
Department of Economics

Dynamic Factor Models in Estimation and 
Forecasting

Victor Bystrov

Thesis submitted for assessment with a view to obtaining the degree of 
Doctor of Economics of the European University Institute

Florence
March 2008



Dynamic Factor Models in

Estimation and Forecasting

Victor Bystrov

European University Institute

Supervisor: Anindya Banerjee

Second reader: Helmut Lütkepohl



 



Contents

Introduction 3

Chapter 1 Forecasting Emerging Market Indicators: Brazil and Russia 6

Chapter 2 Co-Breaking and Forecasting Performance of Factor Models 36

Chapter 3 Factor Augmented Error Correction Models 63

Conclusions 92

References 93



 



Introduction

The growing amount of information available to policy-makers and researchers has

made possible the application of dynamic factor models to the forecasting of macroe-

conomic indicators. While traditional VARs and VECMs include only a few variables

from the large data sets available to policy makers, dynamic factor models allow the

incorporating of information extracted from many variables into a small-scale econo-

metric model.

Dynamic factor models as developed by Stock and Watson (1998), have re-

cently become a subject of intensive research. They were used for the forecast-

ing of macroeconomic variables in the US, UK and Euro-area (Stock and Wat-

son (2002), Marcellino, Stock and Watson (2003), Artis, Banerjee and Marcellino

(2003)). Factor-augmented VARs have also become an instrument of monetary pol-

icy analysis (Favero and Marcellino (2001), Bernanke, Boivin and Eliasz (2004),

Belviso and Milani (2005), Stock and Watson (2005)) and forecasting (Hansson,

Jansson, and Lof (2003), Monch (2005)).

Another growing stream of research concerns the measurement of common stochas-

tic trends in large data sets, using a dynamic factor structure. It was initiated by

Bai and Ng (2004) and Bai (2004). The factor structure allows for the evaluation

of the number of common trends and the testing of cointegration in large panels.

Despite theoretical developments there are still very few empirical applications of

this approach. Flad (2007) uses PANIC as developed in Bai and Ng (2004), to mea-

sure common trends of the money market interest rates in the euro area, Bai (2004)

measures common trends of the sectoral employment in the USA.

Banerjee and Marcellino (2007) consider implications of common stochastic trends

in large panels for modelling the short run dynamics of small systems of variables.

They introduce the factor-augmented error-correction model (FECM) which incor-

porates non-stationary factors extracted from a large panel of data into a small

system of variables. Banerjee and Marcellino (2007) argue that such a model may

overcome the problem of omitted variables in a small system.

Though the stream of research about factor models is growing, little is known
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about the performance of the factor models in small samples and in the presence

of different types of structural breaks. Except for Banerjee and Marcellino (2007),

there are no empirical applications of factor-augmented models which evaluate im-

plications of cointegration in large panels for small systems of variables.

This thesis addresses the issue of the relative performance of dynamic factor

models in finite samples in the presence of structural breaks. It extends an existing

literature by considering new data sets and evaluating finite sample properties of

dynamic factor models and factor-augmented VARs and VECMs in Monte Carlo

exercises.

In the first paper, the relative forecasting performance of dynamic factor mod-

els and small-scale VARs is evaluated on the basis of data available for two large

emerging market economies, Brazil and Russia. As these two economies can be

characterized by the small time spans of available data and structural breaks, an

empirical exercise conducted for these countries, allows us to explore the relative

performance of factor models in small samples in the presence of structural changes.

The results of this forecasting exercise show that both VARs and factor models

are useful in forecasting inflation and output growth, but their relative performance

differs for different forecast variables. It allows us to suggest that the relative effi-

ciency of forecasting models depends on the statistical properties of the series under

consideration, in particular, on the persistence of the series and on the type and size

of the structural changes in the series.

The findings of the first paper provide the motivation for the second paper, in

which the relative performance of autoregressive models and dynamic factor models

is explored in the Monte Carlo exercise. The data are generated with structural

breaks and the role of intercept correction and differencing for robustifying forecasts

in the presence of breaks is also evaluated. Factor models work well if there is a break

in the middle of estimation period. However, their relative performance deteriorates

if there is a break in the end of the estimation period. Intercept correction and

differencing are also found to be useful in several cases.

It can be an explanation of the results of the empirical exercise conducted for

Brazil and Russia, where factor forecasts perform well for the series with a break
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in the middle of estimation period (output growth in Russia), but the relative per-

formance of factor forecasts deteriorates if there is a break in the forecasting period

(inflation in Brazil).

In the third paper the performance of factor-augmented error-correction mod-

els is evaluated in a Monte Carlo exercise and a detailed empirical application is

conducted for the forecasting of bank retail rates in the euro-area. The hypothesis

considered is that the inclusion of the common stochastic trends extracted from the

large data set can improve the in-sample and the out-of-sample performance of the

small-scale ECMs.

It is found both in the Monte Carlo exercise and the empirical application that

in-sample the FECM performs well relative to the models which are not augmented

by factors, but the forecasting performance of the FECM is no better than the

forecasting performance of other models for the one-period horizon. However, the

results of the empirical exercise indicate that the forecasting performance of the

FECM can improve for the longer horizons where the long run relations can dominate

the short run cycles which are better approximated by simple VAR models.
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Chapter 1

Forecasting Emerging Market Indicators:

Brazil and Russia

Abstract

The adoption of inflation targeting in emerging market economies makes ac-

curate forecasting of inflation and output growth of primary importance for

these economies. Since only short spans of data are available for emerging

markets, autoregressive and small-scale vector autoregressive models can be

suggested as forecasting tools. However, these models include only few time

series from the whole variety of data available to forecasters. Therefore dy-

namic factor models extracting information from a large number of time series,

can be suggested as a reasonable alternative. In this paper two approaches

are evaluated on the basis of data available for Brazil and Russia. The results

allow us to suggest that the forecasting performance of the models consid-

ered depends on the statistical properties of the series to be forecast, which

are affected by structural changes and changes in operating regime. This in-

teraction between the statistical properties of the series and the forecasting

performance of models requires more detailed investigation.

1 Introduction: Monetary Policy and Forecasting

Forecasts of inflation and output growth provide the basis for the development of

monetary policy within an inflation targeting framework. According to Svensson

(1999) an inflation targeting framework is characterized by (1) an explicit quantita-

tive inflation target; (2) an operating procedure that can be described as inflation-

forecast targeting, namely the use of an internal conditional inflation forecast as an

intermediate target variable; and (3) a high degree of transparency and accountabil-

ity.

6



The operating procedure can be described as inflation-forecast targeting in the

following sense: the central bank’s internal conditional inflation forecast is used as

an intermediate target variable. An instrument path is selected which results in a

conditional inflation forecast in line with a target for the inflation forecast. This

instrument path then constitutes the basis for the current instrument setting.

In the theoretical literature (Svensson (1999), Woodford (2003)) this procedure

is referred to as a targeting rule as opposed to an instrumental (Taylor) rule that

expresses an interest rate as a prescribed function of predetermined or forward-

looking variables, or both. The targeting rule does not specify a formula for the

central bank’s interest-rate operating target. Rather, an interest rate is set at what-

ever level may turn out to be required in order for the bank’s conditional forecast

to be in line with an inflation target.

During the 1990s several advanced industrial countries (United Kingdom, Swe-

den, Norway, Canada, Australia, and New Zealand) introduced inflation targeting as

a framework for the conduct of monetary policy. Towards the end of the 1990s a few

post-Soviet countries (Czech Republic (1997), Poland (1998), and Hungary (2001))

also shifted to inflation targeting. Brazil adopted an inflation targeting framework

in 1999 and the Central Bank of Russian Federation started announcing inflation

targets in 2003.

A classical example of inflation-forecast targeting is the procedure used by the

Bank of England. The Bank of England adopts a given operating target it for the

overnight interest rate at date t if and only if the Bank’s forecast of the evolution

of inflation over the next two years, conditional upon the interest rate remaining at

the level it, implies an inflation rate of 2.5 percent per annum (the Bank’s current

inflation target) two years after date t (Vickers (1998)). In the development of the

conditional inflation forecast the Bank of England uses a suite of models rather

then a single model (Hatch (2001)). The Bank’s large-scale core model of the UK

economy is supplemented by small-scale macroeconometric models, Phillips-curve

models, vector autoregressive models, and survey data. The final inflation projection

published in the Inflation Report is the result of the collective judgement of the

Monetary Policy Committee.
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The experience of the Bank of England and the central banks of other industrial

countries has been used by central banks of emerging market economies. In the

second half of the 1990s the central banks in many emerging markets have aban-

doned fixed exchange rate regimes and replaced them with more flexible exchange

rate arrangements. The fixed exchange rate was used as a nominal anchor to achieve

a rapid stabilization of the price level. However, while inflation did decline signif-

icantly, it did not decline enough to prevent a large real appreciation of national

currencies. This real appreciation eroded relative competitiveness of emerging mar-

ket economies and ultimately created significant current account deficits. Under

these conditions the central banks of these economies were forced to abandon fixed

exchange rates. When abandoning the exchange rate peg, the central banks had to

decide which nominal anchor to use instead of a fixed exchange rate. The success-

ful experience of advanced industrial countries suggested the adoption of inflation

targeting.

The most serious objection raised against the adoption of inflation targeting

in emerging market economies is the limited ability to forecast inflation in these

economies (Jonas and Mishkin (2003)). This is partly the result of the relatively

frequent occurrence of shocks and the large degree of openness of emerging markets.

Mainly due to an inability to forecast inflation and economic growth accurately, the

countries that opted for the inflation targeting regime had significant deviations from

their chosen targets. The central banks of these countries (Czech Republic, Poland)

responded by the widening of target bands and the introduction of exceptional events

into their monetary programs. But they also tried to improve their conditional

inflation forecasts by the development of forecasting tools and the incorporation of

a growing amount of information.

In this paper we look at the experience of Brazil and Russia, two of the largest

emerging market economies. The IMF and the World Bank include them in the ten

largest economies in the world with respect to the dollar estimates of GDP, which

are computed using purchasing power parity (PPP). Therefore the investigation of

these economies is of particular interest.

We focus on forecasting CPI inflation and GDP growth in Brazil and Russia.
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Forecasts from autoregressive (AR) models and small-scale vector autoregressive

(VAR) models are compared with those from dynamic factor models. Given the

small time span of reliable data for Brazil and Russia, AR and small-scale VAR

models, including only few variables and few parameters, can be considered as a

reasonable forecasting tool. On the other hand, dynamic factor models extract

information from a large number of time series, despite the small time span of

data. We provide evidence on the relative forecasting performance of AR, VAR,

and dynamic factor models in small sample in the presence of structural changes.

The presence of structural changes in forecast variables and many predictors

raises the important question about the correction of models for these non- sta-

tionarities. Since the complexity of the structural changes and lack of observations

complicate the modeling of these changes explicitly, forecasts can be robustified by

application of methods proposed by Clements and Hendry (1998, 1999). Among

these methods are intercept correction of the forecast and additional differencing of

the variable to be forecast. Their efficiency is going to be evaluated in application

to autoregressive models.

The paper is organized as follows. In section 2 we briefly consider economic

developments and monetary policy in Brazil and Russia over the last ten years, and

evaluate the role of forecasting in implementation of monetary policy. Section 3

describes the forecasting models, data sets, and criteria for forecast comparison. In

Section 4 the results of forecast comparison are reported. In Section 5 we propose

some general conclusions and suggestions for further research.

2 Inflation Targeting in Brazil and Russia

2.1 Brazil

The crawling peg regime in Brazil, initiated in mid-1994, successfully brought an-

nual inflation to one-digit figures in less than three years. However, it led to the

overvaluation of the national currency and a growing current account deficit. Trade

imbalances and accumulated public debt left Brazil vulnerable to a confidence crisis,

which became a reality with the international financial turmoil of 1997-1998 culmi-

nating with the Russian moratorium in August 1998. The Russian crisis generated
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a capital flight from Brazil, and the Central Bank of Brazil was forced to abandon

the crawling peg regime: the real was forced to float on January 1999.

The new exchange rate regime required a new anchor for monetary policy and

in July 1999 Brazil adopted inflation targeting as the monetary policy framework.

The Broad Consumer Price Index (IPCA) was chosen for measuring inflation. The

targets were set at 8% for 1999, 6% for 2000 and 4% for 2001. Tolerance intervals

of 2% for each year were also defined.

In order to support the monetary policy decision process, the Research Depart-

ment of the Central Bank of Brazil has developed a set of tools which include a

structural model of the transmission mechanism of monetary policy to prices, short-

term inflation forecasting models, leading inflation indicators, and surveys of market

expectations (Bogdanski, Tombini and Werlang (2000)). The structural model in-

cludes an IS-type equation, a Phillips curve, an uncovered interest parity condition,

and monetary policy rules. This model is complemented by a set of short-term mod-

els including Autoregressive Moving Average (ARMA) and Vector Autoregressive

(VAR) models. The forecasts of the structural and time-series models are comple-

mented by survey data-based forecasts and used for the projection of CPI inflation

and GDP growth.

Bogdanski, Tombini and Werlang (2000) emphasize that monetary policy deci-

sions in the Bank of Brazil are taken on the basis of the widest information set

available. This information includes dynamics of production, investment, and con-

sumption; developments in the labour market; state of public finance; dynamics of

disaggregated price indices; exports, imports, and exchange rate dynamics; changes

in the international economy; and market expectations. Using this data, the Mon-

etary Policy Committee of the Bank of Brazil develops the baseline scenario and

decides on the inflation target and the interest rate path.

Implementing inflation targeting, the Central Bank of Brazil succeeded in keeping

the inflation rate within the tolerance intervals in 1999 and 2000 (Table 1). How-

ever, the Argentine crisis and the terrorist attacks to the United States in September

2001 generated large capital outflows from the Brazilian economy and rapid depre-

ciation of the real. Together with the accelerated growth of administered prices it
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implied an increase of the CPI inflation rate above the tolerance interval. In 2002

the confidence crisis continued. It was triggered by concerns that the new president,

who had been elected that year, would default on the national debt. Therefore the

depreciation of the real continued and inflation accelerated. As a result, despite

the upward shift of the inflation targets and expanding of the tolerance intervals

(up to 2.5%) the Central Bank of Brazil failed to hit the inflation targets in 2002

and 2003: inflation reached levels well above the tolerance intervals. Only in 2004

did the Central Bank of Brazil succeed in decelerating inflation and bringing the

inflation rate within the tolerance interval.

Table 1 Forecast and actual inflation in Brazil and Russia
Brazil Russia

Year
Target Actual Forecast/Target Actual

1999 8 (6 -10) 8.9 30 35.5
2000 6 (4 - 8) 6 18.6 20.2
2001 4 (2 - 6) 7.7 12 - 14 18.6
2002 3.5 (1.5 - 5.5) 12.5 12 - 14 15.1
2003 4 (1.5 - 6.5) 9.3 10-12 12
2004 5.5 (3 - 8) 5.7 8-10 11.7

2.2 Russia

The Central Bank of Russia has started announcing inflation targets much later

than the Bank of Brazil. From 1995 onwards Russia had the crawling band regime.

As in Brazil, the introduction of the crawling band allowed inflation to decrease

significantly but it did not decrease sufficiently to prevent the real appreciation of

the national currency. In 1998, the Asian crisis and decrease of oil prices in the

international market led to large capital outflows from the Russian economy. The

adverse external factors combined with the growing public debt led to a currency

crisis and default on national obligations in August 1998. The crawling band regime

was abandoned, the exchange rate of rouble devaluated more than 3 times and the

inflation rate reached 84.4% per annum at the end of 1998.

In the aftermath of the currency crisis the Central Bank of the Russian Federation

applied a discretionary, ”just-do-it” approach to monetary policy without an explicit

nominal anchor. The Central Bank of Russia tried to slow down inflation and
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protect the exchange rate of the rouble from sharp changes by making significant

interventions in the foreign exchange market.

Inflation forecasts, produced in 1999-2002 by the Central Bank of the Russian

Federation, systematically underestimated actual inflation (Table 1). These infla-

tion forecasts were conditioned by expectations of relatively low oil prices in the

international markets and moderate economic growth in Russia. However, high oil

prices together with improved relative competitiveness of domestic producers after

the devaluation of the rouble implied higher than expected rates of economic growth.

In addition, large interventions of the Bank of Russia in the foreign exchange mar-

ket under the conditions of growing capital inflows led to significant an increase of

inflation rates well above forecast levels.

In 2002 the Central Bank of the Russian Federation announced for the first time

an inflation target for the next year. The Bank of Russia decided to target the CPI.

The inflation target for 2003 was set by the Bank of Russia at 10-12 %. This target

was met as the inflation rate amounted to 12 %.

In 2003 the Bank of Russia announced inflation targets for the next three years.

According to Monetary Policy Guidelines for 2004 the rate of inflation had to be

reduced to 8-10 % in 2004, 6.5-8.5 % in 2005, and 5.5-7.5 % in 2006. However,

in 2004 the inflation rate amounted to 11.7 % well above the target range. This

overshoot was conditioned by a level of economic activity higher than the level that

was supposed in any scenario of economic development for 2004.

From 2002 onwards two principal scenarios of economic development have been

considered by the Bank of Russia when setting an inflation target and selecting

instruments for the following year. These two scenarios differ in their different

prospects for global economic development, including oil price dynamics in the in-

ternational markets, world economic growth rates, world interest rates and exchange

rates of major world currencies. The first (pessimistic) scenario is based on assump-

tions of relatively low oil prices and high dollar-denominated interest rates. In the

second (basic) scenario stable oil prices and low interest rates are assumed. The

main internal factors taken into account in the development of monetary program

are labour market dynamics, consumer and investment demands, the state of public
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finance. On the basis of these two scenarios variants of monetary program for the

next year are developed.

According to the basic scenario for 2004 the growth rate of national product

would amount to 5.2 % while according to the pessimistic scenario the growth rate

would amount to 3.8 %. However, the growth rate of national product has in fact

amounted to 7.1 %. This high growth was associated with good external prospects

and growing consumer and investment demands inside of country, which were not

assumed in any scenario. Consequently, the inflation rate was pushed above the

target range.

This early inflation targeting experience indicates that the success or failure of

inflation targeting in Brazil and Russia in the coming years will depend in large

degree on the ability to produce accurate forecasts of economic developments in-

side of these countries and abroad. It raises the issue of development of accurate

forecasting tools.

The Brazilian and Russian economies have passed through large transformations

and structural changes. In particular, the currency crisis in 1998 - 1999 and the

following change in the policy regime have affected significantly the dynamics of

many macroeconomic time series in these economies.

The 1998 - 1999 crisis implied a change in the slope of inflation both in Brazil

and Russia (Figures 1 and 3, Appendix C). In both countries inflation was declining

over 1995 - 1997, but in 1998 the trend was broken. The currency crisis in August

1998 implied an explosion of inflation in Russia over the last two quarters of 1998

and the first quarter of 1999 with the following slow adjustment to the lower levels,

while in Brazil the abandoning of the crawling peg in January 1999 did not lead to

a large one-time shock but implied a shift to a higher level of inflation.

Turning to output growth, the 1998 crisis affected it significantly in Russia and

led to a sharp fall in the rate of output growth in 1998. In the aftermath of the

crisis, the rate of output growth shifted to a higher level (Figure 4, Appendix C).

In Brazil the dynamics of output growth was similar to that of output growth in

Russia, but the effect of the currency crisis on output growth was not as large as in

Russia (Figure 2, Appendix C).
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In the aftermath of the crisis, inflation and output growth stabilized in Russia.

However, in Brazil a new confidence crisis in 2002-2003 provoked a large shock to

inflation with the following slow adjustment to a lower level.

This preliminary analysis suggests that the dynamics of CPI inflation and GDP

growth in Brazil and Russia is not only subject to one-time shocks and shifts but

also to nonlinear adjustment processes. This raises the issue about the ability of

different forecasting models to accommodate structural changes and fit the non-

linear dynamics of the series of interest. Lack of data does not allow us to estimate

efficiently non-linear models which include many parameters. On the other hand,

presence of structural changes can imply instability of estimated parameters for

linear models and failure in forecasting.

In this paper we evaluate the forecasting performance of different linear models

in the small sample in the presence of structural changes. We also evaluate efficiency

of some methods which were proposed by Clements and Hendry (1999) in order to

robustify forecasts from linear models in the presence of structural changes.

3 Methodology

In this section forecasting approaches and criteria for the evaluation of their relative

merits are represented briefly. Given the small time span of data available, small-

scale linear models (AR, VAR) can be suggested as forecasting tools, because of

their parsimonious specification and good performance. However, small-scale models

include only few economic time series of the whole variety of data available to policy

makers.

Another approach, combining information from a large number of time series

with parsimonious specification has been the topic of investigation in the last years.

Dynamic factor models, as developed by Stock and Watson (1998), have been suc-

cessfully used to forecast macroeconomic variables in the US, UK and Euro-area,

(Stock and Watson (2002), Marcellino, Stock, and Watson (2003), Artis, Banerjee

and Marcellino (2003)). Some evidence in favour of dynamic factor models was

found for transition economies (Banerjee, Marcellino and Masten (2004)). There

have also been attempts to incorporate the information extracted by factor models
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into traditional small-scale models with the purpose of forecasting and policy anal-

ysis (Stock and Watson (1999), Favero and Marcellino (2001), Bernanke and Boivin

(2003)).

The primary justification for the use of factors models in data sets for emerging

economies, as described in Banerjee, Marcellino and Masten (2004), is their useful-

ness as a particular efficient means of extracting information from a large number

of time series, albeit of short time span. Forecasts of key macroeconomic variables

may be improved significantly, not least because in a rapidly changing economy the

ranking of variables as good leading indicators for inflation or output growth is not

clear a priori. Therefore factor models provide a methodology that remains ”agnos-

tic” about the structure of economy, by employing as much information as possible

in the construction of forecasting exercise.

The design of this forecasting exercise replicates one developed in Artis, Banerjee

and Marcellino (2003). All forecasting models are specified and estimated as a linear

projection of an one-step ahead forecast variable, y t+1, onto t-dated predictors. More

precisely, the forecasting models all have the form,

yt+1 = µ + α(L)yt + β(L)′Zt + εt+1, (1)

where µ is a constant, α(L) is a scalar lag polynomial, β(L) is a vector lag polyno-

mial, and Z t is a vector of predictor variables.

The construction of the forecast variable y t depends on whether the original

series is modelled as I(0), I(1) or I(2). Recall that series integrated of order d,

denoted I(d) are those for which the d -th difference (∆d) is stationary. Denoting by

x the original series (usually in logs) in the I(0) case the forecast series y t+1 = xt+1.

In the I(1) case, the forecast series y is the growth in the original series x between

time period t and t+1 : yt+1 = ∆xt+1 = xt+1−xt. In the I(2) case, y is the difference

of growth in x between t and t+1 : yt+1 = ∆2xt+1 = ∆xt+1−∆xt = xt+1−2xt+xt−1.

This is a convenient formulation because, given that x t and its lags are known when

forecasting, the unknown component of y t+1 conditional on the available information

is equal to x t+1 independently of the choice of the order of integration. This makes

the mean square forecast error (MSFE) from models for a twice differenced variable
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directly comparable with that from models for first differences.

3.1 Forecasting Models

Various forecasting models, which are compared, differ in their choice of Zt. Let us

list the forecasting models and briefly discuss their main characteristics.

Autoregressive forecast (ar aic). A univariate autoregressive forecast is taken as

a benchmark. It is based on (1) excluding Zt. The lag length is chosen by the Akaike

Information Criteria (AIC) with a maximum of 4 lags.

Autoregressive forecast with second differencing (ar i2 aic). Clements and Hendry

(1999) showed that the second differencing of the forecast variable can improve

the forecasting performance of autoregressive models in the presence of structural

changes, even in the case of over-differencing. Hence, this model corresponds to (1),

excluding Zt and treating the variable of interest as I(2).

Autoregressive forecast with intercept correction (ar ic aic). An alternative rem-

edy in the presence of structural changes is to put the forecast back on track by

adding past forecast errors to the forecast. Clements and Hendry (1999) show that

simple addition of the forecast error can be useful. Hence, the forecast is given by
ˆ
yt+1 + εt, where

ˆ
yt+1 is the AR forecast and εt is the forecast error made when fore-

casting y t in period t-1. However, both intercept correction and second differencing

increase the MSFE, when not needed, by adding a moving average component to

the forecast error, and thus are not costless.

Random walk forecast (rw). Since random walk forecast is found to be a robust

benchmark in many forecasting exercises, it is also included in this exercise. This

model correspond to (1), excluding Zt and setting α(L) to be equal to 1.

VAR forecast (var aic). VAR forecasts are constructed using equation (1) with

different regressors Zt . In particular, for GDP growth Zt includes the money market

interest rate and for CPI inflation Zt includes the nominal exchange rate and GDP

growth. The lag length is chosen by the Akaike Information Criteria (AIC) with the

maximum of 4 lags.

Factor-based forecasts. These forecasts are based on setting Zt in (1) to be

estimated factors from a dynamic factor model. Stock and Watson (1998) show that,
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if the set of predictor variables can be described by an approximate dynamic factor

model, then under certain assumptions (restrictions on moments and stationarity

conditions) the space spanned by the latent factors can be estimated consistently by

the principal components of the covariance matrix of the predictor time series. Stock

and Watson (1998) also provide conditions under which these estimated factors can

be used to construct asymptotically efficient forecasts. The dynamic factor model

is briefly reviewed in Appendix A.

For each of the factor-based models, factors can be extracted from the unbalanced

panel (prefix fnbp), or from the balanced panel (prefix fbp). The former contains

more variables than the latter, and therefore more information. The only drawback

is that missing observations have to be estimated in a first stage, which can introduce

noise in the factor estimation.

Two types of factor-based forecasts are considered. First, we consider the model

which includes both factors and lags of forecast variable (fnbp ar aic and fbp ar aic).

The selection of a number of factors and lags is based on AIC. The maximum number

of factors is equal to 6 and the maximum number of lags of dependent variable is

equal to 4. Second, we consider the model where only up to 6 factors appear as

regressors, but not lags of dependent variable (fnbp aic and fbp aic).

In order to evaluate the role of each factor in forecasting, for the unbalanced panel

we also consider forecasts using a fixed number of factors, from 1 to 4 (fnbp ar 1 to

fnbp ar 4 and fnbp 1 to fnbp 4 ).

3.2 Forecast Comparison

The forecast comparison is performed in a simulated out-of-sample framework where

all statistical calculation are done using a fully recursive methodology. The models

are first estimated using data from 1995:1 to 2002:2, and one-quarter ahead forecasts

are computed. Then the estimation sample is augmented by one quarter and the

corresponding one-quarter ahead forecasts are computed again. The forecast period

for one-quarter ahead forecasts is 2002:3 - 2004:4 for a total of 10 quarters, and the

final estimation sample for one-quarter ahead forecasts is therefore 1995:1 - 2004:3.

Every quarter (i. e. every augmentation of the sample) all standardization of
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data and model estimation are repeated. A simulated out of sample MSFE is then

computed as an average of the sum of squares of all comparisons between an actual

value of the variable and its forecast (under any methods given in section 3.1 above).

The forecasting performance of the described methods is examined by comparing

their simulated out-of-sample MSFE relative to the benchmark AR forecast. West

(1996) standard errors are computed around the relative MSFE.

It is worth noting that the reported comparison criteria are based on averaging

forecast errors, whose magnitude can differ substantially over forecasting period.

They also do not provide information about the directional accuracy of forecasts

which can be of particular importance.

The choice of the forecast horizon is conditioned by the availability of the data

and small sample size, and the chosen forecast horizon, one quarter, is of rather

limited relevance for the decisions about the monetary policy. Since the inflation

target is set one year in advance, it requires one-year ahead forecasts. However, the

Monetary Policy Committee meets every month in order to adjust its forecasts and

decide on interest rate path, and every quarter it issues inflation report and produce

forecasts for the next quarter. Thus, the one-quarter ahead forecasting is relevant

for the monitoring economy and adjusting monetary policy over the year.

3.3 Data

The data sets for Brazil and Russia include respectively 41 and 47 quarterly series

over the period 1995:1 - 2004:4. These series are extracted from the OECD database

(Main Economic Indicators), the IMF database (International Financial Statistics),

the database of the Central Bank of Brazil, and the database of the Russian Statis-

tical Agency. They include series characterizing real output and income (GDP and

its main components, production indices), labour market indicators (employment,

unemployment, vacancies); interest rates (money market rates, lending and deposit

rates); stock price indices; producer and consumer price indices; money aggregates;

survey data; miscellaneous (exports, imports, exchange rates, international oil prices

etc.). A complete list of series for both countries is reported in the Appendix B.

Following Banerjee, Marcellino and Masten (2004) the data are pre-processed
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in four stages before being modelled with a factor representation. First, all series

excluding financial (interest rates, stock prices and exchange rates) are seasonally

adjusted using original X-11 ARIMA procedure.

Second, logarithms are taken of all nonnegative series that are not already in

rates or percentage points, and the series are transformed to account for stochastic

or deterministic trends. The same transformation is applied to all the series of the

same type.

The main choice is whether prices and nominal variables are I(1) or I(2). Given

the small time span of the sample and adjustment processes ongoing over the period

under consideration it is hard to rely upon formal tests in deciding whether prices

and other nominal series are I(1) or I(2). Even if the price series are not generated

by I(2) processes, second differencing can robustify the forecasts in the presence of

structural breaks (see Clements and Hendry(1999)). In order to evaluate the role of

second differencing in the forecasting performance of the factor models, this exercise

is performed both under the assumption of I(1) prices and under the assumption

of I(2) prices. In the first case all prices are treated as series generated by I(1)

processes, and differenced only once. In the second case all prices and other nominal

series are treated as series generated by I(2) processes, and differenced twice.

Third, all series are standardized before being used for factors estimation, e. g.

they are transformed to series with zero mean and with the standard deviation equal

to one.

Finally, the transformed seasonally adjusted series are screened for large outliers

(outliers exceeding six times the interquartile range). Each outlying observation is

recorded as missing data, and the EM algorithm (Stock and Watson (1998)) is used

to estimate the factor model for the resulting unbalanced panel.

This procedure implies that the factors, which are estimated using differenced

series, do not have large outliers. Large outliers in differenced series are generated

by shifts in mean in original series. This type of structural break is excluded from

the estimated factors, which are then used in forecasting.

Using the cumulative trace R2 from the regressions of individual series on the

estimated factors we find that the estimated factors fit the data quite well both for
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nominal series treated as I(1) and for nominal series treated as I(2) (Tables 1 and

2, Appendix D). If nominal series are differenced once, the first six factors explain

56% of the variability of the 41 series for Brazil and 63% of the variability of the 47

series for Russia. If nominal series are differenced twice, the first six factors explain

54% of the total variability of the data for Brazil and 62% of the total variability of

the data for Russia.

For Brazil the first estimated factor explains real variables including production,

consumption, and labour market indicators, while the second and the third factors

explain interest rates and prices. This result for Brazil does not depend on the order

of differencing of nominal series. For Russia, if nominal series are differenced once,

the first factor explains consumer prices and exchange rates, the second factor loads

on production series and producer prices, while the third factor explains interest

rates. If nominal series are differenced twice, the first factor explains production

variables as well as consumer prices and exchange rates, the second factor explains

some production series and producer prices, and the third factor loads on the interest

rates and money aggregates.

In Tables 1–2 (Appendix D) we report the R2 in the regression of each variable

to be forecast on the estimated factors. The first 3–4 estimated factors explain most

of the variability of CPI inflation and GDP growth in Brazil in Russia. If nominal

series are differenced once, the first three factors explain 50% of the variability of

inflation in Brazil and 88% of the variability of inflation in Russia, and they also

explain 76% of the variability of output growth in Brazil and 82% of the variability

of output growth in Russia. This result does not change significantly, if nominal

series are differenced twice.

Therefore the estimated factors are found to be informative about the data sets

as whole, and about the variables to be forecast in particular. Let us now turn to

their forecasting efficacy.

4 Forecasting Results

In this section the results of the forecast comparison for the Brazilian and Russian

GDP growth and CPI inflation are reported. Forecasting is performed for one-
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quarter horizon for a total of 10 quarters. Relative MSFE are reported in Tables 3

– 4 in Appendix D.

4.1 Brazil

The results for Brazil are reported in Table 3 (Appendix D). In Figures 5 and 6

(Appendix C) we report actual values and one-quarter ahead forecasts from the

best non-factor and factor models.

Let us consider the case when the price series are treated as I(1). Both for

GDP growth and CPI inflation, most of the factor forecasts do outperform the

benchmark autoregressive forecast. On the other hand, most of the factor forecasts

are outperformed by the VAR forecast. The VAR forecast is best for inflation, while

for output growth there is a factor forecast (fnbp 3 ) that outperforms the VAR, but

the gain provided by this factor forecast comparing to the VAR forecast is not large.

The random walk forecast, the intercept corrected AR forecast, and the AR

forecast for the price series differenced twice outperform the benchmark for CPI,

but they do not provide gains in the forecasting of GDP. This result corresponds to

the evidence provided by the analysis of the dynamics of these series: while inflation

was the subject of several structural changes, there is no certain evidence of non-

stationarities in the dynamics of output growth in Brazil. Therefore the methods

robustifying for structural changes appear to be efficient for inflation but not for

output growth.

Figure 6 (Appendix C) shows that the VAR and the best factor model provide

poor forecasts for GDP growth although they outperform the benchmark. The

visual analysis of the graph of these forecasts allows us to suggest that they are

biased downwards. This result requires further investigation and explanation.

The VAR and the best factor forecasts of CPI inflation (Figure 4, Appendix

C) are biased downwards in the first three quarters of forecasting, but then they

converge to the actual values of the series and perform well. In the case of CPI the

forecast failure in the first quarters of the forecasting is conditioned by the large

outlier in the inflation rate in 2002 triggered by the confidence crisis.

In order to evaluate the effect of additional differencing of the price series on
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the forecasting performance of the factor models the exercise is repeated under

the assumption that all prices, money aggregates, wages, and exchange rates are

generated by I(2) processes, and all these series are differenced twice. The AR

forecast of the GDP growth and the AR forecast of the twice differenced CPI are

compared with the factor forecasts (other non-factor forecasts are not considered in

this case). Accordingly, the forecasting results for GDP can be compared directly

with the results of the exercise performed under the assumption of I(1) prices, while

this direct comparison with the I(1) case is not possible for CPI, since the forecast

variable and the benchmark forecast are different in this case.

There is no obvious ranking of the factor forecasts performed under the assump-

tion of I(1) prices and the factor forecasts performed under the assumption of I(2)

prices: some factor models perform better under the assumption of I(1) prices while

others perform better when prices are treated as I(2). However, most of the factor

forecasts do improve their performance for the GDP series under the assumption of

the I(2) prices. This can be explained by the fact that the variance of the price series

decreases after second differencing and the twice differenced prices do not dominate

the dynamics of estimated factors, which are used for forecasting. Thus, the esti-

mated factors become more informative about output series rather than about prices

and provide additional gains in forecasting GDP growth.

4.2 Russia

The results for Russia are reported in Table 4 (Appendix D). In Figures 7 and 8

(Appendix C) we report actual values and one-quarter ahead forecasts from the best

non-factor and factor models.

The graphs of GDP growth and CPI inflation (Figures 3 - 4, Appendix C) provide

ample evidence of structural changes in these series. While output growth shifted

to a higher mean in the aftermath of the 1998 crisis, inflation, which exploded in

1998, converged to a lower level in the following years.

High levels of inflation before the currency crisis and the explosion of inflation in

1998 implied the upward bias of the benchmark AR forecast for CPI. This forecast

is outperformed by the random walk forecast, the intercept corrected AR forecast,
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and the AR forecast for the twice differenced series. The gains provided by the

random walk forecasts and the corrected AR forecasts are large. They reach 84%

for the random walk forecast and 82% for the AR forecast of second differences.

It can mean that the CPI is better described as generated by I(2) process. On

the contrary, there is no evidence that GDP is better treated as I(2) series: the

random walk forecast and the corrected AR forecasts do not provide large gains in

the forecasting of GDP comparing to the benchmark.

These differences in the efficiency of intercept correction and second differencing

can be explained by differences in size and direction of structural changes in output

and inflation as well as different persistence of these series.

There is at least one factor forecast for each forecast variable that provides gains

comparing to the AR benchmark. These gains are not large for GDP, but they reach

76% for CPI (fnbp ar 1 ). The VAR forecasts outperform the benchmark both for

GDP and CPI. For GDP growth the VAR forecast is the best with the relative gain

of 29% comparing to the AR benchmark.

Figure 8 (Appendix C) shows that, as in the case of Brazil, both VAR and

factor models provide poor forecasts for output growth: both of them have lower

volatility than actual values of the series and the factor forecasts appear to be biased

downwards. On the contrary, the random walk forecast, which is the best forecast

for the CPI inflation, and the best factor forecast follow closely the actual inflation

(Figure 7, Appendix C).

Since intercept correction and second differencing appear to be so efficient for

CPI, it is reasonable to consider the factor forecasts performed under the assump-

tion of I(2) prices. The results of comparison of the AR forecast with the factor

forecasts computed with the use of twice differenced price series are shown in Table

4 (Appendix D).

Because prices are differenced twice in this case, the benchmark forecast for CPI

is the AR forecast of the second differences. This is a more robust benchmark than

the AR forecast of the first differences and not one factor model outperforms it.

The benchmark forecast of GDP does not change under the assumption of the

I(2) prices and the factor forecasts for output growth, evaluated under the assump-

23



tions of I(1) prices and I(2) prices, are directly comparable. Most of the factor

forecasts of output growth do improve their performance significantly under the as-

sumption of I(2) prices and provide significant gains compared to the benchmark.

As in the case of Brazil this result can be explained by the decrease of the variance

of price series after second differencing, which do not dominate the factor dynamics,

and factors become more informative about output series.

5 Conclusions

In this paper the relative forecasting performance of autoregressive, vector autore-

gressive, and factor models was compared on the basis of data sets which are available

for the Brazilian and Russian economies.

Both Brazil and Russia have passed through large transformations and structural

changes. In particular, the currency crisis in 1998-1999 implied structural changes

in CPI inflation, GDP growth and other macroeconomic variables in these countries.

It raises the issue about the ability of different forecasting models to accommodate

these structural changes.

Since only short spans of reliable time series are available for Brazil and Russia,

AR and simple VAR models can be expected to perform comparatively well. On the

other hand, the availability of the large set of macroeconomic indicators suggests

factor models. The results of our forecasting exercise show that both VAR and

factor models are useful in forecasting inflation and output growth, but their relative

performance differs for different forecast series and different series treatment.

Because of the complexity of ongoing changes and short time spans of data,

structural changes are not modelled explicitly. However, two types of corrections for

structural changes are considered: intercept correction and second differencing as

proposed by Clements and Hendry (1999). These methods, applied to AR forecasts,

produce certain gains in forecasting inflation, but they are not efficient in forecasting

output growth. The outcome may be explained by a higher persistence of inflation

or larger breaks in its dynamics comparing to output growth.

The results of the exercise allow us to suggest that the efficiency of different

forecasts models and the efficiency of their corrections depend on the statistical
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properties of the series under consideration, in particular, on the persistence of the

series and on the type and size of the structural changes in the series. It also points

the direction for future research which can be detailed Monte Carlo simulations in

order to evaluate the effect of different structural breaks on the relative forecasting

performance of the models under consideration.

Another interesting direction of research would be the evaluation of different

forecast combinations in order to bring our forecasting exercise closer to the decision

making process ongoing in the Central Banks. There decisions are not based on one

best model, but the whole set of models is used to produce the final projection of

output and inflation.
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Appendix A. Dynamic Factor Model

This appendix briefly reviews a dynamic factor model. The material draws on Stock

and Watson (1998). Let yt denote the scalar series to be forecast and let Xt be a

N -dimensional multiple time-series of predictor variables, observed for t = 1, ..., T,

where yt and Xt are both taken to have mean 0. Suppose that (Xt, yt) admit a

dynamic factor model representation with
−
r common dynamic factors ft,

yt+1 = β(L)ft + γ(L)yt + εt+1, (A1)

Xit = λi(L)ft + eit, (A2)

for i = 1, ..., N , where et = (e1t, ..., eNt)
′ is the N × 1 idiosyncratic disturbance, and

λi(L) and β(L) are lag polynomials in nonnegative powers of L. It is assumed that

E(εt+1|ft, yt, Xt, ft−1, yt−1, Xt−1, ...) = 0. If the lag polynomials λi(L), β(L), and

γ(L) have finite orders of at most q, A1 and A2 can be rewritten as,

yt+1 = β′Ft + γ(L)yt + εt+1, (A3)

Xt = ΛFt + et, (A4)

where Ft = (f ′t , ..., f
′
t−q)

′ is r×1, r ≤ (q +1)
−
r, the ith row of Λ in A3 is (λi0, ..., λiq),

and β = (β0, ..., βq)
′.

Stock and Watson (1998) show that, under this finite lag assumption and some

additional assumptions (restrictions on moments and stationarity), the column space

spanned by the dynamic factors ft can be estimated consistently by the principal

components of the T × T covariance matrix of the X’s.

The principal component estimator is computationally convenient, even for very

large N. It can be generalized to handle data irregularities such as missing observa-

tions using the EM algorithm. The consistency of the estimated factors implies that

they can be used to construct asymptotically efficient forecasts for the series yt+1.
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Appendix B Data Description

This appendix lists time series used to construct factor-based forecasts. The trans-
formation codes are: 1 = no transformation; 2 = first differences; 3 = second differ-
ences; 4 = levels of logarithms; 5 = first differences of logarithms; and 6 = second
differences of logarithms.

Brazil

No Mnemonic Code Description

Output and income
1. gdp 5 gross domestic product, index, 1995=100, sa
2. manuf 5 manufacturing, index, 1995=100, sa
3. constr 5 construction, index, 1995=100, sa
4. mining 5 mining, index, 1995=100, sa
5. prodsteel 5 production of manufactured crude steel,

index, 1995=100, sa
6. publutil 5 public utilities, index, 1995=100, sa
7. agr 5 agriculture, index, 1995=100, sa
8. serv 5 services, index, 1995=100, sa
9. transp 5 transport, index, 1995=100, sa
10. commun 5 communication, index, 1995=100, sa
11. trade 5 trade, index, 1995=100, sa
12. conspriv 5 private consumption, index, 1995=100, sa
13. consgov 5 government consumption, index, 1995=100, sa
14. invest 5 gross investment, index, 1995=100, sa

Labour market
15. earning 5/6 real monthly earnings: all activities, index,1995, sa
16. hours 5 monthly hours of work, index, 1995=100, sa
17. unempl 2 unemployment rate, %, sa

Interest rates
18. irmm 2 money market rate, % pa
19. irtb 2 treasury bill rate, % pa
20. irdep 2 deposit rate, % pa

Stock prices
21. bovespa 5/6 BOVESPA stock price index, 1995=100
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Prices
22. ppagr 5/6 producer price index, agriculture, 1995=100, sa
23. ppconstr 5/6 producer price index, construction, 1995=100, sa
24. pws 5/6 whosale price index, 1995=100, sa
25. cpi 5/6 cpi, total, 1995=100, sa

Money aggregates
26. m0 5/6 monetary base M0, mln BRL, sa
27. m2 5/6 monetary aggregate M2, mln BRL, sa

Survey data
28. utiliz 2 manufacturing: rate of capacity utilization, %, sa
29. utilicons 2 production: future tendency, % balance,sa
30. utilcap 2 producer prices, future tendency, % balance, sa
31. stock 2 manufacturing: finished good stock, % balance, sa
32. ftprod 2 manufacturing: production, future tendency,

% balance, sa
33. ftprice 2/3 manufacturing: selling prices, future tendency,

% balance, sa

Miscellaneous
34. exp 5 exports, index, 1995=100, sa
35. imp 5 imports, index, 1995=100, sa
36. intprpetr 5 average price of crude petroleum, USD/barrel
37. nomexr 5/6 nominal effective exchange rate, index,1995=100
38. realexr 5/6 real effective exchange rate, index, 1995=100
39. gdpus 5 gdp, USA, index, 1995=100, sa
40. cpus 5/6 cpi, USA, index, 1995=100, sa
41. irus 2 treasury bill rate, USA, % pa
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Russia

No Mnemonic Code Description

Output and income
1. gdp 5 gross domestic product, index, 1995=100, sa
2. indtotal 5 industrial production, index, 1995=100, sa
3. agr 5 agriculture, index 1995=100, sa
4. constr 5 construction, index, 1995=100, sa
5. servm 5 market services, index, 1995=100, sa
6. transp 5 transport and communication, index 1995=100, sa
7. trade 5 trade, index 1995=100, sa
8. servnm 5 nonmarket services, index, 1995=100, sa
9. conspriv 5 private consumption, index, 1995=100, sa
10. consgov 5 government consumption, index, 1995=100, sa
11. sav 5 gross savements, index, 1995=100, sa
12. capital 5 gross fixed capital formation, index, 1995=100, sa
13. indmain 5 industrial production, main industries,

index, 1995=100, sa
14. prodpetr 5 production, crude petroleum, mln tonnes, sa
15. prodgas 5 production, natural gas, mln cub m, sa
16. retail 5 retail sales, index, 1995=100, sa
17. realinc 5 real income, index 1995=100, sa
18. realdinc 5 real disposable income, index, 1995=100, sa

Labour Market
19. wage 5/6 real wage, index, 1995=100, sa
20. empl 5 employment, mln persons, sa
21. unempl 2 unemployment rate, %, sa
22. vacan 5 unfilled vacancies, th persons, sa

Interest rates
23. irmm 2 money market rate, % pa
24. irdep 2 deposit rate, % pa
25. irlend 2 lending rate, % pa

Stock prices
26. rts 5/6 RTS stock price index, 1995=100
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Prices
27. pp 5/6 producer price index, industrial production,

total, 1995=100, sa
28. ppoil 5/6 produce price, crude petroleum, RUR/tonne, sa
29. ppgas 5/6 produce price, natural gas, RUR/th cub m, sa
30. ppconstr 5/6 producer price index, construction, 1995=100, sa
31. trcost 5/6 transportation costs, index, 1995=100, sa
32. cpiserv 5/6 cpi, services, 1995=100, sa
33. cpifood 5/6 cpi, food, 1995=100, sa
34. cpi 5/6 cpi, total, 1995=100, sa

Money aggregates
35. money 5/6 money, mln RUR, sa
36. qmoney 5/6 money + quasi money, mln RUR, sa

Survey data
37. utiliz 2 manufacturing: rate of capacity utilization, %, sa
38. ftprod 2 production: future tendency, % balance, sa
39. ftconstr 2 construction: business situation, future tendency,

%balance, sa
40. ftprice 2 producer prices, future tendency, % balance, sa

Miscellaneous
41. exp 5 exports, index, 1995=100, sa
42. imp 5 imports, index, 1995=100, sa
43. intprpetr 5 average price of crude petroleum, USD/barrel
44. intprgas 5 price of russian natural gas, USD/ th cub m
45. ofexr 5/6 official exchange rate, RUR/USD
46. nomexr 5/6 nominal effective exchange rate, index, 1995=100
47. realexr 5/6 real effective exchange rate, index, 1995=100
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Appendix D Tables

Table 1: Brazil, cumulative R2 from regressions of variables on factors

I(1) Prices I(2)Prices

Factor Average CPI GDP Average CPI GDP
inflation growth inflation growth

1 0.19 0.03 0.74 0.17 0.00 0.75
2 0.29 0.06 0.74 0.28 0.52 0.75
3 0.39 0.50 0.76 0.36 0.64 0.78
4 0.45 0.68 0.81 0.44 0.64 0.79
5 0.51 0.69 0.81 0.49 0.71 0.79
6 0.56 0.69 0.82 0.54 0.73 0.79

Table 2: Russia, cumulative R2 from regressions of variables on factors

I(1) Prices I(2)Prices

Factor Average CPI GDP Average CPI GDP
inflation growth inflation growth

1 0.21 0.79 0.07 0.24 0.58 0.64
2 0.36 0.86 0.77 0.31 0.67 0.75
3 0.46 0.88 0.82 0.43 0.77 0.85
4 0.54 0.91 0.86 0.52 0.81 0.88
5 0.59 0.92 0.88 0.57 0.81 0.88
6 0.63 0.92 0.89 0.62 0.87 0.89

Notes:

I(1) Prices Prices and money series are differenced once
I(2) Prices Prices and money series are differenced twice
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Table 3: Brazil, relative MSFE, 1-step-ahead forecasts, quarterly data

Forecast I(1) Prices I(2)Prices
Method GDP growth CPI inflation GDP growth CPI inflation

ar aic 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
ar ic aic 1.19 (0.36) 1.10 (0.67) - -
ar i2 aic 1.55 (0.88) 0.90 (0.32) - -
rw 1.14 (0.32) 0.85 (0.30) - -
var aic 0.73 (0.38) 0.64 (0.21) - -
fbp ar aic 1.32 (0.53) 0.97 (0.03) 0.92 (0.58) 1.13 (0.22)
fbp aic 0.76 (0.23) 1.38 (0.81) 0.92 (0.58) 0.98 (0.02)
fnbp ar aic 1.26 (0.62) 0.83 (0.09) 0.76 (0.57) 0.92 (0.24)
fnbp aic 0.83 (0.24) 0.79 (0.15) 0.76 (0.57) 0.88 (0.06)
fnbp ar 1 1.11 (0.22) 1.04 (0.05) 0.94 (0.21) 1.28 (0.26)
fnbp ar 2 0.90 (0.26) 0.85 (0.08) 1.09 (0.61) 1.01 (0.12)
fnbp ar 3 0.84 (0.52) 0.76 (0.13) 1.12 (0.60) 1.08 (0.12)
fnbp ar 4 1.21 (0.47) 0.78 (0.13) 0.81 (0.61) 0.67 (0.25)
fnbp 1 0.88 (0.08) 1.57 (0.91) 0.84 (0.10) 1.06 (0.07)
fnbp 2 0.88 (0.08) 1.09 (0.29) 0.72 (0.39) 0.96 (0.09)
fnbp 3 0.71 (0.47) 0.87 (0.13) 0.67 (0.42) 1.08 (0.23)
fnbp 4 1.09 (0.33) 0.74 (0.15) 0.81 (0.61) 0.68 (0.21)

RMSE

for ar aic
0.009 0.13 0.009 0.012

Notes:

The forecasts in the rows of tables are (see section 3.1 for details):

ar aic AR model (AIC selection), benchmark
ar ic aic AR model (AIC selection) with intercept correction
ar i2 aic AR model (AIC selection) for second-differenced variable
rw random walk
var aic VAR model (AIC selection)
fbp ar aic Factors from balanced panel (AIC selection) and AR terms
fbp aic Factors from balanced panel (AIC selection)
fnbp ar aic Factors from unbalanced panel (AIC selection) and AR terms
fnbp aic Factors from unbalanced panel (AIC selection)
fnbp ar n n factors from unbalanced panel and AR terms
fnbp n n factors from unbalanced panel
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Table 4: Russia, Relative MSFE, 1-step-ahead forecasts, quarterly data

Forecast I(1) Prices I(2)Prices
Method GDP growth CPI inflation GDP growth CPI inflation

ar aic 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
ar ic aic 1.80 (0.80) 0.38 (0.25) - -
ar i2 aic 0.97 (0.26) 0.18 (0.26) - -
rw 1.23 (0.28) 0.16 (0.25) - -
var aic 0.71 (0.22) 0.29 (0.26) - -
fbp ar aic 2.21 (1.07) 2.41 (1.33) 0.76 (0.34) 7.07 (15.33)
fbp aic 2.19 (1.05) 2.67 (2.12) 0.76 (0.34) 5.76 (10.83)
fnbp ar aic 1.30 (0.46) 1.59 (1.01) 2.31 (1.88) 2.15 (1.39)
fnbp aic 1.32 (0.25) 2.10 (1.43) 0.58 (0.31) 2.15 (1.39)
fnbp ar 1 0.92 (0.10) 0.24 (0.26) 1.00 (0.05) 3.57 (3.61)
fnbp ar 2 1.69 (0.60) 0.86 (0.20) 0.59 (0.27) 4.25 (6.51)
fnbp ar 3 1.87 (0.66) 1.58 (0.68) 0.53 (0.31) 3.03 (4.96)
fnbp ar 4 1.30 (0.46) 2.38 (1.62) 0.69 (0.41) 2.15 (1.39)
fnbp 1 0.92 (0.10) 0.78 (0.26) 1.14 (0.13) 1.86 (0.96)
fnbp 2 1.52 (0.43) 0.44 (0.24) 0.59 (0.27) 3.01 (3.07)
fnbp 3 1.87 (0.66) 0.79 (0.25) 0.53 (0.31) 2.07 (1.58)
fnbp 4 1.16 (0.18) 1.66 (0.81) 0.54 (0.32) 2.15 (1.39)

RMSE

for ar aic
0.009 0.18 0.009 0.007
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Chapter 2

Co-Breaking and Forecasting
Performance of Factor Models

Abstract

Macroeconomic data available for emerging market economies are character-

ized by short time spans and sharp shocks. Short spans of data suggest the

adoption of simple models as forecasting tools. However, the availability of

a large number of variables makes the class of dynamic factor models a rea-

sonable alternative. In this paper the relative performance of two approaches

is explored in the Monte Carlo exercise performed for the data spans which

are available for emerging market economies. The data are generated with

structural breaks and the role of intercept correction and differencing for ro-

bustifying forecasts in the presence of breaks is also evaluated. Factor models

work well if there is a break in the middle of estimation period. However,

their relative performance deteriorates if there is a break in the end of the

estimation period. Intercept correction and differencing are also found to be

useful in several cases.

1 Introduction

Macroeconomic forecasts form an important component for the development of mon-

etary policy. Because monetary policy has delayed effects on output and inflation, a

forward-looking approach is essential to inflation targeting, and indeed to monetary

policy in general. The choice of appropriate forecasting tools and the accuracy of

forecasting are of key relevance for the choice of policy instruments and success of

monetary policy.
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For many economies only short spans of reliable data are available. This is the

case of transition economies of Central and Eastern Europe, as well as emerging

market economies of Latin America. Most of the aggregate data available for the

European Union are also of short time spans.

Lack of data may lead to high estimation uncertainty and forecast failure. Fail-

ures in the forecasting of inflation may be one of the reasons why transition countries

that have recently opted the inflation targeting (the Czech Republic, Poland, and

Hungary), failed to hit their targets. The Central Banks of these countries have

attempted to improve their forecasts by development of forecasting tools and incor-

poration of a growing amount of information.

When the reliable data are of short time spans, small-scale models can be sug-

gested as forecasting tools, because of their parsimonious specification and good

performance. However, small-scale models include only few economic time series of

the whole variety of data available to policy makers.

Another approach combining information from a large number of time series with

parsimonious specification, has become the subject of intensive research recently.

Dynamic factor models as developed by Stock and Watson (1998), were successfully

used to forecast macroeconomic variables in the US, the UK, and the Euro-area

(Stock and Watson, 2002, Marcellino, Stock, and Watson, 2003, Artis, Banerjee and

Marcellino, 2003). Some evidence in favour of dynamic factor models was found for

transition economies (Banerjee, Marcellino and Masten, 2006).

There have been attempts to incorporate information extracted by factor models

into traditional small-scale models with the purpose of forecasting and policy anal-

ysis (Stock and Watson, 1999, Favero and Marcellino, 2001, Bernanke and Boivin,

2003). Banerjee, Marcellino and Masten (2007) performed a Monte Carlo simula-

tion in order to investigate forecasting performance of different models for the time

dimensions and the number of variables corresponding to those which are available

for transition economies.

The primary justification for the use of factor models in large data sets as sug-

gested in Banerjee, Marcellino and Masten (2006), is that they are particularly

efficient means of extracting information from a large number of time series, despite
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the short time span. Forecasts of key macroeconomic variables may be improved

significantly, because in a rapidly changing economy the ranking of variables as good

leading indicators for, say, inflation or industrial production growth, is not clear a

priori. Therefore, factor models provide a methodology that remains ”agnostic”

about the structure of economy, by employing as much information as possible in

the construction of the forecasting exercise.

Banerjee, Marcellino and Masten (2006) evaluate the relative performance of

different methods in forecasting gross domestic products (GDP), consumer prices

and interest rates for five transition countries (the Czech Republic, Poland, Hungary,

Slovakia, and Slovenia). They use quarterly data and produced one-quarter-ahead

forecasts. Forecasting models are compared on the basis of relative mean square

forecast errors.

Factor models perform relatively well in forecasting GDP and treasury bill rates

for the Czech Republic, Poland, and Hungary. Non-factor methods perform better

in forecasting GDP and interest rates for Slovakia and Slovenia. However, factor

models provide some gains in forecasting CPI in Slovakia, Slovenia, and the Czech

Republic. Thus, no strong evidence of better performance of any forecasting method

was found, although factor models were found useful in many cases.

In addition, the empirical performance of two methods for robustifying forecasts

in the presence of structural changes was evaluated. These methods are second-

differencing and intercept correction as proposed by Clements and Hendry (1999).

However, second differencing and intercept correction provided forecasting gains

only in a few cases.

In the chapter 1 of the thesis the forecasting exercise is conducted for output

growth and inflation in Brazil and Russia. As in Banerjee, Marcellino and Masten

(2006) quarterly data are used and one-quarter-ahead forecasts are evaluated. Fore-

casts of standard small-scale models (univariate and vector autoregressive models)

are compared with those of dynamic factor models.

The findings are mixed. Relative performance of forecasting models (in a sense

of relative mean square forecast errors) differs over forecast variables. Some fac-

tor models outperform other models for output growth both in Brazil and Russia.
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However, for inflation all factor forecasts are outperformed by the VAR forecasts in

Brazil and by the random walk forecast in Russia.

Models are robustified for structural breaks by second-differencing and intercept

correction. These methods appear to be efficient in the forecasting of inflation, but

they provide no gains in the forecasting of output growth.

The evidence given suggests that close attention must be paid to statistical prop-

erties of forecast variables. The different statistical properties of the variables being

forecast may be a reason for different relative performance of forecasting models for

these variables. Differences in the relative performance of forecasting models for

different types of variables (production, prices, and financial variables) is also found

in other research (Stock and Watson, 1998, Artis, Banerjee and Marcellino, 2004).

It is of interest to perform a Monte Carlo exercise to evaluate the relative effi-

ciency of different models in the time and cross-section dimensions corresponding to

those which are available in the empirical exercises for emerging market economies.

Such Monte Carlo exercise can provide some evidence or explanation for the rela-

tive performance of different models for variables generated by different stochastic

processes.

Emerging market economies have passed through large transformations and

structural changes. Policy-makers in these countries have often failed to forecast

accurately future economic developments, because they were not able to take ac-

count of structural changes which happened in their countries. It raises the issue

about the ability of different forecasting models to accommodate structural changes.

As structural change is an event which usually affects the whole economy or

a sector of the economy, one can expect co-breaking between a range of economic

indicators. Co-breaking can be picked up by the principal component estimator

which measures co-movement of series. In this case one obtains estimates of factors

with a break in their dynamics. It is of interest to conduct a simulation exercise to

evaluate the relative performance of factor forecasts with factors extracted from the

series subject to co-breaking.

Stock and Watson (2007) argue that the factor space can be consistently esti-

mated even in the presence of structural instability in factor loadings for individual
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series. However, instability in forecasting equations for individual series may lead

to forecast failure.

In the Monte Carlo experiment performed under the assumption of validity of the

factor representation, Banerjee, Marcellino and Masten (2007) explored sensitivity

of forecasting methods to various characteristics of generated data: persistence of

factors, amount of autocorrelation, and time-varying parameters. They investigated

the performance of forecasting models for small time and cross-section dimensions

of data and found that changes in persistence of factors and factor loadings are

important for the relative performance of factor models.

Stock and Watson (2007) and Banerjee, Marcellino and Masten (2007) deal with

in-sample instability of forecasting models. This structural instability can be taken

into account before forecasting. However, structural changes may happen in the

forecasting period. It might be impossible to accommodate such changes into a

model. A Monte Carlo exercise, which evaluates the robustness of different fore-

casting models in the presence of unknown structural changes, can be instructive.

Efficacy of intercept correction and second differencing in the presence of different

types of structural changes and shocks can also be evaluated in such experiment.

In this paper we present the results of the experiment conducted for the time

and cross-section dimensions corresponding to those, which are used in few empirical

exercises conducted for transition and emerging market economies. Assuming va-

lidity of the factor representation we investigate sensitivity of forecasting models to

the choice of forecasting horizon, degree of factor persistence, and two simple types

of non-stationarity in the middle of the estimation sample and at the forecasting

period: a shift in the mean of factors and a shift in the intercept of the forecasting

equation. These two types of structural changes allow us to investigate the relative

performance of forecasting models for data with co-breaking.

The paper is organized as follows. In section 2 we briefly describe the experiment

design. Section 3 presents the results of the experiment. In Section 3 we draw some

general conclusions and offer some suggestions for further research.
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2 Methodology

The basic design of the simulation exercise is taken from Stock and Watson (1998)

and adapted for the purposes of this paper. The data are generated by a dynamic

factor model. Unlike Banerjee, Marcellino and Masten (2007), we do not investi-

gate the effects of correlation in idiosyncratic errors or time-varying factor loadings

on the forecasting performance of models. Idiosyncratic errors are assumed to be

uncorrelated and factor loadings are constant.

The simplest dynamic factor model is

Ft = ΠFt−1 + ut, Π = πIr, (1)

Xt = ΛFt + et, (2)

yt+1 = τ ′Ft + εt+1, (3)

where t=1,...,T; yt is a scalar variable to be forecast; τ is a r×1 vector of parameters;

Ft is an r × 1 vector of factors, generating data; π is a parameter, measuring the

persistence of factors (π is assumed to be less then one in absolute value); Xt is a

N × 1 vector of leading indicators for yt; Λ is a N × r matrix of factor loadings; ut

is N(0, Ir), et is N(0, IN), and εt is N(0, 1); ut, et and εt are independent.

Under the given assumptions, the column space spanned by dynamic factors can

be estimated consistently by the principal components of the (T × T ) covariance

matrix of the X ′s (Stock and Watson, 1998). The consistency of the estimated

factors implies that they can be used to construct asymptotically efficient forecasts

of yt.

However, uncertainty induced by estimation of factors, may imply that factor

forecasts are less efficient than forecasts produced by other models in small samples.

Bai and Ng (2006) show that estimation of parameters of forecasting models adds

O(T−1) uncertainty to the forecast, while estimation of factors adds O(N−1) uncer-

41



tainty. Hence, when N is small relative to T, factor forecasts can be outperformed

by other forecasting models.

The amount of data available to forecasters is growing over time. The number of

available data series (N ) grows as well the number of observations (T ). In applica-

tions of factor models it generates a trade-off between time spans and cross-section

spans of data, as existing indicators are of larger time spans than new indicators.

One solution for this problem is suggested by Stock and Watson (1998). They pro-

pose use of the EM algorithm to estimate missing values of variables in unbalanced

panels. However, this approach works only for a small number of missing values, as

estimation of a large number of missing values induces high uncertainty.

The trade-off between a long data set with a limited number of data series and a

shorter data set with a larger number of data series can be the subject of a simulation

exercise. In this simulation exercise we consider few combinations of time and cross-

section spans. It allows us to evaluate the impact of N/T ratio on the forecasting

performance of factor models.

In applications factors are extracted from standardized series. It means that

series are demeaned before the estimation of factors and estimated factors have zero

mean as well. However, if the mean of series changes over sample, and this change

cannot be modelled explicitly and extracted from series before the estimation of

factors, one obtains factor estimates with a break in their dynamics.

The break in the mean of observable series may be generated by the break in

the mean of factors or the break in the intercept of the forecasting equation. The

robustness of factor models to these two types of break in mean is the subject of

this simulation exercise. Efficiency of intercept correction and second differencing

in the presence of these two types of break is also a subject of investigation.

If structural break affects the whole economy or a sector of the economy, there

may be co-breaking between the forecast variable and other variables which are used

as leading indicators for the forecast variable. Then the leading indicators contain

information about the structural break in the forecast variable. In this exercise

we consider data generating processes which lead to a break both in the leading

indicators and the forecast variable.
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In order to evaluate the relative performance of forecasting models in the presence

of structural breaks, we consider two basic data generating processes which represent

modifications of the model (1)-(3). For the first data generating process (DGP 1)

we modify the equation (1) by the introduction of a deterministic component:

Ft = DF
t + ΠFt−1 + ut, DF

t = µtι

where DF
t is the deterministic component of factor process, ιr = (1, 1, ..., 1)′ is an

(r × 1) vector, and µt is a scalar function such that

µt = { 0, t < tb
µ, t ≥ tb

,

where tb is the date of break. Then the h-step conditional expectation of yt (for

h > 1) is

yt+h|t = τ ′
h−1∑
i=1

Πh−i−1DF
t+i + τ ′Πh−1Ft.

For the second data generating process (DGP 2) we modify the equations (2)

and (3) into

Xt = DX
t + ΛFt + et, DX

t = ηtι

yt+1 = Dy
t+1 + τ ′Ft + εt+1,

where DX
t is the deterministic component of leading indicators, ηt is a scalar func-

tion, ιN = (1, 1, ..., 1)′ is a (N × 1) vector, and Dy
t is the deterministic component

of the forecast variable. For simplicity assume that Dy
t = ηt and ηt is

ηt = { 0, t < tb
η, t ≥ tb

.
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The assumption of homogeneity of the structural break over variables is a re-

strictive one. In the real data structural changes can have different size and timing

over variables. Only for well-selected homogeneous set of economic indicators one

can expect that structural changes will have the same size and timing over variables.

The h-step conditional expectation of yt is

yt+h|t = Dy
t+h + τ ′Πh−1Ft,

The size of µ and η are changing parameters in the simulations.

In empirical forecasting exercises original non-stationary series are transformed

to stationary series before estimation of factors. The shift in mean of transformed

series is equivalent to the change in slope of original series. This is a simple type

of structural change. Perhaps, more complex functions can describe better the

adjustment processes in transition economies.

The forecasting performance of dynamic factor models is compared with the

performance of autoregressive models. All forecasting models are specified and esti-

mated as a linear projection of an h-step-ahead variable, yh
t+h onto t-dated predic-

tors. More precisely, the forecasting models all have the form

yh
t+h = α + β(L)yt + γ(L)′Zt + vh

t+h, (4)

where α is a constant, β(L) is a scalar lag polynomial, γ(L) is a vector lag polyno-

mial, and Zt is a vector of predictor variables.

The ”h-step ahead projection” approach in (4) (Clements and Hendry, 1999)

differs from the standard approach of estimating a 1 -step-ahead model and then

iterating that model forward to obtain h-step-ahead predictions. The h-step-ahead

projection approach has two main advantages. First, additional equations for the

forecasting of leading indicators are not needed. Second, the potential impact of

specification error in the 1 -step-ahead model can be reduced by using the same

horizon for estimation as for forecasting. However, forecasts based on h-step-ahead
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projection omit some information about the dynamics of the forecast variable, which

is available to a forecaster at the date of forecasting (except for h = 1).

Four autoregressive forecasts are produced. They all correspond to (4) with Zt

excluded. Let us list them and briefly discuss their main characteristics.

The autoregressive forecast with one lag (ar1 ) is chosen as a benchmark. This

choice is conditioned by the results of the empirical exercise conducted for Brazil and

Russia. In that exercise we find that in many cases Bayesian Information Criteria

chooses the lag length for AR model to be equal to zero. It implies that the AR

forecast degenerates to a simple average of past values which seems to be a very

weak benchmark. In this case it makes sense to consider the model with a fixed lag

length as a benchmark.

In order to evaluate the role of increasing lag length in forecasting performance,

we also produce the autoregressive forecast with three lags (ar3 ). The autoregressive

forecast with the lag length chosen by BIC (arbic) is computed in order to evaluate

the relative forecasting performance of the model chosen by the asymptotic criteria

in small sample.

Two types of autoregressive forecasts are also considered: the intercept-corrected

autoregressive forecast (aric) and the autoregressive forecast of the differenced fore-

cast variable (ardif ). Clements and Hendry (1999) argue that in the presence of

structural breaks over the forecasting period the forecast can be put back on track

by adding past forecast errors to the forecast. They show that simple addition of the

h-period ahead forecast error can be useful. Hence, the forecast is given by ŷh
t+h+ v̂h

t ,

where ŷh
t+h is the AR forecast and v̂h

t is the forecast error made when forecasting yh
t

in period (t-h).

An alternative remedy in the presence of structural breaks over the forecasting

period is additional differencing of the forecast variable. In this case one estimates

the following model:

xh
t+h = µ + β(L)xt + vh

t+h,

where xh
t+h = yt+h − yt and xt = yt − yt−1. The forecast of xh

t+h is then used to con-
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struct the forecast of yh
t+h. Clements and Hendry (1999) show that the differencing

of the forecast variable can improve the forecasting performance of autoregressive

models in the presence of structural breaks, even in the case of over-differencing.

However, if there is no break, both intercept correction and additional differenc-

ing increase the forecast error variance by adding a moving average component to

the forecast error, and thus these techniques are not costless.

Four factor forecasts are produced in the simulations. All these forecasts corre-

spond to (4), where yt is excluded and Zt is composed of true or estimated factors.

We compare performance of forecasting models with true factors and estimated fac-

tors in order to evaluate the impact of uncertainty induced by the estimation of

factors on forecast accuracy.

We evaluate the forecast produced by the data generating process (facdgp), the

forecast produced by (4) where Zt is substituted by the true factors (factr), the

forecast produced by fully estimated factor model Zt substituted by the estimated

factors and the number of factor chosen by BIC (fest), and the intercept-corrected

forecast produced by the fully estimated factor model (festic).

Forecasting models are compared on the basis of the mean square forecast error

criteria (MSFE). It is computed by averaging square forecast errors (ŷh
t+h|t − yh

t+h)
2

over replications. Then the MSFE for each model is divided by the MSFE of the

benchmark model. The standard errors around these relative MSFE are also com-

puted. The MSFE of the benchmark (ar1) is normalized to one.

The MSFE is a standard criteria in forecasting exercises and by using it we can

refer to previous research. However, it may not be the best criteria with the given

small time dimensions and admitting the adjustment processes in the data.

In the empirical exercise performed for Brazil and Russia we used accordingly

41 and 47 quarterly series over period 1995:1 - 2004:4 of total 40 observations. On

the other hand, in the empirical exercise performed for the euro-area we used 44

monthly series over period 1999:1 - 2007:2 of total 98 observations. These are data

spans which are quite often met in empirical exercises based on data available for

emerging market economies. We usually can find 40 to 50 quarterly observations

and 100 to 120 observations for 40 to 50 variables.
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In this simulation exercise we consider three combinations of T and N : T = 50

and N = 50; T = 100 and N = 50; T = 50 and N = 100. It allows us to evaluate

the impact of N/T ratio on estimation of factors and forecast accuracy.

In order to evaluate the adjustment of forecasting models to a structural break,

we consider two dates of a break: one is in the middle of the estimation period

(tb = T/2), and another is in the end of the estimation period (tb = T ). Then the

h-step-ahead forecast is evaluated. So that when tb = T , the break happens in the

period when forecast is produced.

As we want to make possible references to the empirical research (Banerjee, Mar-

cellino and Masten, 2006, and Bystrov, 2007) we produced 1-step-ahead forecasts.

However, in the most of empirical exercise one is interested in few-period-ahead

forecasts. In order to evaluate the impact of the longer forecasting horizon on the

relative performance of forecasting models, we also evaluate 3-step-ahead forecasts.

The effect of the number of factors and factor persistence is also explored in the

experiment. The number of factors generating data varies from 1 to 3. The factor

persistence parameter π takes values 0.3, 0.6, and 0.9.

3 Results

Relative MSFEs of forecasting models for the basic data generating process without

break are shown in Figures 1 and 2 in Appendix. We present the results for a few

parameter combinations of the whole set of parameter combinations. The tables

with the whole set of results can be presented upon request.

Figure 1 shows that the relative performance of factor models for 1-step-ahead

forecasts deteriorates with an increase in the number of factors and an increase in

the persistence of factors. Figure 2 indicates that the relative performance of factor

forecasts for 3-step-ahead forecasts deteriorates as the number of factors grows and

improves as the persistence of factors grows. Comparison of Figures 1 and 2 allows

us to conclude that the relative performance of factor forecast deteriorates as the

forecasting horizon increases.
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As in Banerjee, Marcellino and Masten (2007) ar3 and arbic forecasts have

performance which is very close to the performance of the benchmark ar1. Intercept

correction and differencing provide no gains as there are no structural breaks.

In Figure 3 we report relative MSFE of 1-step-ahead forecasts for the data gen-

erating process with no break for different N/T ratios. Differences in the relative

performance of forecasting models over different N/T are not large. The generated

data are informative about factors dynamics and factor models perform well even

in samples of relatively small size.

If there is a break in factors in the middle of estimation period (tb = T/2), factor

models perform better than in the case of no break both for 1-step-ahead forecasts

(Figure 5) and 3-step-ahead forecasts (Figure 8). For 1-step-ahead forecasts gains

grow with an increase in the size of break and the number of factors, but decrease

with an increase in the persistence of factors. For 3-step-ahead forecasts gains grow

as the size of break and the persistence of factors grow. The gains may be better

explained by the specification of the data generating process rather than by the

estimation effect, as the ratio of MSFE of the true factor model and the estimated

factor model does not change.

The relative performance of 1-step-ahead factor forecasts improves if there is a

break in factors in the end of the estimation sample (tb = T ), at the period when

the forecast is produced (see Figure 5). Gains increase as the size of break grows

and the number of factors grows, but decrease as the persistence of factors grows.

However, the relative performance of estimated 3-step-ahead forecasts deteriorates

in the case of break at the period when forecasts are produced (Figure 9). This is

an estimation effect, since the factor forecasts produced by the true model perform

well in this case.

If there is a break in the forecasting equation in the middle of estimation period,

we find that the fully estimated factor model, fest, performs better than the factor

model with true factors, factr (Figures 6 and 10). These effect increases with an

increase in the size of break and an increase in the number of factors.

A possible explanation of the better performance of the fully estimated factor

model relative to the model with true factors is that estimated factors being biased
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estimates of true factors, pick up a break in the series and thus allow the accommo-

dation of the break in the estimated forecasting equation.

A break in the forecasting equation at the period when forecasts are produced,

implies deterioration of the performance of the estimated factor model (Figures 7

and 11). Losses increase with an increase in the size of break, the number of factors,

and the persistence of factors. This effect does not depend on the forecasting period.

In this case estimated factors do not accommodate the structural break and factor

forecasts fail relative to autoregressive forecasts.

Intercept corrected forecasts and forecasts of differenced series perform better

for 3-step-ahead forecasts. These methods are found to be useful when there is a

break in factors in the end of estimation sample (Figures 5 and 9). In particular,

intercept-corrected 3-step-ahead factor forecasts are found to be the best for the

process with a break in factors at period T , when the size of break is equal to two.

4 Conclusions

In this paper we present the results of the Monte Carlo exercise, in which we have

investigated the relative performance of different forecasting models for data of the

time and cross-section dimensions corresponding to those, which are available for

transition economies and emerging market economies. We have explored the efficacy

of forecasting models in the presence of the breaks of two types: a shift in mean of

factors generating data and a shift in intercept of the forecasting equation.

Several general observations follow. The relative performance of factor forecasts

improves if there is a shift in mean of data in the middle of estimation sample. This

result holds whether the break is in factor dynamics or in the forecasting equation.

However, if there is a break in the forecasting equation, fully estimated factor

models outperform factor models with true factors. One possible explanation of this

phenomenon is that estimated factors pick up a break, which is common both for

leading indicators and forecast variable. Then the break is accommodated in the

fully estimated factor model. On the other hand, there is no break in the dynamics

49



of true factors and the model with true factors do not accommodate the break in

data.

In the case of break in the end of estimation sample factor forecasts outperform

other models only if there is a break in the factor dynamics and the forecasting

horizon is 1-step-ahead. However, the relative performance of factor forecasts dete-

riorates if there is a break in the forecasting equation, or the forecasting horizon is

3-step-ahead. In this case, intercept correction and differencing appear to be effi-

cient techniques which allow us to improve both autoregressive forecasts and factor

forecasts.

A break in the end of the estimation sample might be an explanation of the

relatively bad performance of factor forecasts in empirical exercises. As the change

happens at the period when the forecast is produced, factor forecasts fail to outper-

form other models. However, as the amount of information about break accumulates

over time, one can expect that the relative performance of factor forecasts will im-

prove.

Interesting directions for future research in this context are mostly related to

the careful investigation of statistical properties of real data and empirical factors

extracted from these data, and performing Monte Carlo simulations with data gen-

erating processes which may be a good approximation of the data used in empirical

exercises. More complex functions can be used for the description of the adjust-

ment processes in emerging market economies. The performance of factor models

can also be evaluated in comparison with more elaborated benchmarks than simple

autoregressive models.
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Appendix. Figures

Notes:

ar1 - AR (1) model (benchmark)

ar3 - AR (3) model

arbic - AR model chosen by BIC

aric - intercept-corrected AR (BIC) model

ardif - AR (BIC) model for differenced series

facdgp - forecast produced by DGP

factr - factor forecast, true factors

fest - factor forecast, fully estimated model

festic - intercept-corrected factor forecast, fully estimated model
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Chapter 3

Factor Augmented
Error Correction Models

Abstract

In this paper the performance of factor-augmented error-correction models

(FECM) is evaluated in the Monte Carlo exercise and in the application to the

interest rate pass-through model for the euro area. The hypothesis considered

is that the inclusion of common stochastic trends extracted from a large data

set can improve in-sample and out-of-sample performance of a small-scale

ECM. It is found both in the Monte Carlo exercise and the empirical exercise

that in-sample the FECM performs well relative to the models which are not

augmented by factors, but the forecasting performance of the FECM is no

better than the forecasting performance of other models in most cases.

1 Introduction

This paper addresses the issue of the estimation and the forecasting of cointe-

grated systems, using information extracted from the common stochastic trends

representation. Few common stochastic trends is a parsimonious representation of

co-movement in a large system of non-stationary variables with many cointegrat-

ing relations. This parsimonious representation of co-movement in a large system

may be of use in the estimation and the forecasting of small-scale cointegrated sub-

system.

Any cointegrated system of I(1) variables can be written in the common stochas-

tic trends representation or the error correction representation. If the number of vari-

ables in the system is large, estimation of the error correction model (ECM) for the
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whole system may be unfeasible or associated with large estimation errors. Instead,

a small-scale ECM including only few variables of interest, is usually estimated.

However, such small-scale system can be misspecified due to omitted variables.

Under certain assumptions, it is possible to interpret the common stochastic

trends representation of the cointegrated system as a dynamic factor model, and

estimate common stochastic trends by principal components as in Bai (2004). Com-

mon factors extracted from the whole data set can be used to augment the small-scale

ECM.

In recent work, factor-augmented VARs have become the subject of the intensive

research. Stock and Watson (1999) estimate the Phillips curve, using common fac-

tors as measures of aggregate real activity. Favero and Marcellino (2001), Bernanke

and Boivin (2003) evaluate policy rules using estimated factors as additional regres-

sors in VARs. Bernanke, Boivin, and Eliasz (2004), Belviso and Milani (2005), and

Stock and Watson (2005) evaluate factor-augmented structural VARs. Hansson,

Jansson, and Lof (2003) forecast GDP, and Monch (2005) forecasts the yield curve

in the US using factor-augmented VARs.

All these applications ignore possible cointegration between variables and eval-

uate factor-augmented VARs in differences. In this paper we are going to evaluate

factor-augmented error correction models (FECM), as introduced by Banerjee and

Marcellino (2007). Performance of these models is going to be evaluated on the basis

of their in-sample fit and forecasting accuracy.

We consider both a simulation exercise, in which we evaluate performance of

FECM for data generated by a large-scale error-correction model, and an application

of FECM to the modelling of interest rate pass-through in the euro-area and the

forecasting of bank interest rates.

The paper is organized as follows. The second section introduces the FECM.

In the third section we report the results of the simulation exercise. In the fourth

section the results of the empirical exercise are reported. The fifth section presents

the conclusions.
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2 Cointegration and Dynamic Factor Models

Assume that an N -dimensional stochastic process {Xt}, where N is large, is gener-

ated by the VAR(p) model:

Xt = Π1Xt−1 + ... + ΠpXp + εt, t = 1, 2, ..., T, (1)

where εt is (0, Ω). The VAR(p) can be reparametrized into the error correction

representation (Johansen, 1995):

∆Xt = αβ′Xt−1 +

p−1∑
j=1

Γj∆Xt−j + εt, (2)

where α is a N × (N − r) matrix of loadings of cointegration relations and β is a

N × (N − r) matrix of cointegration vectors, and Γj = −∑p
s=j+1 Πs is a N × N

matrix of lag loadings.

We assume that rank(α) = rank(β) = (N − r) < N , where N − r is a number

of cointegration vectors and r is a number of common trends. Then the common

trends representation of (1) is

Xt = ΨFt + ut, (3)

where Ft = α′⊥
∑t

s=1 εs is a r×1 vector of common stochastic trends, Ψβ⊥(α′⊥Γβ⊥)−1,

is a N × r matrix of loadings of common trends into the variables, and ut = C(L)εt

is a N × 1 stationary moving average process.

When N is large, estimation of the model (1) or (2) may be associated with high

estimation uncertainty or unfeasible, as for large N the number of parameters in

the model may be close or larger than the number of available observations. This

is why small-scale VARs or ECMs including only few components of the vector Xt,

are estimated in the most of applications.

However, such small-scale models are generally misspecified: they omit many

variables which are of potential use, in particular, in the forecasting. We are in-
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terested in the augmentation of these models in such a way that improves their

forecasting performance.

Let us divide the vector Xt into a sub-vector Yt = {Xit}k
i=1 of the first k com-

ponents (k > r) and a sub-vector Zt = {Xit}N
i=k+1 of the last N − k components of

the vector Xt. Assume that we are interested in the forecasting of the components

of the vector Yt. The dynamics of this vector conditional on Zt can be described by

the following system:

∆Yt = αY β′
(

Yt−1

Zt−1

)
+

p−1∑
j=1

[ΓY j∆Yt−j + ΓZY j∆Zt−j] + εY t, (4)

where αY = {αij}k,r
i,j=1, εY t = {εit}k

i=1.

The standard ECM representation of Yt,

∆Yt = αY β′Y Yt−1 +

p−1∑
j=1

ΓY j∆Yt−j + εY t, (5)

where αY and βY are of rank no higher than k − r, omits Zt−1 and lags of ∆Zt and

is generally misspecified. This misspecification can lead to a forecast failure. We are

interested in finding other proxies for (4) which allow us to incorporate information

about Zt and ∆Zt but do not require estimation of the whole system (2). For this

purpose we are going to use the common trends representation of Xt.

The common trends representation (3) can be interpreted as a dynamic factor

model presented in Bai (2004):

Xt = ΨFt + ut, (6)

Ft = Ft−1 + et, (7)

where et = α′⊥εt. Bai (2004) proves that under certain conditions the common

stochastic trends Ft can be consistently estimated by the principal components es-

timator. However, the representation (6)-(7) is only valid, when et and uit (i =

1, 2, ..., N) are orthogonal, which is only a special case, as et = α′⊥εt and ut = C(L)εt
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are generated by the same stochastic process. Bai (2004) shows that when ut and

eit are correlated, one can get the generalized dynamic factor representation:

Xit = ψi(L)′Ft + vit, i = 1, 2, ..., N, (8)

where ψi(L) is a vector of polynomials of the lag operator. The common factors can

be consistently estimated for the generalized model (Bai, 2004).

The representation (3) implies that Yt and Ft are cointegrated. Therefore, from

the Granger representation theorem there must exist an ECM representation of the

type

(
∆Ft

∆Yt

)
=

(
0
γY

)
δ′

(
Ft−1

Yt−1

)
+

q∑
j=1

(
0 0

AY j AY Fj

)(
∆Ft−j

∆Yt−j

)
+

(
et

eY t

)
(9)

The specification (9) is labeled by Banerjee and Marcellino (2007) as a Factor

Augmented Error Correction Model (FECM).

Since the FECM (9) includes k + r variables but the r factors Ft are random

walks, there can be at most k cointegrating relations in (9). There could be at most

k− r cointegrating relations in the ECM including Yt only. However, in addition to

these k− r cointegrating relations, in the FECM there are r cointegrating relations

between Xt and Ft, that proxy the potentially omitted cointegrating relations in

(5). Moreover, the lags of ∆Ft proxy the potentially omitted lags of ∆Zt in the

standard ECM (5). Therefore, the FECM includes additional information, which is

omitted in the standard ECM (5), and can provide a better approximation to the

data generating process.

The FECM can be of particular interest, because it allows identifying long run

relationships between the variables of interests and it can provide gains in forecasting

by the incorporation of additional information extracted from the whole data set.

The FECM (9) can be estimated using two-stage procedure:

1)estimation of the common factors Ft by principal components of the covariance

matrix of integrated series;

2)estimation of the FECM (9), where Ft and ∆Ft are substituted by their esti-

mates.
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In order to evaluate the in-sample and the forecasting performance of the FECM

relative to that of the ECM in finite samples, we are going to perform a set of

simulation experiments. In these experiments the in-sample fit and forecasts of

ECM and FECM are going to be compared, using a differenced VAR model as a

benchmark. The performance of the factor-augmented VAR is also evaluated.

The in-sample performance of the models is evaluated on the basis of their rel-

ative squared standard errors. The forecasting performance of the models is going

to be evaluated on the basis of the relative mean squared forecast errors. The

squared standard errors differ from the mean squared errors as the standard errors

are adjusted for degrees of freedom used in the model fitting.

3 Monte Carlo Exercise

3.1 Experiment Design

The basic data-generating process is an error - correction model:

∆Xt = αβ′Xt−1 + εt, (10)

where Xt is a N × 1 vector, α and β are N × (N − r) matrices, r is the number of

common stochastic trends, and εt ∼ N(0, Σ) where Σ is a diagonal matrix.

Let us fix r=1 and set the cointegration vector equal to

β′ =




−1 1 0 0 ... 0
−1 0 1 0 ... 0
−1 0 0 1 ... 0
. . . . ... 0
−1 0 0 0 ... 1




For a given β two versions of the basic data generating process are considered.

These two versions have different matrix α. For the data generating process 1 (DGP

1) it is
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α =




0 0 0 ... 0
−a1 0 0 ... 0
0 −a1 0 ... 0
0 0 −a1 ... 0
. . . ... 0
0 0 0 ... −a1




where a1 ∈ (0, 1]. There is no common cointegration in this process: each cointe-

gration relation affects a single variable.

The error-correction representation of the DGP 1 is

∆x1t = ε1t

∆x2t = −a1(x2t−1 − x1t−1) + ε2t

∆x3t = −a1(x3t−1 − x1t−1) + ε3t

...
∆xNt = −a1(xNt−1 − x1t−1) + εNt

Let us assume that X0 = 0. Then we can write the stochastic trend representation

of the DGP 1 as

x1t = Σt−1
s=1ε1s + ε1t

x2t = a1 Σt−1
s=1ε1s + a1 Σt−2

j=1(1− a1)
jΣt−j−1

s=1 ε1s + Σt−2
j=1(1− a1)

jε2t−j + ε2t

x3t = a1 Σt−1
s=1ε1s + a1 Σt−2

j=1(1− a1)
jΣt−j−1

s=1 ε1s + Σt−1
j=1(1− a1)

jε3t−j + ε3t

...

xNt = a1 Σt−1
s=1ε1s + a1 Σt−2

j=1(1− a1)
jΣt−j−1

s=1 ε1s + Σt−1
j=1(1− a1)

jεNt−j + εNt

The data are generated by one common stochastic trend process, lags of this common

stochastic trend, and an autocorrelated idiosyncratic process.

The moving average representation of the differenced process is

∆x1t = + ε1t

∆x2t = −a1(ε2t−1 − ε1t−1) −a1Σ
t−1
s=2(1− a1)

s−1(ε2t−s − ε1t−s) + ε2t

∆x3t = −a1(ε3t−1 − ε1t−1) −a1Σ
t−1
s=2(1− a1)

s−1(ε3t−s − ε1t−s) + ε3t

...
∆xNt = −a1(εNt−1 − ε1t−1) −a1Σ

t−1
s=2(1− a1)

s−1(εNt−s − ε1t−s) + εNt
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By changing the parameter a1 we change the speed of the adjustment of the

series to the long run level. In the Monte Carlo exercise we consider two values of

a1: a1 = 0.5 and a1 = 1.

For the data generating process 2 (DGP 2) we choose

α =




0 0 0 ... 0
−1 0 0 ... 0
−a2 −1 0 ... 0
−a2 0 −1 ... 0

. . . ... 0
−a2 0 0 ... −1




where a2 ∈ (0, 1]. There is one common cointegration relation and N−2 idiosyncratic

cointegration relations.

The error-correction representation of the DGP 2 is

∆x1t = ε1t

∆x2t = − (x2t−1 − x1t−1) + ε2t

∆x3t = −a2(x2t−1 − x1t−1) − (x3t−1 − x1t−1) + ε3t

...
∆xNt = −a2(x2t−1 − x1t−1) − (xNt−1 − x1t−1) + εNt

The stochastic trend representation can be written as

x1t = Σt−1
s=1ε1t−s + ε1t

x2t = Σt−1
s=1ε1t−s + ε2t

x3t = Σt−1
s=1ε1t−s +a2ε1t−1 −a2ε2t−1 + ε3t

...
xNt = Σt−1

s=1ε1t−s +a2ε1t−1 −a2εNt−1 + ε2t

Each variable starting from x3, can be decomposed into one common stochastic

trend, one common cycle, and an autocorrelated idiosyncratic component.

The moving average representation for the differenced variables is
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∆x1t = ε1t

∆x2t = −a2(ε2t−1 − ε1t−1) + ε2t

∆x3t = −a2(ε2t−1 − ε1t−1) −a2(ε2t−2 − ε1t−2) +ε1t−1 − ε3t−1 + ε3t

...
∆xNt = −a2(ε2t−1 − ε1t−1) −a2(ε2t−2 − ε1t−2) +ε1t−1 − εNt−1 + εNt

Changing the parameter a2 we change the speed of adjustment to the common

cointegration relation. In the Monte Carlo exercise we consider two values: a2 = 0.5

and a2 = 1.

Assume that we are interested in the dynamics of the sub-vector Yt = (x2t, x3t)
′.

For all data generating processes the sub-vector Yt has one cointegration vector:

β′Y =
( −1 1

)

The vector (X1t, Y
′
t )
′ = (X1t, X2t, X3t)

′ has two linear independent cointegration

vectors:

γ′Y =

( −1 1 0
0 −1 1

)

We evaluate the relative performance of four models of the dynamics of the

sub-vector (x2t, x3t)
′: the baseline VAR, the factor-augmented VAR (FVAR), the

VECM, and the factor-augmented ECM (FECM). Their in-sample performance is

compared on the basis of the relative squared standard errors in the equation for

x3, and their forecasting performance is compared on the basis of the relative mean

squared forecast error (MSFE) for x3.

The covariance matrix Σ is parameterized as follows:

Σ =




σ2
1 0 0 ... 0
0 σ2

2 0 ... 0
0 0 σ2

2 ... 0
. . . ... .
0 0 0 ... σ2

2




,
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where σ2
1 and σ2

2 are chosen in such a way that the variance of the differenced

common factor ∆x1t explains 80% of the variance of the differenced series ∆xit

(i = 2, 3, ..., N), as in the empirical exercise common factors explain more than 80%

of the variance of differenced series.

Six combinations of the time dimension T and space dimension N are considered.

It allows us to evaluate possible changes in the relative performance of the models

when T changes keeping N fixed and N changes keeping T fixed.

3.2 Forecasting Models

Vector Autoregressive Model, VAR:

∆Yt = µ + Σp
s=1Φys∆Yt−s + ε1t,

where Yt = (x2t, x3t)
′.

Factor-Augmented Vector Autoregressive Model, FVAR:

(
∆Yt

∆Ft

)
= µ + Σp

s=1

(
Φys Φfs

) (
∆Yt−s

∆Ft−s

)
+ εt,

where Ft is a vector of factors extracted from the covariance matrix of Xt.

Vector Error-Correction Model (VECM):

∆Yt = µ + αβ′Yt−1 + Σp
s=1Φys∆Yt−s + εt,

where β is a (2 × 1) cointegration vector and α is a (2 × 1) vector of adjustment

coefficients.

Factor - Augmented (Vector) Error-Correction Model (FECM):
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(
∆Yt

∆Ft

)
= µ + δγ′

(
Yt−1

Ft−1

)
+ Σp

s=1

(
Φys Φfs

) (
∆Yt−s

∆Ft−s

)
+ εt,

where γ is a matrix of cointegration vectors, and δ is a matrix of adjustment coeffi-

cients.

3.3 Results of Experiment

Figures 1 and 2 (Appendix 2) show the dynamics of the true common trend, x1t,

and the fitted common trend obtained by regressing x1t on its principal component

estimate, for DGP 1 and DGP 2 accordingly (T=100, N=100). In the case of DGP

1 the fitted common trend follows closely the dynamics of x1t, while for the DGP 2

the fitted values deviate significantly from the true stochastic trend. This deviations

are conditioned by the noise component in the stochastic trends representation of

the DGP 2 due to the presence of the common cointegration relation in this process.

Tables 1-8 (Appendix 3) show the results of the simulation exercise. The measure

of the in-sample fit is the squared standard errors and the measure of the forecast

accuracy is the mean squared forecast errors.

For DGP 1 factor-augmented models have smaller standard errors in-sample

than the models with no factors included, although gains are not large. The FECM

has the smallest standard errors for all combinations of time and cross-section di-

mensions. For a1 = 0.5 the relative in-sample performance of the factor-augmented

models improves comparing with a1 = 1.

The relative forecasting performance of the factor-augmented models is not as

good as their in-sample fit. Both for a1 = 0.5 and a1 = 1 factor-augmented models

do not perform better than models with no factors included. For a1 = 1 the baseline

VAR model is the best for all combinations of time and cross-section dimensions.

For a1 = 1 the VAR is outperformed both by the VECM and the FECM. However,

the forecasts produced by VECM are better than the forecasts produced by FECM

for all combinations of time and cross-section dimensions.
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The relative forecasting performance of the FECM improves as the cross-section

dimension N grows given fixed time dimension T . This result supports the Propo-

sition 1 in Bai (2004) which states that the estimated common stochastic trends are

uniformly consistent when the cross-section dimension N is sufficiently large relative

to the time dimension T . Increasing N we obtain more precise estimates of factors

which are used in the FECM.

For DGP 2 as for DGP 1 the factor-augmented models perform better in-sample

with the FECM having the smallest standard errors for all time and cross-section

dimensions. However, the forecasting performance of the factor-augmented models

is worse than the forecasting performance of the models with no factors. Both for

a2 = 0.5 and a2 = 1 the best forecasting model is the baseline VAR. The relative

forecasting performance of VECM and FECM improves for a2 = 0.5 relative to

a2 = 1. The performance of the FECM improves with increase of the cross-section

dimension of the data.

Overall, the factor-augmented models perform better than the models with no

factors in-sample. However, out-of-sample VAR and VECM perform better than

FVAR and FECM. The relative forecasting performance of the FECM improves

slowly with an increase of the cross-section dimension of the process.

One caution is necessary. The results obtained for two simple types of data

generating processes. Another results may be found for more general data generating

processes with more complex relations between variables.

4 Empirical Example: Interest Rate Pass-Through

in the Euro Area

The relative performance of the factor-augmented models is also evaluated in the

forecasting exercise for bank retail rates in the euro-area based on the interest rate

pass-through model.

The size and the speed of adjustment of bank retail rates to money market rates

is important for the success of monetary policy. Central Banks set their official rates
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and steer money market interest rates. Changes in money market rates, in turn,

affect bank retail rates, albeit to varying degrees. The efficacy of monetary policy

depends on how much and how fast bank retail rates adjust to changes in money

market rates.

Interest rate pass-through is particularly important for euro-area countries. The

introduction of common monetary policy in the euro area in January 1999 may

have affected bank behavior and interest rate pass-through, since the monetary pol-

icy of the European Central Bank reacts to conditions at the euro are and not to

country-specific developments. Therefore, the interest rate pass-through for indi-

vidual countries and the euro area as whole has become a subject of a number of

empirical studies recently (de Bondt, 2005, Sørensen and Werner, 2006, and Flad,

2006).

Sørensen and Werner (2006) evaluate interest rate pass-through for ten euro-area

countries using country-specific data in a panel error-correction model. De Bondt

(2005) evaluates interest rate pass-through for the whole euro area using aggregated

data in a univariate ECM, a VAR, and a VECM. Flad (2000) applies PANIC analysis

and structural factor models to measure the transmission of the monetary policy

shocks in the euro area and other EU countries. However, these studies do not

evaluate the forecasting performance of the models under consideration.

Sørensen and Werner (2006), and De Bondt (2005) choose a market rate corre-

sponding to a given bank retail rate on the basis of the correlation analysis. The

chosen market rate is the only one of the range of rates of comparable maturity

which could be used to model interest rate pass-through. Using only one rate of

the band of rates which can represent the marginal costs of lending or borrowing,

may lead to the problem of omitted variables. Flad (2006) identifies the money

market stance by the factors extracted from the money market interest rates. The

factors can also be used to augment the error-correction models measuring long-run

pass-through.

In this paper we perform the forecasting exercise for four bank lending rates in the

euro area using two empirical interest rate pass-through models: VAR and VECM.

We augment these models by the factors extracted from the money market rates in
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the euro area, the United Kingdom, and the United States. Then we compare the

forecasting performance of the VAR, VECM and the factor- augmented VAR and

VECM.

Changes in the pound and the dollar market rates approximate marginal pricing

costs for the European banks, since they are the market-based sources for banks to

attract deposits or loans as well as the changes in the euro market rates. However,

differences in the currency of denomination requires an additional assumption that

uncovered interest rate parity holds.

4.1 Data Set and Factors

The data set which is used to estimate the common stochastic trends of the market

interest rates, includes 15 euro rates, 15 pound rates, and 14 dollar rates of a total of

44 interest rates. These are monthly data from January 1999 to February 2007. They

are taken from the website of the European Central Bank, the Bank of England,

and the Datastream.

Factors are extracted from the levels of interest rates. The IPC1 and IPC2

criteria proposed by Bai (2004) for the selection of the number of common trends,

suggest four and three factors accordingly.

Given the differences in the number of factors suggested by different criteria,

the PANIC tests MQc
c,f and MQτ

c,f as proposed by Bai and Ng (2004), were also

performed. The results of the testing suggest four factors in the case of the MQc
c,f

test and six factors in the case of the MQτ
c,f test.

Since the results, suggested by information criteria and testing, are not coherent,

the number of factors is chosen to be equal to four using an informal criteria proposed

by Forni et al (2000). This criteria suggests choosing only those factors which explain

more than 5% of the variation in series. The fourth factor explains 8.5% of the

variance of the differenced series with the total share of the variance explained by

the four factors amounting to 82%. Any additional factor explains less than 5% of

the variation in the series. The dynamics of the four extracted factors is shown at

Figure 3, Appendix 2.
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Four bank lending rates are considered. A corresponding market rate is selected

for each of these bank rates. Selection is based on the correlation between the

bank rates and the market rates of comparable maturity. The bank rates and the

corresponding market rates are listed in the Table 1 below.

Table 1

Bank Retail Rates Market Rates

Loans to Enterprises up to 1 year 3 Month EURIBOR
Loans to Enterprises over 1 year 3 Year Euro Bond Rate
Consumer Loans 1 Year EURIBOR
Mortgage Loans 7 Year Euro Bond Rate

The dynamics of the bank retail rates is shown at Figure 4, Appendix 2. This figure

provides an evidence of the structural break in November 2005 for three bank rates:

the rates on short term and long term loans to enterprises and the rate on mortgage

loans. This break within forecasting period can affect the results of the forecasting

exercise.

4.2 Methodology

Four models are evaluated. These are the same as those that were evaluated in the

Monte Carlo exercise. We set Yt = (mrt, btt)
′, where brt is a bank retail rate and

mrt is the corresponding market rate.

The in-sample performance of the models is evaluated on the basis of the relative

squared standard errors of the equation explaining a bank retail rate. The VAR

model is taken as a benchmark.

The forecasting performance of the models is evaluated on the basis of the relative

root mean square forecast error for a bank retail rate. The forecasting is performed

recursively using Stock and Watson (1998) methodology. Three forecasting horizons

are considered: 1, 3, and 6 months. The first forecast produced in February 2004.
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The last forecast value is evaluated for February 2007. It implies 36 forecasts eval-

uated for 1-month horizon, 34 forecasts for 3-month horizon, and 31 forecasts for

6-month horizon.

The presence of structural breaks in the bank retail rates over the considered period

could lead to the forecast failure. In order to deal with this problem, the intercept

corrected forecasts (Clements and Hendry, 1999) are evaluated for all models.

4.3 Results of Empirical Exercise

The results of the performed exercise are represented in Tables 9-12 (Appendix 3).

Most of the models have smaller standard errors than the baseline VAR model in-

sample. However, the gains are not large. The FECM model is the best in-sample

model for the rates on long-term loans to enterprises, consumer loans, and mortgage

loans. The VECM is the best in-sample model for the rate on short-term loans to

enterprizes.

Since the number of observations over which the forecast evaluation is performed

is quite small, the standard errors of the estimated relative forecast errors are large.

For this reason there are very few cases when we can talk about significant differences

in the forecasting performance of the models.

For the one-month horizon, most of the models do not outperform the benchmark

VAR model. For the rates on loans to enterprizes the FVAR forecast appears to

be the best. For the rate on consumer loans the VECM has the lowest relative

forecast error. Factor-augmented forecasts do not outperform models with no factors

included in most of cases.

Turning to the three-month horizon, there are a few forecasts outperforming the

benchmark for all bank lending rates. The intercept correction improves the perfor-

mance of all models relative to the benchmark for the rates on loans to enterprises

and the rate on mortgage loans. The best forecast for the rate on short-term loans

to enterprises is the intercept-corrected VECM, the best forecast for the rate on

long-term loans to enterprises is the intercept-corrected VAR, and the best forecast

for the rate on mortgage loans is the intercept-corrected FVAR. However, the in-
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tercept correction is inefficient for the rate on consumer loans. The FECM forecast

is the best for this rate. For the three-month horizon the FECM outperforms the

VECM in three out of eight cases including intercept-corrected models.

For the six-month horizon, the FECM outperforms the VECM in four out of

eight cases. The intercept-corrected FECM is the best model for the rate on short-

term loans to enterprises for the six-month horizon. As in the case of the three-

month forecast the intercept-correction is efficient for all bank rates but the rate on

consumer loans. The intercept corrected FVAR is the best forecast for the rate on

long-term loans to enterprises and the intercept-corrected VAR model is the best

for the rate on mortgage loans.

Significant gains in the forecasting all bank rates but the rate on the consumer

loans are provided by the intercept correction for 3 and 6-month forecasting horizons.

However, the intercept correction provide no gains for 1-month forecasts. These

results can be explained by the presence of the structural break in the interest rates

on loans to enterprises and mortgage loans over forecasting period, while there is no

such break in the rate on consumer loans.

The efficacy of the intercept correction for the long forecasting horizons is condi-

tioned by the methodology: projection method used in the forecasting, increases the

size of the structural break for the long horizons and makes the intercept correction

more efficient. When the intercept correction is efficient, the corrected benchmark

model is often outperformed by other models.

The in-sample performance of the models and the forecasting results for 1-month

horizon are very much in-line with the results of the Monte Carlo exercise. Both in

the empirical application and in the Monte Carlo exercise factor-augmented models

provide better in-sample fit than models with no factors. However, factor-augmented

forecasts do not outperform forecasts produced by the VAR and the VECM.

Some gains provided by the FVAR and FECM can be explained by the better

performance of the factor-augmented models for longer forecasting horizons and in

the presence of structural breaks. However, this requires further investigation in

Monte Carlo exercises and other empirical applications.
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5 Conclusions

In this paper the performance of the factor-augmented error-correction models is

evaluated in the Monte Carlo exercise and the empirical application. The hypothesis

considered is that the inclusion of the common stochastic trends extracted from the

large data set can improve the in-sample and the out-of-sample performance of the

small-scale ECM.

It is found both in the Monte Carlo exercise and the empirical application that

although in-sample the FECM performs well relative to the models which are not

augmented by factors, the forecasting performance of the FECM is no better than

the forecasting performance of other models for the one-period horizon. One possible

explanation of this evidence can be that the estimated common stochastic trends

approximate the long run dynamics of the variables while the short-term forecasting

requires information about common stationary cycles.

Another reason of the relatively bad forecasting performance of the FECM can

be estimation uncertainty induced by the estimation of factors. This problem can

be resolved by the increasing the cross-section dimension of the data.

The results of the empirical exercise indicate that the forecasting performance of

the FECM may improve for the longer horizons. This requires further investigation

in Monte Carlo exercises and empirical applications.
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Appendix 1. Data Description

No Mnemonic Description

euro rates

1. eonia eonia
2. eu1m 1 month euribor
3. eu3m 3 month euribor
4. eu6m 6 month euribor
5. eu1y 1 year euribor
6. eu2y 2 year bond rate
7. eu3y 3 year bond rate
8. eu5y 5 year bond rate
9. eu7y 7 year bond rate
10. eu10y 10 year bond rate
11. eusw2y euro vs euribor swap rate, 2 years
12. eusw3y euro vs euribor swap rate, 3 years
13. eusw5y euro vs euribor swap rate, 5 years
14. eusw7y euro vs euribor swap rate, 7 years
15. eusw10y euro vs euribor swap rate, 10 years

uk rates

16. sonia uk sonia
17. uk1w 1 week libor
18. uk1m 1 month libor
19. uk3m 3 month libor
20. uk6m 6 month libor
21. uk1y 1 year libor
22. uk5y zero coupon yield, 5 years
23. uk10y zero coupon yield, 7 years
24. uk10y zero coupon yield, 10 years
25. uk20y zero coupon yield, 20 years
26. uksw2y uk swap, 2 years
27. uksw3y uk swap, 3 years
28. uksw5y uk swap, 5 years
29. uksw7y uk swap, 7 years
30. uksw10y uk swap, 10years
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us rates

31. us3m us treasury bill, 3 months
32. us6m us treasury bill, 6 months
33. us1y us treasury bill, 1 year
34. us2y us treasury bill, 2 years
35. us3y us treasury bill, 3 years
36. us5y us treasury bill, 5 years
37. us7y us treasury bill, 7 years
38. us10y us treasury bill, 10 years
39. us20y us treasury bill, 20 years
40. usw2y us swap, 2 years
41. usw3y us swap, 3 years
42. usw5y us swap, 5 years
43. usw7y us swap, 7 years
44. us10y us swap, 10 years
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Appendix 2. Figures
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Appendix 3. Tables

Table 1. Monte Carlo Experiment:
DGP 1, a1 = 1, in-sample performance

Parameters Relative SE
T N VAR FVAR ECM FECM

50 50 1.00 (.) 0.96 (0.21) 0.98 (0.22) 0.92 (0.23)
50 100 1.00 (.) 0.97 (0.20) 0.98 (0.22) 0.94 (0.22)
50 200 1.00 (.) 0.98 (0.21) 0.99 (0.14) 0.96 (0.22)
100 100 1.00 (.) 0.97 (0.14) 0.99 (0.15) 0.94 (0.14)
100 200 1.00 (.) 0.98 (0.15) 0.99 (0.15) 0.94 (0.15)
100 300 1.00 (.) 0.96 (0.14) 0.99 (0.15) 0.91 (0.15)

Table 2. Monte Carlo Experiment:
DGP 1, Forecasting Results, a1 = 1, 1 period forecasts

Parameters Relative MSFE
T N VAR FVAR ECM FECM

50 50 1.00 (.) 1.04 (1.43) 1.27 (2.15) 1.55 (3.39)
50 100 1.00 (.) 1.07 (1.52) 1.30 (2.24) 1.53 (2.75)
50 200 1.00 (.) 1.05 (1.46) 1.21 (1.90) 1.43 (2.30)
100 100 1.00 (.) 1.00 (1.44) 1.25 (1.90) 1.62 (2.91)
100 200 1.00 (.) 1.02 (1.38) 1.31 (2.35) 1.56 (2.53)
100 300 1.00 (.) 1.05 (1.44) 1.25 (2.02) 1.56 (2.40)
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Table 3. Monte Carlo Experiment:
DGP 1, a1 = 0.5, in-sample performance

Parameters Relative SE
T N VAR FVAR ECM FECM

50 50 1.00 (.) 0.90 (0.20) 0.97 (0.23) 0.83 (0.21)
50 100 1.00 (.) 0.93 (0.19) 0.97 (0.22) 0.87 (0.22)
50 200 1.00 (.) 0.94 (0.13) 0.97 (0.22) 0.89 (0.22)
100 100 1.00 (.) 0.93 (0.14) 0.98 (0.14) 0.87 (0.13)
100 200 1.00 (.) 0.93 (0.14) 0.98 (0.15) 0.88 (0.14)
100 300 1.00 (.) 0.94 (0.14) 0.97 (0.15) 0.88 (0.13)

Table 4. Monte Carlo Experiment:
DGP 1, Forecasting Results, a1 = 0.5, 1-step forecasts

Parameters Relative MSFE
T N VAR FVAR ECM FECM

50 50 1.00 (.) 1.02 (1.35) 0.80 (1.40) 0.96 (1.52)
50 100 1.00 (.) 1.06 (1.53) 0.76 (1.19) 0.93 (1.46)
50 200 1.00 (.) 1.05 (1.47) 0.71 (1.08) 0.86 (1.22)
100 100 1.00 (.) 1.00 (1.42) 0.55 (0.90) 0.73 (1.14)
100 200 1.00 (.) 1.02 (1.44) 0.59 (1.01) 0.72 (1.14)
100 300 1.00 (.) 1.06 (1.50) 0.57 (0.90) 0.68 (0.93)
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Table 5. Monte Carlo Experiment:
DGP 2, a2 = 1, in-sample performance

Parameters Relative SE
T N VAR FVAR ECM FECM

50 50 1.00 (.) 0.96 (0.21) 0.97 (0.23) 0.91 (0.22)
50 100 1.00 (.) 0.97 (0.20) 0.96 (0.22) 0.92 (0.21)
50 200 1.00 (.) 0.97 (0.20) 0.98 (0.22) 0.93 (0.22)
100 100 1.00 (.) 0.97 (0.14) 0.99 (0.14) 0.93 (0.13)
100 200 1.00 (.) 0.97 (0.14) 0.98 (0.15) 0.93 (0.14)
100 300 1.00 (.) 0.97 (0.14) 0.98 (0.15) 0.93 (0.14)

Table 6. Monte Carlo Experiment:
DGP 2, Forecasting Results, a2 = 1, 1-step forecasts

Parameters Relative MSFE
T N VAR FVAR ECM FECM

50 50 1.00 (.) 1.02 (1.42) 2.03 (3.26) 2.19 (3.52)
50 100 1.00 (.) 1.04 (1.54) 1.91 (2.73) 2.11 (3.08)
50 200 1.00 (.) 1.04 (1.46) 1.89 (2.72) 2.05 (3.07)
100 100 1.00 (.) 1.01 (1.44) 1.82 (2.68) 2.01 (2.99)
100 200 1.00 (.) 1.01 (1.48) 1.77 (2.60) 1.98 (2.92)
100 300 1.00 (.) 1.02 (1.40) 1.78 (2.47) 1.97 (2.74)
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Table 7. Monte Carlo Experiment:
DGP 2, a2 = 0.5, in-sample performance

Parameters Relative SE
T N VAR FVAR ECM FECM

50 50 1.00 (.) 0.96 (0.20) 0.98 (0.23) 0.91 (0.22)
50 100 1.00 (.) 0.97 (0.20) 0.98 (0.22) 0.93 (0.22)
50 200 1.00 (.) 0.97 (0.22) 0.98 (0.22) 0.94 (0.23)
100 100 1.00 (.) 0.97 (0.14) 0.98 (0.14) 0.92 (0.14)
100 200 1.00 (.) 0.97 (0.14) 0.98 (0.15) 0.92 (0.14)
100 300 1.00 (.) 0.97 (0.14) 0.98 (0.15) 0.92 (0.14)

Table 8. Monte Carlo Experiment:
DGP 1, Forecasting Results, a2 = 0.5, 1-step forecasts

Parameters Relative MSFE
T N VAR FVAR ECM FECM

50 50 1.00 (.) 1.04 (1.54) 1.70 (3.04) 2.11 (3.70)
50 100 1.00 (.) 1.05 (1.49) 1.55 (2.32) 1.83 (1.41)
50 200 1.00 (.) 1.03 (1.53) 1.61 (2.51) 1.80 (1.94)
100 100 1.00 (.) 1.04 (1.60) 1.70 (2.62) 2.05 (2.97)
100 200 1.00 (.) 1.04 (1.49) 1.73 (2.57) 1.99 (2.94)
100 300 1.00 (.) 1.05 (1.59) 1.64 (2.65) 1.92 (3.13)
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Table 9. Empirical Exercise:
Relative Standard Errors

Relative Standard Errors
Model Loans to Enterprizes Consumer Mortgage

Short-term Long-term Loans Loans

VAR 1.00 1.00 1.00 1.00
FVAR 0.95 1.02 0.97 0.97
VECM 0.90 0.89 0.82 0.98
FECM 1.03 0.81 0.78 0.94

SE for VAR 0.003 0.009 0.017 0.005

Table 10. Empirical Exercise:
Forecasting Results, 1-month forecasts

Relative MSFE
Model Loans to Enterprizes Consumer Mortgage

Short-term Long-term Loans Loans

VAR 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
FVAR 0.92 (0.12) 0.99 (0.03) 1.03 (0.06) 1.13 (0.36)
VECM 1.09 (0.18) 1.17 (0.22) 0.85 (0.27) 1.28 (0.22)
FECM 1.41 (0.31) 1.06 (0.13) 0.90 (0.21) 2.92 (1.36)
VAR IC 2.27 (0.95) 2.13 (1.07) 2.55 (1.96) 2.18 (0.99)
FVAR IC 2.23 (1.08) 2.19 (1.09) 2.77 (2.15) 1.58 (0.56)
VECM IC 1.76 (0.55) 1.68 (0.56) 1.47 (0.37) 2.79 (1.57)
FECM IC 1.25 (0.24) 2.07 (0.82) 1.85 (0.88) 2.80 (1.28)

RMSE

for VAR
0.035 0.078 0.174 0.049
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Table 11. Empirical Exercise:
Forecasting Results, 3-month forecasts

Relative MSFE
Model Loans to Enterprizes Consumer Mortgage

Short-term Long-term Loans Loans

VAR 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
FVAR 1.25 (0.25) 1.03 (0.04) 0.97 (0.10) 1.23 (0.23)
VECM 0.92 (0.39) 2.48 (2.24) 1.08 (0.26) 1.06 (0.04)
FECM 2.22 (1.00) 1.17 (0.25) 0.88 (0.19) 5.09 (7.98)
VAR IC 0.71 (0.24) 0.94 (0.17) 1.64 (0.45) 0.99 (0.25)
FVAR IC 1.23 (0.33) 0.97 (0.17) 1.54 (0.55) 0.82 (0.21)
VECM IC 0.31 (0.27) 1.64 (0.68) 1.41 (0.40) 0.98 (0.26)
FECM IC 0.40 (0.26) 1.09 (0.47) 1.55 (0.54) 1.83 (0.65)

RMSE

for VAR
0.092 0.122 0.195 0.102

Table 12. Empirical Exercise:
Forecasting Results, 6-month forecasts

Relative MSFE
Model Loans to Enterprizes Consumer Mortgage

Short-term Long-term Loans Loans

VAR 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
FVAR 1.10 (0.18) 1.35 (0.42) 1.09 (0.10) 1.16 (0.16)
VECM 0.62 (0.45) 1.61 (1.04) 1.77 (0.54) 2.91 (3.37)
FECM 2.33 (1.72) 1.78 (1.07) 1.25 (0.30) 4.37 (7.31)
VAR IC 0.31 (0.38) 0.41 (0.19) 1.43 (0.28) 0.41 (0.16)
FVAR IC 0.63 (0.41) 0.18 (0.17) 1.27 (0.20) 0.26 (0.15)
VECM IC 0.20 (0.41) 1.41 (0.75) 1.87 (0.37) 0.72 (0.19)
FECM IC 0.13 (0.41) 1.14 (0.71) 1.84 (0.50) 2.43 (2.77)

RMSE

for VAR
0.232 0.220 0.196 0.239
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Conclusions

In this work we investigate the relative performance of dynamic factor models in

finite samples and in the presence of structural changes. We extend an existing

literature by the exploration of new data sets and the evaluation of finite sample

properties of factor models in the simulation exercises.

In Chapter 1 we evaluate the relative performance of factor forecasts in the

empirical exercise conducted for Brazil and Russia. This exercise does not provide

a uniform evidence of the better performance of any considered model. However, it

allows us to suggest that the relative performance of factor models depends on the

presence of structural breaks, their timing, and their size.

These properties of data are explored in the simulation exercise in Chapter 2.

In particular, the timing and sources of structural breaks are the subject of investi-

gation. We consider deterministic breaks in mean of factors and in intercept of the

forecasting equation and find that for both types of break, factor forecasts perform

well, if there is a break in the middle of the estimation period. However, if there is a

break in the end of estimation period, estimated factor models fail to accommodator

it and perform worse than other methods.

In-sample and out-of-sample performance of factor-augmented error correction

models (FECM) is the subject of investigation in Chapter 3. The performance of

FECMs is explored both in the simulation exercise and in the application to the

interest rate pass-through in the euro area. Although it is found that FECMs per-

form well in-sample, their forecasting performance is no better than the forecasting

performance of other methods in most cases. As the found evidence is still very

limited, another exercise with more complex data-generating processes and a new

set of real data may be instructive.
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