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Abstract

This paper discusses pooling versus model selection for now- and forecasting in the pres-

ence of model uncertainty with large, unbalanced datasets. Empirically, unbalanced data

is pervasive in economics and typically due to di¤erent sampling frequencies and publi-

cation delays. Two model classes suited in this context are factor models based on large

datasets and mixed-data sampling (MIDAS) regressions with few predictors. The spec-

i�cation of these models requires several choices related to, amongst others, the factor

estimation method and the number of factors, lag length and indicator selection. Thus,

there are many sources of mis-speci�cation when selecting a particular model, and an

alternative could be pooling over a large set of models with di¤erent speci�cations. We

evaluate the relative performance of pooling and model selection for now- and forecasting

quarterly German GDP, a key macroeconomic indicator for the largest country in the

euro area, with a large set of about one hundred monthly indicators. Our empirical �nd-

ings provide strong support for pooling over many speci�cations rather than selecting a

speci�c model.

JEL Classi�cation Codes: E37, C53

Keywords: nowcasting, forecast combination, forecast pooling, model selection, mixed-

frequency data, factor models, MIDAS



1 Introduction

Forecast models that can take into account unbalanced datasets have received substantial

attention in the recent literature. In real time, the unbalancedness of datasets arises due

to the di¤erent sampling frequencies and di¤erent publication delays of business cycle in-

dicators. For example, Gross Domestic Product (GDP), a key indicator of macroeconomic

activity, is typically published at quarterly frequency and has a considerable publication

lag. As policy makers regularly request information on the current state of the economy

in terms of GDP, there is a need to provide estimates of current GDP in order to support

policy decisions. Following the discussion in Giannone et al. (2008), we call the necessary

projection of current GDP the �nowcast�in this paper. In the same way, other business

cycle indicators, that might serve as predictors for GDP, are released in an asynchronous

way and exhibit complicated patterns of missing values at the end of the sample, which

leads to the so-called �ragged-edge�problem of multivariate data in econometrics, see Wal-

lis (1986). Another di¢ culty arises, because GDP is released on a quarterly basis, whereas

many important predictors are sampled at monthly or higher frequencies. Therefore, now-

and forecast models should be able to account for mixed-frequency and ragged-edge data.

In the recent forecast literature, two alternative modeling approaches that can take

into account these data irregularities have been discussed: mixed-data sampling (MIDAS)

regressions with a few indicators and large factor models. In the MIDAS approach, as

introduced by Ghysels and Valkanov (2006) and Ghysels, Sinko and Valkanov (2007), a

low-frequency variable is regressed on higher frequency variables using skip-sampling and

restricted lag polynomials. Clements and Galvão (2008, 2009) introduced the MIDAS

approach to macroeconomics, and presented empirical results for US quarterly GDP pre-

dicted by monthly indicators. Due to the skip-sampling and direct projection, MIDAS

can tackle mixed-frequency data as well as di¤erences in data availability at the end of

the sample. Whereas MIDAS is mainly a forecast tool based on a few selected indica-

tors, the usefulness of factor models based on large datasets as forecast devices has been

widely discussed in the recent literature, see the seminal papers by Stock and Watson

(2002) and Forni et al. (2005). If ragged-edge and mixed-frequency data is present, factor

estimation methods that take into proper account these data irregularities are required.

Two prominent methods from the recent literature are: the two-step estimator in a state-

space framework by Doz et al. (2006) and Giannone et al. (2008), which can account for

statistical publication lags in the indicator dataset by using the Kalman smoother; and

the dynamic principal components estimator by Altissimo et al. (2006), which can also

handle ragged edge datasets, and thereby extends the dynamic estimator by Forni et al.

(2005) based on balanced data.

Within the MIDAS and factor model classes, the practitioner has to make a set of

auxiliary decisions when applying them for forecasting. For example, proper indicator

selection is crucial for MIDAS regressions. However, in a related framework with single-

frequency data, Banerjee and Marcellino (2006) for the US and Banerjee et al. (2005)
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for the Euro area have found that selecting variables in real time can be much more

di¢ cult than what suggested by ex-post evaluations. The factor forecast framework is

also not immune to mis-speci�cation issues, e.g., there is an ongoing discussion regarding

the appropriate factor estimation method, see Boivin and Ng (2005), Stock and Watson

(2006), D�Agostino and Giannone (2006), and Schumacher (2007). And proper handling

of dynamics is a problem for both approaches, even more than usual due to the mixed

sampling frequencies of the indicators. Therefore, it is very likely that even a careful

selection process can result in a mis-speci�ed model.

In the present paper, we propose nowcast pooling as a simple way of dealing with

this substantial model uncertainty, exacerbated by the use of large unbalanced datasets.

From a theoretical point of view, it is di¢ cult to rank model speci�cation and pooling in

�nite and irregular samples. In addition, their relative performance will depend on the

assumptions on the data generating process. Therefore, we prefer to take an empirical

approach. In particular, we evaluate the nowcast performance of pooling and single

models for quarterly German GDP, a key variable for the largest country in the euro area.

Speci�cally, �rst we investigate the performance of a large number of MIDAS and factor

models with di¤erent speci�cations, that are held �xed in the recursive evaluation exercise.

In other words, on an ex-post basis, we search for the best speci�cations. Second, in order

to allow for data-driven speci�cation, we consider real-time model selection based either on

information criteria or on the past forecast performance of the individual models, following

the discussion in Inoue and Kilian (2006). Finally, we discuss to what extent alternative

pooling schemes can circumvent potential mis-speci�cation of single models. We consider

averaging with equal weights, the median as well as performance-based weights over full

set of models. As the sample under consideration is relatively small, and simple forecast

combinations have turned out to provide robust results in the literature, we do not account

for more sophisticated pooling methods, see e.g. Clark and McCracken (2008).

It is well known that pooling of forecasts provides a robust tool in the presence of

mis-speci�cation and parameter instability, see for example Timmermann (2005) and

Clements and Hendry (2004) for theoretical results, and Clark and McCracken (2008),

Assenmacher-Wesche and Pesaran (2008) and Garratt et al. (2009) for recent empirical

applications. However, these papers do not take into account the data unbalancedness,

which is pervasive in economics due to publication delays of statistical data and di¤erent

sampling frequencies. Instead, we focus on pooling MIDAS and factor models as econo-

metric speci�cations that take into explicit account the data unbalancedness. Hence, our

�rst original contribution to the literature is to assess pooling in a more realistic context

and for models potentially more useful for empirical analysis.

Our second original contribution is to compare MIDAS regressions based on few se-

lected indicators with factor models based on large datasets, thus relating the MIDAS

literature from Clements and Galvão (2008, 2009) to the factor nowcast literature from

2



Giannone et al. (2008), Altissimo et al. (2006) and Marcellino and Schumacher (2008).1

Our main results can be summarised as follows. First, searching in the set of all

possible models on an ex-post basis, it is possible to �nd MIDAS and factor speci�cations

that outperform a simple benchmark, and MIDAS models with a few indicators tend to

outperform factor models in this ex-post evaluation. Since the search described above is

based on full sample results, it might be subject to the data-mining critique. Second, when

selecting the forecasting models in real time based either on information criteria or on their

past performance, it is much more di¢ cult to beat the benchmark, with the exception of

factor model selection based on past forecasting performance. Third, pooling the whole

set of MIDAS and factor now- and forecasts clearly outperforms single models selected

according to information-criteria or based on their past performance. In comparison with

the best �xed speci�cations selected on an ex-post basis, pooling is better than 93-100%

of all the single indicator forecasts, and of 86-100% of all the factor forecasts, depending

on the horizon. Furthermore, in real time, pooling of factor models seems to outperform

pooling of MIDAS models with few indicators.

In summary, the main �nding of our paper is that there is considerable uncertainty

with respect to the appropriate speci�cation of the compilcated econometric tools needed

to handle large and unbalanced datasets of macroeconomic variables. In this context,

pooling of many speci�cations within and across the MIDAS and factor model classes is

overall superior to selecting a single model.

The paper proceeds as follows. Section 2 provides an overview of the individual MI-

DAS regressions and factor models employed here, as well as the combination methods.

Section 3 describes the design of the forecast comparison exercise. Section 4 presents and

compares the empirical results for �xed, information criteria and past performance based

speci�cations. Section 5, discusses pooling over the whole set of MIDAS and Factor-

MIDAS speci�cations. Section 6 conducts a variety of robustness analyses. Section 7

summarizes and concludes.

2 Nowcasting quarterly GDP with ragged-edge data:

MIDAS, factor models, and pooling

To forecast quarterly GDP using monthly indicators, we mainly rely on the mixed-data

sampling (MIDAS) approach as proposed by Ghysels and Valkanov (2006), Ghysels et al.

(2007), and Clements and Galvão (2008, 2009). MIDAS is a single-equation approach that

allows a low-frequency variable like GDP to be explained by high-frequency regressors.

In our application, we will consider di¤erent types of regressors: either a small number

of business cycle indicators, following the work by Clements and Galvão (2008, 2009),

1Barhoumi et al. (2008) also consider forecasting with ragged-edge data, but do not consider MI-
DAS approaches and speci�cation uncertainty as in the present paper, in particular, with respect to
speci�cation uncertainty of factor models.
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or factors estimated from a large set of indicators, following Marcellino and Schumacher

(2008). For both types of regressors, the MIDAS regression approach serves as a way

to compute the projections. Below, in subsection 2.1, we �rst introduce the MIDAS

regression, then discuss the choice of monthly predictors in subsection 2.2, in particular the

di¤erent factor estimation approaches that can be applied to large sets of indicators. When

discussing the alternative approaches, we will also address the di¤erent speci�cations that

are necessary when applying the models in real time. Finally, the alternative pooling

methods are described in subsection 2.3.

2.1 The MIDAS approach as a now- and forecasting tool

In our application, the predictand is quarterly GDP growth, which is denoted as ytq where

tq is the quarterly time index tq = 1; 2; 3; : : : ; T yq with T
y
q as the �nal quarter for which

GDP is available. GDP growth can also be expressed at the monthly frequency by setting

ytm = ytq8tm = 3tq with tm as the monthly time index. Thus, GDP ytm is observed only
at months tm = 3; 6; 9; : : : ; T ym with T

y
m = 3T

y
q . The aim is to forecast GDP hq quarters

ahead, or hm = 3hq months ahead, yielding a value for yT ym+hm.

Nowcasting means that in a particular calender month, we do not observe GDP for

the current quarter. It can even be the case that GDP is only available with a delay of

two periods. In April, for example, German GDP is only available for the fourth quarter

of the previous year, and a nowcast for second quarter GDP requires hq = 2. Thus, if a

decision maker requests an estimate of current quarter GDP, the forecast horizon has to

be set su¢ ciently large in order to provide the appropriate �gures. For further discussion

on nowcasting, see Giannone et al. (2008).

To now- and forecast quarterly GDP growth, we can make use of a stationary monthly

predictor ztm. For simplicity, we assume that there is only one predictor, and generalise

this case later on to more than one indicators or factors. The time index tm denotes a

monthly period, and observations of ztm are available for tm = 1; 2; 3; : : : ; T
z
m, where T

z
m

is the �nal month for which an observation is available. Usually, T zm is larger than T
y
m =

3T yq , as monthly observations for many relevant macroeconomic indicators, in particular

�nancial or survey data, are earlier available than GDP observations. The forecast for

GDP is denoted as yT ym+hmjT zm, as we condition the forecast on information available in

month T zm, which also includes GDP observations up to T
y
q in addition to the indicator

observations up to T zm with T zm � T ym = 3T yq . Thus, the indicator is available wzy =

T zm � T ym months ahead of GDP.

Basic MIDAS The forecast model for forecast horizon hq quarters with hq = hm=3 is

ytq+hq = ytm+hm = �0 + �1b(Lm;�)z
(3)
tm+wzy + "tm+hm ; (1)
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where wzy = T zm � T ym and the polynomial b(Lm;�) is the exponential Almon lag

b(Lm;�) =
KX
k=0

c(k;�)Lkm; c(k;�) =
exp(�1k + �2k

2)
KP
k=0

exp(�1k + �2k2)

; (2)

with the monthly lag operator Lm de�ned as Lmztm = ztm�1. In the MIDAS approach,

quarterly GDP ytq+hq is directly related to the indicator z
(3)
tm+j

and its lags, where z(3)tm is

a skip-sampled version of the monthly ztm. The superscript three indicates that every

third observation starting from the tm-th one is included in the regressor z
(3)
tm , thus z

(3)
tm =

ztm 8 tm = : : : ; T zm � 6; T zm � 3; T zm. Lags of the monthly factors are treated accordingly,
e.g. the k-th lag z(3)tm�k = ztm�k 8 tm = : : : ; T

z
m�k�6; T zm�k�3; T zm�k. In the regression,

the variable wzy denotes the number of monthly periods, the monthly indicator is earlier

available than GDP. Thus, we take into account that a monthly indicator is typically

available within the quarter for which no GDP �gure is available, see Clements and

Galvão (2008, 2009).

For given � = f�1; �2g, the exponential lag function b(Lm;�) provides a parsimonious
way to consider monthly lags of the factors as we can allow for largeK to approximate the

impulse response function of GDP from the factors. The longer the lead-lag relationship

in the data is, the less MIDAS su¤ers from sampling uncertainty compared with the

estimation of unrestricted lags, where the number of coe¢ cients increases with the lag

length.

TheMIDASmodel can be estimated using nonlinear least squares (NLS) in a regression

of ytm onto z
(3)
tm+wzy�hm and lags, yielding coe¢ cients

b�1, b�2, b�0 and b�1. The forecast is
given by

yT ym+hmjT zm =
b�0 + b�1b(Lm; b�)zT zm : (3)

According to this forecast equation, the MIDAS approach is a direct forecasting tool, as

it relates future GDP to current and lagged indicators, see Marcellino, Stock and Watson

(2006) as well as Chevillon and Hendry (2005) for detailed discussions of this issue in

the single-frequency case. MIDAS is horizon-dependent, and thus has to be reestimated

for multi-step forecasts for all hm. The same holds for the case new statistical informa-

tion becomes available. For example, each month, new observations for the indicator is

released, whereas GDP observations are released only once in a quarter. Thus, also wzy
changes from month to month, which also makes a new regression necessary.

Autoregressive MIDAS As an extension to the basic MIDAS approach, Clements and

Galvão (2008) consider autoregressive dynamics in the MIDAS approach. In particular,

they propose the model

ytm+hm = �0 + �ytm + �1b(Lm;�)(1� �L3m)z
(3)
tm+w + "tm+hm : (4)
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The autoregressive coe¢ cient � is not estimated unrestrictedly to rule out discontinuities

of the impulse response function of z(3)tm on ytm+hm, see the discussion in Ghysels et al.

(2007), pp. 60. The restriction on the coe¢ cients is a common-factor restriction to ensure

a smooth impulse response function, see Clements and Galvão (2008). The AR coe¢ cient

� can be estimated together with the other coe¢ cients by NLS. As an AR model is often

supposed to be an appropriate benchmark speci�cation for GDP, the extension of MIDAS

might give additional insights in which direction the other MIDAS approaches considered

so far might be improved. Henceforth, we denote this approach as �AR-MIDAS�, whereas

we denote MIDAS without AR terms just as �MIDAS�.

Multiple MIDAS regression MIDAS regressions can easily be extended to the mul-

tiple predictor case. Assume we have M predictors zi;tm for i = 1; : : : ;M . The corre-

sponding MIDAS equation is

ytq+hq = ytm+hm = �0 +

MX
i=1

�1;ibi(Lm;�i)z
(3)
i;tm+wzy

+ "tm+hm ; (5)

where the coe¢ cients �1;i and bi di¤er with respect to the di¤erent indicators chosen.

In particular, each indicator can have a di¤erent impulse response function through

�i= f�1;i; �2;ig that determine the polynomial bi.

2.2 The MIDAS predictors

In our empirical application, we have available a large set of monthly predictors, collected

in the N -dimensional vector Xtm = (x1;tm ; : : : ; xN;tm)
0 for months tm = 1; 2; 3; : : : ; Tm.

Here Tm is the latest observation available in the entire set of monthly time series. How-

ever, due to publication lags, some elements at the end of the sample can be missing

for certain predictors, thus rendering an unbalanced sample. We will distinguish two

types of MIDAS regressors: 1) single indicators selected from the a large set of indica-

tors; 2) factors estimated from Xtm. Thus, regarding factor now- and forecasting, we

follow the Factor-MIDAS approach of Marcellino and Schumacher (2008), where factors

are estimated in the �rst step, and these factors are plugged into a MIDAS regression for

computing the forecasts.

2.2.1 MIDAS forecasting with a single indicator

In our application, we will now- and forecast with a large range of MIDAS models, where

in each model GDP is explained by a single indicator, ztm 2 Xtm. Thus, we end up with

N single-indicator MIDAS regressions and N single-indicator MIDAS with autoregressive

terms. As we will see, some of these simple models will perform very well. However, in

order to check the robustness of the results with respect to this speci�cation choice, we

will perform a sensitivity analysis later on and use more than one predictor in MIDAS.
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In real-time, when a practitioner aims at minimising forecast error loss, the question

is how to specify the MIDAS with respect to variable selection, the choice of the AR

term, as well as the maximum length of the lag polynomial. We will focus on the variable

selection issue in our application below, as well as on the choice of the AR term.

2.2.2 MIDAS forecasting with factors

We want to model Xtm using a factor speci�cation, and particularly assume that the

monthly observations have a factor structure according to

Xtm = �Ftm + �tm ; (6)

where the r-dimensional factor vector is denoted as Ftm = (f
0
1;tm ; : : : ; f

0
r;tm)

0. The factors

times the (N � r) loadings matrix � represent the common components of each variable.
The idiosyncratic components �tm are that part of Xtm not explained by the factors.

Under the assumption that the (Tm � N) data matrix X is balanced, various ways to

estimate the factors have been provided in the literature. For example, two of the most

widely used approaches are based on principal components analysis (PCA) as in Stock and

Watson (2002) or dynamic PCA according to Forni et al. (2005). Note that, according to

(6), all the factor models to be discussed below will work at the higher monthly frequency,

thus factor estimates are available for all monthly periods tm = 1; 2; : : : ; Tm. Below, we

compare two ways of estimating the factors in the presence of ragged-edge data. In the

empirical application, we will employ both models to account for model uncertainty.

Vertical realignment of data and dynamic principal components factors A very

convenient way to solve the ragged-edge problem is provided by Altissimo et al. (2006)

for estimating the New Eurocoin indicator. They propose to realign each time series in

the sample in order to obtain a balanced dataset. Assume that variable i is released with

ki months of publication lag. Thus, given a dataset in period T xim , the �nal observation

available of this time series is for period T xim � ki. The realignment proposed by Altissimo
et al. (2006) is then simply exi;Tm = xi;Tm�ki (7)

for tm = ki + 1; : : : ; T xim . Applying this procedure to all the time series, and harmonising

at the beginning of the sample, yields a balanced data set eXtm for tm = max(fkigNi=1) +
1; : : : ; T xim .

Given this monthly data, Altissimo et al. (2006) propose dynamic PCA to estimate

the factors. As the dataset is balanced, the two-step estimation techniques by Forni et

al. (2005) directly apply. In our applications below, we will denote the combination of

vertical realignment and dynamic principal components factors as �VA-DPCA�. Details

on how the estimation is carried out, can be found in the appendix B.

The vertical realignment solution to the ragged-edge problem is easy to use. A dis-
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advantage is that the availability of data determines dynamic cross-correlations between

variables. Furthermore, statistical release dates for data are not the same over time, for

example, due to major revisions. In this case, dynamic correlations within the data change

and factors can change over time. The same holds if factors are reestimated at a higher

frequency than the frequency of the factor model. This is a very common scenario, for

example, if a monthly factor model is reestimated several times within a month when new

monthly observations are released. If this the case, the realignment of the data changes

the correlation structure all the time. On the other hand, dynamic PCA as in Forni et

al. (2005) exploits the dynamic cross-correlations in the frequency domain and might be

in principle able to account for these changes in realignments of the data.

Estimation of a large parametric factor model in state-space form The factor

estimation approach followed by Doz et al. (2006) is based on a complete representation

of the large factor model in state-space form. The complete model consists of a factor

representation of the large vector of monthly time series and an explicit VAR structure is

assumed to hold for the factors. The full state-space model has the form

Xtm = �Ftm + �tm ; (8)

	(Lm)Ftm = B�tm : (9)

Equation (8) is the static factor representation of Xtm as above in (6). Equation (9) spec-

i�es a VAR of the factors with lag polynomial 	(Lm) =
Pp

i=1	iL
i
m. The q-dimensional

vector �tm contains the orthogonal dynamic shocks that drive the r factors, where the

matrix B is (r � q)-dimensional. The model is already in state space form, since the
factors Ftm are the states. If the dimension of Xtm is small, the model can be estimated

using iterative maximum likelihood (ML). In order to account for large datasets, Doz

et al. (2006) propose quasi-ML to estimate the factors, as iterative ML is infeasible in

this framework. For a given number of factors r and dynamic shocks q, the estimation

proceeds in the following steps:

1. Estimate bFtm using PCA as an initial estimate. Here, estimation is based on the
balanced part of the data. We can obtain this by removing as many values at the

end of the sample as long the dataset is unbalanced. The sample size employed for

the initial estimation of the factors is then tm = 1; : : : ;min(fT xim gNi=1).

2. Estimate b� by regressing Xtm on the estimated factors bFtm. The covariance of the
idiosyncratic components b�tm = Xtm � b�bFtm, denoted as b��, is also estimated.

3. Estimate a VAR(p) on the factors bFtm yielding b	(L) and the residual covariance ofb& tm = b	(Lm)bFtm, denoted as b�& .
4. To obtain an estimate for B, given the number of dynamic shocks q, apply an eigen-

value decomposition of b�& . Let M be the (r � q)-dimensional matrix of the eigen-
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vectors corresponding to the q largest eigenvalues, and let the (q � q)-dimensional
matrix P contain the largest eigenvalues on the main diagonal and zero otherwise.

Then, the estimate of B is bB =M�P�1=2. The coe¢ cients and auxiliary parame-
ters of the system of equations (8) and (9) is fully speci�ed numerically. The model

is cast into state-space form.

5. The Kalman �lter or smoother then yield new estimates of the monthly factors.

The dataset used for Kalman smoother estimation is now the unbalanced dataset

for tm = 1; : : : ; Tm, and Tm is the latest observation available in the entire set of

monthly time series

If missing values at the end of the sample are present, as in our setup, the Kalman

�lter also yields optimal estimates and forecasts for these values conditional on the model

structure and properties of the shocks. Thus, it is well suited to tackle ragged-edge prob-

lems as in the present context. Nonetheless, one has to keep in mind that in this case the

coe¢ cients in system matrices have to be estimated from a balanced sub-sample of data,

as in step 1 a fully balanced dataset is needed for PCA initialisation. However, although

the system matrices are estimated on balanced data in the �rst step, the factor estimation

based on the Kalman �lter applies to the unbalanced data and can tackle ragged-edge

problems. The solution is to estimate coe¢ cients outside the state-space model and avoid

estimating a large number of coe¢ cients by iterative ML. In the applications below, we

will denote the state-space model Kalman �lter estimator of the factors as �KFS-PCA�.

Speci�cation uncertainty The factor approach requires many decisions concerning

the speci�cation by the practitioner, starting with the choice of the factor estimation

method. In the description of the methods above, we have already provided a few pros

and cons. Hence, there might be proponents of either dynamic PCA with vertical realign-

ment of the data or the state-space approach. Indeed, there is an exhaustive literature

concerning the relative advantages of factor estimation methods. For example, Marcellino

and Schumacher (2008) �nd only minor di¤erences between alternative estimation meth-

ods for factor models in the presence of ragged-edge data. For balanced datasets, there

is a long debate on the choice between dynamic or static PCA, see for example Forni et.

al (2003), Boivin and Ng (2005), Stock and Watson (2006), D�Agostino, and Giannone

(2006), and Schumacher (2007). In the empirical literature on factor forecasting, there

is also considerable uncertainty on how to choose the number of factors. For example,

the application of information criteria sometimes leads to inferior model speci�cations in

terms of forecast accuracy, see Bernanke and Boivin (2003), footnote 7, Giannone, Re-

ichlin, and Sala (2005), footnote 8, and Schumacher (2007). Thus, when applying factor

models for forecasting, there are many decisions that can lead to mis-speci�cation. Below,

we will discuss the relevance of the estimation method as well as the number of factors on

the now- and forecast accuracy with mixed-frequency and ragged-edge data. In addition
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to the factor-speci�c speci�cation issues, decisions concerning the MIDAS regression have

to be made.

2.3 Nowcast pooling over many speci�cations of models

All in all, we have the following groups of individual models: MIDAS and autoregressive

MIDAS with single indicators, MIDAS and autoregressive MIDAS with factors estimated

by two alternative methods. Below, we will compare many di¤erent �xed speci�cations

of these models. In addition to the �xed speci�cations, we consider model selection based

on information criteria and on the past forecasting performance. As a third approach to

now- and forecasting, we evaluate alternative ways of pooling.

We pool over alternative speci�cations of the individual models, following the recent

literature by Clark and McCracken (2008), Assenmacher-Wesche and Pesaran (2008) and

Garratt et al. (2009), for example. Concerning the relevant model set of pooling, we pool

three groups and all the di¤erently speci�ed models therein:

� all models from the single-indicator MIDAS group,

� all models from Factor-MIDAS, and,

� the whole set of single-indicator MIDAS models and Factor-MIDAS.

Therefore, we can assess, �rst, to what extent nowcast pooling helps within a class of

models; second, whether combining the forecasts from single indicator models is better

than combining the indicators by means of factors; and, third, whether there are any

additional gains from pooling over the forecast models and the indicators together.

Pooling of all the models in a given class and across classes takes into account model

uncertainty in its widest sense given the set of models in this exercise. However, when

combining across classes, we have to account for the di¤erent number of models within each

model class. For example, there are substantially more single-indicator MIDAS forecasts

than factor models, as the variable selection in MIDAS implies more speci�cations than

the di¤erent numbers of factors in the factor approach. To avoid that the size of a group

has an e¤ect on the combination of nowcasts, we pool the models in two steps: we �rst

pool the forecasts within a model class (e.g. within single-indicator MIDAS), and then

across model classes.

Concerning the weighting schemes, we rely on relatively simple ones only. As the sam-

ple under consideration is relatively small, and simple forecast combinations have turned

out to provide robust results in the literature, we do not account for more sophisticated

pooling methods. The potential presence of model mis-speci�cation and parameter in-

stability suggests that already simple combinations from alternative MIDAS regressions

and factor models could yield sizeable gains, see also Clark and McCracken (2008) in this

regard. In our application, we use the following weighting schemes:
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� equal-weight averaging,

� the median, and

� weighted averaging based on the past performance.

The merits of simple equal-weights pooling or the median are widely known in case

structural breaks occur, for example, see Timmermann (2005). However, it might also be

bene�cial to exploit potential systematic patterns in the past performance of a particular

model. For this purpose, we evaluate the past performance of a particular model in terms

of mean-squared error (MSE), where we employ a moving window over the previous four

quarters. We do this for of all models to be combined in our application and normalise

these MSEs to sum to one. The combination weight of a model is �nally the inverse of its

standardised MSE, see Stock and Watson (2006), p. 522, for a similar weighting scheme.

Of course, the forecast weights will be updated for every new recursion in our exercise.

Note that the combinations of MIDAS regressions with single indicators can be re-

garded as an extension of a particular forecast combination by Stock and Watson (2006),

where forecasts from distributed lag models with single-indicators are pooled. We ex-

tend their work to the case with mixed-frequency and ragged-edge data. However, the

novel aspect of the application carried out here is the combination over di¤erent model

classes, whereas most of the existing literature on forecasting with mixed-frequency and

ragged-edge data, such as Giannone et al. (2008) and Marcellino and Schumacher (2008),

is mainly concerned with individual models.

3 Design of the nowcast and forecast comparison ex-

ercise

In this section we describe: �rst, the data used; second, the design of the exercise; �nally,

the speci�cation of the models.

3.1 Data and replication of the ragged edge

The dataset contains German quarterly GDP growth from 1992Q1 until 2007Q4 and 111

monthly indicators until 2008M2. The monthly indicators include industrial production

by sector, incoming orders, turnover, survey on consumer sentiment and business climate,

construction, �nancial time series, raw material price indices, as well as car registrations.

More information about the data can be found in appendix A.

The dataset is a �nal dataset. It is not a real-time dataset and does not contain

vintages of data, as they are not available for Germany for such a broad coverage of time

series. Furthermore, in Schumacher and Breitung (2008), a considerably smaller real-time

dataset for Germany is used, but the results indicate that data revisions do not a¤ect the
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forecast accuracy considerably. Similar results have been found by Bernanke and Boivin

(2003) for the US in a similar context. Thus, we cannot discuss the role of revisions

on the relative forecasting accuracy here. However, we take into account that GDP and

the monthly indicators are subject to di¤erent publication lags, and these lead to certain

patterns of missing values at the end of every recursive sample. To consider the availability

of the data at the end of the sample due to di¤erent publication lags, we follow Giannone

et al. (2008) and Banbura and Rünstler (2007) and replicate the availability from the �nal

vintage of data that is available. When downloading the data - the download date for the

data used here was 7th March 2008 -, we observe the data availability pattern in terms

of the missing values at the end of the data sample. For example, at the beginning of

March 2008, we observe interest rates until February 2008, thus there is only one missing

value at the end of the sample, whereas industrial production is available up to January

2008, implying two missing values. For each time series, we store the missing values at

the end of the sample. Under the assumption that these patterns of data availability

remain stable over time, we can impose the same missing values at each point in time of

the recursive experiment. Thus, we shift the missing values back in time to mimic the

availability of information as in real time.

3.2 Nowcast and forecast design

To evaluate the performance of the models, we estimate and nowcast recursively, where

the full sample is split into an evaluation sample and an estimation sample, which is

recursively expanded over time. The evaluation sample is between 2000Q1 and 2007Q4.

For each of these quarters, we want to compute nowcasts and forecasts depending on

di¤erent monthly information sets. For example, for the initial evaluation quarter 2000Q1,

we want to compute a nowcast in March 2000, one in February, and January, whereas

the forecasts are computed from December 1999 backwards in time accordingly. Thus,

we have three nowcasts computed at the beginning of each of the intra-quarter months.

Concerning the forecasts, we present results up to one quarters ahead. Thus, again for the

initial evaluation quarter 2000Q1, we have three forecasts computed based on information

available in October 1999 up to information available in December 1999. Overall, we have

six projections for each GDP growth observation of the evaluation period, depending on

the information available to make the projection. Note that we have also results for

forecast horizons longer than one quarter ahead. However, in line with similar �ndings by

Giannone et al. (2008) for the US, these forecasts generally turned out to be uninformative

and will not be reported below.

The estimation sample depends on the information available at each period in time

when computing the now- and forecasts. Assume again we want to nowcast GDP for

2000Q1 in March 2000, then we have to identify the time series observations available at

that period in time. For this purpose, we exploit the ragged-edge structure from the end

of the full sample of data, as discussed in the previous subsection. For example, for the
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nowcast GDP for 2000Q1 made in March 2000, we know from our full sample that at

each period in time, we have one missing value for interest rates and two missing values of

industrial production. These missing values are imposed also for the period March 2000,

thus replicating the same ragged-edge pattern of data availability. We do this accordingly

in every recursive subsample to determine the pseudo real-time observation of each time

series. The �rst observation for each time series is the same for all recursions, namely

1992M1. This implies the recursive design with increasing information over time available

for estimating the MIDAS regressions and factor models. To replicate the publication

lags of GDP, we exploit the fact that GDP of the previous quarter is available for now-

and forecasting at the beginning of the third month of the next quarter. Note that

we reestimate the factors and forecast equations every recursion when new information

becomes available, so factor weights and forecast model coe¢ cients are allowed to change

over time.

For each evaluation period, we compute six now- and forecasts depending on the avail-

able information in the respective months. To compare the nowcasts with the realisations

of GDP growth, we use the mean-squared error (MSE). In our tables, we provide relative

MSE, where the MSE of a particular forecast model is divided by the in-sample mean of

GDP growth. A relative MSE smaller than one indicates that the forecast of a model for

the chosen now- and forecast horizon is to some extent informative for current and future

GDP, as the in-sample mean has turned out to be a tough competitor, see Giannone et

al. (2008).

3.3 Speci�cation of MIDAS and factor models

To specify the now- and forecast models in the applications below, we follow three ap-

proaches: �xed speci�cation over recursions, recursive speci�cation by information crite-

ria, and recursive speci�cation by past performance.

The range of auxiliary parameters to choose the �xed speci�cations from is set as

follows: In the factor model framework, we compute now- and forecasts for all possible

combinations of r and q and evaluate them with a maximum of r = 6 static factors.

Given r, we consider all possible combinations of r and the number of dynamic factors

with q � r. The maximum lag order for MIDAS was set to six, K = 6. The empirical

estimation results show, that longer lags typically play no role, so the choice of K is not

restrictive. Estimation of single-indicator MIDAS is carried out with all combinations of

indicators and with and without AR terms, so we end up with 222 models used for now-

and forecasting. Regarding the factor models, we have 42 di¤erent speci�cations with

di¤erent r and q for the state-space factor model and the dynamic PCA approach each.

Additionally, we have the two di¤erent Factor-MIDAS projections with and without AR

terms, so we end up with 168 models.

The information criteria chosen for model selection are the following: We determine

the number of static and dynamic factors, r and q, respectively, using information criteria
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from Bai and Ng (2002), in particular their criterion ICp2, and Bai and Ng (2007) with

m = 1:0 following the Monte Carlo results in Bai and Ng (2007). The maximum number

of factors is the same as in the �xed case above. For estimating the state-space factor

model, a lag order determination is required to specify the factor VAR. For this purpose,

we apply the Bayesian information criterion (BIC) with a maximum lag order of p = 6

months. The chosen lag lengths are usually very small with only one or two lags in most

of the cases. For single-indicator MIDAS, the selection of variables as well as the AR

terms is carried out using the Bayesian information criterion (BIC). For a motivation of

the use of BIC in the MIDAS context, see Galvão (2007), p. 14. To compute the BIC,

we have to take into account the exponential lag polynomial determined by � = f�1; �2g,
and the number of coe¢ cients in MIDAS is set to two in case no AR term is incorporated

and three otherwise, see equation (4).

To specify the models by inspecting their past performance, we refer to the MSE

computed over the previous four quarters for each model, in line with the weighting scheme

for pooling in subsection 2.3. The MSEs are computed recursively for the entire set of

models, then the best-performing one is chosen within a class. Thus, model speci�cations

can change over time regarding variable selection and the number of factors as well as the

AR terms.

Concerning the NLS estimation of MIDAS equations, we use a large variety of initial

parameter speci�cations, and compute the residual sum of squares (RSS). The parameter

set with the smallest RSS then serves as the initial parameter set for NLS estimation.

The parameters of the exponential lag function are restricted to �1 < 2=5 and �1 < 0.

To specify the dynamic PCA estimator of the factors following Forni et al. (2005), we

use the frequency-domain auxiliary parameters M = 24 and H = 60 for estimating the

spectral density, see appendix B for details.

4 Now- and forecasts from single models

In the �rst subsection we compute forecasts over the entire range of indicators in MIDAS

regressions, and over speci�cations with and without AR terms. During the recursive

application, we hold the respective speci�cations �xed. When nowcasting with factor

models, we consider all combinations of dynamic and static factors. For both types of

models, we obtain a large set of results that helps to identify the best-performing models

and speci�cations within and across the model classes ex-post.

In the second subsection, we consider sequential (ex-ante) speci�cation by information

criteria. Speci�cally, we apply information criteria for model and variable selection to the

MIDAS and Factor-MIDAS models estimated over recursive subsamples. In the same

subsection, we evaluate speci�cation based on the past performance. Speci�cally, we use

the forecast performance in terms of MSE over the past four periods in order to select

the best-performing speci�cation within the group of Factor- and single-indicator MIDAS.
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This procedure, as well as selection by information criteria, relies on in-sample information

only.

When using �xed speci�cations over all recursions, a comparison of the best models

within each category of models and a comparison across groups allows for an assessment

of the potential forecast accuracy in case a practitioner knew the right speci�cation in real

time. Thus, searching ex post for the right speci�cation is to some extent data mining.

Instead, the use of information criteria and selection based on the past performance comes

closer to the speci�cation problems in a real-time context, and shows to what extent the

results based on �xed speci�cations can be matched under more realistic conditions.

4.1 Fixed speci�cations

Now- and forecast results for the factor models and single-indicator MIDAS based on

�xed speci�cations can be found in table 1. The table shows relative MSEs to the naive

benchmark, which is the in-sample mean of GDP growth. The now- and forecasts are

shown for monthly horizons hm = 1; : : : ; 6, where horizons one to three belong to the

nowcast. Horizon hm = 1 is a nowcast made in the third month of the respective quarter,

whereas horizon hm = 2 is the nowcast made in the second month of the current quarter.

Thus, similar to standard forecast comparisons, increasing horizons correspond to less

information available for now- and forecasting, and we expect an increasing MSE for

increasing horizons hm. In the table, MSE results are shown for selected MIDAS single-

indicator models and factor models. To �nd the best-performing models in terms of MSE,

we chose those with a relative MSE smaller than one for hm = 1; 2; 3. To order the models,

we use the average of the MSE over hm = 1; 2; 3.

In panel A of table 1, we �nd results concerning single-indicator MIDAS. We see that

there are 20 models that have a relative MSE smaller than one up to hm = 3. Regarding

forecasts (hm = 4; 5; 6), only half of the models can consistently outperform the naive

benchmark, and in most of the cases only to a small extent. We do not report results for

hm > 6, as the forecasts are almost always uninformative compared to the benchmark.

Among the top-performing models, surveys on business expectations play a big role,

whereas industry statistics like incoming orders or turnover as well as interest rates play

only a minor role. Concerning the MIDAS projections, both regressions with and without

AR terms can be found among the best-performing models. Panel B of table 1 provides

results for Factor-MIDAS. Here only 5 models yield relative MSEs consistently smaller

than one for hm = 1; 2; 3. Regarding forecasts (hm = 4; 5; 6), the factor models in most

of the cases perform worse than the benchmark. Concerning the speci�cations, models

with only one factor (r = q = 1) do best, and we �nd both MIDAS projections with and

without AR terms in the ranking.

According to the results in table 1, factor models tend to perform worse than the best-

performing single-indicator MIDAS models. However, in terms of the size of the MSE,

the overall best-performing single-indicator model (survey: bus. exp., wholesale trade)
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Table 1: Now- and forecast results for single-indicator MIDAS and factor models, MSE
relative to in-sample mean forecast of GDP

nowcast forecast
current quarter 1 quarter

horizon hm 1 2 3 4 5 6

A. Single-indicator MIDAS

survey: bus. exp., wholesale trade MIDAS 0.72 0.67 0.78 0.80 0.67 0.87
survey: bus. exp., consumer goods prod. MIDAS 0.78 0.67 0.75 0.89 0.92 0.96
survey: bus. conditions, wholesale trade MIDAS 0.70 0.79 0.90 0.88 1.12 1.19
survey: bus. exp., consumer goods prod. AR-MIDAS 0.93 0.71 0.80 0.91 0.94 0.97

stocks �nished goods, consumer goods prod. MIDAS 0.82 0.80 0.82 1.01 1.01 1.07
survey: bus. exp., retail trade AR-MIDAS 0.79 0.79 0.87 1.16 1.17 0.91
survey: bus. exp., retail trade MIDAS 0.79 0.77 0.91 1.23 1.22 0.98
survey bus. exp., wholesale trade AR-MIDAS 0.97 0.72 0.84 0.82 0.68 1.12
survey consumer sentiment (GfK) AR-MIDAS 0.74 0.84 0.95 0.93 1.12 1.24

stocks �nished goods, consumer goods prod. AR-MIDAS 0.87 0.84 0.86 1.01 1.00 1.11
survey: bus. cond., wholesale trade AR-MIDAS 0.81 0.85 0.95 0.92 1.06 1.26

long-term interest rate (1-2 years mat.) MIDAS 0.86 0.90 0.87 0.89 0.85 0.86
turnover (abroad), intermediate goods prod. MIDAS 0.89 0.83 0.92 0.83 0.89 1.04

production, intermediate goods prod. MIDAS 0.82 0.91 0.95 0.96 0.99 1.03
survey: bus. exp., non-dur. cons. goods prod. MIDAS 0.95 0.88 0.85 1.04 0.94 1.52
long-term interest rate (5-6 years mat.) MIDAS 0.86 0.92 0.94 0.98 1.02 0.93
survey: bus. cond., investm. goods prod. MIDAS 0.90 0.93 0.93 1.06 1.12 1.11
orders (domestic), intermediate goods prod. MIDAS 0.88 0.92 0.99 1.23 1.39 1.04

short-term employed AR-MIDAS 0.95 0.95 0.96 0.98 0.92 1.04
turnover (abroad), mechanical engineering AR-MIDAS 0.94 0.97 0.97 0.95 0.95 1.28

B. Large factor models

VA-DPCA, r = 1, q = 1 AR-MIDAS 0.77 0.66 0.84 1.00 0.97 1.09
VA-DPCA, r = 1, q = 1 MIDAS 0.69 0.76 0.96 0.96 1.02 1.08
KFS-PCA, r = 1, q = 1 MIDAS 0.73 0.89 0.85 1.09 1.07 0.89
VA-DPCA, r = 2, q = 2 AR-MIDAS 0.85 0.77 0.93 1.08 1.03 1.06
KFS-PCA, r = 1, q = 1 AR-MIDAS 0.85 0.90 0.82 1.12 1.08 1.02

Note: The entries in the table are relative MSEs relative to the in-sample mean, where the mean
is recomputed every subsample. The model abbreviations in the �rst column are: VA-DPCA refers
to the vertical realignment and dynamic PCA used in Altissimo et al. (2006), and KFS-PCA is the
Kalman smoother of state-space factors according to Doz et al. (2006). The projection MIDAS-basic
is the projection from Ghysels and Valkanov (2006), and AR-MIDAS is the basic MIDAS regression
with an autoregressive term as proposed by Clements and Galvão (2007).
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and the best-performing factor model (VA-DPCA, r = 1, q = 1) seem to work similarly

well for the nowcast, as the ranking of top models is changing over horizons.

The results obtained so far are based on ex-post forecast MSEs only. Taking the

results literally, the potential user of these methods could make use of the best-performing

speci�cations. However, it is unclear whether the same results can be obtained in real-

time also, when no a-priori knowledge about the best speci�cations is available to the

practitioner. We consider this issue in the next subsection.

4.2 Information-criteria model selection and speci�cation based
on past performance

The �rst question we address in this subsection is whether we can �nd the best-performing

speci�cations with in-sample information only. In particular, can we �nd the best-

performing indicator variables for MIDAS and the optimal number of factors without

resorting on the ex-post forecast errors? The second question we ask is whether it is

better to use model speci�cation based on information criteria or on the past forecasting

performance.

To address both questions, we will now compare the performance of �xed speci�cations

to time-varying speci�cations, where we use only information from the recursive subsam-

ples to determine the model speci�cations. In table 2, we report the relative MSEs of the

models speci�ed using information criteria and the past MSE performance, as described in

subsection 3. In panel A of the table, we present the results based on information-criteria

Table 2: Now- and forecast results for single-indicator MIDAS and Factor-MIDAS, infor-
mation criteria model selection, MSE relative to in-sample mean forecast of GDP

nowcast forecast
current quarter 1 quarter

horizon hm 1 2 3 4 5 6

A. Information criteria model selection

single-indicator MIDAS/AR-MIDAS BIC 0.96 1.07 1.50 1.04 1.70 1.01
VA-DPCA, MIDAS Bai, Ng (2002, 2007) 1.09 1.00 0.95 1.19 1.35 1.08

VA-DPCA, AR-MIDAS Bai, Ng (2002, 2007) 1.17 0.84 0.83 1.28 1.05 0.77
KFS-PCA, MIDAS Bai, Ng (2002, 2007) 1.29 1.66 0.83 1.59 1.04 0.73

KFS-PCA, AR-MIDAS Bai, Ng (2002, 2007) 1.48 1.53 0.88 1.26 1.22 1.07

B. Model and variable selection by past MSE performance

single-indicator MIDAS MSE 0.86 1.26 0.99 1.20 1.05 1.24
large factor models MSE 0.89 0.84 0.85 0.93 0.91 0.66

Note: See table 1.

model selection. When BIC is employed for selecting the predictor in MIDAS as well as
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the AR terms, we �nd only for hm = 1 a relative MSE smaller than one. For all the

other horizons, the now- and forecasts are uninformative. Regarding the factor models,

the information criteria also select speci�cations that perform worse than the benchmark

for almost all the horizons with only a few exceptions. Panel B of table 2 contains the

results with model speci�cation based on the past performance of the models in terms

of MSE. For single-indicator MIDAS, where both AR terms as well as variable selection

is done by BIC recursively, there is again only for hm = 1 a relative MSE smaller than

one. The factor models, however, where the number of factors as well as AR terms are

speci�ed using the past MSE, yield a good performance compared with the benchmark.

For all horizons, the time-varying speci�cations yield relative MSEs smaller than one.

Note that the factor model performance is for some of the horizons even better than the

�xed speci�cations from the table 1. Therefore, the past performance seems to contain

some information that can - in contrast to the �xed speci�cations over time - be exploited

for now- and forecasting with factors.

If we compare the overall results from table 2 based on information criteria and

performance-based model selection to the results with �xed speci�cations in table 1, the

general impression is, that forecasting is much more di¢ cult when the model speci�ca-

tions are unknown in pseudo real-time, as the relative MSEs in table 2 are generally larger

than those in table 1. In particular, the information criteria applied to model selection

lead to clearly inferior results. For example, without knowing the preferable predictor for

MIDAS or the correct number of factors a priori, it is di¢ cult to specify these forecast

models properly, and it is not possible to achieve the optimistic now- and forecast re-

sults from table 1. In this context, however, factor model speci�cation based on the past

performance can still outperform the benchmark.

5 Nowcast pooling

After discussing the individual models�performance, we now assess nowcast pooling. As

for information criteria and selection based on the past performance, pooling is only to a

small extent subject to the data-mining critique, as only in-sample information is used to

specify the weights.

In table 3, we present now- and forecast results of the alternative pooling schemes

described in section 2.3. The �rst three rows in the table contain the results when all the

single-indicator MIDAS now- and forecasts are combined using equally weighted mean,

MSE-based mean as well as the median. The results indicate an information content for

both the nowcast and the forecast one quarter ahead, as the relative MSEs are smaller

than one in many cases.2 Concerning the pooling methods, the median tends to perform

worse than the unweighted mean, and both are outperformed by the MSE-based weighted

mean. Compared with �gures based on model selection from table 2, the results are now

2Note that results for larger horizons hm > 6 are generally still uninformative with few exceptions.
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Table 3: Now- and forecast results for nowcast pooling, MSE relative to in-sample mean
forecast of GDP

nowcast forecast
current quarter 1 quarter

horizon hm 1 2 3 4 5 6

single-indicator MIDAS equal-weight mean 0.90 0.93 0.95 0.94 0.97 1.00
single-indicator MIDAS MSE-weighted mean 0.84 0.89 0.92 0.88 0.92 0.95
single-indicator MIDAS median 0.95 0.97 0.98 1.00 1.01 1.04

large factor models equal-weight mean 0.88 0.91 0.83 1.00 0.89 0.64
large factor models MSE-weighted mean 0.87 0.88 0.80 0.82 0.88 0.61
large factor models median 0.89 0.84 0.85 0.93 0.91 0.66

all models equal-weight mean 0.76 0.81 0.83 0.94 0.88 0.75
all models MSE-weighted mean 0.79 0.84 0.82 0.81 0.84 0.67
all models median 0.79 0.81 0.85 0.94 0.91 0.78

Note: See table 1.

clearly better, indicating advantages of pooling over model selection. Rows four to six

contain results from pooling all the factor models that di¤er with respect to the number

of factors and the AR term in the Factor-MIDAS projection. The results are again

better than those based on model selection from table 2, and the MSE-based weighted

mean outperforms the other weighting schemes for most of the horizons, although the

di¤erences are smaller than in the case of single-indicator MIDAS. Comparing the levels

of relative MSEs between factor models and single-indicator MIDAS, we �nd a slightly

better performance of the factor combinations.

The �nal three rows contain now- and forecast combinations of all the models under

consideration. Here, the ranking of the di¤erent pooling methods is less clear. The

interesting result is that the combination of all forecast models provides overall smaller

relative MSEs than the combinations of factor and single-indicator MIDAS alone. Thus,

taking into account model uncertainty to a wider extent than just pooling within a model

class seems to improve the forecasting performance. Furthermore, pooling over all models

almost entirely outperforms the individual models chosen by information criteria or the

past performance in table 2.

But what about the performance compared to the �xed speci�cations in table 1?

Is nowcast pooling also competitive to the ex-post best-performing models? A direct

comparison of tables 1 and 3 suggests that even pooling cannot perform as well as the

ex-post best performing models, though the di¤erences are often small.

In order to analyze this issue in more details, we investigate the relationship between

the groups of individual models and the forecast combinations. For this purpose, we

present percentiles of the relative MSEs from the alternative nowcast pools for each hori-

zon. The percentiles provide an indication of how the pooling MSE values compare to
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those of the individual models. Table 4 contains the results. The entries in the table can

Table 4: Percentiles of the MSEs from now- and forecast pooling in the cumulative dis-
tribution of individual models

nowcast forecast
current quarter 1 quarter

horizon hm 1 2 3 4 5 6

A. Pooling vs single-indicator MIDAS

MIDAS models equal-weight mean 0.13 0.16 0.15 0.13 0.21 0.22
MIDAS models MSE-weighted mean 0.08 0.11 0.10 0.07 0.11 0.13
MIDAS models median 0.23 0.22 0.21 0.26 0.31 0.29
all models equal-weight mean 0.03 0.04 0.02 0.13 0.07 0.02
all models MSE-weighted mean 0.05 0.07 0.02 0.02 0.04 0.00
all models median 0.05 0.04 0.03 0.13 0.10 0.02

B. Pooling vs individual large factor models

large factor models equal-weight mean 0.25 0.22 0.11 0.20 0.06 0.08
large factor models MSE-weighted mean 0.24 0.17 0.06 0.00 0.06 0.06
large factor models median 0.25 0.14 0.13 0.06 0.07 0.10

all models equal-weight mean 0.07 0.12 0.11 0.09 0.06 0.21
all models MSE-weighted mean 0.12 0.14 0.08 0.00 0.04 0.10
all models median 0.11 0.12 0.13 0.08 0.07 0.24

Note: The entries in the table can be interpeted as follows. An entry x implies that the MSE
of the combination of single-indicator MIDAS models is larger than 100 � x percent of the
MSEs of the individual MIDAS models, and accordingly smaller than 100 � (1� x) percent of
the MSEs from the worse-performing models. Thus, the pool is in the (100 � x)th percentile of
the distribution of individual models. In the table, the model set used in the combination of
now- and forecasts can be found in the �rst column of the table. The second column contains
the weighting methods employed.

be interpreted as follows. In panel A of table 4, entry 0:13 for hm = 1 implies that the

MSE of the combination of single-indicator MIDAS models is larger than 13 percent of

the MSEs of the individual MIDAS models, and accordingly smaller than 87 percent of

the MSEs from the worse-performing models. Thus, the pool is in the 13th percentile

of the distribution of individual models. The results in table 4 con�rm that nowcast

pooling is in almost all of the cases not the best-performing method. However, based on

the MSE-weighted mean for all horizons reported, the pool is between the 7th and 13th

percentile compared to the individual single-indicator MIDAS models (row 2). Combin-

ing factor models and single-indicator MIDAS reduces the relative MSE further, and the

pooled forecast ends up in the 7th percentile and lower (row 5). The best combinations

can outperform between 93 and 100 percent of the individual MIDAS models, depending

on the forecast horizon.

Looking at the distribution of factor models in panel B, we �nd that pooling of the

factor models only using the MSE-weighted mean is doing better than 76 to 94 percent

of the individual factor models for hm = 1; 2; 3. Regarding the forecast performance for
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hm = 4; 5; 6, combinations can outperform between 94 and 100 percent of the individual

factor models. Thus, pooling improves the performance of the forecast one quarter ahead

more than the nowcast. The forecast combinations of all models are in most of the

cases better than the combinations of the factor models only (row 2 and 5 in panel B).

Compared with the distribution of single-indicator MIDAS from panel A, we see generally

smaller percentiles for the single-indicator MIDAS. This implies that the combinations do

better than the majority of single-indicator MIDAS forecasts, whereas the individual

factor models can be outperformed to a lesser extent. Thus, factor models that already

exploit the large information set seem to be a tougher competitor to the combinations

than the individual single-indicator MIDAS models.

Overall, the combinations seem to work well and leave most of the individual models

behind. They are in most of the cases not the best-performing now- and forecast devices,

as there are a few �xed speci�cations that can do better ex-post, but they cannot be

identi�ed in real-time.

6 Robustness of the results

In this section we brie�y report results to evaluate the robustness of the �ndings we have

obtained so far. In particular, we discuss nowcast results in a subsample to check the

robustness of the results over time; we extend the number of indicators in the MIDAS

regression; and we employ alternative information criteria for specifying Factor-MIDAS.

6.1 Subsample analysis

In order to check the stability of the results over time, we split the evaluation sample

and provide results for the second, more recent period. There are two reasons for this.

Banerjee et al. (2005) and Banerjee and Marcellino (2006) �nd that forecast models

with single indicators often have a time-varying information content for future economic

activity. Similar problems occur for the speci�cation of factor models, in particular related

to the number of static and dynamic factors, see Schumacher (2007). By splitting the

sample, we can discuss how stable the rankings based on the chosen speci�cations are

over time.

Another argument is based on the general �nding for many industrialised countries

that, complementary to the Great Moderation phenomenon, the forecast performance of

many sophisticated forecast models has broken down, see D�Agostino et al. (2006) and

Campbell (2007), for example. In particular, for very recent samples, outperforming naive

forecasts has proven to be di¢ cult.

Due to the relatively short sample size in the current exercise, as common in empirical

work on euro area macro data (see e.g. Banbura and Rünstler (2007)), the evaluation

sample for the stability check is 2004Q1-2007Q4. For detailed results, the reader is referred
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to appendix C, whereas the main �ndings can be summarised as follows. First, the overall

performance of the models has improved a little compared to the benchmark.

Second, the relative ranking of single-indicator MIDAS and factor models remains the

same. With �xed speci�cations, there are a few single-indicator MIDAS forecasts that

outperform the factor models. With model and variable selection based on information

criteria, the single-indicator MIDAS models become mostly uninformative, and only past

MSE performance helps to �nd models with some information content for future GDP.

Third, pooling over many speci�cations and models is again the most robust device

for now- and forecasting, and it outperforms model selection based on information criteria

and the past performance.

Fourth, the ranking of the single-indicator models has changed, in line with the evi-

dence in the papers cited above. Thus, one might �nd ex post favourable evidence on a

particular indicator but, due to changing information content, these relevant indicators

cannot be detected in real time. In this regard, our results are in line with De Mol et al.

(2008) and Banerjee and Marcellino (2006). In our framework and given the dataset used,

we �nd evidence that nowcast pooling can circumvent these problems to a good extent.

Finally, the ranking of the factor models has changed to a smaller extent. This is

not in contrast to the previous result, since the weight of each indicator in the estimated

factors can change over time.

6.2 Double-indicator MIDAS

We now consider more than one indicator in MIDAS regressions. In particular, we include

industrial production into MIDAS and add sequentially all the other indicators to the

MIDAS regression. As industrial production is one of the key indicators for GDP and

subject to investigation in many mixed-frequency studies, see for example Clements and

Galvão (2008), it might be a natural candidate for extending the MIDAS regression. Thus,

we end up with double-indicator MIDAS. Details can be found in appendix D.

In brief, we �nd two main results. First, comparing �xed speci�cations of single- and

double-indicator MIDAS, we �nd that models with one indicator still represent the top 5

models in terms of relative MSE. Among the best models with information content up to

three months, there about 25% double-indicator MIDAS models and 75% models with a

single indicator.

Second, now- and forecast pooling over all model classes, including factor models and

MIDAS with one and two predictors, provides very similar results as before. It again

outperforms individual models speci�ed by information criteria and past performance.

Hence, the information in the cross section of data is already successfully exploited by the

combination of the models with single predictors, and adding further regressors seem to

add little information for future GDP.
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6.3 BIC speci�cation of Factor-MIDAS

The information criteria by Bai and Ng (2002, 2007) aim at minimising the overall idiosyn-

cratic variance, given a certain penalty function that depends on the sample size. Thus,

the number of factors chosen are not optimised with respect to forecasting GDP. In order

to take into account the dynamic correlations between the factor estimates and GDP, we

will follow the seminal work by Stock and Watson (2002), where BIC is employed for

selecting the relevant factors in the projection with single-frequency data. In particular,

we set the number of static factors equal to r = 6, and estimate factors with all possible

combinations of q � r. We then compute now- and forecasts with Factor-MIDAS for each
set of factors. The BIC is used recursively for choosing the Factor-MIDAS regression used

for the now- and forecasts.

The main result is that the factor now- and forecasts based on BIC are informative

only for the horizons one and three.3 Compared to the results based on information

criteria in table 2, the results are only better for horizon one. Thus, we con�rm our

main conclusions that information criteria tend to select model speci�cations with almost

uninformative now- and forecast performance.

7 Conclusions

In this paper, we discuss nowcast pooling versus nowcasting with single models in the

presence of model uncertainty, exacerbated by the presence of mixed frequency data with

ragged edges. The nowcasts are based on MIDAS regressions with few indicators and

Factor-MIDAS based on large datasets, and both models can tackle the �ragged-edge�data

as well as the di¤erent sampling frequencies of GDP and many business cycle indicators.

Thus, the nowcasting perspective followed in this paper takes into account the publication

lags of statistical data that decision makers face in their everyday business of assessing

the current state of the economy.

To address model uncertainty in the set of nowcast models chosen, we compare the per-

formance of many alternative speci�cations with respect to alternative factor estimation

methods, number of factors, indicators selected for MIDAS, the role of autoregressive

dynamics, and others. The di¤erent models are applied to a German post-uni�cation

dataset, containing of about one hundred monthly indicators. The now- and forecasts of

the individual models and pooling are compared with respect to their predictive ability

for German GDP growth.

In this framework, we discuss three main questions. First, searching in the set of

all possible models under analysis, is it possible to �nd speci�cations that outperform a

simple benchmark in terms of mean-squared error (MSE)? The answer is yes, perhaps

not surprisingly given the extensive search in such a large model set. More interestingly,

3The exact relative MSEs are 0.72, 1.03, 0.85, 1.02, 1.07, and 0.99 for horizon one to six, respectively.
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single indicator models tend to outperform factor models in this ex-post evaluation.

Second, since the search described above is based on full sample results, it might

be subject to the data-mining critique. Therefore, it may not be suited for a real-time

implementation, and the question arises whether we get similar gains with respect to

the benchmark by selecting the forecasting models based either on information criteria

or on their past performance. The answer is that it is much more di¢ cult to beat the

benchmark in this case, with the exception of Factor-MIDAS speci�cations based on past

forecasting performance. In general, now- and forecasting based on information-criteria

model selection performs clearly worse than the �xed speci�cations identi�ed ex post.

Third, as a method to avoid the speci�cation search, all the nowcasts and forecasts can

be pooled together, using di¤erent weighting schemes. The question is then whether this

approach yields additional gains with respect to the factor speci�cation based on the past

performance. The answer is yes, and this is particularly the case when all single-indicator

and all Factor-MIDAS forecasts are combined together using inverse MSE weights. While

in general the resulting pooled now- and forecasts still cannot outperform the very best

single models based on �xed speci�cations, it is better than 93-100% of all the single

indicator forecasts, and of 86-100% of all the Factor-MIDAS forecasts, depending on

the horizon. Additionally, a subsample analysis of the results shows that the ranking

of the best �xed speci�cations changes, in particular, with respect to variable selection

in MIDAS, in line with other �ndings about the time-varying predictive power of single

indicators.

To conclude, the results obtained in the present paper provide strong support in favour

of pooling for nowcasting and short-term forecasting. Actually, with respect to previous

studies, pooling seems to play an even more important role in a context characterized by

a large set of models and mixed-frequency and ragged-edge indicators.
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A Monthly dataset

This appendix describes the time series for the German economy used in the forecasting

exercise. The whole data set for Germany contains 111 monthly time series over the

sample period from 1992M1 until 2008M2. The time series cover broadly the following

groups of data: prices, labour market data, �nancial data (interest rates, stock market

indices), industry statistics, construction statistics, surveys and miscellaneous indicators.

The source of the time series is the Bundesbank database. The download date of the

dataset is 7th March 2008. In this dataset, there are di¤ering missing values at the end

of the sample. For example, whereas �nancial time series are available up to 2008M2,

industrial time series like production, orders and so on are only available up to 2008M1.

This leads to a ragged-edge structure at the end of the sample, which serves as a template

to replicate the ragged edges in past pseudo real-time periods as described in the main

text.

Natural logarithms were taken for all time series except interest rates. Stationarity was

obtained by appropriately di¤erencing the time series. Most of the time series taken from

the above source are already seasonally adjusted. Remaining time series with seasonal

�uctuations were adjusted using Census-X12 prior to the forecast simulations. Extreme

outlier correction was done using a modi�cation of the procedure proposed by Watson

(2003). Large outliers are de�ned as observations that di¤er from the sample median

by more than six times the sample interquartile range, see Watson (2003), p. 93. The

identi�ed observation is set equal to the respective outside boundary of the interquartile.

A.1 Prices

producer price index

producer price index without energy
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consumer price index

consumer price index without energy

export prices

import prices

oil price Brent GB

A.2 Labour market

unemployed

unemployment rate

employees and self-employed

employees, short-term

productivity, per employee

productivity, per hour

wages and salaries per employee

wages and salaries per hour

vacancies

A.3 Interest rates, stock market indices

money market rate, overnight deposits

money market rate, 1 month deposits

money market rate, 3 months deposits

bond yields on public and non-public long term bonds with average maturity from 1 to 2 years

bond yields on public and non-public long term bonds with average maturity from 5 to 6 years

bond yields on public and non-public long term bonds with average maturity from 9 to 10 years

yield spread: bond yields with maturity from 1 to 2 years minus 3 months money market rate

yield spread: bond yields with maturity from 5 to 6 years minus 3 months money market rate

yield spread: bond yields with maturity from 9 to 10 years minus 3 months money market rate

CDAX share price index

DAX German share index

REX German bond index

exchange rate US dollar/Deutsche Mark

indicator of the German economy�s price competitiveness against 19 industrial countries based

on consumer prices

monetary aggregate M1

monetary aggregate M2

monetary aggregate M3
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A.4 Manufacturing turnover, production and received orders

production: intermediate goods industry

production: capital goods industry

production: durable and non-durable consumer goods industry

production: mechanical engineering

production: electrical engineering

production: vehicle engineering

export turnover: intermediate goods industry

domestic turnover: intermediate goods industry

export turnover: capital goods industry

domestic turnover: capital goods industry

export turnover: durable and non-durable consumer goods industry

domestic turnover: durable and non-durable consumer goods industry

export turnover: mechanical engineering

domestic turnover: mechanical engineering

export turnover: electrical engineering industry

domestic turnover: electrical engineering industry

export turnover: vehicle engineering industry

domestic turnover: vehicle engineering industry

orders received by the intermediate goods industry from the domestic market

orders received by the intermediate goods industry from abroad

orders received by the capital goods industry from the domestic market

orders received by the capital goods industry from abroad

orders received by the consumer goods industry from the domestic market

orders received by the consumer goods industry from abroad

orders received by the mechanical engineering industry from the domestic market

orders received by the mechanical engineering industry from abroad

orders received by the electrical engineering industry from the domestic market

orders received by the electrical engineering industry from abroad

orders received by the vehicle engineering industry from the domestic market

orders received by the vehicle engineering industry from abroad

industrial production

A.5 Construction

orders received by the construction sector: building construction

orders received by the construction sector: civil engineering

orders received by the construction sector: residential building

orders received by the construction sector: non-residential building construction

man-hours worked in building construction
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man-hours worked in civil engineering

man-hours worked in residential building

man-hours worked in industrial building

man-hours worked in public building

turnover: building construction

turnover: civil engineering

turnover: residential building

turnover: industrial building

turnover: public building

production in the construction sector

A.6 Surveys

ifo surveys: business situation: capital goods producers

ifo surveys: business situation: producers durable consumer goods

ifo surveys: business situation: producers non-durable consumer goods

ifo surveys: business situation: retail trade

ifo surveys: business situation: wholesale trade

ifo surveys: business expectations for the next six months: producers capital goods

ifo surveys: business expectations for next six months: producers durable consumer goods

ifo surveys: business expectations for next six months: producers non-durable consumer goods

ifo surveys: business expectations for next six months: retail trade

ifo surveys: business expectations for next six months: wholesale trade

ifo surveys: stocks of �nished goods: producers of capital goods

ifo surveys: stocks of �nished goods: producers of durable consumer goods

ifo surveys: stocks of �nished goods: producers of non-durable consumer goods

GfK consumer surveys: income expectations

GfK consumer surveys: business cycle expectations

GfK consumer surveys: propensity to consume: consumer climate

GfK consumer surveys: price expectations

ZEW �nancial market survey: business cycle expectations

A.7 Miscellaneous indicators

current account: exports

current account: imports

current account: services import

current account: services export

current account: transfers from abroad

current account: transfers to foreign countries

HWWA raw material price index
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HWWA raw material price index without energy

HWWA raw material price index: industrial raw materials

HWWA raw material price index: energy industrial raw materials

new car registrations

new car registrations by private owners

retail sales turnover

B The two-step factor estimator by Forni et al. (2005)

The two-step estimation technique based on dynamic principal components by Forni et

al. (2005) proceeds in two steps: Estimation of the dynamic common components and

idiosyncratic components as well as their covariances is carried out in a �rst step, and the

static factors are estimated in a second step. Let Tmb denote the balanced sample size of

monthly indicators obtained from realignment (7) applied to all the N time series eXtm

for tm = 1; : : : ; Tmb. :

1. Covariances of the common and idiosyncratic components: To estimate the q dy-

namic factors, Forni et al. (2005) propose dynamic principal component analysis

in the frequency domain. Let b�(k) = T�1mb PTmb
tm=1

eXtm
eX0
tm�k be the k-lag estimated

autocovariance of the vector of time series. An estimator of spectral density ofeXtm is then given by b�(�h) = PM
k=�M wk

b�(k)e�ik�h at frequency �h = 2�h=(2H)

for h = 0; : : : ; 2H, and with Bartlett lag weights wk = 1 � jkj =(M + 1). For each

frequency, compute the dynamic eigenvalues and eigenvectors of b�(�h), and de-
note �(�h) as the (q � q) diagonal matrix with the largest q dynamic eigenvalues
on the main diagonal, and the (N � q) matrix bP(�h) = (bP1(�h); : : : ; bPq(�h)) of
the corresponding eigenvectors, see Forni et al. (2003), p. 1253. The variance

of the common components is then given by b��(�h) = bP(�h)�(�h)bP�(�h), where
a star denotes complex conjugates. The covariance of the idiosyncratic compo-

nents can be obtained by b��(�h) = b�(�h)� b��(�h). Inverse discrete Fourier trans-
form provides time-domain autocovariances of the common components b��(k) =
(2H + 1)�1

P2H
h=0

b��(�h)e
ik�h for k = �M; : : : ;M . The autocovariance of the idio-

syncratic component b��(k) can be obtained accordingly.
2. The factors: The aim is to �nd the r linear combinations of the time series bZ0j eXtm

for j = 1; : : : ; r that maximise the contemporaneous covariance explained by the

common factors bZ0jb��(0)bZj. As a restriction, Forni et al. (2005) impose the nor-
malisation bZ0jb��(0)bZi = 1 for i = j and 0 for i 6= j.4 This optimisation problem can
be reformulated as a generalised eigenvalue problem b��(0)bZj = b�jb��(0)bZj, where b�j

4The o¤-diagonal elements of the covariance matrix of the idiosyncratic components are forced to be
zero in order to improve the forecasting properties of the model, see Forni et al. (2005), p. 836.
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denotes the j-th generalised eigenvalue and bZj its (N�1) corresponding eigenvector.
The factors are obtained as bFtm = bZ0 eXtm ; (10)

where bZj = (bZ1; : : : ; bZr) denotes the (N � r) matrix of the eigenvectors correspond-
ing to the r largest eigenvalues.

Note that although the �rst step to obtain the covariance matrix of the common

components is essentially dynamic, the �nal step of the estimation of the factors is �nding

a linear combination of contemporaneous variables. For the estimation of the factors, the

auxiliary variables to be speci�ed by the user are M , H, q and r. In the empirical

comparison, we will concentrate on the speci�cation of the number of factors q and r,

as there is some disagreement in the literature concerning their choice, see Bernanke

and Boivin (2003), footnote 7, Giannone, Reichlin, and Sala (2005), footnote 8, and

Schumacher (2007).

C Subsample results

The evaluation sample is now between 2004Q1 and 2007Q4. The recursive simulation

design is otherwise the same as in the main text.

Now- and forecast results based on �xed speci�cations for the factor models and single-

indicator MIDAS can be found in table 5. The table shows relative MSEs to the naive

benchmark, which is the in-sample mean of GDP. The now- and forecasts are again shown

for monthly horizons hm = 1; : : : ; 6. In the table, MSE results are shown for selected

MIDAS single-indicator models and factor models. To �nd the best-performing models in

terms of MSE, we chose those, that have a relative MSE smaller than one for hm = 1; 2; 3.

To order the models, we use the average of the MSE over hm = 1; 2; 3. The general

performance in the second subsample is better than in the while sample, as there are now

models that outperform the benchmark. To save space, we only report only the top 20

of models of both classes. An important result is changed ranking of variables in single-

indicator MIDAS. Now, the survey consumer sentiment (GfK) is doing best. Also, a few

more speci�cations with interest rates appear in the top 20. Also compared with table 1

in the main text, some predictors do not make it to the top 20 now, such as production

of intermediate goods or vacancies. Thus, there is some time variation in the ranking of

best-performing models. Regarding the factor models, the ranking has also changed to

some extent. However, the �rst models are still the ones with only one factor.

In table 6, the results based on information criteria and past performance are shown.

As in the main text, information criteria do help little to identify speci�cations that per-

form well. Speci�cation based on the past performance however now also works relatively

well for selecting single-indicator MIDAS models.

Table 7 contains the pooling results for the subsample chosen. The results are again
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Table 5: Subsample analysis: Now- and forecast results for single-indicator MIDAS and
factor models, MSE relative to in-sample mean forecast of GDP

nowcast forecast
current quarter 1 quarter

horizon hm 1 2 3 4 5 6

A. Single-indicator MIDAS

survey consumer sentiment (GfK) AR-MIDAS 0.35 0.48 0.67 0.58 0.61 0.85
survey consumer sentiment (GfK) MIDAS 0.35 0.48 0.67 0.59 0.61 0.85

stocks �nished goods, consumer goods prod. MIDAS 0.58 0.56 0.58 0.87 0.91 1.02
stocks �nished goods, consumer goods prod. AR-MIDAS 0.58 0.58 0.60 0.84 0.92 1.09
survey: bus. exp., consumer goods prod. MIDAS 0.67 0.64 0.69 0.75 0.83 0.83

survey: bus. cond., retail trade AR-MIDAS 0.48 0.65 0.90 0.72 0.99 0.87
long-term interest rate (1-2 years mat.) MIDAS 0.68 0.68 0.69 0.72 0.75 0.84
survey: bus. exp., consumer goods prod. AR-MIDAS 0.73 0.65 0.70 0.75 0.83 0.83
long-term interest rate (5-6 years mat.) MIDAS 0.67 0.69 0.75 0.81 0.90 0.95
long-term interest rate (1-2 years mat.) AR-MIDAS 0.80 0.69 0.69 0.72 0.75 0.82
survey: bus. cond., consumer goods prod. AR-MIDAS 0.64 0.67 0.88 0.89 0.95 0.96

German bond index REX MIDAS 0.74 0.70 0.76 0.80 0.88 0.88
long-term interest rate (5-6 years mat.) AR-MIDAS 0.77 0.69 0.75 0.81 0.90 0.93
survey: bus. cond., consumer goods prod. MIDAS 0.62 0.70 0.89 0.92 0.96 0.95

export prices MIDAS 0.69 0.87 0.74 0.79 0.81 0.79
turnover (abroad), intermediate goods prod. MIDAS 0.78 0.75 0.80 0.86 0.88 0.96
orders (domestic), consumer goods prod. AR-MIDAS 0.86 0.84 0.64 1.01 0.83 1.05

survey: bus. exp., retail trade AR-MIDAS 0.84 0.83 0.69 0.85 0.90 0.93
long-term interest rate (9-10 years mat.) MIDAS 0.74 0.77 0.85 0.96 0.94 1.08
long-term interest rate (9-10 years mat.) AR-MIDAS 0.83 0.75 0.82 0.95 0.94 1.04

B. Large factor models

VA-DPCA, r = 1, q = 1 MIDAS 0.62 0.69 0.79 0.78 0.84 0.92
VA-DPCA, r = 1, q = 1 AR-MIDAS 0.67 0.68 0.82 0.76 0.80 0.92
VA-DPCA, r = 2, q = 1 MIDAS 0.64 0.75 0.82 0.91 0.93 0.84
VA-DPCA, r = 2, q = 1 AR-MIDAS 0.72 0.69 0.85 0.87 0.92 0.81
KFS-PCA, r = 1, q = 1 MIDAS 0.68 0.79 0.79 0.84 0.84 0.82
KFS-PCA, r = 2, q = 2 MIDAS 0.61 0.98 0.70 0.83 0.82 0.76
VA-DPCA, r = 6, q = 3 MIDAS 0.95 0.65 0.71 1.06 1.31 0.82
KFS-PCA, r = 1, q = 1 AR-MIDAS 0.75 0.80 0.80 0.90 0.83 0.83
VA-DPCA, r = 5, q = 4 MIDAS 0.83 0.70 0.87 1.03 1.33 0.62
VA-DPCA, r = 2, q = 2 MIDAS 0.72 0.73 0.97 1.10 0.95 0.91
VA-DPCA, r = 2, q = 2 AR-MIDAS 0.85 0.69 0.93 1.05 0.91 0.95
VA-DPCA, r = 3, q = 1 AR-MIDAS 0.88 0.79 0.89 1.35 0.90 0.69
VA-DPCA, r = 3, q = 1 AR-MIDAS 0.76 0.90 0.91 1.33 1.02 0.80
VA-DPCA, r = 5, q = 2 MIDAS 0.76 0.92 0.90 1.04 0.97 0.55
VA-DPCA, r = 6, q = 4 AR-MIDAS 0.94 0.85 0.80 1.20 1.24 1.27
VA-DPCA, r = 6, q = 4 MIDAS 0.93 0.88 0.79 1.11 1.13 0.89
VA-DPCA, r = 4, q = 2 AR-MIDAS 0.87 0.77 0.97 1.06 1.08 0.76
VA-DPCA, r = 6, q = 2 MIDAS 0.90 0.98 0.73 1.20 0.99 0.98
VA-DPCA, r = 4, q = 2 MIDAS 0.73 0.95 0.97 1.14 1.02 0.89
VA-DPCA, r = 3, q = 3 AR-MIDAS 0.88 0.87 0.96 1.32 1.09 0.80

Note: See table 1 in the main text.
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Table 6: Subsample analysis: Now- and forecast results for single-indicator MIDAS and
Factor-MIDAS, information criteria model selection, MSE relative to in-sample mean
forecast of GDP

nowcast forecast
current quarter 1 quarter

horizon hm 1 2 3 4 5 6

A. Information criteria model selection

single-indicator MIDAS/AR-MIDAS BIC 0.96 1.36 1.11 1.10 1.38 1.13
VA-DPCA, MIDAS Bai, Ng (2002, 2007) 1.02 1.02 0.94 1.44 1.17 1.07

VA-DPCA, AR-MIDAS Bai, Ng (2002, 2007) 1.19 0.89 0.81 1.43 0.92 0.62
KFS-PCA, MIDAS Bai, Ng (2002, 2007) 1.28 1.68 0.73 1.06 1.18 1.06

KFS-PCA, AR-MIDAS Bai, Ng (2002, 2007) 1.40 1.36 0.87 0.94 1.27 1.35

B. Model and variable selection by past MSE performance

single-indicator MIDAS MSE 0.85 1.79 0.88 0.93 0.61 0.79
large factor models MSE 0.83 0.79 0.83 0.96 0.86 0.73

Note: See table 1 in the main text.

Table 7: Subsample analysis: Now- and forecast results for nowcast pooling, MSE relative
to in-sample mean forecast of GDP

nowcast forecast
current quarter 1 quarter

horizon hm 1 2 3 4 5 6

single-indicator MIDAS equal-weight mean 0.80 0.83 0.84 0.87 0.89 0.90
single-indicator MIDAS MSE-weighted mean 0.72 0.80 0.80 0.82 0.86 0.87
single-indicator MIDAS median 0.87 0.88 0.88 0.90 0.94 0.92

large factor models equal-weight mean 0.81 0.84 0.81 0.98 0.87 0.73
large factor models MSE-weighted mean 0.82 0.78 0.75 0.95 0.88 0.76
large factor models median 0.83 0.79 0.83 0.96 0.86 0.73

all models equal-weight mean 0.67 0.66 0.75 0.90 0.83 0.73
all models MSE-weighted mean 0.72 0.73 0.72 0.85 0.81 0.76
all models median 0.69 0.68 0.76 0.90 0.85 0.75

Note: See table 1 in the main text.
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line with those from the main text. There are little di¤erences between weighting schemes,

with small advantages of MSE-weighted pooling over the equal-weight mean and the

median. Pooling over all factor models and single-indicator MIDAS is doing best overall

(lines 7-9). The pooling over all speci�cations and models also outperforms the model

selection techniques as shown in table 6.

D Single- and double-indicator MIDAS

Table 8 contains results with both single- and double-indicator MIDAS. Double-indicator

MIDAS includes industrial production and an additional predictor from the set of monthly

time series in the MIDAS regression. Overall, we computed now- and forecasts with �xed

speci�cations for 220 models, containing models with and without AR terms and all the

remaining monthly indicators apart from industrial production. In lines 4, 12, 16, 20, 23,

Table 8: Now- and forecast results for double- and single-indicator MIDAS, MSE relative
to in-sample mean forecast of GDP

nowcast forecast
current quarter 1 quarter

horizon hm 1 2 3 4 5 6

survey: bus. exp., wholesale trade MIDAS 0.72 0.67 0.78 0.80 0.67 0.87
survey: bus. exp., consumer goods prod. MIDAS 0.78 0.67 0.75 0.89 0.92 0.96
survey: bus. conditions, wholesale trade MIDAS 0.70 0.79 0.90 0.88 1.12 1.19
IP; survey: bus. exp., wholesale trade MIDAS 0.68 0.94 0.79 0.68 0.92 1.31
survey: bus. exp., consumer goods prod. AR-MIDAS 0.93 0.71 0.80 0.91 0.94 0.97

stocks �nished goods, consumer goods prod. MIDAS 0.82 0.80 0.82 1.01 1.01 1.07
survey: bus. exp., retail trade AR-MIDAS 0.79 0.79 0.87 1.16 1.17 0.91
survey: bus. exp., retail trade MIDAS 0.79 0.77 0.91 1.23 1.22 0.98
survey bus. exp., wholesale trade AR-MIDAS 0.97 0.72 0.84 0.82 0.68 1.12
survey consumer sentiment (GfK) AR-MIDAS 0.74 0.84 0.95 0.93 1.12 1.24

stocks �nished goods, consumer goods prod. AR-MIDAS 0.87 0.84 0.86 1.01 1.00 1.11
IP; survey: bus. exp., consumer goods prod. MIDAS 0.77 0.92 0.89 0.88 0.95 1.02

survey: bus. cond., wholesale trade AR-MIDAS 0.81 0.85 0.95 0.92 1.06 1.26
long-term interest rate (1-2 years mat.) MIDAS 0.86 0.90 0.87 0.89 0.85 0.86

turnover (abroad), intermediate goods prod. MIDAS 0.89 0.83 0.92 0.83 0.89 1.04
IP plus survey: bus. exp., wholesale trade AR-MIDAS 0.83 0.96 0.86 0.67 0.95 1.44
production, intermediate goods prod. MIDAS 0.82 0.91 0.95 0.96 0.99 1.03

survey: bus. exp., non-dur. cons. goods prod. MIDAS 0.95 0.88 0.85 1.04 0.94 1.52
long-term interest rate (5-6 years mat.) MIDAS 0.86 0.92 0.94 0.98 1.02 0.93

IP; turnover (abroad), intermediate goods prod. MIDAS 0.90 0.95 0.91 0.85 0.85 1.10
survey: bus. cond., investm. goods prod. MIDAS 0.90 0.93 0.93 1.06 1.12 1.11
orders (domestic), intermediate goods prod. MIDAS 0.88 0.92 0.99 1.23 1.39 1.04
IP; survey: bus. exp., consumer goods prod. AR-MIDAS 0.90 0.96 0.95 0.94 0.98 1.16

IP; stocks �nished goods, consumer goods prod. MIDAS 0.87 0.98 0.98 0.98 1.09 1.09
short-term employed AR-MIDAS 0.95 0.95 0.96 0.98 0.92 1.04

turnover (abroad), mechanical engineering AR-MIDAS 0.94 0.97 0.97 0.95 0.95 1.28

Note: Double-indicator MIDAS models with industrial production and another predictor can be
identi�ed in the table by the abbreviation �IP; �. For further details, see table 1 in the main text.
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and 24, we �nd double-indicator models with industrial production, whereas the other

models are the single-indicators that have the same ranking as in table 3 in the main text.

Thus, only six out of 26 models are double indicator models. Thus, MIDAS regressions

with single indicators already do very well in now- and forecasting. Note that we have

also tried to include survey business expectations as a second variable, a variable that

performed well in the �xed speci�cations. However, the main results remained unchanged

with this modi�cation.

Table 9 contains the pooling results over the broader model set. Pooling over all

Table 9: Subsample analysis: Now- and forecast results for nowcast pooling with double-
and single-indicator MIDAS, MSE relative to in-sample mean forecast of GDP

nowcast forecast
current quarter 1 quarter

horizon hm 1 2 3 4 5 6

double- and single-indicator MIDAS equal-weight mean 0.87 0.94 0.95 0.93 0.96 1.00
double- and single-indicator MIDAS MSE-weighted mean 0.83 0.92 0.91 0.88 0.92 0.96
double- and single-indicator MIDAS median 0.90 0.96 0.97 0.97 1.00 1.03

all models equal-weight mean 0.77 0.82 0.84 0.94 0.88 0.75
all models MSE-weighted mean 0.79 0.85 0.82 0.81 0.84 0.67
all models median 0.81 0.82 0.85 0.93 0.91 0.77

Note: Pooling over all models now contains the group of double-indicator MIDAS, in addition to
single-indicator MIDAS and the factor models. For details on the models, see table 3 in the main
text.

models again outperforms pooling over single- and double-indicator MIDAS. However,

comparing the results with those obtained from using single-indicator MIDAS only from

table 3, we can see that there are only small di¤erences. Thus, extending the predictors

in the MIDAS regressions does not seem to contribute much, and we can con�rm our

previous results in this sensitivity check.
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