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Introduction

This thesis addresses the problem of how to identify and model sources of com-
mon �uctuations of economic variables. It is an interesting question not only
for researchers but also for policy makers and other authorities. The literature
presents two approaches. The �rst one is based on an assumption that the
important structural shocks can be captured by a small set of macroeconomic
variables. The most popular models used in this context are structural vector
autoregression models (SVAR). The second approach follows from a belief that
there exists a small number of factors that a¤ect many economic processes.
Therefore, it involves analysis of large data sets, with both time and cross-
sectional dimensions large enough to describe the factor structure.
We dedicate the �rst part of the thesis to the problem of identi�cation and

estimation of structural shocks in small SVAR models. We follow the ideas of
Rigobon (2003) and Lanne and Lütkepohl (2008), which show that the statistical
property of the data may provide enough information to identify the structure
of the model. The papers argue that a shift in the error covariance matrix
allows for the estimation of the structural parameters of interest. The literature
concentrates on models in which the shift is a result of a structural brake or a
mixed distribution of errors.
In the �rst chapter, we discuss issues associated with the estimation of a

SVAR model with a mixture of two normal distributions. We show that in this
class of models, the likelihood function is unbounded and there exist spurious
maxima that impede the Maximum Likelihood estimation. We discuss how
these problems can be solved. Moreover, we illustrate the estimation problems
with a Monte Carlo experiment. We investigate which estimation method and
maximization algorithm is the most e¢ cient and robust to the existence of
spurious maximizers.
The second chapter is a result of a joint work with M. Lanne and H. Lütke-

pohl. In this paper, we allow for a more �exible class of data generating
processes. It is assumed that the reduced form errors follow the Markov switch-
ing process and the error covariance matrix varies across states. We argue that
this property is su¢ cient to identify structural shocks. The setup of the model
is formulated and discussed and we show how it can be used for testing re-
strictions that are considered just-identifying in a traditional SVAR framework.
The approach is illustrated with two empirical examples: a small model of US
economy and a model of European/US interest rate linkages.

vii
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viii INTRODUCTION

The second part of the thesis concentrates on an alternative approach, which
is based on the analysis of large data sets. This third chapter discusses a problem
of generalized factor models with both time and cross sectional dimensions in-
creasing to in�nity. So far, the literature considers only models with stationary
or random walk factors. As many macroeconomic variables also have determin-
istic time trends, we consider it important to extend the methodology and allow
for di¤erent types of deterministic components and higher order processes. In
the presented paper, we show an estimation method for a model with di¤erent
types of factors and derive the convergence rates and limiting distributions of
the estimators. We show how asymptotic theory can be applied for testing if
an observable variable is a common factor. We illustrate the theory with an
empirical example: an analysis of the real activity of the US economy.
The SVAR and Factor models have been successfully combined into a Factor

Augmented VAR model, where a typical small set of macroeconomic variables is
extended by common factors estimated from a large panel i.e. Bernanke, Boivin
and Eliasz (2005). We believe that models that merge both approaches will play
an important role in the future of macroeconometric analysis.
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Part I

Identi�cation and
estimation of SVAR models

1
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Chapter 1

Comparison of estimation
methods of SVAR models
with mixtures of two
normal distributions - a
Monte Carlo analysis

1.1 Introduction

Structural vector autoregressive (SVAR) models are widely used in applied
macroeconomics. They allow for the estimation of structural shocks and im-
pulse responses from empirical data and therefore, can be used to evaluate
economic theory. However, this class of models requires additional information
about the theoretical setup or the data in order to identify the structural pa-
rameters. A standard approach to obtain identi�ability is to impose parameter
constraints that can be justi�ed by the economic theory. Unfortunately, there
is no agreement on which of the identi�cation schemes should be used and im-
posing just-identifying restrictions makes it impossible to empirically evaluate
some of the underlying economic assumptions. The above critique raises the
question of whether there is a property of the data instead of the economic the-
ory that can be used to identify SVAR parameters. Rigobon (2003) shows that
if there is a shift in the variance of the structural shocks it can provide enough
information to identify the SVAR model. Lanne and Lütkepohl (2008) general-
izes this approach and develops a test for the presence of a variance shift and
for the stability of the correlation structure. This paper follows the speci�ca-
tion of Lanne and Lütkepohl (2005), which assumes nonnormality of structural
shocks rather then a discrete change in the variance. The residuals are allowed

3
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4 CHAPTER 1. SVAR WITH MIXTURE OF NORMAL DISTRIBUTIONS

to be distributed according to the mixture of two normal distributions and it is
demonstrated how this property can be used to identify the parameters.
Scienti�c literature provides many works that discuss the issue of mixture

models. Mixture models can be found both in economics and in other disciplines
such as biology, medicine, engineering and marketing, among others. They were
�rst used by biometrician Karl Pearson (1894), who analyzed a population of
crabs and proved the existence of two subspecies in the examined sample. In the
1960s economists tried to use the ML approach to estimate the model parameters
(Day (1969)). However, it was the EM algorithm described by Dempster, Laird
and Rubin (1977) that signi�cantly simpli�ed the estimation procedure and
therefore helped to popularize the mixture models.
The mixture models are also special cases of Markov switching (MS) mod-

els. A Markov process simpli�es to a mixture distribution if diagonal elements
of its transition matrix sum to one. Markov switching models are very �exi-
ble and can account for both nonliearities in the mean and heteroscedasticity.
They are extensively used in econometrics (Kim and Nelson (1999), Sims and
Zha (2006), Smith, Naik and Tsai (2006)), especially in business cycle analysis
(Hamilton (1989), Goodwin (1993), Diebold and Rudebusch (1996), Kim and
Nelson (1998)). They were popularized by the seminal paper Hamilton (1989),
which discusses the estimation issues for univariate processes. The approach
was extended to a multivariate case by Krolzig (1997).
An open question that still needs to be examined are small sample proper-

ties of mixture model estimators. This issue is of special interest when mixture
models are applied in macroeconomic analysis because they are associated with
a usage of relatively short time series. Therefore, the main scope of the paper is
to evaluate the performance of di¤erent estimation methods and maximization
algorithms in the context of SVAR models with mixtures of normal distribu-
tions, as proposed by Lanne and Lütkepohl (2005), and discuss the di¢ culties
associated with the estimation process. Since the mixture models are special
cases of MS models, we believe that our research also contributes to the discus-
sion on estimation issues of MS models, especially in the context of structural
analysis.
The paper is structured as follows. In Section 1.2, SVAR model with a

mixture of two normal distributions is introduced and the identi�cation issues
are discussed. Estimation methods and optimization algorithms are considered
in Section 1.3. In Section 1.4, a Monte Carlo experiment is described and results
for di¤erent estimation methods and optimization algorithms are presented.
Finally, conclusions are provided in Section 1.5.
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1.2. SVAR WITH MIXTURE OF NORMAL DISTRIBUTIONS 5

1.2 SVAR models with a mixture of normal dis-
tributions

1.2.1 Model description

The literature discusses di¤erent types of SVAR models: A-model, B-model
and AB-model (see Lütkepohl (2005)). The classi�cation depends on the re-
lationships the model attempt to describe, i.e., whether we are interested in
the relations between the observable variables or responses to unobservable im-
pulses. In this paper we will focus on the B-model that describes the direct,
instantaneous e¤ect of the structural shocks on the endogenous variables. In
the B-model it is assumed that the forecast error " is a linear function of the
structural shock, u. The model can be written in the following way

yt = A0 +

pX
i=1

Aiyt�i + "t (1.1)

where "t = But and the variance-covariance matrices of structural and forecast
errors are �u = Ik and �" = BB0, respectively.
In the setup, yt is a k� 1 vector of endogenous variables, "t is a k� 1 vector

of forecast errors and ut is a k � 1 vector of structural shocks with an identity
covariance matrix �u = Ik. A0 is a k� 1 vector of constants and Ai; i = 1; :::; p
are k � k matrices of the autoregressive parameters. B is a k � k nonsingular
matrix that describes the transition mechanisms of the structural shocks ut.
The structural VAR model has k + p � k2 + k2 unknown parameters. The

reduced form of the model (1.1) allows for estimation of only k + p � k2 +
k (k + 1) =2 parameters. In order to identify all structural parameters, an addi-
tional k (k � 1) =2 linearly independent restrictions need to be imposed.
Lanne and Lütkepohl (2005) proposes solving the identi�cation problem by

making an assumption on the distribution of shocks. It is assumed that the
structural shocks vector, ut, has a mixed normal distribution. It means that

ut �
(
N(0,Ik) with probability 


N(0,	) with probability 1� 


where the variance-covariance matrix 	 is diagonal. Under this speci�cation,
the unconditional variance of the structural shock is �u = 
Ik+(1� 
)	. The
matrix �u is no longer identity matrix but it is still diagonal. The diagonality
of the matrix �u ensures that the structural shocks are uncorrelated. Lanne
and Lütkepohl (2005) proves that if all diagonal elements of the matrix 	 are
distinct then the structural parameters of the model are identi�able. The issue
of identi�ability will be discussed in more detail in Section 1.2.3.
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6 CHAPTER 1. SVAR WITH MIXTURE OF NORMAL DISTRIBUTIONS

1.2.2 Density function of forecast errors

In order to analyze the properties of the model we need to derive the density
function for the forecast errors. Since the errors, "t, are a linear combination of
the structural shocks, ut, then they also have a mixed normal distribution

"t �
(
N(0,BB0) with probability 


N(0,B	B0) with probability 1� 


Therefore, the density function f ("t;B;	; 
) is given by

f ("t;B;	; 
) = 
 (2�)
�k=2

det (BB0)
�1=2

exp

�
�1
2
"0t (BB

0)
�1
"t

�
(1.2)

+(1� 
) (2�)�k=2 det (B	B0)�1=2 exp
�
�1
2
"0t (B	B

0)
�1
"t

�
The function is a sum of two components

f ("t;B;	; 
) = 
f1 ("t;B) + (1� 
) f2 ("t;B;	) (1.3)

where

f1 ("t;B) = (2�)
�k=2

det (BB0)
�1=2

exp

�
�1
2
"0t (BB

0)
�1
"t

�
and

f2 ("t;B;	) = (2�)
�k=2

det (B	B0)
�1=2

exp

�
�1
2
"0t (B	B

0)
�1
"t

�
Under the assumption of no time correlation of errors, the joint density can

be written as follows

f (";B;	; 
) =
TY
t=1

f ("t;B;	; 
)

with " = f"1; "2; : : : ; "T g.
In further sections, for notational simplicity, f ("t; �; 
) is used instead of

f ("t;B;	; 
), where �
0 = fvec (B)0 : diag (	)0g.

1.2.3 Identi�cation

There is a theoretical question whether it is possible to uniquely identify the
parameters of SVAR models with the mixture of two normal distributions. In
the literature there are papers that address the issue of parameters identi�cation
in di¤erent kinds of models. Following Rothenberg (1971), we can distinguish
between locally and globally identi�able structures. Let us denote f ("; �) as a
density function of a random variable " for parameters � 2 �.
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1.2. SVAR WITH MIXTURE OF NORMAL DISTRIBUTIONS 7

De�nition 1 A parameter point � 2 � is said to be globally identi�able if there

is no other ~� 2 � such that f
�
"; ~�
�
= f ("; �) for all ".

De�nition 2 A parameter point � 2 � is said to be locally identi�able if there

exists an open neighborhood of � containing no other ~� such that f
�
"; ~�
�
=

f ("; �) for all ".

In the case of standard mixture models, it is straightforward to see that they
are not globally identi�able. One can always change the order of the mixture
components without changing the overall distribution. This problem is known
as the "label switching". In the simple mixture model, in which the density
function is described by

f ("; �; 
) =

nX
i=1


ifi ("; �i)

where � = f�1; :::; �ng is a set of mixture components parameters and 
 =
f
1; :::; 
ng is a set of mixing proportions, such that for all i 2 f1; ::; ng 
i > 0
and

Pn
i=1 
i = 1, "label switching" means that for any permutation of indices

k1; :::; kn

f
�
"; ~�; ~


�
=

nX
i=1


kifki ("; �ki) =

nX
i=1


ifi ("; �i) = f ("; �; 
)

where ~� = f�ki ; :::; �kng and ~
 =
�

k1 ; :::; 
kn

	
.

In the SVAR model with the mixture of two normal distributions, the error
term "t follows (1.3). It means that the mixture components are de�ned by
di¤erent parameter vectors. Thus, components cannot be simply �ipped around
by changing their order. However, for any B, 	 and 
, there exist ~B = B	0:5,
~	 = 	�1 and ~
 = 1 � 
 such that for all " 2 R there is f

�
"; ~B; ~	; ~


�
=

f (";B;	; 
). The proof can be found in Appendix 1.6.1.
An additional problem that arises from the speci�cation of SVAR models is

the identi�ability of the matrices B and 	. It can be shown that one can change
the order of columns of B and corresponding diagonal elements of 	 without
in�uencing the values of the likelihood function. Moreover, the columns of B
can be multiplied by �1 and it will not a¤ect the values of the density function.
There are no doubts that the parameters of the SVAR models with the

mixture of two normal distributions are not globally identi�able. It was shown,
however, by Lanne and Lütkepohl (2005) that under some mild conditions they
may be locally identi�able. The necessary and su¢ cient condition for the local
identi�cation is that the diagonal elements of the matrix 	 are all mutually
di¤erent.
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8 CHAPTER 1. SVAR WITH MIXTURE OF NORMAL DISTRIBUTIONS

1.3 Estimation methods

The problem of estimating parameters of mixture models has been a subject of
a large body of literature. Redner and Walker (1984) and McLachlan and Peel
(2000) provide a survey of both theoretical and empirical publications discussing
the properties and applications of di¤erent types of estimators. Recently, due
to the increase of computational e¢ ciency, most of the research concentrates on
the application of the maximum-likelihood method. As the functional form of
the residual distribution in the mixture models is usually treated as known, ML
seems to be a plausible approach.
In the presented work, two estimation methods will be used. First, the

standard maximum likelihood estimation will be described. Second, a two steps
quasi ML estimation, which allows for the estimation of the autoregressive and
mixture parameters separately, will be presented. Finally, the properties of the
ML estimators will be discussed.

1.3.1 Maximum Likelihood and two steps quasi Maximum
Likelihood estimators

The maximum likelihood estimation method depends on the assumed functional
form of the joint error distribution. In the SVAR model with the mixture of
two normal densities, the p.d.f. of the forecast errors, "t, for a given period t is
given by (1.2). Therefore, the value of the log-likelihood function L (�; 
j"t) for
the t-th error, "t, is

L (�; 
j"t) = ln (f ("t; �; 
))

= �k
2
ln (2�)

+ ln

0@ 
 det (BB0)
�1=2

exp
�
� 1
2"
0
t (BB

0)
�1
"t

�
+

(1� 
) det (B	B0)�1=2 exp
�
� 1
2"
0
t (B	B

0)
�1
"t

� 1A
A constant term �k

2 log (2�) will be omitted in further analysis. The joint
log-likelihood is

L (�; 
j") =
TX
t=1

L (�; 
j"t)

= ln (f ("t; �; 
))

The maximization problem

max
�2
;
2(0;1)

L (�; 
j") = max
�2
;
2(0;1)

TX
t=1

ln (f ("t; �; 
))
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1.3. ESTIMATION METHODS 9

where � is a vector of parameters de�ned as before and


 = f� : det (B) 6= 0; diag (	) > 0g

is a set of all possible parameter vectors, does not have a closed form solution
and therefore iterative optimization procedures have to be used.

One step Maximum Likelihood

In this method one searches for the maximum of the log-likelihood function over
both the autoregressive and mixture parameters. We can rewrite the model with
the lag polynomial

A(L)yt �A0 = "t

where A (L) = Ik �
Pp

i=1AiL
i and L is a lag operator, such that Liyt = yt�i.

A0 is a k� 1 vector of constants. Then the estimators Â0;Â1; :::; Âp; B̂; 	̂; 
̂ are
chosen to maximize

L (�; 
;Ajy) =
TX
t=p

ln f(A(L)yt �A0; �; 
)

where A = (A0; A1; :::; Ap), y = (y1;y2; :::; yT ) and f(:; �; 
) is de�ned in (1.2).

Two steps quasi Maximum Likelihood

In this method the estimation procedure consists of two steps. Firstly, the
autoregressive parameters are estimated with the LS or quasi ML method. Then
the estimates of the residuals are computed according to the formula

êt = yt �
 
Â0 +

pX
i=1

Âiyt�i

!
Finally, the mixture of two normal distributions is �tted to the estimated

residuals êt with the ML method. Then parameters B̂; 	̂; 
̂ are chosen to max-
imize

L (�; 
jê) =
TX
t=p

ln f(êt; �; 
)

where ê = (êp; êp+1; :::; êT ) and f(:) is de�ned as in (1.2).
This is a quasi ML method because it is conditional on the estimates of the

estimates of the autoregressive parameters, which in principle di¤ers form the
true ones. Thus,

L (�; 
jê) 6= L (�; 
j")

Fortunately, the autoregressive parameters can be consistently estimated with
the LS or quasi ML method and therefore, the estimates of the mixture parame-
ters B̂, 	̂ and 
̂ converge to the true ones. This estimation method is however
less e¢ cient than the full Maximum Likelihood approach.
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10 CHAPTER 1. SVAR WITH MIXTURE OF NORMAL DISTRIBUTIONS

1.3.2 Numerical maximization algorithms

As mentioned before, the ML problem does not have a closed form solution.
Therefore, numerical maximization algorithms need to be used to obtain the
ML estimates of the parameters. There exist general iterative procedures, such
as Newton�s methods, two steps quasi Newton�s methods and conjugate gradient
methods, which can be used in this context. There are, however, other methods
that are more speci�c and thus more suitable for the mixture distributions
models. One of them is the EM algorithm. It was formalized by Dempster,
Laird and Rubin (1977) and designed for estimation problems with incomplete
data. McLachlan and Krishnan (1997) provides a broad review of the literature
dedicated to its theoretical and empirical properties.

EM algorithm

The estimation of the SVAR models with the mixture of distributions can be
analyzed from the perspective of the incomplete data problem. Let us assume
that the data generating process of the shocks "t is

"t �
(
N(0,BB0) if Zt = 1

N(0,B	B0) if Zt = 0

where Zt is an indicator variable. Then the density function of "t conditional
on Zt could be rewritten as follows

f ("tjZt; �) = f1 ("t; �)
Zt f2 ("t; �)

1�Zt

where f1 ("t; �) and f2 ("t; �) are de�ned in Section 2.2.
In the mixture model the mixing probabilities are assumed to be constant

over time. It corresponds to the assumption

prob (Zt = 1) = 


prob (Zt = 0) = 1� 


Therefore, Zt needs to have a Bernoulli distribution

g (Zt; 
) = 
Zt (1� 
)1�Zt

The joint density function of "t and Zt is given by

fc ("t; Zt; �; 
) = f1 ("t; �)
Zt f2 ("t; �)

1�Zt 
Zt (1� 
)1�Zt

and

ln (fc ("t; Zt; �; 
)) = Zt fln (
) + ln (f1 ("t; �))g
+(1� Zt) fln (1� 
) + ln (f2 ("t; �))g
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1.3. ESTIMATION METHODS 11

The complete-data log likelihood Lc (�; 
j") (meaning that both "t and Zt
are assumed to be observable) can be written as follows

Lc (�; 
j") =
TX
t=1

Lc (�; 
j"t)

=
TX
t=1

ln (fc ("t; Zt; �; 
))

Therefore,

Lc (�; 
j") =
TX
t=1

Zt fln (
) + ln (f1 ("t; �))g

+
TX
t=1

(1� Zt) fln (1� 
) + ln (f2 ("t; �))g

The EM algorithm consists of two steps: E (computing the expectation of
Lc (�; 
j") conditional on the the observable data "t) and M (maximizing the
expected Lc (�; 
j") over the parameter space 
 [ (0; 1).

E - Step In this step the expected value of the complete-data log likelihood is
computed. The expected value of the Lc (�; 
j") conditional on the the observ-
able data " for an initial parameters vector �0 and 
0 is given by Q (�; 
; �0; 
0)

Q (�; 
; �0; 
0) = E

 
TX
t=1

Zt flog (
) + log (f1 ("t; �))g j"; �0; 
0

!

+E

 
TX
t=1

(1� Zt) flog (1� 
) + log (f2 ("t; �))g j"; �0; 
0

!

=

TX
t=1

E (Ztj"; �0; 
0) flog (
) + log (f1 ("t; �))g

+
TX
t=1

E (1� Ztj"; �0; 
0) flog (1� 
) + log (f2 ("t; �))g

Let us denote by � t (�0; 
0) an expected value of the indicator variable Zt
for the initial parameters values �0 and 
0

� t (�0; 
0) = E (Ztj"; �0; 
0)
= 0 � f (Zt = 0j"; �0; 
0) + 1 � f (Zt = 1j"; �0; 
0)
= fc ("t; Zt = 1; �0; 
0) =f ("t; �0)

= 
0f1 ("t; �0) =f ("t; �0)
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12 CHAPTER 1. SVAR WITH MIXTURE OF NORMAL DISTRIBUTIONS

Then

E (1� Ztj"; �0; 
0) = 1� 
0f1 ("t;B0) =f ("t; �0)
= 1� � t (�0; 
0)

Thus, Q (�; 
; �0; 
0) takes the form

Q (�; 
; �0; 
0) =
TX
t=1

� t (�0; 
0) flog (
) + log (f1 ("t; �))g

+
TX
t=1

(1� � t (�0; 
0)) flog (1� 
) + log (f2 ("t; �))g

M - Step In this step the new estimates of � and 
 are chosen to maximize
Q (�; 
; �0; 
0). �

�̂; 
̂
�
= arg max

�2
;
2(0;1)
Q (�; 
; �0; 
0)

The Q (�; 
; �0; 
0) function can be decomposed into two parts

Q (�; 
; �0; 
0) = Q1 (
; �0; 
0) +Q2 (�; �0; 
0)

such that

Q1 (
; �0; 
0) = log (
)
TX
t=1

� t (�0; 
0) + log (1� 
)
TX
t=1

f1� � t (�0; 
0)g

= log (
)
TX
t=1

� t (�0; 
0) + log (1� 
)
(
T �

TX
t=1

� t (�0; 
0)

)

Q2 (�; �0; 
0) =
TX
t=1

� t (�0; 
0) log (f1 ("t; �)) + (1� � t (�0; 
0)) log (f2 ("t; �))

The �rst component depends only on the mixing proportions 
 whereas the
second one depends on �. Consequently, the maximization problem can be
solved by separately estimating the proportion parameter 
 and the rest of the
parameters �. It can be easily shown that the Q1 (
; �0; 
0) is maximized by


̂ =
TX
t=1

� t (�0; 
0) =T

Finally,

�̂ = argmax
�2


Q2 (�; �0; 
0)
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1.3. ESTIMATION METHODS 13

Iterations of the algorithm Once the new estimates of the parameters �̂
and 
̂ are obtained, the two steps E and M are repeated for �0 = �̂ and 
0 = 
̂.
The algorithm is terminated when a stopping condition is ful�lled. There are
two popular stopping rules

1. The algorithm is stopped when the value of the log-likelihood function
does not change by more then ����logL��̂; 
̂j"�� logL (�0; 
0j")��� � �

2. The algorithm is stopped when the parameters do not change much. It
means that for some chosen � 

�� � ��0

 � �

where k:k denotes some norm and �� =
�
�̂
0
; 
̂
�0
, ��0 =

�
�00; 
0

�0
.

1.3.3 Problems with Maximum Likelihood estimation

The maximum likelihood estimators su¤er from two problems: the likelihood
function is unbounded and the parameters are not globally identi�ed. The sec-
ond issue was discussed before and due to local identi�ability does not threaten
the estimation process but in�uences the interpretation of the estimated pa-
rameters. The �rst one is much more serious and some modi�cation of the
estimation procedures need to be considered.

Unbounded Likelihood function

An example of an unbounded likelihood function for a mixture model was given
by Kiefer and Wolfowitz (1956). Let us consider an univariate, mixture model
with a shift in a variance

xt �
(
N(�;1) with probability 0.5

N(�; �2) with probability 0.5

Then the density function for xt is given by

f (xt;�; �) = 0:5
1

(2�)
0:5 exp

�
�0:5 (xt � �)2

�
+0:5

1

(2�)
0:5

1

�
exp

 
�0:5(xt � �)

2

�2

!

Let us assume that there is a �nite number of observations fxtg andmaxt jxt � �j =
m < 1. Suppose we choose � = x1 and a sequence of standard deviations
�n ! 0. Then, for all xt = �, the density function diverges to in�nity.
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14 CHAPTER 1. SVAR WITH MIXTURE OF NORMAL DISTRIBUTIONS

f (xt;�; �n) = 0:5
1

(2�)
0:5 exp

�
�0:5 (xt � �)2

�
+0:5

1

(2�)
0:5

1

�n
exp

 
�0:5(xt � �)

2

�2n

!

= 0:5
1

(2�)
0:5 + 0:5

1

(2�)
0:5

1

�n
!1

The density for xt 6= � is bounded away from zero

f (xt;�; �n) = 0:5
1

(2�)
0:5 exp

�
�0:5 (xt � �)2

�
+0:5

1

(2�)
0:5

1

�n
exp

 
�0:5(xt � �)

2

�2n

!

! 0:5
1

(2�)
0:5 exp

�
�0:5 (xt � x1)2

�
� 0:5

1

(2�)
0:5 exp

�
�0:5m2

�
> 0

Thus, L (�; �njx) =
TQ
t=1

f (xt;�; �n)!1

The problem seems to be equally severe for the SVAR models with a mixture
of two normal distributions. The density function for an error, "t, is given by
the following formula

f ("t) = 
 (2�)
�k=2

det (B)
�1
exp

�
�1
2

�
B�1"t

�0
B�1"t

�
+

(1� 
) (2�)�k=2 det (	)�1=2 det (B)�1 exp
�
�1
2

�
B�1"t

�0
	�1B�1"t

�
We can always �nd a matrix B such that det (B) < M1 < 1 and there

exists a time index s 2 f1; :::; Tg such that the ith element of bs = B�1"s is
equal to zero, bis =

�
B�1"s

�
i
= 0, for some i 2 f1; :::; kg. We can choose the

sequence 	n of diagonal, positive de�nite matrices that satis�es 	nii ! 0 and
	njj > M2 > 0 for j 6= i. We know that

�
�
B�1"t

�0
	�1B�1"t = �

X
j 6=i

1

	jj
b2jt �

1

	ii
b2it

For t = s
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1.3. ESTIMATION METHODS 15

1

	ii
b2it = 0

Therefore,

�
�
B�1"t

�0
	�1B�1"t = �

X
j 6=i

1

	njj
b2jt > �

1

M2

X
j 6=i

b2jt > �1

and

exp

�
�1
2

�
B�1"t

�0
	�1n B�1"t

�
� 0

Since

det (	n)! 0

then

det (	n)
�1=2

det (B)
�1
exp

�
�1
2

�
B�1"t

�0
	�1B�1"t

�
!1:

Thus, f ("t)!1.
For t 6= s the value of density function f ("t) is bounded away from zero

f ("t) > 
 (2�)
�k=2

det (B)
�1
exp

�
�1
2

�
B�1"t

�0
B�1"t

�
> 0

So L (�; 
j") =
TQ
t=1

f ("t)!1. Therefore the likelihood function is unbounded.

The problem of an unbounded likelihood function rises some questions about
the ML estimators.

What is the ML estimator for the unbounded likelihood function?
When the likelihood function is unbounded then the global maximizer of the
likelihood function does not exist. Therefore one can not talk about the ML
estimator in the traditional sense (see McLachlan and Peel (2000) for some dis-
cussion). It does not mean, however, that there is no sequence of local maximiz-
ers with properties of consistency, e¢ ciency and asymptotic normality. Redner
and Walker (1984) provides the regularity conditions under which, for the class
of locally identi�able mixtures, such a sequence exists. Moreover, when the pa-
rameter space is compact and contains the true parameters in its interior, the
MLE is a point at which the likelihood obtains its largest local maximum.

How can the ML estimation procedure be improved? Hathaway (1985)
proposes imposing a set of constraints (ensuring that the parameter space is
compact and does not include singularity points) that allows for the consistent
estimation of the parameters. In the case of univariate time series, the con-
straint is mini;j (�i=�j) � c for some constant c > 0. In the multivariate case,
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16 CHAPTER 1. SVAR WITH MIXTURE OF NORMAL DISTRIBUTIONS

Hathaway (1985) proposes to constrain all of the characteristic roots of �i�
�1
j

(for any 1 � i 6= j � k) to be greater or equal to some minimum value c > 0.
These kind of restrictions will lead to constrained (global) maximum-likelihood
formulations which are strongly consistent (if they are satis�ed by the true pa-
rameters). The main disadvantage of the approach is the arbitrary choice of
the value of c > 0. It is particularly di¢ cult, when there is no initial intuition
about the data generating process and no information to base the guess on.
Some other forms of the constraints are discussed in the literature. For

example, McLachlan and Peel (2000) proposes to limit the distance between the
component generalized variances by restricting the ratio j�ij = j�j j to be greater
or equal to c > 0:

What can we do in the case of the SVAR models with mixture of
two normal densities? One may want to impose similar constraints on the
parameters in the case of the SVAR model with the mixture of two normal
densities. There are, however, di¤erences between the setup presented in this
paper and one discussed typically in the literature, they are associated with the
components variances. In the SVAR models, the variances are composed of two
matrices: B and 	: �1 = BB0 and �2 = B	B0. Thus

�2�
�1
1 = B	B0 �B0�1B�1 = B	B�1

Let us denote by � (A) a set of all eigenvalues of the square matrix A. Then

�
�
�2�

�1
1

�
= �

�
B	B�1

�
= � (	) = diag (	)

So the Hathaway constraints for the two components case are equivalent to the
following

0 < c � mini2f1;::;Kg	i;i
maxi2f1;::;Kg	i;i � 1=c <1

(1.4)

How to treat the obtained results? How can we evaluate the local
maximum we �nd? The mixture models su¤er not only the problem of
unbounded likelihood function but also the problem of spurious maximizers.
Spurious maximizers are typically generated by a small group of observations,
which are located close together (Day (1969)). They are characterized by a big
relative di¤erence between components variances. Thus imposing restrictions on
the parameters may reduce the number of spurious maximizers. The minimum
eigenvalue of the �i�

�1
j can also be used to evaluate the local maximizers of

the unconstrained likelihood and to choose the most interesting one.

1.4 Monte Carlo Experiment

The purpose of the Monte Carlo experiment is to investigate how a choice of
an estimation method and maximization algorithm in�uences estimates of the
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1.4. MONTE CARLO EXPERIMENT 17

parameters. The exercise helps to answer the question what is the cost of using
the two steps quasi ML instead of ML method. If there are no signi�cant
di¤erences, then the two steps quasi ML approach will be a very attractive from
the practical point of view as it allows to reduce signi�cantly the complexity of
the problem. Other interesting issues are the ability of di¤erent maximization
algorithms to �nd the true, rather than spurious, local maximizers and the
robustness to the guesses of the initial parameter values.

1.4.1 Experimental design

In the experiment, two data generating processes are considered: VAR in levels
and VECM, both with the mixture of two normal distributions. The VECM
process

�yt = A0 + ��
0yt�1 +

p�1X
j=1

�j�yt�j +But

can be represented as a VAR process

yt = A0 +

pX
j=1

Ajyt�j +But

where the relationship between the VECM and VAR parameters is described as
follow:

A1 = ��0 + �1 + Ik

A2 = �2 � �1
...

Ap�1 = �p�1 � �p�2
Ap = ��p�1

Therefore, in both cases the data sets used in the research can be generated
according to the VAR speci�cation. It is assumed that ut follows a mixture of
two normal distributions N (0; I) and N (0;	) with mixing proportions 
 and
1� 
 ( 
 2 (0; 1) ), respectively
For each type of data generating process, the Monte Carlo experiment con-

sists of 1000 replications. In each replication (i = 1; : : : 1000), a time series is
generated according to the following algorithm :

1. For each replication i and time period t a variable Zit is generated from
the binomial distribution with prob (Zit = 1) = 
 and prob (Zit = 0) =
1 � 
. Firstly, we draw randomly vit form the uniform distribution on
the interval [0; 1]. Then the value of Zit is assigned Zit = 1 , vit � 
,
Zit = 0, vit > 
.
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18 CHAPTER 1. SVAR WITH MIXTURE OF NORMAL DISTRIBUTIONS

2. Structural shocks uit are generated according to the distribution N (0; I)
if Zit = 1 and N (0;	) if Zit = 0 for each time period t (or alternatively
uit � N (0; I), vit � 
, uit � N (0;	), vit > 
).

3. Time series fyitg are generated from the formula

yit = A0 +

pX
j=1

Apyi;t�j +Buit

under the assumption yi0 = 0.

4. The �rst 100 observation of yit are dismissed to reduce the in�uence of
the choice of the initial observations on the outcome.

Finally, parameters of the SVAR or SVECM model are estimated with two
methods: ML and two steps quasi ML. In both estimation methods, four al-
gorithms are used to search for the parameter values that maximize the likeli-
hood function: three general maximization algorithms ( BFGS, NEWTON and
BHHH provided in the CML library in GAUSS) and the EM algorithm.

The outcomes, for each of the estimation methods and the maximization
algorithms, are evaluated on the basis of:

� number of successful estimates (algorithm converges)

� ratio of estimates that satisfy the conditions (1.4) for c = 0:01

� mean and variance of the estimated parameters

� convergence to the true parameter values for increasing sample size

� sensitivity to choice of the initial values

1.4.2 Choice of parameters values

The Monte Carlo experiment was performed for three di¤erent lengths of the
time series T = 50; 150; 500. Time dimensions T = 50; 150 correspond to lengths
of time series used in the empirical analysis, whereas T = 500 captures the
asymptotic behavior of examined estimators and maximization algorithms.
In both data generating processes, the residuals But were distributed ac-

cording to the mixture of two normal distributions with the following parameter
values:

B =

�
1 0
0 1

�
;	 =

�
1 0
0 5

�
(1.5)

Two di¤erent proportion parameters were considered. Firstly, the mixture
proportion was set to 
 = 0:5, thus But was equally often distributed according
to N (0; BB0) as to N (0; B	B0). Finally 
 = 0:8, which means that the second
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1.4. MONTE CARLO EXPERIMENT 19

component was much more rarely observable. It was expected that the choice of

 would in�uence the small sample properties of the estimators in three ways: by
e¤ecting a rate of successful estimates, a frequency of choosing the true, rather
then spurious, maximizers and e¢ ciency (measured by estimator variance).

Structural Vector Autoregressive Model (SVAR)

In the �rst part of the experiment data was generated according to the VAR
model with the order of autoregression p = 1.

yt = A0 +A1yt�1 +But (1.6)

The autoregressive parameters were chosen to ensure that the process yt was
stationary

A0 =

�
0
0

�
; A =

�
0:5 0
0 0:5

�
(1.7)

Structural Vector Error Correction Model (SVECM)

The order of autoregression is set as p = 2 and the model takes the following
form

�yt = A0 + ��
0yt�1 + ��yt�1 +But (1.8)

The parameters of the SVECM model were chosen to ensure that the process is
well de�ned1

� =

�
�0:1
0:1

�
; � =

�
1
�1

�
(1.9)

A0 =

�
0
0

�
;� =

�
0:2 0:5
0:5 0:2

�

1.4.3 Results

Ratios of successful estimates Tables 1.1 and 1.2 present ratios of suc-
cessful estimates for the VAR model, which are computed as the number of
the outcomes with nonsingular covariance matrix and 0 < 
 < 1, divided by

1Let us denote by C (z) the following polynomial

C (z) = (1� z) Ik � ��0z �
p�1X
i=1

(1� z) z�i

Then, the VECM process is well de�ned if the following conditions hold

1. det (C (z)) = 0) jzj � 1
2. The number of unit roots z = 1, is exactly k � r, where r = rk (�) = rk (�)
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20 CHAPTER 1. SVAR WITH MIXTURE OF NORMAL DISTRIBUTIONS

the total number of Monte Carlo iterations. Results indicate that the general
maximization algorithms su¤er many problems when estimating model parame-
ters. More frequently, the parameters converge to singularity points or end up
on the boundaries (
 = 0 or 1). This unwanted behavior is the strongest for
the short time series (T = 50), when the ratios vary between 10% � 60% for
algorithms that start with the true parameters values and 5%� 35% when they
begin with false parameters values. For long time series (T = 500), the ratios
are 70% � 90% and 30% � 80% respectively. In practice, we can expect the
second case to occur more often and therefore, the results question the usage of
this kind of algorithms. The EM algorithm outperforms the rest of algorithms
in terms of the number of successful estimates. It converges to local maxima
in almost all cases. Its disadvantage is, however, a very slow rate of conver-
gence and lengthy time of computation (for more details see Redner and Walker
(1984), McLachlan and Krishnan (1997)).
Tables 1.11 and 1.12 summarize the ratios of successful estimates2 for the

VECM model. For the two steps quasi ML method, they are qualitatively simi-
lar to those obtained in the VAR experiment. When the estimation procedures
are initiated at true parameter values, the general maximization algorithms
(NEWTON and BFGS) converge in 15�60% cases for short time series T = 50,
compared with 90% for the EM algorithm. As the time dimension increases,
di¤erences between algorithms decrease and the ratios for general maximization
algorithms reach almost 100%. When the estimation begins with parameter
values that di¤er from the true ones, the ratios of successful estimates for the
BFGS do not exceed 35% for all time lengths (T = 50; 500), whereas the NEW-
TON algorithm converges in 30� 90% cases depending on the time dimension.
Both general maximization algorithms perform signi�cantly worse then the EM
algorithm, for which the rate of convergence is close to 100%.
When the ML method is considered, there appears to be more di¤erences be-

tween the VAR and VECM experiments. The general maximization algorithms
converge in around 20� 30% of the cases for T = 50 and 80� 100% of the cases
for T = 500. The EM algorithm, however, does not perform signi�cantly better
and converges only in 40% of cases for T = 50 and 95% of cases for T = 500.
These results indicate that the complexity of the estimation problem in�uences
signi�cantly the chances of successful convergence.
Finally, comparisons of di¤erent maximization algorithms bring two conclu-

sions. Firstly, there are algorithms, such as BHHH3 , very sensitive to the length
of the time series. For T = 50, it falls far behind the BFGS and NEWTON algo-
rithms. Secondly, BFGS is more frequently successful than the NEWTON algo-
rithm when the initial guesses are close to the true parameters. The di¤erence
seems signi�cant especially for very short time series. The results show, how-
ever, that the NEWTON algorithm is much more robust to the initial guesses
of the parameters. Thirdly, the ratios of successful estimates and the true local
maximizers hardly depend on the number of observations.

2As in the VAR experiment the BHHH algorithm performes much worse then other algo-
rithms, it is ommited in futher research.

3Comparison based on the VAR experiment
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1.4. MONTE CARLO EXPERIMENT 21

It is interesting to compare the results of ML and two steps quasi ML meth-
ods. It appears that the two steps quasi ML method leads more often to the
successful estimates and to the true maximizers rather then the spurious ones.
These preliminary results can not fully support the choice of this method in em-
pirical applications, as the precision of estimates needs to be taken into account.
However, it already indicates the advantages of simplifying the estimation prob-
lem.

Autoregressive (VAR and VECM) parameters The comparison of the
parameter estimates is based on the outcomes of the BFGS algorithm4 . For
all the two steps procedures, regardless of the maximization algorithm, the
autoregressive parameters were estimated in the same way. Therefore, there is
no need to compare results between the algorithms. Tables 1.5, 1.6, 1.15 and
1.16 present the means and the variances of the estimators for VAR and VECM
models respectively. The outcomes satisfy condition (1.4) and are presented
for the ML and two steps quasi ML separately. It is worth emphasizing that
both methods produce very similar results. They con�rm the consistency of the
estimators, hence in all considered cases the mean converges to true parameter
values and the variance decreases5 .

Mixture parameters Firstly, the estimates of the mixing parameters are
compared on the basis of a ML with a BFGS maximization algorithm. Their
properties (mean and the variance) are summarized in the Tables 1.7 and 1.17.
The outcomes are less satisfying then in the autoregressive parameters case,
but still show the consistency as the mean converges to the true parameter
values and the variance decreases. It may be noticed that most of the problems
arise while estimating the matrix 	. The biggest of the diagonal elements is
estimated very imprecisely (its variance across Monte Carlo iterations reaches
313:04 for T = 50 for VAR and 331:26 for VECM model) and thereby in�uences
the estimates of the rest of parameters.
Secondly, the results for three estimation procedures: a ML with BFGS

(called M1), a two steps quasi ML with BFGS (called M2) and a two steps
quasi ML with an EM (called EM2) are compared. The outcomes for the mix-
ing proportion 
 = 0:5 are illustrated in the Figures 1.1 and 1.2. It shows
that the two steps quasi ML method with EM algorithm is the most precise in
estimating the crucial 	 matrix (when both the mean and the variance of the
estimators are taken into account). For other mixture parameters, the outcomes
are comparable across all three procedures (for more details see Tables 1.8-1.9
and Tables 1.18-1.19).

4Results for other maximization algorithms are very simmilar and therefore they are not
discussed in details.

5The t-ratios mean and variacne were also computed and they con�rm good properties
of the estimators (converge to the �rst two moments of N(0,1)). Tables that summarize the
t-ratios are available upon request
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22 CHAPTER 1. SVAR WITH MIXTURE OF NORMAL DISTRIBUTIONS

Spurious maximizers The importance of the spurious maximizers problem
is illustrated by the results in Table 1.10. It summarizes the mean and the
variance of the VAR and mixture parameters estimators for the cases in which
the condition (1.4) is not satis�ed. For T = 50, the mean of 	2 estimators
reaches almost 5000 and decreases to 2936 for T = 150. It means that in
some cases the estimation procedures produce very unrealistic results which are
characterized by high values of 	̂ and low values of mixing proportion estimators
(mean of 
̂ was 0:193 and 0:117 for T = 50; 150 respectively).
The autoregressive parameters estimators were not a¤ected by the existence

of the spurious maximizers. Even when the mixing parameters were estimated
incorrectly, they were still similar to the results for cases in which (1.4) is satis-
�ed and converged to true parameter values as the sample size increases. It sug-
gests that the estimators of autoregressive parameters are robust to the choice
of a local maximizer.
As previously discussed algorithms may converge to the spurious maximizers

rather then to the true ones. To disregard these cases, the condition (1.4) was
checked for every estimate. Tables 1.3, 1.4, 1.13 and 1.14 summarize the ratios
of the number of true local maximizers to the number of successful estimates.
The results show that the ratio increases with the length of the times series.
For T = 50, it starts from 66% to 84%, whereas for T = 500 all the results
exceed 99%. Unfortunately, the low ratio for short time series means that when
the macroeconomic time series are used it may be expected that the spurious
maximizers will arise quite often.

1.5 Conclusions

In this paper, we describe and discuss issues associated with an estimation of
structural VAR models with mixtures of two normal distributions. The main
theoretical di¢ culties that arise are a lack of global identi�ability of parameters
and an unbounded likelihood function. The �rst issue can be easily overcome
because, under some mild restrictions, the parameters are locally identi�able
and therefore, a ML estimation method can be applied. The second problem
requires a new de�nition of a ML estimator because a global maximum of a
likelihood function does not exist. Moreover, the likelihood function has many
spurious local maxima, which make it di¢ cult to �nd the proper ML estimates.
We present how the issue is solved in the literature and adopt this approach to
the SVAR models with a mixture distribution.
Finally, we perform a Monte Carlo experiment that compares di¤erent es-

timation methods and maximization algorithms. The outcomes indicate that
there are no signi�cant di¤erences in the e¢ ciency between the two discussed
estimation methods: ML and two steps quasi ML. This result favours the two
steps method as it is simpler and less computationally demanding. Next, we
compare the properties of di¤erent maximization algorithms. The general max-
imization algorithms seem to perform worse then the EM algorithm. It is more
frequent that they are not able to produce any results or lead to spurious maxi-
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mizers. Estimates based on these methods vary more across the MC iterations,
particularly for short time series. The di¤erences between these two types of
algorithms become negligible for long time series T = 500, when the ratio of
successful estimations and the moments of the obtained estimators equalize.
The main disadvantages of the EM algorithm are di¢ culties with computing
the variance of the estimators6 and the lengthy time of computations.
The experiment con�rms that spurious maximizers are one of the crucial

problems when estimating the parameters of SVAR models with the mixture
of normal distributions. It happens that the estimates, which constitute local
maxima of the likelihood function, are produced by a small group of observations
with a low variance. Therefore, they give a high value of the likelihood function
but do not represent a ML estimate with its statistical properties. The existence
of spurious maximizers threatens the estimates of the mixing parameters but
does not a¤ect the estimates of the autoregressive parameters.

1.6 Appendix

1.6.1 "Label Switching"

We will show that for ~B = B	0:5, ~	 = 	�1 and ~
 = 1 � 
 and any " 2 R the
following equality holds

f
�
"; ~B; ~	; ~


�
= f (";B;	; 
)

The density function f (";B;	; 
) consists of two components

f (";B;	; 
) = 
 det (BB0)
�0:5

exp
�
�0:5"0 (BB0)�1 "

�
+(1� 
) det (B	B0)�0:5 exp

�
�0:5"0 (B	B0)�1 "

�
= f1 (") + f2 (")

Lets ~f1 (") and ~f2 (") denote the components of the density function computed
for the new parameters vectors ~B, ~	 and ~
. Then the �rst component ~f1 (") =
f2 (")

~f1 (") = ~
 det
�
~B ~B0

��0:5
exp

�
�0:5"0

�
~B ~B0

��1
"

�
= (1� 
) det

�
B	0:5	00:5B0

��0:5
exp

�
�0:5"0

�
B	0:5	00:5B0

��1
"
�

= (1� 
) det (B	B0)�0:5 exp
�
�0:5"0 (B	B0)�1 "

�
= f2 (")

6To estimate asymptotic variance of the parameters some modi�cation of the algorithm
need to be introduced.
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and the second one ~f2 (") = f1 (")

~f2 (") = (1� ~
) det
�
~B ~	 ~B0

��0:5
exp

�
�0:5"0

�
~B ~	 ~B0

��1
"

�
= 
 det

�
B	0:5	�1	00:5B0

��0:5
exp

�
�0:5"0

�
B	0:5	�1	00:5B0

��1
"
�

= 
 det (BB0)
�0:5

exp
�
�0:5"0 (BB0)�1 "

�
= f1 (")

Finally,

f
�
"; ~B; ~	; ~


�
= ~f1 (") + ~f2 (")

= f2 (") + f1 (")

= f (";B;	; 
)

1.7 Results: SVAR

Table 1.1: VAR. Ratio of successful estimates, algorithms initiated with the
true parameters values.

ML two steps quasi ML

 T BFGS NEWTON BHHH EM BFGS NEWTON BHHH EM

0.5 50 0.592 0.262 0.102 1.000 0.625 0.334 0.17 1.00
150 0.896 0.515 0.611 0.996 0.882 0.498 0.583 0.994
500 0.995 0.734 0.972 0.992 0.992 0.735 0.969 0.992

0.8 50 0.384 0.165 0.016 0.998 0.410 0.186 0.023 1.00
150 0.758 0.403 0.230 0.993 0.733 0.415 0.228 0.992
500 0.979 0.635 0.749 0.990 0.976 0.647 0.757 0.919

NOTE: Two methods are considered: Maximum Likelihood and two steps
quasi Maximum Likelihood. For each estimation method four maximization
algorithms are evaluated: BFGS, NEWTON, BHHH and EM. The data
generating process is described by (1.5), (1.6) and (1.7). We denote by T and

 the length of the sample and a mixing proportion parameter, respectively.
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Table 1.2: VAR. Ratio of successful estimates, algorithms not initiated with the
true parameters values.

ML two steps quasi ML

 T BFGS NEWTON BHHH EM BFGS NEWTON BHHH EM

0.5 50 0.212 0.287 0.060 1.000 0.242 0.344 0.123 0.999
500 0.306 0.727 0.768 0.992 0.275 0.728 0.660 0.989

0.8 50 0.161 0.272 0.058 0.998 0.160 0.371 0.046 0.998
500 0.584 0.822 0.628 0.994 0.385 0.820 0.990

NOTE: Two methods are considered: Maximum Likelihood and two steps
quasi Maximum Likelihood. For each estimation method four maximization
algorithms are evaluated: BFGS, NEWTON, BHHH and EM. The data
generating process is described by (1.5), (1.6) and (1.7). We denote by T and

 the length of the sample and a mixing proportion parameter, respectively.

Table 1.3: VAR. Ratio of successful estimates that satisfy condition (1.4) for c =
0:01 to all successful estimates, algorithms initiated with the true parameters
values.

ML two steps quasi ML

 T BFGS NEWTON BHHH EM BFGS NEWTON BHHH EM

0.5 50 0.775 0.786 0.863 0.812 0.913 0.904 0.935 0.946
150 0.948 0.940 0.957 0.948 0.984 0.970 0.992 0.989
500 0.998 0.997 0.998 0.998 0.999 0.999 0.998 1.00

0.8 50 0.930 0.915 0.875 0.903 0.971 0.962 0.956 0.919
150 0.991 0.985 1.00 0.75 0.999 0.995 1.00 0.986
500 1.00 1.00 1.00 0.999 1.00 1.00 1.00 1.00

NOTE: Two methods are considered: Maximum Likelihood and two steps
quasi Maximum Likelihood. For each estimation method four maximization
algorithms are evaluated: BFGS, NEWTON, BHHH and EM. The data
generating process is described by (1.5), (1.6) and (1.7). We denote by T and

 the length of the sample and a mixing proportion parameter, respectively.
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Table 1.4: VAR. Ratio of successful estimates that satisfy condition (1.4) for c =
0:01 to all successful estimates, algorithms not initiated with the true parameters
values.

ML two steps quasi ML

 T BFGS NEWTON BHHH EM BFGS NEWTON BHHH EM

0.5 50 0.901 0.840 0.800 0.749 0.967 0.936 1.00 0.930
500 0.997 1.00 0.996 0.999 0.996 1.00 0.997 0.999

0.8 50 0.969 0.893 0.810 0.850 0.962 0.921 0.956 0.944
500 1.00 0.998 0.995 0.999 1.00 0.999 1.00

NOTE: Two methods are considered: Maximum Likelihood and two steps
quasi Maximum Likelihood. For each estimation method four maximization
algorithms are evaluated: BFGS, NEWTON, BHHH and EM. The data
generating process is described by (1.5), (1.6) and (1.7). T and 
 denote the
length of the sample and a mixing proportion parameter, respectively.

Table 1.5: VAR. The mean and the variance of the autoregressive parameters
estimates for the two steps quasi ML method (BFGS algorithm iniciated with
the true parameters values).

Parameters A
(0)
1 A

(0)
2 A11 A21 A12 A22

True values 0 0 0:5 0 0 0:5


 T Mean
0:5 50 �0:0009 0:0090 0:4385 0:0066 �0:0056 0:4440

150 �0:0051 �0:0035 0:4794 �0:0015 �0:0022 0:4803
500 �0:0014 �0:0010 0:4937 �0:0029 �0:0007 0:4940

0:8 50 �0:0058 �0:0085 0:4434 �0:0122 �0:0026 0:4510
150 �0:0006 0:0009 0:4774 �0:0023 �0:0001 0:4782
500 0:0006 0:0021 0:4921 �0:0006 �0:0002 0:4935

Variance
0:5 50 0:0247 0:0855 0:0152 0:0529 0:0055 0:0156

150 0:0076 0:0215 0:0046 0:0168 0:0018 0:0049
500 0:0021 0:0059 0:0015 0:0045 0:0005 0:0016

0:8 50 0:0269 0:0481 0:0171 0:0366 0:0099 0:0129
150 0:0071 0:0132 0:0053 0:0102 0:0029 0:0052
500 0:0018 0:0039 0:0015 0:0027 0:0008 0:0016

NOTE: The data generating process is described by (1.5), (1.6) and (1.7). We
denote by T and 
 the length of the sample and a mixing proportion parameter,
respectively.
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Table 1.6: VAR. The mean and the variance of the autoregressive parameters es-
timates for the ML method (BFGS algorithm iniciated with the true parameters
values).

Parameters A
(0)
1 A

(0)
2 A11 A21 A12 A22

True values 0 0 0:5 0 0 0:5


 T Mean
0:5 50 0:0025 �0:0056 0:4492 �0:0176 �0:0054 0:4535

150 �0:0062 �0:0010 0:4806 0:0000 �0:0030 0:4851
500 �0:0014 �0:0007 0:4936 �0:0043 �0:0006 0:4953

0:8 50 0:0030 �0:0080 0:4429 �0:0196 �0:0069 0:4613
150 0:0000 0:0003 0:4783 0:0010 �0:0003 0:4832
500 0:0008 0:0015 0:4919 �0:0010 �0:0001 0:4947

Variance
0:5 50 0:0285 0:099 0:0175 0:0602 0:0061 0:0190

150 0:0082 0:0186 0:0048 0:0157 0:0018 0:0049
500 0:0021 0:0051 0:0016 0:0038 0:0005 0:0014

0:8 50 0:0358 0:0448 0:0184 0:0410 0:0110 0:0164
150 0:0074 0:0114 0:0053 0:0084 0:0030 0:0040
500 0:0019 0:0032 0:0015 0:0021 0:0009 0:0013

NOTE: The data generating process is described by (1.5), (1.6) and (1.7). We
denote by T and 
 the length of the sample and a mixing proportion parameter,
respectively.
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Table 1.7: VAR. The mean and the variance of the mixing parameter estimates
for the ML method (BFGS algorithm iniciated with the true parameters values).
Parameters B11 B21 B12 B22 	1 	2 

True values 1 0 0 1 1 5 0:5=0:8


 T Mean
0:5 50 0:9696 0:0041 �0:0008 0:6739 1:1309 18:541 0:5183

150 1:0072 �0:0006 0:0000 0:8503 1:0355 10:008 0:4939
500 1:0054 �0:0011 �0:0005 0:9607 0:9791 6:0943 0:5031

0:8 50 0:9413 �0:0131 �0:0071 0:6328 1:2300 15:284 0:6339
150 0:9816 �0:0222 0:0090 0:8626 0:9604 7:2953 0:7134
500 0:9958 �0:0010 0:0016 0:9635 0:9544 5:4723 0:7717

Variance
0:5 50 0:0716 0:3132 0:0306 0:0862 4:2206 340:36 0:0353

150 0:0284 0:1302 0:0147 0:0711 0:4660 120:44 0:0356
500 0:0008 0:0388 0:0037 0:0314 0:1051 12:934 0:0181

0:8 50 0:0540 0:1640 0:0337 0:0533 6:7184 223:14 0:0346
150 0:0153 0:0679 0:0187 0:0343 0:4133 19:281 0:0299
500 0:0030 0:0181 0:0067 0:0088 0:1301 1:7017 0:0110

NOTE: The data generating process is described by (1.5), (1.6) and (1.7). We
denote by T and 
 the length of the sample and a mixing proportion parameter,
respectively.
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Table 1.8: VAR. The mean and the variance of the mixing parameter estimates
for the two steps quasi ML method (BFGS algorithm iniciated with the true
parameters values).
Parameters B11 B21 B12 B22 	1 	2 

True values 1 0 0 1 1 5 0:5=0:8


 T Mean
0:5 50 0:9791 0:0151 �0:0016 0:7006 1:0384 16:008 0:4562

150 1:0021 0:0064 �0:003 0:8605 0:9686 9:4433 0:4798
500 1:0047 �0:0001 �0:0008 0:9739 0:9808 5:8277 0:5047

0:8 50 0:9435 0:0127 �0:0101 0:6837 0:9831 11:008 0:6201
150 0:9778 �0:0161 0:0080 0:8734 0:9754 6:8268 0:7101
500 0:9954 �0:0007 0:0012 0:9689 0:9565 5:3703 0:7727

Variance
0:5 50 0:0688 0:3102 0:0277 0:0972 7:5682 313:04 0:0488

150 0:0312 0:1436 0:0171 0:0759 0:4699 111:72 0:0393
500 0:0078 0:0313 0:0039 0:0300 0:1029 9:9939 0:0181

0:8 50 0:0382 0:1795 0:0361 0:0548 1:8765 83:093 0:0417
150 0:0153 0:0656 0:0192 0:0344 0:5007 16:762 0:0311
500 0:0029 0:0183 0:0069 0:0083 0:1258 1:5437 0:0107

NOTE: The data generating process is described by (1.5), (1.6) and (1.7). We
denote by T and 
 the length of the sample and a mixing proportion parameter,
respectively.

Table 1.9: VAR. The mean and the variance of the mixing parameter estimates
for the two steps quasi ML method (EM algorithm iniciated with the true pa-
rameters values).
Parameters B11 B21 B12 B22 	1 	2 

True values 1 0 0 1 1 5 0:5=0:8


 T Mean
0:5 50 0:943 0:0260 �0:0045 0:8453 0:8848 11:443 0:5333

500 1:0049 0:0020 �0:0011 0:9765 0:9780 5:7325 0:5046
0:8 50 0:9669 �0:0258 0:0124 0:8504 0:7101 8:3221 0:7634

500 0:9968 0:0003 0:0011 0:9735 0:9471 5:3650 0:7780

Variance
0:5 50 0:0582 0:3278 0:0334 0:1064 6:8999 189:44 0:0467

500 0:0074 0:0304 0:0039 0:0275 0:0964 8:2750 0:0163
0:8 50 0:0280 0:1730 0:0546 0:0495 0:4517 65:635 0:0395

500 0:0029 0:0173 0:0067 0:0077 0:1339 1:4941 0:0094

NOTE: The data generating process is described by (1.5), (1.6) and (1.7). We
denote by T and 
 the length of the sample and a mixing proportion parameter,
respectively.
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Table 1.10: VAR, The mean and the variance of estimators for the ML method,
the mixing proportion 
 = 0:5. The data generating process is described by
(1.6), (1.7) and (1.5).
T 50 150

Mean Var Mean Var

A
(0)
1 -0.0275 0.0367 0.0046 0.0097

A
(0)
2 -0.0689 0.1363 0.0269 0.0406

A1;1 0.4370 0.0180 0.4845 0.0064
A2;1 0.01741 0.0957 -0.0348 0.0281
A1;2 -0.0034 0.0073 0.0072 0.0020
A2;2 0.4480 0.0294 0.4817 0.0061
B1;1 1.1507 0.2199 1.0997 0.1557
B2;1 0.0588 0.3988 -0.0215 0.2382
B1;2 -0.0008 0.0008 0.0036 0.0009
B2;2 0.0724 0.0027 0.0869 0.0028
	1 40.557 77630 40.050 60582
	2 4988.49 1.77e+ 008 2936.21 55389027

 0:1929 0.0032 0.1168 0.0013
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1.8 Results: SVECM

Table 1.11: VECM. Ratio of successful estimates, algorithms initiated with the
true parameters values.

ML two steps quasi ML

 T BFGS NEWTON EM BFGS NEWTON EM

0.5 50 0.366 0.218 0.403 0.627 0.336 0.976
150 0.882 0.588 0.801 0.919 0.566 0.996
500 0.987 0.843 0.970 0.993 0.750 0.988

0.8 50 0.245 0.174 0.350 0.343 0.166 0.949
150 0.726 0.501 0.706 0.740 0.381 0.987
500 0.969 0.785 0.935 0.975 0.667 0.993

NOTE: Two methods are considered: Maximum Likelihood and two steps
quasi Maximum Likelihood. For each estimation method four maximization
algorithms are evaluated: BFGS, NEWTON, BHHH and EM. The data
generating process is described by (1.5), (1.8) and (1.9). We denote by T and

 the length of the sample and a mixing proportion parameter, respectively.

Table 1.12: VECM. Ratio of successful estimates, algorithms not initiated with
the true parameters values.

ML two steps quasi ML

 T BFGS NEWTON EM BFGS NEWTON EM

0.5 50 0.130 0.144 0.268 0.241 0.336 0.999
500 0.349 0.716 0.891 0.293 0.739 0.987

0.8 50 0.112 0.140 0.299 0.172 0.366 1.000
500 0.287 0.759 0.931 0.329 0.847 0.988

NOTE: Two methods are considered: Maximum Likelihood and two steps
quasi Maximum Likelihood. For each estimation method four maximization
algorithms are evaluated: BFGS, NEWTON, BHHH and EM. The data
generating process is described by (1.5), (1.8) and (1.9). We denote by T and

 the length of the sample and a mixing proportion parameter, respectively.
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Table 1.13: VECM. Ratio of successful estimates that satisfy condition (1.4) for
c = 0:01 to all sucesfull estimates, algorithms initiated with the true parameters
values.

ML two steps quasi ML

 T BFGS NEWTON EM BFGS NEWTON EM

0.5 50 0.839 0.972 0.990 0.907 0.881 0.944
150 0.926 0.995 0.999 0.979 1 0.987
500 0.998 1 1 0.999 0.999 0.999

0.8 50 0.894 0.977 0.991 0.983 0.952 0.969
150 0.983 1 1 0.996 1 0.985
500 1 1 1 1 1 0.999

NOTE: Two methods are considered: Maximum Likelihood and two steps
quasi Maximum Likelihood. For each estimation method four maximization
algorithms are evaluated: BFGS, NEWTON, BHHH and EM. The data
generating process is described by (1.5), (1.8) and (1.9). We denote by T and

 the length of the sample and a mixing proportion parameter, respectively.

Table 1.14: VECM. Ratio of successful estimates that satisfy condition (1.4)
for c = 0:01 to all sucesfull estimates, algorithms not initiated with the true
parameters values.

ML two steps quasi ML

 T BFGS NEWTON EM BFGS NEWTON EM

0.5 50 0.854 0.951 1 0.975 0.881 0.913
500 0.997 1 1 0.997 0.999 0.999

0.8 50 0.866 0.971 1 0.994 0.937 0.950
500 1 1 1 1 0.999 0.999

NOTE: Two methods are considered: Maximum Likelihood and two steps
quasi Maximum Likelihood. For each estimation method four maximization
algorithms are evaluated: BFGS, NEWTON, BHHH and EM. The data
generating process is described by (1.5), (1.8) and (1.9). We denote by T and

 the length of the sample and a mixing proportion parameter, respectively.
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Table 1.15: VECM. The mean and the variance of the parameters estimates
for the two steps quasi ML method (BFGS algorithm initiated with the true
parameters values).

Parameters �2 �1 �2 A
(0)
1 A

(0)
2 �11 �21 �12 �22

True values �1 �0:1 0:1 0 0 0:2 0:5 0:5 0:2


 T Mean
0:5 50 �1:628 �0:172 0:174 0:105 0:087 0:177 0:429 0:428 0:216

150 �1:004 �0:125 0:132 �0:012 0:019 0:191 0:476 0:472 0:210
500 �1:000 �0:108 0:111 �0:002 �0:001 0:197 0:490 0:491 0:205

0:8 50 �1:287 �0:180 0:157 �0:042 �0:062 0:178 0:426 0:427 0:190
150 �1:007 �0:124 0:127 �0:017 �0:004 0:192 0:469 0:476 0:202
500 �1:001 �0:107 0:110 �0:002 0:000 0:197 0:491 0:493 0:204

Variance
0:5 50 225:420 0:015 0:040 2:471 5:720 0:011 0:031 0:015 0:039

150 0:039 0:002 0:006 0:125 0:242 0:003 0:009 0:003 0:010
500 0:000 0:000 0:001 0:012 0:019 0:001 0:002 0:001 0:003

0:8 50 1595:93 0:016 0:027 1:575 3:309 0:013 0:024 0:017 0:029
150 0:036 0:003 0:005 0:125 0:206 0:004 0:007 0:004 0:008
500 0:001 0:001 0:001 0:010 0:013 0:001 0:002 0:001 0:002

NOTE: The data generating process is described by (1.5), (1.8) and (1.9). We
denote by T and 
 the length of the sample and a mixing proportion parameter,
respectively.
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Table 1.16: VECM. The mean and the variance of the parameters estimates for
the ML method (BFGS algorithm initiated with the true parameters values).

Parameters �2 �1 �2 A
(0)
1 A

(0)
2 �11 �21 �12 �22

True values �1 �0:1 0:1 0 0 0:2 0:5 0:5 0:2


 T Mean
0:5 50 �0:999 �0:193 0:180 0:025 0:179 0:182 0:441 0:407 0:222

150 �1:002 �0:125 0:126 0:000 0:006 0:192 0:480 0:472 0:208
500 �1:000 �0:108 0:110 0:000 �0:003 0:197 0:492 0:491 0:205

0:8 50 �0:979 �0:196 0:162 0:116 �0:116 0:182 0:453 0:414 0:207
150 �0:999 �0:125 0:123 �0:011 �0:019 0:196 0:478 0:474 0:203
500 �1:001 �0:107 0:108 0:000 �0:001 0:197 0:493 0:493 0:203

Variance
0:5 50 0:045 0:016 0:035 1:653 2:048 0:014 0:036 0:016 0:040

150 0:009 0:002 0:006 0:128 0:180 0:003 0:008 0:003 0:009
500 0:000 0:000 0:001 0:012 0:018 0:001 0:002 0:001 0:002

0:8 50 0:060 0:015 0:021 1:064 0:999 0:017 0:029 0:017 0:029
150 0:010 0:003 0:004 0:109 0:118 0:004 0:006 0:004 0:007
500 0:000 0:001 0:001 0:009 0:011 0:001 0:002 0:001 0:002

NOTE: The data generating process is described by (1.5), (1.8) and (1.9). We
denote by T and 
 the length of the sample and a mixing proportion parameter,
respectively.
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Table 1.17: VECM. The mean and the variance of the mixing parameters esti-
mates for the ML method (BFGS algorithm initiated with the true parameters
values).
Parameters B11 B21 B12 B22 	1 	2 

True values 1 0 0 1 1 5 0:5=0:8


 T Mean
0:5 50 0:953 �0:018 0:011 0:648 1:059 19:615 0:551

150 0:987 �0:006 �0:001 0:828 1:021 11:012 0:494
500 0:997 �0:009 0:001 0:953 0:990 6:183 0:499

0:8 50 0:902 0:078 �0:018 0:612 1:202 16:464 0:649
150 0:979 �0:002 0:000 0:849 0:949 7:593 0:710
500 0:994 0:001 0:000 0:964 0:945 5:432 0:773

Variance
0:5 50 0:071 0:342 0:032 0:076 2:599 331:26 0:029

150 0:031 0:144 0:016 0:079 1:524 169:026 0:036
500 0:008 0:034 0:004 0:033 0:107 15:931 0:019

0:8 50 0:053 0:172 0:026 0:052 2:768 225:49 0:031
150 0:016 0:073 0:020 0:036 0:781 39:406 0:033
500 0:003 0:019 0:007 0:009 0:115 1:576 0:011

NOTE: The data generating process is described by (1.5), (1.8) and (1.9). We
denote by T and 
 the length of the sample and a mixing proportion parameter,
respectively.
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Table 1.18: VECM. The mean and the variance of the mixing parameters esti-
mates for the two steps quasi ML method (BFGS algorithm initiated with the
true parameters values).
Parameters B11 B21 B12 B22 	1 	2 

True values 1 0 0 1 1 5 0:5=0:8


 T Mean
0:5 50 0:945 �0:003 �0:002 0:680 1:192 14:223 0:442

150 0:985 �0:017 �0:001 0:856 1:097 9:458 0:475
500 0:997 �0:012 0:002 0:970 0:992 5:750 0:500

0:8 50 0:936 0:008 �0:008 0:671 0:966 11:231 0:593
150 0:973 0:002 �0:002 0:876 0:930 6:969 0:711
500 0:994 �0:002 0:001 0:971 0:946 5:328 0:773

Variance
0:5 50 0:078 0:317 0:030 0:091 0:924 241:47 0:048

150 0:032 0:151 0:018 0:082 0:638 122:55 0:044
500 0:008 0:033 0:004 0:030 0:102 6:488 0:018

0:8 50 0:043 0:161 0:029 0:054 1:539 162:63 0:045
150 0:014 0:072 0:021 0:037 0:344 32:394 0:037
500 0:003 0:019 0:007 0:008 0:114 4:015 0:011

NOTE: The data generating process is described by (1.5), (1.8) and (1.9). We
denote by T and 
 the length of the sample and a mixing proportion parameter,
respectively.
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Table 1.19: VECM. The mean and the variance of the mixing parameters es-
timates for the two steps quasi ML method (EM algorithm initiated with the
true parameters values).
Parameters B11 B21 B12 B22 	1 	2 

True values 1 0 0 1 1 5 0:5=0:8


 T Mean
0:5 50 0:957 �0:001 �0:003 0:839 0:828 10:781 0:531

150 0:989 �0:015 0:003 0:898 0:940 8:398 0:496
500 0:997 �0:014 0:003 0:972 0:991 5:688 0:499

0:8 50 0:943 �0:009 0:004 0:864 0:767 7:235 0:787
150 0:980 �0:004 0:002 0:905 0:788 6:782 0:739
500 0:994 �0:002 0:002 0:973 0:939 5:266 0:775

Variance
0:5 50 0:059 0:352 0:039 0:103 0:739 178:21 0:050

150 0:029 0:152 0:021 0:077 0:435 90:99 0:040
500 0:008 0:033 0:005 0:027 0:101 6:139 0:016

0:8 50 0:027 0:149 0:052 0:046 0:685 55:824 0:037
150 0:013 0:081 0:028 0:036 0:342 29:583 0:037
500 0:003 0:020 0:007 0:008 0:115 1:538 0:010

NOTE: The data generating process is described by (1.5), (1.8) and (1.9). We
denote by T and 
 the length of the sample and a mixing proportion parameter,
respectively.
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Figure 1.1: The mean of the estimates of mixture parameters for VECM condi-
tional on the sample length. "True" describes the true parameter values whereas
ML1, ML2 and EM2 present the results for the ML method with BFGS algo-
rithm, two steps quasi ML method with BFGS algorithm and two steps quasi
ML method with EM algorithm, respectively. The data generating process is
described by (1.5), (1.8) and (1.9).
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Figure 1.2: The variance of the estimates of mixture parameters for VECM
conditional on the sample length. ML1, ML2 and EM2 present the results for
the ML method with BFGS algorithm, two steps quasi ML method with BFGS
algorithm and two steps quasi ML method with EM algorithm, respectively.
The data generating process is described by (1.5), (1.8) and (1.9).
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Chapter 2

Structural vector
autoregressions with
Markov switching1

2.1 Introduction

In structural vector autoregressive (SVAR) modelling a major problem is to �nd
convincingly identi�ed shocks which are informative about the actual reactions
of a set of variables to unexpected exogenous innovations. Although economic
theories and models often provide some information which can be used for iden-
ti�cation, this is not always su¢ cient to fully identify the shocks of interest.
Di¤erent cures for this problem have been proposed over the years. In the ear-
lier VAR literature, a triangular orthogonalization of the shocks which results
in a recursive structure was quite popular (e.g., Sims (1980)). This kind of
identi�cation was often based on some ad hoc reasoning and it sometimes is
proposed that di¤erent orderings are used, which would result in di¤erent re-
cursive structures and check the robustness of the main results (Amisano and
Giannini (1997), Lütkepohl (2005, Section 2.3.2)). Another proposal is to iden-
tify only some of the shocks (see Christiano, Eichenbaum and Evans (1999)).
This approach works well as long as there is information to identify the shocks
of primary interest. Unfortunately, this is not always possible (see again Chris-
tiano, Eichenbaum and Evans (1999)). Other approaches use restrictions for
the long-run e¤ects of the shocks (Blanchard and Quah (1989), King, Plosser,
Stock and Watson (1991), Pagan and Pesaran (2008)), inequality restrictions
(Uhlig (2005), Canova and De Nicoló (2002), Faust (1998)), Bayesian meth-
ods (Koop (1992)) or statistical properties of the data; the residual distribution
(Lanne and Lütkepohl (2008)), structural breaks or heteroskedasticity (Rigobon

1This is a joint article with M. Lanne and H. Lütkepohl published in EUI Working Paper
ECO 2009/06
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42 CHAPTER 2. SVAR WITH MARKOV SWITCHING

(2003), Lanne and Lütkepohl (2008)).
In this study, we will consider the latter type of identifying information.

In other words, we will use speci�c properties of a statistical model to achieve
identi�cation. More precisely, we will consider special features of Markov regime
switching (MS) models to identify structural shocks. These models were intro-
duced by Hamilton (1989) as tools for time series econometrics. They were
extended to the VAR case by Krolzig (1997) and they have been considered for
SVAR analysis, e.g., by Sims and Zha (2006) and Rubio-Ramirez, Waggoner and
Zha (2005). Sims, Waggoner and Zha (2008) presents Bayesian methodology
for handling general versions of MS-SVAR models. They were found to be use-
ful, for instance, in business cycle analysis. Thus, they are potentially suitable
models in many situations where SVAR models have been used traditionally. In
contrast to other MS-VAR studies, we will argue that in these models shocks
can be identi�ed by the assumption that they are orthogonal across di¤erent
regimes. Conditions will be given which ensure identi�cation of the shocks un-
der this assumption. A crucial condition is that the residual covariance matrices
of the VAR model vary across regimes. In fact, since identi�cation will hinge
on MS in the residual covariance matrix, we will focus on a model where the
other parameters are constant across regimes. Such models were found to be
particularly useful in applications reported by Sims and Zha (2006) and Sims,
Waggoner and Zha (2008).
An important advantage of our approach is that some crucial assumptions

necessary for the identi�cation of the shocks can be checked with statistical
methods. We will also discuss an extension of the setup to systems with inte-
grated and cointegrated variables. In that case, we will consider vector error
correction models (VECMs) which makes it easy to accommodate long-run re-
strictions for the e¤ects of the shocks in a way proposed by King, Plosser, Stock
and Watson (1991) and others.
To illustrate our approach, we apply it to two examples from Lanne and

Lütkepohl (2009). The �rst one considers a stationary system consisting of
US gross domestic product (GDP), an interest rate and stock prices. It was
previously used to investigate the impact of fundamental shocks on stock prices.
The second example is based on a VECM and analyzes the relation between
European and US interest rates.
The paper is structured as follows. In the next section, our model setup is

presented, identi�cation is discussed and the associated estimation strategy is
considered. In Section 2.3, the empirical applications are presented and conclu-
sions are provided in Section 2.4. A theoretical result regarding matrix decom-
positions is given in the Appendix.

Maciejowska, Katarzyna(2010), Identification and Estimation of Sources of Common Fluctuations: New methodologies and applications 
European University Institute

 
DOI: 10.2870/19341
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2.2 The model

2.2.1 General setup

We consider a K-dimensional reduced form VAR(p) model of the type

yt = Ddt +A1yt�1 + � � �+Apyt�p + ut; (2.1)

where yt = (y1t; : : : ; yKt)
0 is a K-dimensional vector of observable time series

variables, dt is a deterministic term with coe¢ cient matrix D, the Aj�s (j =
1; : : : ; p) are (K�K) coe¢ cient matrices and ut is a K-dimensional white noise
error term with mean zero and positive de�nite covariance matrix �u, that is,
ut � (0;�u). If some of the variables are cointegrated, the VECM form may be
more convenient,

�yt = D�d�t + ��
0y�t�1 + �1�yt�1 + � � �+ �p�1�yt�p+1 + ut; (2.2)

where � denotes the di¤erencing operator, de�ned such that �yt = yt � yt�1,
�j = �(Aj+1 + � � �+Ap) (j = 1; : : : ; p� 1) are (K �K) coe¢ cient matrices, �
is a (K � r) loading matrix of rank r, � is the (K� � r) cointegration matrix
which may include parameters associated with deterministic terms and y�t�1 is
yt�1 augmented by deterministic terms in the cointegration relations. The rank
r is the cointegrating rank of the system. The term d�t represents unrestricted
deterministic components and its parameter matrix is denoted by D�.
In the standard SVAR approach, a transformation of the reduced form resid-

uals ut is used to obtain the structural shocks, "t. A transformation matrix B is
chosen such that "t = B�1ut � (0; IK) has identity covariance matrix, that is,
the structural shocks are assumed to be orthogonal and typically their variances
are normalized to one. Hence, �u = BB0. To obtain identi�ed, unique struc-
tural shocks, some restrictions have to be imposed on B. Often zero restrictions
or long-run constraints are used in this context. A zero restriction on B implies
that a certain shock does not have an instantaneous e¤ect on one of the vari-
ables, whereas long-run restrictions exclude permanent e¤ects of shocks on some
or all of the variables. Speci�c examples will be considered in our applications
in Section 2.3. It is also straightforward to extend the models considered so far
as to allow for restrictions to be placed on the instantaneous relations of the
variables rather than the shocks. This is most easily done in the context of the
so-called AB model, the VAR version of which has the form

Ayt = Ddt +A1yt�1 + � � �+Apyt�p +B"t: (2.3)

For this model the reduced form covariance matrix is �u = A�1BB0�10. More
restrictions are needed to identify both A and B. However, often one of the two
matrices is the identity matrix and it is just a matter of convenience to place
the restrictions on the other matrix.
Notice that, although normality of the ut�s is often assumed for convenience,

such an assumption is usually not backed by theoretical considerations nor is
it necessarily required for asymptotic inference. Moreover, VAR residuals are
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44 CHAPTER 2. SVAR WITH MARKOV SWITCHING

often found to be nonnormal in applied work. In the following, we will specify
a Markov switching structure on the residuals which implies a more general
distribution class for the ut�s and we will discuss how that can be used for the
identi�cation of shocks.

2.2.2 Markov regime switching residuals

We assume that the distribution of the error term, ut, depends on a Markov
process st. More precisely, it is assumed that st (t = 0;�1;�2; : : : ) is a discrete
Markov process with two di¤erent regimes, 0 and 1. We focus on a two regime
case here for convenience to simplify the following notation and discussion. An
extension to more than two regimes is straightforward. The case of two regimes
only is also considered in the applications in Section 2.3 and it is therefore
preferable here to simplify the discussion of the identi�cation of shocks.
The transition probabilities are

pij = Pr(st = jjst�1 = i); i; j = 0; 1:

The conditional distribution of ut given st is assumed to be normal,

utjst � N(0;�st): (2.4)

Although the conditional normality assumption is made for convenience, it
should be clear that it opens up a much wider class of distributions than just
the unconditional normal. We will discuss this issue further below. The dis-
tributional assumption will be used for setting up the likelihood function. If
normality of the conditional distribution does not hold, the estimators will only
be pseudo maximum likelihood (ML) estimators. The normality assumption in
(2.4) is not essential for our identi�cation of shocks.
Note that in our model the transition probabilities are the same in all periods.

They can be conveniently summarized in the (2� 2) transition matrix

P =

�
p00 p01
p10 p11

�
:

This matrix contains all necessary conditional probabilities to reconstruct the
distributions of the stochastic process st. For example, the unconditional dis-
tribution of st can be derived from the conditional probabilities in P (see,
e.g., Hamilton (1994)). For later reference, we mention that the unconditional
probabilities of the states of an ergodic Markov chain are Pr(st = 0) = 1�
Pr(st = 1) = (1� p11)=(2� p00 � p11).
Moreover, p10 = 1 � p00 and p01 = 1 � p11. If p00 = p01 and p11 = p10,

the conditional distributions of the states are independent of the previous state,
that is,

Pr(st = j) = Pr(st = jjst�1 = 0) = Pr(st = jjst�1 = 1); j = 0; 1:

Maciejowska, Katarzyna(2010), Identification and Estimation of Sources of Common Fluctuations: New methodologies and applications 
European University Institute

 
DOI: 10.2870/19341



2.2. THE MODEL 45

Hence, the MS model reduces to a model with mixed normal (MN) errors,

ut �
�
N(0;�0) with probability 
 = p00;
N(0;�1) with probability 1� 
 = p11:

In that case, the transition matrix has the form

P =

�

 


1� 
 1� 


�
: (2.5)

Given that mixed normal distributions constitute a very large and �exible class
of distributions, this shows that assuming a conditional normal distribution in
(2.4) results in a very rich distribution class for the error terms. The case of
mixed normal errors in the context of SVAR analysis was considered by Lanne
and Lütkepohl (2009).
Identi�cation of shocks in the MS model can be achieved by the assumption

that the shocks are orthogonal across regimes and only the variances of the
shocks change across regimes while the impulse responses are not a¤ected. In
particular, the instantaneous e¤ects are the same in all regimes. Note that the
assumption of time invariant impulse responses throughout the sample period
is common in standard SVAR analysis and hence, not a particularly restrictive
element in our setup.
A well-known result of matrix algebra establishes that there exists a (K�K)

matrix B such that �0 = BB0 and �1 = B�B0, where � = diag(�1; : : : ; �K)
is a diagonal matrix (e.g., Lütkepohl (1996, Section 6.1.2)). From �0 = BB0

and �1 = B�B0 we get a total of K(K + 1) equations which can be solved
uniquely for the K2 elements of B and the K diagonal elements of � under mild
conditions. In the Appendix, we give a result which implies that the matrix B is
unique up to changes in sign if all diagonal elements of � are distinct and ordered
in some prespeci�ed way. For example, they may be ordered from smallest to
largest or largest to smallest. The result in the Appendix is formulated in such a
way so that it can be used for models with more than two regimes. For the case
of two regimes, the important point to note here is that our setup delivers shocks
"t = B�1ut which are orthogonal in both regimes. Since B is unique (up to
sign changes), the model is in fact identi�ed by the assumption that the shocks
have to be orthogonal and the instantaneous e¤ects are identical across regimes.
Thus, any restrictions imposed on B in a conventional SVAR framework become
over-identifying in our setup and hence, can be tested against the data.
The nonuniqueness of B with respect to sign in our framework causes no

problems for our purposes. The precise condition is that all signs in any of the
columns of B can be reversed. This corresponds to considering negative shocks
instead of positive shocks or vice versa. Usually it will not be a problem for the
analyst to decide on whether positive or negative shocks are of interest. Also,
from the point of view of asymptotic inference, local identi�cation of this kind
is su¢ cient for the usual results to hold. Provided no sign restrictions are used,
this kind of nonuniqueness of the shocks with respect to sign changes is also
common in standard SVAR analyses although this is not always emphasized.
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Rubio-Ramirez, Waggoner and Zha (2005) also discusses identi�cation in
MS-SVAR models. However, they allow all parameters to di¤er across regimes.
In their setup, assuming the same impulse responses in all regimes is not plausi-
ble and therefore assuming the same instantaneous e¤ects of the shocks would be
restrictive. Hence, they use alternative identi�cation conditions. In our setup,
MS is con�ned to the error covariance matrix only and no MS is assumed in
other parameters because the latter is not needed for the identi�cation of the
shocks and we try to remain as close as possible to the standard SVAR approach
which assumes time invariant impulse responses for the full sample period. Al-
lowing for MS in the residuals only means that we basically remain within a
standard SVAR model. In fact, this feature of a model was diagnosed but not
used for identi�cation in Sims and Zha (2006), for example.

2.2.3 Estimation

Under our assumption of conditional normality given a particular state in (2.4),
maximum likelihood (ML) estimation is a plausible estimation method. If the
conditional normality does not hold it will deliver pseudo ML estimators. Hence,
for a 2-state MS-VAR model the parameters are estimated by maximizing the
(pseudo) log likelihood function

lT =
TX
t=1

log f(ytjYt�1);

where Yt�1 = (y�p+1; : : : ; yt�1),

f(ytjYt�1) =
1X
j=0

Pr(st = jjYt�1)f(ytjst = j; Yt�1)

and

f(ytjst = j; Yt�1) = (2�)
�K=2 det(�j)

�1=2 exp

�
�1
2
u0t�

�1
j ut

�
; j = 0; 1:

Here �0 = BB0, �1 = B�B0 and the ut are the reduced form residuals. More-
over, �

Pr(st = 0jYt�1)
Pr(st = 1jYt�1)

�
=

�
p00 p01
p10 p11

� �
Pr(st�1 = 0jYt�1)
Pr(st�1 = 1jYt�1)

�
;

where
Pr(st = jjYt)

= Pr(st = jjYt�1)f(ytjst = j; Yt�1)

,
1X
i=0

Pr(st = ijYt�1)f(ytjst = i; Yt�1) ;

j = 0; 1:
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The optimization of lT may be done with a suitable extension of the EM algo-
rithm described in Hamilton (1994). A blockwise algorithm for computing the
ML or, in a Bayesian framework, the posterior mode estimates was proposed by
Sims, Waggoner and Zha (2008) which may be more suitable for models with
many free parameters, e.g., when many variables are considered and the number
of regimes is larger than 2 or 3.
The properties of Gaussian ML estimation in a univariate model of type (2.4)

(that is, the process is white noise conditional on a given state of the Markov
chain) were discussed by Francq and Roussignol (1997). Very general asymp-
totic estimation results for stationary processes are available in Douc, Moulines
and Rydén (2004). The case of cointegrated VARs seems less well explored. If
the cointegration relations are known, there is no problem because the results
for stationary processes can be used. For the situation where the cointegra-
tion relations are unknown, we propose to use a two-step estimation procedure.
In the �rst step, the cointegration relation is estimated by Johansen�s (1995)
reduced rank regression. Then an ML estimation conditional on the �rst-step
cointegration relation is performed. Although there is no apparent reason why
this procedure should not result in estimators with standard asymptotic proper-
ties, we admit that we do not know of a formal proof if the cointegration matrix
is unknown and has to be estimated. In the application in Section 2.3.2, where
cointegrated variables are considered, assuming known cointegration relations
turns out to be reasonable.

2.3 Illustrations

2.3.1 US Model

Our �rst example uses a small system of US macro variables from Binswanger
(2004) which has also been used by Lanne and Lütkepohl (2009). The purpose
of Binswanger�s analysis was to determine the impact of fundamental shocks on
the stock market. The issue has been discussed previously in the literature. For
example, in an SVAR analysis Rapach (2001) �nds that macro shocks have an
important e¤ect on real stock prices. On the other hand, Binswanger (2004)
uses US data from 1983 to 2006 and concludes that real activity shocks explain
only a small fraction of the real stock price variability. It is not uncommon in
SVAR analyses that the speci�cation of the shocks is essential for the outcome.
We use quarterly US data for the period 1983Q1 � 2006Q3 for the three

variables (gdpt; rt; spt)0, where gdpt denotes log real gross domestic product, rt
is the 3-months Treasury bill rate and spt stands for log real stock prices, as in
Lanne and Lütkepohl (2009). More details on the data are given in Appendix
B of the latter paper. Binswanger�s objective was to assess the importance of
fundamental shocks for stock price movements. Fundamental shocks in this
context are shocks which have a long-term impact on economic growth and the
interest rate.
Binswanger (2004) assumes that there is just one nonfundamental shock. It
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is speci�ed by the requirement that it may have a long-term impact on stock
prices, spt, but not on gdpt and rt. The three structural shocks are identi�ed
by imposing zero restrictions on the matrix of long-run e¤ects of the shocks as
follows:

A(1)�1B =

24 � 0 0
� � 0
� � �

35 : (2.6)

Here, an asterisk denotes an unrestricted element. Hence, the matrix of long-
run e¤ects, A(1)�1B, is lower-triangular. The assumption that the last shock
is nonfundamental and in particular, does not have a long-term impact on gdpt
and rt, implies the two zeros in the last column of A(1)�1B. The additional
zero restriction in the second column has however little justi�cation. It is to
some extent arbitrary and is imposed to obtain identi�ed shocks in the classical
SVAR framework.
Lanne and Lütkepohl (2009) argues that identifying the shocks without such

a restriction is desirable. They use a VAR(4) model in �rst di¤erences for
yt = (�gdpt;�rt;�spt)

0 because the variables have unit roots but are not coin-
tegrated. The residuals are found to be nonnormal. Therefore, they �t a model
with mixed normal residuals and use this data feature to identify shocks and to
check the structural restrictions imposed by Binswanger (2004). As mentioned
in Section 2.2.2, a model with mixed normal residuals is just a special case of
our MS model. The mixed normal model assumes that the regimes have no
persistence and are assigned at random in each period. For the present exam-
ple, allowing for some persistence in the regimes may be plausible for di¤erent
reasons. For example, volatility changes could be linked to business cycle �uctu-
ations and hence, may derive persistence from the fact that periods of positive
and negative growth tend to last for several periods. Alternatively, the MS
structure may just capture conditional heteroskedasticity which may arise from
other sources than the business cycle.
Therefore, we have �tted VAR models with MS residuals, assuming that

�1 6= �2.2 As in Lanne and Lütkepohl (2008), we have estimated an unre-
stricted model as well as one with the structural restrictions speci�ed in (2.6).
In addition, we have also estimated a model with only two zero restrictions on
the last column of the matrix of long-run e¤ects,

A(1)�1B =

24 � � 0
� � 0
� � �

35 : (2.7)

Some estimation results and a range of tests which will be discussed in the
following are given in Tables 2.1-2.3.
The �rst question of interest is whether the MS model is preferable to the

model with mixed normal residuals that was used by Lanne and Lütkepohl

2The computations were done with GAUSS programs using EM iterations to get close to
the optimum and then switching to the Newton-Raphson algorithm from the CML library for
optimizing the likelihood function.
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Table 2.1: Estimates of Structural Parameters of MS Models for
(�gdpt;�rt;�spt)

0 with Lag Order p = 4 and Intercept Term (Sample Period:
1983Q2� 2006Q3)

unrestricted (2.6) (2.7)
Parameters Estimates Std.Dev. Estimates Std.Dev. Estimates Std.Dev.
�1 0.567 0.222 0.627 0.270 1.284 0.673
�2 0.931 0.402 1.643 1.245 0.614 0.255
�3 12.71 4.492 11.96 4.720 12.55 4.617
p00 0.951 0.036 0.950 0.040 0.950 0.038
p11 0.876 0.076 0.877 0.091 0.870 0.085
uncond. 0.716 0.714 0.723
state prob.s 0.284 0.286 0.277
logL=T 7.5860 7.5666 7.5668
NOTE: Standard errors are obtained from the inverse Hessian of the log-
likelihood function.

Table 2.2: Wald Tests for Equality of �i�s for Models from Table 2.1

unrestricted (2.6) (2.7)
H0 test value p-value test value p-value test value p-value
�1 = �2 = �3 7.974 0.019 7.739 0.021 7.677 0.022
�1 = �2 0.611 0.434 0.630 0.427 0.969 0.325
�1 = �3 7.284 0.007 5.645 0.018 6.608 0.010
�2 = �3 6.756 0.009 3.869 0.049 5.732 0.017

Table 2.3: LR Tests of Models for (�gdpt;�rt;�spt)0

Assumed
H0 H1 LR statistic distribution p-value
MN MS 2.959 �2(1) 0.085
(2.6) unrestricted 3.491 �2(3) 0.322
(2.7) unrestricted 3.456 �2(2) 0.178
(2.6) (2.7) 0.036 �2(1) 0.850
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Figure 2.1: Probabilities of State 0 (Pr(st = 0jYT )) for the unrestricted model
for (�gdpt;�rt;�spt)0 from Table 2.1.

(2009). Looking at the estimated state probabilities of the unrestricted model
in Table 2.1, they are both larger than 0.8 and hence, the states appear to have
some persistence. Still, it is desirable to check the MS model against the MN
model more formally. Therefore, we have performed a likelihood ratio (LR) test
of the restriction on the transition matrix speci�ed in (2.5). In other words, we
test the restriction that the probabilities in each row of P are constant. For
this purpose, we have reestimated the unrestricted MN model from Lanne and
Lütkepohl (2008) and compare the maximum of the likelihood with that of the
unrestricted MS model given in Table 2.1.3 The resulting LR test is reported in
Table 2.3 together with some other LR tests which will be discussed later. The
corresponding p-value turns out to be 8.5%. Thus, we can reject the MN model
at a 10% level but not at the 5% level. In other words, there is weak evidence
in favor of the MS model.
Further evidence is provided by the probabilities of being in State 0, which

are plotted in Figure 2.1. More precisely, in Figure 2.1 we see the state proba-
bilities conditional on the full sample information, Pr(st = 0jYT ), based on the
estimated unrestricted model. Obviously, these probabilities are quite persis-

3Since the likelihood is highly nonlinear and has multiple local maxima, it is not uncom-
mon to obtain slightly di¤erent results with another estimation algorithm. Therefore it was
necessary to reestimate the MN model with our estimation algorithm to ensure strict compa-
rability of the results which is important for a proper comparison of the likelihood maxima.
The results in Lanne and Lütkepohl (2009) are qualitatively similar to our estimation results
for the MN model although they di¤er slightly numerically.
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tent. However, they do not correspond strictly to the phases of the o¢ cial US
business cycle. Since one of the �i�s of the unrestricted model in Table 2.1 is
quite large (�3 = 12:71) while the other two are around one or a little smaller,
the second state is one where at least one of the shocks has a substantially larger
volatility than in the �rst regime. Thus, the state probabilities plotted in Figure
2.1 correspond to a regime of lower volatility at least in one of the shocks. The
corresponding state appears to represent periods when the stock market had a
tendency to increase. Notice that the probability of being in this state is low
around the stock market crash in 1987 and during the adjustment period after
the technology bubble in the �rst years of the new millennium. In any case,
there appears to be some persistence in the state which implies that the MS
model may describe the data better than the MN model. Therefore, we will
now consider the previously used identifying restrictions within our MS model.
As mentioned earlier, the zero restrictions in (2.6) and (2.7) are over-identifying

if the �i�s are distinct. Hence, it is instructive to look at the estimates in Table
2.1. Clearly, the estimated �i�s of the unrestricted model are quite di¤erent.
However, their standard errors are also quite large. Therefore, we have per-
formed Wald tests of equality of these quantities and present them in Table
2.2. These tests have asymptotic �2-distributions because the estimators have
the usual normal limiting distributions under our assumptions. The p-values
reported in Table 2.2 are based on these �2-distributions. In this context it
may be worth noting that, in contrast to the matrix B, the �i�s are identi�ed
even if they are identical. Thus, testing their equality makes sense. The test
that all three �i�s are equal has a p-value of 1.9% and hence, clearly rejects at a
5% level. The null hypotheses H0 : �1 = �3 and H0 : �2 = �3 are even rejected
at the 1% level. On the other hand, at common signi�cance levels, it cannot
be rejected that �1 = �2. Similar results are also obtained if the restrictions in
(2.6) and (2.7) are imposed. Thus, there is strong evidence that at least two of
the three �i�s are distinct.
Let us for the moment still pretend that the three �i�s in the unrestricted

model are distinct and hence, all three shocks are identi�ed without further
restrictions on B. In that case, the zero restrictions imposed in (2.6) and (2.7)
are overidentifying and can be tested by LR tests. These test results are also
given in Table 2.3. It turns out that none of the zero restrictions can be rejected
at conventional signi�cance levels. This result is also obtained when only the
additional restriction in the second column of the matrix of long-run e¤ects in
(2.6) is tested which was not backed by theoretical considerations (see the last
row in Table 2.3). The resulting p-value is 0.850 and hence, the data clearly
do not object to this restriction. Although this means that we end up with
the same model which was used by Binswanger (2004), the advantage of our
approach is that the restrictions can be backed by statistical tests.
Of course, these conclusions are based on the assumption that all three �i�s

are distinct which does not have strong support from the data. Therefore, it
is worth re�ecting on the implications of some �i�s being identical. This would
mean that some of the restrictions imposed on the matrix of long-run e¤ects
in (2.6) and (2.7) may in fact not be overidentifying and hence, the LR tests
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may have fewer degrees of freedom than assumed in Table 2.3. In that case, the
p-values would be smaller than the ones reported in the table. However, in the
absence of further information, we have no basis for rejecting the restrictions in
(2.6).

2.3.2 European/US interest rate linkages

Our next example is also from Lanne and Lütkepohl (2009). It considers euro
area and US interest rate linkages to investigate the relation between European
and US monetary policy. It is based on an earlier study by Brüggemann and
Lütkepohl (2005) which performs a standard SVAR analysis for cointegrated
variables and concludes that European monetary policy depends to some extent
on US monetary policy, whereas the reverse is not apparent from the data.
The paper considers monthly data for a euro area three months money mar-

ket rate rEUt , a euro area 10-year bond rate REUt , a US three months money mar-
ket rate rUSt and a US 10-year bond rateRUSt . Thus, yt = (RUSt ; rUSt ; REUt ; rEUt )0.
The sampling period is 1985M1 � 2004M12. Details on the data construction
and their sources are also given in Appendix B of Lanne and Lütkepohl (2009).
Brüggemann and Lütkepohl (2005) �nds that all four variables are I(1) and
that both the expectations hypothesis of the term structure and the uncovered
interest rate parity hold. Hence, stationarity of the two spreads RUSt � rUSt
and REUt � rEUt as well as the two parities RUSt �REUt and rUSt � rEUt is sup-
ported. These four relations represent three linearly independent cointegration
relations from which the fourth one can be derived by a linear transformation.
Therefore, Lanne and Lütkepohl (2008) considers a four-dimensional system
with three known cointegration relations.
That paper uses a VECM for yt with a constant term, three lags of �yt

(i.e., p = 4), a cointegrating rank of r = 3 and MN residuals to investigate the
impact of monetary shocks in the US and in Europe. Again it is easy to think
of arguments for a more general MS speci�cation of the residuals and hence, we
have estimated the corresponding MS model and we have tested it against an
MN model. Estimation and test results are given in Tables 2.4-2.6. They will
be discussed in the following paragraph.
A test of our unrestricted MS model against an unrestricted MN model, i.e.,

of the restriction in (2.5) is reported in Table 2.6. The p-value is extremely small
so that the MN model is rejected at any reasonable signi�cance level. Hence,
there is strong evidence that the MS model is preferable to the MN model for the
present data set. This result is not surprising given that the estimated transition
probabilities p00 and p11 are both larger than 90%, which indicates that the
states have considerable persistence. The estimated probabilities of State 0,
Pr(st = 0jYT ), are plotted in Figure 2.2. Three of the �i�s associated with
the unrestricted model in Table 2.4 are considerably larger than one, while the
other is not much smaller than one. Hence, the overall volatility in the second
state (State 1) is considerably larger than in the �rst state. The probabilities in
Figure 2.2 are those of the low volatility state. Apparently, the second half of the
sample is characterized by lower volatility of shocks to the system. Indeed, the
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Table 2.4: Estimates of MS-VECM for (RUSt ; rUSt ; REUt ; rEUt )0 with Lag Order
p = 4, Cointegrating Rank r = 3 and Intercept Term (Sample Period: 1985M1�
2004M12)

unrestricted one trans. shock two trans. shocks
Parameters Estimates Std.Dev. Estimates Std.Dev. Estimates Std.Dev.
�1 0.812 0.169 0.811 0.168 0.849 0.186
�2 15.87 3.433 15.90 3.332 14.73 3.232
�3 3.499 0.807 3.487 0.796 3.386 0.901
�4 8.422 1.818 8.445 1.802 8.233 1.757
p00 0.904 0.036 0.905 0.036 0.911 0.038
p11 0.919 0.033 0.919 0.033 0.928 0.035
uncond. 0.459 0.458 0.448
state prob.s 0.541 0.542 0.552
logL=T 1.65305 1.65294 1.63751
NOTE: Standard errors are obtained from the inverse Hessian of the log-
likelihood function.

Table 2.5: Wald Tests for Equality of �i�s for Models from Table 2.4

unrestricted one trans. shock two trans. shocks
H0 test value p-value test value p-value test value p-value
�1 = �2 19.22 0.000 20.46 0.000 18.58 0.000
�1 = �3 10.70 0.001 10.87 0.001 7.251 0.007
�1 = �4 17.40 0.000 17.82 0.000 17.59 0.000
�2 = �3 12.34 0.000 13.10 0.000 10.76 0.001
�2 = �4 3.808 0.051 3.940 0.047 3.206 0.073
�3 = �4 5.996 0.014 6.230 0.013 5.991 0.014

�rst di¤erences notably of the short-term interest rate series appear to have an
overall smaller variability in the second part of the sample, except for the period
around the year 2000 (see Figure 2.3). The lower volatility periods correspond
to the high probabilities of State 0 in Figure 2.2. Thus, the states re�ect the
change in volatility. For our purposes it is important to note that the MS model
describes the data better than previous SVAR counterparts. Hence, it is of
interest to study its implications for structural analysis.
The estimated �i�s of all the models in Table 2.4 are quite di¤erent. One-

standard error intervals around the estimates do not overlap. Again we have
performed Wald tests to check equality of the �i�s. The results of pairwise tests
are presented in Table 2.5 and con�rm distinct �i�s. The p-values of all pairwise
tests are smaller than 10% and most are even smaller than 1%. Thus, there
is evidence that the �i�s are distinct and hence, the shocks can be identi�ed
by assuming that they are orthogonal and have identical instantaneous impacts
in both states. Consequently, we can check some of the structural assumptions
that were used by Brüggemann and Lütkepohl (2005) and Lanne and Lütkepohl
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Table 2.6: LR Tests of Models for (RUSt ; rUSt ; REUt ; rEUt )0

Assumed
H0 H1 LR statistic distribution p-value
MN MS 45.39 �2(1) 0.000

one trans. shock unrestricted 0.051 �2(1) 0.822
two trans. shocks unrestricted 7.335 �2(2) 0.026
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Figure 2.2: Probabilities of State 0 (Pr(st = 0jYT )) for the unrestricted model
for (RUSt ; rUSt ; REUt ; rEUt )0 from Table 2.4.

(2009).
One important conclusion of the previous studies was that there are two

transitory shocks that were viewed as candidates for monetary shocks. Since
there are three cointegration relations, there can be up to three transitory shocks
and Lanne and Lütkepohl (2008) �nds that the data actually only support two
such shocks in their MN framework. This issue is investigated by testing suitable
zero restrictions on the matrix of long-term e¤ects of the shocks. This matrix is
known to be of the form �B, where � = �?[�

0
?(IK�

Pp�1
i=1 �i)�?]

�1�0? and �?
and �? signify orthogonal complements of � and �, respectively (e.g., Lütkepohl
(2005, Section 9.2)). A shock is transitory if the corresponding column of this
matrix consists of zeros. Such restrictions become testable in our MS models
because the shocks are identi�ed via the MS structure.
LR tests are presented in Table 2.6. The restrictions associated with one

transitory shock (one zero column in �B) are not rejected at conventional sig-
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Figure 2.3: Changes in interest rates.

ni�cance levels whereas two transitory shocks are rejected at the 5% level, the
p-value being 0.026. Note that the number of degrees of freedom of the asymp-
totic �2 distribution of the LR statistic implied by restricting a column of �B
to zero take into account the reduced rank of the matrix of long-run e¤ects. In
particular, since the cointegrating rank is three, the (4�4) matrix �B has rank
one so that a zero column of �B stands for a single restriction. Thus, in our
model, the data do not support the existence of two transitory shocks.

Assuming one transitory shock only, we have also tested a number of al-
ternative restrictions on its e¤ects which did not help in determining a speci�c
interpretation of this shock. In particular, we cannot identify it as a US or Euro-
pean monetary policy shock. Thus, we �nd little support for assumptions that
allow us to explore the relation between US and European monetary shocks.
Consequently, we do not �nd evidence for the hypothesis that US monetary
policy has a more important impact on European monetary policy than vice
versa. Thus, using the MS framework sheds doubt on whether the matter can
be settled within a simple model of this type.
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2.4 Conclusions

In this study we have augmented VAR models by Markov switching to obtain
identi�ed shocks. We have shown that under general conditions it is enough
to assume orthogonality of the shocks and invariance of the impulse responses
across regimes to obtain identi�cation. A main advantage of this setup is that
the data are informative with respect to the additional conditions needed for
identi�cation. Moreover, other assumptions which are typically used in SVAR
analysis become overidentifying in our framework and hence, are testable.
We have applied these ideas to two SVAR models from the literature where

a MS structure in the residual volatility is plausible. In the �rst example, a
US macro system consisting of GDP, an interest rate and a stock price index is
analyzed and it is found that in our framework previously assumed identifying
restrictions can be con�rmed. In the second example, the interest rate linkage
between the US and the euro area is investigated. The MS model is found to
be a better description of the data than previous SVAR models. Thus, it makes
sense to use our framework for testing previously made identifying assumptions
against the data. It turns out that a crucial restriction cannot be con�rmed in
our framework. Overall, our setup appears to be a useful tool to extract more
information on identifying assumptions in SVAR analysis from the data.
The limited knowledge on the statistical inference procedures in particular

when cointegrated variables are considered o¤er directions for further research.
Moreover, the numerical challenges in estimating the models are nonnegligible
if larger models with many variables and states are of interest. The algorithms
proposed by Sims, Waggoner and Zha (2008) may be useful in this context
and may help to overcome numerical problems in di¢ cult situations. Further
investigations in this direction are also left for the future.

Appendix. A Uniqueness Result for Covariance
Matrix Decomposition

Proposition A. Let �0 = BB0 and �i = B�iB
0, where �i = diag(�i1; : : : ; �iK),

i = 1; : : : ;M , be nonsingular (K �K) covariance matrices. Then the (K �K)
matrix B in the decomposition �0 = BB0 is unique apart from sign reversal of
its columns if for all k 6= j 2 f1; : : : ;Kg there exists an i 2 f1; : : : ;Mg such
that �ik 6= �ij . �

Proof: Suppose Q = [qij ] is a (K �K) matrix such that
�0 = BB0 = BQQ0B0 (A:1)

and
�i = B�iB

0 = BQ�iQ
0B0; i = 1; : : : ;M: (A:2)

To show the uniqueness of B up to multiplication of its columns by �1, we have
to show that the only feasible matrix Q is a diagonal matrix with �1 on the
main diagonal.
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Pre- and post-multiplying (A:1) by B�1 and its transpose, respectively, im-
plies that QQ0 = IK and hence, Q must be orthogonal. Similarly, it follows
from (A:2) that Q�iQ0 = �i or Q�i = �iQ, i = 1; : : : ;M . Consequently,
�ikqkl = �ilqkl for all i = 1; : : : ;M . Thus, qkl = 0 for k 6= l because �ik 6= �il
for at least one i 2 f1; : : : ;Mg. In other words, Q is an orthogonal diagonal
matrix and hence, all diagonal elements of Q are �1 because the diagonal ele-
ments of a diagonal matrix are its eigenvalues and the eigenvalues of a diagonal
real orthogonal matrix are all �1. This proves the proposition.
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Chapter 3

Generalized factor model -
estimation and distribution
theory

3.1 Motivation

In the last decade, one could observe a growing interest in models that can ex-
tract and use information from large sets of variables. One approach is based
on an assumption that there exist common factors, which can explain the vari-
ables�comovement. The factor models have been shown useful in econometric
modeling. There is a series of articles that demonstrate advantages of using
factors in forecasting (Stock and Watson (2002a), Stock and Watson (2002b))
and impulse response analysis (Bernanke, Boivin and Eliasz (2005), Kapetanios
and Marcellino (2006))).
Recently, Stock andWatson (2005) adopts factor models for structural analy-

sis. This article, together with other papers (Kapetanios and Marcellino (2006)
and Forni, Giannone, Lippi and Reichlin (2007)) discusses the possibility of
integrating the factor methods into the SVAR framework. There is empirical
evidence that factors can contribute to classical VAR analysis (see Bernanke,
Boivin and Eliasz (2005), Kapetanios and Marcellino (2006), Eickmeier (2009)
and Forni and Gambetti (2008)).
So far, most of the research concentrates on modeling stationary panel data.

Breitung and Eickmeier (2005) provides a comprehensive literature review of
stationary dynamic factors models and their applications. There are, however,
few articles that discuss the issue of common nonstationary trends. Bai (2004),
Bai and Ng (2004) and Gonzalo and Granger (1995) describe estimation methods
of nonstationary common components. Bai (2004) proposes information criteria,
IPC, that allow for consistent estimation of the number of common trends and
derives limiting distributions of estimated factors and common components.

61
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Banerjee and Marcellino (2008) discusses cointegration issues related to the
existence of common trends and shows how the factor analysis can contribute to
the existing literature. Eickmeier (2009) uses nonstationary factors in structural
analysis of economic development of euro area countries.
The literature discusses two approaches in modeling nonstationary panels.

The �rst one is based on the di¤erenced data and was proposed by Bai and Ng
(2004). This method allows for consistent estimation of nonstationary static
factors and is independent from an integration order of the idiosyncratic com-
ponent1 . The second approach uses the data in levels and was introduced by
Bai (2004). It is suitable for structural analysis because it directly estimates the
dynamic nonstationary factors. The concept can also be easily integrated into
the generalized dynamic factor models framework. Unfortunately, the results
rely on the stationarity assumption of idiosyncratic errors, which is sometimes
di¢ cult to verify.
In this paper, we follow the idea of Bai (2004) and extract factors from data

in levels. We contribute to the existing literature by allowing for higher order
dynamics in the data generating processes. We show that ignoring the time
trend or I (2) processes2 leads to inconsistent estimation of factors and factors
loadings. It has important implications for structural analysis and impulse re-
sponses. If it is not taken into consideration then some of the factor loadings
grows to in�nity and the relative importance of some shock increases unpropor-
tionaly. Moreover, we derive the convergence rates, the asymptotic distribution
of factors, factor loadings and common components for a general model. The
dynamics of the factors are summarized by a scaling matrix. It is chosen to
ensure the convergence of the factors second moments. The results allow for
the assessment of the accuracy of estimation procedure and for constructing
con�dence intervals around a rotation of true factors used in empirical analysis.
The theory is illustrated with an empirical example. We analyze a panel of

69 real variables describing the U.S. economy. We show that the data �uctuation
can be summarized by a small number of common factors. Since most of the
variables have a deterministic trend, then it is relevant to assume an existence of
a factor with the time trend. The limiting distributions allows for testing if an
interest rate, investments, a personal consumption and government spendings
are the driving forces of the economy.
This paper is organized as follows: Section 3.2 describes the model and dis-

cusses the estimation issues. In Section 3.3, we derive the convergence rates and
asymptotic distributions of estimates for a general model. Section 3.4 analyzes
in more detail the model with I (1) factors with a deterministic trend. In Sec-
tion 3.5, we apply the approach to the panel measuring the real activity of U.S.
economy. Finally, in Section 3.6, we summarize and conclude. The description
of the data and proofs are provided in Appendix.

1The modeling strategy cannot be directly applied for structural analysis because it deals
only with the static representation of the factor model. In order to recover dynamic factors,
some additional steps have to be introduced, as in Eickmeier (2009).

2A process X is I (d) (integrated of order d) if d is a smallest number such that (1� L)dX
is stationary. Here, L denotes a lag operator.
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3.2 Model description and estimation

3.2.1 Model setup

Let us denote by X a N � T panel of observable variables. We use F 0t ; �
0
i and

r to describe the true common factors, factor loadings and number of factors,
respectively. Then for any i = 1; 2; :::; N and t = 1; 2; :::; T it is assumed that

Xit = �00i F
0
t + eit (3.1)

The residuals eit are I (0) error processes that can be serially correlated. F 0t is
a r � 1 vector of common factors and �0i is a r � 1 vector of factor loadings.
Let Xi be T � 1 vector of observations of the ith cross-section unit. Then

Xi = F 0�0i + ei

whereXi = (Xi1; Xi2; : : : ; XiT )
0, F 0 =

�
F 01 ; F

0
2 ; : : : ; F

0
T

�0
and ei = (ei1; ei2; : : : ; eiT )

0.
When it is needed, we will use the following notation

X = F 0�00 + e

where �0 =
�
�01; �

0
2; : : : ; �

0
N

�0
and e is a N � T matrix, e = (e1; :::; eN ).

In the model, we distinguish between common factors, F 0, and a common
component, denoted by C. The common component is a T � N matrix that
summarizes the total impact of the factors on the panel, de�ned as a product
of factors and factor loadings

C = F 0�00

The model setup is similar to the one described in Bai (2003) and Bai (2004).
We do not assume any particular type of common factors. Thus, we allow for
stationary, I (1) or I (2) factors with or without a deterministic time trend. It
is assumed that a kth factor is generated by the following process

(1� L)d F 0kt = akt + ukt

where L denotes the lag operator and d takes values d 2 f0; 1; 2g. When d =
0 and akt = a then the process is stationary, whereas for d = 1 or 2 the
factors are nonstationary I (1) or I (2) processes, respectively. The akt denotes
a deterministic component and ukt is a stationary process. We de�ne by ut a
r � 1 vector of common shocks ut = (u1t; :::; urt)0.
In this article, we are particularly interested in models with nonstationary

factors of order not higher than one and a linear time trend. It this case either

(1� L)F 0t = a+ ut

or
F 0t = at+ ut
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64 CHAPTER 3. GENERALIZED FACTOR MODEL

Following Bai (2003), we assume that both dimensions of the panel increase
to in�nity N;T !1. Throughout the paper the norm of a matrix is de�ned as
kAk = tr (A0A)

1=2. We use Ir for a r�r identity matrix, �i (A) for the ith largest
eigenvalue of the square matrix A and vi (A) for the orthonormal eigenvector
of the matrix A associated with the ith largest eigenvalue. Moreover, [c] is a
ceiling of the scalar c (it is the smallest integer number, such that c � [c]). We
denote by!p and!d convergence in probability and distribution, respectively.

3.2.2 Assumptions

The following assumptions are used to derive the asymptotic properties of the
estimators. Assumptions B-D are the same as in Bai (2003) and Bai (2004) and
are discussed there in detail. We change Assumption A and Assumptions G-F
in order to allow for factors with di¤erent dynamics.
Assumption A (Common factors)

1. E kutk4+� 6M for some � > 0 and all t 6 T

2. E


F 01 

4 6M

3. The nonstationary I (1) and I (2) factors are not cointegrated.

4. There exists a diagonal scaling matrix D, which elements are functions of
the time dimension T , such that for T !1

D�1F 00F 0D�1 !d �

where � is a random matrix, which is positive de�nite with probability 1.
Moreover, there exists M 2 < such that for all T

T


D�2

 �M

5. The maximum expected value of the normalized factors is bounded

max
t
E



pTD�1F 0t




 �M

6. There exists a limit
p
TD�1F 0t !d F� for t=T = � .

Assumption B (Heterogeneous factor loadings) The loading �0i is either

deterministic, such that


�0i

 6M , or it is stochastic, such that E



�0i

4 6M .
In both cases

1

N

NX
i=1

�0i�
00
i = �

0
0�0=N !p ��

as N ! 1 for some nonrandom, positive de�nite matrix ��. Moreover, the
matrix ��� has distinct eigenvalues with probability one.
Assumption C (Idiosyncratic component)
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1. E (eit) = 0 and E jeitj8 6M

2. E (e0set=N) = 
NT (s; t) with j
NT (s; s)j 6M for all s, and

1

T

TX
s=1

TX
t=1

j
NT (s; t)j 6M

3. E (eisejt) = �ij;st with j�ij;ttj 6 j�ij j for some �ij and for all t.

1

N

NX
i=1

NX
j=1

j�ij j 6M

4. (NT )�1
PN

i=1

PN
j=1

PT
s=1

PT
t=1 j�ij;stj 6M

Assumption D f�ig, fetg, futg are mutually independent stochastic vari-
ables.
Assumptions A-D are necessary to prove the consistency of the estimators.

Assumption A allows for factors with di¤erent dynamics. If all factors are sta-
tionary then the scaling matrix D =

p
TIr, whereas if there are both stationary

and nonstationary I (1) and I (2) factors without a time trend then D can be
de�ned as follows

D =

24 T 2Ir2 0 0
0 TIr1 0

0 0
p
TIr0

35 (3.2)

where rk denotes the number of I (k) factors. In Bai (2004), there are only I (0)
and I (1) factors and the scaling matrix takes the form

D =

�
TIr 0

0
p
TIq

�
(3.3)

where r and q denotes the number of nonstationary and stationary common
factors, respectively.

Remark 3 If we allow for deterministic time trends then the scaling matrix D
needs to be adjusted. Suppose the factors have a linear trend. Then, an element
scaled by T 3=2 needs to be added to the diagonal of D. An exception is a model
in which only the I (2) factors have a linear (not quadratic) trend. In this case
the scaling matrix remains unchanged as in (3.2). A model with I (1) factors
and the linear trend is discussed in detail in Section 3.4.

In order to identify the number of nonstationary factors, we need to assume
that they are not cointegrated. Otherwise, the space spanned by the factors
could be described by the lower number of common trends G0 and a stationary
component. Hence, we would be able to reduce the number of nonstationary
factors by substituting the corresponding vectors of F 0 by G0 and the stationary
term.
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66 CHAPTER 3. GENERALIZED FACTOR MODEL

Assumption B is standard and is introduced to ensure that the factors load
to in�nitely many variables. It allows us to distinguish between a common
component that is pervasive and an idiosyncratic component that has a limited
e¤ect. Hence, it ensures that the factor structure is identi�able. Assumption
C describes a possible time and cross-sectional dependence of the idiosyncratic
components. It is extensively discussed in Bai (2004). Assumption D excludes
the correlation between the idiosyncratic and common shocks. It is not restric-
tive because in further analysis we allow for a dynamic structure of the factors.
In order to show a stronger result, we need to impose an additional Assump-

tion E. It restricts the correlation of the idiosyncratic errors.
Assumption E
Let us denote �
N (t; s) = E (je0set=N j). Then there exists M 61 such that

1. For each t,
PT

s=1 j�
N (t; s)j 6M

2. For each i,
PN

j=1 j�ij j 6M

Some moment conditions are introduced in Assumption F. The �rst two con-
ditions F.1 and F.2 are needed to prove consistency and to compute the conver-
gence rates. Finally, deriving the asymptotic distributions of estimators requires
additional information about the limiting distribution of N�1=2 PN

i=1 �
0
i eit and

D�1PF 0t eit. It is provided by Assumptions F.3 and F.4. If the loadings are
deterministic then the Assumption F.3 follows from the Central Limit Theorem
and the fact that the loadings are bounded. Otherwise, we assume, as in Bai
(2004), that the limiting distribution of the �rst sum is normal.

Assumption F (Moments and Central Limit Theorem)

1. There exists M <1 such for every pair (s; t),

E

�����N�1=2
NX
i=1

[eiteis � E (eiteis)]
�����
4

�M

2. There exists M <1 such that for any T

E

����� 1

T 1=2

TX
t=1

D�1F 0t �
0
0et

�����
2

�M

3. For each t as N !1

1p
N

NX
i=1

�0i eit !d N (0;�t)

where �t = limN!1 (1=N)
PN

i=1

PN
j=1 �

0
i�
00
j E (eitejt)
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3.2. MODEL DESCRIPTION AND ESTIMATION 67

4. For each i as T !1 there exists a random variable Wi, such that

D�1
TX
t=1

F 0t eit !d Wi

The distribution of the random variable Wi depends on the dynamics of the
factors. If the kth factor is stationary or I (1) with a time trend, then Wki has
a normal distribution, whereas if Fkt is I (1) without deterministic trend then
the distribution of Wki is a functional of a Brownian motion, as in Bai and Ng
(2004).

3.2.3 Estimation

Estimates of � and F are obtained by solving the optimization problem

�
~�; ~F

�
= argmin

�;F
(NT )

�1
NX
i=1

TX
t=1

(Xit � �iFt)2

= argmin
�;F

tr
�
(X � F�0)0 (X � F�0)

�
where X =

�
�X1; �X2; : : : ; �XN

�
and F = (F1; F2; : : : ; FT )

0. For any non-zero F
the optimal loading matrix is

~�0 = (FF 0)
�1
F 0X (3.4)

and

X � F ~�0 =
�
IT � F (F 0F )�1 F 0

�
X

De�ne PF = F (F 0F )
�1
F 0. Then the optimal vector of factors F is

~F = argmin
F

tr

��
X � F ~�0

�0 �
X � F ~�0

��
= argmin

F
tr
�
X 0 (IT � PF )0 (IT � PF )X

�
= argmin

F
tr (X 0 (IT � PF )X)

= argmax
F

tr (X 0PFX)

In order to solve the above problem, we need to impose some normalization
of the factors. It is standard to assume that the product of scaled factors gives
the identity matrix,

D�1F 0FD�1 = Ir
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68 CHAPTER 3. GENERALIZED FACTOR MODEL

Then

PF = F (F 0F )
�10

F 0

= FD�2F 0

and the problem is equivalent to maximizing

tr
�
X 0FD�2F 0X

�
= tr

�
D�1F 0XX 0FD�1�

Thus, the estimated common factors ~F are proportional to the eigenvectors v
corresponding with the r largest eigenvalues of the T � T matrix XX 0.

~F = B � v
The scaling matrix B is diagonal and is chosen to satisfy the normalization
condition

Ir = D�1F 0FD�1 = D�1Bv0vBD�1 = D�1BBD�1

Thus, B = D and ~F is D times the eigenvectors v

~F = vD (3.5)

The estimate of the loading matrix is obtained on the basis of (3.4) and is equal
to

~�0 = D�2 ~F 0X (3.6)

The results correspond with the outcomes of Bai and Ng (2002) and Bai
(2004) with D =

p
TIr or D = TIr, respectively. In the �rst case, the estimated

factors are the eigenvectors v multiplied by
p
T . In a model with I (1) factors

without drift, the estimators are ~F = vT . In the Generalized Factor Model
(GFM) presented by Bai (2004), the scaling matrix is (3.3). Thus, the estimates
of the nonstationary factors are the eigenvectors corresponding with the r largest
eigenvalues multiplied by T , whereas the estimates of the stationary factors are
the eigenvectors corresponding with the r+1 : r+q largest eigenvalues multiplied
by
p
T .
In further analysis, we consider also another normalization of factors and

factor loadings. The following lemma de�nes so called normalized factors, F̂ ,
and normalized loadings, �̂.

Lemma 4 De�ne normalized factors F̂ = N�1X ~� and a normalized loading
matrix �̂ such that F̂ �̂0 = ~F ~�. Then

�̂ = ~�V �1NT

F̂ = ~FVNT

where VNT = ~VNTD
�2=N and ~VNT is the diagonal matrix consisting of the r

largest eigenvalues of the matrix XX 0.

This lemma shows how the two di¤erent estimators F̂ and ~F are related to
each other. It is used to derive the asymptotic distribution of ~F and to construct
the con�dence intervals around a rotation of the true factors.
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3.3. DISTRIBUTION THEORY 69

3.3 Distribution theory

In this section, we present an asymptotic theory of estimated factors, factor
loadings and a common component. Firstly, we discuss the consistency issue
and derive the asymptotic distribution. Finally, we show how the con�dence
intervals of a rotation of the true factors can be constructed.

3.3.1 Consistency

Bai (2003) and Bai (2004) prove consistency of the estimators of stationary and
random walk factors. They show that the mean squared errors of the estimated
factors are Op

�
max

�
N�1; T�1

	�
and Op

�
max

�
N�1; T�2

	�
, respectively. Us-

ing similar arguments, we show that the MSE of an estimated factors with a
scaling matrix D is Op

�
max

�
N�1;



D�2

	�. Moreover, for a given time period
t the error F̂t �H 0F 0t is Op

�
N�1=2�+Op �

D�1

�.

Consider �rstly the MSE of estimated factor.

Proposition 5 Assume Assumptions A-D hold. There exists a nonsingular
matrix ~H and ��1NT = max

�
N�1=2;



D�1

	 such that
1

T

TX
t=1




 ~Ft � ~H 0F 0t




2 = Op
�
��2NT

�
The proposition states that the time average of a squared deviation between

the estimated factors and the rotation of the true factors converges to zero with
a growing sample size N;T !1. The proposition is very important because it
shows that the factors can be consistently estimated with a principle component
method. The convergence rates are used to derive the asymptotic distribution
of the estimators.
The result is in line with the existing literature. In a case of a model with sta-

tionary factors, the norm of the scaling matrix


D�1

 = Op

�
T�1=2

�
. Therefore,

the convergence rate is �NT = min
np

N;
p
T
o
, as in Bai (2003). If we assume

that all the factors are random walks without a drift then


D�1

 = Op

�
T�1

�
and �NT = min

np
N;T

o
. The convergence rate corresponds with the outcome

presented in Bai (2004).
Finally, it is shown that for a given time period t the error converges to zero

with a growing cross-sectional and time dimension. To prove the convergence
rates we need to impose the more restrictive Assumption E.

Proposition 6 Under Assumptions A-E the following holds for each t,

~Ft � ~H 0F 0t = Op

�
N�1=2

�
+Op

�

D�1

�
The convergence rate is the same as in Bai and Ng (2002) for stationary

factors. Since we allow for di¤erent types of factors then the rate is lower then
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70 CHAPTER 3. GENERALIZED FACTOR MODEL

in Bai (2004), where only I (1) factors without a trend are considered. It is,
however, su¢ cient to derive the limiting distribution of factors.

Remark 7 If we allow for only one type of nonstationary factors, for example
I (1) or I (2) factors, then it is shown by Lemma 25 that

~Ft � ~H 0F 0t = Op

�
N�1=2

�
+Op

�
T�1=2



D�1

�
This is in line with the results of Bai (2004) for the I (1) factors without a time
trend, where

~Ft � ~H 0F 0t = Op

�
N�1=2

�
+Op

�
T�3=2

�
3.3.2 Asymptotic distributions

We investigate the asymptotic distribution of the estimated factors, the factor
loadings and the common component. Firstly, we describe a limiting behavior
of VNT and D�2 ~F 0F 0.

Lemma 8 Under assumptions A-E, as N , T !1
1. There exists a random, diagonal, full rank with probability 1 matrix V such
that VNT !d V

2. There exists a random, positive de�nite, with probability 1 matrix Q such
that

D�2 ~F 0F 0 = QNT !d Q

The lemma de�nes two matrices, V and Q, used to describe the asymptotic
distribution of factors and factors loadings.

Limiting distribution of estimated common factors

The following proposition shows that the factor estimates are asymptotically
normal. This property is used to construct the con�dence intervals around the
rotation of the true factors.

Proposition 9 Under Assumptions A-F, as N;T ! 1 and N1=2


D�1

 ! 0

we have for each t
p
N
�
~Ft � ~H 0F 0t

�
!d ��1� N (0;�t)

where �� and �t are de�ned as in the Assumptions B and F.

The proposition requires restrictions on the relation between the cross-sectional
and the time dimensions. If there are stationary factors the conditions say that
N=T ! 0. In a case of a model with only nonstationary factors without the de-
terministic trend, the condition is N=T 2 ! 0. If there is only one type of factor,
it can be shown that the condition is N1=2T�1=2



D�1

 as in Bai (2004)3 .
The results will be used to construct the con�dence intervals around a rota-

tion of true factors.
3The condition follows directly from Lemma 25 and the proof of Proposition 9.
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Limiting distribution of estimated factors loadings

In this section, we show that the estimated factor loadings converges to some
random variable.

Proposition 10 Under the Assumptions A-F, for each i, as N;T ! 1 we
have

D
�
~�i � ~H�1�0i

�
!d

�
�H
��1

��1Wi

with �H is de�ned by Lemma 28. � and Wi are de�ned by Assumption A and
F, respectively.

The actual limiting distribution of factor loadings depends on the dynamics
of the factors. As shown in Bai (2003), if the factors are stationary then the
matrix � converges to the factors variance-covariance matrix. On the other
hand, if all factors are random walks without a drift then � is de�ned by a
Brownian motion. Moreover, if we allow for other types of factors then the
elements of the random matrix � may take di¤erent forms.

Limiting distribution of estimated common components

Let us denote the true and estimated common components4 by C0it = F 0t �
0
i

and Ĉit = F̂t�̂i, respectively. The limiting distribution of the estimates of the
common component depends on the relation between the cross-sectional and
time dimensions T=N .

Proposition 11 Under Assumptions A-G as N;T !1 it holds that

1. If N=T ! 0 then for each pair (i; t)

p
N
�
Ĉit � C0it

�
!d �00i H

�10QN (0;�t)

where �t is de�ned in Assumption F and Q is introduced in Lemma 8.

2. If T=N ! 0 then for each pair (i; t) and t = [�T ]

p
T
�
Ĉit � C0it

�
!d F 0��

�1Wi

where � and F� are de�ned in Assumption A and Wi is de�ned in As-
sumption F.

3. If N=T ! � then for each pair (i; t) and t = [�T ]

p
N
�
Ĉit � C0it

�
!d �00i H

�10QN (0;�t) +
p
�F 0��

�1Wi

where Q, �t, F� ,� and Wi are de�ned as above.

4The estimated common component Ĉit does not depend on the normalization of common
factors.
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As noted by Bai (2004), the third case is the most useful in practice, because
� can be estimated by the sample ratio N=T . Moreover, the distribution of the
common components in cases (2) and (3) depends on the limiting distribution of
F� . When the factor �F 0i is stationary then F�i is normally distributed. However,
if the factor �F 0i is a I (1) process without a deterministic drift then F�i is a
Brownian motion process with a variance described by Bai and Ng (2004).

Con�dence intervals

In the article, we interpret a scalar, observable variable Rt as a common factor
if it is a linear combination of the true factors plus a constant.

Rt = �+ �0F 0t

where � is a shift parameter and � is a r�1 vector that summarize the relation
between Rt and F 0t . We allow for both a rotation and a shift of the factors
because neither Rt nor F 0t have to be zero mean processes and they may have
di¤erent levels and scalings.
Consider the rotation of ~F toward Rt described by the regression

Rt = �+ �0
�
~H�10 ~Ft

�
+ ut

= �+ �0 ~Ft + ut

Let
�
�̂; �̂

�
be the least-square estimator of (�; �) and R̂t = �̂+�̂

0 � ~H�10 ~Ft

�
.

From the identity �0 = �0 ~H�10 it follows that �̂
0
= �̂

0 ~H�10. If Rt is a common
factor then the following proposition holds.

Proposition 12 Under the Assumptions A-F and no cross-section correlation
for the idiosyncratic errors, as N;T !1 and N1=2



D�1

! 0

p
N
�
R̂t � �� �0F 0t

�
!d �̂V �1QN (0;�t)

where V , Q are de�ned in Lemma 8 and �t is introduced in Assumption F.

Following Bai (2004), we will approximate the 95% con�dence intervals as
follows �

R̂t � 1:96
q
~S2t =N; R̂t + 1:96

q
~S2t =N

�
(3.7)

where ~S2t =
�
�̂V �1Q

�
�t

�
�̂V �1Q

�0
.

Remark 13 As stated in Bai (2003), the matrix

�̂V �1D�2 ~F 0F 0�tF
00 ~FD�2V �1�̂

0
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involves the product of F 0�0, which can be consistently estimated with ~F ~�.
Hence, it can be substituted by

�̂V �1D�2 ~F 0 ~F ~�t ~F
0 ~FD�2V �1�̂

0
= �̂V �1~�tV

�1�̂
0

where

~�t = lim
N!1

(1=N)
NX
i=1

NX
j=1

~�i~�
0
jÊ (eitejt)

Remark 14 Bai and Ng (2006) propose two types of estimators of the matrix
~�t that can be used for cross sectionally uncorrelated idiosyncratic errors eit

1. ~�t = 1
N

PN
i=1 ~e

2
it
~�i~�

0
i

2. ~� = ~�2"
1
N

PN
i=1

~�i~�
0
i, where ~�

2
" =

1
NT

PN
i=1

PT
t=1 ~e

2
it for errors with equal

variances �2"i = �2".

~�i and ~eit correspond to the estimates of �i and eit.

Remark 15 If the observable variable Rt belongs to the panel (Rt = Xit) then

the parameters
�
�̂; �̂
�
can be replaced with

�
0; �̂i

�
, where �̂i are estimated factor

loadings.

Remark 16 In order to compute the con�dence intervals, we need to ensure
that the idiosyncratic errors have zero mean5 . Otherwise E

�
R̂t � �� �F 0t

�
6= 0

and ~�t will not be a consistent estimator of the variance-covariance matrix �t.

3.4 Model with I (1) factors with a deterministic
trend

So far, the literature considers only models with either stationary factors or
common trends without deterministic drift. Since most of time series have both
stochastic and deterministic trends, the theory does not match the needs of
macroeconomic modeling. Thus, we believe that the model that allows for a
deterministic trend is interesting, especially from an empirical point of view.
In this section, we discuss in more detail issues associated with an estima-

tion of a factor model with a linear time trend. We address the problem of
determining a number of common trends with a drift. We show the convergence
rates, limiting distributions of factors, factor loadings and common components.
Finally, we present the results in the context of a generalized factor model, as
in Bai (2004).

5One possible way to construct idiosyncratic errors with zero mean is to remove the mean
form the orginal data set.
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74 CHAPTER 3. GENERALIZED FACTOR MODEL

3.4.1 Modeling the time trend vs. detrending the data

Once we decide, on the basis of analysis of the variables in panel, that the
deterministic trend plays an important role in the model, we may consider two
strategies. The �rst approach leaves the data unchanged and models the trend
together with other factors. It is discussed in detail in the following sections.
The second approach consists of two steps. Firstly, the data is detrended and
secondly, the factors without trend are estimated as in Bai (2004). Its main
disadvantage is that it requires either a precise parametrization of the time
trend or a usage of some nonlinear �ltering procedures. There is no agreement
on which of the detrending methods should be used in the context. Therefore,
we believe that our approach is a competitive alternative.

3.4.2 Number of common factors with a drift

The �rst issue is the number of identi�able common trends with a deterministic
drift. We show that a model with n > 1 common factors with time trends
can be represented as a model with only one factor with time trend and n � 1
factors without a deterministic drift. Consider a system with n factors, Ft =
(F1t; :::; Fnt)

0, that depends both on the time trend and a stochastic, zero mean
variable !t = (!1t; :::; !nt)

0

Ft = At+B!t

= [An�1 : Bn�n]

�
t
!t

�
The matrix [An�1 : Bn�n] needs to have a rank n in order to ensure that all the
factors are identi�able. Since the factors are assumed to follow a deterministic
time trend, the vector A has to be non-zero. Then the system can be rewritten
as follow

Ft = C [In�n : Dn�1]

�
t
!t

�
where C is a n � n full rank matrix and In�n is an identity matrix. Let us
construct a new set of factors ~Ft = C�1Ft. Then

~Ft = [In�n : Dn�1]

�
t
!t

�
and

~F1t = t+D11!nt
~F2t = !1t +D21!nt

...
~Fnt = !n�1t +Dn1!nt
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3.4. MODEL WITH I (1) FACTORS WITH A DETERMINISTIC TREND 75

Thus, among the factors ~Ft only the �rst one has a time trend. Moreover, if all
the factors are nonstationary and noncointegrated then at least n� 1 of the !t
elements have to be I (1) processes. We can order the elements of !t in such a
way that only the last component !nt is allowed to be stationary. Depending
on integration order of !nt the �rst factor ~F1t will be trend stationary (when
!nt is I (0)) or a random walk with a drift (when !nt is I (1)).
We have shown that the factors Ft are a linear combination of ~Ft, where

only one factor ~F1t has a time trend. Without loss of generality we can replace
Ft with ~Ft. Therefore, in further analysis, we assume that there is only one
common factor with a deterministic linear trend.

Remark 17 The arguments are valid if the trend is not linear but is a function
of time f (t) and loads with weights A to the factors. Then, the factors Ft can
be replaced with ~Ft, where only one of the elements of ~Ft has a deterministic
component and other elements have a zero mean.

3.4.3 Static factor model

Let us �rst consider a static factor model with a single nonstationary factor with
a deterministic time trend. Some of the restrictive assumptions on the total
number of factors and the relation between factors and observable variables will
be relaxed in the Section 3.4.4, where a generalized dynamic factor model will
be discussed.
De�ne by Ft a common nonstationary factor with a deterministic trend such

that it is either I (1) with a drift

Ft = a+ Ft�1 + ut (3.8)

or trend stationary.

Ft = at+ ut

with a 6= 0.
Since the factor has a time trend then it needs to be scaled by T 3=2. Hence,

the scaling matrix D = T 3=2 and the limit of D�1F 00F 0D�1 = T�3
PT

t=1

�
F 0t
�2

equals a scalar � = a2=3

T�3
TX
t=1

�
F 0t
�2

= T�3
TX
t=1

a2t2 + op (1)

=
TX
t=1

a2
�
t

T

�2
1

T
+ op (1)

!
Z 1

0

a2x2dx = a2=3
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For t = [�T ] the limit of F 0t =T is F� = a� . For a I (1) factor

1

T
F 0t = a

t

T
+
t

T

1

t

tX
s=1

us

! pa� + �Eut = a�

and for a trend stationary factor

1

T
F 0t = a

t

T
+
1

T
ut

! pa�

Moreover, it can be assumed that for each i, as T !1,

1p
T

TX
t=1

1

T
F 0t eit !d N (0;
i)

where 
i = limN!1 (1=T )
PT

t=1

PT
s=1 a

2 ts
T 2E (eiteis). Thus, the variable Wi

has a normal distribution.

Remark 18 Suppose the deterministic trend is not linear and is described by a
function f (t). Then as long as

0 < lim
T!1

T�3
TX
t=1

(f (t))
2
< M

and
0 < lim

T!1

1

T
f (�T ) < M

then the results hold and

1p
T

TX
t=1

1

T
F 0t eit !d N (0;
i)

The matrix 
i takes the following form form


i = lim
N!1

(1=T )
TX
t=1

TX
s=1

f (t) f (s)

T 2
E (eiteis)

Estimation

In Section 3.2, we derived estimators of the factor and factor loadings. Since
D = T 3=2 then

~F = T 3=2v
~�0 = T�3 ~F 0X

where v = v1 (XX
0) is the eigenvector corresponding with the largest eigenvalue

of the matrix XX 0. Hence, the normalized factor and loadings can be computed
as in Lemma 4, with VNT being the largest eigenvalue of the matrixXX 0=(NT 3).
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3.4. MODEL WITH I (1) FACTORS WITH A DETERMINISTIC TREND 77

Convergence rates

The convergence rates can be computed on the basis of Proposition 5 and Lemma
25. Since



D�1

 = T�3=2 then

��1NT = max
n
N�1=2; T�3=2

o
and

F̂t �H 0F 0t = Op

�
N�1=2

�
+Op

�
T�2

�
The convergence rates are higher than in the model with only stationary factors
or common trends without a drift.

3.4.4 Generalized dynamic factor model

Finally, consider the generalized dynamic factor model with both stationary and
nonstationary factors

Xit = �ri (L)F
r
t + �

q
i (L)F

q
t + eit (3.9)

where �ri (L) and �
q
i (L) are lag polynomials corresponding to di¤erent types of

factors: F rt is a r�1 vector of common nonstationary factors with the �rst factor
having a time trend and F qt is a q � 1 vector of stationary factors. Hence, in
the generalized dynamic factor model we allow for more then one factor: there
are r nonstationary and q stationary dynamic factors.

F rt = A+ F rt�1 + u
r
t

F qt = uqt

with A = (a; 0; : : : ; 0)
0. Following Bai (2004) and Forni, Hallin, Lippi and

Reichlin (2003), we assume

�ri (L) =

1X
j=0

�rijL
j

�qi (L) =
1X
j=0

�qijL
j

with
P1

j=0 j
���rij�� <1 and

P1
j=0 j

���qij�� <1 .
Since there are three types of factors the scaling matrix takes the form

D =

24 T 3=2 0 0
0 T � Ir�1 0
0 0 T 1=2 � Iq

35 (3.10)
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Static representation

The dynamic representation of the model (3.9) can not be directly estimated.
In order to construct the estimators, we need to rewrite the model in the static
form. Let us notice that (3.9) can be expressed as follows

Xit = �ri (L)F
r
t + �

q
i (L)F

q
t + eit

= 'F rt + �
r (L)�F rt + �

q
i (L)F

q
t + eit

where the factors �F rt and F
q
t are stationary. In order to derive the asymptotic

distributions, we need to approximate the model with �nite order lag polyno-
mials. Let us assume that �r (L), �qi (L) have an order p. Then the model can
be written as

Xit = 'F rt +�Gt (3.11)

where Gt =
�
�F rt ; : : : ;�F

r
t�p; F

q
t ; : : : ; F

q
t�p
�0
summarizes the stationary fac-

tors. Thus, the model has the static form that uniquely identi�es the dynamic
nonstationary factors6 F rt . The representation (3.11) will be used in further
analysis.

Estimation of the number of factors

In order to estimate the total number of factors, Bai (2004) proposes to use the
data in �rst di¤erences7 . If the data are I (1) then

�Xit = �ri (L)�F
r
t + �

q
i (L)�F

q
t +�eit (3.12)

and both�Xit and factors�F rt ,�F
q
t are stationary. Therefore, the information

criteria PC introduced by Bai and Ng (2002) can be applied. As stated in Bai
(2004) the procedure allows for consistent estimation of the total number of
factors (both stationary and nonstationary).
The second issue is determining the number of stationary and nonstationary

factors separately. Bai (2004) shows that the number of nonstationary, dynamic
factors can be estimated directly form the data in levels on the basis of repre-
sentation (3.11). Bai and Ng (2004) constructs the information criteria IPC
and proves their consistency for panels without a deterministic trend. In the
paper, it is stated that the same information criteria can be used to estimate
the total number of nonstationary factors regardless of the existence of the de-
terministic components and the order of integration. The number of stationary
static factors, Gt, can be computed as the di¤erence between the total number
of factors and the number of nonstationary dynamic factors as in Bai (2004).

6The identi�cation is achieved under the assumption of no cointegration between the non-
stationary factors. See Bai (2004) for a discussion.

7 The aim of the di¤erencing is to ensure that the common factors are stationary. Therefore,
the order of di¤erencing should equal to the integration order of the data.
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3.5. EMPIRICAL EXAMPLE 79

Estimation and convergence rates

Since the number of factors can be consistently estimated with the information
criteria as in Bai and Ng (2002) and Bai (2004), then we assume that the true
number of both stationary and nonstationary factors is known. The common
factors can be estimated as follow

~F = vD

where v are the eigenvectors corresponding with the (r + q) largest eigenvalues
of a matrix XX 0 and D is given by (3.10). Thus,

1. A nonstationary common trend with a drift is estimated as the eigenvector
corresponding to the largest eigenvalue of the matrix XX 0 multiplied by
T 3=2.

2. Nonstationary common trends without a drift are estimated as the eigen-
vectors corresponding to 2 : r largest eigenvalues of the matrix XX 0 mul-
tiplied by T .

3. Stationary common trends are estimated as the eigenvectors corresponding
to (r + 1) : (r + q) largest eigenvalues of the matrix XX 0 multiplied by
T 1=2.

Let VNT be a diagonal matrix de�ned in Lemma 4. It has diagonal elements
Vi such that

1. V1 is the largest eigenvalue of the matrix XX 0=NT 3.

2. V2; : : : ; Vr are the 2 : r largest eigenvalues of the matrix XX 0=NT 2.

3. V(1+r); : : : ; V(r+q) are the (r+1) : (r + q) largest eigenvalues of the matrix
XX 0=NT .

Finally, we present the convergence rates. Since


D�1

 = Op

�
T�1=2

�
then

the convergence rates are ��1NT = min
�
N�1=2; T�1=2

	
and

F̂t �H 0F 0t = Op

�
N�1=2

�
+Op

�
T�1=2

�
3.5 Empirical example

In the paper, we study the behavior of 69 variables describing the real activity
of US economy (an industrial production, components of the real GDP, two
measures of the labor productivity and interest rates). The data are quarterly,
spanning the period from January 1961 to September 2008. The description of
the data is provided in the Appendix. Most of the variables in the panel are
nonstationary and have both deterministic and stochastic trends.
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80 CHAPTER 3. GENERALIZED FACTOR MODEL

3.5.1 Normalization

The literature on stationary panels underlines the need for data normalization.
Usually, variables in panels are divided by their standard deviations. This ap-
proach ensures that all variables have equal input to the total variability of the
panel. Therefore, the estimation method does not favour any of them. More-
over, the normalization does not change the theoretical results because it is
associated with multiplying the data by a diagonal matrix that converges to an
invertible matrix of asymptotic standard deviations.
This method cannot be directly applied for nonstationary panels because

the standard deviations diverge to in�nity. Thus, it will a¤ect the asymptotic
results of the estimation method. In order to normalize the data, we propose
dividing them by

�i =

 
TX
t=1

(Xit � �i)
2
=Tni

!1=2
where �i denotes the mean of the variable Xi and ni is chosen to ensure that
�i = Op (1) and that �i has a limit. For example, if a variable Xi is stationary
then ni = 1 and if Xi is an I (1) process without a deterministic drift then
ni = 1:5. Finally, for a I (1) variable Xi with a time trend there is ni = 2.
The normalization ensures that the variables with the same type of dynamics

have the same volatility. It has an intuitive interpretation for processes without
time trends because it corresponds to a standard deviation. For data with a
deterministic trend, the normalization guarantees that in the limit the slope of
the trend equalize across the panel variables. Thus, it standardizes the main
source of the volatility.

3.5.2 The number of factors

Firstly, we estimate the number of nonstationary factors using the IPC in-
formation criteria described by Bai (2004) and applied for data in levels. We
assume that there are not more then ten common trends. Thus, we consider
cases, in which kmax � 10. The results are presented in Table 3.2 and indicate
that there are either two or three nonstationary factors.
Finally, we estimate the number of factors from di¤erenced data with the

PC criteria described in Bai (2003). The criteria do not give conclusive results
because they always choose the maximum permitted number of factors. It may
indicate that either the model has a long lag structure or the cross sectional
sample size is too small to provide correct estimates.
The literature discusses some alternative approaches that can be used to

select the number of factors. Child (2006) provides a review of less formal,
graphical methods that can be applied in this context. They are based on the
eigenvalues of the panel correlation matrix. It can be seen that the sum of
these eigenvalues equals the cross sectional dimension N . Therefore, the �rst
approach is to look at the number of the eigenvalues larger then one and hence,
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above the average. This criterion indicates 18 common factors, which explains
83:25% of the total variability. As stated by Child (2006), the large cross sec-
tional dimension leads to overestimation of the number of factors. Hence, we
analyze the plot of the correlation matrix eigenvalues and use a Scree test8 . The
eigenvalues are presented in Figure 3.1 and indicate that there are around ten
common factors. The plot starting from the eleventh eigenvalue is almost linear
and decreases steadily to zero. The �rst ten common factors explain 67:85% of
the total variability of the panel. The result is in line with the outcome of Stock
and Watson (2005), which indicates the existence of nine static factors in the
stationary panel describing US economy.
Since we cannot choose the total number of factors consistently, we check

the robustness of the results with respect to the number of stationary factors.
We will use, as a benchmark, a model with ten factors (three common trends
and seven stationary factors).

3.5.3 Macroeconomic factors

Finally, we check whether some observable variables can be interpreted as com-
mon factors. Since the unobserved factors are consistently estimated then we
can use a formal test described in Section 3.3. In order to construct the con�-
dence intervals, we need to estimate the variance-covariance matrix �t. We use
the estimator applied in Bai (2004). It is constructed as follow

�t =
1

N

NX
i=1

~e2it
~�i~�

0
i

where ~�i are the principle components estimates of the loadings matrices and
~eit = Xit � ~�i ~Ft are the idiosyncratic residuals.

Interest rate

In most of the macroeconomics literature, interest rates are one of the driving
forces of the economy. In the analysis, we focus on the interest rate measured by
Federal Funds rate (FF ). We rotate the estimated factors toward FF by run-
ning the regression FFt = �+ � ~Ft + "t. Next, we compute con�dence intervals
around �tted values (3.7) and the percentage of FF observations that remain
outside the intervals. The results for di¤erent number factors are presented in
Table 3.4. The outcomes indicate that for models with at least ten factors, all
observations of FF remain inside the con�dence intervals. Therefore, we cannot
reject the hypothesis that the FF is one of the factors driving the economy. Fig-
ure 3.2 presents the observations of FF and the estimated con�dence intervals
for the benchmark model.

8The Scree test was introduced by Cattell (1966) and is based on the observation that
the plot of correlation matrix eigenvalues for uncorrelated variables is almost �at and linearly
converges to zero.
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Private �xed investments vs. personal consumption expenditures

Next, we consider the hypothesis that investments play an important role in
the economic development. Therefore, we examine if two measures of invest-
ments; real private �xed investments in nonresidential structures and residential
permanent site structures, can be considered as common factors. We proceed
as before and regress the variables on the estimated common factors. Next,
we construct the con�dence intervals as in (3.7) and compute the percentage
of observations that remain outside the con�dence intervals. The results are
presented in the Table 3.4. They indicate that for su¢ cient number of factors
both variables can be interpreted as common trends.
Unfortunately, for a benchmark model with ten common factors, around

22% of observations of the investments in nonresidential structures lay outside
the con�dence intervals. The variable and the con�dence intervals are pre-
sented in Figure 3.3. Therefore, we consider another measure of nonresidential
investments: the real private �xed investments in nonresidential commercial
structures. For models with at least eight factors we can not reject the null
that the variable is a common factor. Moreover, for models with at least eleven
factors, we could not reject the hypothesis that both measures of investments
in nonresidential structures are common trends. Thus, we conclude that they
are the driving forces of the economy.
The outcomes for the investments in residential permanent site structures

are more clear. For all considered models, at least 90% of observations stay
inside the con�dence intervals. Moreover, for a benchmark model only 6:28%
of observations fall outside the intervals (Figure 3.4). Hence, we interpret the
investments in residential site structure as a common factor.
Finally, we analyze whether di¤erent measures of real personal consumption

expenditures can be interpreted as common trends. The outcomes indicate that
the null hypothesis can be reject for all model setups. Thus, we do not �nd any
results supporting the view that the personal consumption is a main driving
force of the whole economy.

Government spendings

Since we do not �nd any arguments in favor of a hypothesis that the private
real consumption expenditure can be interpreted as common factors, we test
whether government spendings have an important e¤ect on the economy. We
consider two measurements of government spendings: real federal consumption
expenditures and gross investments in national defence and nondefense sectors.
We proceed as before and construct the con�dence intervals. The percentage of
variable observations that lay outside of the intervals are presented in Table 3.4.
The results indicate that for a model with at least nine factors both variables
can be interpreted as common factors. Figure 3.5 shows federal expenditures
in national defence and the con�dence intervals for the benchmark model. It
can be noticed that almost all observations stay inside the intervals (only less
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then 2% are outside). Similar results are obtained for federal expenditures in
nondefense sectors (Figure 3.6). The outcomes support the hypothesis that
government spending have an impact on the whole economy.

3.6 Conclusions

This paper discusses the estimation methods of common factors with di¤erent
types of dynamics. We generalize the existing methodology by allowing for
other types of factors apart from stationary factors and common trends with-
out a deterministic drift. In particular, we focus on nonstationary factors with
a time trend. We believe that it is an important issue because most of the
macroeconomic variables are subjected to a time trend. Thus, the data should
be either detrended or the existence of a drift needs to be explicitly modeled.
The model setup is similar to the generalized factor model presented in Bai
(2004). Under some standard assumptions, we show that the common factors
can be consistently estimated with a principal component method (under the
assumption that both time and cross-sectional dimensions increase to in�nity).
Additionally, we derive convergence rates and asymptotic distributions of fac-
tors, factors loadings and common components. It allows us to construct the
con�dence intervals of a rotation of true factors and hence, to construct a formal
test to verify if an observable variable can be interpreted as a common factor.
We link the theory to the existing literature and present it as an extension to
the work of Bai (2003) and Bai (2004).
The theory is illustrated with an empirical example. We analyze 69 macro-

economic variables describing the real part of the U.S. economy. We show that
an interest rate, investments and government spendings can be interpreted as
common factors, thus they are the driving forces of the economy. The results
are in line with a macroeconomic literature. We do not �nd any arguments
in favor of a hypothesis that personal consumption is also one of the common
trends.
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3.7 Appendix: Data description and estimation

results

The appendix lists the variables used in the empirical analysis and describes the
applied transformation (column A in the following table). All variables are in
levels and all but the Federal Funds rate are expressed in logarithms

Nr Variable
1 Real Gross Domestic Product, Quantity Indexes; (2000=100,SA)
2 Real �nal sales to domestic purchasers; (2000=100,SA)
3 Real personal consumption expenditures; (2000=100, SA)
4 Real personal consumption expenditures: Durable goods; (2000=100, SA)
5 Real personal consumption expenditures: Motor vehicles and parts;(2000=100, SA)
6 Real personal consumption expenditures: Household equipment; (2000=100, SA)
7 Real personal consumption expenditures: Nondurable goods; (2000=100, SA)
8 Real personal consumption expenditures: Food; (2000=100, SA)
9 Real personal consumption expenditures: Clothing and shoes; (2000=100, SA)
10 Real personal consumption expenditures: Energy goods; (2000=100, SA)
11 Real personal consumption expenditures: Services; (2000=100, SA)
12 Real personal consumption expenditures: Housing; (2000=100, SA)
13 Real personal consumption expenditures: Household operation; (2000=100, SA)
14 Real personal consumption expenditures: Electricity and gas; (2000=100, SA)
15 Real personal consumption expenditures: Transportation; (2000=100, SA)
16 Real personal consumption expenditures: Medical care; (2000=100, SA)
17 Real personal consumption expenditures: Recreation;(2000=100, SA)
18 Real gross private domestic investment; (2000=100, SA)
19 Real private �xed investment; (2000=100, SA)
20 Real private �xed investment: Nonresidential: Structures; (2000=100, SA)
21 Real private �xed investment: Nonresidential: Commercial struct.;(2000=100, SA)
22 Real private �xed investment: Nonresidential: Manufacturing struct.; (2000=100,SA)
23 Real private �xed investment: Nonresidential: Power & communic. struct.; (2000=100, SA)
24 Real private �xed investment: Nonresidential: Mining struct.; (2000=100, SA)
25 Real private �xed investment: Nonresidential: Equipment and software; (2000=100, SA)
26 Real private �xed investment: Nonresidential: Information processing equipment and software;

(2000=100, SA)
27 Real private �xed investment: Nonresidential: Software; (2000=100, SA)
28 Real private �xed investment: Nonresidential: Equipment and software: Industrial equip-

ment;(2000=100, SA)
29 Real private �xed investment: Nonresidential: Equipment and software: Transportation equip-

ment; (2000=100, SA)
30 Real private �xed investment: Residential: Structures; (2000=100, SA)
31 Real private �xed investment: Residential: Structures: Permanent site; (2000=100, SA)
32 Real private �xed investment: Residential: Structures: Permanent site: Single family;

(2000=100, SA)
33 Real private �xed investment: Residential: Structures: Other structures; (2000=100, SA)
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Nr Variable
34 Real private �xed investment: Residential: Equipment; (2000=100, SA)
35 Real Exports; (2000=100, SA)
36 Real Exports: Goods; (2000=100, SA)
37 Real Exports: Services; (2000=100, SA)
38 Real Imports; (2000=100, SA)
39 Real Imports: Goods; (2000=100, SA)
40 Real Imports: Services; (2000=100, SA)
41 Real government consumption expenditures and gross investment; (2000=100, SA)
42 Real government consumption expenditures and gross investment: Federal; (2000=100, SA)
43 Real government consumption expenditures and gross investment: Federal: National defense;

(2000=100, SA)
44 Real government consumption expenditures and gross investment: Federal: National defense:

Consumption expenditures; (2000=100, SA)
45 Real government consumption expenditures and gross investment: Federal: National defense:

Gross investment; (2000=100, SA)
46 Real government consumption expenditures and gross investment: Federal: Nondefense;

(2000=100, SA)
47 Real government consumption expenditures and gross investment: Federal: Nondefense: Con-

sumption expenditures; (2000=100, SA)
48 Real government consumption expenditures and gross investment: Federal: Nondefense: Gross

investment; (2000=100, SA)
49 Real government consumption expenditures and gross investment: State and local;
50 Real government consumption expenditures and gross investment: State and local: Consump-

tion expenditures; (2000=100, SA)
51 Real government consumption expenditures and gross investment: State and local: Gross in-

vestment, (2000=100, SA)
52 Industrial Production Index: Total index; (2000=100, SA)
53 Industrial Production Index: Final products and nonindustrial supplies;(2000=100, SA)
54 Industrial Production Index: Consumer goods; (2000=100, SA)
55 Industrial Production Index: Durable consumer goods; (2000=100, SA)
56 Industrial Production Index: Nondurable consumer goods; (2000=100, SA)
57 Industrial Production Index: Business equipment; (2000=100, SA)
58 Industrial Production Index: Defense and space equipment; (2000=100, SA)
59 Industrial Production Index: Materials; (2000=100, SA)
60 Industrial Production Index: Construction supplies; (2000=100, SA)
61 Industrial Production Index: Business supplies; (2000=100, SA)
62 Industrial Production Index: Mining NAICS=21; (2000=100, SA)
63 Industrial Production Index: Manufacturing (SIC); (2000=100, SA)
64 Output Per Hour of All Persons: Nonfarm Business Sector; Index (1992=100,SA)
65 Output Per Hour of All Persons: Business Sector; Index (1992=100,SA)
66 Federal Fund rate
67 1-Year Treasury Constant Maturity Rate
68 3-Year Treasury Constant Maturity Rate
69 5-Year Treasury Constant Maturity Rate
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Table 3.2: Choice of the number of nonstationary dynamic factors, information
criteria IPC
Inf. Criteriankmax 2 3 4 5 6 7 8 9 10

IPC1 2 2 2 3 3 3 3 3 4
IPC2 2 2 2 3 3 3 3 3 4
IPC3 2 2 2 3 3 3 3 4 4

Table 3.3: Variable names and description
Name Nr Description

Con 3 Real personal consumption expenditures;
ConD 4 Real personal consumption expenditures: Durable goods;
ConND 7 Real personal consumption expenditures: Nondurable goods;
ConS 11 Real personal consumption expenditures: Services;
InvS 20 Real private �xed investment: Nonresidential: Structures;
InvCS 21 Real private �xed investment: Nonresidential: Commercial

struct.;
InvRS 31 Real private �xed investment: Residential: Structures: Perma-

nent site;
GovD 43 Real government consumption expenditures and gross invest-

ment: Federal: National defense;
GovND 46 Real government consumption expenditures and gross invest-

ment: Federal: Nondefense;
FF 66 Federal Fund rate
NOTE: Variable number corresponds with the ordering de�ned in the data
description.

Maciejowska, Katarzyna(2010), Identification and Estimation of Sources of Common Fluctuations: New methodologies and applications 
European University Institute

 
DOI: 10.2870/19341



3.7. APPENDIX: DATA DESCRIPTION AND ESTIMATION RESULTS 87

Table 3.4: Percentage of observations that remain outside con�dence intervals
for models with di¤erent number of factors
Variable Number of factors
Name 6 7 8 9 10 11 12 13 14

Con 51.83 53.40 18.85 24.61 31.41 25.13 26.70 31.94 28.27
ConD 72.25 72.77 72.77 71.73 74.35 63.87 49.74 38.22 27.23
ConND 80.10 65.97 34.56 38.22 42.93 39.27 45.55 48.17 45.55
ConS 14.14 17.80 15.18 17.23 18.32 23.04 36.70 30.37 32.46
InvS 78.53 44.50 52.88 23.56 21.99 0.00 0.00 0.00 0.00
InvCS 88.48 21.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00
InvRS 6.28 7.33 8.90 4.71 6.28 0.00 0.00 0.00 0.00
GovD 3.67 9.95 12.04 1.57 1.57 4.71 3.14 5.76 7.33
GovND 82.72 71.22 81.67 4.19 3.66 1.57 1.57 0.00 0.00
FF 38.22 46.60 56.54 60.21 0.00 0.00 0.00 0.00 0.00

NOTE: Variable name corresponds with the description presented in Table 3.3.

Figure 3.1: First largest eigenvalues of the panel correlation matrix.
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Figure 3.2: Federal Funds rate (solid line) and the con�dence intervals (dotted
lines) for a benchmark model with ten factors; signi�cance level 5%; normalized
data

Figure 3.3: Real private �xed investments in nonresidential structures (solid
line) and con�dence intervals (dotted lines) for a benchmark model with ten
factors; signi�cance level 5%; normalized data
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Figure 3.4: Real private �xed investments in residential permanent site struc-
tures (solid line) and con�dence intervals (dotted lines) for a benchmark model
with ten factors; signi�cance level 5%; normalized data

Figure 3.5: Real federal government consumption expenditures and gross invest-
ments in national defense (solid lines) and con�dence intervals (dotted lines) for
a benchmark model with ten factors; signi�cance level 5%; normalized data
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Figure 3.6: Real federal government consumption expenditures and gross invest-
ments in nondefence sectors (solid line) and con�dence intervals (dotted lines)
for a benchmark model with ten factors; signi�cance level 5%; normalized data
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3.8 Appendix: Proofs

3.8.1 General algebra results

In the following sections we use some general properties of the Euclidean norm

kAk2 = tr (A0A)

The results can be found in Lütkepohl (1996).

1. kAk = kA0k

2. kcAk = jcj kAk

3. Cauchy-Schwarz inequality

kABk � kAk kB0k = kAk kBk

4. Parallelogram identity

kA+Bk2 + kA�Bk2 � 2
�
kAk2 + kBk2

�
Thus,

kA+Bk2 � 2
�
kAk2 + kBk2

�
� 2 (kAk+ kBk)2

and therefore,
kA+Bk �

p
2 (kAk+ kBk)

Lemma 19 (Eigenvalues and singular values results) Let us de�ne by �i (A) the
ith largest singular value of a matrix A and by �i (B) the ith largest eigenvalue
of a square matrix B. Then, for any real m� n matrix A the following results
holds

1. The matrices A0A and AA0 are square, symmetric and positive semide�nite

2. If m � n then for i � n there is �i (AA0) = �i (A
0A)

3. A and B are m � n matrices, with r = min fm;ng then for 1 � i; j; i +
j � 1 � r

�i+j�1 (AB
0) � �i (A)�j (B)

4. A is a m � n matrix, with m � n, B is a n � n square matrix then for
1 � i; j; i+ j � 1 � n

�i+j�1 (AB
0) � �i (A)�j (B)
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Proof. The results (1) and (3) are presented in Lütkepohl (1996). Consider
(2). Since the matrices AA0 and A0A are symmetric and positive de�nite then
�i (AA

0) � 0 and �i (A0A) � 0. Moreover rk (AA0) = rk (A0A) = r and r equals
the number of the non-zero eigenvalues of the matrices AA0 and A0A. Therefore,
for all i = 1; :::; r there is �i (AA0) > 0 and �i (AA0) = �i (A

0A) (see Lütkepohl
(1996)). For i > r we have �i (AA0) = �i (A

0A) = 0. Thus, �i (AA0) = �i (A
0A).

Consider (4). It follows directly from the part (3). We can construct a m�n
matrix �B such that

�B =

�
B

0(m�n)�n

�
and �

A �B0
�0 �

A �B0
�
=

�
(AB0)

0
(AB0) 0
0 0

�
Then �j (B) = �j

�
�B
�
and �i (AB0) = �i

�
A �B0

�
for any i; j � n. Therefore,

�i+j�1 (AB
0) = �i+j�1

�
A �B0

�
� �i (A)�j

�
�B
�

= �i (A)�j (B)

3.8.2 Estimation

Proof of Lemma 4. The loadings matrix �̂ satis�es the condition

F̂ �̂0 = ~F ~�0

Moreover, we know that
~�0 = D�2 ~F 0X

and therefore

F̂ �̂0 = ~F ~�0 =
1

T 3
~FD�2 ~F 0X

Thus,
F̂ 0F̂ �̂0 = F̂ 0 ~FD�2 ~F 0X

and

�̂0 =
�
F̂ 0F̂

��1
F̂ 0 ~FD�2 ~F 0X (3.13)

From de�nition of the normalized factor F̂ = N�1X ~� and the loadings ~�0 =
D�2 ~F 0X it follows that

F̂ =
1

N
X ~� =

1

N
(XX 0) ~FD�2
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Let us denote by ~VNT the diagonal matrix consisting of the �rst r largest eigen-
values of the matrix XX 0 and VNT = D�2 ~VNT =N . Then by the fact that both
VNT and D are diagonal there is F̂ 0 ~F = VNTD

2 and F̂ 0F̂ = V 2NTD
2

F̂ 0 ~F =
1

N
D�2 ~F 0 (XX 0) ~F =

D�2

N
~VNTD

2 = VNTD
2

F̂ 0F̂ =

�
1

N

�2
D�2 ~F 0 (XX 0) (XX 0) ~FD�2 =

D�2

N
~VNT

D�2

N
D2 = V 2NTD

2

Finally, from equation (3.13) the normalized loadings are �̂ = ~V �1NT
~�

�̂0 =
�
V 2NTD

2
��1 �

VNTD
2
�
D�2 ~F 0X = V �1NTD

�2 ~F 0X

= V �1NT
~�0

Since F̂ �̂0 = ~F ~�0 then
F̂ = VNT ~F

The following Lemma 20-21 discuss issues associated with the eigenvalues of
matrix VNT . They show that the matrix VNT = Op (1).

Lemma 20 Let us denote V �NT the diagonal matrix consisting of the �rst r
largest eigenvalues of the matrix F 0 (�00�0=N)F

00 in the descending order mul-
tiplied by D�2. Then V �NT = Op (1) and limT;N!1 V �NT;i > 0, where V �NT;i
denotes the ith diagonal element of V �NT .

Proof. The ith diagonal element of the matrix V �NT is the ith largest eigenvalue
of the matrix

V �NT;i = �i

�
F 0

di

�
�00�0
N

�
F 00

di

�
where di = Dii. We show that

�i

�
F 0

di

�
�00�0
N

�
F 00

di

�
= Op (1)

Let us �rst notice that since i � r. Then by Lemma 19

�i

�
F 0

di

�
�00�0
N

�
F 00

di

�
= �i

 �
�00�0
N

�1=2
F 00

di

F 0

di

�
�00�0
N

�1=2!

= �2i

 
F 0

di

�
�00�0
N

�1=2!
where �i (A) denotes a ith largest singular value of a matrix A. From Lemma
19 it follows that

�i

 
F 0

di

�
�00�0
N

�1=2!
� �i

�
F 0

di

�
�1

 �
�00�0
N

�1=2!

= �i

�
F 0

di

�
�1

�
�00�0
N

�
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We show that �i
�
F 0

di

�
= Op (1). Let us �rst notice that �i

�
d�1i D

�
= 1. Then

by Lemma 19

�i

�
F 0

di

�
� �1

�
F 0D�1��i �d�1i D

�
= �1

�
F 0D�1�

! d�1 (�)

and �1 (�) < M with probability 1. Since

�1

�
�00�0
N

�
!p �1 (��) < M

then

�i

�
F 0

di

�
�00�0
N

�
F 00

di

�
= Op (1)

Finally, we show that limT!1 �i

�
F 0

di

�
�00�0
N

�
F 00

di

�
> 0. By Lemma 19

�i

 
F 0

di

�
�00�0
N

�1=2!
�1

 �
�00�0
N

��1=2!
� �i

�
F 0

di

�
Moreover,

�i

�
F 0

di

�
�r�i+1

�
diD

�1� � �r
�
F 0D�1�

where �r�i+1
�
diD

�1� = 1 and �r �F 0D�1�!p �r (�) > 0. Thus,

lim
T!1

�i

�
F 0

di

�
� �r (�) > 0

From Assumption B it follows that �00�0=N !p �� and �� is symmetric,
positive de�nite. Thus

�1

 �
�00�0
N

��1=2!
= �1

 �
�00�0
N

��1!

= �r

��
�00�0
N

��
! p�r (��)

where 0 < �r (��) < M . Therefore,

lim
N;T!1

�i

 
F 0

di

�
�00�0
N

�1=2!
� lim

N;T!1

�i

�
F 0

di

�
�1

��
�00�0
N

��1=2�
� �r (�)

�r (��)
> 0
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and
lim

T;N!1
V �NT;i > 0

Lemma 21 Under Assumptions A and F and N , T ! 1 the matrix VNT =
Op (1).

Proof. From the model setup it follows that

XX 0

N
= F 0

�
�00�0
N

�
F 00 + C

where C is a symmetric matrix

C =
F 0�00e

0

N
+
e�0F

00

N

Let us denote �i (A) the ith largest eigenvalue of the matrix A. By Lütkepohl
(1996)

�i (A+B) � �i (A) + �max (B)

for symmetric matrices A and B. Therefore,

�i

�
XX 0

N

�
� �i

�
F 0
�
�00�0
N

�
F 00
�
+ �max (C)

� �i

�
F 0
�
�00�0
N

�
F 00
�
+ tr (C)

Thus,
VNT � V �NT + tr (C)D

�2

From the de�nition of the trace operator and its properties (see Lütkepohl
(1996))

tr (C) = 2tr

�
e�0F

00

N

�
= 2

TX
t=1

 
1

N

NX
i=1

eit�
0
i

!
F 0t

Thus, by Assumptions A and F



tr (C)D�2

 =






2
TX
t=1

 
1

N

NX
i=1

eit�
0
i

!
F 0t D

�2







=






2 1T
TX
t=1

 
1

N

NX
i=1

eit�
0
i

!�p
TF 0t D

�1
�p

TD�1







� 2






 1T
TX
t=1

 
1

N

NX
i=1

eit�
0
i

!�p
TF 0t D

�1
�







pTD�1





= Op (1)
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Hence, by Lemma 20

VNT � V �NT +Op (1) = Op (1)

3.8.3 Consistency

In this section, we prove two important propositions: Propositions 5 and 6. They
show that the factors can be consistently estimated and derive the corresponding
convergence rates.
The following Lemmas 22 and 23 are needed to prove Proposition 5.

Lemma 22 Under the assumptions A-C for all T and N there exists some
M <1 such that

1. T�1
PT

s=1

PT
t=1 
N (s; t)

2 6M

2. E
n�
N�1=2e0t�0

�2o 6M

3. E



(NT )�1=2PT

t=1 e
0
t�0




 6M

Proof. Points (1) - (3) are proved in Bai(2004).

Lemma 23 Under Assumptions A-C and N , T !1

1.



F 00 ~FD�2




 = Op (1)

2.



e�0F 00 ~FD�2




 = Op

�p
NT

�
3. De�ne a symmetric T �T matrix � by �ts = 
N (t; s), then




� ~FD�2



 =

Op

�p
T


D�1

�

4. De�ne a symmetric T � T matrix � as � = ee0 � �, then



� ~FD�2




 =
Op

�
Tp
N



D�1

�
Proof. Consider (1). Let us denote

H =
�00X

0 ~FD�2

N
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Then by Lemma 21 and Assumption B kHk = Op (1) because

kHk =






�00X ~F 0D�2

N







�





 �00pN










X 0 ~FD�2

p
N







= Op (1) tr

 
D�2 ~F 0XX 0 ~FD�2

N

!
= Op (1) tr (VNT ) = Op (1)

Moreover,

H =
�00�0F

00 ~FD�2

N
+
�00e

0 ~FD�2

N

Then 




�00�0F 00 ~FD�2

N






 � p2
 
kHk+






�00e0 ~FD�2

N







!

We show that



�00e0 ~FD�2=N




2 = Op (1). By Lemma 22




�00e0 ~FD�2=N



 �





 �00e0p
NT








 ~FD�1






T 1=2D�1N�1=2





= op (1)

Thus, �00�0F
00 ~FD�2=N = Op (1). Since �00�0=N converges to a positive de�-

nite matrix then it must be that F 0 ~FD�2 = Op (1).
Consider (2). From the �rst part of the lemma it follows that


e�0F 00 ~FD�2




 � ke�0k



F 00 ~FD�2





= Op

�p
NT

�
Consider (3) 


� ~FD�2




2 � k�k 


 ~FD�1





D�1



By Lemma 22, the last component is k�k2 = Op (T ) because

k�k2 =
TX
t=1

TX
s=1

(
N (t; s))
2

= T

(
1

T

TX
t=1

TX
s=1

(
N (t; s))
2

)
= TOp (1) = Op (T )

Maciejowska, Katarzyna(2010), Identification and Estimation of Sources of Common Fluctuations: New methodologies and applications 
European University Institute

 
DOI: 10.2870/19341



98 CHAPTER 3. GENERALIZED FACTOR MODEL

Thus, 


� ~FD�2



 = Op

�

D�1

2�Op (1)Op (T )
= Op

�p
T


D�1

�

Finally consider (4). 


� ~FD�2



 � k�k


 ~FD�1






D�1


Under the Assumption F.1 the last component is k�k2 = Op

�
T 2=N

�
because

k�k2 =

TX
t=1

TX
s=1

�
e0tes
N

� 
N (t; s)
�2

=
T 2

N

1

T 2

TX
t=1

TX
s=1

�
1

N1=2
(e0tes � E (e0tes))

�2
=

T 2

N
Op (1) = Op

�
T 2

N

�
Thus, 


� ~FD�2




 = Op
�

D�1

�Op (1)Op� Tp

N

�
= Op

�
Tp
N



D�1

�

Proof of Proposition 5. Let us de�ne a matrix H as in Lemma 23. The
matrix H takes the form

H =
�00X

0 ~FD�2

N

Then it was shown that kHk = Op (1) and thus the matrix is well de�ned. The
di¤erence between the estimated factors and a rotation of the true factors can
be expressed as follow

F̂ � F 0H =
1

N
XX 0 ~FD�2 � 1

N
F 0�00X

0 ~FD�2 (3.14)

=
1

N

��
F 0�00 + e

�
X 0 � F 0�00X

	
~FD�2

=
1

N

�
e�0F

00 + ee0
	
~FD�2

=
1

N

�
e�0F

00 +N�+N�
	
~FD�2 (3.15)
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where � and � are de�ned as in Lemma 23.

1

4T




F̂ � F 0H


2 � 1

4TN2




�e�0F 00 +N�+N�	 ~FD�2



2

� 1

TN2




e�0F 00 ~FD�2



2 + N2

TN2




� ~FD�2



2

+
N2

TN2




� ~FD�2



2

From Lemma 23 it follows that

1

4T




F̂ � F 0H


2 =
1

TN2
Op (NT ) +

1

T
Op

�
T kDk�2

�
+
1

T
Op

�
T 2

N
kDk�2

�
= Op

�
N�1�+Op �kDk�2�+Op� T

N
kDk�2

�
Under the assumption T kDk�2 = Op (1) we get

1

T




F̂ � F 0H


2 = Op
�
N�1�+Op �kDk�2�

and

1

T




 ~F � F 0 ~H


2 =
1

T




�F̂ � F 0H�V �1NT




2
� 1

T




�F̂ � F 0H�V �1NT






V �1NT



2
= Op

�
��2NT

�
Next, we show Lemma 24 and a proof of Proposition 6.

Lemma 24 Under Assumptions A-E, N , T ! 1 and T


D�1

2 = Op (1) for

all t it holds

1.



D�2 ~F 0F 0�00et=N




 = Op
�
N�1=2�

2.



e0te0 ~FD�2=N




 = Op
�

D�1

�

Proof. Consider (1). By Lemma 22 and Lemma 23




D�2 ~F 0F 0�00et
N






 �



D�2 ~F 0F 0








�00etp
N





N�1=2

= Op

�
N�1=2

�
Let us consider (2).




e0te0 ~FD�2

N






 �




e0te0N








 ~FD�1





D�1
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The second component by de�nition is Op (1). It is now shown that the �rst
part is ke0te0=Nk = Op (1).

ke0te0=Nk
2
=

1

N2

TX
s=1

(e0tes)
2

�
 
1

N

TX
s=1

je0tesj
!2

Moreover, by Assumption E

E

����� 1N
TX
s=1

je0tesj
����� =

TX
s=1

E

����e0tesN
����

=

TX
s=1

�
N (t; s)

= Op (1)

Therefore, 




e0te0 ~FD�2

N






 = Op (1)


D�1



= Op
�

D�1

�

Proof of Proposition 6. Form equation (3.14) it follows that

F̂t �H 0F 0t =
1

N

�
et�0F

00 + e0te
0	 ~FD�2

Thus, from Lemma 24 we get

F̂t �H 0F 0t = Op

�
N�1=2

�
+Op

�

D�1

�
Since ~Ft � ~H 0F 0t = V �1NT

�
F̂t � ~H 0F 0t

�
then also

~Ft � ~H 0F 0t = Op

�
N�1=2

�
+Op

�

D�1

�
The following Lemma 25 is a counterpart of the Proposition 6 for models

with only one type of nonstationary factors.

Lemma 25 If there is only one type of factors (hence, D = T dIr) and d � 1
then for N , T !1

1.



e0te0 ~FD�2=N




 = Op
�
T�1=2



D�1

�+Op �N�1=2�
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2. ~Ft � ~H 0F 0t = Op
�
N�1=2�+Op �T�1=2 

D�1

�

Proof. Consider (1). Since D = T dIr then e0te
0 ~FD�2=N = e0te

0 ~F=
�
T 2dN

�
and

e0te
0 ~F=

�
T 2dN

�
= N�t ~F=

�
T 2dN

�
+N�t ~F=

�
T 2dN

�
where �t = (
N (t; 1) ; :::; 
N (t; T )) and �t = ete

0=N � �t.
We show that the �rst componentN�t ~F=

�
T 2dN

�
= Op

�
N�1=2T 3=2�2d��1NT

�
+

Op
�
T 1=2�dN�1=2�.

N�t ~F

NT 2d
=

1

T 2d

TX
s=1

�
e0tes
N

� 
N (s; t)
�
~Fs

=
1

T 2d

TX
s=1

�
e0tes
N

� 
N (s; t)
��

~Fs � ~H 0F 0s

�
+

1

T 2d

TX
s=1

�
e0tes
N

� 
N (s; t)
�
F 0s

The �rst part is Op
�
N�1=2T 3=2�2d��1NT

�
by Assumption F and Proposition 5

because

1

T 2d

TX
s=1

�
e0tes
N

� 
N (s; t)
��

~Fs � ~H 0F 0s

�
6 1

N1=2T 2d�3=2

 
1

T

TX
s=1

�
~Fs � ~H 0F 0s

�2!1=2

� 1
T

TX
s=1

�����N�1=2
NX
i=1

[eiteis � E (eiteis)]
�����

=
1

N1=2T 2d�1=2
Op
�
��1NT

�
Op (1)

= Op

�
N�1=2T 3=2�2d��1NT

�
Since for all t, E

��F 0t =T d�1=2�� = Op (1), it follows that

E

 
1

T 2d

TX
s=1

�
e0tes
N

� 
N (s; t)
�
F 0s

!
6 1

T d�1=2N1=2
max
16s6T

E

���� F 0s
T d�1=2

����
�E

 
1

T

TX
s=1

����� 1

N1=2

NX
i=1

[eiteis � E (eiteis)]
�����
!

=
1

T d�1=2N1=2
Op (1)Op (1)

= Op

�
T 1=2�dN�1=2

�
Therefore,

N�t ~F

NT 3
= Op

�
N�1=2T 3=2�2d��1NT

�
+Op

�
T 1=2�dN�1=2

�
= Op

�
N�1=2

�
+Op

�
T 1=2�dN�1=2

�
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Next, we prove that N�t ~F=
�
T 2dN

�
= Op

�
T�1=2



D�1

�.
N�t ~F

NT 3
=

1

T 2d

TX
s=1


NT (t; s) ~Fs

=
1

T 2d

TX
s=1


NT (t; s)
�
~Fs � ~H 0F 0s

�
+

~H 0

T 2d

TX
s=1


NT (t; s)F
0
s

The �rst expression is Op
�
T 1=2�2d

�
by Assumption E.1 and Proposition 5

1

T 2d

TX
s=1


NT (t; s)
�
~Fs � ~H 0F 0s

�
6 1

T 2d�1=2

TX
s=1

j�
NT (t; s)j
 
1

T

TX
s=1

�
~Fs � hF 0s

�2!1=2
=

1

T 2d�1=2
Op (1)Op

�
��1NT

�
= Op

�
T 1=2�2d

�
The second expression is Op

�
T�1=2�d

�
because

1

T 2d

TX
s=1


NT (t; s)F
0
s 6

1

T d+1=2

TX
s=1

���� F 0s
T d�1=2

���� j�
NT (t; s)j
Since for all t, E

��F 0t =T �� = Op (1) then by Assumption E.1

E

 
1

T d+1=2

TX
s=1

���� F 0s
T d�1=2

���� j
NT (t; s)j
!

6 1

T d+1=2
max
16s6T

E

���� F 0s
T d�1=2

���� TX
s=1

j
NT (t; s)j

=
1

T d+1=2
Op (1)Op (1)

= Op

�
T�1=2�d

�
Thus,

N�t ~F

NT 3
= Op

�
T 1=2�2d

�
+Op

�
T�1=2�d

�
= Op

�
T�1=2�d

�
= Op

�
T�1=2



D�1

�
Therefore,

e0te
0 ~FD�2=N = Op

�
N�1=2

�
+Op

�
T 1=2�dN�1=2

�
+ T�1=2



D�1


= Op

�
N�1=2

�
+Op

�
T�1=2



D�1

�
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Consider (2). From Lemma 24 and the above point it follows that

F̂t �H 0F 0t =
1

N

�
et�0F

00 + e0te
0	 ~FD�2

= Op

�
N�1=2

�
+Op

�
N�1=2

�
+Op

�
T�1=2



D�1

�
= Op

�
N�1=2

�
+Op

�
T�1=2



D�1

�
Since ~Ft � ~H 0F 0t = V �1NT

�
F̂t � ~H 0F 0t

�
then also

~Ft � ~H 0F 0t = Op

�
N�1=2

�
+Op

�
T�1=2



D�1

�

3.8.4 Asymptotic distribution

In this section, we derive the limiting distribution of the discussed estimators.
Firstly, we show some general results and prove Lemma 8. Next, we discuss
separately the issues associated with derivation of asymptotic distributions of
the estimators of factors, factor loadings and common components.

Lemma 26 Under Assumptions A-F, as N , T !1,




N�1D�2 ~F 0 (XX 0) ~FD�2 �N�1D�2 ~F 0F 0 (�00�0)F
00 ~FD�2




2 = op (1)

Proof. Let us denote

bNT = N�1D�2 ~F 0 (XX 0) ~FD�2 �N�1D�2 ~F 0F 0 (�00�0)F
00 ~FD�2

Then

bNT = N�1D�2 ~F 0e�0F
00 ~FD�2 +N�1D�2 ~F 0F 0�00e

0 ~FD�2 +N�1D�2 ~F 0ee0 ~FD�2

= D�2 ~F 0
�
e�0F

00 ~FD�2=N + F 0�00e
0 ~FD�2=N + ee0 ~FD�2=N

�
= D�2 ~F 0

�
F̂ � F 0H

�
+D�2 ~F 0e�0F

00 ~FD�2=N

Thus, by Proposition 5

kbNT k =
p
2 �




D�2 ~F 0
�
F̂ � F 0H

�


+ 


D�2 ~F 0e�0F
00 ~FD�2=N





�

p
T


D�1




D�1 ~F 0




� 1
T




F̂ � F 0H


�1=2 + 

D�1




D�1 ~F 0






e�0F 00 ~FD�2=N





� Op (1)Op

�
��1NT

�
+Op

�

D�1

�Op (1)Op �N�1=2
�

= Op
�
��1NT

�
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104 CHAPTER 3. GENERALIZED FACTOR MODEL

Hence


N�1D�2 ~F 0 (XX 0) ~FD�2 �N�1D�2 ~F 0F 0 (�00�0)F
00 ~FD�2




 = op (1)

Proof of Lemma 8. Consider (1). From Lemma 26 it follows that


D�2 ~F 0 (XX 0=N) ~FD�2 �D�2 ~F 0F 0 (�00�0=N)F
00 ~FD�2




2 = op (1)

Let us denote V �NT the diagonal matrix consisting of the r largest eigenvalues
of the matrix F 0 (�00�0=N)F

00 multiplied by D�2 and F �, the corresponding
eigenvectors. Let us assume that D�1F �0F �D�1 = I. Then


D�2 ~F 0F 0 (�00�0=N)F

00 ~FD�2 �D�2F �0F 0 (�00�0=N)F
00F �D�2




2 = op (1)

and VNT = V �NT + op (1). Moreover, the diagonal elements of V �NT are equal

to the eigenvalues of the matrix
�
F 0

0
F 0
�
(�00�0=N) divided by D

�2and V �NT
converges to V , where Vii = limN;T!1 V �NT;i > 0 by Lemma 20.
Consider (2). It can be shown that

D�1 ~H 0F 00F 0 ~HD�1 = D�1 ~F 0 ~FD�1 + op (1)

= I + op (1)

Since ~H = (�00�0=N)F
00 ~FD�2V �1NT + op (1), it holds that

D�3V �1NT
~F 0F 00 (�00�0=N)F

00F 0 (�00�0=N)
00
F 00 ~FV �1NTD

�3 = I + op (1)

and

D�3V
�1=2
NT

~F 0F 00 (�00�0=N)F
00F 0 (�00�0=N)

00
F 00 ~FV

�1=2
NT D�3 = VNT + op (1)

Let us denote

RNT =

�
�00�0
N

�1=2
QNTV

�1=2
NT

From the de�nition of QNT and Lemma 26 it follows that R0NTRNT = I+op (1).
Then the equation can be transformed into

D�1RNT

�
�00�0
N

�1=2
F 00F 0

�
�00�0
N

�1=2
RNTD

�1 = VNT + op (1)

If the matrix D has all diagonal elements equal then it is straightforward
that

RNT

�
�00�0
N

�1=2
D�1F 00F 0D�1

�
�00�0
N

�1=2
RNT = VNT + op (1)
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and RNT converges in distribution to the eigenvectors of the matrix �
1=2
� ��

1=2
� .

Since the eigenvalues of the matrix �1=2� ��
1=2
� are distinct then R is unique.

Thus Q = ��1=2� RV 1=2 and Q is positive de�nite with probability 1.
If D has di¤erent elements on the diagonal then

Ri = lim
N;T!1

vi

��
F 0

0
F 0=D2

ii

�
(�00�0=N)

�
where vi (A) denotes the eigenvector of matrix A corresponding with the ith
largest eigenvalue.

Limiting distribution of estimated common factors

The following Lemma 27 is used in the proof of Proposition 9.

Lemma 27 Under Assumptions A-F, for N , T !1
p
N
�
F̂t �H 0F 0t

�
!d Q0N (0;�t)

Proof. Under the assumption N


D�2

! 0 by Proposition 6, we have

p
N
�
F̂t �H 0F 0t

�
= Op (1) +Op

�

D�1

N1=2
�

Thus, the limiting distribution is de�ned by the �rst term et�0F
00 ~FD�2=N and

p
N
�
F̂t �H 0F 0t

�
=

D�2 ~F 0F 0�00etp
N

+ op (1)

= D�2 ~F 0F 0
1p
N

NX
i=1

�ieit + op (1)

By Assumption F and Lemma 8

p
N
�
F̂t �H 0F 0t

�
!d Q0N (0;�t)

where Q is independent of N (0;�t) since it depends only on the common com-
ponents that are independent from idiosyncratic disturbances.
Proof of Proposition 9. Under the Lemma 4 and Lemma 27

p
N
�
~Ft � ~H 0F 0t

�
= V �1NT

p
N
�
F̂t �H 0F 0t

�
! dV �1QN (0;�t)
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106 CHAPTER 3. GENERALIZED FACTOR MODEL

Limiting distribution of estimated factors loadings

Firstly, in Lemmas 28-30, we present some general results that are needed to
prove Proposition 10. Then we present a proof of Proposition 10.

Lemma 28 Under the assumption A� F for N , T !1 ,

�H = D ~HD�1 = Op (1)

and
�H �H 0 !d ��1

Proof. Let us �rst notice that

D�1 ~F 0 ~FD�1 = D�1 ~H 0F 00F 0 ~HD�1 +D ~H 0F 00
�
~F � F 0 ~H

�
D�1

+D�1
�
~F � F 0 ~H

�0
F 0 ~HD�1

+TD�1 1

T

�
~F � F 0 ~H

�0 �
~F � F 0 ~H

�
D�1

By Proposition 5 and Assumption A



TD�1 1

T

�
~F � F 0 ~H

�0 �
~F � F 0 ~H

�
D�1





 � 1

T




 ~F � F 0 ~H


2 T 

D�2


= Op

�
��2NT

�
= op (1)

Since D�1 ~F 0 ~FD�1 = Ir = Op (1), then

�H 0�NT �H + �H 0B +B0 �H = Op (1) (3.16)

where �H = DHD�1, �NT = D�1F 00F 0D�1 andB = D�1F 00
�
~F � F 0 ~H

�
D�1.

Firstly, we show that kBk = Op (1). By Proposition 5 and Assumption A we
have

kBk =



D�1F 00

�
~F � F 0 ~H

�
D�1





�



D�1F 00


� 1

T




 ~F � F 0 ~H


2�1=2 

D�1

pT
= Op

�
��2NT

�
= op (1)

Since �NT = Op (1) and B = op (1), then from the properties of the quadratic
form (3.16) it follows that �H 0 = Op (1). Then

�H 0B +B0 �H = op (1)

and
�H 0�NT �H = I + op (1)
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Thus, by Assumption A

�H �H 0 = ��1NT + op (1)

! d��1

Lemma 29 Under Assumptions A-F, for N , T !1

1. D�1F 00
�
~F � F 0 ~H

�
= Op

�
��1NT

�
2. D�1 ~F 0

�
~F � F 0 ~H

�
= Op

�
��1NT

�
Proof. Consider (1). As noted by Bai (2004)

D�1F 00
�
~F � F 0 ~H

�
=

TX
t=1

D�1F 0t

�
~Ft � ~H 0F 0t

�0
� max

t

�p
TD�1F 0t

� 1p
T

TX
t=1

��� ~Ft � ~H 0F 0t

���0
Moreover, 

TX
t=1

��� ~Ft � ~H 0F 0t

���0! TX
t=1

��� ~Ft � ~H 0F 0t

���0!0 � 2 TX
t=1

�
~Ft � ~H 0F 0t

�0 �
~Ft � ~H 0F 0t

�
Thus, by Proposition 5






TX
t=1

��� ~Ft � ~H 0F 0t

���0




 � 


 ~F � F 0 ~H


 = Op

�
��1NT

p
T
�

and under Assumption A

D�1F 00
�
~F � F 0 ~H

�
= Op

�
��1NT

�
Part (2) follows directly from (1)

D�1 ~F 0
�
~F � F 0 ~H

�
= D�1

�
~F � F 0 ~H

�0 �
~F � F 0 ~H

�
+D�1 ~HF 00

�
~F � F 0 ~H

�
= TD�1Op

�
��2NT

�
+Op

�
��1NT

�
= Op

�
��1NT

�

Lemma 30 Under Assumptions A-E, for N , T !1, we have for each i�
~�i � ~H�1�0i

�
= Op

�

D�1

 ��1NT �+Op �

D�1

�
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108 CHAPTER 3. GENERALIZED FACTOR MODEL

Proof. Let us consider an expression for ~�i. Form the de�nition of ~�0 =
D�2 ~F 0X it follows that

~�i = D�2 ~F 0 �Xi

= D�2 ~F 0
�
F0�

0
i + �ei

�
= D�2

�
~F 0F0

�
�0i +D

�2
�
~F 0�ei

�
Since D�2 ~F 0 ~F = I and F 0 = F 0 + ~F ~H�1 � ~F ~H�1 it follows

~�i = D�2 ~F 0 ~F ~H�1�0i +D
�2 ~F 0

�
F 0 � ~F ~H�1

�
�0i +D

�2
�
~F 0�ei

�
= ~H�1�0i +D

�2 ~F 0
�
F 0 � ~F ~H�1

�
�0i +D

�2
�
~F 0�ei

�
Hence,

~�i � ~H�1�0i = D�2 ~F 0
�
F 0 ~H � ~F

�
~H�1�0i +D

�2 ~F 0�ei

The �rst part is Op
�

D�1

 ��1NT �. By Lemma 29


D�2 ~F 0

�
F 0 ~H � ~F

�
~H�1




 =



D�2 ~F 0

�
F 0 ~H � ~F

�





 ~H�1





= Op
�

D�1

 ��1NT �

From Assumption B it follows that �0i = Op (1). Therefore,

D�2 ~F 0
�
F 0 ~H � ~F

�
~H�1�0i = Op

�

D�1

 ��1NT �
The second part can be decomposed as follows

D�2 ~F 0�ei = D�2
�
~F � F 0 ~H

�0
�ei +D

�2 ~H 0F 00�ei

By Proposition 5 the �rst expression





D�2
�
~F � F 0 ~H

�0



 = Op
�

D�1

 ��1NT �

because 



D�2
�
~F � F 0 ~H

�0



 =


D�2

pT � 1

T




 ~F � F 0 ~H


2�1=2
= Op

�

D�2

pT�Op ���1NT �Op (1)
= Op

�

D�1

 ��1NT �
Since �ei = Op (1) then D�2

�
~F � F 0 ~H

�0
�ei = Op

�

D�1

 ��1NT �. The second
expression is D�2 ~H 0F 00�ei = Op

�

D�1

�
D�2

TX
i=1

F 0t eit 6 D�1max



pTD�1F 0t




 1p
T

TX
t=1

jeitj

= Op
�

D�1

�
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Thus,

~F 0�ei
T 3

= Op
�

D�1

 ��1NT �+Op �

D�1

�

= Op
�

D�1

�

Finally,

�̂i �H�1�0i = Op

�

D�1

 ��1NTpN�+Op �

D�1

�
Proof of Proposition 10. By Lemma 30, we have

D
�
~�i � ~H�1�0i

�
= Op

�
��1NT

�
+Op (1)

Thus, the limiting distribution of D
�
~�i � ~H�1�0i

�
is determined by the last

term F 00�ei. Therefore,

D
�
~�i � ~H�1�0i

�
= DD�2 ~H 0F 00�ei + op (1)

= �H 0 1p
T

NX
t=1

p
TD�1F 0t eit + op (1)

As discussed in Bai (2003), by Lemma 28

�H �H 0 !d ��1

Thus
�H 0 !d �H�1��1

where �H is de�ned in Lemma 28. Therefore, by Assumption G there is

D
�
~�i � ~H�1�0i

�
!d �H�1��1N (0;
i)

Corollary 31 Under the Assumption A-F, for N , T !1

D
�
�̂i �H�1�0i

�
!d V �1 �H�1��1N (0;
i)

Proof. By Lemma 4 and Proposition 10

D
�
�̂i �H�1�0i

�
= V �1NTD

�
~�i � ~H�1�0i

�
! dV �1 �H�1��1N (0;
i)
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Limited distribution of estimated common components

Let us denote C0it = F 00t �
0
i and Ĉit = F̂ 0t �̂i. The asymptotic distribution of

common components follows from the above Proposition 9 and 10.
Proof of Proposition 11. From the de�nition of Ĉit and C0it, we get

Ĉit � C0it =
�
~Ft � ~H 0F 0t

�0
~H�1�0i + ~F 0t

�
~�i � ~H�1�0i

�
By Proposition 6 and Assumption B we have that�

~Ft � ~H 0F 0t

�0
H�1�0i = Op

�
N�1=2

�
+Op

�

D�1

�
Finally, by Proposition 10 and Lemma 30

~F 0t

�
~�i � ~H�1�0i

�
= ~F 0tD

�1pTD
�
~�i � ~H�1�0i

�
T�1=2

= Op

�
T�1=2

�
+Op

�
��1NTT

�1=2
�
= Op

�
T�1=2

�
1. If N=T ! 0 then N1=2



D�1

! 0 and

p
N
�
Ĉit � C0it

�
= Op (1) +Op

�
N1=2T�1=2

�
= Op (1) + op (1)

Thus, by Proposition 6
p
N
�
Ĉit � C0it

�
= �00i ~H

�10pN
�
~Ft � ~H 0F 0t

�
+ op (1)

! d�00i
�
V �1Q��

��1
V �1QN (0;�t)

= �00i ��N (0;�t)

2. If T=N ! 0 then
p
T
�
Ĉit � C0it

�
= Op

�
T 1=2N�1=2

�
+Op (1)

= op (1) +Op (1)

By Proposition 10 and under assumption t=T = �

p
T
�
Ĉit � C0it

�
= ~F 0t

p
TD�1D

�
~�i � ~H�1�0i

�
+ op (1)

= F 00t ~H
p
TD�1D

�
~�i � ~H�1�0i

�
+ op (1)

= F 00t
p
TD�1 �HD

�
~�i � ~H�1�0i

�
+ op (1)

! dF 0� �H
�
�H
��1
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= F 0��
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3. If N=T ! � and t=T = �

p
N
�
Ĉit � C0it

�
= Op (1) +

p
�Op (1)

= �00i H
�10pN

�
F̂t �H 0F 0t

�
+
p
�F 00t

p
TD�1D

�
�̂i �H�1�0i

�
+ op (1)

! d�00i ��N (0;�t) +
p
�F 0��

�1Wi

Con�dence intervals

Consider the rotation of ~F towards an observable variable Rt described by the
regression

Rt = �+ �
�
~H�1 ~Ft

�
+ error

Let
�
�̂; �̂

�
be the least-squares estimator of (�; �) and R̂t = �̂+ �̂

�
~H�1 ~Ft

�
.

In Lemma 32 we show some properties of the factor estimators that are used
in the proof of Proposition 12.

Lemma 32 Under Assumptions A-E and T


D�2

 �M we have for N , T !

1

1. If N1=2T�1=2


D�1

! 0 then


N1=2T�1=2D�1 ~F 0

�
~F � F 0 ~H

�


 = N1=2T�1=2Op
�
��1NT

�
= op (1)

2. If N1=2T�1=2


D�1

! 0 then




N1=2T�1

TX
t=1

�
~Ft � ~H 0F 0t

�




 = N1=2T�1=2Op
�
��1NT

�
= op (1)

3.



D�1T 1=2 ~Ft




 = Op (1)

Proof. Consider (1). Let us notice that


N1=2T�1=2D�1 ~F 0
�
~F � F 0 ~H

�


 = kDkT�1=2 


N1=2D�2 ~F 0
�
~F � F 0 ~H

�



By Lemma 29


N1=2D�2 ~F 0

�
~F � F 0 ~H

�


 = Op

�
N1=2

� �
Op
�
��2NTT



D�2

�+Op �

D�1

 ��1NT ��
= Op

�
N1=2��2NTT



D�2

�+Op �N1=2


D�1

 ��1NT�

= Op

�
N1=2��2NT

�
+Op

�
N1=2



D�1

 ��1NT�
= Op

�
��1NT

�
+Op

�

D�1

� = op (1)
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Thus, 


N1=2T�1=2D�1 ~F 0
�
~F � F 0 ~H

�


 = kDkT�1=2op (1)

= op (1)

Consider (2).





TX
t=1

�
~Ft � ~H 0F 0t

�





2

= tr

0@ TX
t=1

�
~Ft � ~H 0F 0t

�! TX
t=1

�
~Ft � ~H 0F 0t

�!01A
� tr

 
2

TX
t=1

�
~Ft � ~H 0F 0t

��
~Ft � ~H 0F 0t

�0!

= 2tr

��
~F � F 0 ~H

�0 �
~F � F 0 ~H

��
= 2




 ~F � F 0 ~H


2 = Op
�
T��2NT

�
Thus, 




N1=2T�1

TX
t=1

�
~Ft � ~H 0F 0t

�




 = N1=2T�1=2Op
�
��1NT

�
Consider (3). D�1T 1=2 ~Ft can be decomposed into two parts


D�1T 1=2 ~Ft




 = 


D�1T 1=2
�
~Ft � ~H 0F 0t

�


+ 


D�1T 1=2 ~H 0F 0t





By Proposition 6,




 ~Ft � ~H 0F 0t




 = op (1). Moreover, by Assumption A


D�1T 1=2 ~Ft




 = op (1) +


 �H 0




D�1T 1=2F 0t





= op (1) +Op (1) = Op (1)

Proof of Proposition 12. One can express R̂t � �� �F 0t as follows

R̂t � �� �F 0t = �̂+ �̂
�
~H�10 ~Ft

�
� �� �F 0t

= (�̂� �) +
�
�̂ � �

��
~H�10 ~Ft

�
+ � ~H�10

�
~Ft � ~H 0F 0t

�
Thus,

p
N
�
R̂t � �� �F 0t

�
=
p
N (�̂� �)+

p
N
�
�̂ � �

��
~H�10 ~Ft

�
+
p
N� ~H�10

�
~Ft � ~H 0F 0t

�
It can be shown that the �rst two terms are op (1). Let us denote Zt =�

1;
�
~H�1 ~Ft

�0�
and a T � (1 + r) matrix Z 0 = [Z 01; : : : ; Z

0
T ]. We write � to
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describe a T � 1 vector �0 = [1; :::; 1]. The parameter vector  = (�; �)
0 is

estimated with the least-squares method. Thus,  ̂ = (Z 0Z)�1 Z 0R. Under the

null Rt = � + �F 0t = � + �
�
~H�10 ~Ft

�
+ � ~H�10

�
~H 0F 0t � ~Ft

�
and in matrix

notation R = Z +
�
F 0 ~H 0 � ~F

�
~H�1�0. Therefore,

 ̂ = (Z 0Z)
�1
Z 0R

= (Z 0Z)
�1
Z 0Z + (Z 0Z)

�1
Z 0
�
F 0 ~H 0 � ~F

�
~H�1�0

=  + (Z 0Z)
�1
Z 0
�
F 0 ~H 0 � ~F

�
~H�1�0

So
 ̂ �  = (Z 0Z)�1 Z 0

�
F 0 ~H 0 � ~F

�
~H�1�0

Let us de�ne a (1 + r)� (1 + r) diagonal matrix

DT =

�
T 1=2 0
0 D

�
where DT is the scaling matrix. Then�

 ̂ �  
�
= D�1

T MD�1
T Z 0

�
F 0 ~H 0 � ~F

�
~H�1�0

with M =
�
D�1
T Z 0ZD�1

T

��1
= Op (1). Let us denote the blocks of the matrix

M as follow

M =

�
M11 M1F

MF1 MFF

�
where M11 is a 1� 1 matrix and MFF is a r � r matrix:
This implies that by Lemma 29 and Lemma 32




pN (�̂� �)


 = op (1)


pN (�̂� �)


 =p2 =



N1=2T�1=2MD�1

T Z 0
�
F 0 ~H 0 � ~F

�
~H�1�0




 =p2
�




N1=2T�1=2M11T
�1=2�0

�
F 0 ~H 0 � ~F

�
~H�1�0





+



N1=2T�1=2M1FD

�1 ~H�10 ~F 0
�
F 0 ~H 0 � ~F

�
~H�1�0





= kM11k





N1=2

T
�0
�
F 0 ~H 0 � ~F

�






 ~H�2�0





+ kM1F k




N1=2

T 1=2
D�1 ~F 0

�
F 0 ~H 0 � ~F

�






 ~H�2�0





= Op (1) op (1)Op (1) +Op (1) op (1)Op (1)

= op (1)
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By Lemma 32
p
N
�
�̂ � �

��
~H 0 ~Ft

�
= op (1)


pN ��̂ � ��� ~H 0 ~Ft

�


 =p2 =
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�
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�
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�
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�
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T
�0
�
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�
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Therefore,

p
N
�
R̂t � �� �F 0t

�
= op (1) +

p
N� ~H�10

�
~H 0F 0t � ~Ft

�
Since

�
�̂ � �

�
= op (1) and

p
N
�
~Ft � ~H 0F 0t

�
= Op (1), then � can be replaced

with �̂ and

p
N
�
R̂t � �� �F 0t

�
= op (1) +

p
N�̂ ~H�10

�
~H 0F 0t � ~Ft

�
Finally, by Proposition 9

p
N
�
R̂t � �� �F 0t

�
! d�̂ ~H�10V �1QN (0;�t)
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