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Abstract 
For forecasting and economic analysis many variables are used in logarithms (logs). In time series 
analysis this transformation is often considered to stabilize the variance of a series. We investigate 
under which conditions taking logs is beneficial for forecasting. Forecasts based on the original series 
are compared to forecasts based on logs. It is found that it depends on the data generation process 
whether the former or the latter are preferable. For a range of economic variables substantial 
forecasting improvements from taking logs are found if the log transformation actually stabilizes the 
variance of the underlying series. Using logs can be damaging for the forecast precision if a stable 
variance is not achieved. 
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1 Introduction

Many variables are used in logarithms (logs) in economic studies because this trans-

formation is deemed appropriate for one reason or another. From the point of view

of univariate time series modelling the log transformation may be used because a

transformed version of the variable of interest may be better modelled with standard

linear autoregressive integrated moving average (ARIMA) processes. For example, a

logarithmic transformation is often employed to obtain a more homogeneous variance

of a series. In this study we investigate the implications of using log transformations

for forecasting the original variable. If the log series is well described by an ARIMA

model, optimal forecasts can be easily obtained for the log series. Of course, one may

reverse the log transformation by applying the exponential function to the forecasts

and thereby obtain a forecast of the original variable. This approach has a drawback

in the present situation, however. It is well-known that an instantaneous nonlinear

transformation applied to the optimal forecast of a variable may not result in the

optimal forecast of the transformed variable (Granger and Newbold, 1976). In par-

ticular, if optimal forecasts of the logs are available, converting them to forecasts for

the original variable by applying the exponential function is in general not optimal.

In the study we compare different forecasts for variables which are typically used

in logs in economic models. The following forecasts are compared: (1) An ARIMA

forecast for the original variable without the log transformation. This forecast is not

implausible because ARIMA models capture the conditional mean, which is what is

important for point forecasts. The log transformation is typically used to stabilize

the variance and hence has an impact on the second moments. (2) An ARIMA

forecast based on the logs of the series, where the forecast of the original series is

obtained by applying the exponential function to the forecast of the log series. (3)

The forecast for the log series obtained under (2) is converted to a forecast for the

original series by a more sophisticated transformation which gives a more efficient

forecast under ideal conditions.

We conduct a simulation experiment to investigate the performance of the dif-

ferent forecasts under controlled conditions and we also use the three predictors to

forecast a range of economic variables. It is found that the log transformation can

lead to substantial reductions in forecast mean squared error (MSE) if taking logs

really leads to a more stable variance of the series of interest. On the other hand, if

the log transformation is applied but does not make the variance more homogeneous,

using it can be damaging to the forecast precision.

The paper is organised as follows. In the next section the models and forecasts

are summarized formally and some related results regarding the efficiency of differ-

ent forecasts are reviewed. In Section 3 the results of simulation experiments are

reported, and in Section 4 a forecast comparison for a set of economic variables

is presented. Finally, Section 5 concludes. Detailed data sources are given in an

Appendix.
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2 The Predictors

2.1 Stationary Processes

Let xt = log yt be the natural logarithm of the univariate time series variable yt and

suppose that xt is generated by a stationary ARMA(p, q) process,

α(L)xt = ν + θ(L)εt, (2.1)

where ν is a constant, α(L) and θ(L) are polynomials in the lag operator, L, of

orders p and q, respectively, and εt ∼ i.i.d.N (0, σ2
ε) is Gaussian white noise. In

practice, there may be other deterministic terms such as seasonal dummy variables

or deterministic trends. Although the analysis can be easily generalized to account

for such terms, we ignore them because in this study we focus on the stochastic part

of the data generation process (DGP).

Granger and Newbold (1976) show that the process yt is in fact stationary if xt

has this property. They also show that yt is a finite order MA process of maximum

order q if xt ∼MA(q). If, however, xt is a mixed ARMA(p, q) process with nontrivial

AR part (p > 0), then the covariance structure becomes more complicated. In any

case, it is possible that an h-step forecast for yt+h given yt, yt−1, . . . , is based on an

ARMA model fitted to the variable of interest, yt. The forecast obtained in this way

by using the usual forecasting formula is denoted by

ylin
t+h|t.

This may be the optimal linear forecast for yt+h, e.g. if xt is a zero-mean finite order

MA process. In the following we refer to a forecast based on an ARMA or ARIMA

model for the original yt variable as a linear forecast.

Another plausible forecast for yt+h may be obtained via xt. Because xt is a

stationary Gaussian ARMA process, the usual forecasting formulas result in a con-

ditional expectation, which is the optimal (minimum MSE) predictor. We use the

notation

xt+h|t = E(xt+h|xt, xt−1, . . . ).

This forecast is unbiased, i.e. the forecast error has mean zero and its variance,

denoted by σ2
x(h), equals the forecast MSE. A naive h-step forecast for yt+h may be

based on xt+h|t by reversing the log transformation,

ynai
t+h|t = exp(xt+h|t). (2.2)

Granger and Newbold (1976) call this forecast naive because it is not the optimal

forecast. They show that in this case the optimal forecast is

yopt
t+h|t = exp(xt+h|t + 1

2
σ2

x(h)). (2.3)

The forecasts ylin
t+h|t, ynai

t+h|t and yopt
t+h|t are compared in the following.
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2.2 Integrated Processes

As usual, we define the variable yt to be integrated of integer order d (I(d)), if its

DGP is nonstationary but the DGP of the d times differenced variable is stationary,

while differencing d − 1 times will not suffice to achieve stationarity. Suppose that

the original variable, yt, is I(d). In principle one may in this case use all the

predictors that we considered in the foregoing. Rather than ARMA models we shall

use ARIMA models, however. Apart from that, the same predictors can be used.

In the following we only consider the I(1) case; that is, all integrated variables are

I(1) for convenience because that is the most important case from a practical point

of view.

If the transformed variable xt = log yt is integrated, the situation becomes a bit

more complicated. Typically, if yt needs to be transformed to obtain a Gaussian

ARIMA process, it may not have the usual characteristics of an I(1) variable, as

pointed out by Granger and Hallman (1991). These authors note that the autocor-

relations of yt = exp xt may decay more quickly than for an I(1) variable if xt is

a random walk, i.e. a simple I(1) variable. Moreover, the usual Dickey-Fuller and

augmented Dickey-Fuller tests for unit roots have quite different distributions from

the standard ones when applied to yt. Thus, it may well be that yt is not classified

as I(1) if xt = log yt is clearly found to be I(1).

Although this problem may occur in practice and may lead a forecaster to proceed

differently in some cases, in general, the leading approach still seems to be that an

ARIMA model is fitted and there is also a good chance that yt is classified as I(1)

if xt is I(1). Therefore, in Section 4, where we consider real economic time series,

we focus on series for which the original and the logs are likely to be classified as

integrated. Before we look at actual economic series, in the next section we study

the performance of the predictors in a controlled simulation environment to get a

feeling for what to expect in actual applications.

3 Simulation Comparison of Forecasts

In this section we use a simulation experiment to compare the three predictors

introduced in Section 2. We consider two different situations. In the first set of

simulations we generate xt by an ARI process so that the variances of the logs of

yt = exp(xt) are indeed homogeneous. In contrast, in a second set of simulations

we generate yt by an ARI process. Hence, the log transformation is applied even

through yt already has a homogeneous variance.

3.1 Linear DGP of the log Series

We first use an AR(1) process for the first differences of xt, i.e., an ARI(1,1) process,

to simulate xt. In other words, denoting the differencing operator by ∆ (= 1− L),

3



our DGP has the form

∆xt = ν + ρ∆xt−1 + εt, t = 1, 2, . . . , (3.1)

with x0 = x−1 = 0, ρ = −0.9,−0.5, 0, 0.5, 0.9. ν is a constant term which induces

a drift in the levels of the integrated xt series and εt is independent, identically

normally distributed with zero mean and variance σ2
ε , i.e. εt ∼ i.i.d.N (0, σ2

ε). Sam-

ples of size T = 40 and 80 are considered and 4 post-sample values are generated

additionally to evaluate the forecasts. Furthermore, we discard 50 values at the be-

ginning of each sample to alleviate start-up effects and we add as many pre-sample

values to each sample as needed for model selection and estimation. Thus, T is the

net sample size for the levels series. Note, however, that the net sample size for the

differenced series is T − 1 because one observation is lost by taking first differences.

The variable yt = exp(xt) is computed from the generated xt series.1

To simulate an approach which is used in applied work, we fit only AR(p) pro-

cesses with an intercept to the first differences of xt and yt. The three forecasts for

yt as summarized in Section 2 are computed for forecast horizons up to h = 4. The

AR orders are chosen by model selection criteria. More precisely, we use the very

parsimonious SC (Schwarz, 1978) and the more profligate AIC (Akaike, 1973) to

choose the lag orders (see also Lütkepohl (2005, Section 4.3.3) for a more detailed

discussion of the model selection criteria). We use maximum lag orders of 4 and

6 for samples of size T = 40 and 80, respectively, in the selection procedure. We

also experimented with other maximum orders. For our DGPs, small changes in the

maximum AR order did not change our main results.

The forecast error variances required for the optimal forecasts are estimated as

follows. Let α̂1, . . . , α̂p+1 be the estimated coefficients of an AR(p+1) model for the

levels variables. The AR operator is 1− α̂1L− · · · − α̂p+1L
p+1 = ρ̂(L)(1−L), where

ρ̂(L) is the estimated AR(p) polynomial of the series in differences. Furthermore, let

σ̂2
ε = (T − 1− p)−1

∑T
t=2 ε̂2

t be the corresponding estimator of the residual variance.

Then we set φ̂0 = 1, compute

φ̂i =

min(i,p+1)∑
j=1

φ̂i−jα̂j

recursively for i = 1, 2, . . . , and determine the estimator for the h-steps ahead

forecast error variance as

σ̂2
x(h) = σ̂2

ε

h−1∑
i=0

φ̂2
i (3.2)

(see Lütkepohl (2005, Section 6.5) for a justification). We compute forecast MSEs

on the basis of 10,000 replications of the experiment.

1All computations are performed with Matlab programs.

4



The results of simulation experiments with different parameter values are pre-

sented in Tables 1 and 2. The parameter values are chosen so that they are roughly

in line with some of the AR models used for the actual economic variables in Section

4. In particular, small values of the residual variance σ2
ε and the drift parameter

ν are typical in practice when ARIMA models are fitted to logs of economic time

series. In Table 1 MSEs of naive forecasts relative to linear forecasts are given for

sample sizes of T = 40. The AR order is selected by SC. Numbers greater than

one indicate that the MSE of the naive forecast is larger than that of the linear

forecast. It will be noticed that there are some numbers greater than one in Table

1. Notably, for a zero drift term using logs does not help to improve the forecasts

except that the AR coefficient has a large positive value, ρ = 0.9. The losses due to

using logs are minimal, however. The largest loss in Table 1 for ν = 0 is obtained

when ρ = 0.5, σ2
ε = 0.001 and 4-steps ahead forecasts are considered. Even in that

case, the MSE of the naive forecast is only about 5% larger than that of the linear

forecast. Of course, if the drift is zero, it is possible that xt is a time series of negative

values and applying the exponential function may actually reduce the variability of

the series. In turn, applying the log transformation to yt may not result in sizable

improvements in the homogeneity of the variance. In that case, using the log series

may not improve the forecasts.

The situation is quite different if the drift term is positive. Then, depending on

the residual variance, the AR coefficient ρ and the forecast horizon, the efficiency

gains from using logs can be dramatic. For example, for σ2
ε = 0.001, ρ = 0.9 and

forecast horizon h = 4, the MSE of the linear forecast is more than 10 times as large

as that of the naive forecast if the drift parameter ν = 0.02. In fact, in general, if

using logs is beneficial for the forecast precision, the gains tend to increase with the

forecast horizon. Also, for a given residual variance, a larger drift value and a larger

ρ tend to make the log transformation more beneficial; in other words, they improve

the forecast MSE of the naive forecast relative to the linear one. This result may

not be too surprising because a larger drift term induces more irregularity in the

variances of yt = exp(xt). For example, xt tends to increase more rapidly if the drift

term is larger. Hence, the magnifying effect of the exponential function for positive

values induces more heteroskedasticity in yt. Thus, the overall conclusion from the

results in Table 1 is that the log transformation helps to improve forecasts a bit, or

even substantially if it actually has a sizable stabilizing effect on the variance of the

series of interest, yt.

This conclusion turns out to be robust in various dimensions. For example,

we have also used the AIC criterion for AR order selection. The resulting relative

forecast MSEs are very similar to those in Table 1. This may not be very surprising

given the simple AR structure of the DGP. Although we have not checked this, one

may guess that AIC and SC selected the same AR orders in the vast majority of

cases. We also considered a larger sample size of T = 80. For zero drift term,

ν = 0, the results are again similar to the corresponding ones in Table 1. For ν > 0,
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the relative performance of the naive forecast tends to improve, however, in some

situations.

Of course, so far we have just compared the linear forecast to its naive competitor,

which is theoretically inferior to the optimal forecast. In practice it is not clear

that the optimal forecast actually outperforms the other two predictors because the

forecast error variance which is used in the forecast transformation is unknown and

has to be replaced by an estimate. Using the estimate from (3.2) does not in fact

improve the forecast precision much over the naive one, if at all. This can be seen

in Table 2, where the MSEs of the optimal forecasts relative to the naive ones are

presented. Clearly, the numbers tend to be very close to, but still slightly larger

than, one. This holds across all forecast horizons, drift terms and error variances.

In fact, the results in Table 2 are invariant to the value of the drift parameter

ν. Therefore we report results only for ν = 0. Given these simulation results, in

applied forecasting the optimal forecast may not be of great value. At least, it does

not improve the forecast MSEs in the experimental situations which we consider

here.

The DGPs considered so far favour the forecasts based on logs because this

transformation has the potential to make the variance more stable. One may, of

course, also wonder how much can be lost by applying the log transformation when

the variance is stable already. This question is considered next.

3.2 Linear DGP of the Series of Interest

To investigate whether the log transformation can be damaging to the forecast

precision if it does not stabilize the variance, we perform another experiment where

we generate the variable of interest, yt, by an ARI process and we apply logs to

obtain xt. More precisely, the DGP of ∆yt is an AR(1),

∆yt = ν + ρ∆yt−1 + εt, t = 1, 2, . . . , (3.3)

with y0 = y−1 = 0, and all other quantities are specified as in (3.1). The xt’s are

generated as xt = log yt. We only use processes with positive drift term, ν > 0, to

ensure positive values of yt at least after the initial burn-in period of 50 observations,

which are dropped as in the previous simulation setup. Some results based on

samples of size T = 40 and AR order selection by SC are reported in Table 3. Again

we show MSEs of naive forecasts relative to linear forecasts.

Now all entries are greater than one, and some substantially so. Consider, for

instance, the relative MSEs associated with 4-step ahead forecasts when ν = 0.05

and σ2
ε = 0.0001. Taking logs can lead to MSEs which are more than six times as

large as those of the linear forecasts. Thus, sizeable damage can be done by taking

logs if the variance of a series is stable across the sample already. In particular,

longer-term forecasts based on logs can be quite poor relative to the linear ones, but

even for short-term forecasts (1-step ahead) sizable losses are possible.
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Also in this case we checked the robustness of the results. For instance, we

used AIC instead of SC for AR order selection and we increased the sample size to

T = 80. The results remain qualitatively the same.

Thus, the overall conclusion from our simulations so far is that forecasting logs of

a variable of interest first and then converting back to the original variable can lead

to substantial improvements in MSE if the log transformation indeed stabilizes the

variance of the DGP. If however, the variance is stable already, considerable damage

can be done by forecasting logs. Our simulations also show that no substantial gains

can be expected from using the optimal instead of the naive forecast. In fact, the

optimal forecast with estimated forecast error variance often has a slightly larger

MSE than the naive forecast. The differences are usually minimal, however. Thus,

there is no compelling reason for considering the more elaborate optimal forecast.

4 Forecast Comparison Based on Economic Data

We consider a range of different economic time series which are often used in logs

in economic modelling and compute the three different forecasts for the original

variables. More precisely, we use monthly series of different stock indices as well

as quarterly series of gross domestic product (GDP) and consumption for a range

of countries. Although stock returns are often of interest, the level of stock indices

is also of interest because the returns of many certificates are linked to the level

of specific stock indices. If the returns are of interest, first differences of logs are

typically considered. Hence, using logs of a stock index series is not uncommon.

Similarly, in economic analyses, logs of GDP and consumption are often considered.

Although forecasts of the rates of change of these series may be more important

in practice, we focus on forecasting the levels in order to cover a good range of

different DGPs which come up in applied work. Having a range of different DGPs is

important in this context because the characteristics of the DGP are crucial for the

performance of the different forecasts, as we have seen in the simulations. We first

discuss the results for the stock indices and then consider the GDP and consumption

series.

4.1 Forecasting Stock Indices

We consider nine well-known stock indices, the Dow Jones Euro Stoxx 50, FTSE,

DAX, CAC 40, Dow Jones, Nasdaq, S&P 500, Nikkei and HangSeng. The indices are

related to important stock exchanges from all over the world. They measure stock

prices from different regions and sectors. Moreover, they differ in how many stock

prices they incorporate. Overall they cover a good range of the stock markets in

the world. We use monthly series from 1990M1 to 2007M12 based on end-of-month

index values. Details on the data sources are provided in Appendix B.
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The first differences and first differences of logs of all series are plotted in Figure

1. Apparently the variation in volatility is larger for the series without logs in most

cases. Thus, using logs can be interpreted as a means of stabilizing the variance.

However, even the first differences of logs still show considerable variation in their

volatility, as one would expect for monthly financial market series. In such series

conditional heteroskedasticity is often diagnosed and modelled. To ensure that our

results are not driven purely by the specific period used for the forecast comparison,

we report results for different forecast periods. Also, we vary the sample on which

model specification and estimation are based.

Forecasts are computed by fitting AR models to the first differences of the orig-

inal index series and to the first differences of logs. The AR orders are chosen by

model selection criteria, as in the simulations; that is, we use the SC and the AIC for

AR order selection. The maximum lag order is 4 in the selection procedure because

no seasonality or higher order AR dynamics are expected in the differenced series.

In fact, for the current set of series, the AR orders chosen by both model selection

criteria are often zero. In efficient markets it is of course not surprising to find no

predictability in the returns. Since the choice of selection criterion did not qualita-

tively make any difference to the results, we report relative forecast MSEs only for

SC models in Table 4. In fact, the AIC results are identical for most countries and

samples, and very close to the SC results when there are differences. The reason is,

of course, that the AR(0) for the first differences is the dominating model. For our

purposes, computing the forecasts from those models means that estimation uncer-

tainty has only a limited impact on the results. The only estimated parameters are

the drift term and the residual variance, which enters the estimator for the forecast

error variance in the optimal forecast formula.

In Table 4 we report relative forecast MSEs for two alternative sample periods,

three different forecasting periods, and forecast horizons h = 1, 3 and 6. Thus, the

forecast horizons refer to one month, one quarter and half a year. In this table the

forecast MSEs of the naive forecasts relative to the linear forecasts are displayed.

An asterisk indicates that the difference between the forecast MSEs is significant at

the 5% level based on a two-sided modified Diebold-Mariano (DM) test (Diebold

and Mariano, 1995). We use a modification which was proposed by Harvey et al.

(1997) and give the precise form of the test statistic in Appendix A.

The two sample periods used in Table 4 begin in 1990M1 and 1995M1. The

forecast periods start in 2001M1, 2003M1, and 2005M1 and they all end in 2007M12.

Accordingly, the forecast MSEs are based on 79, 55 and 31 forecasts. Forecasts up

to six steps ahead are computed based on estimated models fitted to samples of

increasing length. For example, for the sample starting in 1990M1 and the forecast

period 2001M1 - 2007M12, we first fit AR models using data from 1990M1 - 2000M12

(sample size 131 if the first observation, which is used for forming differences, is not

counted) and we use these models to produce up to six steps ahead forecasts and

corresponding squared forecast errors. Then we extend the sample length by one
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and perform a new AR order selection and estimation to produce the next set of

forecasts, and so on. The largest sample for estimation is achieved when the period

ends in 2007M6. Thereby, we generate 79 squared forecast errors for each forecast

horizon. For the shorter forecast periods starting from 2003M1 and 2005M1, only

55 and 31 forecasts, respectively, are computed in this way. We divide the sums

of the squared forecast errors by the corresponding sum of squared forecast errors

obtained for the original series. Thus, a value greater than one in Table 4 means

that the MSE of the linear forecast is smaller than that of the naive forecast based

on logs; that is, logs do not improve the forecasts, whereas a number smaller than

one implies that taking logs does improve the forecasts.

It is evident that numbers smaller than one dominate in Table 4. Thus, producing

forecasts on the basis of the log series is clearly beneficial. In fact, all numbers greater

than one typically exceed one only by very little, while the gains from taking logs

can be considerable. This is similar to the simulation results reported in Table

1. For example, the largest relative forecast MSE in Table 4 is about 1.24, which

occurs for the Euro Stoxx index when the sample period starts in 1995M1 (smallest

sample size 71 for model selection and estimation) and the longest forecast period

2001M1-2007M12 is considered. Here, a potential loss in forecast efficiency of about

24% is incurred by using logs. Note, however, that the difference in the two MSEs is

not significant at the 5% level based on the DM test. In fact, the only significantly

larger MSE from the naive forecast is obtained for the 1-step ahead forecast of the

Euro Stoxx for the shorter sample period and forecast period 2001M1-2007M12. On

the other hand, there are many cases where the naive forecasts produce significantly

smaller MSEs than the linear forecasts. In a number of cases the relative forecast

MSEs are smaller than 0.80; that is, forecast efficiency gains of more than 20%

are found. For example, for the Dow Jones index using the longer sample and

the shortest forecast period 2005M1-2007M12, the relative forecast MSE is 0.7445,

meaning that the MSE of the naive forecast is only about 3/4 that of the linear

forecast.

In fact, most forecast MSEs above one occur for the longest forecast period

2001M1-2007M12, which covers the general downturn in the stock markets in the

early years of the current millennium. Had we eliminated this forecast period, the

advantage of the forecasts based on logs would have been overwhelming. The results

for the long forecast period show that the precision of specific forecasts is in practice

considerably dependent on the sample and forecast periods. We account for this

fact by reporting results for different periods.

The optimal forecasts typically have MSEs close to the naive forecasts or are

slightly better. The MSEs of the optimal forecasts relative to the naive ones are

shown in Table 5. Obviously, they are all very close to one, as in the simulations.

In no case does the optimal forecast have an MSE more than 10% higher than the

naive one. On the other hand, forecast efficiency gains of more than 10% from using

the optimal forecast over the naive one are also rare. Notice, however, that with
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one exception, all significant differences are obtained in situations when the optimal

forecast is better. The only exception occurs for the Euro Stoxx when the shorter

sample and a forecast period from 2001M1 - 2007M12 are used. In that case the

MSE improvement from using the naive forecast is only about 1.5%. Thus, overall

the optimal forecasts are approximately equally good or even slightly better than

the naive forecasts for these samples and forecast periods. Hence, the gains from

using logs in forecasting the stock indices would be even greater on some occasions

than is seen in Table 4 had we used the optimal forecast in that table instead of

the naive one. It may also be worth noting that the logs of the stock indices are

not well modelled by normal distributions, whereas our optimal forecast is derived

under the normality assumption.

As mentioned earlier, many of the models underlying the forecasts in Tables 4

and 5 are AR(0) models for the first differences. Hence, these results do not tell

us much about the impact of estimation uncertainty in the AR parameters. Such

estimation uncertainty may in particular have an impact on the optimal forecast,

which involves an estimate of the forecast error variance and is thus based on the AR

coefficient estimates. Therefore, we now consider series for which more dynamics in

the differences and the differences of logs can be expected.

4.2 GDP

Seasonally adjusted quarterly GDP series from seven different OECD countries for

the period 1980Q1 - 2006Q4 are investigated. The precise data sources are again

given in Appendix B. Our choice of series is determined by the objective of our

forecast comparison, namely to see whether taking logs is beneficial for forecasting

even if forecasts of the original series are of interest. The countries are Belgium,

Canada, Denmark, France, Japan, Norway and the US. Thus, we have a range

of smaller, medium-size and larger countries in our set. The first differences of

the original variables and the logs are plotted in Figure 2. The main criterion for

including these countries is to ensure that there are no major distortions and data

irregularities during the sample period. For instance, we exclude Germany because

the unification in 1990 resulted in a series with a shift in that year. The shift is due

to the fact that the GDP series refers to West Germany only before the unification.

We could, of course, have adjusted the series in one way or another. We did not,

however, want to include series for which manual adjustments on our side were

necessary to ensure a reasonably good fit in order to safeguard against the critique

that our results may be driven by our adjustments. Thus, we only include countries

for which the GDP series both in first differences and in first differences of logs can

be modelled reasonably well by low order AR processes for the entire sample period.

This is also why we use data which are adjusted by some kind of official seasonal

adjustment procedure. The residuals of the AR processes fitted to the series of

changes (first differences of the original series) may still be heteroskedastic, however,

10



which is why logs are often used. In some cases there is still some heteroskedasticity

left in the series if the rates of change are considered, as can be seen in Figure

2. Again the first differences of logs on the right-hand side of the figure generally

appear to have a more stable variance over the sample period, although this is not

obvious in all cases. In fact, taking logs in some cases seems to lead to a change in

variance which may, for example, be attributed to the great moderation. There is a

substantial literature which discusses the possibility of a reduction in the volatility

of US series from the middle of the 1980s onward (e.g., Sims and Zha (2006), Sims

et al. (2008), Lanne and Lütkepohl (2008)). This phenomenon is also seen to some

extent in the last panel in Figure 2, which shows the first differences of logs of US

GDP. However, overall the log transformation seems to stabilize the variability in

the GDP series considered.

The forecasts are computed as explained for the stock indices. That is, we fit

AR models to the original GDP series and to their logs. The AR orders are chosen

by AIC and SC model selection criteria based on increasing sample sizes for each

fixed sample beginning. The maximum lag order considered is now 8 because we

expect some more serial dynamics in the first differences of the series. Again we

just report SC results because the AIC results are qualitatively identical. MSEs of

naive forecasts relative to MSEs for linear forecasts for samples starting in 1980Q1,

1985Q1 and 1990Q1 are reported in Table 6. The MSEs for the optimal forecasts are

either very close to those of the naive forecasts or they are slightly smaller. Thus,

whenever a number smaller than one appears in the table, the log transformation

improves the forecasts. Had the optimal forecasts been used, the improvements

may have been even slightly larger. The forecast periods start either in 2000Q1 or

in 2003Q1 and results for forecast horizons from one to four quarters are reported.

We also used different estimation and forecast periods and found similar results, so

that we believe that the results reported in Table 6 provide a good summary of the

overall outcome.

The general picture in Table 6 is again in favour of using logs. In fact, Japan is the

only country for which the linear forecasts have significantly smaller MSEs than the

naive ones in some cases, significance being again assessed by (two-sided) DM tests

at 5% level. For the other countries there are quite substantial improvements due

to the log transformation, notably for longer term forecasts. Consider, for example,

Belgium, where in all cases the log transformation improves the forecasts and in a

couple of cases the relative MSE is less than 10%; that is, a dramatic improvement is

obtained (see the figures for forecast horizon 4 and forecast period 2003Q1-2006Q4).

In fact, in most cases where the forecasts based on the original variables are superior,

the gains are only small, typically a few percent improvements. The only exception

is Denmark, for which the original variables deliver more than 50% improvements

in the forecast period 2000Q1 - 2006Q4. This improvement is not significant at

the 5% level according to the DM test, however. More generally for this forecast

period, the forecasts based on the original variables are often superior, although not
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significantly so when checking with the DM test. In fact, if one eliminated the first

column of the table, which shows the relative forecast MSEs for this period, and

the rows associated with Japan, the picture would be even more clearly in favour of

taking logs.

Thus, in summary, we can conclude from the results for the GDP series that

taking logs is beneficial from a forecasting point of view. Forecasting the logs first

and then converting to forecasts for the original variables can lead to dramatic MSE

improvements. On the other hand, for those cases where the forecasts based on the

original variables exhibit smaller MSEs, the gains are typically very limited. This

situation is similar to the simulation results reported in Table 1. In the next section

we check whether similar results are obtained for consumption series from different

countries.

4.3 Consumption Forecasts

The next set of variables we use for a forecast comparison are seasonally adjusted ag-

gregate quarterly private consumption expenditures for a range of OECD countries,

more precisely for Australia, Belgium, Canada, Japan, Norway, United Kingdom

(UK) and the US. Thus, the countries overlap with those for which we considered

GDP series in the previous subsection, but they are not identical. The sample pe-

riod is the same as for GDP, that is, 1980Q1-2006Q4. The precise data sources

are again given in Appendix B and the first differences and first differences of logs

are depicted in Figure 3. For some of the series the log transformation apparently

leads to a series with a clearly more homogeneous variance in first differences than

without logs. Norway is a particularly clear case. On the other hand, there are also

series such as the one for the UK where the advantage of taking logs for stabilizing

the variance is not apparent. Whereas the variability of the first differences seems

to increase over the sample period, it appears to decrease for the first differences of

logs. Clearly, one may question the log transformation in such a case. Still, the fact

remains that logs of consumption series are often considered in economic modelling

and so it is of interest to check whether the log transformation can be beneficial for

forecasting as well.

We produce forecasts in the same way as for the GDP series, using the same

sample and forecasting periods, and report MSEs of naive forecasts relative to linear

forecasts in Table 7. They are again based on SC models because the AIC results are

qualitatively similar. Also, the optimal forecast MSEs are again similar to those of

the naive forecasts. For five countries there are reasonable gains from using logs. For

example, for Norway the 4-steps ahead forecasts based on the logs for the sample

period starting in 1985 and forecasting period 2003Q1-2006Q4 produce an MSE

which is less than 20% of the corresponding linear forecast MSE. Many of the MSEs

of the naive forecasts are significantly smaller than those of the linear forecasts.

In contrast, using logs for forecasting Japanese and UK consumption results in
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considerable and significant efficiency losses. In particular, for the UK the MSEs

of the naive forecasts based on logs can be more than five times the corresponding

MSEs of the linear forecast. These figures are similar to the simulation results in

Table 3, which are obtained by simulating the yt series with a linear DGP. Thus, for

series where a stabilization of the variance is not achieved by taking logs, the log

transformation may be quite damaging to the forecast precision.

5 Conclusions

In this study we have investigated whether and under which conditions using loga-

rithms can help improving forecasts of economic variables. More precisely, if fore-

casts of a variable yt are of interest, the question is under what conditions forecasting

xt = log yt and then converting the forecast of xt to a forecast of yt may lead to a

more precise forecast than predicting yt directly. To explore this question, we have

compared three predictors: (1) a linear forecast based on an ARIMA model for yt,

(2) a naive forecast which converts an ARIMA forecast of xt by the exponential

transformation to a forecast of yt, and (3) an ‘optimal forecast’ which adjusts the

ARIMA forecast of xt to account for the nonlinearity of the log transformation when

converting to a forecast of yt. The MSE has been used as a measure for forecast

precision.

In a simulation study based on ARI processes for xt as well as for yt we found that

using logs can result in dramatic gains in forecast precision if the log transformation

indeed makes the variance more homogeneous throughout the sample. In other

words, forecasts based on xt = log yt and then converting to yt can be much better

than direct predictions of yt if xt has a more stable variance than yt. On the other

hand, directly forecasting yt is preferable in terms of forecast precision if yt has a

more homogeneous variance than xt. Generally, the so-called optimal forecast based

on xt is typically no better, or at least not much better, than the naive forecast

based on xt. Although the optimal predictor minimizes the forecast MSE in theory,

it involves the forecasts error variance which is unknown in practice and has to be

replaced by an estimator. Using the usual estimator for this quantity, the optimal

predictor does not appear to have an advantage over the naive predictor in samples

of common size, at least for the DGPs used in our simulation experiment. In this

context it may also be worth noting that Granger and Newbold (1976) do not report

large gains in theoretical forecast MSE in their examples if a log transform is used.

Hence, our simulation findings are in line with their results.

We have also considered a range of economic series which are typically used

in logarithmic form in economic analyses and compared the three predictors using

different sample and forecast periods. The overall results from the empirical forecast

comparisons are the same as those of the simulations. In other words, series whose

variability becomes more homogeneous by taking logs, can be forecast better by the
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naive or optimal predictors. The gains in forecast MSE can be dramatic. On the

other hand, if the log transformation does not stabilize the variance of a series, it

is preferable to base forecasts directly on ARIMA models for the original series. In

that case, using forecasts based on the log series can be damaging to the forecast

precision.

These results can be potentially important for forecasting aggregated series. If

disaggregate data is available it was found that forecasting the disaggregate series

and then aggregating the forecasts may be preferable to forecasting the aggregate

series directly. Such results were found for both temporal as well as contemporane-

ous aggregation (e.g. Amemiya and Wu (1972), Wei (1978), Lütkepohl (1986, 1987,

2006), Silvestrini et al. (2008)). Many of the available results relate to linear aggre-

gation, however. Since the log transformation is a nonlinear one, the question arises

whether forecasting the logs of the disaggregate series and aggregating the forecasts

is still preferable to forecasting the aggregate directly based on the original series or

based on its logs. For the case of contemporaneous aggregation this would require

multivariate extensions of the results regarding optimal prediction of nonlinearly

transformed series. Such extensions were discussed by Ariño and Franses (2000).

These issues are left for future research.

Appendix A. Modified Diebold-Mariano Test

The following version of the Diebold-Mariano test from Harvey et al. (1997) for

equality of the MSEs of different forecasts is used. Let (e1i, e2i), i = 1, . . . , N , be a

set of errors from two different procedures for computing h-step ahead forecasts and

define di = e2
1i − e2

2i, i = 1, . . . , N . The modified DM statistic has the form,

DM =

(
N + 1− 2h + N−1h(h− 1)

N

)1/2

V̂ −1/2d̄,

where d̄ = N−1
∑N

i=1 di is the mean of the di’s and

V̂ =
1

N

(
γ̂0 + 2

h−1∑

k=1

γ̂k

)
,

with γ̂k = N−1
∑N

i=k+1(di − d̄)(di−k − d̄), is an estimator of the variance of d̄. The

statistic is used with a t distribution with N − 1 degrees of freedom and the signifi-

cance level refers to a two-sided alternative.

Appendix B. Data Sources

All data considered are obtained directly from Thomson Datastream where data

from international sources such as the International Monetary Fund (IMF) or na-

tional sources such as the Banque Nationale de Belgique are collected.
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Stock Indices

Nine price indices from stock markets all over the world are investigated. The corre-

sponding codes (DS Mnemonics) in the Datastream database are: DJES50I for Dow

Jones Euro Stoxx 50, FTSE100 for FTSE 100, DAXINDX for DAX 30 Performance,

FRCAC40 for CAC 40, DJINDUS for Dow Jones Industrials, NASCOMP for Nas-

daq Composite, S&PCOMP for Standard and Poors 500 Composite, JAPDOWA

for Nikkei 225 Stock Average, and HNGKNGI for Hang Seng Index.

GDP

The GDP series are seasonally adjusted in current prices for seven countries. The

corresponding codes (DS Mnemonics) are: BGGDP...B for Belgium, CNI99B.CB

for Canada, DKESNGDPB for Denmark, FRL99B.CB for France, JPI99B.CB for

Japan, NWGDP...B for Norway, and USI99B.CB for the US.

The GDP of Canada is measured in billions of Canadian dollars, French GDP is in

billions of French francs, Japanese GDP is in billions of Japanese yen, and US GDP is

in billions of US dollars. These series are from IMF International Financial Statistics.

Norway’s GDP, from Statistics Norway, is in millions of Norwegian krones. The

data for Denmark (in billions of euros) are from Statistical Office of the European

Communities and the GDP series for Belgium is given in millions of euros and is

provided by the Banque Nationale de Belgique.

Consumption

Seasonally-adjusted time series of private consumption in current prices for seven

countries are considered. The corresponding codes (DS Mnemonics) are: AUI96F.CB

for Australia, BGCNPER.B for Belgium, CNI96F.CB for Canada, JPI96F.CB for

Japan, NWCNPER.B for Norway, UKI96F.CB for UK, and USI96F.CB for the US.

The household consumption expenditures of Australia (in billions of Australian

dollars), Canada (in billions of Canadian dollars), Japan (in billions of Japanese

yen), UK (in billions of UK sterling pounds), and the US (in billions of US dollars)

are from IMF International Financial Statistics. For Belgium, private consumption

expenditures (in millions of euros) are from the Banque Nationale de Belgique, and

the data for Norway (in millions of Norwegian krones) are from Statistics Norway.
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Figure 1: First differences (left-hand column) and first differences of logs (right-hand

column) of stock indices.
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Figure 2: First differences (left-hand column) and first differences of logs (right-hand

column) of GDP series.
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Table 1: Forecast MSEs of Naive Forecast Relative to Linear Forecast for Simulated
Series, DGP ∆xt = ν + ρ∆xt−1 + εt, yt = exp xt, Sample Size 40

σ2
ε = 0.001 σ2

ε = 0.0001
ρ = ρ =

ν h −0.9 −0.5 0 0.5 0.9 −0.9 −0.5 0 0.5 0.9
0 1 1.001 1.001 1.004 1.010 0.582 1.001 1.000 1.001 1.004 1.013

4 1.002 1.007 1.017 1.051 0.515 1.000 1.001 1.002 1.006 1.037

0.01 1 1.008 1.006 1.014 0.980 0.392 1.000 0.997 0.984 0.947 0.659
4 1.016 1.040 1.059 1.008 0.103 0.988 0.979 0.935 0.793 0.541

0.02 1 1.002 0.992 0.976 0.849 0.322 0.904 0.864 0.767 0.767 0.459
4 0.987 0.987 0.933 0.691 0.025 0.747 0.598 0.439 0.461 0.156

Note: AR order selection based on SC with maximum lag order of 4. The number
of replications is 10,000.

Table 2: Forecast MSEs of Optimal Forecast Relative to Naive Forecast for Simu-
lated Series, DGP ∆xt = ρ∆xt−1 + εt, yt = exp xt, Sample Size 40

σ2
ε = 0.001 σ2

ε = 0.0001
ρ = ρ =

h −0.9 −0.5 0 0.5 0.9 −0.9 −0.5 0 0.5 0.9
1 1.001 1.001 1.002 1.003 0.998 1.000 1.000 1.000 1.000 1.001
4 1.001 1.003 1.006 1.019 1.059 1.000 1.000 1.001 1.002 1.011

Note: AR order selection based on SC with maximum lag order of 4. The number
of replications is 10,000.

Table 3: Forecast MSEs of Naive Forecast Relative to Linear Forecast for Simulated
Series, DGP ∆yt = ν + ρ∆yt−1 + εt, xt = log yt, Sample Size 40

σ2
ε = 0.001 σ2

ε = 0.0001
ρ = ρ =

ν h −0.9 −0.5 0 0.5 0.9 −0.9 −0.5 0 0.5 0.9
0.02 1 1.083 1.086 1.085 1.101 1.130 1.376 1.365 1.395 1.283 1.128

4 1.233 1.334 1.358 1.346 1.392 2.175 2.612 2.731 2.276 1.521

0.05 1 1.255 1.256 1.268 1.224 1.135 1.943 1.915 1.916 1.380 1.114
4 1.786 2.099 2.172 1.960 1.535 4.845 6.491 6.033 3.230 1.480

Note: AR order selection based on SC with maximum lag order of 4. The number
of replications is 10,000.
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Table 4: Forecast MSEs of Naive Forecast Relative to Linear Forecast for Stock
Index Series

Sample 1990M1- Sample 1995M1-
Forecast period Forecast period

Forecast 2001 2003 2005 2001 2003 2005
Index horizon -2007 -2007 -2007 -2007 -2007 -2007
Euro Stoxx 1 1.0353 0.9771 0.9641 1.0570* 0.9823 0.9706

3 1.0860 0.9325 0.9108 1.1371 0.9460 0.9262
6 1.1520 0.8126* 0.7691 1.2417 0.8306 0.7839

FTSE 1 1.0182 0.9844 0.9789 1.0209 0.9902 0.9862
3 1.0481 0.9393 0.9310 1.0548 0.9617 0.9535
6 1.0781 0.8492* 0.8217 1.0906 0.8981 0.8687

DAX 1 1.0098 0.9700 0.9551 1.0224 0.9678 0.9509
3 1.0274 0.9282 0.9051 1.0606 0.9208 0.8927
6 1.0430 0.8624 0.8303* 1.1010 0.8393 0.7964

CAC 40 1 1.0182 0.9830 0.9772 1.0446 0.9816 0.9747
3 1.0465 0.9584 0.9521 1.1119 0.9541 0.9501
6 1.0815 0.9074 0.8961 1.1960 0.8878 0.8858

Dow Jones 1 1.0284 0.9795 0.9874 1.0366 0.9919 0.9984
3 1.0786 0.9101 0.9008 1.1034 0.9495 0.9415
6 1.1675 0.8234 0.7445 1.2183 0.9021 0.8275

Nasdaq 1 1.0283 0.9888 1.0169 1.0277 0.9965 1.0143
3 1.0889 0.9621 0.9947 1.0855 0.9847 1.0027
6 1.1692 0.9010 0.8419 1.1614 0.9500 0.8941

S&P 500 1 1.0340 0.9757 0.9975 1.0419 0.9883 1.0077
3 1.0907 0.9140 0.9394 1.1122 0.9501 0.9776
6 1.1682 0.8038 0.7815 1.2086 0.8790 0.8780

Nikkei 1 0.9430* 0.9022* 0.9340* 0.9907 0.9806* 0.9926*
3 0.8783 0.8177* 0.8766 0.9758 0.9563* 0.9828
6 0.8141 0.7541* 0.8350 0.9574 0.9314 0.9712

HangSeng 1 0.9971 0.9275* 0.9034 0.9950 0.9681* 0.9523*
3 0.9779 0.8397 0.8031 0.9819 0.9288 0.9040
6 0.9228 0.7944 0.7732 0.9557 0.9089 0.8918

Note: AR order selection based on SC with maximum lag order of 4.
* significant at 5% level according to DM test with two-sided alternative.
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Table 5: Forecast MSEs of Optimal Forecasts Relative to Naive Forecasts for Stock
Index Series

Sample 1990M1- Sample 1995M1-
Forecast period Forecast period

Forecast 2001 2003 2005 2001 2003 2005
Index horizon -2007 -2007 -2007 -2007 -2007 -2007
Euro Stoxx 1 1.0108 0.9893 0.9844 1.0146* 0.9924 0.9881

3 1.0251 0.9637 0.9598 1.0328 0.9713 0.9703
6 1.0419 0.8867 0.8782 1.0529 0.9009 0.8989

FTSE 1 1.0073 0.9901 0.9891 1.0061 0.9908 0.9906
3 1.0185 0.9567 0.9644 1.0153 0.9601 0.9692
6 1.0287 0.8884* 0.8974 1.0231 0.8985* 0.9101

DAX 1 1.0038 0.9719 0.9636 1.0072 0.9730 0.9654
3 1.0098 0.9268* 0.9175 1.0179 0.9264 0.9179
6 1.0137 0.8504* 0.8387* 1.0279 0.8388* 0.8252*

CAC 40 1 1.0104 0.9820 0.9789 1.0141 0.9896 0.9872
3 1.0259 0.9493 0.9541 1.0338 0.9686 0.9752
6 1.0438 0.8804 0.8980 1.0552 0.9176 0.9451

Dow Jones 1 1.0075 1.0005 1.0043 1.0106 1.0027 1.0071
3 1.0208 0.9940 1.0026 1.0290 1.0000 1.0115
6 1.0432 0.9931 0.9958 1.0575 1.0091 1.0174

Nasdaq 1 1.0143 1.0027 1.0256 1.0204 1.0014 1.0311
3 1.0444 1.0023 1.0485 1.0630 0.9977 1.0573
6 1.0961 1.0073 1.0895 1.1352 0.9980 1.0967

S&P 500 1 1.0083 0.9972 1.0060 1.0113 0.9986 1.0092
3 1.0214 0.9858 1.0078 1.0285 0.9889 1.0172
6 1.0394 0.9686 1.0087 1.0512 0.9783 1.0362

Nikkei 1 0.9846 0.9646* 0.9659 0.9918 0.9767* 0.9783
3 0.9690 0.9339* 0.9389 0.9838 0.9553 0.9606
6 0.9562 0.9144* 0.9268 0.9782 0.9416 0.9534

HangSeng 1 1.0103 0.9697 0.9629 1.0035 0.9563 0.9500
3 1.0142 0.9208 0.9041 0.9999 0.9023 0.8912
6 0.9911 0.8854 0.8743 0.9711 0.8735 0.8705

Note: AR order selection based on SC with maximum lag order of 4.
* significant at 5% level according to DM test with two-sided alternative.
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Table 6: Forecast MSEs of Naive Forecast Relative to Linear Forecast for GDP
Series

Sample 1980Q1- Sample 1985Q1- Sample 1990Q1-
Forecast period Forecast period Forecast period

Forecast 2000Q1 2003Q1 2000Q1 2003Q1 2000Q1 2003Q1
Country horizon -2006Q4 -2006Q4 -2006Q4 -2006Q4 -2006Q4 -2006Q4
Belgium 1 0.9485 0.5219 0.9001 0.5174 0.8489 0.5946*

2 0.8919 0.2939 0.8137 0.2753* 0.7276 0.3925*
3 0.8523 0.1764* 0.7643 0.1723* 0.6601 0.3206*
4 0.8242 0.0930* 0.7270 0.0975* 0.5992 0.2625*

Canada 1 0.7016 0.6226 0.6432 0.5515 0.6706 0.5563
2 0.7564 0.6445 0.6795 0.5402 0.7579 0.6234
3 0.7901 0.6254 0.6961 0.5243 0.8114 0.7011
4 0.7874 0.5622 0.6728 0.4654 0.7792* 0.6444*

Denmark 1 1.2308 1.1222 1.0483 0.9875 1.0289 1.0135
2 1.2764 0.8814 1.0070 0.7981 0.9676 0.8285
3 1.3627 0.5792 0.9461 0.5125 0.8491 0.5779
4 1.5162 0.3651 0.9429 0.2850 0.8278 0.4218

France 1 1.0624 0.6920 0.9574 0.7469 0.8451 0.6874*
2 1.1257 0.3834 0.7983 0.3775 0.6875* 0.5169*
3 1.2773 0.3327 0.6850 0.2275 0.5624* 0.4211*
4 1.2678 0.3133 0.5927 0.2062 0.4953 0.3997*

Japan 1 1.0148 1.0348 1.0146* 1.0245 1.0272 1.0096
2 1.0486 1.0794 1.0289* 1.0683 1.0481 0.9976
3 1.0836 1.1142 1.0435* 1.0923* 1.0655 0.9914
4 1.1117 1.1486 1.0536* 1.1117 1.0770 0.9592

Norway 1 0.9578 0.8317 1.0816 0.9980 1.0772 0.9370
2 0.9781 0.7438 1.1390 0.9932 1.0890 0.8897
3 0.8681 0.5344* 0.9847 0.7664 0.9875 0.7507*
4 0.8272 0.4596* 0.8818 0.6703* 0.9032 0.7048*

US 1 1.1019 0.6882 1.0549 0.6883 1.0632 0.7690
2 0.9840 0.2254* 1.1369 0.3975* 0.9948 0.5648
3 0.9916 0.1331* 1.0530 0.3122* 0.9016 0.4532
4 0.9396 0.1084* 0.9720 0.2683* 0.8134 0.4046

Note: AR order selection based on SC with maximum lag order of 8.
* significant at 5% level according to DM test with two-sided alternative.
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Table 7: Forecast MSEs of Naive Forecast Relative to Linear Forecast for Consump-
tion Series

Sample 1980Q1- Sample 1985Q1- Sample 1990Q1-
Forecast period Forecast period Forecast period

Forecast 2000Q1 2003Q1 2000Q1 2003Q1 2000Q1 2003Q1
Country horizon -2006Q4 -2006Q4 -2006Q4 -2006Q4 -2006Q4 -2006Q4
Australia 1 0.9167 0.8351 0.8728 0.7471 0.6223* 0.5081

2 0.8236 0.8079 0.7022 0.6413 0.4621* 0.4035
3 0.7521 0.7532 0.5694 0.5207 0.3634* 0.3111
4 0.7554 0.7165 0.4947 0.4484 0.2861* 0.2591

Belgium 1 0.8823 0.7683 0.9443 0.8812 0.8619 0.6263
2 0.8977 0.7138 0.8986 0.7358 0.8050 0.5908
3 0.9512 0.5009 0.8593 0.4859 0.7923 0.4352
4 1.0271 0.2722 0.8319 0.2834 0.7446 0.2947

Canada 1 0.7766 0.8363 0.7314 0.6338 0.7396 0.6342
2 0.6130 0.5491 0.5810 0.3672 0.6358 0.5076
3 0.5536 0.3767 0.4479 0.2186 0.5428 0.4142
4 0.5103 0.2707 0.3494 0.1382 0.4661* 0.3487

Japan 1 1.0403 1.0942* 1.0457 1.0658 1.0637* 1.0717
2 1.0526 1.0952 1.0537 1.0738 1.1064* 1.0897
3 1.1007* 1.1765* 1.0796* 1.1343* 1.1554* 1.1534
4 1.1184* 1.2665* 1.0994* 1.2002* 1.2042* 1.2254

Norway 1 1.0253 0.9317 0.8493 0.8094 0.9002 0.7414
2 1.0274 0.7857 0.6680 0.5676 0.6204 0.4870
3 0.9936 0.4574 0.4634 0.2760* 0.4595 0.3083*
4 0.8791 0.3241 0.3699 0.1871* 0.3540 0.2199*

UK 1 1.8154 2.0701 1.8468 2.0323 1.5834 2.5313
2 3.3214* 3.3397 3.5009 2.5500 2.7726* 3.1062
3 4.0529* 5.7324* 4.1098* 3.3790* 3.0556* 3.6966
4 5.2223* 7.8226* 5.1315* 4.6133* 3.7520* 4.6226*

US 1 1.0235 0.7678 1.0685 0.6963 1.1045 0.8015
2 0.9416 0.4251 0.9251 0.4385 0.9587 0.5327*
3 0.8956 0.2590 0.8348 0.3175 0.8810 0.4467
4 0.8437 0.2879 0.7458 0.3156 0.7302 0.4228

Note: AR order selection based on SC with maximum lag order of 8.
* significant at 5% level according to DM test with two-sided alternative.
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