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Estimation methods comparison of SVAR model
with the mixture of two normal distributions -

Monte Carlo analysis

Katarzyna Maciejowska
EUI

June 6, 2010

Abstract

This paper addresses the issue of obtaining maximum likelihood esti-
mates of parameters for structural VAR models with a mixture of distrib-
utions. Hence the problem does not have a closed form solution, numerical
optimization procedures need to be used. A Monte Carlo experiment is de-
sign to compare the performance of four maximization algorithms and two
estimation strategies. It is shown that the EM algorithm outperforms the
general maximization algorithms such as BFGS, NEWTON and BHHH.
Moreover simplification of the probelm introduced in the two steps quasi
ML method does not worsen small sample properties of the estimators
and therefore may be recommended in the empirical analysis.

JEL classification: C32, C46
Keywords: Structural vetcor autoregression , Error correction models, Mixed

normal, Monte Carlo
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1 Introduction

Structural vector autoregressive (SVAR) models are widely used in applied
macroeconomics. They allow for the estimation of structural shocks and im-
pulse responses from empirical data and therefore, can be used to evaluate
economic theory. However, this class of models requires additional information
about the theoretical setup or the data in order to identify the structural pa-
rameters. A standard approach to obtain identifiability is to impose parameter
constraints that can be justified by the economic theory. Unfortunately, there
is no agreement on which of the identification schemes should be used and im-
posing just-identifying restrictions makes it impossible to empirically evaluate
some of the underlying economic assumptions. The above critique raises the
question of whether there is a property of the data instead of the economic the-
ory that can be used to identify SVAR parameters. Rigobon (2003) shows that
if there is a shift in the variance of the structural shocks it can provide enough
information to identify the SVAR model. Lanne and Lütkepohl (2008) general-
izes this approach and develops a test for the presence of a variance shift and
for the stability of the correlation structure. This paper follows the specifica-
tion of Lanne and Lütkepohl (2005), which assumes nonnormality of structural
shocks rather then a discrete change in the variance. The residuals are allowed
to be distributed according to the mixture of two normal distributions and it is
demonstrated how this property can be used to identify the parameters.
Scientific literature provides many works that discuss the issue of mixture

models. Mixture models can be found both in economics and in other disciplines
such as biology, medicine, engineering and marketing, among others. They were
first used by biometrician Karl Pearson (1894), who analyzed a population of
crabs and proved the existence of two subspecies in the examined sample. In the
1960s economists tried to use the ML approach to estimate the model parameters
(Day (1969)). However, it was the EM algorithm described by Dempster, Laird,
and Rubin (1977) that significantly simplified the estimation procedure and
therefore helped to popularize the mixture models.
The mixture models are also special cases of Markov switching (MS) models.

A Markov process simplifies to a mixture distribution if diagonal elements of its
transition matrix sum to one. Markov switching models are very flexible and
can account for both nonliearities in the mean and heteroscedasticity. They
are extensively used in econometrics (Kim and Nelson (1999), Sims and Zha
(2006), Smith, Naik, and Tsai (2006)), especially in business cycle analysis
(Hamilton (1989), Goodwin (1993), Diebold and Rudebusch (1996), Kim and
Nelson (1998)). They were popularized by the seminal paper Hamilton (1989),
which discusses the estimation issues for univariate processes. The approach
was extended to a multivariate case by Krolzig (1997).
An open question that still needs to be examined are small sample proper-

ties of mixture model estimators. This issue is of special interest when mixture
models are applied in macroeconomic analysis because they are associated with
a usage of relatively short time series. Therefore, the main scope of the paper is
to evaluate the performance of different estimation methods and maximization
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algorithms in the context of SVAR models with mixtures of normal distribu-
tions, as proposed by Lanne and Lütkepohl (2005), and discuss the difficulties
associated with the estimation process. Since the mixture models are special
cases of MS models, we believe that our research also contributes to the discus-
sion on estimation issues of MS models, especially in the context of structural
analysis.
The paper is structured as follows. In Section 2, SVAR model with a mix-

ture of two normal distributions is introduced and the identification issues are
discussed. Estimation methods and optimization algorithms are considered in
Section 3. In Section 4, a Monte Carlo experiment is described and results for
different estimation methods and optimization algorithms are presented. Fi-
nally, conclusions are provided in Section 5.

2 SVAR models with a mixture of normal dis-
tributions

2.1 Model description

The literature discusses different types of SVAR models: A-model, B-model
and AB-model (see Lütkepohl (2005)). The classification depends on the re-
lationships the model attempt to describe, i.e., whether we are interested in
the relations between the observable variables or responses to unobservable im-
pulses. In this paper we will focus on the B-model that describes the direct,
instantaneous effect of the structural shocks on the endogenous variables. In
the B-model it is assumed that the forecast error ε is a linear function of the
structural shock, u. The model can be written in the following way

yt = A0 +

p∑
i=1

Aiyt−i + εt (1)

where εt = But and the variance-covariance matrices of structural and forecast
errors are Σu = Ik and Σε = BB′, respectively.
In the setup, yt is a k× 1 vector of endogenous variables, εt is a k× 1 vector

of forecast errors and ut is a k × 1 vector of structural shocks with an identity
covariance matrix Σu = Ik. A0 is a k× 1 vector of constants and Ai, i = 1, ..., p
are k × k matrices of the autoregressive parameters. B is a k × k nonsingular
matrix that describes the transition mechanisms of the structural shocks ut.

The structural VAR model has k + p · k2 + k2 unknown parameters. The
reduced form of the model (1) allows for estimation of only k+p·k2+k (k + 1) /2
parameters. In order to identify all structural parameters, an additional k (k − 1) /2
linearly independent restrictions need to be imposed.
Lanne and Lütkepohl (2005) proposes solving the identification problem by

making an assumption on the distribution of shocks. It is assumed that the
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structural shocks vector, ut, has a mixed normal distribution. It means that

ut ∼
{
N(0,Ik) with probability γ

N(0,Ψ) with probability 1− γ
where the variance-covariance matrix Ψ is diagonal. Under this specification,
the unconditional variance of the structural shock is Σu = γIk+(1− γ)Ψ. The
matrix Σu is no longer identity matrix but it is still diagonal. The diagonality
of the matrix Σu ensures that the structural shocks are uncorrelated. Lanne
and Lütkepohl (2005) proves that if all diagonal elements of the matrix Ψ are
distinct then the structural parameters of the model are identifiable. The issue
of identifiability will be discussed in more detail in Section 2.3.

2.2 Density function of forecast errors

In order to analyze the properties of the model we need to derive the density
function for the forecast errors. Since the errors, εt, are a linear combination of
the structural shocks, ut, then they also have a mixed normal distribution

εt ∼
{
N(0,BB′) with probability γ

N(0,BΨB′) with probability 1− γ

Therefore, the density function f (εt;B,Ψ, γ) is given by

f (εt;B,Ψ, γ) = γ (2π)
−k/2

det (BB′)−1/2 exp
(
−1
2
ε′t (BB

′)−1 εt

)
(2)

+(1− γ) (2π)−k/2 det (BΨB′)−1/2 exp
(
−1
2
ε′t (BΨB

′)−1 εt

)
The function is a sum of two components

f (εt;B,Ψ, γ) = γf1 (εt;B) + (1− γ) f2 (εt;B,Ψ) (3)

where

f1 (εt;B) = (2π)
−k/2

det (BB′)−1/2 exp
(
−1
2
ε′t (BB

′)−1 εt

)
and

f2 (εt;B,Ψ) = (2π)
−k/2

det (BΨB′)−1/2 exp
(
−1
2
ε′t (BΨB

′)−1 εt

)
Under the assumption of no time correlation of errors, the joint density can

be written as follows

f (ε;B,Ψ, γ) =
T∏
t=1

f (εt;B,Ψ, γ)

with ε = {ε1, ε2, . . . , εT }.
In further sections, for notational simplicity, f (εt; θ, γ) is used instead of

f (εt;B,Ψ, γ), where θ
′ = {vec (B)′ : diag (Ψ)′}.
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2.3 Identification

There is a theoretical question whether it is possible to uniquely identify the
parameters of SVAR models with the mixture of two normal distributions. In
the literature there are papers that address the issue of parameters identification
in different kinds of models. Following Rothenberg (1971), we can distinguish
between locally and globally identifiable structures. Let us denote f (ε; δ) as a
density function of a random variable ε for parameters δ ∈ Δ.

Definition 1 A parameter point δ ∈ Δ is said to be globally identifiable if there

is no other δ̃ ∈ Δ such that f
(
ε; δ̃
)
= f (ε; δ) for all ε.

Definition 2 A parameter point δ ∈ Δ is said to be locally identifiable if there

exists an open neighborhood of δ containing no other δ̃ such that f
(
ε; δ̃
)
=

f (ε; δ) for all ε.

In the case of standard mixture models, it is straightforward to see that they
are not globally identifiable. One can always change the order of the mixture
components without changing the overall distribution. This problem is known
as the "label switching". In the simple mixture model, in which the density
function is described by

f (ε; θ, γ) =
n∑
i=1

γifi (ε; θi)

where θ = {θ1, ..., θn} is a set of mixture components parameters and γ =
{γ1, ..., γn} is a set of mixing proportions, such that for all i ∈ {1, .., n} γi > 0
and

∑n
i=1 γi = 1, "label switching" means that for any permutation of indices

k1, ..., kn

f
(
ε; θ̃, γ̃

)
=

n∑
i=1

γkifki (ε; θki) =
n∑
i=1

γifi (ε; θi) = f (ε; θ, γ)

where θ̃ = {θki , ..., θkn} and γ̃ =
{
γk1 , ..., γkn

}
.

In the SVAR model with the mixture of two normal distributions, the error
term εt follows (3). It means that the mixture components are defined by
different parameter vectors. Thus, components cannot be simply flipped around
by changing their order. However, for any B, Ψ and γ, there exist B̃ = BΨ0.5,

Ψ̃ = Ψ−1 and γ̃ = 1 − γ such that for all ε ∈ R there is f
(
ε; B̃, Ψ̃, γ̃

)
=

f (ε;B,Ψ, γ). The proof can be found in Appendix 1.6.1.
An additional problem that arises from the specification of SVAR models is

the identifiability of the matrices B and Ψ. It can be shown that one can change
the order of columns of B and corresponding diagonal elements of Ψ without
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influencing the values of the likelihood function. Moreover, the columns of B
can be multiplied by −1 and it will not affect the values of the density function.

There are no doubts that the parameters of the SVAR models with the
mixture of two normal distributions are not globally identifiable. It was shown,
however, by Lanne and Lütkepohl (2005) that under some mild conditions they
may be locally identifiable. The necessary and sufficient condition for the local
identification is that the diagonal elements of the matrix Ψ are all mutually
different.

3 Estimation methods

The problem of estimating parameters of mixture models has been a subject of
a large body of literature. Redner and Walker (1984) and McLachlan and Peel
(2000) provide a survey of both theoretical and empirical publications discussing
the properties and applications of different types of estimators. Recently, due
to the increase of computational efficiency, most of the research concentrates on
the application of the maximum-likelihood method. As the functional form of
the residual distribution in the mixture models is usually treated as known, ML
seems to be a plausible approach.
In the presented work, two estimation methods will be used. First, the

standard maximum likelihood estimation will be described. Second, a two steps
quasi ML estimation, which allows for the estimation of the autoregressive and
mixture parameters separately, will be presented. Finally, the properties of the
ML estimators will be discussed.

3.1 Maximum Likelihood and two steps quasi Maximum
Likelihood estimators

The maximum likelihood estimation method depends on the assumed functional
form of the joint error distribution. In the SVAR model with the mixture of
two normal densities, the p.d.f. of the forecast errors, εt, for a given period t is
given by (2). Therefore, the value of the log-likelihood function L (θ, γ|εt) for
the t-th error, εt, is

L (θ, γ|εt) = ln (f (εt; θ, γ))

= −k
2
ln (2π)

+ ln

⎛
⎝ γ det (BB′)−1/2 exp

(
− 1
2ε
′
t (BB

′)−1 εt
)
+

(1− γ) det (BΨB′)−1/2 exp
(
− 1
2ε
′
t (BΨB

′)−1 εt
)
⎞
⎠
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A constant term −k
2 log (2π) will be omitted in further analysis. The joint

log-likelihood is

L (θ, γ|ε) =
T∑
t=1

L (θ, γ|εt)

= ln (f (εt; θ, γ))

The maximization problem

max
θ∈Ω,γ∈(0,1)

L (θ, γ|ε) = max
θ∈Ω,γ∈(0,1)

T∑
t=1

ln (f (εt; θ, γ))

where θ is a vector of parameters defined as before and

Ω = {θ : det (B) �= 0, diag (Ψ) > 0}
is a set of all possible parameter vectors, does not have a closed form solution
and therefore iterative optimization procedures have to be used.

3.1.1 One step Maximum Likelihood

In this method one searches for the maximum of the log-likelihood function over
both the autoregressive and mixture parameters. We can rewrite the model with
the lag polynomial

A(L)yt −A0 = εt
where A (L) = Ik −

∑p
i=1AiL

i and L is a lag operator, such that Liyt = yt−i.
A0 is a k× 1 vector of constants. Then the estimators Â0,Â1, ..., Âp, B̂, Ψ̂, γ̂ are
chosen to maximize

L (θ, γ, A|y) =
T∑
t=p

ln f(A(L)yt −A0; θ, γ)

where A = (A0, A1, ..., Ap), y = (y1,y2, ..., yT ) and f(.; θ, γ) is defined in (2).

3.1.2 Two steps quasi Maximum Likelihood

In this method the estimation procedure consists of two steps. Firstly, the
autoregressive parameters are estimated with the LS or quasi ML method. Then
the estimates of the residuals are computed according to the formula

êt = yt −
(
Â0 +

p∑
i=1

Âiyt−i

)

Finally, the mixture of two normal distributions is fitted to the estimated
residuals êt with the ML method. Then parameters B̂, Ψ̂, γ̂ are chosen to max-
imize

L (θ, γ|ê) =
T∑
t=p

ln f(êt; θ, γ)
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where ê = (êp, êp+1, ..., êT ) and f(.) is defined as in (2).
This is a quasi ML method because it is conditional on the estimates of the

estimates of the autoregressive parameters, which in principle differs form the
true ones. Thus,

L (θ, γ|ê) �= L (θ, γ|ε)
Fortunately, the autoregressive parameters can be consistently estimated with
the LS or quasi ML method and therefore, the estimates of the mixture parame-
ters B̂, Ψ̂ and γ̂ converge to the true ones. This estimation method is however
less efficient than the full Maximum Likelihood approach.

3.2 Numerical maximization algorithms

As mentioned before, the ML problem does not have a closed form solution.
Therefore, numerical maximization algorithms need to be used to obtain the
ML estimates of the parameters. There exist general iterative procedures, such
as Newton’s methods, two steps quasi Newton’s methods and conjugate gradient
methods, which can be used in this context. There are, however, other methods
that are more specific and thus more suitable for the mixture distributions
models. One of them is the EM algorithm. It was formalized by Dempster,
Laird, and Rubin (1977) and designed for estimation problems with incomplete
data. McLachlan and Krishnan (1997) provides a broad review of the literature
dedicated to its theoretical and empirical properties.

3.2.1 EM algorithm

The estimation of the SVAR models with the mixture of distributions can be
analyzed from the perspective of the incomplete data problem. Let us assume
that the data generating process of the shocks εt is

εt ∼
{
N(0,BB′) if Zt = 1

N(0,BΨB′) if Zt = 0

where Zt is an indicator variable. Then the density function of εt conditional
on Zt could be rewritten as follows

f (εt|Zt; θ) = f1 (εt; θ)Zt f2 (εt; θ)1−Zt

where f1 (εt; θ) and f2 (εt; θ) are defined in Section 2.2.
In the mixture model the mixing probabilities are assumed to be constant

over time. It corresponds to the assumption

prob (Zt = 1) = γ

prob (Zt = 0) = 1− γ

Therefore, Zt needs to have a Bernoulli distribution
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g (Zt; γ) = γ
Zt (1− γ)1−Zt

The joint density function of εt and Zt is given by

fc (εt, Zt; θ, γ) = f1 (εt; θ)
Zt f2 (εt; θ)

1−Zt γZt (1− γ)1−Zt

and

ln (fc (εt, Zt; θ, γ)) = Zt {ln (γ) + ln (f1 (εt; θ))}
+(1− Zt) {ln (1− γ) + ln (f2 (εt; θ))}

The complete-data log likelihood Lc (θ, γ|ε) (meaning that both εt and Zt
are assumed to be observable) can be written as follows

Lc (θ, γ|ε) =
T∑
t=1

Lc (θ, γ|εt)

=

T∑
t=1

ln (fc (εt, Zt; θ, γ))

Therefore,

Lc (θ, γ|ε) =
T∑
t=1

Zt {ln (γ) + ln (f1 (εt; θ))}

+

T∑
t=1

(1− Zt) {ln (1− γ) + ln (f2 (εt; θ))}

The EM algorithm consists of two steps: E (computing the expectation of
Lc (θ, γ|ε) conditional on the the observable data εt) and M (maximizing the
expected Lc (θ, γ|ε) over the parameter space Ω ∪ (0, 1).

E - Step In this step the expected value of the complete-data log likelihood is
computed. The expected value of the Lc (θ, γ|ε) conditional on the the observ-
able data ε for an initial parameters vector θ0 and γ0 is given by Q (θ, γ; θ0, γ0)
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Q (θ, γ; θ0, γ0) = E

(
T∑
t=1

Zt {log (γ) + log (f1 (εt; θ))} |ε; θ0, γ0
)

+E

(
T∑
t=1

(1− Zt) {log (1− γ) + log (f2 (εt; θ))} |ε; θ0, γ0
)

=

T∑
t=1

E (Zt|ε; θ0, γ0) {log (γ) + log (f1 (εt; θ))}

+

T∑
t=1

E (1− Zt|ε; θ0, γ0) {log (1− γ) + log (f2 (εt; θ))}

Let us denote by τ t (θ0, γ0) an expected value of the indicator variable Zt
for the initial parameters values θ0 and γ0

τ t (θ0, γ0) = E (Zt|ε; θ0, γ0)
= 0 · f (Zt = 0|ε; θ0, γ0) + 1 · f (Zt = 1|ε; θ0, γ0)
= fc (εt, Zt = 1; θ0, γ0) /f (εt; θ0)

= γ0f1 (εt; θ0) /f (εt; θ0)

Then

E (1− Zt|ε; θ0, γ0) = 1− γ0f1 (εt;B0) /f (εt; θ0)
= 1− τ t (θ0, γ0)

Thus, Q (θ, γ; θ0, γ0) takes the form

Q (θ, γ; θ0, γ0) =
T∑
t=1

τ t (θ0, γ0) {log (γ) + log (f1 (εt; θ))}

+

T∑
t=1

(1− τ t (θ0, γ0)) {log (1− γ) + log (f2 (εt; θ))}

M - Step In this step the new estimates of θ and γ are chosen to maximize
Q (θ, γ; θ0, γ0). (

θ̂, γ̂
)
= arg max

θ∈Ω,γ∈(0,1)
Q (θ, γ; θ0, γ0)

The Q (θ, γ; θ0, γ0) function can be decomposed into two parts

Q (θ, γ; θ0, γ0) = Q1 (γ; θ0, γ0) +Q2 (θ; θ0, γ0)

such that

10



Q1 (γ; θ0, γ0) = log (γ)

T∑
t=1

τ t (θ0, γ0) + log (1− γ)
T∑
t=1

{1− τ t (θ0, γ0)}

= log (γ)

T∑
t=1

τ t (θ0, γ0) + log (1− γ)
{
T −

T∑
t=1

τ t (θ0, γ0)

}

Q2 (θ; θ0, γ0) =

T∑
t=1

τ t (θ0, γ0) log (f1 (εt; θ)) + (1− τ t (θ0, γ0)) log (f2 (εt; θ))

The first component depends only on the mixing proportions γ whereas the
second one depends on θ. Consequently, the maximization problem can be
solved by separately estimating the proportion parameter γ and the rest of the
parameters θ. It can be easily shown that the Q1 (γ; θ0, γ0) is maximized by

γ̂ =
T∑
t=1

τ t (θ0, γ0) /T

Finally,

θ̂ = argmax
θ∈Ω

Q2 (θ; θ0, γ0)

Iterations of the algorithm Once the new estimates of the parameters θ̂
and γ̂ are obtained, the two steps E and M are repeated for θ0 = θ̂ and γ0 = γ̂.
The algorithm is terminated when a stopping condition is fulfilled. There are
two popular stopping rules

1. The algorithm is stopped when the value of the log-likelihood function
does not change by more then δ∣∣∣logL(θ̂, γ̂|ε)− logL (θ0, γ0|ε)∣∣∣ ≤ δ

2. The algorithm is stopped when the parameters do not change much. It
means that for some chosen δ ∥∥θ̄ − θ̄0∥∥ ≤ δ
where ‖.‖ denotes some norm and θ̄ =

(
θ̂
′
, γ̂
)′
, θ̄0 =

(
θ′0, γ0

)′
.
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3.3 Problems with Maximum Likelihood estimation

The maximum likelihood estimators suffer from two problems: the likelihood
function is unbounded and the parameters are not globally identified. The sec-
ond issue was discussed before and due to local identifiability does not threaten
the estimation process but influences the interpretation of the estimated pa-
rameters. The first one is much more serious and some modification of the
estimation procedures need to be considered.

3.3.1 Unbounded Likelihood function

An example of an unbounded likelihood function for a mixture model was given
by Kiefer and Wolfowitz (1956). Let us consider an univariate, mixture model
with a shift in a variance

xt ∼
{
N(μ,1) with probability 0.5

N(μ, σ2) with probability 0.5

Then the density function for xt is given by

f (xt;μ, σ) = 0.5
1

(2π)
0.5 exp

(
−0.5 (xt − μ)2

)

+0.5
1

(2π)
0.5

1

σ
exp

(
−0.5(xt − μ)

2

σ2

)

Let us assume that there is a finite number of observations {xt} andmaxt |xt − μ| =
m < ∞. Suppose we choose μ = x1 and a sequence of standard deviations
σn → 0. Then, for all xt = μ, the density function diverges to infinity.

f (xt;μ, σn) = 0.5
1

(2π)
0.5 exp

(
−0.5 (xt − μ)2

)

+0.5
1

(2π)
0.5

1

σn
exp

(
−0.5(xt − μ)

2

σ2n

)

= 0.5
1

(2π)
0.5 + 0.5

1

(2π)
0.5

1

σn
→∞

The density for xt �= μ is bounded away from zero
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f (xt;μ, σn) = 0.5
1

(2π)
0.5 exp

(
−0.5 (xt − μ)2

)

+0.5
1

(2π)
0.5

1

σn
exp

(
−0.5(xt − μ)

2

σ2n

)

→ 0.5
1

(2π)
0.5 exp

(
−0.5 (xt − x1)2

)

≥ 0.5
1

(2π)
0.5 exp

(−0.5m2
)
> 0

Thus, L (μ, σn|x) =
T∏
t=1
f (xt;μ, σn)→∞

The problem seems to be equally severe for the SVAR models with a mixture
of two normal distributions. The density function for an error, εt, is given by
the following formula

f (εt) = γ (2π)
−k/2

det (B)
−1
exp

(
−1
2

(
B−1εt

)′
B−1εt

)
+

(1− γ) (2π)−k/2 det (Ψ)−1/2 det (B)−1 exp
(
−1
2

(
B−1εt

)′
Ψ−1B−1εt

)

We can always find a matrix B such that det (B) < M1 < ∞ and there
exists a time index s ∈ {1, ..., T} such that the ith element of bs = B−1εs is
equal to zero, bis =

[
B−1εs

]
i
= 0, for some i ∈ {1, ..., k}. We can choose the

sequence Ψn of diagonal, positive definite matrices that satisfies Ψnii → 0 and
Ψnjj > M2 > 0 for j �= i. We know that

− (B−1εt)′Ψ−1B−1εt = −∑
j �=i

1

Ψjj
b2jt −

1

Ψii
b2it

For t = s

1

Ψii
b2it = 0

Therefore,

− (B−1εt)′Ψ−1B−1εt = −∑
j �=i

1

Ψnjj
b2jt > −

1

M2

∑
j �=i

b2jt > −∞

and

exp

(
−1
2

(
B−1εt

)′
Ψ−1n B−1εt

)
� 0

Since
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det (Ψn)→ 0

then

det (Ψn)
−1/2

det (B)
−1
exp

(
−1
2

(
B−1εt

)′
Ψ−1B−1εt

)
→∞.

Thus, f (εt)→∞.
For t �= s the value of density function f (εt) is bounded away from zero

f (εt) > γ (2π)
−k/2

det (B)
−1
exp

(
−1
2

(
B−1εt

)′
B−1εt

)
> 0

So L (θ, γ|ε) =
T∏
t=1
f (εt)→∞. Therefore the likelihood function is unbounded.

The problem of an unbounded likelihood function rises some questions about
the ML estimators.

What is the ML estimator for the unbounded likelihood function?
When the likelihood function is unbounded then the global maximizer of the
likelihood function does not exist. Therefore one can not talk about the ML
estimator in the traditional sense (see McLachlan and Peel (2000) for some dis-
cussion). It does not mean, however, that there is no sequence of local maximiz-
ers with properties of consistency, efficiency and asymptotic normality. Redner
and Walker (1984) provides the regularity conditions under which, for the class
of locally identifiable mixtures, such a sequence exists. Moreover, when the pa-
rameter space is compact and contains the true parameters in its interior, the
MLE is a point at which the likelihood obtains its largest local maximum.

How can the ML estimation procedure be improved? Hathaway (1985)
proposes imposing a set of constraints (ensuring that the parameter space is
compact and does not include singularity points) that allows for the consistent
estimation of the parameters. In the case of univariate time series, the con-
straint is mini,j (σi/σj) ≥ c for some constant c > 0. In the multivariate case,
Hathaway (1985) proposes to constrain all of the characteristic roots of ΣiΣ

−1
j

(for any 1 ≤ i �= j ≤ k) to be greater or equal to some minimum value c > 0.
These kind of restrictions will lead to constrained (global) maximum-likelihood
formulations which are strongly consistent (if they are satisfied by the true pa-
rameters). The main disadvantage of the approach is the arbitrary choice of
the value of c > 0. It is particularly difficult, when there is no initial intuition
about the data generating process and no information to base the guess on.
Some other forms of the constraints are discussed in the literature. For

example, McLachlan and Peel (2000) proposes to limit the distance between the
component generalized variances by restricting the ratio |Σi| / |Σj | to be greater
or equal to c > 0.
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What can we do in the case of the SVAR models with mixture of
two normal densities? One may want to impose similar constraints on the
parameters in the case of the SVAR model with the mixture of two normal
densities. There are, however, differences between the setup presented in this
paper and one discussed typically in the literature, they are associated with the
components variances. In the SVAR models, the variances are composed of two
matrices: B and Ψ: Σ1 = BB′ and Σ2 = BΨB′. Thus

Σ2Σ
−1
1 = BΨB′ ·B′−1B−1 = BΨB−1

Let us denote by λ (A) a set of all eigenvalues of the square matrix A. Then

λ
(
Σ2Σ

−1
1

)
= λ

(
BΨB−1

)
= λ (Ψ) = diag (Ψ)

So the Hathaway constraints for the two components case are equivalent to the
following

0 < c ≤ mini∈{1,..,K}Ψi,i
maxi∈{1,..,K}Ψi,i ≤ 1/c <∞ (4)

How to treat the obtained results? How can we evaluate the local
maximum we find? The mixture models suffer not only the problem of
unbounded likelihood function but also the problem of spurious maximizers.
Spurious maximizers are typically generated by a small group of observations,
which are located close together (Day (1969)). They are characterized by a big
relative difference between components variances. Thus imposing restrictions on
the parameters may reduce the number of spurious maximizers. The minimum
eigenvalue of the ΣiΣ

−1
j can also be used to evaluate the local maximizers of

the unconstrained likelihood and to choose the most interesting one.

4 Monte Carlo Experiment

The purpose of the Monte Carlo experiment is to investigate how a choice of
an estimation method and maximization algorithm influences estimates of the
parameters. The exercise helps to answer the question what is the cost of using
the two steps quasi ML instead of ML method. If there are no significant
differences, then the two steps quasi ML approach will be a very attractive from
the practical point of view as it allows to reduce significantly the complexity of
the problem. Other interesting issues are the ability of different maximization
algorithms to find the true, rather than spurious, local maximizers and the
robustness to the guesses of the initial parameter values.
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4.1 Experimental design

In the experiment, two data generating processes are considered: VAR in levels
and VECM, both with the mixture of two normal distributions. The VECM
process

Δyt = A0 + αβ
′yt−1 +

p−1∑
j=1

ΓjΔyt−j +But

can be represented as a VAR process

yt = A0 +

p∑
j=1

Ajyt−j +But

where the relationship between the VECM and VAR parameters is described as
follow:

A1 = αβ′ + Γ1 + Ik
A2 = Γ2 − Γ1

...

Ap−1 = Γp−1 − Γp−2
Ap = −Γp−1

Therefore, in both cases the data sets used in the research can be generated
according to the VAR specification. It is assumed that ut follows a mixture of
two normal distributions N (0, I) and N (0,Ψ) with mixing proportions γ and
1− γ ( γ ∈ (0, 1) ), respectively
For each type of data generating process, the Monte Carlo experiment con-

sists of 1000 replications. In each replication (i = 1, . . . 1000), a time series is
generated according to the following algorithm :

1. For each replication i and time period t a variable Zit is generated from
the binomial distribution with prob (Zit = 1) = γ and prob (Zit = 0) =
1 − γ. Firstly, we draw randomly vit form the uniform distribution on
the interval [0, 1]. Then the value of Zit is assigned Zit = 1 ⇔ vit ≤ γ,
Zit = 0⇔ vit > γ.

2. Structural shocks uit are generated according to the distribution N (0, I)
if Zit = 1 and N (0,Ψ) if Zit = 0 for each time period t (or alternatively
uit ∼ N (0, I)⇔ vit ≤ γ, uit ∼ N (0,Ψ)⇔ vit > γ).

3. Time series {yit} are generated from the formula

yit = A0 +

p∑
j=1

Apyi,t−j +Buit

under the assumption yi0 = 0.
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4. The first 100 observation of yit are dismissed to reduce the influence of
the choice of the initial observations on the outcome.

Finally, parameters of the SVAR or SVECM model are estimated with two
methods: ML and two steps quasi ML. In both estimation methods, four al-
gorithms are used to search for the parameter values that maximize the likeli-
hood function: three general maximization algorithms ( BFGS, NEWTON and
BHHH provided in the CML library in GAUSS) and the EM algorithm.

The outcomes, for each of the estimation methods and the maximization
algorithms, are evaluated on the basis of:

• number of successful estimates (algorithm converges)

• ratio of estimates that satisfy the conditions (4) for c = 0.01
• mean and variance of the estimated parameters
• convergence to the true parameter values for increasing sample size
• sensitivity to choice of the initial values

4.2 Choice of parameters values

The Monte Carlo experiment was performed for three different lengths of the
time series T = 50, 150, 500. Time dimensions T = 50, 150 correspond to lengths
of time series used in the empirical analysis, whereas T = 500 captures the
asymptotic behavior of examined estimators and maximization algorithms.
In both data generating processes, the residuals But were distributed ac-

cording to the mixture of two normal distributions with the following parameter
values:

B =

[
1 0
0 1

]
,Ψ =

[
1 0
0 5

]
(5)

Two different proportion parameters were considered. Firstly, the mixture
proportion was set to γ = 0.5, thus But was equally often distributed according
to N (0, BB′) as to N (0, BΨB′). Finally γ = 0.8, which means that the second
component was much more rarely observable. It was expected that the choice of
γ would influence the small sample properties of the estimators in three ways: by
effecting a rate of successful estimates, a frequency of choosing the true, rather
then spurious, maximizers and efficiency (measured by estimator variance).

4.2.1 Structural Vector Autoregressive Model (SVAR)

In the first part of the experiment data was generated according to the VAR
model with the order of autoregression p = 1.

yt = A0 +A1yt−1 +But (6)
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The autoregressive parameters were chosen to ensure that the process yt was
stationary

A0 =

[
0
0

]
, A =

[
0.5 0
0 0.5

]
(7)

4.2.2 Structural Vector Error Correction Model (SVECM)

The order of autoregression is set as p = 2 and the model takes the following
form

Δyt = A0 + αβ
′yt−1 + ΓΔyt−1 +But (8)

The parameters of the SVECM model were chosen to ensure that the process is
well defined1

α =

[ −0.1
0.1

]
, β =

[
1
−1

]
(9)

A0 =

[
0
0

]
,Γ =

[
0.2 0.5
0.5 0.2

]

4.3 Results

Ratios of successful estimates Tables 1 and 2 present ratios of success-
ful estimates for the VAR model, which are computed as the number of the
outcomes with nonsingular covariance matrix and 0 < γ < 1, divided by the
total number of Monte Carlo iterations. Results indicate that the general max-
imization algorithms suffer many problems when estimating model parameters.
More frequently, the parameters converge to singularity points or end up on
the boundaries (γ = 0 or 1). This unwanted behavior is the strongest for the
short time series (T = 50), when the ratios vary between 10% − 60% for al-
gorithms that start with the true parameters values and 5% − 35% when they
begin with false parameters values. For long time series (T = 500), the ratios
are 70% − 90% and 30% − 80% respectively. In practice, we can expect the
second case to occur more often and therefore, the results question the usage of
this kind of algorithms. The EM algorithm outperforms the rest of algorithms
in terms of the number of successful estimates. It converges to local maxima

1Let us denote by C (z) the following polynomial

C (z) = (1− z) Ik − αβ′z −
p−1∑

i=1

(1− z) zΓi

Then, the VECM process is well defined if the following conditions hold

1. det (C (z)) = 0⇒ |z| ≥ 1
2. The number of unit roots z = 1, is exactly k − r, where r = rk (α) = rk (β)
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in almost all cases. Its disadvantage is, however, a very slow rate of conver-
gence and lengthy time of computation (for more details see Redner and Walker
(1984), McLachlan and Krishnan (1997)).
Tables 11 and 12 summarize the ratios of successful estimates2 for the VECM

model. For the two steps quasi ML method, they are qualitatively similar to
those obtained in the VAR experiment. When the estimation procedures are
initiated at true parameter values, the general maximization algorithms (NEW-
TON and BFGS) converge in 15 − 60% cases for short time series T = 50,
compared with 90% for the EM algorithm. As the time dimension increases,
differences between algorithms decrease and the ratios for general maximization
algorithms reach almost 100%. When the estimation begins with parameter
values that differ from the true ones, the ratios of successful estimates for the
BFGS do not exceed 35% for all time lengths (T = 50, 500), whereas the NEW-
TON algorithm converges in 30− 90% cases depending on the time dimension.
Both general maximization algorithms perform significantly worse then the EM
algorithm, for which the rate of convergence is close to 100%.
When the ML method is considered, there appears to be more differences be-

tween the VAR and VECM experiments. The general maximization algorithms
converge in around 20− 30% of the cases for T = 50 and 80− 100% of the cases
for T = 500. The EM algorithm, however, does not perform significantly better
and converges only in 40% of cases for T = 50 and 95% of cases for T = 500.
These results indicate that the complexity of the estimation problem influences
significantly the chances of successful convergence.
Finally, comparisons of different maximization algorithms bring two conclu-

sions. Firstly, there are algorithms, such as BHHH3, very sensitive to the length
of the time series. For T = 50, it falls far behind the BFGS and NEWTON algo-
rithms. Secondly, BFGS is more frequently successful than the NEWTON algo-
rithm when the initial guesses are close to the true parameters. The difference
seems significant especially for very short time series. The results show, how-
ever, that the NEWTON algorithm is much more robust to the initial guesses
of the parameters. Thirdly, the ratios of successful estimates and the true local
maximizers hardly depend on the number of observations.
It is interesting to compare the results of ML and two steps quasi ML meth-

ods. It appears that the two steps quasi ML method leads more often to the
successful estimates and to the true maximizers rather then the spurious ones.
These preliminary results can not fully support the choice of this method in em-
pirical applications, as the precision of estimates needs to be taken into account.
However, it already indicates the advantages of simplifying the estimation prob-
lem.

2As in the VAR experiment the BHHH algorithm performes much worse then other algo-
rithms, it is ommited in futher research.

3Comparison based on the VAR experiment
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Autoregressive (VAR and VECM) parameters The comparison of the
parameter estimates is based on the outcomes of the BFGS algorithm4. For
all the two steps procedures, regardless of the maximization algorithm, the
autoregressive parameters were estimated in the same way. Therefore, there
is no need to compare results between the algorithms. Tables 5, 6, 15 and 16
present the means and the variances of the estimators for VAR and VECM
models respectively. The outcomes satisfy condition (4) and are presented for
the ML and two steps quasi ML separately. It is worth emphasizing that both
methods produce very similar results. They confirm the consistency of the
estimators, hence in all considered cases the mean converges to true parameter
values and the variance decreases5.

Mixture parameters Firstly, the estimates of the mixing parameters are
compared on the basis of a ML with a BFGS maximization algorithm. Their
properties (mean and the variance) are summarized in the Tables 7 and 17. The
outcomes are less satisfying then in the autoregressive parameters case, but still
show the consistency as the mean converges to the true parameter values and
the variance decreases. It may be noticed that most of the problems arise while
estimating the matrix Ψ. The biggest of the diagonal elements is estimated very
imprecisely (its variance across Monte Carlo iterations reaches 313.04 for T = 50
for VAR and 331.26 for VECM model) and thereby influences the estimates of
the rest of parameters.
Secondly, the results for three estimation procedures: a ML with BFGS

(called M1), a two steps quasi ML with BFGS (called M2) and a two steps
quasi ML with an EM (called EM2) are compared. The outcomes for the mix-
ing proportion γ = 0.5 are illustrated in the Figures 1 and 2. It shows that the
two steps quasi ML method with EM algorithm is the most precise in estimating
the crucial Ψ matrix (when both the mean and the variance of the estimators
are taken into account). For other mixture parameters, the outcomes are com-
parable across all three procedures (for more details see Tables 8-9 and Tables
18-19).

Spurious maximizers The importance of the spurious maximizers problem
is illustrated by the results in Table 10. It summarizes the mean and the
variance of the VAR and mixture parameters estimators for the cases in which
the condition (4) is not satisfied. For T = 50, the mean of Ψ2 estimators reaches
almost 5000 and decreases to 2936 for T = 150. It means that in some cases the
estimation procedures produce very unrealistic results which are characterized
by high values of Ψ̂ and low values of mixing proportion estimators (mean of γ̂
was 0.193 and 0.117 for T = 50, 150 respectively).

4Results for other maximization algorithms are very simmilar and therefore they are not
discussed in details.

5The t-ratios mean and variacne were also computed and they confirm good properties
of the estimators (converge to the first two moments of N(0,1)). Tables that summarize the
t-ratios are available upon request.
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The autoregressive parameters estimators were not affected by the existence
of the spurious maximizers. Even when the mixing parameters were estimated
incorrectly, they were still similar to the results for cases in which (4) is satisfied
and converged to true parameter values as the sample size increases. It suggests
that the estimators of autoregressive parameters are robust to the choice of a
local maximizer.
As previously discussed algorithms may converge to the spurious maximizers

rather then to the true ones. To disregard these cases, the condition (4) was
checked for every estimate. Tables 3, 4, 13 and 14 summarize the ratios of
the number of true local maximizers to the number of successful estimates.
The results show that the ratio increases with the length of the times series.
For T = 50, it starts from 66% to 84%, whereas for T = 500 all the results
exceed 99%. Unfortunately, the low ratio for short time series means that when
the macroeconomic time series are used it may be expected that the spurious
maximizers will arise quite often.

5 Conclusions

In this paper, we describe and discuss issues associated with an estimation of
structural VAR models with mixtures of two normal distributions. The main
theoretical difficulties that arise are a lack of global identifiability of parameters
and an unbounded likelihood function. The first issue can be easily overcome
because, under some mild restrictions, the parameters are locally identifiable
and therefore, a ML estimation method can be applied. The second problem
requires a new definition of a ML estimator because a global maximum of a
likelihood function does not exist. Moreover, the likelihood function has many
spurious local maxima, which make it difficult to find the proper ML estimates.
We present how the issue is solved in the literature and adopt this approach to
the SVAR models with a mixture distribution.
Finally, we perform a Monte Carlo experiment that compares different es-

timation methods and maximization algorithms. The outcomes indicate that
there are no significant differences in the efficiency between the two discussed
estimation methods: ML and two steps quasi ML. This result favours the two
steps method as it is simpler and less computationally demanding. Next, we
compare the properties of different maximization algorithms. The general max-
imization algorithms seem to perform worse then the EM algorithm. It is more
frequent that they are not able to produce any results or lead to spurious maxi-
mizers. Estimates based on these methods vary more across the MC iterations,
particularly for short time series. The differences between these two types of
algorithms become negligible for long time series T = 500, when the ratio of
successful estimations and the moments of the obtained estimators equalize.
The main disadvantages of the EM algorithm are difficulties with computing
the variance of the estimators6 and the lengthy time of computations.

6To estimate asymptotic variance of the parameters some modification of the algorithm
need to be introduced.
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The experiment confirms that spurious maximizers are one of the crucial
problems when estimating the parameters of SVAR models with the mixture
of normal distributions. It happens that the estimates, which constitute local
maxima of the likelihood function, are produced by a small group of observations
with a low variance. Therefore, they give a high value of the likelihood function
but do not represent a ML estimate with its statistical properties. The existence
of spurious maximizers threatens the estimates of the mixing parameters but
does not affect the estimates of the autoregressive parameters.
.
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6 Appendix

6.1 "Label Switching"

We will show that for B̃ = BΨ0.5, Ψ̃ = Ψ−1 and γ̃ = 1 − γ and any ε ∈ R the
following equality holds

f
(
ε; B̃, Ψ̃, γ̃

)
= f (ε;B,Ψ, γ)

The density function f (ε;B,Ψ, γ) consists of two components

f (ε;B,Ψ, γ) = γ det (BB′)−0.5 exp
(
−0.5ε′ (BB′)−1 ε

)
+(1− γ) det (BΨB′)−0.5 exp

(
−0.5ε′ (BΨB′)−1 ε

)
= f1 (ε) + f2 (ε)

Lets f̃1 (ε) and f̃2 (ε) denote the components of the density function computed
for the new parameters vectors B̃, Ψ̃ and γ̃. Then the first component f̃1 (ε) =
f2 (ε)

f̃1 (ε) = γ̃ det
(
B̃B̃′

)−0.5
exp

(
−0.5ε′

(
B̃B̃′

)−1
ε

)

= (1− γ) det (BΨ0.5Ψ′0.5B′)−0.5 exp(−0.5ε′ (BΨ0.5Ψ′0.5B′)−1 ε)
= (1− γ) det (BΨB′)−0.5 exp

(
−0.5ε′ (BΨB′)−1 ε

)
= f2 (ε)

and the second one f̃2 (ε) = f1 (ε)

f̃2 (ε) = (1− γ̃) det
(
B̃Ψ̃B̃′

)−0.5
exp

(
−0.5ε′

(
B̃Ψ̃B̃′

)−1
ε

)

= γ det
(
BΨ0.5Ψ−1Ψ′0.5B′

)−0.5
exp

(
−0.5ε′ (BΨ0.5Ψ−1Ψ′0.5B′)−1 ε)

= γ det (BB′)−0.5 exp
(
−0.5ε′ (BB′)−1 ε

)
= f1 (ε)

Finally,

f
(
ε; B̃, Ψ̃, γ̃

)
= f̃1 (ε) + f̃2 (ε)

= f2 (ε) + f1 (ε)

= f (ε;B,Ψ, γ)
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7 Results: SVAR

Table 1: VAR. Ratio of successful estimates, algorithms initiated with the true
parameters values.

ML two steps quasi ML
γ T BFGS NEWTON BHHH EM BFGS NEWTON BHHH EM

0.5 50 0.592 0.262 0.102 1.000 0.625 0.334 0.17 1.00
150 0.896 0.515 0.611 0.996 0.882 0.498 0.583 0.994
500 0.995 0.734 0.972 0.992 0.992 0.735 0.969 0.992

0.8 50 0.384 0.165 0.016 0.998 0.410 0.186 0.023 1.00
150 0.758 0.403 0.230 0.993 0.733 0.415 0.228 0.992
500 0.979 0.635 0.749 0.990 0.976 0.647 0.757 0.919

NOTE: Two methods are considered: Maximum Likelihood and two steps
quasi Maximum Likelihood. For each estimation method four maximization
algorithms are evaluated: BFGS, NEWTON, BHHH and EM. The data
generating process is described by (5), (6) and (7). We denote by T and γ the
length of the sample and a mixing proportion parameter, respectively.

25



Table 2: VAR. Ratio of successful estimates, algorithms not initiated with the
true parameters values.

ML two steps quasi ML
γ T BFGS NEWTON BHHH EM BFGS NEWTON BHHH EM

0.5 50 0.212 0.287 0.060 1.000 0.242 0.344 0.123 0.999
500 0.306 0.727 0.768 0.992 0.275 0.728 0.660 0.989

0.8 50 0.161 0.272 0.058 0.998 0.160 0.371 0.046 0.998
500 0.584 0.822 0.628 0.994 0.385 0.820 0.990

NOTE: Two methods are considered: Maximum Likelihood and two steps
quasi Maximum Likelihood. For each estimation method four maximization
algorithms are evaluated: BFGS, NEWTON, BHHH and EM. The data
generating process is described by (5), (6) and (7). We denote by T and γ the
length of the sample and a mixing proportion parameter, respectively.

Table 3: VAR. Ratio of successful estimates that satisfy condition (4) for c =
0.01 to all successful estimates, algorithms initiated with the true parameters
values.

ML two steps quasi ML
γ T BFGS NEWTON BHHH EM BFGS NEWTON BHHH EM

0.5 50 0.775 0.786 0.863 0.812 0.913 0.904 0.935 0.946
150 0.948 0.940 0.957 0.948 0.984 0.970 0.992 0.989
500 0.998 0.997 0.998 0.998 0.999 0.999 0.998 1.00

0.8 50 0.930 0.915 0.875 0.903 0.971 0.962 0.956 0.919
150 0.991 0.985 1.00 0.75 0.999 0.995 1.00 0.986
500 1.00 1.00 1.00 0.999 1.00 1.00 1.00 1.00

NOTE: Two methods are considered: Maximum Likelihood and two steps
quasi Maximum Likelihood. For each estimation method four maximization
algorithms are evaluated: BFGS, NEWTON, BHHH and EM. The data
generating process is described by (5), (6) and (7). We denote by T and γ the
length of the sample and a mixing proportion parameter, respectively.
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Table 4: VAR. Ratio of successful estimates that satisfy condition (4) for c =
0.01 to all successful estimates, algorithms not initiated with the true parameters
values.

ML two steps quasi ML
γ T BFGS NEWTON BHHH EM BFGS NEWTON BHHH EM

0.5 50 0.901 0.840 0.800 0.749 0.967 0.936 1.00 0.930
500 0.997 1.00 0.996 0.999 0.996 1.00 0.997 0.999

0.8 50 0.969 0.893 0.810 0.850 0.962 0.921 0.956 0.944
500 1.00 0.998 0.995 0.999 1.00 0.999 1.00

NOTE: Two methods are considered: Maximum Likelihood and two steps
quasi Maximum Likelihood. For each estimation method four maximization
algorithms are evaluated: BFGS, NEWTON, BHHH and EM. The data
generating process is described by (5), (6) and (7). T and γ denote the length
of the sample and a mixing proportion parameter, respectively.

Table 5: VAR. The mean and the variance of the autoregressive parameters
estimates for the two steps quasi ML method (BFGS algorithm iniciated with
the true parameters values).

Parameters A
(0)
1 A

(0)
2 A11 A21 A12 A22

True values 0 0 0.5 0 0 0.5

γ T Mean
0.5 50 −0.0009 0.0090 0.4385 0.0066 −0.0056 0.4440

150 −0.0051 −0.0035 0.4794 −0.0015 −0.0022 0.4803
500 −0.0014 −0.0010 0.4937 −0.0029 −0.0007 0.4940

0.8 50 −0.0058 −0.0085 0.4434 −0.0122 −0.0026 0.4510
150 −0.0006 0.0009 0.4774 −0.0023 −0.0001 0.4782
500 0.0006 0.0021 0.4921 −0.0006 −0.0002 0.4935

Variance
0.5 50 0.0247 0.0855 0.0152 0.0529 0.0055 0.0156

150 0.0076 0.0215 0.0046 0.0168 0.0018 0.0049
500 0.0021 0.0059 0.0015 0.0045 0.0005 0.0016

0.8 50 0.0269 0.0481 0.0171 0.0366 0.0099 0.0129
150 0.0071 0.0132 0.0053 0.0102 0.0029 0.0052
500 0.0018 0.0039 0.0015 0.0027 0.0008 0.0016

NOTE: The data generating process is described by (5), (6) and (7). We
denote by T and γ the length of the sample and a mixing proportion parameter,
respectively.
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Table 6: VAR. The mean and the variance of the autoregressive parameters es-
timates for the ML method (BFGS algorithm iniciated with the true parameters
values).

Parameters A
(0)
1 A

(0)
2 A11 A21 A12 A22

True values 0 0 0.5 0 0 0.5

γ T Mean
0.5 50 0.0025 −0.0056 0.4492 −0.0176 −0.0054 0.4535

150 −0.0062 −0.0010 0.4806 0.0000 −0.0030 0.4851
500 −0.0014 −0.0007 0.4936 −0.0043 −0.0006 0.4953

0.8 50 0.0030 −0.0080 0.4429 −0.0196 −0.0069 0.4613
150 0.0000 0.0003 0.4783 0.0010 −0.0003 0.4832
500 0.0008 0.0015 0.4919 −0.0010 −0.0001 0.4947

Variance
0.5 50 0.0285 0.099 0.0175 0.0602 0.0061 0.0190

150 0.0082 0.0186 0.0048 0.0157 0.0018 0.0049
500 0.0021 0.0051 0.0016 0.0038 0.0005 0.0014

0.8 50 0.0358 0.0448 0.0184 0.0410 0.0110 0.0164
150 0.0074 0.0114 0.0053 0.0084 0.0030 0.0040
500 0.0019 0.0032 0.0015 0.0021 0.0009 0.0013

NOTE: The data generating process is described by (5), (6) and (7). We
denote by T and γ the length of the sample and a mixing proportion parameter,
respectively.
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Table 7: VAR. The mean and the variance of the mixing parameter estimates
for the ML method (BFGS algorithm iniciated with the true parameters values).
Parameters B11 B21 B12 B22 Ψ1 Ψ2 γ
True values 1 0 0 1 1 5 0.5/0.8

γ T Mean
0.5 50 0.9696 0.0041 −0.0008 0.6739 1.1309 18.541 0.5183

150 1.0072 −0.0006 0.0000 0.8503 1.0355 10.008 0.4939
500 1.0054 −0.0011 −0.0005 0.9607 0.9791 6.0943 0.5031

0.8 50 0.9413 −0.0131 −0.0071 0.6328 1.2300 15.284 0.6339
150 0.9816 −0.0222 0.0090 0.8626 0.9604 7.2953 0.7134
500 0.9958 −0.0010 0.0016 0.9635 0.9544 5.4723 0.7717

Variance
0.5 50 0.0716 0.3132 0.0306 0.0862 4.2206 340.36 0.0353

150 0.0284 0.1302 0.0147 0.0711 0.4660 120.44 0.0356
500 0.0008 0.0388 0.0037 0.0314 0.1051 12.934 0.0181

0.8 50 0.0540 0.1640 0.0337 0.0533 6.7184 223.14 0.0346
150 0.0153 0.0679 0.0187 0.0343 0.4133 19.281 0.0299
500 0.0030 0.0181 0.0067 0.0088 0.1301 1.7017 0.0110

NOTE: The data generating process is described by (5), (6) and (7). We denote
by T and γ the length of the sample and a mixing proportion parameter,
respectively.
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Table 8: VAR. The mean and the variance of the mixing parameter estimates
for the two steps quasi ML method (BFGS algorithm iniciated with the true
parameters values).
Parameters B11 B21 B12 B22 Ψ1 Ψ2 γ
True values 1 0 0 1 1 5 0.5/0.8

γ T Mean
0.5 50 0.9791 0.0151 −0.0016 0.7006 1.0384 16.008 0.4562

150 1.0021 0.0064 −0.003 0.8605 0.9686 9.4433 0.4798
500 1.0047 −0.0001 −0.0008 0.9739 0.9808 5.8277 0.5047

0.8 50 0.9435 0.0127 −0.0101 0.6837 0.9831 11.008 0.6201
150 0.9778 −0.0161 0.0080 0.8734 0.9754 6.8268 0.7101
500 0.9954 −0.0007 0.0012 0.9689 0.9565 5.3703 0.7727

Variance
0.5 50 0.0688 0.3102 0.0277 0.0972 7.5682 313.04 0.0488

150 0.0312 0.1436 0.0171 0.0759 0.4699 111.72 0.0393
500 0.0078 0.0313 0.0039 0.0300 0.1029 9.9939 0.0181

0.8 50 0.0382 0.1795 0.0361 0.0548 1.8765 83.093 0.0417
150 0.0153 0.0656 0.0192 0.0344 0.5007 16.762 0.0311
500 0.0029 0.0183 0.0069 0.0083 0.1258 1.5437 0.0107

NOTE: The data generating process is described by (5), (6) and (7). We denote
by T and γ the length of the sample and a mixing proportion parameter,
respectively.

Table 9: VAR. The mean and the variance of the mixing parameter estimates
for the two steps quasi ML method (EM algorithm iniciated with the true pa-
rameters values).
Parameters B11 B21 B12 B22 Ψ1 Ψ2 γ
True values 1 0 0 1 1 5 0.5/0.8

γ T Mean
0.5 50 0.943 0.0260 −0.0045 0.8453 0.8848 11.443 0.5333

500 1.0049 0.0020 −0.0011 0.9765 0.9780 5.7325 0.5046
0.8 50 0.9669 −0.0258 0.0124 0.8504 0.7101 8.3221 0.7634

500 0.9968 0.0003 0.0011 0.9735 0.9471 5.3650 0.7780

Variance
0.5 50 0.0582 0.3278 0.0334 0.1064 6.8999 189.44 0.0467

500 0.0074 0.0304 0.0039 0.0275 0.0964 8.2750 0.0163
0.8 50 0.0280 0.1730 0.0546 0.0495 0.4517 65.635 0.0395

500 0.0029 0.0173 0.0067 0.0077 0.1339 1.4941 0.0094

NOTE: The data generating process is described by (5), (6) and (7). We
denote by T and γ the length of the sample and a mixing proportion parameter,
respectively.
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Table 10: VAR, The mean and the variance of estimators for the ML method,
the mixing proportion γ = 0.5. The data generating process is described by (6),
(7) and (5).
T 50 150

Mean Var Mean Var

A
(0)
1 -0.0275 0.0367 0.0046 0.0097
A
(0)
2 -0.0689 0.1363 0.0269 0.0406
A1,1 0.4370 0.0180 0.4845 0.0064
A2,1 0.01741 0.0957 -0.0348 0.0281
A1,2 -0.0034 0.0073 0.0072 0.0020
A2,2 0.4480 0.0294 0.4817 0.0061
B1,1 1.1507 0.2199 1.0997 0.1557
B2,1 0.0588 0.3988 -0.0215 0.2382
B1,2 -0.0008 0.0008 0.0036 0.0009
B2,2 0.0724 0.0027 0.0869 0.0028
Ψ1 40.557 77630 40.050 60582
Ψ2 4988.49 1.77e+ 008 2936.21 55389027
γ 0.1929 0.0032 0.1168 0.0013
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8 Results: SVECM

Table 11: VECM. Ratio of successful estimates, algorithms initiated with the
true parameters values.

ML two steps quasi ML
γ T BFGS NEWTON EM BFGS NEWTON EM

0.5 50 0.366 0.218 0.403 0.627 0.336 0.976
150 0.882 0.588 0.801 0.919 0.566 0.996
500 0.987 0.843 0.970 0.993 0.750 0.988

0.8 50 0.245 0.174 0.350 0.343 0.166 0.949
150 0.726 0.501 0.706 0.740 0.381 0.987
500 0.969 0.785 0.935 0.975 0.667 0.993

NOTE: Two methods are considered: Maximum Likelihood and two steps
quasi Maximum Likelihood. For each estimation method four maximization
algorithms are evaluated: BFGS, NEWTON, BHHH and EM. The data
generating process is described by (5), (8) and (9). We denote by T and γ the
length of the sample and a mixing proportion parameter, respectively.

Table 12: VECM. Ratio of successful estimates, algorithms not initiated with
the true parameters values.

ML two steps quasi ML
γ T BFGS NEWTON EM BFGS NEWTON EM

0.5 50 0.130 0.144 0.268 0.241 0.336 0.999
500 0.349 0.716 0.891 0.293 0.739 0.987

0.8 50 0.112 0.140 0.299 0.172 0.366 1.000
500 0.287 0.759 0.931 0.329 0.847 0.988

NOTE: Two methods are considered: Maximum Likelihood and two steps
quasi Maximum Likelihood. For each estimation method four maximization
algorithms are evaluated: BFGS, NEWTON, BHHH and EM. The data
generating process is described by (5), (8) and (9). We denote by T and γ the
length of the sample and a mixing proportion parameter, respectively.
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Table 13: VECM. Ratio of successful estimates that satisfy condition (4) for
c = 0.01 to all sucesfull estimates, algorithms initiated with the true parameters
values.

ML two steps quasi ML
γ T BFGS NEWTON EM BFGS NEWTON EM

0.5 50 0.839 0.972 0.990 0.907 0.881 0.944
150 0.926 0.995 0.999 0.979 1 0.987
500 0.998 1 1 0.999 0.999 0.999

0.8 50 0.894 0.977 0.991 0.983 0.952 0.969
150 0.983 1 1 0.996 1 0.985
500 1 1 1 1 1 0.999

NOTE: Two methods are considered: Maximum Likelihood and two steps
quasi Maximum Likelihood. For each estimation method four maximization
algorithms are evaluated: BFGS, NEWTON, BHHH and EM. The data
generating process is described by (5), (8) and (9). We denote by T and γ the
length of the sample and a mixing proportion parameter, respectively.

Table 14: VECM. Ratio of successful estimates that satisfy condition (4) for c =
0.01 to all sucesfull estimates, algorithms not initiated with the true parameters
values.

ML two steps quasi ML
γ T BFGS NEWTON EM BFGS NEWTON EM

0.5 50 0.854 0.951 1 0.975 0.881 0.913
500 0.997 1 1 0.997 0.999 0.999

0.8 50 0.866 0.971 1 0.994 0.937 0.950
500 1 1 1 1 0.999 0.999

NOTE: Two methods are considered: Maximum Likelihood and two steps
quasi Maximum Likelihood. For each estimation method four maximization
algorithms are evaluated: BFGS, NEWTON, BHHH and EM. The data
generating process is described by (5), (8) and (9). We denote by T and γ the
length of the sample and a mixing proportion parameter, respectively.
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Table 15: VECM. The mean and the variance of the parameters estimates
for the two steps quasi ML method (BFGS algorithm initiated with the true
parameters values).

Parameters β2 α1 α2 A
(0)
1 A

(0)
2 Γ11 Γ21 Γ12 Γ22

True values −1 −0.1 0.1 0 0 0.2 0.5 0.5 0.2

γ T Mean
0.5 50 −1.628 −0.172 0.174 0.105 0.087 0.177 0.429 0.428 0.216

150 −1.004 −0.125 0.132 −0.012 0.019 0.191 0.476 0.472 0.210
500 −1.000 −0.108 0.111 −0.002 −0.001 0.197 0.490 0.491 0.205

0.8 50 −1.287 −0.180 0.157 −0.042 −0.062 0.178 0.426 0.427 0.190
150 −1.007 −0.124 0.127 −0.017 −0.004 0.192 0.469 0.476 0.202
500 −1.001 −0.107 0.110 −0.002 0.000 0.197 0.491 0.493 0.204

Variance
0.5 50 225.420 0.015 0.040 2.471 5.720 0.011 0.031 0.015 0.039

150 0.039 0.002 0.006 0.125 0.242 0.003 0.009 0.003 0.010
500 0.000 0.000 0.001 0.012 0.019 0.001 0.002 0.001 0.003

0.8 50 1595.93 0.016 0.027 1.575 3.309 0.013 0.024 0.017 0.029
150 0.036 0.003 0.005 0.125 0.206 0.004 0.007 0.004 0.008
500 0.001 0.001 0.001 0.010 0.013 0.001 0.002 0.001 0.002

NOTE: The data generating process is described by (5), (8) and (9). We denote
by T and γ the length of the sample and a mixing proportion parameter,
respectively.
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Table 16: VECM. The mean and the variance of the parameters estimates for
the ML method (BFGS algorithm initiated with the true parameters values).

Parameters β2 α1 α2 A
(0)
1 A

(0)
2 Γ11 Γ21 Γ12 Γ22

True values −1 −0.1 0.1 0 0 0.2 0.5 0.5 0.2

γ T Mean
0.5 50 −0.999 −0.193 0.180 0.025 0.179 0.182 0.441 0.407 0.222

150 −1.002 −0.125 0.126 0.000 0.006 0.192 0.480 0.472 0.208
500 −1.000 −0.108 0.110 0.000 −0.003 0.197 0.492 0.491 0.205

0.8 50 −0.979 −0.196 0.162 0.116 −0.116 0.182 0.453 0.414 0.207
150 −0.999 −0.125 0.123 −0.011 −0.019 0.196 0.478 0.474 0.203
500 −1.001 −0.107 0.108 0.000 −0.001 0.197 0.493 0.493 0.203

Variance
0.5 50 0.045 0.016 0.035 1.653 2.048 0.014 0.036 0.016 0.040

150 0.009 0.002 0.006 0.128 0.180 0.003 0.008 0.003 0.009
500 0.000 0.000 0.001 0.012 0.018 0.001 0.002 0.001 0.002

0.8 50 0.060 0.015 0.021 1.064 0.999 0.017 0.029 0.017 0.029
150 0.010 0.003 0.004 0.109 0.118 0.004 0.006 0.004 0.007
500 0.000 0.001 0.001 0.009 0.011 0.001 0.002 0.001 0.002

NOTE: The data generating process is described by (5), (8) and (9). We denote
by T and γ the length of the sample and a mixing proportion parameter,
respectively.
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Table 17: VECM. The mean and the variance of the mixing parameters esti-
mates for the ML method (BFGS algorithm initiated with the true parameters
values).
Parameters B11 B21 B12 B22 Ψ1 Ψ2 γ
True values 1 0 0 1 1 5 0.5/0.8

γ T Mean
0.5 50 0.953 −0.018 0.011 0.648 1.059 19.615 0.551

150 0.987 −0.006 −0.001 0.828 1.021 11.012 0.494
500 0.997 −0.009 0.001 0.953 0.990 6.183 0.499

0.8 50 0.902 0.078 −0.018 0.612 1.202 16.464 0.649
150 0.979 −0.002 0.000 0.849 0.949 7.593 0.710
500 0.994 0.001 0.000 0.964 0.945 5.432 0.773

Variance
0.5 50 0.071 0.342 0.032 0.076 2.599 331.26 0.029

150 0.031 0.144 0.016 0.079 1.524 169.026 0.036
500 0.008 0.034 0.004 0.033 0.107 15.931 0.019

0.8 50 0.053 0.172 0.026 0.052 2.768 225.49 0.031
150 0.016 0.073 0.020 0.036 0.781 39.406 0.033
500 0.003 0.019 0.007 0.009 0.115 1.576 0.011

NOTE: The data generating process is described by (5), (8) and (9). We denote
by T and γ the length of the sample and a mixing proportion parameter,
respectively.
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Table 18: VECM. The mean and the variance of the mixing parameters esti-
mates for the two steps quasi ML method (BFGS algorithm initiated with the
true parameters values).
Parameters B11 B21 B12 B22 Ψ1 Ψ2 γ
True values 1 0 0 1 1 5 0.5/0.8

γ T Mean
0.5 50 0.945 −0.003 −0.002 0.680 1.192 14.223 0.442

150 0.985 −0.017 −0.001 0.856 1.097 9.458 0.475
500 0.997 −0.012 0.002 0.970 0.992 5.750 0.500

0.8 50 0.936 0.008 −0.008 0.671 0.966 11.231 0.593
150 0.973 0.002 −0.002 0.876 0.930 6.969 0.711
500 0.994 −0.002 0.001 0.971 0.946 5.328 0.773

Variance
0.5 50 0.078 0.317 0.030 0.091 0.924 241.47 0.048

150 0.032 0.151 0.018 0.082 0.638 122.55 0.044
500 0.008 0.033 0.004 0.030 0.102 6.488 0.018

0.8 50 0.043 0.161 0.029 0.054 1.539 162.63 0.045
150 0.014 0.072 0.021 0.037 0.344 32.394 0.037
500 0.003 0.019 0.007 0.008 0.114 4.015 0.011

NOTE: The data generating process is described by (5), (8) and (9). We denote
by T and γ the length of the sample and a mixing proportion parameter,
respectively.
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Table 19: VECM. The mean and the variance of the mixing parameters esti-
mates for the two steps quasi ML method (EM algorithm initiated with the true
parameters values).
Parameters B11 B21 B12 B22 Ψ1 Ψ2 γ
True values 1 0 0 1 1 5 0.5/0.8

γ T Mean
0.5 50 0.957 −0.001 −0.003 0.839 0.828 10.781 0.531

150 0.989 −0.015 0.003 0.898 0.940 8.398 0.496
500 0.997 −0.014 0.003 0.972 0.991 5.688 0.499

0.8 50 0.943 −0.009 0.004 0.864 0.767 7.235 0.787
150 0.980 −0.004 0.002 0.905 0.788 6.782 0.739
500 0.994 −0.002 0.002 0.973 0.939 5.266 0.775

Variance
0.5 50 0.059 0.352 0.039 0.103 0.739 178.21 0.050

150 0.029 0.152 0.021 0.077 0.435 90.99 0.040
500 0.008 0.033 0.005 0.027 0.101 6.139 0.016

0.8 50 0.027 0.149 0.052 0.046 0.685 55.824 0.037
150 0.013 0.081 0.028 0.036 0.342 29.583 0.037
500 0.003 0.020 0.007 0.008 0.115 1.538 0.010

NOTE: The data generating process is described by (5), (8) and (9). We denote
by T and γ the length of the sample and a mixing proportion parameter,
respectively.
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Figure 1: The mean of the estimates of mixture parameters for VECM condi-
tional on the sample length. "True" describes the true parameter values whereas
ML1, ML2 and EM2 present the results for the ML method with BFGS algo-
rithm, two steps quasi ML method with BFGS algorithm and two steps quasi
ML method with EM algorithm, respectively. The data generating process is
described by (5), (8) and (9).
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Figure 2: The variance of the estimates of mixture parameters for VECM con-
ditional on the sample length. ML1, ML2 and EM2 present the results for the
ML method with BFGS algorithm, two steps quasi ML method with BFGS al-
gorithm and two steps quasi ML method with EM algorithm, respectively. The
data generating process is described by (5), (8) and (9).
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