agents better-off compared
to a laissez-faire policy. However, the chattering pattern of the pseudo-optimal
trajectories requires to adopt a central planning in which prices are fixed at
any time. While Bambi and Saidi [2008] have shown that a subsidy/tax policy
constraining prices at only one period of time can pin down expectations on a
predetermined equilibrium path, such a policy must be replicated at any pe-
riod of time in the case of a chattering trajectory. Furthermore, the tax scheme
to be designed is non-standard: it consists in fully taxing capital and labor in
periods of zero labor effort and subsidizing labor in periods of full labor effort
so as to equalize the real wage to the marginal productivity of labor. Thus,
the main weakness of the stabilization policies, whether time is continuous or
discrete, lies in their inability to be realistically replicated in a decentralized
economy unless they ignore the chattering pattern of the pseudo-optimal tra-
jectories. More realistic stabilization policies have extensively been used in the
literature, among others Guo and Lansing [1998, 2001] or Guo and Harrison
[2001], but they fail to faithfully approximate the cycling behavior of capi-
tal, consumption and labor. They smooth the consumption/investment plans
of the representative agent, performing worse than some sunspot stochastic
trajectories. 1°

However, it is worth noting that such conclusions occurs only under indetermi-
nacy. When the degree of increasing returns to scale is not sufficient to imply
indeterminacy, a realistic and decentralized optimal economic policy can be
found. ' In that case, existence and uniqueness of the optimal trajectory in
the non-relaxed problem is insured by the Arrow sufficient condition since the
Mazximized Hamaltonian is strictly concave.

The Maximized Hamiltonian H is the value of the Hamiltonian once the con-
10See Christiano and Harrison [1999] for specific estimates.

' This policy is of course not a stabilization policy since there is no coordination
failures in absence of indeterminacy.
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trols have been replaced by their maximized values, obtained by the first-order
conditions (11) to (14): 12

60—1 1+x

A 0 iz
H(K,A):—IHA+CI)<1+X_BH>K =a Tixp T Y

14x

Wﬁhdﬁzﬁgg%Ig{Aﬁ(gﬁ}ﬁZ$ﬁ% >0

When the condition for indeterminacy does not hold, the maximized Hamil-
tonian is strictly concave if and only if the second derivative respect to K is
strictly negative:

0*’H -1 -1 1+ S v
0 — « '

K,A) = da(l _ 1| g et
i o) = ball 05— |ag— oy
The following proposition holds after rearranging the terms of the inequality:

Proposition 4 § < (1 —«)(1 + x) is a sufficient condition for existence and
uniqueness of an interior optimal solution to the optimization problem. Under
this condition, equations (11) to (14) describe the behavior of the optimal
solution.

It can be easily shown by applying the Blanchard-Kahn criterion that the
optimal trajectory is a saddle-path equilibrium. Furthermore, it can be noticed
that the condition for determinacy collapses to the condition of proposition
4 as 0 tends to 1. Thus, when the cost structure on capacity utilization is
barely convex and indeterminacy does not occur, the original maximization
programme has a unique interior solution that can be replicated by an optimal
economic policy. 13

This policy consists in eliminating the wedge between the social and private
marginal production products of capital and labor: it imposes a constant sub-
sidy rate on production (or equivalently on both capital and labor incomes),
namely o = . The subsidy is financed by a lump sum tax 7'(t) at period t.
The law of motion of capital then becomes:

12 As shown in appendix 8.1, provided the condition for indeterminacy is not met,
the values of the controls obtained by way of the first order conditions clearly
maximize the Hamiltonian for optimal values of K and A.

13 This policy has been extensively studied by Guo and Lansing [2002] in the context
of non-linear dynamics. For some parameters, such a policy may lead to Hopf or
Flip bifurcations.

12



where Y (t) represents the average economy-wide level of output at time ¢.
From the representative agent’s viewpoint, the programme respects the differ-
ent convexity assumptions: there is a unique solution whose dynamics coincides
exactly with equations (11) to (14).

Consequently, existence (and uniqueness) of an optimal non-relaxed solution
in the model — and more generally, in continuous time models where the
production set is not convex — relies on the degree of concavity of the utility
function. When disutility of labor is high enough, there always exists a limit to
the labor effort above which it is no longer welfare-improving to keep bunch-
ing hard work. Then, an interior solution is likely to exist and an efficient
economic policy is able to replicate its behavior. To the contrary, indetermi-
nacy occurs when the utility function is not sufficiently concave and implies
welfare-improving chattering trajectories.

7 Conclusion

It has been proved in this paper that, by contrast with a discrete time frame-
work, there is no Pareto optimal trajectory in continuous time models with
social increasing returns to scale whose degree is sufficient to induce indeter-
minacy. Results are derived within the Wen model [1998] but could be easily
extended to the Benhabib and Farmer models [1994, 1996]. '* Although there
is no optimal trajectory, a continuum of suboptimal trajectories may converge
to a supremum which is the solution of a generalized optimization program
where the original production set has been “convexified”. This means that no
economic policy is able to optimally pin down expectations: any stabilization
policy is welfare-dominated by another that leads the economy closer to the
supremum trajectory. Furthermore, those stabilization policies must be cen-
tralized by a social planner targeting prices at any period. Interventionism
is then a sine qua non condition to minimize the welfare loss between the
stabilizing trajectory and the supremum. The second best (stabilizing) trajec-
tory so obtained is an equilibrium path along which agents alternate periods
of full labor effort with periods of zero labor effort. The chattering pattern
of this solution differs from the traditional stabilization policies proposed in
the standard literature, leading to smooth consumption and investment over

14 Actually, the limit case # = +oo and 6(t) = & collapses to the Benhabib and
Farmer one-sector model.

13



time. It appears impossible for economic policy to insure both stabilization
and efficiency.

However, efficient economic policies may appear provided the degree of social
increasing returns to scale is compatible with a determined stationary equi-
librium. Then, an optimal economic policy consists in forcing the agents to
internalize the productive externality.

14



8 Appendices

8.1 Hessian matriz of H(K*,u,C, L, A*)

Let H be the Hamiltonian of the central planner’s program:

LH—X o7 B 0

H(K,u,C’,L,A)zlnC’—1+X+A([uK] L’ — 'K - C). (10)
Using the first-order conditions:

O (e, C L A) =0 s — (O‘Ka—lLﬂ)gla (11)
gy = “=\or
0OH 1
o EuC L) =0 C =+ (12)
H 1
aaL(K,u,C’, L,A)=0<= L= (AS[uK]*)™7 (13)
OH . A ,  aY

tlim AKe Pt =0,

and after some algebra, the Hessian matrix of H(K*,u,C, L, A*) can be writ-
ten as follows: 1

—1/c? 0 0
0 (B—1—x)Lx! alX/u
0 alX/u al'™(a —0)/(fu?)

Since C' > 0 it is straightforward that the first eigenvalue of the Hessian matrix
is negative while the others are the eigenvalues of the lower right submatrix,
say H,, whose determinant is:

al?x 0
Det(Hr):—ﬁ((g_&)u2 (ﬁe_a—l—x>.

By definition 8 > 1 > «a. Thus, if the condition for indeterminacy, equation
(5), holds the determinant of H, is negative. The determinant is equal to

15 The Hessian matrix is computed for optimal values of K and A, respectively K*
and A*.
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the product of the eigenvalues: one is strictly positive, the other is strictly
negative.

For optimal values of K and A, the Hamiltonian H(K*, u,C, L, A*) is then
concave in C' but not jointly concave in (u,C, L). Once the optimal values of
K and A have been found, the vectors (u,C') maximizing the Hamiltonian are
corner solutions. Provided K > 0 and L > 0, 9H/Ju has a solution between
zero and 1 and 9?H/O0u® < 0 when 6 > 1: the optimal value of u must be
interior. Thus, the value of L maximizing the Hamiltonian is either zero or 1.
Notice that for L = 0 it is clear that the optimal value of v maximizing (10)
is also zero.

8.2 Proof of proposition 1

According to the Filippov-Cesari theorem, there exists an optimal pair (K*(¢),v*(t))
to the optimization problem (6)-(9) provided for all ¢ € R, and all admissible
pairs (K (t),v(t)):

i. there exists an admissible pair (K (), v(t)),
ii. for each (K,t) the set N(K,V,t) € R? defined by

N(K,V,t) = {(Z Uzi(t)e” +n,9(K,v,t)) :n>0,veV}

i=0
and

g(t, K,u,C, L) = Zpi[ui(t)K(t)]aLi(t)ﬁ - Tpiui(t)gK(t) — piCi(t)

=0

is convex,

iii. T is closed and bounded,

iv. there exist piecewise continuous functions h and j such that | 32, U;(t)eft| <
h(t)| K|+ j(t) for all (K,t),ve V.

Conditions i. and ii. are straightforwardly satisfied: the relaxed problem has
been built so as to specifically satisfy condition ii.

Since f : R x V x Ry — R, defined by f(K,v,t) = S7,Ui(t)e is a con-
tinuously differentiable mapping, if x is a compact subset then the restriction
f:rxV xR, — R satisfies the Lipschitz continuity condition required by
iv. From equation (7), it can be noticed that for all ¢ € R, and all admissible
pairs (K (t),v(t)), 8g/0K = 0 for K = K while 82g/0K? < 0. Thus, since for
any i € {1,2}, u; and L; are bounded above and C; is bounded below, g has
a maximum in K € (_f( ,00) where g is strictly decreasing and tends to —oo
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as K tends to infinity. We have: K € [0, K] = k.

We have shown that K € [0, K] and by definition, for i € {1,2}, (u;, L;, p;) €
[0,1]%. Then, C; < K + K. Furthermore, we will assume that C; = 0 is
feasible: in that case, we define the utility function by U;(0, L;) = —oo. Thus
C; €0,C] and T is closed and bounded.

8.8  Proof of proposition 2

According to Carlson [1993], there exists a sequence {K;(t),u;(t)}°, of ad-
missible pairs for the initial non-relaxed problem such that the sequence of
admissible trajectories { K;(t)} converges uniformly to K*(¢) on compact sub-
sets of [0, +00) provided:

i. T is closed and bounded,
ii. the set given by

M= {(t,K,z): (t,K) € [0,00) x [0, K],z € T}

is closed,
iii. ' = (g,f): M — R? be a given continuous vector-valued function, and
let h be a piecewise continuous function from [0, +00) into R such that

|F(t, K,x) — F(t, K',z)| < h(t)|K — K|
holds for almost all t > 0, (¢, K,z) € M and (¢, K',x) € M.
Condition i. has already been proved.
The closure of [0,00), [0, K] and Y implies condition ii.

The argument to prove condition iii. is the same as for condition iv. above.

8.4 Proof of proposition 3

Notice first that a degenerated trajectory with L = 1 at every period is sub-
optimal since for high capital levels the net production is negative or null.
For these levels, the optimum labor effort maximizing the Hamiltonian (10) is
unambiguously L = 0.

Assume then that the strategy Lo = 0 is chosen by the social planner as a
generated trajectory at time ¢. In other words: p; = 0 while p, = 1. Tt is
recalled that for such a trajectory K < 0.
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To the contrary, assume that a mixed strategy with p1,p2 > 0 and Ly = 1is
chosen at time ¢ such that K = 0, which implies according to equation (7):

Cl—CQZKa—Tu§K>0.
The instantaneous welfare gain for the social planner is:
AU InCy + (1 )InC ! In C:
=p11n — nC, — —— —1In
P1 1 P1 277 x 2
[ 1
=m lnC’l—lnC'g—]

I 1+ x
-h’lCl—anQ 1
pl_ Cy 1+
[ 1
=p |InCy —InCy — ——
pl_n 1 nGCo 1+X]
(K — rulK 1
Npl —_— .
Cy I+ x

To get K = 0 we must have K“L?—TufK—C’l > (0 since K“Lg—TugK—C’g <
0. Then, K% — TU?K > (7 > (9 and:

K*—rmu{K 1
—_—>1>—.
Co T+x

We deduce that AU > 0: the social planner has no incentive to choose a
degenerate strategy.
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