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Abstract 
 
This paper shows how to identify the structural shocks of a Vector Autoregression (VAR) while 
simultaneously estimating a dynamic stochastic general equilibrium (DSGE) model that is not 
assumed to replicate the data-generating process. It proposes a framework for estimating the 
parameters of the VAR model and the DSGE model jointly: the VAR model is identified by sign 
restrictions derived from the DSGE model; the DSGE model is estimated by matching the 
corresponding impulse response functions. 
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1 Introduction

How can we estimate the effects of an exogenous disturbance on the economy? In recent
years, two methodologies have become popular to answer this question: the Vector
Autoregression (VAR) model and the Dynamic Stochastic General Equilibrium (DSGE)
model approach. Both have considerable advantages but also substantial shortcomings.
While on the one hand the VAR model is straightforward to estimate, structural shocks
cannot be recovered without additional assumptions. The DSGE model, on the other
hand, is of a structural form, i.e. it exhibits structural shocks, but it is difficult to
determine its parameter values. In this paper I present a methodology for estimating
the effects of exogenous disturbances that combines the advantages of both approaches
while overcoming their respective limitations.

I suggest identifying the VAR model with the help of the structural impulse response
functions of the DSGE model. Deriving the identifying restrictions from the DSGE
model ensures consistency of the identification of the VAR model with the implied
structural form of the DSGE model. Moreover, this approach allows the researcher
to lay out the assumptions underlying the identification of the VAR model explicitly
in the DSGE model and it enables her to include the different assumptions she wants
to discriminate between in the DSGE model. In this case a larger class of identifying
assumptions can be considered a priori and evaluated afterwards. At the same time, the
parameters of the DSGE model are estimated using information from the VAR model.
This has the advantage that the DSGE model does not have to be assumed to represent
the data-generating process nor to be fully stochastically specified. Therefore, it need
not exhibit as many structural shocks as there are observable variables to be explained.
Moreover, features and frictions which are not pertinent to the question being examined
can be ignored.

More precisely, the VAR model is identified using sign restrictions derived from the
structural impulse response functions of the DSGE model, while the DSGE model is
estimated by matching the corresponding impulse response functions. Transferring
the restrictions via sign restrictions is straightforward and easy to handle: for a given
parametrization of the DSGE model the signs of the impulse response functions of the
DSGE model define the restrictions for identifying the VAR model. Furthermore, when
using sign restriction it is not necessary for the complete number of structural shocks
of the VAR model to be identified, nor need the number of structural shocks of the
DSGE model correspond to the number of observable variables (variables in the VAR
model). The parameter vector of the DSGE model is in turn estimated by matching
the corresponding impulse response functions of the VAR model. Thus, it only needs
to represent the dynamics of the economy, not the complete data-generating process.
Consequently, features and lags which would otherwise have been included to match
outliers in the data, but which are not essential to the study, can be dropped.

In order to carry out this estimation procedure, it is necessary to describe the joint
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distribution of the VAR model and the DSGE model. This paper presents a method-
ology for doing so. The methodology is first illustrated by means of a Monte Carlo
experiment and then applied to the data. I employ two different DSGE models in each
exercise. This is motivated by the fact that the simple DSGE model used in the Monte
Carlo Experiment exhibits different signs in the response of each variable depending on
the parametrization, i.e. it is a perfect example, but is too stylized to be estimated.
The DSGE model used in the estimation exercise does not exhibit this characteristic.
Only the response of one variable, the one under investigation, switches signs across
the parameter space. However, it is straightforward to be taken to the data.

More precisely, I simulate data from a fiscal theory of the price level (FTPL) model
and re-estimate the parameters of the FTPL model and the impulse response functions
of the VAR model. The experiment shows that the true impulse response function is
indeed found. The FTPL model serves well for illustrating purposes since it can be
reduced to two equations in two variables and two shocks. The signs of both variables
vary depending on two parameters only. It is less well suited to bringing it to the data.
I therefore estimate a DSGE model recently laid out by Ravn, Schmitt-Grohé, Uribe,
and Uuskula (2008) to investigate the response of inflation to a monetary policy shock.
This DSGE model suits well, since the response of inflation is either positive or negative
depending on its parametrization.

The paper is organized as follows: The next section briefly reviews the relevant litera-
ture. The third section outlines the general framework. The fourth section describes the
probability distributions and the algorithm suggested to approximate them in detail.
The Monte Carlo Experiment is conducted in section 5. Section 6 applies the method-
ology to the data and estimates the deep habit model. The last section concludes.

2 Related Literature

After Sims’s seminal article (Sims, 1980) VAR models became one of the workhorses in
macroeconomics despite the problem of identifying structural shocks. Suggestions for
resolving the identification problem in a VAR model are manifold. Excellent surveys
have been written by Christiano, Eichenbaum, and Evans (1999) and Rubio-Ramirez,
Waggoner, and Zha (2005). The approaches most closely related to the methodology
presented here are to identify the VAR model by sign restrictions (Uhlig, 2005a; Faust,
1998) or by probabilistic restrictions (Kociecki, 2005). Identification employing sign
restrictions attempts to restrict the signs of the impulse response functions of some
variables, while the variable of interest is unrestricted. In Kociecki (2005), a prior dis-
tribution for the impulse response functions is formulated and transformed into a prior
distribution for the coefficients of the structural VAR model. Both approaches depend
on the availability of a priori knowledge on the behavior of some impulse response
functions.
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With regard to explicitly basing the identifying assumptions on DSGE models, two
strands of literature have emerged recently. One derives the identifying assumptions
from a DSGE model (Altig, Christiano, Eichenbaum, and Linde (2002), DelNegro and
Schorfheide (2004) and Sims (2006b)); the other suggests, once the DSGE model is
large enough, estimating the DSGE model and thereby directly infering on the impulse
responses (as in Smets and Wouters (2003) and Smets and Wouters (2007)).

Due to advances in computational power, the estimation of DSGE models has lately
become very popular. The procedures differ depending on the econometric interpre-
tation of the DSGE model. Geweke (1999) distinguishes between a strong and weak
interpretation. The former requires the DSGE model to provide a full description of the
data-generating process. It is the more common one nowadays despite its shortcomings:
first, the DSGE model already puts a lot of structure on the impulse responses a priori,
i.e. it often does not allow an investigation of the sign of a response and might therefore
not be appropriate as a research tool. Second, not all parameters of the DSGE model
can be identified (see Canova and Sala (2006) and Beyer and Farmer (2006)). Finally,
not all economists might feel comfortable with the assumption that the DSGE model
is a proper representation of the data-generating process. Instead, as mentioned in
Christiano, Eichenbaum, and Evans (2005), the DSGE model is best suited to replicate
the implied dynamics in the data, i.e. the impulse response functions. This is the
weak econometric interpretation. Following this road Ravn, Schmitt-Grohé, and Uribe
(2007), Mertens and Ravn (2008) as well as Ravn, Schmitt-Grohé, Uribe, and Uuskula
(2008) estimate a DSGE model given the impulse response function of the VAR model
by minimizing the distance between the corresponding impulse response functions. In
contrast to them I do not consider the impulse response functions of the VAR model as
given, i.e. as identified a priori. In the case of timing or long-run restriction the VAR
model is identified and considering the impulse response functions as given is justified.
This paper addresses the cases when the identifying restrictions are not a priori clear
or when the researcher chooses to use sign restrictions. Sign restrictions derived from
a DSGE model will only in very rare cases be unique across the parameter space of the
DSGE model. In those cases the impulse response functions are not identified and one
cannot proceed as for instance in Ravn, Schmitt-Grohé, and Uribe (2007), Mertens and
Ravn (2008) or Ravn, Schmitt-Grohé, Uribe, and Uuskula (2008).

The methodology presented in this paper is in the spirit of the former strand of the
literature, i.e. it bases the identification of the VAR model on restrictions derived
from the DSGE model. It differs from the existing literature in the following aspects.
Altig, Christiano, Eichenbaum, and Linde (2002) and DelNegro and Schorfheide (2004)
employ the rotation matrix of the DSGE model to identify the VAR model. To do this,
the DSGE model has to be fully stochastically specified. In the case of DelNegro and
Schorfheide (2004), additional dummy observations derived from the model are used
to augment the VAR model as suggested originally by Ingram and Whiteman (1994).
While one can control for the prior weight of the dummy observations, one cannot
control for the prior weight of the implied dynamics of the DSGE. The methodology
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proposed here differs from this by not employing the implied rotation matrix of the
DSGE model to identify the VAR model, and therefore not requiring the DSGE model
to be fully stochastically specified.

Sims (2006b) extends the idea to augment the VAR model with dummy observations
in a more general framework. In his framework, the tightness of the prior can be
varied across frequencies and the number of structural shocks does not need to equal
the number of observations. The main difference to Sims (2006b) is that I suggest
employing the implied sign and shape restrictions (as described in Uhlig (2005a)) to
identify the VAR model as it is more simple and straightforward to use.

In recent studies, Lanne and Lütkepohl (2005), Lanne and Lütkepohl (2008), and Lanne,
Lütkepohl, and Maciejowska (2009) employ additional statistical properties of the error
terms to identify the VAR model. Lanne and Lütkepohl (2005) make use of possible non-
normal distributions of the error terms and extract additional identifying information
from this. Lanne and Lütkepohl (2008) use the insight of Rigobon (2003) that a VAR
model can be identified exploiting changes in volatility. Given any exact identifying
scheme this characteristics delivers over-identifying restrictions which can be used to
test different identification schemes. In Lanne, Lütkepohl, and Maciejowska (2009) the
authors combine the properties of mixed normal distributions and regime changes in the
volatility of the error term and show that the VAR model is just identified, given that
the shocks are orthogonal across regimes and only the variances of the shocks change
across regimes. The methodology presented in this paper does not hinge on special
properties of the error terms. It applies also in cases where the residuals are normally
distributed.

3 Framework

In this section I set up the VAR model and its corresponding Vector Moving Average
(VMA) representation. The issue of how the structural impulse response can be identi-
fied is equivalent for both notations. For every period, the impulse response functions
of a VAR model can be expressed solely in terms of the coefficients of the VMA model
of that period. Setting up the framework in terms of the VMA representation makes
the subsequent analytical calculations less demanding. Since the VAR model is con-
nected with the DSGE model via their implied dynamics, the notation necessary for the
DSGE model is introduced before the central idea of how to derive the joint posterior
distribution for the VAR model and the DSGE model is presented. Afterwards, the
framework is related to existing and nested approaches.
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3.1 The VAR model and its corresponding VMA model

The structural VAR model containing m variables is defined as:

A−1Yt = A1Yt−1 + A2Yt−2 + . . . AlYt−l + εt, t = 1, . . . , T (1)

Yt is a m × 1 vector at date t = 1 + l, . . . , T , A and Ai are coefficient matrices of size
m×m and ε an i.i.d. one-step-ahead forecast error, distributed: ε ∼ N (0, Im×m).

The impulse response function ϕV of the VAR model is defined as the response of Y to
an innovation in ε. Denote the VMA representation as:

Yt =
∞∑
i=0

Θiεt−i, (2)

where Θi denotes a moving average coefficient matrix. The impulse response function
of a VAR model to an innovation in variable i at horizon k ϕVjk can be computed directly
as:

ϕVjk = Θjk, (3)

where i depicts the i-th column. Due to the assumption that Σε = Im×m, this struc-
tural moving average representation cannot be estimated directly. Instead the reduced
form moving average representation with error term ut = Aεt, where u ∼ N (0,Σ), is
estimated. The reduced form moving average coefficients are defined as Φi = ΘiA

−1:

Yt =
∞∑
i=0

Φiut−i (4)

The factorization Σ = A′A does not have a unique solution, which leads to an identifi-
cation problem of A.

It is important to note that any stationary moving average representation can be ap-
proximated by a reduced form VAR model, which takes the form:

Yt = B1Yt−1 +B2Yt−2 + . . . BlYt−l + ut, t+ 1, . . . , T (5)

with Bi = AAi, ut = Aεt and u ∼ N (0,Σ). While the framework is set up in terms of
VMA representation, it can be easily estimated as a VAR model.

3.2 The DSGE model

The fundamental solution of the DSGE model is given by1:

x̂t = T (θ̃)x̂t−1 +R(θ̃)zt, (6)

1x̂t denotes the percentage deviation of the generic variable xt from a deterministic steady state x
chosen as approximation point.
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where z is a vector collecting the structural shocks of the DSGE model, while T (θ̃)
and R(θ̃) are matrices one obtains after solving a DSGE model with standard solution
techniques.

The impulse response functions of the variables in x to a structural shock i at horizon
k ϕDik are given by:

ϕDi,0 = R(θ̃)zi, k = 0 (7)

ϕDi,k = T (θ̃)ϕDk−1,i, k = 1, 2, ...K. (8)

The vector of structural parameters of the DSGE model defined as in (6) does not
contain any variances or covariances of a measurement error or any error term emerging
from confronting the DSGE model with the data, but only the variances of the structural
shocks. When the DSGE model is estimated by matching the corresponding impulse
response functions, an additional error term occurs. Its variance covariance matrix
is denoted by Ω and is also estimated. The vector comprising the vector of deep
parameters θ̃ and the vectorized Ω is defined as θ = [ θ̃ vec(Ω) ]′.

3.3 The idea in a nutshell

On the one hand, the distribution of the parameters of the DSGE model is estimated
by matching the corresponding impulse response function of the VMA model. On the
other hand, the distribution of structural impulse response functions of the VMA model
are identified by applying sign restrictions which are derived from the DSGE model.
Both distributions are therefore conditional distributions: they depend on a realization
of the impulse response function of the VMA model and on restrictions from the DSGE
model, i.e. a realization of a vector of structural parameters of the DSGE model,
respectively. This section sets out how the conditional distributions can be combined
to derive the joint distribution.

The joint posterior distribution of θ and ϕ, given a matrix with time series observations
Y , p(θ, ϕV |Y ), can be decomposed in different ways, depending on whether the DSGE
model is employed to identify the VMA model or not. In the latter case the joint
posterior is given by:

p(ϕV , θ|Y ) = p(ϕV |Y )p(θ|ϕV ). (9)

This equation can be justified twofold: In the case that the DSGE model is estimated by
matching the corresponding impulse response functions and not time series observations,
the distribution of θ conditional on ϕV and Y is equal to the distribution of θ conditional
on ϕV only2. The second justification is shown by Smith (1993) and DelNegro and

2It then holds:
p(θ|ϕV , Y )p(ϕV |Y ) = p(ϕV |Y )p(θ|ϕV )
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Schorfheide (2004) and discussed in section 3.4, when setting the framework in a broader
context.

In the case that the likelihood of the VMA model impulse response functions depends
on restrictions from the DSGE model, p(θ, ϕV |Y ) is given as:

p(ϕV , θ|Y ) = p(ϕV |θ, Y )p(θ|Y ). (10)

The framework presented in this paper is based on the argument that both distributions
are at least proportionally equal:

p(ϕV |Y )p(θ|ϕV ) ∝ p(ϕV |θ, Y )p(θ|Y ), (11)

and can be approximated sufficiently well by Monte Carlo Markov Chain Methods.

Denote the Jacobian matrix collecting the derivatives of ϕV with respect to Φ by
J(ϕV → A,Φ). Considering the relationship between the coefficients of the VMA
model and the impulse response function of the VMA model (ΦiA = ϕVi ):

p(ϕV |θ, Y ) = p(A,Φ|θ, Y )J(ϕV → A,Φ), (12)

equation (11) is given by:

p(ϕV |Y )p(θ|ϕV ) ∝ p(A,Φ|θ, Y )J(ϕV → A,Φ)p(θ|Y ). (13)

Note that the conditional distributions of interest (p(θ|ϕV ) and p(A,Φ|θ, Y )J(ϕV →
A,Φ) are on different sides of the proportionally sign in (13). It is therefore possible to
employ a Gibbs sampling algorithm, i.e. to draw from two conditional distributions in
order to evaluate the joint distribution. In the following section I will first relate the
approach to existing methodologies before I describe both conditional distributions in
detail.

3.4 Nested approaches

Taking a broader perspective, several closely-related methodologies evolve as special
cases of this approach: the pure sign restriction approach of Uhlig (2005a), the DSGE-
VAR methodology of DelNegro and Schorfheide (2004) and the case of probabilistic
restrictions of Kociecki (2005).

The latter arises if the restrictions derived from the DSGE model are constant across
the parameter space. Then it is possible to generate a prior distribution for the impulse
response functions of the VAR model from the DSGE model and use it as a prior for
the parameters of the VAR model. Since, as pointed out by Kociecki (2005), the sign
restriction approach is a special case of the probabilistic approach, this methodology
is also nested. The sign restriction approach arises if the prior distribution for some
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impulse response function exhibits a very small variance, i.e. determines the sign of
this impulse. It is equivalent to using an indicator function placing zero probability
weight on VAR model parameter regions whenever the a priori sign restrictions are
not satisfied. Therefore, in the case that the DSGE model determines constant sign
restrictions across the parameter space it is not necessary to draw from the conditional
distribution of θ. One only needs to draw from p(A,B|θ, Y ).

The DSGE-VAR methodology arises once the framework is rewritten in terms of the
parameters instead of the impulse response functions of the VAR model, and in the
case that the DSGE model is fully stochastically specified.

p(A,B|Y )p(θ|A,B) ∝ p(A,B|θ, Y )p(θ|Y ) (14)

The right-hand side is the expression used to evaluate the joint posterior distribution
of p(A,B, θ|Y ): since the DSGE model is fully stochastically specified it is possible
to derive an analytical solution for the marginal posterior of θ. The decomposition
on the left-hand side again legitimates the decomposition used in (9): the posterior
distribution of the parameters of the VAR does not depend on the vector of structural
parameters of the DSGE model. As argued in DelNegro and Schorfheide (2004) and
Smith (1993), A and B can then be used to learn about the parameter vector θ.

4 Evaluating the joint distribution

In this section the conditional distributions employed in the estimation process are
described in detail. I start by describing the distribution of the VMA model conditional
on the parameter vector of the DSGE model. Then the distributions of the parameters
of the DSGE conditional on the impulse response functions of the VMA model are set
out.

4.1 Conditional distribution of the VMA model parameters

The conditional distribution described in this section is p(ϕV |θ, Y ) from the right-
hand side of (11). It is conditional since the prior distribution for the impulse response
functions p(ϕV ) = p(ϕV |θ) is derived from the DSGE model3 The posterior distribution
of the structural impulse responses ϕV is obtained by combining the coefficient estimates
of the reduced-form VMA model Φ with an impulse matrix A. In order to write this
distribution in terms of the reduced-form VMA model coefficients and the impulse
matrix, it has to be scaled by the Jacobian J(ϕV → A,Φ). The prior distribution for

3The impulse response functions of the DSGE model define a probability distribution of impulse
response functions dependent on θ.
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the structural impulse response function is set out and the Jacobian is derived in the
first subsection.

Afterwards, the distribution p(A,Φ|θ) is decomposed into a conditional distribution of
the VMA model coefficients and a marginal distribution of the impulse matrix A:

p(Φ, A|θ) = p(Φ|A, θ)p(A|θ). (15)

Combining this prior distribution with the likelihood yields the posterior distribution
p(A,Φ|θ, Y )J(ϕV → A,Φ). The likelihood is described in the third part of this section.
The resulting posterior distribution is difficult to evaluate for various reasons: given
the restrictions, it is, to the best of my knowledge, not possible to draw the impulse
matrix A of the VMA model for a reasonably large set of variables. It is not possible
if only submatrices, i.e. fewer shocks than variables, are considered. This also implies
that the distributions conditional on A are not defined, causing problems in the case
that the restrictions are formulated for more than one period.

I therefore suggest in the fourth section deriving the restrictions from the DSGE model
as sign restrictions. For each realization of the impulse response function of the DSGE
model the corresponding sign restrictions are put on the VMA model. The coefficients
of the VMA model are conditional on the impulse response functions of the DSGE
model, similar to Uhlig (2005a), where the posterior distribution of the VAR param-
eters is multiplied by an indicator function that puts zero probability in parameter
regions whenever the restrictions derived from the DSGE model are not satisfied. The
distribution of parameters of the DSGE model θ defines a set of restrictions put on the
parameters of the VMA model. This conditional prior distribution combined with the
likelihood then yields the posterior distribution. A further simplification is considered
in the concluding part of this section: the approximation of the VMA model by a VAR
model.

4.1.1 The Jacobian J(ϕV → A,Φ)

Denote the impulse response functions in period k as ϕVk . If all shocks are included, the
matrix is of size m×m, where the entry i, j corresponds to the response of variable i to
an innovation in variable j. The prior for the impulse responses has to be specified for as
many periods as there are impulse response functions to be estimated. The vectorized
impulse responses are assumed to be normally distributed:

vec(ϕ0)
vec(ϕ1)
vec(ϕ2)

...
vec(ϕl)

 ∼ N



vec(ϕ̄0)
vec(ϕ̄1)
vec(ϕ̄2)

...
vec(ϕ̄k)

 ,

V̄00 V̄01 V̄02 · · · V̄0l

V̄10 V̄11 V̄12 · · · V̄1k

V̄20 V̄21 V̄22 · · · V̄2k
...
V̄k0 V̄k1 V̄k2 · · · V̄kk



 . (16)
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The probability distribution p(ϕ0, ϕ1, ..., ϕk) can be decomposed into a marginal distri-
bution of p(ϕ0) and succeeding conditional distributions:

p(ϕ0, ϕ1, ..., ϕk) = p(ϕk|ϕk−1 · · ·ϕ0)p(ϕk−1|ϕk−2 · · ·ϕ0) · · · p(ϕ1|ϕ0)p(ϕ0), (17)

with

p(vec(ϕ0)) = N (vec(ϕ̄0), ¯̄V00) (18)

p(vec(ϕi|vec(ϕi−1) · · · vec(ϕ0)) = N (θi,∆ii), i = 1 · · · k, (19)

and θi and ∆ii abbreviate the usual definitions for conditional distributions:

θi = vec(ϕ̄) +
[
V̄i0 · · · V̄ii−1

]  V̄00 · · · V̄0i−1
...

. . .
...

V̄i−1,0 · · · V̄i−1,i−1


−1  vec(ϕ0 − ϕ̄0)

...
vec(ϕi−1 − ϕ̄i−1)



∆ii = V̄ii −
[
V̄i0 · · · V̄ii−1

]  V̄00 · · · V̄0i−1
...

. . .
...

V̄i−1,0 · · · V̄i−1,i−1


−1  V̄0i

...
V̄i−1,i


In order to write the prior distribution in terms of the reduced form coefficients it is
necessary to scale the probability distribution with the Jacobian:

p(ϕ) = p(f(Φ))J(ϕ⇒ Φ). (20)

The relationship between structural and reduced form moving average coefficients is
given by:

ϕ0 = A (21)

ϕi = ΦiA, i = 1 · · · k (22)

.

Note that I have left out Φ0 since this matrix is normalized to an identity matrix by
assumption. This also indicates that it is not possible to infer on ϕ0 from the estimated
reduced VMA model.

The Jacobian is calculated in the following way. Applying the vec-operator yields:4

vec(ϕi) = (A′ ⊗ Im×m)vec(Φi). (23)

The Jacobian matrix is defined as:

J(ϕ→ Φ) = det


∂vec(ϕ1)
∂vec(Φ0)

∂vec(ϕ1)
∂vec(Φ1)

· · · ∂vec(ϕ1)
∂vec(Φk)

...
...

. . .
...

∂vec(ϕk)
∂vec(Φ0)

∂vec(ϕk)
∂vec(Φ1)

· · · ∂vec(ϕk)
∂vec(Φk)

 . (24)

4Note that vec(AB) = (I ⊗A)vec(B) = (B′ ⊗ I)vec(A))
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Due to the fact that ∂vec(ϕi)
∂vec(Φj)

= 0 for j > i, the matrix becomes a block triangular matrix

and the determinant is given by:

J(ϕ→ Φ) = |∂vec(ϕ0)

∂vec(Φ0)
| × |∂vec(ϕ1)

∂vec(Φ1)
| · · · |∂vec(ϕk)

∂vec(Φk)
|

J(ϕ→ Φ) = |(A′ ⊗ Im×m)|k = |A|mk (25)

(26)

4.1.2 Decomposition of the distribution p(Φ, A) = p(Φ|A)p(A)

A prior distribution for the reduced form coefficients conditional on ϕ0 = A is formu-
lated as:

p(A,Φ1, ...,Φk) = p(Φk|Φk−1 · · ·Φ0)p(Φk−1|Φk−2 · · ·A) · · · p(ϕ1|A)p(A)J(ϕ→ Φ), (27)

where

p(vec(A)) = N (vec(ϕ̄0), ¯̄V00) (28)

p(vec(Φi)|vec(Φi−1) · · · vec(A)) = N (Φ̄i,
¯̄Vii) (29)

with

Φ̄i = (A′ ⊗ Im×m)θi (30)
¯̄Vii = (A−1′ ⊗ Im×m)∆ii(A

−1′ ⊗ Im×m). (31)

4.1.3 The likelihood for the reduced-form coefficients

Consider the VMA(k) process:

Yt = ut + Φ1ut−1 + Φ2ut−2 + · · ·+ Φkut−k. (32)

This can be written in state space form:

ξt+1 = Fξt + Ut+1 (33)

yt = Hξt, (34)

where
ξt =

[
ut · · · ut−k

]′
m∗k×1

F =


0 0 · · · 0 0
Im 0 · · · 0 0
0 Im · · · 0 0
...

...
. . .

...
...

0 0 · · · Im 0


m∗k×m∗k
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Ut+1 =
[
ut+1 0 · · · 0

]′
m∗k×1

H =
[
Im Φ1 · · · Φk

]
m∗×m∗k

.

Given an initial condition for y0 and Σ0, the likelihood can then be written as:

p(yT , . . . , y0|Φ1, ...,Φk,Σ) = p(yT |yT−1 . . . y0,Φ1, ...,Φk,Σ) · · · p(y0|Φ1, ...,Φk,Σ), (35)

where:
p(yt|yt−1 . . . y0,Φ1, ...,Φk) = N (yt|t−1,Σt|t−1). (36)

yt|t−1 and Σt|t−1 denote the optimal forecast at time t, which is a function of the coef-
ficient matrices. The impulse matrix A is not part of the likelihood function, instead
the variance covariance matrix Σ = A′A.

4.1.4 The posterior distribution

The posterior of the reduced form coefficients is derived by combining (35) and (27):

p(Φ1, · · ·Φk, A|θ, Y ) = p(yT , . . . , y0|Φ1, ...,Φk,Σ)p(A,Φ1, ...,Φk|θ). (37)

To identify the impulse matrix A from the likelihood estimate of the variance covariance
matrix I utilize the prior distribution for ϕ0 = A derived from the DSGE model in the
following way: the impulse matrix Ă is defined as a sub matrix of A of size m×n where
n is the number of structural shocks under consideration, i.e. the structural shock of
interest as well as other shocks necessary to distinguish this shock. These shocks have
to be included in the DSGE model as well. In order to indicate that the restrictions
put on A rely on the model and therefore its parameter vector θ, I write Ă(θ). Given
a number of rowvectors qj forming an orthonormal matrix Q and the lower Cholesky

decomposition of Σ, Ã, Ă(θ) is defined as: Ă(θ) = ÃQ(θ).

Every realization of the vector of the parameters of the DSGE model θ is associated
with an impulse response function of the DSGE model and a realization of Ă(θ). A
sequence of realizations of θ yields a sequence of restrictions and therefore a related
prior probability distribution. Given a realization of an impulse response function of
the DSGE model ϕD the posterior distribution is evaluated the following way:

1. Derive the sign restrictions from ϕD.

2. Draw a realization of Φ and Σ from the distribution (37).

3. Calculate Ã and draw Q(θ) from a uniform distribution such that Ă(θ) = ÃQ(θ)
fulfils the sign restriction.

4. Given A, compute the structural impulse responses from ϕi = ΦiA, i = 1 · · · k.

12



4.1.5 The conditional distribution of the VAR model

Estimating a VAR model is less complicated. In practice whenever possible, i.e. if
the VMA model is stationary, it is approximated by a VAR model5. In this section I
therefore briefly lay out the approach for this case.

As shown by Uhlig (1997), the prior distribution for B and Σ can be specified choosing
appropriate B0, N0, S0, v0 as:

vec(B)|Σ ∼ N (vec(B0),Σ⊗N−1
0 ) (38)

Σ ∼ IW(v0S0, v0). (39)

Denote the maximum likelihood estimates of Σ and B as Σ̃ = 1
T

(Y −XB̂)′(Y −XB̂)

and B̂ = (X ′X)−1X ′Y . The posterior is then given as6:

vec(B)|Σ ∼ N (vec(BT ),Σ⊗N−1
T ) (40)

Σ ∼ IW(vTST , vT ), (41)

where

NT = N0 +X ′X (42)

BT = N−1
T (N0B0 +X ′XB̂) (43)

ST =
v0

vT
S0 +

T

vT
Σ̃− 1

vT
(B0 − B̂)′N0N

−1
T X ′X(B0 − B̂) (44)

vT = v0 + T. (45)

Drawing from a joint posterior of B, Σ and Ă(θ) is conducted in the following steps:

1. The impulse responses of the DSGE determine the restrictions put on Ă(θ).

2. Draw B and Σ from the posterior (40) and (41).

3. Calculate Ã and draw Q(θ) from a uniform distribution such that Ă(θ) = ÃQ(θ)
fulfills the sign restriction.

4.2 The conditional distribution of the DSGE model parame-
ters

Since the DSGE model is not assumed to be a proper representation of the data-
generating process, the structural parameters are not estimated by matching the data

5I will employ the expression VAR model in the remaining sections too.
6A formal derivation is given in appendix A
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Y . Instead, the DSGE model is assumed to replicate the implied dynamics of the data,
i.e. the impulse response functions of the VAR model. This induces matching a given
realization of the impulse response function of the VAR model to the i-th shock at
horizon k, ϕVi,k:

ϕVi,k = ϕDi,k(θ̃) + ωi,k. (46)

Stacking the impulse response functions over 1, .., K periods together yields:

ϕVi = ϕDi (θ̃) + ωi (47)

with all vectors of dimension m∗k×1. The error term ωi has the property E[ωiω
′
i] = Ωωi ,

which is part of the vector θ. Since the structural shocks are assumed to be independent,
the probability of p(θ|ϕV ) can be written as:

p(θ|ϕV ) = p(θ|ϕV1 , ϕV2 , · · ·ϕVi ) = p(θ|ϕV1 )p(θ|ϕV2 ) · · · p(θ|ϕVi ). (48)

The vector θ is estimated in two steps: First Ωωi is estimated, and afterwards the
vector of deep parameters θ̃. The variance covariance is estimated by making use of the
relationship:

ωi = ϕVi − ϕDi (θ̃). (49)

For every realization of ϕVi a reasonable number of draws from p(θ) is taken7, and the
corresponding impulse response function ϕDi (θ̃) and the error terms are computed. Ω̃ωi

is then estimated as the covariance matrix of these error terms. For each shock i the
likelihood li

(
θ̃|ϕVi , Ω̃ωi

)
is given by:

li

(
θ̃|ϕVi , Ω̃ωi

)
= −Km

2
ln(2π)− 1

2
ln(|Ω̃ωi ⊗ IK |)−

1

2
(ωi)

′
(

Ω̃ωi ⊗ IK
)−1

(ωi).(50)

Combining this likelihood with a prior distribution for θ yields the posterior distribution.

One potential issue arising when matching impulse response functions of a DSGE model
and a VAR model was pointed out by McGrattan, Chari, and Kehoe (2005): the
implied VAR model representation of the DSGE model might be of infinite order but
the empirical VAR model is often of lower order. One solution, suggested by Cogley
and Nason (1995), is to simulate artificial time series from the DSGE model, estimate
a VAR model from the artificial time series and compare this VAR model to the VAR
model estimated from the actual data.

4.3 Sampling algorithm for the joint posterior distribution

In order to evaluate the joint posterior distribution of the parameters of the DSGE
model and the VAR model I propose a Gibbs sampling algorithm combined with a

7In the simulation and estimation I used 50 draws per realization.
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Metropolis-Hastings step. The Gibbs sampling algorithm allows to draw from the
conditional distributions laid out in detail in sections 4.1.4 and 4.2. The Metropolis-
Hastings step is an acceptance/rejection sampling algorithm that determines the prob-
ability space in which the implied impulse response functions of the DSGE model and
those of the VAR model coincide. It is carried out I times.

The algorithm can roughly be summarized in the following way. At each iteration
i = 1, . . . , I d-draws are taken from the conditional densities p(θ|ϕV )i and p(ϕV |θ, Y )i.8

These draws form candidate distributions p(θ|ϕV )ĩ and p(ϕV |Y, θ)ĩ. Via acceptance/rejection,
the candidate distributions are compared with p(θ|ϕV )i and p(ϕV |θ, Y )i. Draws with
higher posterior density are kept and form the new densities p(θ|ϕV )i+1 and p(ϕV |θ, Y )i+1.
More precisely, at each iteration i = 1, . . . , I the algorithm involves the following steps:

1. Draw j = 1 . . . d times from p(θ|ϕV )i.

2. For every realization θj of the vector of deep parameters of the DSGE model
derive the corresponding sign restriction.

3. Draw Σj from (41) and Bj from (40). Compute the lower Cholesky decomposition

and find an Ăj = ÃjQj fulfilling the sign restrictions from ϕDj (θ̃j). Compute ϕVj ,

yielding p(ϕV |Y, θ)ĩ.

4. For every realization of ϕVj derived in step 3 find the θ that maximizes (50)

combined with the prior p(θ). This yields p(θ|ϕV )ĩ.

5. Do acceptance-rejection by comparing p(θ|ϕV )ĩ with p(θ|ϕV )i−1. Keep the corre-

sponding vectors from p(ϕV |θ)ĩ. This yields p(θ|ϕV )i+1 and p(ϕV |θ)i+1.

6. Start again at 1.

The chain converges if p(θ|ϕV )i and p(θ|ϕV )i−1 and also p(ϕV |θ)i and p(ϕV |θ)i−1 are
similar, i.e. the acceptance rate is low.

In the remaining sections of the paper I will discuss the properties of the sampling
algorithm in more detail using a Monte Carlo experiment, i.e. specify precisely the
number of iterations and the convergence of the algorithm. Afterwards I will put the
methodology to work and confront it with the data.

5 Example 1: A Monte Carlo Experiment

In order to illustrate the methodology suggested above I use a simple fiscal theory of
the price level (FTPL) model as described in Leeper (1991) to identify the response of

8In the first iteration step p(θ|ϕV )1 = p(θ).

15



inflation to a monetary policy shock, i.e. an unexpected increase in the interest rate.
The FTPL model is chosen because it can be reduced to two equations in real debt and
inflation. It is the most simple DSGE model exhibiting different signs of the impulse
response functions depending on two parameters only. Furthermore, the solution and
properties of the FTPL model are well known by economists, which makes the example
very transparent.

I simulate data from the FTPL model and using the methodology outlined above show
that the ’true’ signs of the impulse response functions and the corresponding distribu-
tion of the parameters of the FTPL model are found, even if the chain is initialized
with a wrong guess.

5.1 The FTPL model

The representative household maximizes its utility in consumption 9 cF and real money
balances mF :

Ut = log(cF,t) + log(mF,t) (51)

subject to the budget constraint:

cF,t +mF,t + bF,t + τF,t = yF +
1

πF,t
mF,t−1 +

RF,t−1

πF,t
bF,t, (52)

where bF denotes bond holdings, τF lump sum taxes, yF income, RF nominal inter-
est rates and πF inflation. Small letters denote real variables, capital letters nominal
variables.

The government has to finance government expenditures gF by issuing bonds, collecting
taxes and seignorage. The budget constraint is therefore given by:

bF,t +mF,t + τF,t = gF +
MF,t−1

PF,t
+RF,t−1

BF,t−1

PF,t
. (53)

The monetary authority sets the nominal interest rate RF following the interest rate
rule:

RF,t = αF0 + αFπF,t + zF,t, (54)

where α0F and αF are policy coefficients. zF denotes a monetary policy shock, specified
as

zF,t = ρF,1zF,t−1 + εF1,t (55)

εF1,t ∼ N(0, σF1). (56)

The fiscal authority sets taxes according to:

τF,t = γF0 + γF bF,t−1 + ψF,t, (57)

9All variables and parameters associated with the FTPL model are labeled with a F .
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where again γF0 and γ denote policy coefficients. The innovation in fiscal policy has
the following characteristics:

ψF,t = ρF2ψF,t−1 + εF2,t (58)

εF2,t ∼ N(0, σF2). (59)

The model can be linearized and summarized by two equations10:

π̃F,t+1 = βFαF π̃F,t + βF zF,t (60)

b̃F,t + ϕF1π̃F,t + ϕF3zF,t + ψF,t = (β−1
F − γF )b̃F,t−1 − ϕF4zF,t−1 − ϕF2π̃F,t−1. (61)

5.2 Dynamics of the FTPL model

The dynamics of the system depend on whether fiscal and monetary policy are active
or passive, i.e. they depend on the policy parameters αF and γF only. Different policy
regimes emerge for:

• |αFβF | > 1 and |β−1
F − γF | < 1 for active monetary (AM) and passive fiscal (PF)

policy. This will be referred to as regime I.

• |αFβF | < 1 and |β−1
F − γF | > 1 for active fiscal (AF) and passive monetary (PM)

policy. This will be referred to as regime II.

• AM/AF and PF/PM. These cases are not considered here.

Both policy regimes imply different signs of the impulse response function for inflation
and real debt. In regime I a monetary policy shock (an unanticipated increase in the
nominal interest rate) will lead to a negative response of inflation and a positive response
of real debt. A fiscal policy shock (an unanticipated increase in taxes) will have no effect
on inflation and decrease the real debt. In regime II, a monetary policy shock leads to
an increase in inflation and an initial decrease in real debt. A fiscal policy shock has
a negative effect on both variables. Impulse response functions for each shock, regime
and variable are plotted in appendix E together with the corresponding distributions
of αF and γF .

5.3 Specification and Identification of the VAR

The VAR model consists of two variables, inflation πF and real debt bF , with no constant
or time trend: yF,t = [πF,tbF,t]

′. The VAR model with one lag is given by:

yF,t = ByF,t−1 + uF,t

E[uF,tu
′
F,t] = ΣF .

10See appendix B for a derivation.
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Ordering the fiscal policy shock first and the monetary policy shock second, based on
the model the following characteristics of the impulse matrix AF have to hold:

• If regime I holds:

– Fiscal policy shock: AF,11 = 0 AF,21 < 0.

– Monetary policy shock: AF,21 < 0 and AF,22 > 0.

• If regime II holds:

– Fiscal policy shock: AF,11 < 0 AF,21 < 0.

– Monetary policy shock: AF,21 > 0 and AF,22 < 0.

Since the sign of the reaction of real debt to a monetary policy shock does not identify
the shock in the case of regime II, the monetary policy shock is ordered second, implying
that both variables have to fulfil the sign restriction for a fiscal policy shock first. Then
the sign of the response of real debt is restricted, while the response of inflation is left
open.

5.4 A Monte Carlo Experiment

I simulate data from the model over 200 periods with αF = 0.5 andγF = −0.00001, i.e.
the case of active fiscal and passive monetary policy. I choose the prior distribution of
αF and γF based on estimates by Davig and Leeper (2005):

Parameter mean(I) standard deviation(I) mean(II) standard deviation(II)

αF 1.308 0.253 0.522 0.175
γF 0.0136 0.012 -0.0094 0.013

Table 1: Prior distribution for parameters of the FTPL model

The prior distribution is plotted in figure 1. The model fulfills the requirements for
investigating the question of how inflation reacts after a monetary policy shock: depend-
ing on the parameterization it allows for qualitatively different reactions of inflation,
and the DSGE model incorporates all other shocks necessary, here the fiscal policy
shock, to distinguish the shock of interest. The corresponding impulse responses for
each regime are plotted in appendix E: Figures 2 and 3 provide Bayesian impulse
response plots for draws from the prior distribution of regime I and figures 4 and 5
for draws from the prior distribution of regime II.

The sampling algorithm is specified by setting d = 200 to approximate the candidate
distribution. Afterwards, I = 50 and 200 draws are taken at each iteration. Since the
data are simulated from regime II, the outcome expected is the distribution of regime
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II, with the corresponding impulse responses of inflation and real debt for a fiscal policy
shock and real debt for a monetary policy shock. Furthermore, inflation should rise in
response to a monetary policy shock.

As figure 6 indicates, this is indeed the case, even though I initialize the chain with
a wrong guess. The posterior distribution of αF and γF stems from regime II only.
Figure 7 shows the response to a fiscal policy shock and figure 8 the response to a
monetary policy shock. Inflation is indeed increasing.

6 Example 2: Application to the data

In this section I take the methodology to the data. Since the FTPL model is too stylized
I introduce another very simple DSGE model: the deep habit model. This model was
employed by Ravn, Schmitt-Grohé, Uribe, and Uuskula (2008) to answer the question
whether a simple model can account for the so-called price puzzle, i.e. the increase of
inflation after a contractionary monetary policy shock. This DSGE model is able to
generate a positive as well as a negative response of inflation after a monetary policy
shock.

I flip the question and explore whether prices increase or decrease after a monetary
policy shock using the methodology set out in this paper. I identify the monetary
policy shock by employing sign restrictions from the DSGE model. The response of
inflation will be left open.

In the remaining part of the section, first the DSGE model is set up and its dynamics
are described. Finally, the DSGE model and the VAR model are estimated jointly.11

6.1 Deep habits model

The DSGE model consists of households, firms and a monetary authority. In the fol-
lowing, these parts of the DSGE model are characterized, the equilibrium is defined and
the impulse response functions are analyzed. All variables and parameters associated
with the deep habits model are labeled with an H.

11The (uncommented) matlab codes are available upon request and will (hopefully) be made available
commented on my webpage soon.

19



6.1.1 Households

There is a continuum of households indexed by j ∈ [0, 1], which are all identical and
infinitively lived. Household j’s preferences are given by:

U j
0 = E0

∞∑
t=0

βtH

[
1

1− σH
xjH,t −

γH
1 + κH

(hjH,t)
1+κH

]
(62)

xjH,t =

[∫ 1

0

(cjHi,t − θ
d
HcHi,t−1)

1− 1
ηH di

] 1
1−1/ηH

(63)

cHi,t =

∫ 1

0

cjHi,tdj (64)

where βH denotes the discount factor, κH the inverse of the Frisch elasticity of labor
supply, γH a preference weight on households j’s labor supply and xjH,t denotes the
consumption basket. Equation (63) defines the deep habit: consumption of variety i
is related to the past aggregate of this variety. Deep habits therefore imply that the
level of marginal utility of individual goods varies. The aggregate is assumed to be
exogenously given. The parameter θdH measures the importance of the habit.

Demand for cjit is given by:

cjHi,t =

(
PHi,t
PH,t

xjH,t + θdHcHi,t−1

)
, (65)

where PH,t denotes an aggregate price index:

PH,t =

[∫ 1

0

P 1−ηH
Hi,t di

]1/(1−ηH)

. (66)

Households act as monopolistically competitive labor unions in the labor market earning
the wage rate W j

H . They face costs of changing wages ζHw, which are quadratic in the
deviation of nominal wage growth from an index factor π̃Hw,t. The index factor evolves
according to:

π̃Hw,t = ϑHwπ
?
Hw + (1− νHw)πHw,t−1, (67)

where νHw measures the extent of wage indexation.

Households own firms and receive dividends Dj
H,t, and furthermore have access to a

nominal risk-free bond BH yielding the gross nominal interest rate RH .

They maximize utility with respect to the budget constraint:

PH,tx
j
H,t + θdH

∫ 1

0

PHi,tcHi,t−1di+Bj
H,t (68)

= RH,t−1B
j
H,t−1 +W j

H,th
j
H,t +Dj

H,t − PH,t
ζHw

2

(
W j
H,t

W j
H,t−1

− π̃Hw,t

)
.
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6.1.2 Firms

Firms are monopolistically competitive. Firm i produces output using the following
production function:

yHi,t = hHi,t. (69)

Labor input is defined as:

hHi,t =

(∫ 1

0

(hjHi,t)
1−1/ψHdj

)1/(1−1/φH)

. (70)

Given the price W j
H,t for hjH,t, the labor demand function is given by:

hjHi,t =

(
W j
H,t

WH,t

)−ψH
hHi,t, (71)

where the aggregate wage rate WH,t is defined as:

WH,t =

[∫ 1

0

W 1−ψH
Hj,t dj

]1/(1−ψH)

. (72)

Aggregating (71) yields the demand for household j’s labor:

hjH,t =

(
W j
H,t

WH,t

)−ψH
hH,t. (73)

Aggregating across consumers, the demand function for firm i’s product is given by:

cHi,t =

(
PHi,t
PH,t

)−ηH
xH,t + θdHθ

d
HcHi,t−1 (74)

cHi,t =

∫ 1

0

cjHi,tdj

xH,t =

∫ 1

0

xjH,tdj.

From (74) the main mechanism becomes apparent: firms have an incentive to lower
prices today if they expect future demand to be high relative to current demand. Ad-
ditionally, the firm increases its weight on the price elastic term and therefore its price
elasticity of demand.

Firms face quadratic adjustment costs ζHp when changing nominal prices. Firms’ profits
are discounted by the following discount factor:

qH,t = βtH
x−σHH,t

PH,t
.
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The maximization problem of firm i thus reads:

m
PHi,t

axE0 =
∞∑
t=0

qH,tDHi,t (75)

DHi,t = PHi,tcHi,t −WH,thHi,t −
ζHp
2
PH,t

(
PHi,t
PHi,t−1

− π̃H,t
)2

.

Nominal prices are indexed by π̃H,t, which evolves according to:

π̃H,t = νHpπ
?
H + (1− νHp)πH,t−1. (76)

6.1.3 Monetary Policy and market clearing

Monetary policy aims at stabilizing deviations in inflation and output from their steady
state values π?H and y?H . It sets the policy coefficients ρHr, αH,π and αH,y according to
the simple interest rate rule:

RH,t = R?
H+ρH,r(RH,t−1−R?

H)+(1−ρHr)
[
αH,π(πH,t − π?H) + αHy

(
yH,t − y?H

y?H
+ εH,t.

)]
.

(77)
εH,t denotes the monetary policy shock: εH,t ∼ N (0, σHR).

Market clearing implies:

hjH,t =

∫ 1

0

hjHi,tdi (78)

hHi,t =

∫ 1

0

hjHi,tdj (79)

as well as:
cH,t = yH,t. (80)

The aggregate resource constraint is given by:

yH,t = hH,t. (81)

6.1.4 Equilibrium definition

I follow Ravn, Schmitt-Grohé, Uribe, and Uuskula (2008) by concentrating on the
symmetric equilibrium in which all consumers make the same choice over consumption,
set the same wage and all firms set the same prices.

A recursive equilibrium is then defined as follows:
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Definition 1 Given initial values PH,0 > 0 and WH,0, the recursive laws of motion for
price and wage indexation (76) and (67) and a monetary policy, a rational expectations
equilibrium (REE) for RH,t ≥ 1, is a set of sequences {yH,t, cH,t, hH,t, xH,t, wH,t,
PH,t,RH,t}∞t=t0

(i) that solve the firms’ problem (75) with s.t. (74),

(ii) that maximize households’ utility (62) s.t. (73), (68) and a No-Ponzi-scheme
condition,

(iii) that clear the goods market (80) and labor market, i.e. (79) and (78) hold,

(iv) and that satisfy the aggregate resource constraint (81).

The DSGE model is loglinearized around its steady state. An overview of the steady
state and the loglinearized equations are given in Appendix C.1 and C.2 respectively.

6.1.5 Prior distribution of the parameters and impulse response functions

I estimate only those structural parameters crucial for the response of inflation12. For
those parameters, prior distributions are specified which allow for a wide range of
impulse response functions of the deep habits model. The parameters not estimated
are calibrated as in Ravn, Schmitt-Grohé, Uribe, and Uuskula (2008). An overview can
be found in appendix C.3.

6.2 Estimation

In figure 9 the impulse response functions of the DSGE model when drawing from the
prior distribution are plotted.13 The signs of all the impulse response functions except
the response of interest (inflation) are constant, i.e. for every draw from the parameter
distribution of the DSGE model consumption, real wages and output will be decreasing
while the interest rate increases. In order to distinguish the characterization of the shock
from other shocks, I compare the combination of signs with combinations implied by
other common shocks. These shocks are taken from Smets and Wouters (2003). The
sign restriction of the monetary policy shock implied by the deep habits model are
different from the signs of common shocks except for the price markup shock in Smets
and Wouters (2003). Even though it is the shock exhibiting the smallest variance,
I further include adjusted reserves as well as the price index of crude materials into
the VAR model to distinguish the estimated shock (following Mountford and Uhlig

12Ravn, Schmitt-Grohé, Uribe, and Uuskula (2008) also only estimate a subset of the structural
parameters.

13All figures are provided in appendix E.
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(2005)). While the former is restricted to react negativly, the latter is left unrestricted.
Since both variables have no counterparts in the DSGE model, they are not matched.
Overall, the VAR model consists of 7 variables: real GDP, real personal consumption,
real wages, interest rates, adjusted reserves, the GDP deflator and the price index of
crude materials. A complete description of the time series is given in Appendix D. The
prior distribution of the VAR model is specified as a flat prior.

Before the DSGE model is estimated, I perform a Monte Carlo experiment to ensure
the validity of the methodology, the identification and the specification of the sampling
algorithm. The candidate distribution for the vector of deep parameters will be the
prior distribution. In the Monte Carlo experiment I set I = 20 and draw n = 200
times at each iteration. First only a subvector of the parameters of the DSGE model
consisting of θd, η, ζw, and ζp is estimated. The results are displayed in table 2 (columns
6 and 7) of appendix C.3 and show that all parameters are estimated very precisely
around their true values (column 5). This is a very encouraging result, especially since
the prior distribution is not centered around the true value.

Adding more parameters to the vector of estimated parameters has two effects. This is
demonstrated by supplementing the vector of structural parameters with the coefficients
of the Taylor rule (ρHr, αHπ, αHy) and the inflation indexation parameter νHp. On the
one hand, this increases the flexibility of the DSGE model and therefore increases the
ability to fit the impulse response functions of the data. Figure 10 provides plots of the
impulse response function of the DSGE model and the VAR model. Both coincide and,
more importantly, the ’true’ impulse response function for inflation, i.e. the impulse
response function for the parameter vector at which the DSGE model is simulated, is
estimated. On the other hand, as shown in table 2 columns 8 and 9, the precision of
the estimation is slightly blurred.

Given the encouraging results, I take the methodology to the data. At every iteration I
take n = 200 draws, the number of iterations is set to I = 20. Table 2 column 10 and 11
report the mean and the standard deviation of the posterior distribution respectively.
The estimation results for the posterior mean of some of the parameters of the DSGE
model are very similar to those obtained by Ravn, Schmitt-Grohé, Uribe, and Uuskula
(2008)14: ηH = 2.47 (2.48), ζHp = 14.89 (14.47), ζHp = 42.50 (40.89),αHr = 0.01(0.04).
I find slightly different estimates for the deep habit parameter θdH = 0.72 (0.85), the
inflation indexation parameter νHp = 0.1 (0), and the policy coefficients ρHr = 0.81
(0.74) and αHπ = 1.56, (1.26). Figure 12 displays the impulse response functions: since
the parameters of the DSGE model are estimated similarly, the response of inflation is
positive and significant for 68% probability bands.15 However, while the graph indicates
a positive response for the mean response of the VAR model, the uncertainty bands
give rise to the conclusion that a negative response of inflation to a monetary shock is
as likely as positive one.

14For comparison I report their findings in brackets after my estimates.
15It is not significant for 100% probability bands.
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7 Conclusion

This paper has laid out a methodology for identifying the structural shocks of a Vector
Autoregression (VAR) model while at the same time estimating a Dynamic Stochastic
General Equilibrium (DSGE) model that is not assumed to replicate the data-generating
process. To this end it has presented a framework for jointly estimating the parameters
of a VAR model and a DSGE model.

The VAR model is identified based on restrictions from the DSGE model, i.e identifica-
tion relies on restrictions explicitly derived from theory. This ensures consistency of the
identification of the VAR model with the implied structural form of the DSGE model.
Restrictions are formulated as sign restrictions. Thus, the DSGE model serves as a way
to summarize the ideas economists have about the economy. Ideally, it incorporates the
assumptions the researcher wants to discriminate between, but in any case it should be
as agnostic as possible about the response of the variables of interest to the shock of
interest.

The DSGE model is estimated by matching the impulse response functions of the VAR
and of the DSGE, i.e. their implied dynamics. Therefore, it need not be a representation
of the data-generating process. While the shock of interest has to be included, as
well as other shocks necessary to distinguish it, the DSGE model need not be fully
stochastically specified.

The methodology has been first illustrated by means of a Monte Carlo experiment and
has been applied to the data afterwards. In the Monte Carlo experiment, artificial
data has been simulated from a simple fiscal theory of the price level model in which
fiscal policy is active and monetary policy passive. The sign of the response of inflation
to a monetary policy shock has been investigated. Depending on the policy regime,
i.e. the reaction coefficients of the policy rules, the response can either be negative or
positive. The prior distributions of the policy parameters have been chosen such as to
ensure that both regimes and therefore both responses are equally likely. The estimated
impulse response function of the VAR model as well as the posterior distribution of
the parameter of the DSGE model indicate that the methodology works correctly: the
response of inflation shows the ’true’ sign and the posterior distribution of the parameter
of the DSGE model consists solely of policy coefficients from active fiscal and passive
monetary policy.

Finally, the methodology has been used to estimate the response of inflation to a mone-
tary policy shock. As a DSGE model, the deep habits model laid out by Ravn, Schmitt-
Grohé, Uribe, and Uuskula (2008) has been employed. The posterior estimates of the
parameters of the DSGE model are similar or only slightly different from those obtained
by the authors. Correspondingly, I find a positive and on a 68% level significant re-
sponse of inflation to a monetary policy shock. However, while the mean of the impulse
response function of the VAR model is positive, the uncertainty bands indicate that a
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negative response of inflation to a monetary policy is as likely as a positive one.
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A Derivation of the posterior distribution of the

BVAR

A.1 Prior distribution

vec(B)|Σ ∼ N (vec(B0),Σ⊗N−1
0 ) (A-1)

Σ ∼ IW(v0S0, v0) (A-2)

Σ is of size m×m, N0 of size k× k, where k = m ∗ l. The probability density function
(p.d.f.) of vec(B) is given by:

p(B|B0,Σ, N0) = (2π)−mk/2|Σ⊗N−1
0 |−1/2

exp

[
−1

2
(vec(B)− vec(B0))′

(
Σ−1 ⊗N0

)
(vec(B)− vec(B0))

]
= (2π)−mk/2|Σ|−k/2|N0|m/2exp{−

1

2
tr
[
Σ−1 (B −B0)′N0 (B −B0)

]
}.

The p.d.f. of Σ is defined as:

p(Σ|v0S0, v0) = C−1
IW |Σ|

− 1
2

(v0+m+1)exp

[
−1

2
tr
(
Σ−1v0S0

)]
,

where:

CIW = 2
1
2
v0mπ

1
4
m(m−1)

m∏
i=0

Γ

(
v0 + 1− i

2

)
|S0|−

1
2
v0 .

A.2 Likelihood

For

vec(u) ∼ N (0,Σ⊗ I), (A-3)

p(Y |B,Σ) = (2π)−Tm/2|Σ|−T/2exp{−1

2
tr
[
Σ−1(Y −XB)′(Y −XB)

]
}. (A-4)

The kernel can be rewritten as:

(Y −XB)′(Y −XB) = (Y −XB −XB̂ +XB̂)′(Y −XB −XB̂ +XB̂)(A-5)

(Y −XB̂)′(Y −XB̂) + (B − B̂)′X ′X(B − B̂).
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A.3 Posterior

p(Σ, B|Y ) = C−1
IW |Σ|

− 1
2

(v0+m+1)exp

[
−1

2
tr
(
Σ−1v0S0

)]
(A-6)

×(2π)−mk/2|Σ|−k/2|N0|m/2exp{−
1

2
tr
[
Σ−1 (B −B0)′N0 (B −B0)

]
}

×(2π)−Tm/2|Σ|−T/2exp{−1

2
tr
[
Σ−1(Y −XB̂)′(Y −XB̂)

]
}

×exp{−1

2
tr
[
Σ−1(B − B̂)′X ′X(B − B̂)

]
}

Use the formula as stated in Leamer (1978)16:

(B − B̂)′X ′X(B − B̂) (B −B0)′N0 (B −B0) = (B −BT )′NT (B −BT ) (A-7)

×(B −B0)′(X ′X(NT )−1N0)(B −B0),

where:

NT = N0 +X ′X

BT = N−1
T (N0B0 +X ′XB̂)

leads to:

p(Σ, B|Y ) = C−1
IW |Σ|

− 1
2

(v0+m+1)exp

[
−1

2
tr
(
v0Σ−1S0

)]
(A-8)

×(2π)−mk/2|Σ|−k/2|N0|m/2exp{−
1

2
tr
[
Σ−1(B −B0)′(X ′X(NT )−1N0)(B −B0)

]
}

×(2π)−Tm/2|Σ|−T/2exp{−1

2
tr
[
Σ−1(Y −XB̂)′(Y −XB̂)

]
}

×exp{−1

2
tr
[
Σ−1(B −BT )′NT (B −BT )

]
}

p(Σ, B|Y ) = C−1
IW |Σ|

− 1
2

(T+v0+m+1) (A-9)

×exp
[
−1

2
tr

(
Σ−1

(
v0

vT
S0 +

T

vT
Σ̃ +

1

vT
(B −B0)′(X ′X(NT )−1N0)(B −B0)

))]
×(2π)−m(T+k)/2|Σ|−(T+k)/2exp{−1

2
tr
[
Σ−1(B −BT )′NT (B −BT )

]
}.

16Appendix 1, T10
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B Description and solution of the FTPL model

B.1 FTPL Model Setup

UF,t = log(cF,t) + log(mF,t) (A-10)

cF,t +mF,t + bF,t + τF,t = yF +
1

πF,t
mF,t−1 +

RF,t−1

πF,t
bF,t (A-11)

First-order conditions:

1

RF,t

= βF
1

πF,t+1

(A-12)

mF,t = cF
RF,t

RF,t − 1
(A-13)

Government budget constraint:

bF,t +mF,t + τF,t = gF +
MF,t−1

PF,t
+RF,t−1

BF,t−1

PF,t
(A-14)

Monetary authority:

RF,t = αF0 + αFπF,t + θF,t (A-15)

θF,t = ρF1θF,t−1 + εF1,t (A-16)

εF1,t ∼ N(0, σF1) (A-17)

Fiscal authority:

τF,t = γF0 + γbF,t−1 + ψF,t (A-18)

ψF,t = ρF2ψF,t−1 + εF2,t (A-19)

εF2,t ∼ N(0, σF2) (A-20)

B.2 Linearization

x̄x̂t = x̃t.

First equation:

RF,t = αF0 + αFπF,t + θF,t

πF,t+1 = βFαF0 + βFαFπF,t + βF θF,t

π̃F,t+1 = βFαf π̃F,t + βF θF,t
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Second equation:

R̄F R̂F,t =
π̄F
βF
π̂F,t+1

R̃F,t =
π̃F,t+1

βF

mF,t = cF
RF,t

RF,t − 1

m̃F,t = − cF
(R̄F − 1)2βF

π̃F,t+1

m̃F,t = − cF
(R̄F − 1)2βF

(βFαF π̃F,t + βF θF,t)

m̃F,t−1 = − cFαF
(R̄F − 1)2

π̃F,t−1 −
cF

(R̄F − 1)2
θF,t−1

bF,t +mF,t + τF,t = gF +
MF,t−1

PF,t
+RF,t−1

BF,t−1

PF , t

b̃F,t + m̃F,t + τ̃F,t =
m̃F,t−1

π̄F
− m̄F

π̄2
F

π̃F,t +
b̄F
π̄F
R̃F,t−1 −

R̄F b̄F
π̄2
F

π̃F,t +
R̄F

π̄F
b̃F,t−1

b̃F,t −
cFαF

(R̄F − 1)2
π̃F,t +

cF R̄F

(R̄F − 1)π̄2
F

π̃F,t +
R̄F b̄F
π̄2
F

π̃F,t −
cF

(R̄F − 1)2
θF,t + τ̃F,t

=
m̃F,t−1

π̄F
+
b̄F
π̄F
R̃F,t−1 +

R̄F

π̄F
b̃F,t−1

B.3 Simplifying the FTPL model

Define:

− cFαF
(R̄F − 1)2

+
cF R̄F

(R̄F − 1)π̄2
F

+
R̄F b̄F
π̄2
F

=
cF

(R̄F − 1)

(
− αF

(R̄F − 1)
+

cF
βF π̄F

)
+

b̄F
βF π̄F

= ϕF1

− cF
(R̄F − 1)2

= ϕF3

A-4



− 1

π̄F

cFαF
(R̄F − 1)2

+
b̄F
π̄F
αF = −αF

π̄F

[
cF

(R̄F − 1)2
− b̄F

]
= −ϕF2

− 1

π̄F

cF
(R̄F − 1)2

+
b̄F
π̄F

= − 1

π̄F

[
cF

(R̄F − 1)2
− b̄F

]
=
−ϕF2

αF
= −ϕF4

This yields:

b̃F,t + ϕF1π̃F,t + ϕF3θF,t − (β−1
F − γF )b̃F,t−1 + ψF,t + ϕF4θF,t−1 + ϕF2π̃F,t−1 = 0(A-21)

b̃F,t + ϕF1π̃F,t + ϕF3θF,t + ψF,t = (β−1
F − γF )b̃F,t−1 − ϕF4θF,t−1 − ϕF2π̃F,t−1 (A-22)

B.4 Calibration

Following Leeper (1991) the FTPL model is calibrated by setting:

βF = 0.99

c̄F = 0.75

b̄F
ȳF

= 0.4

π̄F = 3.43

ρF1 = 0.8

ρF2 = 0

σF1 = 0.2

σF2 = 0.2
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C Solution of the Deep habits model

C.1 Steady state

R?
H = 1/βH (A-23)

h̄H = 0.3 (A-24)

x̄H = (1− θdH)h̄H (A-25)

c̄H = h̄H (A-26)

λ̄cH = 1/((1− θdH)ηH) (A-27)

λ̄yH = 1 + (θdHβH − 1)λ̄cH (A-28)

w̄H = λ̄yH (A-29)

λ̄hH = w̄H/(x̄
σ
HφH) (A-30)

γH = (x̄−σH w̄H − λ̄h̄HH )/h̄κH (A-31)

C.2 Loglinearized equations

x̄H x̂H,t = c̄H ĉH,t − θdH c̄H ĉH,t−1 (A-32)

γH h̄
κH
H κH ĥH,t = x̄−σHH w̄H(−σH x̂H,t + ŵH,t)− λ̄H λ̂hH,t (A-33)

φH λ̄
h
H h̄H x̄

σ
H(λ̂hH,t+ĥH,t+σH x̂H,t)+ζHw(π̂Hw,t−ˆ̃πHw,t) = h̄Hw̄H(ĥH,t+ŵH,t)+βζHw(π̂Hw,t+1−ˆ̃πHw,t+1)

(A-34)

−σH x̂H,t = R?
HR̂H,t − σx̂H,t+1 − π̂H,t+1 (A-35)

ĉH,t = ĥH,t (A-36)

λ̂yH,t = ŵH,t (A-37)

ĥH,t = ŷH,t (A-38)

λ̄yH λ̂
y
H,t + λ̄cH λ̂

c
H,t = θdHβH λ̄

c
H(−σH x̂H,t+1 + σH x̂H,t + λ̂cH,t+1) (A-39)

ηH λ̄
c
H x̄H(λ̂cH,t + x̂H,t) + ζHp(π̂H,t − ˆ̃πH,t) = c̄H ĉH,t + βHζHp(π̂H,t+1 − ˆ̃πH,t+1) (A-40)
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R̂H,t = ρHrR̂H,t−1 + (1− ρHr)(αHππ̂H,t + αHyŷH,t) + εH,t (A-41)
ˆ̃πH,t = (1− νHp)π̂H,t−1 (A-42)

ˆ̃πHw,t = (1− νHw)π̂Hw,t−1 (A-43)

w̄HŵH,t = w̄HŵH,t−1 + π̂Hw,t − π̂H,t (A-44)

C.3 Calibration and estimation of the deep habits model

Following Ravn, Schmitt-Grohé, Uribe, and Uuskula (2008), calibrated values for the
structural parameters are set as:

R?
H = 1.01

βH = 1/R?
H

φH = 4

κH = 0.5

π?H = 1

σH = 3

π?Hw = 1

νHw = 0.96
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Table 2: Prior distribution, Monte Carlo results and Posterior estimates of the structural parameters for the Deep habits
model. Columns 1-4 specify the name and type of prior distribution with corresponding mean and standard deviation.
Column 5 displays the parameter value for the data that was simulated from the DSGE model. Columns mean1, std1 give
the Monte Carlo estimation results for the small parametrization of the DSGE model, columns mean2, std2 for the full
parametrization. The last two columns display the estimation results from confronting the DSGE model with the data.

Prior distribution Monte Carlo Experiment Posterior distribution
Parameter distribution mean std sim mean1 std1 mean2 std2 mean std

θdH beta 0.5 0.2 0.85 0.84 0.01 0.84 0.01 0.72 0.12
ηH normal 2 0.3 2.5 2.44 0.12 2.11 0.11 2.47 0.60
ζHw normal 40 5 40.9 40.21 1.23 40.60 0.55 42.50 15.87
ζHp normal 7 3 14.5 13.71 1.51 13.50 1.75 14.89 5.08
νHp normal 0.1 0.01 0 - - 0.10 0.01 0.10 0.01
ρHr beta 0.5 0.2 0.7 - - 0.67 0.03 0.81 0.07
αHπ beta 1.5 0.25 1.46 - - 1.40 0.12 1.56 0.68
αHy beta 0.125 0.1 0.1 - - 0.05 0.02 0.01 0.25
σHr normal 2 8 d.o.f. 1 0.6 0.15 0.64 0.13 0.36 0.10
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D Data description

The frequency of all data used is quarterly. The data ranges from 1955.1 to 2009.1.
All series except the Fed Funds rate are in logs. GDP, personal consumption and real
wages are transformed into per capita.

Nominal GDP: This series is BEA NIPA Table 1.1.5. Gross Domestic Product.

Private Consumption: This series is BEA NIPA Table 1.1.5. Personal consumption
expenditures.

Wage: The wage rate is the series COMPNFB, Nonfarm Business Sector: Compensa-
tion Per Hour at the Federal Reserve Board of St. Louis’ website

http://research.stlouisfed.org/fred2/series/COMPRNFB.

Interest Rate: This is the Federal Funds rate taken from

http://research.stlouisfed.org/fred2/series/FEDFUNDS.

Adjusted reserves: This is the adjusted monetary base given by the series adjressl
http://research.stlouisfed.org/fred2/series/ADJRESSL.

PPIC: This series is http://research.stlouisfed.org/fred2/series/PPICRM.

Real GDP: This series is BEA NIPA Table 1.1.6. Real Gross Domestic Product.

Implicit GDP Deflator: The implicit GDP deflator is calculated as the ratio of
Nominal GDP to Real GDP

Civilian Population: This is a quarterly measure for the population given by the
respective average of the monthly values of the series CNP16OV, Civilian Non-
institutional Population at the Federal Reserve Board of St. Louis’ website
http://research.stlouisfed.org/fred2/. The numbers have been converted from
thousands to billions.

E Figures
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Figure 1: Prior distribution FTPL model
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Figure 2: Prior Bayesian IRF for a fiscal policy shock regime I in the FTPL model
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Figure 3: Prior Bayesian IRF for a monetary policy shock regime I in the FTPL model
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Figure 4: Prior Bayesian IRF for a fiscal policy shock regime II in the FTPL model
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Figure 5: Prior Bayesian IRF for a monetary policy shock regime II in the FTPL model
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Figure 6: Posterior distribution FTPL model
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Figure 7: Estimated Bayesian IRF for a fiscal policy shock in the FTPL model: VAR
model (black line) vs. DSGE model (dashed line).
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Figure 8: Estimated Bayesian IRF for a monetary policy shock in the FTPL model:
VAR model (black line) vs. DSGE model (dashed line).
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Figure 9: Impulse response function of the deep habits model drawing from the prior
distribution of deep parameters (100 % probability bands).
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Figure 10: Impulse response functions of the deep habits model (dashed line) versus
VAR model with simulated data (68 % probability bands).
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Figure 11: Prior distribution (white) vs. Posterior distribution (black). Monte-Carlo
experiment deep habits model.
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Figure 12: Posterior distribution of impulse response functions of the deep habits model
(dashed line) versus VAR model (solid line) (68 % probability bands).
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Figure 13: Prior distribution (white) vs. Posterior distribution (black). deep habits
model.
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