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Forecasting Aggregated Time Series Variables
A Survey
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Abstract. Aggregated times series variables can be forecasted in different ways. For exam-
ple, they may be forecasted on the basis of the aggregate series or forecasts of disaggregated
variables may be obtained first and then these forecasts may be aggregated. A number of
forecasts are presented and compared. Classical theoretical results on the relative efficiencies
of different forecasts are reviewed and some complications are discussed which invalidate the
theoretical results. Contemporaneous as well as temporal aggregation are considered.
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1 Introduction and Overview

The European Monetary Union (EMU) has stimulated the need for euro-area macroeconomic

studies and forecasts of area wide aggregates. This has induced a revival of the discussion

of aggregation of time series variables over the last years. Clearly, the EMU poses some

challenges for constructing euro-area time series in particular because the treatment of the

pre-EMU period is not obvious. Given that the European Central Bank (ECB) needs to base

its policy on informative data, it is not surprising that some work on contemporaneously

aggregating euro-area data has been done recently. More generally, aggregation problems

have been discussed over the last decades. Although the earlier results can still serve as a

basis for the current discussion, it turns out that they are in many ways too limited. Also, in

addition to contemporaneous aggregation, temporal aggregation continues to be a problem

of considerable interest because the year is an important planning period for policy makers

whereas many data are collected more frequently. In this study I will review some recent

developments in temporal and contemporaneous aggregation with an emphasis on results

related to forecasting aggregated variables.

When forecasting a contemporaneously and/or temporally aggregated variable is of in-

terest, there are different possibilities to proceed. For example, one may directly use the

aggregated series, construct a time series model for its data generation process (DGP) and

use that for forecasting. Alternatively, one may construct a time series model for the DGP

of the disaggregated data and forecast the disaggregated series. Predictions of the aggregate

are then obtained by aggregating the disaggregate forecasts. A number of earlier studies on

aggregating time series variables have investigated the relative efficiencies of these predictors.

Some of the results will be reviewed in the following.

The basic model for the disaggregated series will usually be assumed to be an autoregres-

sive integrated moving average (ARIMA) or vector autoregressive moving average (VARMA)

process. The VARMA class has the advantage of being closed with respect to linear trans-

formations, that is, a linearly transformed finite order VARMA process has again a finite

order VARMA representation. Therefore linear aggregation issues can be studied within this

class.

In theory a disaggregated optimal forecast will be at least as good as a forecast based

on the aggregated information. No general ranking is possible in this framework, however, if

disaggregated series are predicted with univariate time series models and then the forecasts

are aggregated. In practice, the situation may be different from what theory implies, how-

ever. Reasons may be that the ideal assumptions underlying the theoretical results are not
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satisfied in practice. For instance, the true DGPs will not be known and models specified

and estimated on the basis of the available data information only approximate the DGPs.

Moreover, the actual variable of interest may be some transformation of the variable for

which a suitable linear time series model is found. For instance, log transformations are

often considered. In that case nonlinear aggregation may be needed which is not covered by

the theoretical linear aggregation results. Also, in the case of EMU mentioned earlier, it is

conceivable if not likely that structural changes have occurred over the period of interest.

Thus, assuming a time invariant DGP may be problematic in some situations. These issues

will also be addressed in this study.

The structure of the paper is as follows. In the next section VARMA models will be

presented as the basic forecasting tool. The section mainly serves to lay out the framework

of analysis. In Section 3 the classical aggregation problems will be considered and standard

results for predictors for aggregated variables will be presented. Extensions and complica-

tions of the basic results are treated in Sections 4 and 5. Conclusions follow in Section 6.

This paper is partly based on Lütkepohl (2006).

Notation, Terminology, Abbreviations

The following notation and terminology is used. A nonstationary variable is called integrated

of order d (I(d)) if it is still nonstationary after taking differences d − 1 times but it can be

made stationary or asymptotically stationary by differencing d times. In part of the following

discussion the variables will be assumed to be stationary, sometimes referred to as I(0). If

they are integrated of order greater than zero they may be cointegrated. For instance, there

may be linear combinations of I(1) variables which are I(0). Although some of the results

presented in the following are valid for fractionally integrated processes, it is assumed for

simplicity that all time series are integrated of integer order.

The lag operator also sometimes called backshift operator is denoted by L and it is defined

as usual by Lyt = yt−1. The differencing operator is denoted by Δ, that is, Δyt = yt−yt−1 =

(1 − L)yt. For a random variable or random vector x, x ∼ (μ, Σ) signifies that its mean

(vector) is μ and its variance (covariance matrix) is Σ. The notation x ∼ N (μ, Σ) is used if

x is normally distributed. The (K×K) identity matrix is denoted by IK and the determinant

of a matrix A is denoted by det A. A diagonal matrix with with diagonal elements c1, . . . , cK

is denoted by diag[c1, . . . , cK ]. The inequality sign “≥” between two matrices means that

the difference between the left-hand and right-hand matrices is positive semidefinite. The

natural logarithm of a real number is signified by log. The symbols Z, N and C are used as

usual for the sets of integers, the positive integers and the complex numbers, respectively.
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DGP stands for data generation process. VAR, AR, MA, ARMA and VARMA are used

as abbreviations for vector autoregressive, autoregressive, moving-average, autoregressive

moving-average and vector autoregressive moving-average (process). MSE abbreviates mean

squared error. EMU is short for European Monetary Union and GDP abbreviated gross

domestic product.

2 VARMA Processes

2.1 General Setup

Suppose the DGP of the K-dimensional multiple time series, y1, . . . , yT , is stationary, that

is, its first and second moments are time invariant. It is a (finite order) VARMA process if

it can be represented in the general form

yt = A1yt−1 + · · · + Apyt−p + ut + M1ut−1 + · · · + Mqut−q, t ∈ Z, (2.1)

where A1, . . . , Ap are (K × K) autoregressive parameter matrices while M1, . . . , Mq are

moving-average parameter matrices also of dimension (K ×K). Defining the VAR and MA

operators, respectively, as A(L) = IK−A1L−· · ·−ApL
p and M(L) = IK +M1L+· · ·+MqL

q,

the model can be written in more compact notation as

A(L)yt = M(L)ut, t ∈ Z. (2.2)

Here ut is a white-noise process with zero mean, nonsingular, time-invariant covariance ma-

trix E(utu
′
t) = Σu and zero covariances, E(utu

′
t−h) = 0 for h = ±1,±2, . . . . To indicate the

orders of the VAR and MA operators, the process (2.1) is sometimes called a VARMA(p, q)

process. Notice, however, that so far we have not made further assumptions regarding the

parameter matrices so that some or all of the elements of the Ai’s and Mj’s may be zero.

In other words, there may be a VARMA representation with VAR or MA orders less than p

and q, respectively.

The matrix polynomials in (2.2) are assumed to satisfy

det A(z) �= 0, |z| ≤ 1, and det M(z) �= 0, |z| ≤ 1 for z ∈ C. (2.3)

The first part of these conditions ensures that the VAR operator is stable and the process is

stationary. Then it has a pure MA representation

yt =
∞∑

j=0

Φiut−i (2.4)
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with MA operator Φ(L) = IK +
∑∞

i=1 ΦiL
i = A(L)−1M(L), i.e., Φ0 = IK . The representation

(2.4) is known as Wold MA representation of the process and, as we will see later, the ut’s

are just the one-step ahead forecast errors. Some of the forthcoming results are valid for

more general stationary processes with Wold representation (2.4) which may not have a

finite order VARMA representation. In that case, it is assumed that the Φi’s are absolutely

summable so that the infinite sum in (2.4) is well-defined.

The second part of condition (2.3) is the usual invertibility condition for the MA operator

which implies the existence of a pure VAR representation of the process,

yt =
∞∑
i=1

Ξiyt−i + ut, (2.5)

where Ξ(L) = IK−∑∞
i=1 ΞiL

i = M(L)−1A(L). Occasionally invertibility of the MA operator

will not be a necessary condition. In that case, it is assumed without loss of generality that

det M(z) �= 0, for |z| < 1. In other words, the roots of the MA operator are outside or on

the unit circle. There are still no roots inside the unit circle, however. This assumption can

be made without loss of generality because it can be shown that for an MA process with

roots inside the complex unit circle an equivalent one exists which has all its roots outside

and on the unit circle. For forecasting purposes it is advantageous to focus on invertible

MA representations because in that case the ut’s turn out to be the one-step ahead forecast

errors.

It may be worth noting that every pair of operators A(L), M(L) which leads to the

same transfer functions Φ(L) and Ξ(L) defines an equivalent VARMA representation for

yt. This nonuniqueness problem of the VARMA representation will not be of concern here.

It is important in practice when it comes to parameter estimation because for estimation

purposes a unique parametrization is required.

As specified in (2.1), it is assumed that the process is defined for all t ∈ Z. For stable,

stationary processes this assumption is convenient because it avoids consideration of issues

related to initial conditions. Alternatively, one could define yt to be generated by a VARMA

process such as (2.1) for t ∈ N, and specify the initial values y0, . . . , y−p+1, u0, . . . , u−p+1

separately. Under the present assumptions they can be defined such that yt is stationary.

Another possibility would be to define fixed initial values or perhaps even y0 = · · · = y−p+1 =

u0 = · · · = u−p+1 = 0. In general, such an assumption implies that the process is not

stationary but just asymptotically stationary, that is, the first and second order moments

converge to the corresponding quantities of the stationary process obtained by specifying

the initial conditions accordingly or defining yt for t ∈ Z.

Both the MA and the VAR representations of the process will be convenient to work with

4



in particular situations. Another useful representation of a stationary VARMA process is

the state-space representation which will not be used in this review, however. The relation

between state-space models and VARMA processes is considered, for example, by Aoki

(1987), Hannan & Deistler (1988), Wei (1990) and Harvey (2006).

In practice some of the variables may be integrated. In that case det A(z) has roots on

the unit circle, e.g., det A(1) = 0. There may also be roots on the unit circle other than

one. For example, there may be seasonal unit roots. These features do not create additional

problems for forecasting if the DGP is assumed to be known because the general forecasting

formulas for VARMA processes are still valid. For processes with integrated variables it is

convenient, however, to define the process for t ∈ N with suitable starting values. There are

important recent advances in specifying and estimating models with such features which are

obviously important from a practical point of view. Also the levels VARMA form (2.1) is

not necessarily the most convenient one for inference purposes. Since forecasting is the focus

of the present exposition such issues are not discussed here.

Another important shortcoming of the present setup in practice is the absence of deter-

ministic terms. Adding such terms to the stochastic part is a convenient way to account for

them. Hence, the process

yt = μt + xt,

may be considered, where μt is a deterministic term and xt is the purely stochastic part with

VARMA representation. The deterministic part may be a constant, μt = μ0, a linear trend,

μt = μ0 + μ1t, or a higher order polynomial trend. It may also include seasonal dummy

variables or other dummies.

Future values of deterministic terms are precisely known. Therefore they are easy to

handle from a forecasting point of view. In order to forecast yt, a forecast of the purely

stochastic process xt is needed and then the deterministic part corresponding to the forecast

period is simply added. The forecast errors and MSE matrices are the same as for the purely

stochastic process. Therefore deterministic terms will be ignored in the following. Extending

the results to processes with such terms is straightforward.

2.2 Forecasting

When forecasting a set of variables is the objective, it is useful to think about a loss function

or an evaluation criterion for the forecast performance. Given such a criterion, optimal fore-

casts may be constructed. VARMA processes are particularly useful for producing forecasts

that minimize the forecast MSE. Therefore this criterion will be used here and the reader
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is referred to Granger (1969) and Granger & Newbold (1977, Section 4.2) for a discussion

of other forecast evaluation criteria. Some of the results for aggregated variables reviewed

later also hold for more general loss functions.

Forecasts of the variables of the VARMA process (2.1) are obtained easily from the pure

VAR form (2.5). An optimal, minimum MSE h-step forecast at time τ is the conditional

expectation given the yt’s, t ≤ τ ,

yτ+h|τ = E(yτ+h|yτ , yτ−1, . . . ).

Assuming an independent white noise process ut, it may be determined recursively for h =

1, 2, . . . , as

yτ+h|τ =
∞∑
i=1

Ξiyτ+h−i|τ , (2.6)

where yτ+j|τ = yτ+j for j ≤ 0. If the ut’s do not form an independent but only uncorrelated

white noise sequence, the forecast obtained in this way is still the best linear forecast although

it may not be the best in a larger class of possibly nonlinear functions of past observations.

For given initial values, the ut’s can also be determined under the present assumption of

a known process. Hence, the h-step forecasts may be represented alternatively as

yτ+h|τ = A1yτ+h−1|τ + · · · + Apyτ+h−p|τ +

q∑
i=h

Miuτ+h−i, (2.7)

where, as usual, the sum vanishes if h > q.

Both representations of h-step forecasts from VARMA models rely on the availability of

initial values. In the pure VAR formula (2.6) all infinitely many past yt’s are in principle

necessary if the VAR representation is indeed of infinite order. In contrast, in order to

use (2.7), the ut’s need to be known which are unobserved and can only be obtained if all

past yt’s or initial conditions are available. If only y1, . . . , yτ are given, the infinite sum in

(2.6) may be truncated accordingly. For large τ , the approximation error will be negligible

because the Ξi’s go to zero quickly as i → ∞. Alternatively, precise forecasting formulas

based on y1, . . . , yτ may be obtained via the so-called Multivariate Innovations Algorithm of

Brockwell & Davis (1987, §11.4).

Under the present assumptions, the properties of the forecast errors for stable, stationary

processes are easily derived by expressing the process (2.1) in Wold MA form (2.4). In terms

of this representation the optimal h-step forecast may be expressed as

yτ+h|τ =
∞∑

i=h

Φiuτ+h−i. (2.8)
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Hence, the forecast errors are seen to be

yτ+h − yτ+h|τ = uτ+h + Φ1uτ+h−1 + · · · + Φh−1uτ+1. (2.9)

Thus, the forecast is unbiased (i.e., the forecast errors have mean zero) and the MSE or

forecast error covariance matrix is

Σy(h) = E[(yτ+h − yτ+h|τ )(yτ+h − yτ+h|τ )′] =
h−1∑
j=0

ΦjΣuΦ
′
j.

If ut is normally distributed (Gaussian), the forecast errors are also normally distributed,

yτ+h − yτ+h|τ ∼ N (0, Σy(h)). (2.10)

Hence, forecast intervals etc. may be derived from these results in the familiar way under

Gaussian assumptions.

It is also interesting to note that the forecast error variance is bounded by the covariance

matrix of yt,

Σy(h) →h→∞ Σy = E(yty
′
t) =

∞∑
j=0

ΦjΣuΦ
′
j. (2.11)

Hence, forecast intervals will also have bounded length as the forecast horizon increases.

The situation is different if there are I(d) variables with d > 0. The formula (2.7) can

again be used for representing the forecasts. Their properties will be different from those

for stationary processes, however. Although the Wold MA representation does not exist for

integrated processes, the Φj coefficient matrices can be computed in the same way as for

stationary processes from the power series A(z)−1M(z) which still exists for z ∈ C with

|z| < 1. Hence, the forecast errors can still be represented as in (2.9) (see Lütkepohl (2005,

Chapters 6 and 14)). Thus, formally the forecast errors look quite similar to those for the

stationary case. Now the forecast error MSE matrix is unbounded, however, because the

Φj’s in general do not converge to zero as j → ∞. Despite this general result, there may be

linear combinations of the variables which can be forecasted with bounded precision if the

forecast horizon gets large. This situation arises if there is cointegration.

As long as theoretical results are discussed and I(1) series are under investigation one

could consider the first differences of the process, Δyt, which also have a VARMA represen-

tation. If there is genuine cointegration, then Δyt is over-differenced in the sense that its

VARMA representation has MA unit roots even if the MA part of the levels yt is invertible.
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3 Forecasting Linearly Aggregated VARMA Processes

As mentioned in the introduction, a major advantage of the class of VARMA processes is

that it is closed with respect to linear transformations. In other words, linear transforma-

tions of VARMA processes have again a finite order VARMA representation (see Lütkepohl

(1984, 1987)). These transformations are the basis for studying aggregation problems. Con-

temporaneous aggregation will be considered in Section 3.1 and temporal aggregation will

be treated in Section 3.2.

3.1 Contemporaneous Aggregation

In this section I present some forecasting results for transformed and contemporaneously

aggregated processes from Lütkepohl (1987) where also proofs and further references can be

found. Let yt be a stationary VARMA process with pure, invertible Wold MA representation

(2.4), that is, yt = Φ(L)ut with Φ0 = IK , and suppose F is an (M × K) matrix with rank

M . Moreover, suppose that forecasting the transformed process zt = Fyt is of interest. Let

zt = vt +
∞∑
i=1

Ψivt−i = Ψ(L)vt (3.1)

be the corresponding Wold MA representation. From (2.8) the optimal h-step predictor for

zt at origin τ , based on its own past, is then

zτ+h|τ =
∞∑

i=h

Ψivτ+h−i, h = 1, 2, . . . (3.2)

Another predictor may be based on forecasting yt and then transforming the forecast,

zo
τ+h|τ = Fyτ+h|τ , h = 1, 2, . . . (3.3)

Before the two forecasts zo
τ+h|τ and zτ+h|τ are compared it may be of interest to draw

attention to yet another possible forecast. If the dimension K of the vector yt is large, it

may be difficult to construct a suitable VARMA model for the underlying process and one

may consider forecasting the individual components of yt by univariate methods and then

transforming the univariate forecasts. Because the component series of yt can be obtained by

linear transformations, they also have ARMA representations. Denoting the corresponding

Wold MA representations by

ykt = wkt +
∞∑
i=1

θkiwk,t−i = θk(L)wkt, k = 1, . . . , K, (3.4)
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the optimal univariate h-step forecasts are

yu
k,τ+h|τ =

∞∑
i=h

θkiwk,τ+h−i, k = 1, . . . , K, h = 1, 2, . . . (3.5)

Defining yu
τ+h|τ = (yu

1,τ+h|τ , . . . , y
u
K,τ+h|τ )

′, these forecasts can be used to obtain an h-step

forecast

zu
τ+h|τ = Fyu

τ+h|τ (3.6)

of the variables of interest.

The three forecasts (3.2), (3.3) and (3.6) of the transformed process zt are now compared.

The MSE matrices corresponding to the three forecasts are denoted by Σz(h), Σo
z(h) and

Σu
z (h), respectively. Because zo

τ+h|τ uses the largest information set, it is not surprising that

it has the smallest MSE matrix and is hence the best one out of the three forecasts,

Σz(h) ≥ Σo
z(h) and Σu

z (h) ≥ Σo
z(h), h ∈ N, (3.7)

Thus, forecasting the original process yt and then transforming the forecasts is generally more

efficient in terms of MSE than forecasting the transformed process directly or transforming

univariate forecasts. It is possible, however, that some or all of the forecasts are identical.

Actually, for I(0) processes, all three predictors always approach the same long-term forecast

of zero. Consequently,

Σz(h), Σo
z(h), Σu

z (h) → Σz = E(ztz
′
t) as h → ∞. (3.8)

Moreover, it can be shown that if the one-step forecasts are identical, then they will also be

identical for larger forecast horizons. More precisely,

zo
τ+1|τ = zτ+1|τ ⇒ zo

τ+h|τ = zτ+h|τ h = 1, 2, . . . , (3.9)

zu
τ+1|τ = zτ+1|τ ⇒ zu

τ+h|τ = zτ+h|τ h = 1, 2, . . . , (3.10)

and, if Φ(L) and Θ(L) are invertible,

zo
τ+1|τ = zu

τ+1|τ ⇒ zo
τ+h|τ = zu

τ+h|τ h = 1, 2, . . . . (3.11)

Thus, one may ask under which conditions the one-step forecasts are identical. The fol-

lowing proposition which summarizes results of Tiao & Guttman (1980), Kohn (1982) and

Lütkepohl (1984), gives conditions for this to be the case.
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Proposition 1. Let yt be a K-dimensional stochastic process with Wold MA representation

as in (2.4) and F an (M × K) matrix of rank M . Then, defining Φ(L) = IK +
∑∞

i=1 ΦiL
i,

Ψ(L) = IK +
∑∞

i=1 ΨiL
i as in (3.1) and Θ(L) = diag[θ1(L), . . . , θK(L)] with θk(L) = 1 +∑∞

i=1 θkiL
i (k = 1, . . . , K), the following relations hold:

zo
τ+1|τ = zτ+1|τ ⇐⇒ FΦ(L) = Ψ(L)F, (3.12)

zu
τ+1|τ = zτ+1|τ ⇐⇒ FΘ(L) = Ψ(L)F (3.13)

and, if Φ(L) and Θ(L) are invertible,

zo
τ+1|τ = zu

τ+1|τ ⇐⇒ FΦ(L)−1 = FΘ(L)−1. (3.14)

�

There are several interesting implications of this proposition. First, if the forecasts are

identical, then they are equally efficient for any choice of loss function and not just for the

forecast MSE. In fact, Sbrana & Silvestrini (2009) show that the forecasts zτ+1|τ and zu
τ+1|τ

can be equally efficient in terms of MSE even if the condition (3.13) does not hold. They

analyze the relative efficiency of the two forecasts in terms of MSE in detail for the case of a

bivariate MA(1) process. Second, if yt consists of independent components (Φ(L) = Θ(L))

and zt is just their sum, i.e., F = (1, . . . , 1), then

zo
τ+1|τ = zτ+1|τ ⇐⇒ θ1(L) = · · · = θK(L). (3.15)

In other words, forecasting the individual components and summing up the forecasts will

result in a different predictor and may be strictly more efficient than forecasting the sum

directly whenever the components are not generated by stochastic processes with identical

serial correlation structures. Third, forecasting the univariate components of yt individually

can be as efficient a forecast for yt as forecasting on the basis of the multivariate process

if and only if Φ(L) is a diagonal matrix operator. Related to this result is a well-known

condition for Granger-noncausality. For a bivariate process yt = (y1t, y2t)
′, y2t is said to

be Granger-causal for y1t if the former variable is helpful for improving the forecasts of the

latter variable. In terms of the previous notation this may be stated by choosing F = (1, 0)

and defining y2t as being Granger-causal for y1t if zo
τ+1|τ = Fyτ+1|τ = yo

1,τ+1|τ is a better

forecast than zτ+1|τ . From (3.12) it then follows that y2t is not Granger-causal for y1t

if and only if φ12(L) = 0, where φ12(L) denotes the upper right hand element of Φ(L).
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This characterization of Granger-noncausality is well-known in the related literature (e.g.,

Lütkepohl (2005, Section 2.3.1)).

It may also be worth noting that in general there is no unique ranking of the forecasts

zτ+1|τ and zu
τ+1|τ . Depending on the structure of the underlying process yt and the trans-

formation matrix F , either Σz(h) ≥ Σu
z (h) or Σz(h) ≤ Σu

z (h) will hold and the relevant

inequality may be strict in the sense that the left-hand and right-hand matrices are not

identical. As mentioned earlier, Sbrana & Silvestrini (2009) consider this case in more detail

in the context of a bivariate MA(1) process.

Some but not all the results in this section carry over to nonstationary I(1) processes.

For example, the result (3.8) will not hold in general if some components of yt are I(1)

because in this case the three forecasts do not necessarily converge to zero as the forecast

horizon gets large. On the other hand, the conditions in (3.12) and (3.13) can be used for

the differenced processes. For these results to hold, the MA operator may have roots on the

unit circle and hence overdifferencing is not a problem.

The previous results on linearly transformed processes can also be used to compare dif-

ferent predictors for temporally aggregated processes. Some related results are summarized

next.

3.2 Temporal Aggregation

The results on linear transformations of VARMA processes can also be used to study tem-

poral aggregation problems. Suppose aggregation of the variables yt generated by (2.1) over

m subsequent periods is desired. For instance, m = 3 if one wishes to aggregate monthly

data to quarterly figures. To express the temporal aggregation as a linear transformation we

define

yϑ =

⎡
⎢⎢⎢⎢⎢⎣

ym(ϑ−1)+1

ym(ϑ−1)+2

...

ymϑ

⎤
⎥⎥⎥⎥⎥⎦ and uϑ =

⎡
⎢⎢⎢⎢⎢⎣

um(ϑ−1)+1

um(ϑ−1)+2

...

umϑ

⎤
⎥⎥⎥⎥⎥⎦ (3.16)

and specify the process

A0yϑ = A1yϑ−1 + · · · + APyϑ−P + M0uϑ + M1uϑ−1 + · · · + MQuϑ−Q, (3.17)
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where

A0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

IK 0 0 . . . 0

−A1 IK 0 . . . 0

−A2 −A1 IK
...

...
...

...
. . .

−Am−1 −Am−2 −Am−3 . . . IK

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ai =

⎡
⎢⎢⎢⎢⎢⎣

Aim Aim−1 . . . Aim−m+1

Aim+1 Aim . . . Aim−m+2

...
...

. . .
...

Aim+m−1 Aim+m−2 . . . Aim

⎤
⎥⎥⎥⎥⎥⎦, i = 1, . . . , P,

with Aj = 0 for j > p and M0, . . . ,MQ defined in an analogous manner. The order

P = min{n ∈ N|nm ≥ p} and Q = min{n ∈ N|nm ≥ q}. Notice that the time subscript of

yϑ is different from that of yt. The new time index ϑ refers to another observation frequency

than t. For example, if t refers to months and m = 3, then ϑ refers to quarters.

Left-multiplying (3.17) by A−1
0 and redefining the white noise process appropriately shows

that yϑ has a standard VARMA(P,Q) representation. Using that representation, temporal

aggregation over m periods can be analyzed as a linear transformation. In fact, different

types of temporal aggregation can be handled. For instance, the aggregate may be the sum of

subsequent values or it may be their average. Furthermore, temporal and contemporaneous

aggregation can be dealt with simultaneously. In all of these cases the aggregate has a finite

order VARMA representation if the original variables are generated by a finite order VARMA

process and the structure of the aggregate can be analyzed using linear transformations. This

approach may not be the most convenient one if the VARMA orders or specific structures

are of interest. For another approach to study temporal aggregates exploiting properties of

matrix polynomials see Marcellino (1999) and for a generalization of his approach see Gómez

& Aparicio-Pérez (2009). A recent survey of temporal aggregation was given by Silvestrini

& Veredas (2008).

Different forms of temporal aggregation are of interest, depending on the types of variables

involved. If yt consists of stock variables, then temporal aggregation is usually associated

with systematic sampling, sometimes called skip-sampling or point-in-time sampling. In other

words, the process

sϑ = ymϑ (3.18)

is used as an aggregate over m periods. For example, if m = 3, then sϑ consists of every

third member of the yt process. Earlier work on this type of aggregation is due to Wei
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(1981), Weiss (1984), Palm & Nijman (1984), Lütkepohl (1986c) and others. It contrasts

with temporal aggregation of flow variables where a temporal aggregate is typically obtained

by summing up consecutive values. Thus, aggregation over m periods gives the aggregate

zϑ = ymϑ + ymϑ−1 + · · · + ymϑ−m+1. (3.19)

Now if, for example, t refers to months and m = 3, then three consecutive observations

are added to obtain the quarterly value. For the moment it is assumed that the disaggre-

gated process yt is stationary and invertible and has a Wold MA representation as in (2.4),

yt = Φ(L)ut with Φ0 = IK . Given that temporal aggregation can be viewed as a linear

transformation of some auxiliary process, this implies that sϑ and zϑ are also stationary and

have Wold MA representations. Forecasting stock and flow variables is now discussed in

turn. In other words, forecasts for sϑ and zϑ are considered.

Suppose first that one wishes to forecast sϑ. Then the past aggregated values {sϑ, sϑ−1, . . . }
may be used to obtain an h-step forecast sϑ+h|ϑ as in (2.8) on the basis of the MA repre-

sentation of sϑ. If the disaggregate process yt is available, another possible forecast results

by systematically sampling forecasts of yt which gives so
ϑ+h|ϑ = ymϑ+mh|mϑ. Using the results

for linear transformations, the latter forecast generally has a lower MSE than sϑ+h|ϑ and the

difference vanishes if the forecast horizon h → ∞. For special processes the two predictors

are identical. It follows from relation (3.12) of Proposition 1 that the two predictors are

identical for h = 1, 2, . . . , if and only if

Φ(L) =

( ∞∑
i=0

ΦimLim

) (
m−1∑
i=0

ΦiL
i

)
(3.20)

(Lütkepohl (1987, Proposition 7.1)). Thus, there is no loss in forecast efficiency under

any loss function if the MA operator of the disaggregated process has the multiplicative

structure in (3.20). This condition is, for instance, satisfied if yt is a purely seasonal process

with seasonal period m such that

yt =
∞∑
i=0

Φimut−im. (3.21)

It also holds if yt has a finite order MA structure with MA order less than m. Interestingly,

it also follows that there is no loss in forecast efficiency if the disaggregated process yt is a

VAR(1) process, yt = A1yt−1 + ut. In that case, the MA operator can be written as

Φ(L) =

( ∞∑
i=0

Aim
1 Lim

)(
m−1∑
i=0

Ai
1L

i

)

and, hence, it has the required structure.
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Now consider the case of a vector of flow variables yt for which the temporal aggregate

is given in (3.19). For forecasting the aggregate zϑ one may use the past aggregated values

and compute an h-step forecast zϑ+h|ϑ as in (2.8) on the basis of the MA representation of

zϑ. Alternatively, one may again forecast the disaggregated process yt and aggregate the

forecasts. This forecast is denoted by zo
ϑ+h|ϑ, that is,

zo
ϑ+h|ϑ = ymϑ+mh|mϑ + ymϑ+mh−1|mϑ + · · · + ymϑ+mh−m+1|mϑ. (3.22)

Again the results for linear transformations imply that the latter forecast generally has a

lower MSE than zϑ+h|ϑ and the difference vanishes if the forecast horizon h → ∞. In this

case equality of the two forecasts holds for small forecast horizons h = 1, 2, . . . , if and only

if

(1 + L + · · · + Lm−1)

( ∞∑
i=0

ΦiL
i

)

=

( ∞∑
j=0

(Φjm + · · · + Φjm−m+1)L
jm

) (
m−1∑
i=0

(Φ0 + Φ1 + · · · + Φi)L
i

)
, (3.23)

where Φj = 0 for j < 0 (Lütkepohl (1987, Proposition 8.1)). In other words, the two forecasts

are identical and there is no loss in forecast efficiency from using the aggregate directly if

the MA operator of yt has the specified multiplicative structure upon multiplication by

(1 + L + · · · + Lm−1). This condition is also satisfied if yt has the purely seasonal structure

(3.21). However, in contrast to what was observed for stock variables, the two predictors

are generally not identical if the disaggregated process yt is generated by an MA process of

order less than m.

It is perhaps also interesting to note that if there are both stock and flow variables in

one system, then, even if the underlying disaggregated process yt is the periodic process

(3.21), a forecast based on the disaggregated data may be better than directly forecasting

the aggregate. To see this, suppose that the first N components are flow variables and the

last K − N variables are stock variables. Hence, the aggregated process is

zϑ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1,mϑ + y1,mϑ−1 + · · · + y1,mϑ−m+1

...

yN,mϑ + yN,mϑ−1 + · · · + yN,mϑ−m+1

yN+1,mϑ

...

yK,mϑ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ymϑ +J(ymϑ−1 + · · ·+ ymϑ−m+1), (3.24)

14



where

J =

⎡
⎣ IN 0

0 0

⎤
⎦

is a (K×K) matrix. Denoting by zo
ϑ+h|ϑ and zϑ+h|ϑ the predictors based on the disaggregated

and aggregated processes, respectively, Lütkepohl (1989) shows that zo
ϑ+1|ϑ = zϑ+1|ϑ if and

only if

(IK + (L + · · · + Lm−1)J)

( ∞∑
i=0

ΦiL
i

)

=

( ∞∑
j=0

[Φjm + J(Φjm−1 + · · · + Φjm−m+1)] L
jm

)

×
(

m−1∑
i=0

ΦiL
i + J

[
m−1∑
i=1

(IK + Φ1 + · · · + Φi−1)L
i

])
, (3.25)

with Φj = 0 for j < 0.

This condition is not necessarily satisfied if yt has the purely seasonal structure in (3.21).

The result is interesting because for the purely seasonal process (3.21) using the disaggregated

process will not result in superior forecasts if a system consisting either of stock variables

only or of flow variables only is considered. In fact, for the seasonal process (3.21), if there

are both stock and flow variables, zo
ϑ+1|ϑ = zϑ+1|ϑ if and only if the Φmi are block-diagonal

with blocks of size (N × N) and ((K − N) × (K − N)), respectively (see Corollary 2 of

Lütkepohl (1989)). In other words, the predictor based on the aggregated process can be

as efficient as the predictor based on the disaggregated process if there is no Granger-causal

relation from the flow to the stock variables and vice versa. Thus, if there are both types

of variables, then the predictor based on the aggregate is optimal only under very special

conditions. This conclusion is reinforced by another result from Lütkepohl (1989) which

states that if yt is an MA(q) with 1 ≤ q < m, then equality of the two predictors requires

that the matrix J(IK +Φ1 + · · ·+Φq) is idempotent. Clearly, this implies a very special MA

structure of the disaggregated process.

So far temporal aggregation of stationary processes is discussed. Most of the results can

be generalized to I(1) processes by using the stationary process Δyt instead of the original

process yt. Recall that forecasts for yt can then be obtained from those of Δyt. Moreover, in

this context it may be worth taking into account that in deriving some of the conditions for

forecast equality, the MA operator of the considered disaggregated process may have unit

roots resulting from overdifferencing. Thus, the results can be extended to systems with

cointegrated variables. A result which does not carry over to the I(1) case is the equality of
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long horizon forecasts based on aggregated or disaggregated variables. The reason is again

that optimal forecasts of I(1) variables do not settle down at zero eventually when h → ∞.

Forecasting temporally aggregated processes has been discussed extensively in the liter-

ature. Early examples of treatments of temporal aggregation of time series are Abraham

(1982), Ahsanullah & Wei (1984), Amemiya & Wu (1972), Brewer (1973), Lütkepohl (1986b,

b,c), Stram & Wei (1986), Telser (1967), Tiao (1972), Wei (1978) and Weiss (1984) among

many others. More recently, Breitung & Swanson (2002) have studied the implications of

temporal aggregation when the number of aggregated time units goes to infinity. As men-

tioned earlier, a recent survey with many references is given by Silvestrini & Veredas (2008).

3.3 Forecasting with Data of Different Sampling Frequencies

In practice it is not uncommon that data of different frequencies are available for different

variables. For example, output data are usually collected quarterly or only annually whereas

price indices, money stock variables or interest rate series are available at monthly or even

higher observation frequency. Suppose that some quarterly series xϑ are considered which are

related to the monthly series yt. One may want to exploit the information in the quarterly

series to predict the monthly series or vice versa. For that purpose the devise used in (3.16)

may be extended and the quarterly process

zϑ =

⎡
⎣ yϑ

xϑ

⎤
⎦ (3.26)

may be considered. Here yϑ is the process defined in (3.16).

If the underlying monthly process is of VARMA or, more generally, infinite order MA

type, then the previously mentioned results can be used to analyze the relative efficiencies

of different forecasts by considering linear transformations of zϑ. Again, using the disaggre-

gated data which are available for yt will in general be beneficial for improving the forecast

efficiency. In fact, even if one is interested in monthly forecasts for all or some components

of yt, different forecasts can be compared using the previously mentioned results and the

process (3.26) because, e.g., the 1-step ahead forecast of zϑ will contain a 1-month ahead

forecast for yt.

Although this approach can be used to obtain some results of interest in the context of

forecasting mixed-frequency variables, there are again issues for which other approaches are

more convenient. For instance, a state-space representation is often helpful for analyzing

forecasting problems. A state-space model can also be set up for mixed-frequency variables

(see Proietti & Moauro (2006)).
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Generally, forecasting with mixed-frequency data is a topic of considerable interest in

the recent literature. For example, Koenig, Dolmas & Piger (2003) include lags of monthly

variables in a model of quarterly GDP changes to improve the forecast efficiency. Ghysels,

Santa-Clara & Valkanov (2006) and Ghysels, Sinko & Valkanov (2006) propose a similar

approach which is known as MIDAS (mixed data sampling) approach. They impose restric-

tions on the coefficients of the lags of the variables observed at higher frequencies to reduce

the dimension of the parameter space. Their restrictions are similar to those used in expo-

nential distributed lag functions which were proposed earlier by Lütkepohl (1981). Clements

& Galvão (2008) extend the MIDAS approach to forecast quarterly U.S. GDP growth with

the help of monthly indicator variables. This is just a small sample of articles dealing with

forecasting with mixed frequency data.

4 Implications of Estimation and Model Specification

Clements & Hendry (1998, Section 7.4) list a number of sources of forecast errors and,

hence, forecast uncertainty. For example, in practice, the processes used for forecasting are

not known but the parameters have to be estimated from data. Usually also the process

orders and other characteristics are specified on the basis of the given time series and, hence,

are uncertain. In addition, there may be parameter changes (structural change) during

the estimation and/or forecast period which may contribute to forecast uncertainty. Also

the available time series observations may be subject to measurement error. Moreover, the

variables may not be normally distributed and may require nonlinear transformations to

approximate their DGPs well by the standard forecasting models. Alternatively, the models

may have to be augmented by nonlinear components. All these issues make forecasting more

difficult and may invalidate the previously mentioned theoretical results which were derived

under ideal conditions. Therefore it is important to understand the implications of these

complications. Some of them are discussed now.

4.1 General Results for Estimated Processes

I denote by ŷτ+h|τ the h-step forecast at origin τ given in Section 2.2, based on estimated

rather than known coefficients. For instance, using the pure VAR representation of the

process,

ŷτ+h|τ =
h−1∑
i=1

Ξi(θ̂)ŷτ+h−i|τ +
∞∑

i=h

Ξi(θ̂)yτ+h−i, (4.1)
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where the Ξi’s are assumed to depend on a parameter vector θ which is replaced by an

estimator θ̂. Of course, for practical purposes one may truncate the infinite sum at some

finite lag, say at i = τ , in (4.1). For the moment the infinite sum is considered and it is

assumed that the model represents the DGP. Thus, there is no specification error. In that

case, the forecast error is

yτ+h − ŷτ+h|τ = (yτ+h − yτ+h|τ ) + (yτ+h|τ − ŷτ+h|τ ),

where yτ+h|τ is the optimal forecast based on known coefficients and the two terms on the

right-hand side are uncorrelated if only data up to period τ are used for estimation. In that

case the first term can be written in terms of ut’s with t > τ and the second one contains

only yt’s with t ≤ τ . Hence, the two terms are uncorrelated and the forecast MSE becomes

Σŷ(h) = MSE(yτ+h|τ ) + MSE(yτ+h|τ − ŷτ+h|τ )

= Σy(h) + E[(yτ+h|τ − ŷτ+h|τ )(yτ+h|τ − ŷτ+h|τ )′]. (4.2)

The MSE(yτ+h|τ − ŷτ+h|τ ) can be approximated by Ω(h)/T , where

Ω(h) = E

[
∂yτ+h|τ

∂θ′
Σθ̃

∂y′
τ+h|τ
∂θ

]
, (4.3)

θ is the vector of coefficients to be estimated, and Σθ̃ is its asymptotic covariance matrix.

Yamamoto (1980), Baillie (1981) and Lütkepohl (2005) give more detailed expressions for

Ω(h) and Hogue, Magnus & Pesaran (1988) provide an exact treatment of the special case

of an AR(1) process. The matrix Ω(h) is positive semidefinite and the forecast MSE,

Σŷ(h) = Σy(h) +
1

T
Ω(h), (4.4)

for estimated processes is larger (or at least not smaller) than the corresponding quantity

for known processes, as one would expect. Because the additional term, Ω(h)/T , includes

the asymptotic covariance matrix Σθ̃ of the parameter estimators in (4.3), more efficient

parameter estimation also increases forecasting efficiency. On the other hand, for large

sample sizes T , the term Ω(h)/T will be small or even negligible.

It may be worth noting that deterministic terms can be accommodated easily, as discussed

earlier. In the present situation the uncertainty in the estimators related to such terms can

also be taken into account like that of the other parameters. If the deterministic terms are

specified such that the corresponding parameter estimators are asymptotically independent

of the other estimators, an additional term for the estimation uncertainty stemming from

the deterministic terms has to be added to the forecast MSE matrix (4.4). For deterministic
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linear trends in univariate models more details are presented in Kim, Leybourne & Newbold

(2004).

In practice, choosing the estimators and computing estimates for VARMA processes is

not a trivial task. A main problem is the choice of a unique (identified) parametrization or

canonical form of the VARMA class. Although these problems can have a substantial impact

on the estimates and, hence, on the forecasts obtained from estimated processes they are

not considered here because they would require discussions away from the main focus of the

present paper. The reader is referred to Lütkepohl (2005) for more discussion and further

references on the issue. In the next subsection the implications of estimated processes for

forecasting aggregates are discussed.

4.2 Aggregated Processes

In Section 3.1 it is mentioned that for contemporaneous aggregation generally forecasting the

disaggregated process and aggregating the forecasts (zo
τ+h|τ ) is more efficient than forecasting

the aggregate directly (zτ+h|τ ). In this case, if the sample size is large enough, the part of the

forecast MSE due to estimation uncertainty will eventually be so small that the estimated

ẑo
τ+h|τ is again superior to the corresponding ẑτ+h|τ . There are cases, however, where the two

forecasts are identical for known processes. Now the question arises whether in these cases

the MSE term due to estimation errors will make one forecast preferable to its competitors.

Indeed, if estimated instead of known processes are used, it is possible that ẑo
τ+h|τ looses

its optimality relative to ẑτ+h|τ because the MSE part due to estimation may be larger for

the former than for the latter. Consider the case, where a number of series are simply

added to obtain a univariate aggregate. Then it is possible that a simple parsimonious

univariate ARMA model describes the aggregate well, whereas a large multivariate model is

required for an adequate description of the multivariate disaggregate process. Clearly, it is

conceivable that the estimation uncertainty in the multivariate case becomes considerably

more important than for the univariate model for the aggregate. Lütkepohl (1987) shows

that this may indeed happen in small samples. In fact, similar situations can not only

arise for contemporaneous aggregation but also for temporal aggregation. Generally, if two

predictors based on known processes are nearly identical, the estimation part of the MSE

becomes important and generally the predictor based on the smaller model is then to be

preferred.
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4.3 Model Specification

So far only the effect of estimation uncertainty on the forecast MSE is taken into account.

This analysis still assumes a known model structure and only allows for estimated parame-

ters. In practice, model specification usually precedes estimation and usually there is addi-

tional uncertainty attached to this step in the forecasting procedure.

It is also possible to explicitly take into account the fact that in practice models are only

approximations to the true DGP by considering finite order VAR and AR approximations to

infinite order processes. For example, Lewis & Reinsel (1985) and Lütkepohl (1985) consider

the forecast MSE for the case where the true process, which may be of the mixed VARMA

type, is approximated by a finite order VAR, thereby extending earlier univariate results

by Bhansali (1978). Reinsel & Lewis (1987), Basu & Sen Roy (1987), Engle & Yoo (1987),

Sampson (1991) and Reinsel & Ahn (1992) present results for processes with unit roots.

Stock (1996) and Kemp (1999) obtain results by assuming that the forecast horizon h and

the sample size T both go to infinity simultaneously.

Lütkepohl (1987) has compared forecasts for aggregates under the assumption that the

true DGP is approximated by a finite order AR or VAR process. It is again found that the

forecast ẑo
τ+h|τ may loose its optimality and forecasting the aggregate directly or forecasting

the disaggregate series with univariate methods and aggregating univariate forecasts may

become preferable. Therefore it is not surprising that recent empirical studies do not reach

a unanimous conclusion regarding the value of using disaggregate information in forecasting

aggregates. For example, Marcellino, Stock & Watson (2003) found disaggregate information

to be helpful for forecasting several euro-area aggregates while Hubrich (2005) and Hendry

& Hubrich (2005) concluded that disaggregation resulted in forecast deterioration in a com-

parison based on euro-area inflation data. Of course, there can be many more reasons than

just estimation and specification issues for the empirical results to differ from the theoretical

ones, as mentioned earlier.

5 Practical Complications

In practice there are a number of data features which are not in line with the theoretical

framework assumed in the foregoing. Some of them are discussed in the following. For ex-

ample, many variables are modelled with ARMA processes in logs rather than original levels.

If forecasts are based on such nonlinear transformations the previously used linear aggre-

gation framework is not sufficient for analyzing the implications for forecasting. Nonlinear

transformations are discussed in Section 5.1. Such transformations are often considered to
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make the DGP more normal. Alternatively one may fit an ARMA or VARMA model and

explicitly allow for a non-Gaussian distribution of the residuals and the variables of interest.

Related issues are discussed in Section 5.2. Another deviation from the basic framework

arises from time-varying aggregation weights. The weights may change deterministically or

stochastically. This situation may, for example, come up in aggregating European Union or

euro-area data and is discussed in Section 5.3. Another problem in the context of construct-

ing euro-area data is structural change in some component series. Again such a feature is

not foreseen in the basic framework of the previous sections where time invariant models are

assumed. The problem is addressed in Section 5.4.

5.1 Nonlinear Transformations

The log transformation or more generally the Box-Cox transformation is often applied in

practice to make the variance of a time series variable more homogeneous over time or to

obtain a DGP which is better modelled by a Gaussian process. In econometric models the

logs of variables are often considered to turn a multiplicative relation into a linear one. If a

model for the logs of a variable is used for forecasting one may reverse the log transformation

by applying the exponential function to the forecasts. If an aggregate is of interest one may

aggregate the resulting forecasts. This approach has a couple of drawbacks, however. First, it

is well-known that an instantaneous nonlinear transformation applied to the optimal forecast

of a variable may not result in the optimal forecast of the transformed variable (Granger &

Newbold (1976)). In particular, if optimal forecasts of the logs are available, converting them

to forecasts for the original variable by applying the exponential function will in general not

be optimal. Second, standard results regarding the optimality of aggregated forecasts refer

to linear models and forecasts. They may not carry over to nonlinear processes. Third, it is

not clear a priori that a forecast obtained via the log transformed variable is better than a

direct forecast of the original variable even if the distribution of the log variable is closer to

being Gaussian.

Suppose the (univariate) variable of interest is yt and define xt = log yt. Moreover,

suppose that xt is generated by a Gaussian ARMA or ARIMA process. Granger & Newbold

(1976) show that the optimal h-step forecast at forecast origin τ is

yτ+h|τ = exp(xτ+h|τ + 1
2
σ2

x(h)),

where xτ+h|τ denotes the optimal h-step forecast of xτ+h and σ2
x(h) is the corresponding

forecast error variance. Clearly, this forecast is in general different from

ynaive
τ+h|τ = exp(xτ+h|τ )
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which just reverses the log transformation and is called the naive forecast by Granger &

Newbold (1976). Thus, one may want to consider the optimal forecast when aggregates are

of interest and if the optimal forecasts actually improve on the naive ones.

Lütkepohl & Xu (2009) study the question under which conditions it is useful to base

a forecast on the log transformation if forecasting the original variable is of interest. They

consider a number of economic variables and use univariate integrated AR models to forecast

the variables directly or their logs. Based on a range of stock market variables, gross domestic

product (GDP) and consumption data from a number of countries, their general finding is

that forecasting the logs and converting the forecasts either by using the naive or the optimal

predictor may lead to substantial gains in forecast precision as measured by the forecast MSE.

It does not make much difference whether the optimal or the naive forecast is used. In fact,

since in practice the optimal forecast also requires an estimator of the forecast error variance

it may result in a slightly larger MSE than the naive forecast. Typically the forecast error

variance of the log of an economic time series is very small compared to the level of the

series and, hence, the extra term in the optimal forecasting formula does not make much

difference. Lütkepohl & Xu (2009) conclude from their forecast comparison that MSE gains

from using logs are obtained for series for which the log transformation actually makes the

variance more homogeneous. If this condition is not satisfied, the forecasts based on logs can

even be much worse in terms of MSE than forecasts based directly on the original series.

As an example consider the U.S. and UK consumption series depicted in Figures 1 and

2, respectively. For the U.S. series the variance of the first differences in the lower left-hand

panel of Figure 1 increases with the level of the series (depicted in the upper left-hand panel)

whereas the growth rates (first differences of logs) in the lower right-hand panel of Figure

1 have a more homogenous variance over the sample period. In contrast, for the UK the

variability of the growth rates becomes smaller towards the end of the sample, whereas the

variance of the first differences of the original series also increases with the level of the series

(see Figure 2). In other words, the log transformation stabilizes the variance for the U.S.

series but not for the UK series.

In Table 1 MSEs of naive forecasts relative to linear forecasts based on the original series

for different sample and forecast periods and different forecast horizons are shown. They are

based on univariate AR models for the first differences of the original series and the logs.

The AR models are specified and estimated for samples of increasing size and computing

out-of-sample forecasts (see Lütkepohl & Xu (2009) for details). Most relative forecast

MSEs for the U.S. in Table 1 are considerably smaller than one. Hence, using logs results in

considerable forecast efficiency gains. On the other hand, the relative forecast MSEs for the
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Figure 1: Quarterly, seasonally adjusted private U.S. consumption for 1981Q1 - 2006Q4.

UK in the lower part of Table 1 are all larger than one and in many cases quite substantially

so. Thus, for the UK using logs in forecasting the level of consumption is not beneficial.

These examples illustrate that for some variables using nonlinear transformations such as

the log may be quite useful for forecasting the levels while for other variables they may not

help improving the forecast precision.

For forecasting aggregates these results suggest that using the log or other instanta-

neous nonlinear transformations for individual components of an aggregate may be beneficial.

Given that, e.g., the log transformation can actually do damage for the forecast accuracy, it

is not clear that necessarily all components of an aggregate should be transformed. Gener-

ally, these considerations suggest that it may be worth studying the implications of nonlinear

transformations if linear or nonlinear aggregates are of interest.

5.2 Non-Gaussian Processes

If the DGP of a multiple time series is not normally distributed, point forecasts can be

computed based on ARIMA or VARMA models as before. They may still be best linear
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Figure 2: Quarterly, seasonally adjusted private UK consumption for 1980Q1 - 2006Q4.

forecasts and may in fact be minimum MSE forecasts if ut is independent white noise,

as discussed in Section 2.2. For non-Gaussian processes nonlinear forecasts may be more

accurate, however. In practice it may not be easy to beat the linear forecasts unless a

specific nonlinearity is known to be present and, hence, can be modelled. If a linear model

with non-Gaussian residuals is considered, the distribution has to be taken into account in

setting up forecast intervals. If the distribution is unknown, bootstrap methods can be used

to compute interval forecasts (e.g., Findley (1986), Masarotto (1990), Grigoletto (1998),

Kabaila (1993), Kim (1999), Clements & Taylor (2001), Pascual, Romo & Ruiz (2004)).

5.3 Aggregation with Time-Varying and Stochastic Weights

Constructing EMU data poses aggregation problems which are not covered by the basic linear

aggregation framework. Suppose, for example, that one wants to construct an unemployment

rate series for the EMU by aggregating the unemployment rates of the individual EMU

countries. The overall unemployment rate, uEMU
t , is a weighted average of the individual
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Table 1: Forecast MSEs of Naive Forecast Relative to Linear Forecast for U.S. and UK
Consumption Series

Sample 1980Q1- Sample 1985Q1- Sample 1990Q1-
Forecast period Forecast period Forecast period

Forecast 2000Q1 2003Q1 2000Q1 2003Q1 2000Q1 2003Q1
Country horizon -2006Q4 -2006Q4 -2006Q4 -2006Q4 -2006Q4 -2006Q4
U.S. 1 1.0235 0.7678 1.0685 0.6963 1.1045 0.8015

2 0.9416 0.4251 0.9251 0.4385 0.9587 0.5327
3 0.8956 0.2590 0.8348 0.3175 0.8810 0.4467
4 0.8437 0.2879 0.7458 0.3156 0.7302 0.4228

UK 1 1.8154 2.0701 1.8468 2.0323 1.5834 2.5313
2 3.3214 3.3397 3.5009 2.5500 2.7726 3.1062
3 4.0529 5.7324 4.1098 3.3790 3.0556 3.6966
4 5.2223 7.8226 5.1315 4.6133 3.7520 4.6226

Note: The results in this table are from Table 7 of Lütkepohl & Xu (2009).

unemployment rates, u
(i)
t ,

uEMU
t =

N∑
i=1

wiu
(i)
t . (5.1)

Here the wi’s are the weights and N denotes the number of member states. The weights sum

to one,
∑N

i=1 wi = 1. The question is which weights to use. Clearly, wi should be related to

the relative size of country i. Because the relative country sizes may change, it is clear that

the weights in (5.1) may vary over time. In fact, the number of EMU countries has changed

over the years and is meant to change further in the future when new member states enter

the EMU. Thus, it may be more appropriate to denote the weights by wit rather than wi.

Since it is known beforehand when a new member state joins the EMU, one may think of the

changes in the weights as deterministic. Alternatively, if the weights are strictly related to

the working populations in the different member states, it may in fact be more appropriate

to view the weights as stochastic.

Generally, there are many series where aggregation is done with stochastic weights. For

example, there are several proposals for aggregating GDP or its growth rates based on

stochastic weights. Suppose yEMU
t denotes euro-area GDP and y

(i)
t is the corresponding

figure for country i. Then Winder (1997) computes the EMU growth rate as

Δ log yEMU
t =

N∑
i=1

y
(i)
t−1/e

(i)
TB

yEMU
t−1

Δ log y
(i)
t , (5.2)

where e
(i)
t denotes the exchange rate of country i in period t and TB signifies a fixed base

year. The exchange rate is necessary for the pre-EMU period, that is, when an aggregate

series for the pre-EMU period is constructed. Winder considers a fixed exchange rate for the
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sample period. Alternatively, Beyer, Doornik & Hendry (2001) propose the aggregate

Δ log yEMU
t =

N∑
i=1

y
(i)
t−1/e

(i)
t−1

yEMU
t−1

Δ log y
(i)
t , (5.3)

which uses a flexible exchange rate for the pre-EMU period. In (5.2) and (5.3) the weights

are wit =
y
(i)
t−1/e

(i)
TB

yEMU
t−1

and wit =
y
(i)
t−1/e

(i)
t−1

yEMU
t−1

, respectively. Thus, in both cases the weights are

stochastic and thereby the aggregation scheme falls outside the basic linear framework.

The creation of euro-area data for the pre-EMU period has been discussed by a number

of other authors as well (e.g., Fagan, Henry & Mestre (2001), Bosker (2006), Anderson,

Dungey, Osborn & Vahid (2007), Angelini & Marcellino (2007), Brüggemann & Lütkepohl

(2005, 2006), Beyer & Juselius (2008)). It is of considerable interest for both forecasting

euro-area aggregates and for economic analysis within the euro-area. Therefore it is inter-

esting to know more about the theoretical properties of forecasts based on aggregated or

disaggregated information. Generally, investigating the properties of forecasts for aggre-

gates with stochastic weighting schemes is an interesting problem for future research. For

the special case of constructing EMU data, an additional practical problem arises which is

discussed in the next subsection.

5.4 Structural Change

A change in the structure of the DGP is a particular problem for forecasting. Prediction

relies on some time invariance to project the past into the future. In the previous discussions

a time invariant DGP is assumed. In practice structural change is rather common, however.

A case of particular importance is, for example, the creation of a single currency area in

Europe. This event is likely to have caused structural changes in a number of EMU countries

which had to adjust their economic systems to the Maastricht criteria. For example, some

countries had to reduce their inflation rates and budget deficits drastically to be able to

join the EMU. Therefore it is not at all clear that simply aggregating pre-EMU time series

and using such data to predict future values of a variable is a good strategy. Brüggemann

& Lütkepohl (2006) propose to use German data for the pre-EMU period. In a forecast

comparison based on time series constructed in different ways for a number of euro-area

variables Brüggemann, Lütkepohl & Marcellino (2008) also include this proposal. They find

that this kind of approach works well for series which have a similar level when joining

German and EMU data. The consumer price index (CPI), a long term interest rate and an

exchange rate are examples which are shown in Figure 3. No apparent structural shift is

observed in the three series depicted in the figure at the beginning of 1999 where the German
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and the aggregated euro-area data are joined together. Again this type of aggregation may be

viewed as one with time-varying aggregation weights. The German series is assigned a weight

of one for the pre-EMU period while other weights are used from the year 1999 onward. The

aggregation scheme falls outside the basic linear aggregation framework although it may be

of considerable interest in practice and therefore may be a fruitful area for further research.
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Figure 3: Quarterly German series for 1970Q1 - 1998Q4 and euro-area series for 1999Q1 -

2003Q4.

Another proposal to account for the structural adjustments in some of the series is due

to Anderson et al. (2007). Rather than focussing on Germany only in the pre-EMU period

they suggest to include other countries in the aggregate but with time-varying weights which

depend on the distance of their economic conditions from those of core countries such as

Germany. More precisely, they specify a distance measure for monthly data for country j,

dj,t = min

(
|y(j)

t − ycore
t |

|y(j)
1979M3 − ycore

1979M3|
, 1

)
,

where March 1979 is used as the reference period because it marks the time where the
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European Monetary System began. They define the weight of country j in period t to be

wj,t = wj,F × (1 − dj,t),

where wj,F is the weight of country j when full integration is achieved. Thus, in this aggre-

gation scheme the weights may be viewed as stochastic.

Generally, if some change in the structure of the DGP has occurred during the estimation

and specification period or happens even during the forecast period, a more detailed inves-

tigation of the implications for the quality of the forecasts is necessary. The general results

for time invariant processes discussed in the foregoing do not necessarily carry over to this

case. There are some useful proposals which may be helpful in this situation. For instance,

Clements & Hendry (1999, Chapter 5) investigate the possibility of robustifying forecasts

against breaks by over-differencing the variables. Clearly, anything that works in general can

also be used for forecasting aggregated variables. A deeper analysis of the implications for

the different forecasts considered in the foregoing may be an interesting direction for future

research.

6 Conclusions

VARMA models are standard tools for producing linear forecasts for a set of time series

variables. Different forecasts for aggregated time series variables based on these models

are compared. Both contemporaneous and temporal aggregation are considered. Classical

results imply that forecasting the disaggregated process and aggregating the forecasts is

more efficient in terms of MSE than forecasting the aggregate directly and thereby ignoring

the disaggregated information. Moreover, for contemporaneous aggregation, forecasting the

individual components with univariate methods and aggregating these forecasts is compared

to the two previously mentioned forecasts. Forecasting univariate components separately

may lead to better forecasts than forecasting the aggregate directly and the reverse result

may also be obtained, depending on the DGP of the time series under consideration. Using

univariate forecasts is in general inferior to aggregating forecasts of the fully disaggregated

process, however. These results hold if the DGPs are known.

In practice the relevant model for forecasting a particular set of time series will not be

known, of course, and it is necessary to use sample information to specify and estimate a

suitable candidate model from the ARMA or VARMA class. If estimation and specification

uncertainty are taken into account it turns out that forecasts based on a disaggregated

multiple time series may not be better and may even be inferior to forecasting an aggregate
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directly. This situation is in particular likely to occur if the DGPs are such that efficiency

gains from disaggregation do not exist or are small and the aggregated process has a simple

structure which can be captured with a parsimonious model. These issues also raise the

question regarding the right level of disaggregation (see, e.g., Mayo & Espasa (2009)).

A number of other deviations from the idealized basic linear framework used in the the-

oretical analysis are also considered. In particular, problems related to nonlinear transfor-

mations of the variables of interest, non-Gaussian DGPs, time-varying aggregation weights

and structural change are discussed. Some of these problems are especially relevant in ag-

gregating euro-area variables and leave room for further research on forecasting aggregated

time series variables.

Generally the focus of this survey is on predicting the levels of a time series and no

consideration is given to second order moments such as conditional variances. These can

be very important for constructing forecast intervals and assessing the forecast uncertainty.

Such issues are heavily discussed in the current financial econometrics literature. They

warrant a separate survey.
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