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Abstract

The paper addresses the issue of forecasting a large set of variables using multi-

variate models. In particular, we propose three alternative reduced rank forecasting

models and compare their predictive performance for US time series with the most

promising existing alternatives, namely, factor models, large scale Bayesian VARs,

and multivariate boosting. Speci�cally, we focus on classical reduced rank regression,

a two-step procedure that applies, in turn, shrinkage and reduced rank restrictions,

and the reduced rank Bayesian VAR of Geweke (1996). We �nd that using shrinkage

and rank reduction in combination rather than separately improves substantially the

accuracy of forecasts, both when the whole set of variables is to be forecast, and for

key variables such as industrial production growth, in�ation, and the federal funds

rate. The robustness of this �nding is con�rmed by a Monte Carlo experiment based

on bootstrapped data. We also provide a consistency result for the reduced rank

regression valid when the dimension of the system tends to in�nity, which opens the

ground to use large scale reduced rank models for empirical analysis.

Keywords: Bayesian VARs, factor models, forecasting, reduced rank.
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1 Introduction

Forecasting future developments in the economy is a key element of the decision process

in policy making, consumption and investment decisions, and �nancial planning. While

some macroeconomic variables are of particular interest, e.g., GDP growth, in�ation

or short term interest rates, the attention is more and more focusing on a larger set of

indicators, in order to obtain an overall picture of the expected evolution of the economy.

Recently there has been a boost in the developments of econometric methods for

the analysis of large datasets, starting with the pioneering work of Forni et al. (2000)

and Stock and Watson (2002a, 2002b). The key econometric tool in this context is the

factor model, where each of a large set of variables is split into a common component,

driven by a very limited number of unobservable factors, and an idiosyncratic component.

From a forecasting point of view, the idea is to use the estimated factors for predicting

future developments in, possibly, all the many variables under analysis. In practice,

factor models have produced fairly accurate forecasts when compared with standard

benchmarks, such as AR or VAR based predictions, for several countries and di¤erent

macroeconomic variables, see e.g. the meta analysis in Eickmeier and Ziegler (2006).

The good performance of factor models has stimulated a search for alternative meth-

ods with further enhanced predictive power, see e.g. the overview in Stock and Watson

(2006). These can be classi�ed into methods for variable selection, such as LASSO (Tib-

shirani,1996, De Mol et al. 2006), or boosting (Bai and Ng 2009, Bühlmann, 2006, Lutz

and Bühlmann 2006), or bagging (Breiman 1996, Buhlmann and Yu 2002, Inoue and

Kilian 2004); Shrinkage estimators, such as ridge regression (De Mol et al. 2006) or

Bayesian VARs in the spirit of Doan, Litterman and Sims (1984) (e.g. Banbura et al.,

2007); and pooling procedures, where a large set of forecasts from alternative, possibly

small scale, models are combined together, see e.g. the survey in Timmermann (2006).

Surprisingly, most existing research has used large datasets only as predictors for a

small number of key macroeconomic variables, not considering the issue of forecasting

all the series in the dataset itself. As a result, most of the contributions cited above

are based on a single equation approach. In this paper we focus on forecasting all the

variables in a large dataset using multivariate models. The focus on the multivariate

forecasting performance of the methods distinguishes the results of this paper from many

others in the large data set literature, although for completeness we also report results

for some key macroeconomics variables.

We propose three additional forecasting methods and evaluate their performance in

forecasting a large US macroeconomic dataset, comparing them with the most promising
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existing alternatives, namely, large scale Bayesian VARs (BVAR), multivariate boosting

(MB), and the Stock andWatson (2002a, b) factor model (SW). The proposed forecasting

methods are based on rank reduction. Reduced rank regressions have a long history in

the time series literature but have been so far only applied in small models, see e.g. Velu

et al. (1986), Reinsel (1983), Reinsel and Velu (1998), Camba-Mendez et al. (2003).

RR represents a natural extension of the methods proposed so far in the large dataset

literature. Hoogerheide and Van Dijk (2001) show how simultaneous equation models

and vector error correction models are restricted instances of a general RR. Also factor

models can be obtained as a special case of RR.

The �rst method considered is classical Reduced Rank Regressions (RR) along the

lines of Velu et al. (1986). For the RR regression we provide a novel result on consistency

and rate of convergence when the number of variables tends to in�nity. The consistency

result opens the grounds to using large scale RR for empirical analysis. The second

method aims at enhancing further the parameter dimensionality reduction needed in

large scale VARs by combining reduced rank restrictions with Bayesian shrinkage. In

this setting Geweke (1996) has proposed a model which imposes the rank reduction on

the prior as well as on the posterior mean. While Geweke (1996) application focuses on

small sized system, for the �rst time we put the model at work within a large data-set

setting. We label this method Bayesian Reduced Rank Regression (BRR). Finally we

propose a new method which retains the bene�t of rank reduction and shrinkage without

paying the high computational cost involved in the BRR. The method, which we label

RRP (Reduced Rank Posterior) applies rank reduction on the posterior estimates of a

Bayesian VAR and as we shall see it can produce substantial gains in forecast accuracy.

Being multivariate, the proposed reduced rank methods are well suited for medium

to large datasets of the dimension typically of interest for central banks, i.e. about 50-60

variables. All the methods are potentially suited to deal with larger datasets, but some

of them pose serious computational burdens. In particular, as the number of regressors

grows, RR can encounter numerical problems in the estimation of the covariance matrix

of the unrestricted residuals, MB involves estimating a growing number of candidate

models, while BRR requires simulations involving in each step the inversion of larger

matrices. For that very reason in our empirical application we use 52 US macroeconomic

variables taken from the dataset provided by Stock and Watson (2005). The series have

been chosen in order to represent the main categories of indicators which are relevant

for central banks in understanding and forecasting developments in the macroeconomy.

Basically, we have discarded from the original dataset of Stock and Watson (2005) those

variables containing roughly the same information as others, such as the disaggregated
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sectoral data on industrial production and prices. These variables are not of particular

interest to be forecasted as they are highly collinear, which may also create serious

problems in estimation.

We can anticipate that RRP and BRR produce fairly good forecasts, more accurate

than those of competing methods on average across several US macroeconomic variables,

when measured in the terms of mean square or mean absolute forecast error. Moreover,

they also perform well for key variables, such as industrial production growth, in�ation

and the short term interest rate. This is encouraging evidence that using shrinkage and

rank reduction in combination improves substantially the accuracy of forecasts.

The paper is structured as follows. In Section 2 we describe in more details the

forecasting models under comparison, with a special focus on the di¤erent types of RR.

In Section 3 we present the results of the forecast comparison exercise. In Section 4 we

assess their robustness and conduct a Monte Carlo experiment with bootstrapped data.

Section 5 concludes.

2 Forecasting Models

We are interested in forecasting the N -vector process Yt = (y1;t; y2;t; :::; yN;t)0, where N is

large, using aNp-dimensional multiple time series of predictorsXt = (Yt�1; Yt�2; :::Yt�p)0,

observed for t = 1; :::; T . The baseline model is therefore a VAR(p):

Yt = A1Yt�1 +A2Yt�2 + :::+ApYt�p + et; (1)

where means and trends have been removed1. De�ning B = (A1; A2; :::Ap)0 equation (1)

can be compactly written as:

Yt = B
0Xt + et: (2)

It is convenient to rewrite the VAR in (2) as a multivariate regression:

Y = XB + E: (3)

In equation (3) the observations are by row, and equations by column, so Y = (Y1; :::; YT )0

is a T � N matrix of dependent variables, X = (X1; :::; XT )
0 is a T � M matrix of

explanatory variables, where M = Np.

1 In our application we transform the variables to stationarity and standardize them prior to estimation
and forecasting. The forecasts of the original variables are then computed by inverting the transformation
and reattributing means and variances. The transformation is computed rollingly, i.e. by using only the
data in each of the rolling samples used for estimation. See Section 3.2 for further details.
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The matrix E is the matrix of disturbances, which are assumed to be independent and

identically distributed across observations; that is, taking E = (e1; e2; :::; eT )0, then ei �
IIDN(0;�). We de�ne r as the rank of the M � N matrix of coe¢ cients B, where of

course r � N:
We focus on 6 forecasting models: reduced rank regression (RR), Bayesian VARs

(BVAR), multivariate boosting (MB), Bayesian reduced rank regression (BRR), reduced

rank Posterior (RRP), and factor models (SW).

SW and RR are both based on the idea of reducing dimensionality by imposing a

structure which summarizes the information contained in a large set of predictors by

focussing on some relevant linear combinations of them. An alternative route to obtain

a more parsimonious model might be to impose exclusion restrictions on the predictors.

However, excluding some variables from a regression is likely to be relatively ad hoc,

unless a coherent statistical framework is adopted to do so. BVAR and MB provide

a solution to this problem. Finally, BRR and RRP apply both shrinkage and rank

reduction. In the latter case the reduced rank is imposed after the estimation of a

BVAR has been performed. In the former case, the rank reduction is imposed on the

prior as well as on the posterior mean. Each forecasting model is described in detail in

the following six subsections.

2.1 Reduced Rank Regression (RR)

It is often the case that estimation of VAR(p) models results in a large number of

insigni�cant coe¢ cients. Therefore, in order to obtain a more parsimonious model, one

might impose rank reduction, i.e. to assume that rk(B0) = r < N . This is equivalent to

the parametric speci�cation:

Yt = �

 
pX
i=1

�0iYt�i

!
+ et = ��

0Xt + et; (4)

where � and � = (�
0
1; :::; �

0
p)
0 are respectively a N � r and a M � r matrices. The

model (4) was studied by Velu et al. (1986). Ahn and Reinsel (1988) suggested a more

general speci�cation where the rank of the coe¢ cient matrix on each lagged vector of

the explanatory variables may di¤er. However, this generalization creates computational

problems in the large N case. Therefore, we focus on (4).

In equation (4), it is assumed that the true rank of the matrices � and � is identical

and equal to r which is thus referred to as the rank of the system (4). However, note

that the ranks of �i, i = 1; :::; p, need not equal r; in particular, it can be rk(�i) � r,
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i = 1; :::; p.

An interesting special case of the RR model (4), which resembles the autoregressive

index model of Reinsel (1983), results if �i = ��Ki with rk(��) = r for some (r; r)

matrix Ki which need not be full rank, i = 1; :::; p, although K = (K 0
1; :::;K

0
p)
0 is. Hence,

� = (Ip 
 ��)K and ��0i = �i�
0
�, where �i = �K

0
i, in which case �

0
�yt�i, i = 1; :::; p, may

be interpreted as dynamic factors for yt.

Given the assumed system rank r, Velu et al. (1986) suggested an estimation method

for the parameters � and � that may be shown to be quasi-maximum likelihood2 (see

also Reinsel and Velu, 1998). Denote the sample second moment matrices by SY Y
= T�1Y 0Y; SY X = T�1Y 0X; SY X = S0XY ; and SXX = T�1X 0X. Hence, the co-

variance matrix of the unrestricted LS residuals, SY Y;X = SY Y � SY XS�1XXSXY is the
unrestricted quasi-ML estimator of the error process variance matrix. Additionally,

let f�gTt=1; �21 � �22 � ::: � �2N � 0 denote the ordered squared eigenvalues of the

N � N matrix S�1=2Y Y;XSY XS
�1
XXSXY S

�1=2
Y Y;X with associated eigenvectors fvigTt=1 subject

to the normalization v0ivj = 1 if i = j and 0 otherwise, and let V̂ = (v1; v2; :::; vr). The

quasi-ML estimators for � and � are given by �̂ = S1=2Y Y;X V̂ and �̂ = S�1XXSXY S
�1=2
Y Y;X V̂ ,

so that B̂0 = S1=2Y Y;X V̂ V̂
0S
�1=2
Y Y;XS

�1
XXSXY .

2.1.1 Some consistency results for RR

This section provides some novel theoretical results on the parameter estimates of the

Reduced Rank Regression. In particular we provide consistency and rate of convergence

results for the coe¢ cients of an in�nite dimensional RR model.3 The proof does not

rely on any assumption of a factor structure, and extends to the case with in�nite lags.

Before stating the main theorem, we need to state a theorem about the consistency of

the underlying in�nite dimensional VAR.

We make the following assumptions:

Assumption 1 (a) j�max(A)j < 1 where

A =

0BBBB@
A1 ::: ::: Ap

I 0 ::: 0

::: ::: ::: :::

0 ::: I 0

1CCCCA (5)

2The method is quasi-maximum likelihood as no Gaussian distribution is assumed.
3By in�nite dimensional we mean that the dimension of the system (i.e. the number of variables)

tends to in�nity.
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and j�max(:)j denotes the maximum eigenvalue of a matrix in absolute value.

(b) cmax(A) < 1; rmax(A) < 1 where cmax(:) and rmax() denote the maximum

column and row sum norm of a matrix.

(c) et is an i.i.d. (0;�e) sequence with uniformly �nite fourth moments and cmax(�e) <

1.

Denote the transpose of the i-th row of (A1; A2; :::; Ap) by Ai. We then have the

following Theorem on the consistency of the in�nite dimensional VAR coe¢ cients:

Theorem 1 As N and T diverge, and under assumption 1 ,



Âi �Ai


2 = op(T�a) for

all i = 1; :::; N; and for all a < 1=2, as long as N = o
�
(T= ln(T ))1=2

�
.

Proof. See Appendix.

Next, we consider a reduced rank approximation to the VAR model. To keep things

general, we consider the case where a singular value decomposition is used to decompose

(A1; A2; :::; Ap) as OK where O and K0 are N � r and Np� r matrices respectively, for
some r < N . The sample counterpart of this decomposition is given by (Â1; Â2; :::; Âp) =

ÔK̂. Then, we have the following Theorem on the consistency of the in�nite dimensional
RR coe¢ cients:

Theorem 2 As N and T diverge, and under assumption 1 , each element of O and K0

is op(T�a+2b)-consistent for O and K0, for all 0 < a < 1=2, and 0 < b < 1=4, 2b < a, as
long as N = o

�
T b
�
.

Proof. See Appendix.

Note that the above analysis straightforwardly implies that a lag order, p = pT ,

that tends to in�nity is acceptable. In this case, the above result holds as long as

NpT = o
�
(T= ln(T ))1=2

�
, which means that our results extend to in�nite dimensional

VAR and RR possibly with in�nite lags too. The above consistency result opens the

grounds to using large dimensional RR models for empirical analysis.

2.2 Bayesian VAR (BVAR)

Bayesian methods allow to impose restrictions on the data, but also to let the data

speak. The exclusion restrictions are imposed as priors, so if some a-priori excluded

variable turns out to be relevant in the data, the posterior estimate would contain such

information. This provides a way of solving the curse of dimensionality problem without

resorting to ad-hoc exclusion of some variables.
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In this paper we implement a Normal-Inverted Wishart version of the so-called Min-

nesota prior of Doan et al. (1984) and Litterman (1986). This version of the prior

was proposed by Kadiyala and Karlsson (1997) and allows both to gain substantially in

terms of computational e¢ ciency and to avoid the inconvenient assumption of �xed and

diagonal residual variance matrix. The use of this prior for forecasting macroeconomic

variables with large datasets has been recently advocated by Banbura et al. (2007), who

however focus on a smaller set of key macroeconomic variables when evaluating forecast-

ing performance. A version of this prior has also been used by Canova and Ciccarelli

(2003) to estimate a panel VAR for the G7 countries. However the number of variables

in the model estimated by Canova and Ciccarelli (2003) is considerably smaller with

respect to our case, as they consider three variables for each G7 country, for a total of

21 variables.

The Minnesota prior shrinks parameter estimates towards a random walk represen-

tation and it has proven to be robustly good in forecasting. In particular, the prior

expectations and variances of A1; A2; :::; Ap under the Minnesota prior are:

E[A
(ij)
k ] =

(
1 for j = i; k = 1

0 otherwise
; V [A

(ij)
k ] =

(
� 1
k2

for j = i; 8 k
� 1
k2
��2i �

�2
j for j 6= i; 8 k

;

(6)

while the residual variance matrix � is �xed and diagonal: diag(�21; :::; �
2
N ): The hyper-

parameter � measures the overall tightness of the prior, and we will return to it later

in this subsection. The factor 1=k2 is the rate at which prior variance decreases with

increasing lag length while the ratio �2i =�
2
j accounts for the di¤erent scale and variability

of the data. Finally, the parameter � imposes additional shrinkage on the coe¢ cients

attached to a regressor when it is not a lag of the dependent variable in a given equation.

Kadiyala and Karlsson (1997) propose a version of this prior which allows to avoid

the inconvenient assumption of a �xed and diagonal residual variance matrix and to gain

substantially in terms of computational e¢ ciency, at the cost of setting � = 1. The prior

has a Normal-Inverted Wishart form:

� � iW (v0; S0); Bj� � N(B0;�
 
0); (7)

where the parameters v0; S0; B0;
0 are such that the expectation of � is equal to the

�xed residual covariance matrix of the Minnesota prior, and the prior expectation and

variance of B is that of the Minnesota prior (with � = 1). Moreover, as we forecast after

transforming variables to get stationarity, we set E[A(ii)1 ] = 0 rather than E[A(ii)1 ] = 1 to

8



be consistent with the random walk assumption on the original variables. This provides

us with the following prior expectations and variances for A1; A2; :::; Ap:

E[A
(ij)
k ] = 0; V [A

(ij)
k ] = �

1

k2
�2i �

�2
j (8)

The hyperparameter � measures the tightness of the prior: when � = 0 the prior is

imposed exactly and the data do not in�uence the estimates, while as �!1 the prior

becomes loose and the posterior estimates approach the OLS estimates. The conditional

posterior distributions are also of the Normal-Inverted Wishart form:

�jY � IW (�v; �S); Bj�; Y � N( �B;�
 �
); (9)

where the bar denotes that parameters are those of the posterior distribution. Zellner

(1973) shows that integrating out � it is possible to obtain the marginal posterior distri-

bution of B, which is a matricvariate t: BjY � MT (�
�1; �S; �B; �v) with posterior mean
�B = (
�10 + X 0X)�1(
�10 B0 + X

0Y ). The posterior mean �B and the other posterior

moments can also be obtained by implementing the prior in the form of dummy variable

observations.4

2.3 Bayesian Reduced Rank Regression (BRR)

The BVAR and RR described in the previous subsections apply respectively shrinkage

and rank reduction. Alternatively we could think of imposing both rank reduction and

shrinkage on the VAR.

Bayesian analysis of reduced rank regression has been introduced by Geweke (1996).

While Geweke (1996) focuses on small sized system, for the �rst time we put the model at

work within a large data-set setting. As for the reduced rank case, the M �N matrix of

coe¢ cients B is assumed to have rank r, where r < N: This rank reduction assumption

is equivalent to the parametric speci�cation

Y = X	�+ E (10)

4 In particular, the prior can be implemented by adding Td dummy observations Yd and Xd to the
system in (3) so that it becomes Y � = X�B + E�, where Y � = (Y 0 Y 0

d)
0 and E� = (E0 E0

d)
0 are

(T +Td)�N matrices, and X� = (X 0 X 0
d)
0 is a (T +Td)�M matrix. The dummy observations Yd and

Xd have to be chosen such that their moments coincide with the prior moments B0 = (X 0
dXd)

�1X 0
dYd,


0 = (X
0
dXd)

�1, S0 = (Yd�XdB0)
0(Yd�XdB0), and v0 = Td�M�N�1. The posterior mean �B is then

given by the OLS estimate of the augmented system (given by the usual formula �B = (X�0X�)�1X�0Y �).
For details see Banbura et al. (2007) and Kadiyala and Karlsson (1997).
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with 	 and � being respectively M � r and r �N matrices. To identify these matrices

Geweke (1996) proposes the following normalization5:

� = [Ir j ��]: (11)

Given that normalization a proper prior is:

j � j�(N+v0+1) exp
�
�1
2
trS0�

�1
�
exp

�
��

2

2
(tr��0�� + tr	0	)

�
; (12)

namely a product of an independent Wishart distribution for � with v0 degrees of free-

dom and matrix parameter S0, and independent N(0; ��2) shrinkage priors for each

element of the coe¢ cient matrices �� and 	. The conditional posterior distribution of

� is:

� j (��;	; X; Y ) � IW [T + v0; S0 + (Y �XB)0(Y �XB)]: (13)

The conditional posterior distributions of the coe¢ cients ��,	, are multivariate normals.

In particular, the conditional posterior distribution of �� is:

vec(��) j (	;�; X; Y ) � N [�� � vec(�̂�); ��]; (14)

where:

�̂� = (	0X 0X	)�1	0X 0Y1�
12(�22)�1 � �12(�22)�1 (15)

+ (	0X 0X	)�1	0X 0Y2;

�� = [(�
22)�1 
 (	0X 0X	)�1 + �2Ir(N�r)]

�1; (16)

and where Y = [Y1 j Y2] is a partitioning of Y into its �rst r and last N � r columns
and where �ij denotes the partitioning of ��1 into its �rst r and last N � r rows and
columns.

The conditional posterior distribution of 	 is:

vec(	) j (�;�; X; Y ) � N [�	 � vec(	̂); �	]; (17)

5For a discussion of the role of normalization in reduced rank models see e.g. Kleibergen and van
Dijk (1994, 1998) and Hamilton et al. (2007).
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where:

	̂ = B̂[�+ +�0 ~�21(~�11)�1]; (18)

�	 = [~�
11 
X 0X + �2IMr]

�1; (19)

and where B̂ is the OLS estimator, �+ is the generalized inverse of �, �0 is column-wise

orthogonal to �+, and where ~�ij denotes the partitioning of ~��1 = ([�+ �0]0�[�+ �0])�1

into its �rst r and last N � r rows and columns.
Unconditional posterior distributions can be simulated by using a Gibbs sampling

algorithm which draws in turn from (14), (17), and (13).6 See Geweke (1996) for details.

2.4 Reduced Rank BVAR Posterior (RRP)

The BRR has the shortcoming of being computationally challenging when the assumed

rank is high, as the estimation of this model requires simulation involving inversion

of Mr -dimensional matrices. We propose a new method which retains the bene�t of

rank reduction and shrinkage without paying the high computational cost involved in

the BRR. The method, which we label RRP (Reduced Rank Posterior) applies rank

reduction on the posterior estimates of a Bayesian VAR and, as we shall see, it can

produce substantial gains in forecast accuracy.

The implementation of the method is straightforward. First, the system is estimated

under the prior distribution described by equation (7), then a rank reduction is imposed

as follows. Let �B be the posterior mean of B and let �B = U�V be its singular value

decomposition. Collecting the largest r singular values and associated vectors in the

matrices �� = diag(�1; �2; :::; �r); U� = (u1; u2; :::; ur) and V � = (v1; v2; :::; vr) a reduced

rank approximation (of rank r) of the posterior mean is given by:

�B�r = U
���V �; (20)

which is our RRP estimator.
6 In our application we draw 1100 draws, we drop the �rt 100 as burn in and then we keep each second

draw to reduce the autocorrelation inherent to the MCMC scheme. This leaves us with a total of 500
valid draws. Computation time (for producing one forecast) varies with the assumed rank of the system.
The longest computation time is required by the system with rank r=10 and it takes about 4 minutes
on a 3.33GHz Intel Core Duo processor.
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2.5 Multivariate Boosting (MB)

The Minnesota prior reduces the dimensionality of the system by setting (a priori) to

zero all but one coe¢ cient in each equation. An alternative method to reach parsimony

by eliminating some regressors is boosting. Theoretical results for boosting applied to

multivariate models have been developed by Lutz and Bühlmann (2006), while its use

for macroeconomic forecasting has been recently advocated by Bai and Ng (2009) within

a univariate approach.

Boosting is a procedure that estimates an unknown function f(Xt) as a sum of �m

estimated functions � �mm=1ĝ
(m): f̂(Xt) = f̂ (0)+�� �mm=1ĝ

(m). The estimated functions ĝ(m)

are derived using a base learner, which is a �tting procedure based on the minimization

of some loss function. The algorithm starts with an empty model and than at each

iteration it adds the ĝ(m) providing the smallest loss. It is clear that boosting can also

be viewed as a variable selection algorithm.

If the function of interest is the conditional mean f(Xt) = E(Yt j Xt), the loss
function is the residual sum of squares, and least squares regression is used as �tting

procedure, then boosting is basically a stepwise regression which starts with the empty

model and adds in each step the most signi�cant covariate. In this case the algorithm

works roughly as follows. At each iteration the residual is computed as the di¤erence

between the actual data and the �tted value up to that iteration. Then this residual is

regressed on all candidate regressors taken individually, and the regressor producing the

smallest sum of squared residuals is chosen. The �tted value from this regression (ĝ(m))

is then added to the cumulative sum before moving on to next iteration.

In this paper we use Multivariate Boosting algorithm with quadratic loss function

(L2 Boosting) and componentwise least square base learner. Let y(i); x(i); y(j); x(j) denote

the i-th row vectors and j-th column vectors of Y; X : The algorithm works as follows:

� Step 1. Start with the empty model f̂ (0)j =�Yj ; j = 1; :::; N

� Step 2. For m = 1; :::; �m

� a) Compute the "current" residuals r(i) = y(i) � f̂
(m�1)
i ; i = 1; :::; T:

� b) Fit the base learner to r(i) and derive ĝ(m); i = 1; :::; T:

� Regress the "current" residuals r(i) on each regressor x(j); j = 1; :::;M;

obtaining b̂(ij)

� For each regressor j and time i compute the loss function SSR(b̂(ij))
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� Pick the regressor j� and the sample point i� which minimized the loss
function and set ĝ(m) = b̂(i�j�)xi�

� Step 3. Update f̂ (m) = f̂ (m�1) + �ĝ(m), where � is a shrinkage parameter.

The loss function used in step 2 is:

L(B) =
1

2

TX
i=1

(r0(i) � x
0
(i)B)�

�1(r0(i) � x
0
(i)B)

0 (21)

with ��1 = I.

The base learner used in step 2 �ts the linear least squares regression with one

selected covariate x(j) and one selected pseudo-response r0(i) so that the loss function in

(21) is reduced most:

ŝ; t̂ = argmin
1�j�M;1�k�N

fL(B);Bjk = �̂jk; Buv = 0 8 u; v 6= j; kg

Thus, the learner �ts one selected element of the matrix B as follows:

�̂jk =

NX
v=1

r0vxj�
�1
vk

x0jxj�
�1
kk

; (22)

B̂ŝt̂ = �̂ŝt̂; B̂jk = 0 8 jk 6= ŝt̂: (23)

Corresponding to the parameter estimate there is a function estimate ĝ`(�) de�ned as
follows: for x = (x1; :::; xp),

ĝ`(x)=

(
�̂ŝt̂ for ` = t̂;

0 otherwise;
` = 1; :::; N: (24)

The algorithm terminates when the speci�ed �nal iteration �m is reached. Lutz and

Bühlmann (2006) provide a proof that this procedure can handle cases with in�nite N

and is able to consistently recover sparse high-dimensional multivariate functions.

The use of the shrinkage parameter � has been �rst suggested by Friedman (2001)

and is supported by some theoretical arguments (see Efron et al. 2004, and Bühlmann

and Yu 2005). The boosting algorithm depends on � but its choice is insensitive as

long as � is taken to be "small" (i.e. around 0:1). On the other hand, the number
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of boosting iterations �m is a much more crucial parameter. Indeed, �m is a pivotal

quantity regulating the trade-o¤ between parsimony and �t: small values of �m yield

very parsimonious speci�cations, while as �m goes to in�nity the algorithm approaches a

perfect �t. Finally, in our application we slightly depart from the algorithm described by

Lutz and Bühlmann (2006), as we always include the �rst lag of the dependent variable

in the model.

2.6 Factor Models (SW)

Finally, a largely used method to overcome the curse of dimensionality problem arising in

forecasting with large datasets is using a factor model. In a factor model, the information

contained in the predictors Xt is summarized by a set of K factors:

Xt = �Ft + ut (25)

where Ft is a K-dimensional multiple time series of factors and � a N � K matrix of

loadings.

The forecast for yt+1 given the predictors can be obtained through a two-step pro-

cedure, in which in the �rst step the sample data fXtgTt=1 are used to estimate a time
series of factorsfF̂tgTt=1 via principal components, and then the forecasts are obtained by
projecting yi;t+1 onto F̂t and yi;t. Stock and Watson (2002a,b) develop theoretical results

for this two-step procedure and show that under a set of moment and rank conditions

the mean squared error of the feasible forecast asymptotically approaches that of the

optimal infeasible forecast for N and T approaching in�nity, see Bai and Ng (2006) for

additional details. There are two ways to produce a h-step ahead forecast. First, one

can use direct projection of the data onto the space spanned by the factors, i.e. one

can produce the h-step ahead forecast as yi;t+h = â1F̂t +â2yi;t, where â1 and â2 are the

coe¢ cients of a regression of yi;t onto F̂t�h and yi;t�h. Alternatively, one can develop

a vector time series model for the factors F̂t and use it to forecast, in turn, F̂t+h and

yi;t+h. In this paper we use the latter strategy for comparability with the other models.

2.7 Summary of the models

Before moving on to the forecasting exercise it is worth to brie�y summarize the main

characteristics of the multivariate models under analysis. We have considered six alter-

native forecasting models, each of them aiming at summarizing in an e¢ cient way the

information contained in a large data set. One way to enhance parsimony is to impose
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a reduced rank structure on the system (RR). Factor models (SW) can be considered

a special case of RR, as they impose a particular type of rank reduction, i.e. a factor

structure on the data. A characteristic of these models is that parsimony is obtained by

reducing the size of the overall system, but they do not take a precise stance on particular

regressors that might or might not be part of the data generating process. Alternatively,

one can think of selecting the relevant regressors from a pool of candidates. Methods

in this spirit are the BVAR and the MB. In particular, the MB can be considered a

pure selection device in which a given regressor is either included or not included in

the regression function. A problem of the MB is that it has considerable computational

costs, even with a medium-sized dataset. On the other side, the BVAR is a somewhat

smoother selection device, as it includes all the regressors, assigning to them di¤erent

weights depending on the data. Finally, BRR and RRP combine both these strategies,

using both rank reduction and Bayesian shrinkage, and as we shall see this leads to gains

in forecast accuracy. A shortcoming of the BRR is that it is computationally intensive,

so we proposed a new method (RRP) that retains the bene�t of rank reduction and

shrinkage without paying the high computational cost involved in the BRR.

3 Forecast Comparison

3.1 Data

We analyze the overall performance of the models described in the previous Section in

forecasting 52 U.S. macroeconomic time series. The data are monthly observations going

from 1959:1 through 2003:12, and are taken from the dataset of Stock andWatson (2005).

The series have been chosen in order to represent the main categories of indicators

which are relevant for central banks in understanding and forecasting developments in

the macroeconomy, trying to be as parsimonious as possible given the computational

bounds posed by the estimation of the competing models. In particular, some of the

models at hand (RR) can not handle cases in which the time dimension is too short

with respect to the cross-sectional dimension (which would be the case given the rolling

scheme used for our forecasting exercise), while some others (BRR, MB) would become

too computationally intensive. To solve this trade o¤ between economic relevance and

parsimony we have removed from the dataset of Stock and Watson (2005) those variables

containing roughly the same information of others, such as the disaggregated sectoral

data on industrial production and prices. These series contain information collinear to

that of their aggregated counterparts, therefore they are both less interesting to forecast,

15



and very likely to create problems of collinearity.

The time series under analysis represent the typical data-set of interest for central

banks, and can be grouped in three broad categories: series related to the real econ-

omy, series related to money and prices, and series related to �nancial markets. In the

�rst group we have series of real output, income, employment, consumption, industrial

production, inventories, sales. The second group comprises price indexes and several

monetary aggregates. The last group includes interest rates on Treasury bills, exchange

rates, and stock indexes.

The series are transformed by taking logarithms and/or di¤erencing so that the

transformed series are stationary. Forecasting is performed using the transformed data,

then forecasts for the original variables are obtained integrating back. Importantly, we

standardize the variables using only the data of the rolling sample used for the estimation,

and not the whole sample, so that no information unavailable at the time of the forecast

is used. In general, growth rates are used for real quantity variables, �rst di¤erences are

used for nominal interest rates, year on year growth rates for price series. For a detailed

summary of the series under analysis and the used transformations see Table 1.

3.2 Forecasting exercise

The forecasting exercise is performed in pseudo real time, using a rolling estimation

window of 10 years. Using a rolling scheme is a convenient way to deal with possible

sample instability (Pesaran and Timmermann, 2005), and keeping �xed the size of the

estimation window shall allow us to use the test proposed by Giacomini and White (2006)

for comparing predicting accuracy. In particular, the scheme starts with estimating all

the models using data from 1960:1 to 1969:12 (notice one year of data was used in order

to compute yearly growth rates for some variables). On the basis of such estimates,

forecasts up to 12-step ahead (i.e. for the period 1970:1-1970:12) are produced and

stored. Then the estimation window is moved forward one month, becoming 1960:2 to

1970:1, and new forecasts are produced for the period 1970:2-1971:1. The scheme goes

on until the forecasts for the period 2003:1-2003:12 are produced. At each point in time

all variables are standardized prior to estimation, and then mean and variance are re-

attributed to the forecasts accordingly. Importantly, we standardize the variables using

only the data of the rolling sample used for the estimation, and not the whole sample,

so that no information unavailable at the time of the forecast is used.

The BIC criterion applied to the BVAR for the 52 variables selects one lag both with

the rolling samples and with the whole sample. However, this result may be driven by
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the high number of parameters to be estimated. To control for this we also applied the

BIC to the more parsimonious reduced rank VAR, with rank set to 1, but the selected

lag length does not change. To evaluate whether there is any loss from such a short

dynamic speci�cation, we also compared the results for the BVAR(1) with those from a

BVAR(13), the speci�cation adopted by Banbura et al. (2007) and we found that the

gains from using a longer lag speci�cation are minor, if any. Therefore, we have used a

one lag speci�cation for all the models.

At each point in time we grid search over the relevant dimensions of the models at

hand: for the SW model we search over the number of factors K, for RR we search over

the assumed rank r, for BVAR the grid is over the tightness �. For the MB we search

over the number of iterations �m and over the rescaling parameter �. For models in which

both shrinkage and rank reduction is used, we grid search contemporaneously on both

these dimensions.7 Then, at each point in time we optimize our forecasts by choosing

the model which minimized the forecast error for each variable and forecast horizon in

the previous 2 years (i.e. 24 periods).

3.3 Comparing predictive accuracy

We will assess predictive accuracy using the multivariate loss function based on the

mean squared forecast error proposed by Christo¤ersen and Diebold (1998). Let Ŷt+h
denote the h-step ahead forecast of the vector Yt, the h-step ahead forecast error is then

given by FEt+h = Yt+h � Ŷt+h. The multivariate mean square forecast error is given by
E[FE0t+h �W � FEt+h]; where W is a matrix of weights which accounts for the fact that

di¤erent series have di¤erent volatilities and predictability. We set the matrix W to be

a diagonal matrix featuring on the diagonal the inverse of the variances of the series to

be forecast. Our measure of forecast accuracy is then given by the trace of the matrix

E[FE0t+h �W � FEt+h], which we label Weighted Trace Mean Squared Forecast Error
(WTMSFE).

We assess predictive accuracy against two di¤erent benchmarks, one univariate, and

the second multivariate. The univariate benchmark is an autoregressive model with lag

length chosen via the BIC information criterion, which we label AR(p�), where p� is

selected for each individual series separately. The lag length p� is chosen for each series

and at each point in time using the rolling samples and a maximum lag of 13. The
7For SW we use K = 1; 2; 3; 6; 10; 25; 50 factors, for RR we use rank r = 1; 2; 3; 6; 10; 25; 50; 52,

for the BVAR we use tightness � = 2:0e � 005; 0:0005; 0:002; 0:008; 0:018; 0:072; 0:2; 1; 500, for MB
we use �m = 2 � 52 � 1; 2 � 52 � 2 iterations and � = 0:05; 0:1; 0:2: For RRP we use � =
2:0e � 005; 0:0005; 0:002; 0:008; 0:018; 0:072; 0:2; 1; 500 and r = 1; 2; 3; 6; 10; 25; 50; 52, for BRR we use
r = 1; 2; 3; 6; 10; 52 and � = 5; 10; 100:
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multivariate benchmark is the baseline Minnesota prior of Doan et al. (1984) with the

standard choice of hyperparameters as in the package Regression Analysis of Time Series

(RATS), and we label it BV AR0.8 9

Beyond considering the overall performance of the models in forecasting all the series

at hand, we also provide results for three key macroeconomic variables, i.e. Industrial

Production (IPS10), CPI In�ation (PUNEW ), and the Federal Funds Rate (FY FF ).

We evaluate the accuracy in forecasting an individual variable by using the Mean Squared

Forecast Error (MSFE). 10 For the individual series, we assess the statistical signif-

icance of the di¤erences in the forecasts produced by the various models by using the

Giacomini and White (2006) test. This is a test of equal forecasting method accuracy

and as such can handle forecasts based on both nested and non-nested models, and re-

gardless from the estimation procedures used in the derivation of the forecasts, including

Bayesian methods.

3.4 Results

In this section we present the results of our forecasting exercise. Results against the

AR(p�) benchmark are displayed in Table 2, while results against the BV AR0 bench-

mark are displayed in Table 3. The tables contain 6 panels each corresponding to a

di¤erent forecast horizons, respectively 1, 2, 3, 6, 9, and 12 month-ahead. The �rst

line of each panel reports the Relative WTMSFE (RWTMSFE), i.e. the ratio of the

Weighted Trace Mean Squared Forecast Error (WTMSFE) of a given model against the

WTMSFE of the benchmark. A RWTMSFE below one signals that the model out-

performs the benchmark in forecast accuracy. The remaining lines in each panel of the

tables focus on some key macroeconomic variables, i.e. Industrial Production (IPS10),

CPI In�ation (PUNEW), and the Federal Funds Rate (FYFF). For these variables we re-

port the Relative Mean Squared Forecast Error (RMSFE), i.e. the ratio of the MSFE

of a given model against the MSFE of the benchmark. Again, a RMSFE below one

signals that the model outperforms the benchmark in forecast accuracy. For the individ-

ual series the symbols *, **, *** denote respectively rejection at 10%, 5% and 1% level

8This is obtained by setting � = 0:2 in (8).
9We have also considered a simple AR(1) and a random walk as benchmarks, but as both these

models produce inferior forecasts than the AR(p�) the results are not reported here but can be found in
a previous draft of this paper, available at http://ideas.repec.org/p/qmw/qmwecw/wp617.html
10We have also considered a loss function based on absolute rather than squared forecast errors.

Results for this case are very similar to those obtained with the squared errors, and therefore we do
not report them to save space, but they can be found in a previous draft of this paper, available at
http://ideas.repec.org/p/qmw/qmwecw/wp617.html
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of the null of equal predictive accuracy according to the Giacomini-White (2005) test.

For all the entries in the tables the best models for each horizon are highlighted in bold.

Let us �rst focus on the overall performance of the models, i.e. the RWTMSFE.

For very short horizons (1- and 2- month ahead) there are no models able to beat

the AR(p�) benchmark, while the BV AR0 benchmark is outperformed by the BVAR,

the RRP and (only for the 2-month ahead) by the BRR. The AR(p�) is overall a very

competitive benchmark, systematically outperforming the BV AR0 benchmark for any

horizon shorter than 9 month-ahead. On the other side, for longer horizons the BV AR0

is slightly better than the AR(p�).

Overall, among the six models at hand, RRP and BRR produce the best forecasts

in terms of RWTMSFE, with the BRR working relatively better at short horizons and

the RRP at long horizons. At the 3-month ahead horizon the BRR produces gains in

RWTMSFE up to 3% (0:97) with respect to the AR(p�), and up to 12% (0:88) with

respect to the BV AR0. At long horizons (6- to 12-month ahead) the gains of the RRP

range between 13% (0:87) and 16% (0:84) against the AR(p�) and between 13% (0:87)

and 15% (0:85) against the BV AR0. Also the BVAR and RR do a good job, but they

are both systematically outperformed by either RRP or BRR.

Let us now focus on the prediction of three key macroeconomic variables, i.e. Indus-

trial Production (IPS10), CPI In�ation (PUNEW), and the Federal Funds Rate (FYFF).

Starting with short horizons, at the 1-month ahead horizon the best forecast of

industrial production is given by BVAR and BRR, which outperform the AR(p�) by

10%. The best forecast of in�ation is produced by SW and MB, but it is still worse than

that of the AR(p�) benchmark. The best forecast of the federal funds rate is that of

the RRP, with a gain of 7% over the AR(p�) benchmark. At 2- and 3-month ahead

BRR produces the best forecast of industrial production, with gains against the AR(p�)

of 19% and 22% respectively. The best forecast for in�ation is given by the RPP (and

BVAR at 2-month ahead) with gains of 1% and 14%. Finally, the best forecast for the

federal funds rate is given again by the RPP with gains of 14% and 11%. A similar

pattern but with much higher gains in forecasting all the variables emerges if one looks

at the comparison with the BV AR0 benchmark.

At longer horizons the RRP systematically and signi�cantly outperforms the AR(p�)

benchmark, with gains that can go up to 35% for industrial production and in�ation,

and 21% for the federal funds rate. The BRR and BVAR are producing good forecasts

but are still below the RRP performance, the RR systematically beats the benchmark

but is somewhat far from the RRP performance, while the SW and MB only occasionally

beat the benchmark. The results against the BVAR0 show of course a similar ranking,
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bur with gains relatively smaller (but still high) in forecasting in�ation and industrial

production.

To sum up, for very short horizons it is di¢ cult to beat an AR(p�) benchmark,

but the BVAR, the RRP and the BRR can do so for some variables. For intermediate

and long horizons the best models are respectively BRR and RRP. The RR and the

BVAR produce overall good results, however they are inferior to BRR and RRP. These

�ndings provide encouraging evidence that using shrinkage and rank reduction is useful,

and using them in combination rather than separately can improve substantially the

accuracy of forecasts.

4 Robustness Analysis

In this Section we check the robustness of the results we have obtained so far. In

particular, we look at the e¤ects that the variable transformation and standardization

might have on the BVAR results, we present subsample results, and we conduct a Monte

Carlo simulation based on bootstrapped data.

4.1 The role of variable transformation

In our forecasting exercise the variables are made stationary and standardized before

forecasting. The forecasted series are then transformed back by re-attributing mean and

variance and by reversing the stationarity transformations. This decision may in�uence

the model performance. In particular, factor models require that variables are stationary

and standardized, but the BVARs do not assume so. Actually, the original Litterman

(1980) Minnesota prior is speci�ed for a system estimated in levels.

To assess the consequences that variable transformation has on the forecasting per-

formance of the BVAR, we have repeated the forecasting exercise for the BVAR with-

out applying the stationary transformation and the standardization, which we label

BVAR(lev). The results are summarized in Table 4.

It turns out that the BVAR(lev) can produce signi�cant forecast improvements for

some series and forecast horizons, e.g. for in�ation at short horizons, but overall the

BVAR speci�cation works better and produces lower WTMSFE. A possible expla-

nation for the good performance of the BVAR versus the BVAR(lev) is related to the

robustifying e¤ect of di¤erencing in the presence of structural breaks, see e.g. Clements

and Hendry (1999).
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4.2 Subsample analysis

Next we evaluate the robustness of our results using di¤erent subsamples. In order to

save space we only present the results based on the AR(p�) benchmark, which is the

most competitive Table 5 contains results obtained using the evaluation sample 1985:1

to 2003:12, while Table 6 refers to the sample 1995:1 to 2003:12.

The pattern emerging from these two tables is similar to that obtained over the whole

sample, namely RRP and BRR produce on average the best forecasts, systematically

beating the benchmark at long horizons. A new feature is that in these subsamples

MB provides very good forecasts for the individual variables 1-month ahead, although

only for industrial production it actually beats the benchmark. In addition, all the

models perform slightly worse than over the whole sample, signalling that forecasting

with multivariate models has become more di¢ cult in the more recent period.

4.3 Monte Carlo evaluation

Finally, we have performed a small Monte Carlo experiment where we compare the

alternative models using arti�cial data. Rather than using an inevitably arbitrary data

generation process, we carry out our analysis based on the actual macroeconomic dataset,

which is referred to as a �data based Monte Carlo method�and discussed further in, e.g.,

Ho and Sørensen (1996). Following this work, we create arti�cial data by repeatedly

bootstrapping the actual dataset. In particular, we use the block bootstrap algorithm

described by Politis and Romano (1994), which is designed for block-bootstrapping from

stationary data.

We implement the simulation exercise by bootstrapping 100 alternative arti�cial

dataset over the sample 1984:1 to 2003:12. In each month all the models are estimated

and forecasts are produced using the same rolling scheme adopted for the actual data.

In particular, the �rst estimation window is 1984:1 to 1994:12 and the �rst forecast

window is 1995:1 to 1995:12, while the last estimation window is 1992:1 to 2002:12 and

the last forecast window is 2003:1 to 2003:12. As with the actual data all variables are

transformed to obtain stationarity and standardized prior to estimation (using only the

data of that particular rolling sample), and then mean and variance are re-attributed to

the forecasts accordingly.

Table 7 presents the averages of the RWTMSFE and RMSFE of selected variables

over the 100 arti�cial samples. The simulation results are clearly in line with those

obtained using the actual data, namely, RRP produces the best forecasts, followed by

the BV AR and RR. This �nding con�rms that the use of both shrinkage and rank
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reduction produces additional gains with respect to using the two methods separately.

5 Conclusions

In this paper we have addressed the issue of forecasting a large set of variables using

multivariate models. In particular, we have proposed three alternative reduced rank

forecasting models and compared their predictive performance with the most promising

existing alternatives, namely, factor models, large scale Bayesian VARs, and multivariate

boosting. We have provided a novel consistency result for the reduced rank regression

valid when the dimension of the system tends to in�nity; we have proposed a new two-

step estimation procedure that applies, in turn, shrinkage and reduced rank restrictions

(RRP); and we have implemented in a large data-set context the Bayesian VAR with

rank reduction (BRR) proposed by Geweke (1996).

We have found that using shrinkage and rank reduction in combination rather than

separately improves substantially the accuracy of forecasts. In particular RRP and BRR

produce fairly good forecasts, more accurate than those of competing methods on average

across several US macroeconomic variables, and they also perform well for key variables,

such as industrial production growth, in�ation and the short term interest rate. A small

Monte Carlo simulation based on bootstrapped data con�rmed these �ndings.

A natural extension of this study would be to analyze also combinations of the

proposed forecasts among themselves and/or with the benchmarks, using �xed or optimal

pooling weights. Bayesian model averaging of the di¤erent models according to their

posterior probabilities is a closely related alternative worth investigating. Finally, the

consistency result provided for the RR regression opens the ground to using large scale

reduced rank models to also implement structural analysis.

Appendix: Proofs.

Proof of Theorem 1. It is su¢ cient to prove that for each of the N equations of the VAR

model: 


Âi �Ai


2 = op(T�a) for all a < 1=2: (26)

To prove (26) we mirror the analysis of Theorems 4 and 5 of An et al. (1982). For

simplicity we consider Yule-Walker estimation11 of Âi which is asymptotically equivalent

11Yule-Walker estimates are obtained by solving the Yule-Walker equations and replacing population
quantities with their sample counterparts. The Yule-Walker equations are relations between the various
autocovariances/autocorrelations of autoregressive models. For more details see, e.g. Reinsel (2003).
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to OLS estimation. Let 
fpi and �p denote the vector of covariances between yi;t and X
p
p;t

and the covariance matrix of Xp
p;t, respectively and 
̂

fp
i and �̂p their sample counterparts.

Further, denote by �pij , �̂
p
ij 


fp
ij , 
̂

fp
ij the i; j-th elements �

p
ij and �̂

p
ij and the j-th elements

of 
fpij and 
̂
fp
ij , respectively. Then, by (25) of An et al. (1982)

�p
�
Âi �Ai

�
= �

�
�̂p � �p

��
Âi �Ai

�
�
�

̂fpi � 
fpi

�
�
�
�̂p � �p

�
Ai (27)

Since each yi;t is part of a stationary VAR process by assumption 1(a), and, also taking

into account assumption 1(b)-(c), it follows that yi;t satis�es the assumptions of Theorem

5 of An et al. (1982). De�ne Ai = (Ai1; :::; A
i
Np)

0and Âi = (Âi1; :::; Â
i
Np)

0. Then, by the

proof of Theorem 5 of An et al. (1982) (see the last 3 equations of page 935 of An et al.

(1982)), we have




��̂p � �p��Âi �Ai�


2 = op(1)NpX
j=1

�
Âij �Aij

�2
(28)





̂fpi � 
fpi



2 = op �(lnT=T )1=2� (29)

and 


��̂p � �p�Ai


2 = op �(lnT=T )1=2� (30)

Note that (28)-(30) follow from Theorem 5 of An et al. (1982), if further,

sup
i;j

�
�̂pij � �

p
ij

�
= Op

�
(lnT=T )1=2

�
and

sup
j

�

̂fpij � 


fp
ij

�
= Op

�
(lnT=T )1=2

�
But this follows easily by minor modi�cations of the proof of Theorem 7.4.3 of Deistler

and Hannan (1988) and the uniformity assumption on the fourth and second moments

of et given in Assumption 1(c). Hence,

(1 + op(1))



Âi �Ai


2 = op �(lnT=T )1=2� (31)

which implies (26) and completes the proof of the theorem.

Proof of Theorem 2. We de�ne formally the functions gO(:) and gK(:) such that

vec(K̂0) = gK
�
vec(Â)

�
(32)
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and

vec(Ô0) = gO
�
vec(Â)

�
(33)

where Â = (Â1; Â2; :::; Âp) and A = (A1; A2; :::; Ap). Therefore, gO(:) and gK(:) de�ne

the singular value decomposition operator. By theorems 5.6 and 5.8 of Chatelin (1983)

gO(:) and gK(:) are bounded, continuous and di¤erentiable and therefore admit a �rst

order Taylor expansion. Therefore,

vec(K̂0)� vec(K0) = @g0K
@A

�
vec(Â)� vec(A)

� @g0K
@A + op(T

�a) (34)

and

vec(Ô0)� vec(O0) = @g0O
@A

�
vec(Â)� vec(A)

� @g0O
@A + op(T

�a) (35)

By theorem 1 every element of
�
vec(Â)� vec(A)

�
is op(T�a). The number of columns

of @g0K
@A and @g0O

@A are of the order N2. Thus, each element of vec(Ô0) � vec(O0) and
vec(K̂0)� vec(K0) is a linear combination of possibly all elements of

�
vec(Â)� vec(A)

�
.

It then follows that each element of vec(Ô0)�vec(O0) and vec(K̂0)�vec(K0) is op(T�a+2b)-
consistent.

References

[1] Ahn, S. K., and Reinsel, G. C., 1988, �Nested Reduced-Rank Autoregressive Models
for Time Series�, Journal of the American Statistical Association, 83, 849�856.

[2] An H.Z, Chen Z.G., Hannan, E.J., 1982, �Autocorrelation, Autoregression and
Autoregressive Approximation�, The Annals of Statistics, Vol. 10, No. 3, pp. 926-
936.

[3] Bai, J. and Ng, S., 2006. �Con�dence Intervals for Di¤usion Index Forecasts and
Inference for Factor-Augmented Regressions�, Econometrica, 74(4), 1133-1150.

[4] Bai, J. and Ng, S., 2009, �Boosting Di¤usion Indices�, Journal of Applied Econo-
metrics, (2009).

[5] Banbura M., Giannone D. and Reichlin, L., 2007, �Bayesian VARs with Large
Panels�, CEPR working paper no.6326

[6] Breiman, L., 1996, �Bagging Predictors�, Machine Learning, 36, 105-139.

[7] Buhlmann, P. 2006, �Boosting for High-Dimensional Linear Models�, Annals of
Statistics 54:2, 559�583.

[8] Buhlmann, P. and B. Yu, 2002, �Analyzing Bagging�, Annals of Statistics, 30,
927-961.

24



[9] Camba-Mendez, G., Kapetanios, G., Smith, R.J., and Weale, M.R., 2003, �Tests
of Rank in Reduced Rank Regression Models�, Journal of Business and Economic
Statistics, 21, 145-155.

[10] Canova, F., and Ciccarelli, M., 2004. �Forecasting and Turning Point Predictions
in a Bayesian Panel VAR Model�, Journal of Econometrics, Elsevier, vol. 120(2),
pages 327-359, June.

[11] Clements M.P. and Hendry D.F., 1999, �Forecasing Nonstationary Economic Time
Series�, MIT press

[12] De Mol, C., Giannone, D. and Reichlin, L., 2006, �Forecasting Using a Large Num-
ber of Predictors. Is Bayesian Regression a Valid Alternative to Principal Compo-
nents?�, ECB Working paper no.700.

[13] Deistler, M. and Hannan, E. J., 1988, �The Statistical Theory of Linear Systems�,
Wiley.

[14] Doan, T., R. Litterman, and C. A. Sims, 1984, �Forecasting and Conditional Pro-
jection Using Realistic Prior Distributions�, Econometric Reviews, 3, 1-100.

[15] Eickmeier, S. and Ziegler, C., 2006, �How Good are Dynamic Factor Models at
Forecasting Output and In�ation? A meta-analytic approach�, Discussion Paper
Series 1: Economic Studies, 42, Deutsche Bundesbank, Research Centre.

[16] Forni, M., Hallin, M., Lippi, M. & Reichlin, L., 2000, �The Generalized Factor
Model: Identi�cation and Estimation�, The Review of Economics and Statistics
82(4), 540-554.

[17] Geweke, J., 1996, �Bayesian Reduced Rank Regression in Econometrics�, Journal
of Econometrics 75, 121�146.

[18] Giacomini R., White H., 2006, �Tests of Conditional Forecast Accuracy�, Econo-
metrica, Vol. 74, pp. 1545-1578.

[19] Hamilton, J.D., Waggoner, D.F. and Zha, T. 2007, �Normalization in Economet-
rics�, Econometric Reviews, 26 pp.221�252.

[20] Hoogerheide, L.F., and Van Dijk, H.K., 2001, �Comparison of the Anderson-Rubin
Test for Overidenti�cation and the Johansen Test for Cointegration�, Econometric
Institute report EI 2001-04, Erasmus University Rotterdam.

[21] Inoue, Atsushi and Kilian, Lutz, 2004, �Bagging Time Series Models�, CEPR Dis-
cussion Paper No. 4333.

[22] Kadiyala, K. R., and S. Karlsson, 1997, �Numerical Methods for Estimation and
Inference in Bayesian VAR-Models�, Journal of Applied Econometrics, 12(2), 99�
132.

25



[23] Kleibergen, F., van Dijk H.K., 1994, �On the Shape of the Likelihood/Posterior in
Cointegration Models�, Econometric Theory 10, 514-551

[24] Kleibergen, F., van Dijk H.K., 1998, �Bayesian Simultaneous Equations Analysis
Using Reduced Rank Structures�, Econometric Theory 14, 701-743.

[25] Litterman, R. ,1986, �Forecasting With Bayesian Vector Autoregressions � Five
Years of Experience�, Journal of Business and Economic Statistics, 4, 25�38.

[26] Lutz, R.W. and Bühlmann, P., 2006, �Boosting for High-multivariate Responses in
High-dimensional Linear Regression�, Statistica Sinica 16, 471-494

[27] Pesaran, M.H., and Timmermann, A., (2005), �Small Sample Properties of Fore-
casts from Autoregressive Models under Structural Breaks�, Journal of Economet-
rics Volume 129, Issues 1-2, Pages 183-217

[28] Politis, D.N., Romano,J.P., 1994, �The Stationary Bootstrap�, J. Amer. Statist.
Assoc., vol. 89, No. 428, pp. 1303-1313.

[29] Reinsel, G., 1983, �Some Results on Multivariate Autoregressive Index Models�,
Biometrika, 70, 145�156.

[30] Reinsel, G. C., and Velu, R. P., 1998, �Multivariate Reduced Rank Regression�,
Lecture Notes in Statistics 136. New York: Springer-Verlag.

[31] Reinsel, G.,C., 2003, �Elements of Multivariate Time Series Analysis�, Springer.

[32] Sims, C. A., and T. Zha,1998, �Bayesian Methods for Dynamic Multivariate Mod-
els�, International Economic Review, 39(4), 949�68.

[33] Stock, J. H. and M.W.Watson, 2002a, �Macroeconomic Forecasting Using Di¤usion
Indexes�, Journal of Business and Economic Statistics, 20, 147-62.

[34] Stock, J. H. and M. W. Watson, 2002b, �Forecasting Using Principal Components
from a Large Number of Predictors�, Journal of the American Statistical Associa-
tion, 97, 1167�1179.

[35] Stock, J. H. and M. W. Watson, 2006, �Forecasting with many predictors�, Hand-
book of Economic Forecasting, Elliott, G., Granger, C.W.J., and Timmermann, A.
(ed.), NorthHolland

[36] Tibshirani, R., 1996, �Regression Shrinkage and Selection via the Lasso�, J.Royal.
Statist. Soc B., 58, 267�288.

[37] Timmerman, A., 2006, �Forecast combinations�, Handbook of Economic Forecast-
ing, Elliott, G., Granger, C.W.J., and Timmermann, A. (ed.), NorthHolland

[38] Velu, R. P., Reinsel, G. C., and Wichern, D. W., 1986, �Reduced Rank Models for
Multiple Time Series�, Biometrika, 73, 105�118.

26



Table 1. Summary of dataset

Code Series Transformation
A0M048 EMPLOYEE HOURS IN NONAG . ESTABLISHMENTS (AR , BIL . HOURS) Month ly G rowth Rate

A0M051 PERSONAL INCOME LESS TRANSFER PAYMENTS (AR , BIL . CHAIN 2000 USD) Month ly G rowth Rate

A0M052 PERSONAL INCOME (AR , BIL . CHAIN 2000 USD) Month ly G rowth Rate

A0M057 MANUFACTURING AND TRADE SALES (M IL . CHAIN 1996 USD) Month ly G rowth Rate

A0M059 SALES OF RETAIL STORES (M IL . CHAIN 2000 USD) Month ly G rowth Rate

A0M082 CAPACITY UTILIZATION (MFG) F irst D i¤erence

A0M095 RATIO , CONSUMER INSTALLMENT CREDIT TO PERSONAL INCOME (PCT .) F irst D i¤erence

A0M224R REAL CONSUMPTION (AC) A0M224/GMDC Month ly G rowth Rate

CCINRV CONSUMER CREDIT OUTSTANDING - NONREVOLVING(G19) Change in Yearly G rowth Rate

CES002 EMPLOYEES ON NONFARM PAYROLLS - TOTAL PRIVATE Month ly G rowth Rate

CP90 COMMERCIAL PAPER RATE First D i¤erence

EXRCAN FOREIGN EXCHANGE RATE: CANADA (CANADIAN USD PER U.S.USD) Month ly G rowth Rate

EXRJAN FOREIGN EXCHANGE RATE: JAPAN (YEN PER U.S.USD) Month ly G rowth Rate

EXRSW FOREIGN EXCHANGE RATE: SW ITZERLAND (SW ISS FRANC PER U.S.USD) Month ly G rowth Rate

EXRUK FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND) Month ly G rowth Rate

EXRUS UNITED STATES;EFFECTIVE EXCHANGE RATE(MERM)(INDEX NO .) Month ly G rowth Rate

FCLBMC WKLY RP LG COM BANKS:NET CHANGE COM�L AND INDUS LOANS(BILUSD ,SAAR) No Transf.

FCLNQ COMMERCIAL AND INDUSTRIAL LOANS OUSTANDING IN 1996 DOLLARS (BCI) Change in Yearly G rowth Rate

FM1 MONEY STOCK: M1 (BILUSD ,SA) Change in Yearly G rowth Rate

FM2 MONEY STOCK:M2 (BILUSD ,SA) Change in Yearly G rowth Rate

FM2DQ MONEY SUPPLY - M2 IN 1996 DOLLARS (BCI) Month ly G rowth Rate

FM3 MONEY STOCK: M3 (BILUSD ,SA) Change in Yearly G rowth Rate

FMFBA MONETARY BASE, ADJ FOR RESERVE REQUIREMENT CHANGES(M ILUSD ,SA) Change in Yearly G rowth Rate

FMRNBA DEPOSITORY INST RESERVES:NONBORROWED,ADJ RES REQ CHGS (M ILUSD ,SA) Change in Yearly G rowth Rate

FMRRA DEPOSITORY INST RESERVES:TOTAL,ADJ FOR RESERVE REQ CHGS (M ILUSD ,SA) Change in Yearly G rowth Rate

FSDXP SANDP�S COMPOSITE COMMON STOCK: D IVIDEND YIELD (p erc PER ANNUM) First D i¤erence

FSPCOM SANDP�S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10) Month ly G rowth Rate

FSPIN SANDP�S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43=10) Month ly G rowth Rate

FSPXE SANDP�S COMPOSITE COMMON STOCK: PRICE-EARNINGS RATIO (p erc,NSA) Month ly G rowth Rate

FYAAAC BOND YIELD : MOODY�S AAA CORPORATE (p erc PER ANNUM) First D i¤erence

FYBAAC BOND YIELD : MOODY�S BAA CORPORATE (p erc PER ANNUM) First D i¤erence

FYFF INTEREST RATE: FEDERAL FUNDS (EFFECTIVE) (p erc PER ANNUM ,NSA) F irst D i¤erence

FYGM3 INTEREST RATE: U .S .TREASURY BILLS,SEC MKT,3-MO .(p erc PER ANN,NSA) F irst D i¤erence

FYGM6 INTEREST RATE: U .S .TREASURY BILLS,SEC MKT,6-MO .(p erc PER ANN,NSA) F irst D i¤erence

FYGT1 INTEREST RATE: U .S .TREASURY CONST MATURITIES,1-YR .(p erc PER ANN,NSA) F irst D i¤erence

FYGT10 INTEREST RATE: U .S .TREASURY CONST MATURITIES,10-YR .(p erc PER ANN,NSA) F irst D i¤erence

FYGT5 INTEREST RATE: U .S .TREASURY CONST MATURITIES,5-YR .(p erc PER ANN,NSA) F irst D i¤erence

IPS10 INDUSTRIAL PRODUCTION INDEX - TOTAL INDEX Month ly G rowth Rate

LHEL INDEX OF HELP-WANTED ADVERTISING IN NEWSPAPERS (1967=100;SA) F irst D i¤erence

LHELX EMPLOYMENT: RATIO ; HELP-WANTED ADS:NO . UNEMPLOYED CLF First D i¤erence

LHEM CIVILIAN LABOR FORCE: EMPLOYED, TOTAL (THOUS.,SA) Month ly G rowth Rate

LHUR UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS AND OVER (p erc,SA) F irst D i¤erence

PMDEL NAPM VENDOR DELIVERIES INDEX (PERCENT) No Transf.

PM I PURCHASING MANAGERS� INDEX (SA) No Transf.

PMNO NAPM NEW ORDERS INDEX (PERCENT) No Transf.

PMNV NAPM INVENTORIES INDEX (PERCENT) No Transf.

PMP NAPM PRODUCTION INDEX (PERCENT) No Transf.

PUNEW CPI-U : ALL ITEMS (82-84=100,SA) Change in Yearly G rowth Rate

PWCMSA PRODUCER PRICE INDEX:CRUDE MATERIALS (82=100,SA) Change in Yearly G rowth Rate

PWFCSA PRODUCER PRICE INDEX:FIN ISHED CONSUMER GOODS (82=100,SA) Change in Yearly G rowth Rate

PWFSA PRODUCER PRICE INDEX: FIN ISHED GOODS (82=100,SA) Change in Yearly G rowth Rate

PW IMSA PRODUCER PRICE INDEX:INTERMED MAT.SUPPLIES AND COMPONENTS (SA) Change in Yearly G rowth Rate



Table 2: Relative WTMSFE vs AR(p*) benchmark.

RR SW BVAR MB RRP BRR
Hor: 1
rel. WTMSFE 1.36 1.70 1.18 2.08 1.15 1.22
IPS10 1.10 *** 1.09 0.90 0.99 0.97 0.90
PUNEW 1.31 1.08 1.11 * 1.08 1.12 * 1.24 ***
FYFF 1.09 * 1.01 0.94 1.02 0.93 0.99

Hor: 2
rel. WTMSFE 1.17 1.35 1.06 1.67 1.06 1.05
IPS10 1.14 1.05 0.86 1.05 0.90 0.81
PUNEW 1.08 1.02 0.99 1.10 0.99 1.05
FYFF 1.01 0.98 0.91 1.01 0.86 * 0.95

Hor: 3
rel. WTMSFE 1.07 1.17 0.99 1.40 0.98 0.97
IPS10 1.06 1.03 0.80 1.06 0.81 0.78 *
PUNEW 0.93 0.96 0.87 * 1.06 0.86 * 0.91
FYFF 1.01 0.99 0.92 1.01 0.89 * 0.94

Hor: 6
rel. WTMSFE 0.94 1.11 0.88 1.09 0.87 0.88
IPS10 0.87 1.04 0.69 ** 1.01 0.67 ** 0.71 ***
PUNEW 0.76 *** 0.95 0.71 *** 1.06 0.71 *** 0.74 ***
FYFF 1.00 1.12 0.89 * 0.99 0.83 *** 0.91 ***

Hor: 9
rel. WTMSFE 0.91 1.13 0.85 1.01 0.84 0.87
IPS10 0.82 1.07 0.68 *** 1.02 0.66 *** 0.72 ***
PUNEW 0.76 * 0.97 0.67 *** 1.11 * 0.67 *** 0.69 ***
FYFF 0.97 1.14 0.91 * 1.00 0.79 *** 0.90 ***

Hor: 12
rel. WTMSFE 0.90 1.20 0.85 0.97 0.84 0.87
IPS10 0.87 1.10 0.68 *** 1.01 0.65 *** 0.74 ***
PUNEW 0.72 *** 0.99 0.64 *** 1.06 0.65 *** 0.64 ***
FYFF 0.95 1.20 0.90 *** 1.00 0.84 *** 0.91 ***

The Relative WTMSFE is the ratio of the WTMSFE of a given model against the WTMSFE of the benchmark.
For the three individual series Industrial Production (IPS10), CPI In�ation (PUNEW ), and the Federal Funds Rate
(FY FF ) the �gure reported is the ratio of the MSFE of a given model against the MSFE of the benchmark. The
symbols *, **, *** denote respectively rejection at 10%, 5% and 1% level of the null of equal predictive accuacy
according to the Giacomini-White (2005) test. Best models are in bold. RR is the Reduced Rank Regression, SW
is the Factor Model, BVAR is a Bayesian VAR with Minnesota-type prior, MB is Multivariate Boosting, RRP is
Reduced Rank Posterior, BRR is Bayesian Reduced Rank Regression. The forecasting exercise is performed using a
rolling window of 10 years. The �rst estimation window is 1960:1 to 1969:12 and the �rst forecast window is 1970:1 to
1970:12, while the last estimation window is 1984:1 to 1993:12 and the last forecast window is 2003:1 to 2003:12.
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Table 3: Relative WTMSFE vs BVAR0 benchmark.

RR SW BVAR MB RRP BRR
Hor: 1
rel. WTMSFE 1.13 1.41 0.99 1.73 0.96 1.02
IPS10 0.94 0.93 0.77 *** 0.84 0.82 *** 0.77 ***
PUNEW 0.87 ** 0.71 *** 0.73 *** 0.71 *** 0.74 *** 0.82 ***
FYFF 1.02 0.95 0.89 * 0.96 0.87 *** 0.94

Hor: 2
rel. WTMSFE 1.02 1.17 0.93 1.45 0.92 0.92
IPS10 1.04 0.96 0.78 *** 0.95 0.82 *** 0.74 ***
PUNEW 0.82 *** 0.78 *** 0.75 *** 0.83 *** 0.75 *** 0.80 ***
FYFF 1.05 1.01 0.95 1.04 0.90 *** 0.99

Hor: 3
rel. WTMSFE 0.97 1.06 0.89 1.27 0.89 0.88
IPS10 1.02 1.00 0.78 *** 1.02 0.78 *** 0.75 ***
PUNEW 0.81 *** 0.84 *** 0.76 *** 0.92 0.75 *** 0.79 ***
FYFF 1.04 1.02 0.95 1.05 0.92 0.98

Hor: 6
rel. WTMSFE 0.92 1.08 0.86 1.07 0.85 0.87
IPS10 1.00 1.20 0.80 *** 1.17 0.77 *** 0.82 ***
PUNEW 0.80 *** 1.01 0.75 *** 1.12 0.75 *** 0.78 ***
FYFF 0.92 * 1.04 0.82 *** 0.91 0.77 *** 0.83 ***

Hor: 9
rel. WTMSFE 0.92 1.15 0.87 1.02 0.85 0.89
IPS10 1.04 1.35 * 0.86 *** 1.29 0.84 *** 0.92
PUNEW 0.88 * 1.12 0.78 *** 1.28 0.78 *** 0.80 ***
FYFF 0.92 1.08 0.86 *** 0.95 0.75 *** 0.85 **

Hor: 12
rel. WTMSFE 0.94 1.25 0.88 1.01 0.87 0.90
IPS10 1.17 1.49 ** 0.92 * 1.37 * 0.88 0.99
PUNEW 0.91 1.25 ** 0.81 *** 1.33 * 0.82 *** 0.81 ***
FYFF 0.89 *** 1.12 0.84 *** 0.93 0.78 *** 0.85 **

The Relative WTMSFE is the ratio of the WTMSFE of a given model against the WTMSFE of the benchmark.
For the three individual series Industrial Production (IPS10), CPI In�ation (PUNEW ), and the Federal Funds Rate
(FY FF ) the �gure reported is the ratio of the MSFE of a given model against the MSFE of the benchmark. The
symbols *, **, *** denote respectively rejection at 10%, 5% and 1% level of the null of equal predictive accuacy
according to the Giacomini-White (2005) test. Best models are in bold. RR is the Reduced Rank Regression, SW
is the Factor Model, BVAR is a Bayesian VAR with Minnesota-type prior, MB is Multivariate Boosting, RRP is
Reduced Rank Posterior, BRR is Bayesian Reduced Rank Regression. The forecasting exercise is performed using a
rolling window of 10 years. The �rst estimation window is 1960:1 to 1969:12 and the �rst forecast window is 1970:1 to
1970:12, while the last estimation window is 1984:1 to 1993:12 and the last forecast window is 2003:1 to 2003:12.



Table 4: BVAR in Di¤erences and BVAR in Levels vs AR(p*)

BVAR BVAR(lev) BVAR BVAR(lev)
Hor: 1 Hor: 6
rel. WTMSFE 1.18 1.24 rel. WTMSFE 0.88 1.16
IPS10 0.90 0.92 IPS10 0.69 0.69
PUNEW 1.11 1.02 PUNEW 0.71 0.91
FYFF 0.94 1.06 FYFF 0.89 1.03
Hor: 2 Hor: 9
rel. WTMSFE 1.06 1.16 rel. WTMSFE 0.85 1.31
IPS10 0.86 0.85 IPS10 0.68 0.70
PUNEW 0.99 0.98 PUNEW 0.67 0.97
FYFF 0.91 1.03 FYFF 0.91 1.04
Hor: 3 Hor: 12
rel. WTMSFE 0.99 1.13 rel. WTMSFE 0.85 1.50
IPS10 0.80 0.80 IPS10 0.68 0.81
PUNEW 0.87 0.93 PUNEW 0.64 1.12
FYFF 0.92 1.03 FYFF 0.90 1.12

The Relative WTMSFE is the ratio of the WTMSFE of a given model against the WTMSFE of the benchmark.
For the three individual series Industrial Production (IPS10), CPI In�ation (PUNEW ), and the Federal Funds Rate
(FY FF ) the �gure reported is the ratio of the MSFE of a given model against the MSFE of the benchmark. Best
models are in bold. BVAR is the Bayesian VAR estimated on stationary standardised data, BVAR(lev) is the same
model estimated with the data not transformed. The forecasting exercise is performed using a rolling window of 10
years. The �rst estimation window is 1960:1 to 1969:12 and the �rst forecast window is 1970:1 to 1970:12, while the
last estimation window is 1984:1 to 1993:12 and the last forecast window is 2003:1 to 2003:12.



Table 5: Relative WTMSFE vs AR(p*) benchmark, sample 1985:1 to 2003:12

RR SW BVAR MB RRP BRR
Hor: 1
rel. WTMSFE 1.34 1.36 1.28 1.47 1.19 1.26
IPS10 1.09 1.08 1.14 0.84 *** 1.15 0.99
PUNEW 1.30 *** 1.19 *** 1.31 *** 1.11 1.18 *** 1.11 *
FYFF 1.76 *** 1.79 *** 1.59 *** 1.01 1.51 * 1.20

Hor: 2
rel. WTMSFE 1.23 1.25 1.18 1.32 1.13 1.14
IPS10 0.99 1.04 0.97 0.89 * 1.00 0.88 *
PUNEW 1.18 ** 1.13 ** 1.22 *** 1.06 1.10 1.00
FYFF 1.37 *** 1.50 *** 1.26 1.06 1.19 0.96

Hor: 3
rel. WTMSFE 1.15 1.16 1.11 1.23 1.08 1.06
IPS10 1.01 0.99 0.98 0.93 0.95 0.89
PUNEW 1.11 1.17 *** 1.08 1.00 1.00 0.91 *
FYFF 1.11 1.25 * 0.99 1.08 0.91 0.81 *

Hor: 6
rel. WTMSFE 1.00 1.19 0.96 1.05 0.93 0.92
IPS10 1.01 0.96 0.90 0.95 0.82 * 0.88
PUNEW 1.02 1.26 *** 0.88 * 0.93 0.89 0.79 ***
FYFF 0.96 1.00 0.76 ** 1.10 0.74 *** 0.75 ***

Hor: 9
rel. WTMSFE 0.96 1.26 0.92 1.02 0.89 0.89
IPS10 0.98 0.96 0.91 0.96 0.82 ** 0.89 **
PUNEW 0.99 1.29 *** 0.84 0.97 0.88 0.79 ***
FYFF 0.85 0.89 0.69 *** 1.05 0.69 *** 0.69 ***

Hor: 12
rel. WTMSFE 0.93 1.38 0.90 0.99 0.88 0.89
IPS10 0.98 1.01 0.94 0.98 0.85 *** 0.91 **
PUNEW 0.95 1.50 *** 0.80 ** 0.91 * 0.84 * 0.77 ***
FYFF 0.79 * 0.83 0.72 *** 1.02 0.70 *** 0.72 ***

The Relative WTMSFE is the ratio of the WTMSFE of a given model against the WTMSFE of the benchmark.
For the three individual series Industrial Production (IPS10), CPI In�ation (PUNEW ), and the Federal Funds Rate
(FY FF ) the �gure reported is the ratio of the MSFE of a given model against the MSFE of the benchmark. The
symbols *, **, *** denote respectively rejection at 10%, 5% and 1% level of the null of equal predictive accuacy
according to the Giacomini-White (2005) test. Best models are in bold. RR is the Reduced Rank Regression, SW
is the Factor Model, BVAR is a Bayesian VAR with Minnesota-type prior, MB is Multivariate Boosting, RRP is
Reduced Rank Posterior, BRR is Bayesian Reduced Rank Regression. The forecasting exercise is performed using a
rolling window of 10 years. The �rst estimation window is 1974:1 to 1984:12 and the �rst forecast window is 1985:1 to
1985:12, while the last estimation window is 1992:1 2002:12 and the last forecast window is 2003:1 to 2003:12.



Table 6: Relative WTMSFE vs AR(p*) benchmark, sample 1995:onwards.

RR SW BVAR MB RRP BRR
Hor: 1
rel. WTMSFE 1.35 1.43 1.25 1.44 1.17 1.25
IPS10 1.21 1.11 1.00 0.90 1.14 1.01
PUNEW 1.49 *** 1.36 *** 1.34 *** 1.10 1.26 *** 1.16 *
FYFF 0.89 1.95 0.66 *** 0.98 * 0.68 *** 0.77 ***

Hor: 2
rel. WTMSFE 1.26 1.27 1.18 1.31 1.13 1.14
IPS10 1.10 1.02 0.89 0.97 0.95 0.92
PUNEW 1.49 *** 1.24 *** 1.49 *** 1.13 1.46 *** 1.17
FYFF 1.01 1.83 0.74 * 1.14 0.75 * 0.66 ***

Hor: 3
rel. WTMSFE 1.15 1.21 1.10 1.24 1.08 1.05
IPS10 1.06 0.96 0.92 1.04 0.91 0.95
PUNEW 1.22 1.32 ** 1.26 1.07 1.23 0.96
FYFF 0.92 1.51 0.59 *** 1.17 0.62 *** 0.52 ***

Hor: 6
rel. WTMSFE 1.02 1.24 0.97 1.07 0.96 0.93
IPS10 1.03 1.03 0.85 1.06 0.80 0.94
PUNEW 0.89 1.03 0.93 0.93 0.94 0.77
FYFF 0.99 1.31 0.59 *** 1.22 0.64 *** 0.56 ***

Hor: 9
rel. WTMSFE 0.99 1.33 0.95 1.01 0.92 0.91
IPS10 0.99 1.03 0.86 1.04 0.81 0.94
PUNEW 0.80 0.96 0.81 0.91 0.85 0.73
FYFF 0.90 1.13 0.60 ** 1.10 0.64 *** 0.61 **

Hor: 12
rel. WTMSFE 0.98 1.47 0.94 0.98 0.92 0.92
IPS10 1.02 1.07 0.93 1.04 0.86 0.97
PUNEW 0.80 * 0.94 0.76 0.86 0.81 0.72
FYFF 0.83 1.00 0.63 * 1.01 0.66 * 0.66 *

The Relative WTMSFE is the ratio of the WTMSFE of a given model against the WTMSFE of the benchmark.
For the three individual series Industrial Production (IPS10), CPI In�ation (PUNEW ), and the Federal Funds Rate
(FY FF ) the �gure reported is the ratio of the MSFE of a given model against the MSFE of the benchmark. The
symbols *, **, *** denote respectively rejection at 10%, 5% and 1% level of the null of equal predictive accuacy
according to the Giacomini-White (2005) test. Best models are in bold. RR is the Reduced Rank Regression, SW
is the Factor Model, BVAR is a Bayesian VAR with Minnesota-type prior, MB is Multivariate Boosting, RRP is
Reduced Rank Posterior, BRR is Bayesian Reduced Rank Regression. The forecasting exercise is performed using a
rolling window of 10 years. The �rst estimation window is 1984:1 to 1994:12 and the �rst forecast window is 1995:1 to
1995:12, while the last estimation window is 1992:1 to 2002:12 and the last forecast window is 2003:1 to 2003:12.



Table 7: Monte Carlo Analysis

RR SW BVAR RRP
Hor:1
Avg.rel. WTMSFE 1.28 1.25 1.24 1.21
IPS10 1.49 1.47 0.97 1.03
PUNEW 1.37 1.25 1.35 1.17
FYFF 1.42 1.38 1.09 1.25

Hor:2
Avg.rel. WTMSFE 1.21 1.30 1.18 1.11
IPS10 1.37 1.51 1.06 0.99
PUNEW 1.22 1.24 1.20 1.07
FYFF 1.29 1.33 1.03 1.15

Hor:3
Avg.rel. WTMSFE 1.17 1.34 1.15 1.06
IPS10 1.26 1.51 1.06 0.95
PUNEW 1.17 1.25 1.16 1.02
FYFF 1.21 1.31 1.03 1.03

Hor:6
Avg.rel. WTMSFE 1.07 1.41 1.06 0.95
IPS10 1.10 1.47 1.05 0.89
PUNEW 1.10 1.29 1.04 0.94
FYFF 1.09 1.29 1.00 0.91

Hor:9
Avg.rel. WTMSFE 1.02 1.49 1.00 0.91
IPS10 1.03 1.49 1.00 0.89
PUNEW 1.05 1.28 0.96 0.91
FYFF 1.03 1.31 0.95 0.87

Hor:12
Avg.rel. WTMSFE 1.01 1.55 0.99 0.90
IPS10 1.00 1.54 0.97 0.89
PUNEW 1.03 1.31 0.95 0.88
FYFF 1.00 1.33 0.95 0.86

The Avg. Relative WTMSFE is average (computed over 100 simulations) of the ratio of the WTMSFE of a given
model against the WTMSFE of the benchmark. For the three individual series Industrial Production (IPS10), CPI
In�ation (PUNEW ), and the Federal Funds Rate (FY FF ) the �gure reported is the average (computed over 100
simulations) ratio of the MSFE of a given model against the MSFE of the benchmark. Best models are in bold. RR
is the Reduced Rank Regression, SW is the Factor Model, BVAR is a Bayesian VAR with Minnesota-type prior, RRP
is Reduced Rank Posterior. The forecasting exercise is performed using bootstrapped data on a rolling window of 10
years. The �rst estimation window is 1984:1 to 1994:12 and the �rst forecast window is 1995:1 to 1995:12, while the
last estimation window is 1992:1 to 2002:12 and the last forecast window is 2003:1 to 2003:12.




