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Common factors in nonstationary panel data
with a deterministic trend - estimation and

distribution theory

Katarzyna Maciejowska
EUI

June 8, 2010

Abstract

The paper studies large-dimention factor models with nonstationary
factors and allows for deterministic trends and factors integrated of order
higher then one.We follow the model specification of Bai (2004) and derive
the convergence rates and the limiting distributions of estimated factors,
factors loadings and common components. We discuss in detail a model
with a linear time trend. We ilustrate the theory with an empirical exmple
that studies the fluctuations of the real activity of U.S.economy. We show
that these fluctuationas can be explained by two nonstationary factors and
a small number of stationary factors. We test the economic interpretation
of nonstationary factors.

JEL classification: C13, C33, C43
Keywords: Common-stochastic trends; Dynamic factors; Generalized dy-

namic factor models; Principal components; Nonstationary panel data
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discusse

1 Motivation

In the last decade, one could observe a growing interest in models that can ex-
tract and use information from large sets of variables. One approach is based
on an assumption that there exist common factors, which can explain the vari-
ables’ comovement. The factor models have been shown useful in econometric
modeling. There is a series of articles that demonstrate advantages of using
factors in forecasting (Stock and Watson (2002a), Stock and Watson (2002b))
and impulse response analysis (Bernanke, Boivin, and Eliasz (2005), Kapetanios
and Marcellino (2006))).
Recently, Stock andWatson (2005) adopts factor models for structural analy-

sis. This article, together with other papers (Kapetanios and Marcellino (2006)
and Forni, Giannone, Lippi, and Reichlin (2007)) discusses the possibility of
integrating the factor methods into the SVAR framework. There is empirical
evidence that factors can contribute to classical VAR analysis (see Bernanke,
Boivin, and Eliasz (2005), Kapetanios and Marcellino (2006), Eickmeier (2009)
and Forni and Gambetti (2008)).
So far, most of the research concentrates on modeling stationary panel data.

Breitung and Eickmeier (2005) provides a comprehensive literature review of
stationary dynamic factors models and their applications. There are, however,
few articles that discuss the issue of common nonstationary trends. Bai (2004),
Bai and Ng (2004) and Gonzalo and Granger (1995) describe estimation methods
of nonstationary common components. Bai (2004) proposes information criteria,
IPC, that allow for consistent estimation of the number of common trends and
derives limiting distributions of estimated factors and common components.
Banerjee and Marcellino (2008) discusses cointegration issues related to the
existence of common trends and shows how the factor analysis can contribute to
the existing literature. Eickmeier (2009) uses nonstationary factors in structural
analysis of economic development of euro area countries.
The literature discusses two approaches in modeling nonstationary panels.

The first one is based on the differenced data and was proposed by Bai and Ng
(2004). This method allows for consistent estimation of nonstationary static
factors and is independent from an integration order of the idiosyncratic com-
ponent1. The second approach uses the data in levels and was introduced by
Bai (2004). It is suitable for structural analysis because it directly estimates the
dynamic nonstationary factors. The concept can also be easily integrated into
the generalized dynamic factor models framework. Unfortunately, the results
rely on the stationarity assumption of idiosyncratic errors, which is sometimes
difficult to verify.

1The modeling strategy cannot be directly applied for structural analysis because it deals
only with the static representation of the factor model. In order to recover dynamic factors,
some additional steps have to be introduced, as in Eickmeier (2009).
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In this paper, we follow the idea of Bai and Ng (2004) and extract factors
from data in levels. We contribute to the existing literature by allowing for
higher order dynamics in the data generating processes. We show that ignor-
ing the time trend or I (2) processes2 leads to inconsistent estimation of factors
and factors loadings. It has important implications for structural analysis and
impulse responses. If it is not taken into consideration then some of the factor
loadings grows to infinity and the relative importance of some shock increases
unproportionaly. Moreover, we derive the convergence rates, the asymptotic
distribution of factors, factor loadings and common components for a general
model. The dynamics of the factors are summarized by a scaling matrix. It is
chosen to ensure the convergence of the factors second moments. The results
allow for the assessment of the accuracy of estimation procedure and for con-
structing confidence intervals around a rotation of true factors used in empirical
analysis.
The theory is illustrated with an empirical example. We analyze a panel of

69 real variables describing the U.S. economy. We show that the data fluctuation
can be summarized by a small number of common factors. Since most of the
variables have a deterministic trend, then it is relevant to assume an existence of
a factor with the time trend. The limiting distributions allows for testing if an
interest rate, investments, a personal consumption and government spendings
are the driving forces of the economy.
This paper is organized as follows: Section 2 describes the model and dis-

cusses the estimation issues. In Section 3, we derive the convergence rates and
asymptotic distributions of estimates for a general model. Section 4 analyzes in
more detail the model with I (1) factors with a deterministic trend. In Section
5, we apply the approach to the panel measuring the real activity of U.S. econ-
omy. Finally, in Section 6, we summarize and conclude. The description of the
data and proofs are provided in Appendix.

2 Model description and estimation

2.1 Model setup

Let us denote by X a N × T panel of observable variables. We use F 0t , λ0i and
r to describe the true common factors, factor loadings and number of factors,
respectively. Then for any i = 1, 2, ..., N and t = 1, 2, ..., T it is assumed that

Xit = λ
0′
i F

0
t + eit (1)

The residuals eit are I (0) error processes that can be serially correlated. F 0t is
a r × 1 vector of common factors and λ0i is a r × 1 vector of factor loadings.
Let Xi be T × 1 vector of observations of the ith cross-section unit. Then
2A process X is I (d) (integrated of order d) if d is a smallest number such that (1− L)dX

is stationary. Here, L denotes a lag operator.
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Xi = F
0λ0i + ei

whereXi = (Xi1, Xi2, . . . , XiT )
′, F 0 =

(
F 01 , F

0
2 , . . . , F

0
T

)′
and ei = (ei1, ei2, . . . , eiT )

′.
When it is needed, we will use the following notation

X = F 0Λ′0 + e

where Λ0 =
(
λ01, λ

0
2, . . . , λ

0
N

)′
and e is a N × T matrix, e = (e1, ..., eN ).

In the model, we distinguish between common factors, F 0, and a common
component, denoted by C. The common component is a T × N matrix that
summarizes the total impact of the factors on the panel, defined as a product
of factors and factor loadings

C = F 0Λ′0

The model setup is similar to the one described in Bai (2003) and Bai (2004).
We do not assume any particular type of common factors. Thus, we allow for
stationary, I (1) or I (2) factors with or without a deterministic time trend. It
is assumed that a kth factor is generated by the following process

(1− L)d F 0kt = akt + ukt
where L denotes the lag operator and d takes values d ∈ {0, 1, 2}. When d =
0 and akt = a then the process is stationary, whereas for d = 1 or 2 the
factors are nonstationary I (1) or I (2) processes, respectively. The akt denotes
a deterministic component and ukt is a stationary process. We define by ut a
r × 1 vector of common shocks ut = (u1t, ..., urt)′.
In this article, we are particularly interested in models with nonstationary

factors of order not higher than one and a linear time trend. It this case either

(1− L)F 0t = a+ ut
or

F 0t = at+ ut

Following Bai (2003), we assume that both dimensions of the panel increase
to infinity N,T →∞. Throughout the paper the norm of a matrix is defined as
‖A‖ = tr (A′A)1/2. We use Ir for a r×r identity matrix, λi (A) for the ith largest
eigenvalue of the square matrix A and vi (A) for the orthonormal eigenvector
of the matrix A associated with the ith largest eigenvalue. Moreover, [c] is a
ceiling of the scalar c (it is the smallest integer number, such that c ≤ [c]). We
denote by→p and→d convergence in probability and distribution, respectively.

2.2 Assumptions

The following assumptions are used to derive the asymptotic properties of the
estimators. Assumptions B-D are the same as in Bai (2003) and Bai (2004) and
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are discussed there in detail. We change Assumption A and Assumptions G-F
in order to allow for factors with different dynamics.
Assumption A (Common factors)

1. E ‖ut‖4+δ �M for some δ > 0 and all t � T

2. E
∥∥F 01 ∥∥4 �M

3. The nonstationary I (1) and I (2) factors are not cointegrated.

4. There exists a diagonal scaling matrix D, which elements are functions of
the time dimension T , such that for T →∞

D−1F 0′F 0D−1 →d Σ

where Σ is a random matrix, which is positive definite with probability 1.
Moreover, there exists M ∈ � such that for all T

T
∥∥D−2∥∥ ≤M

5. The maximum expected value of the normalized factors is bounded

max
t
E
∥∥∥√TD−1F 0t

∥∥∥ ≤M
6. There exists a limit

√
TD−1F 0t →d Fτ for t/T = τ .

Assumption B (Heterogeneous factor loadings) The loading λ0i is either

deterministic, such that
∥∥λ0i∥∥ �M , or it is stochastic, such that E ∥∥λ0i∥∥4 �M .

In both cases

1

N

N∑
i=1

λ0iλ
0′
i = Λ

′
0Λ0/N →p ΣΛ

as N → ∞ for some nonrandom, positive definite matrix ΣΛ. Moreover, the
matrix ΣΛΣ has distinct eigenvalues with probability one.
Assumption C (Idiosyncratic component)

1. E (eit) = 0 and E |eit|8 �M
2. E (e′set/N) = γNT (s, t) with |γNT (s, s)| �M for all s, and

1

T

T∑
s=1

T∑
t=1

|γNT (s, t)| �M

3. E (eisejt) = πij,st with |πij,tt| � |πij | for some πij and for all t.

1

N

N∑
i=1

N∑
j=1

|πij | �M
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4. (NT )−1
∑N

i=1

∑N
j=1

∑T
s=1

∑T
t=1 |πij,st| �M

Assumption D {λi}, {et}, {ut} are mutually independent stochastic vari-
ables.
Assumptions A-D are necessary to prove the consistency of the estimators.

Assumption A allows for factors with different dynamics. If all factors are sta-
tionary then the scaling matrix D =

√
TIr, whereas if there are both stationary

and nonstationary I (1) and I (2) factors without a time trend then D can be
defined as follows

D =

⎡
⎣ T 2Ir2 0 0

0 TIr1 0

0 0
√
TIr0

⎤
⎦ (2)

where rk denotes the number of I (k) factors. In Bai (2004), there are only I (0)
and I (1) factors and the scaling matrix takes the form

D =

[
TIr 0

0
√
TIq

]
(3)

where r and q denotes the number of nonstationary and stationary common
factors, respectively.

Remark 1 If we allow for deterministic time trends then the scaling matrix D
needs to be adjusted. Suppose the factors have a linear trend. Then, an element
scaled by T 3/2 needs to be added to the diagonal of D. An exception is a model
in which only the I (2) factors have a linear (not quadratic) trend. In this case
the scaling matrix remains unchanged as in (2). A model with I (1) factors and
the linear trend is discussed in detail in Section 4.

In order to identify the number of nonstationary factors, we need to assume
that they are not cointegrated. Otherwise, the space spanned by the factors
could be described by the lower number of common trends G0 and a stationary
component. Hence, we would be able to reduce the number of nonstationary
factors by substituting the corresponding vectors of F 0 by G0 and the stationary
term.
Assumption B is standard and is introduced to ensure that the factors load

to infinitely many variables. It allows us to distinguish between a common
component that is pervasive and an idiosyncratic component that has a limited
effect. Hence, it ensures that the factor structure is identifiable. Assumption
C describes a possible time and cross-sectional dependence of the idiosyncratic
components. It is extensively discussed in Bai (2004). Assumption D excludes
the correlation between the idiosyncratic and common shocks. It is not restric-
tive because in further analysis we allow for a dynamic structure of the factors.
In order to show a stronger result, we need to impose an additional Assump-

tion E. It restricts the correlation of the idiosyncratic errors.
Assumption E
Let us denote γ̄N (t, s) = E (|e′set/N |). Then there exists M �∞ such that
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1. For each t,
∑T

s=1 |γ̄N (t, s)| �M

2. For each i,
∑N

j=1 |πij | �M

Some moment conditions are introduced in Assumption F. The first two con-
ditions F.1 and F.2 are needed to prove consistency and to compute the conver-
gence rates. Finally, deriving the asymptotic distributions of estimators requires
additional information about the limiting distribution of N−1/2 ∑N

i=1 λ
0
i eit and

D−1∑F 0t eit. It is provided by Assumptions F.3 and F.4. If the loadings are
deterministic then the Assumption F.3 follows from the Central Limit Theorem
and the fact that the loadings are bounded. Otherwise, we assume, as in Bai
(2004), that the limiting distribution of the first sum is normal.

Assumption F (Moments and Central Limit Theorem)

1. There exists M <∞ such for every pair (s, t),

E

∣∣∣∣∣N−1/2
N∑
i=1

[eiteis − E (eiteis)]
∣∣∣∣∣
4

≤M

2. There exists M <∞ such that for any T

E

∣∣∣∣∣ 1

T 1/2

T∑
t=1

D−1F 0t Λ
′
0et

∣∣∣∣∣
2

≤M

3. For each t as N →∞

1√
N

N∑
i=1

λ0i eit →d N (0,Γt)

where Γt = limN→∞ (1/N)
∑N

i=1

∑N
j=1 λ

0
iλ
0′
j E (eitejt)

4. For each i as T →∞ there exists a random variable Wi, such that

D−1
T∑
t=1

F 0t eit →d Wi

The distribution of the random variable Wi depends on the dynamics of the
factors. If the kth factor is stationary or I (1) with a time trend, then Wki has
a normal distribution, whereas if Fkt is I (1) without deterministic trend then
the distribution of Wki is a functional of a Brownian motion, as in Bai and Ng
(2004).

7



2.3 Estimation

Estimates of Λ and F are obtained by solving the optimization problem

(
Λ̃, F̃

)
= argmin

Λ,F
(NT )

−1
N∑
i=1

T∑
t=1

(Xit − λiFt)2

= argmin
Λ,F

tr
(
(X − FΛ′)′ (X − FΛ′)

)

where X =
(
X̄1, X̄2, . . . , X̄N

)
and F = (F1, F2, . . . , FT )

′. For any non-zero F
the optimal loading matrix is

Λ̃′ = (FF ′)−1 F ′X (4)

and

X − F Λ̃′ =
(
IT − F (F ′F )−1 F ′

)
X

Define PF = F (F ′F )
−1
F ′. Then the optimal vector of factors F is

F̃ = argmin
F
tr

((
X − F Λ̃′

)′ (
X − F Λ̃′

))
= argmin

F
tr
(
X ′ (IT − PF )′ (IT − PF )X

)
= argmin

F
tr (X ′ (IT − PF )X)

= argmax
F
tr (X ′PFX)

In order to solve the above problem, we need to impose some normalization
of the factors. It is standard to assume that the product of scaled factors gives
the identity matrix,

D−1F ′FD−1 = Ir

Then

PF = F (F ′F )−1′ F ′

= FD−2F ′

and the problem is equivalent to maximizing

tr
(
X ′FD−2F ′X

)
= tr

(
D−1F ′XX ′FD−1)

Thus, the estimated common factors F̃ are proportional to the eigenvectors v
corresponding with the r largest eigenvalues of the T × T matrix XX ′.

F̃ = B · v
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The scaling matrix B is diagonal and is chosen to satisfy the normalization
condition

Ir = D
−1F ′FD−1 = D−1Bv′vBD−1 = D−1BBD−1

Thus, B = D and F̃ is D times the eigenvectors v

F̃ = vD (5)

The estimate of the loading matrix is obtained on the basis of (4) and is equal
to

Λ̃′ = D−2F̃ ′X (6)

The results correspond with the outcomes of Bai and Ng (2002) and Bai
(2004) with D =

√
TIr or D = TIr, respectively. In the first case, the estimated

factors are the eigenvectors v multiplied by
√
T . In a model with I (1) factors

without drift, the estimators are F̃ = vT . In the Generalized Factor Model
(GFM) presented by Bai (2004), the scaling matrix is (3). Thus, the estimates
of the nonstationary factors are the eigenvectors corresponding with the r largest
eigenvalues multiplied by T , whereas the estimates of the stationary factors are
the eigenvectors corresponding with the r+1 : r+q largest eigenvalues multiplied
by
√
T .
In further analysis, we consider also another normalization of factors and

factor loadings. The following lemma defines so called normalized factors, F̂ ,
and normalized loadings, Λ̂.

Lemma 2 Define normalized factors F̂ = N−1XΛ̃ and a normalized loading
matrix Λ̂ such that F̂ Λ̂′ = F̃ Λ̃. Then

Λ̂ = Λ̃V −1NT

F̂ = F̃ VNT

where VNT = ṼNTD−2/N and ṼNT is the diagonal matrix consisting of the r
largest eigenvalues of the matrix XX ′.

This lemma shows how the two different estimators F̂ and F̃ are related to
each other. It is used to derive the asymptotic distribution of F̃ and to construct
the confidence intervals around a rotation of the true factors.

3 Distribution theory

In this section, we present an asymptotic theory of estimated factors, factor
loadings and a common component. Firstly, we discuss the consistency issue
and derive the asymptotic distribution. Finally, we show how the confidence
intervals of a rotation of the true factors can be constructed.
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3.1 Consistency

Bai (2003) and Bai (2004) prove consistency of the estimators of stationary and
random walk factors. They show that the mean squared errors of the estimated
factors are Op

(
max

{
N−1, T−1

})
and Op

(
max

{
N−1, T−2

})
, respectively. Us-

ing similar arguments, we show that the MSE of an estimated factors with a
scaling matrix D is Op

(
max

{
N−1,

∥∥D−2∥∥}). Moreover, for a given time period
t the error F̂t −H ′F 0t is Op

(
N−1/2)+Op (∥∥D−1∥∥).

Consider firstly the MSE of estimated factor.

Proposition 3 Assume Assumptions A-D hold. There exists a nonsingular
matrix H̃ and δ−1NT = max

{
N−1/2,

∥∥D−1∥∥} such that
1

T

T∑
t=1

∥∥∥F̃t − H̃ ′F 0t
∥∥∥2 = Op (δ−2NT )

The proposition states that the time average of a squared deviation between
the estimated factors and the rotation of the true factors converges to zero with
a growing sample size N,T →∞. The proposition is very important because it
shows that the factors can be consistently estimated with a principle component
method. The convergence rates are used to derive the asymptotic distribution
of the estimators.
The result is in line with the existing literature. In a case of a model with sta-

tionary factors, the norm of the scaling matrix
∥∥D−1∥∥ = Op (T−1/2). Therefore,

the convergence rate is δNT = min
{√
N,
√
T
}
, as in Bai (2003). If we assume

that all the factors are random walks without a drift then
∥∥D−1∥∥ = Op (T−1)

and δNT = min
{√
N,T

}
. The convergence rate corresponds with the outcome

presented in Bai (2004).
Finally, it is shown that for a given time period t the error converges to zero

with a growing cross-sectional and time dimension. To prove the convergence
rates we need to impose the more restrictive Assumption E.

Proposition 4 Under Assumptions A-E the following holds for each t,

F̃t − H̃ ′F 0t = Op
(
N−1/2

)
+Op

(∥∥D−1∥∥)
The convergence rate is the same as in Bai and Ng (2002) for stationary

factors. Since we allow for different types of factors then the rate is lower then
in Bai (2004), where only I (1) factors without a trend are considered. It is,
however, sufficient to derive the limiting distribution of factors.

Remark 5 If we allow for only one type of nonstationary factors, for example
I (1) or I (2) factors, then it is shown by Lemma 23 that

F̃t − H̃ ′F 0t = Op
(
N−1/2

)
+Op

(
T−1/2

∥∥D−1∥∥)
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This is in line with the results of Bai (2004) for the I (1) factors without a time
trend, where

F̃t − H̃ ′F 0t = Op
(
N−1/2

)
+Op

(
T−3/2

)

3.2 Asymptotic distributions

We investigate the asymptotic distribution of the estimated factors, the factor
loadings and the common component. Firstly, we describe a limiting behavior
of VNT and D−2F̃ ′F 0.

Lemma 6 Under assumptions A-E, as N , T →∞

1. There exists a random, diagonal, full rank with probability 1 matrix V such
that VNT →d V

2. There exists a random, positive definite, with probability 1 matrix Q such
that

D−2F̃ ′F 0 = QNT →d Q

The lemma defines two matrices, V and Q, used to describe the asymptotic
distribution of factors and factors loadings.

3.2.1 Limiting distribution of estimated common factors

The following proposition shows that the factor estimates are asymptotically
normal. This property is used to construct the confidence intervals around the
rotation of the true factors.

Proposition 7 Under Assumptions A-F, as N,T → ∞ and N1/2
∥∥D−1∥∥ → 0

we have for each t

√
N
(
F̃t − H̃ ′F 0t

)
→d Σ−1Λ N (0,Γt)

where ΣΛ and Γt are defined as in the Assumptions B and F.

The proposition requires restrictions on the relation between the cross-sectional
and the time dimensions. If there are stationary factors the conditions say that
N/T → 0. In a case of a model with only nonstationary factors without the de-
terministic trend, the condition is N/T 2 → 0. If there is only one type of factor,
it can be shown that the condition is N1/2T−1/2

∥∥D−1∥∥ as in Bai (2004)3.
The results will be used to construct the confidence intervals around a rota-

tion of true factors.
3The condition follows directly from Lemma 23 and the proof of Proposition 7.
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3.2.2 Limiting distribution of estimated factors loadings

In this section, we show that the estimated factor loadings converges to some
random variable.

Proposition 8 Under the Assumptions A-F, for each i, as N,T →∞ we have

D
(
λ̃i − H̃−1λ0i

)
→d
(
H̄
)−1

Σ−1Wi

with H̄ is defined by Lemma 26. Σ and Wi are defined by Assumption A and
F, respectively.

The actual limiting distribution of factor loadings depends on the dynamics
of the factors. As shown in Bai (2003), if the factors are stationary then the
matrix Σ converges to the factors variance-covariance matrix. On the other
hand, if all factors are random walks without a drift then Σ is defined by a
Brownian motion. Moreover, if we allow for other types of factors then the
elements of the random matrix Σ may take different forms.

3.2.3 Limiting distribution of estimated common components

Let us denote the true and estimated common components4 by C0it = F 0t λ
0
i

and Ĉit = F̂tλ̂i, respectively. The limiting distribution of the estimates of the
common component depends on the relation between the cross-sectional and
time dimensions T/N .

Proposition 9 Under Assumptions A-G as N,T →∞ it holds that

1. If N/T → 0 then for each pair (i, t)

√
N
(
Ĉit − C0it

)
→d λ0′i H

−1′QN (0,Γt)

where Γt is defined in Assumption F and Q is introduced in Lemma 6.

2. If T/N → 0 then for each pair (i, t) and t = [τT ]

√
T
(
Ĉit − C0it

)
→d F ′τΣ

−1Wi

where Σ and Fτ are defined in Assumption A and Wi is defined in As-
sumption F.

3. If N/T → π then for each pair (i, t) and t = [τT ]

√
N
(
Ĉit − C0it

)
→d λ0′i H

−1′QN (0,Γt) +
√
πF ′τΣ

−1Wi

where Q, Γt, Fτ ,Σ and Wi are defined as above.

4The estimated common component Ĉit does not depend on the normalization of common
factors.
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As noted by Bai (2004), the third case is the most useful in practice, because
π can be estimated by the sample ratio N/T . Moreover, the distribution of the
common components in cases (2) and (3) depends on the limiting distribution of
Fτ . When the factor F̄ 0i is stationary then Fτi is normally distributed. However,
if the factor F̄ 0i is a I (1) process without a deterministic drift then Fτi is a
Brownian motion process with a variance described by Bai and Ng (2004).

3.2.4 Confidence intervals

In the article, we interpret a scalar, observable variable Rt as a common factor
if it is a linear combination of the true factors plus a constant.

Rt = α+ β
′F 0t

where α is a shift parameter and β is a r×1 vector that summarize the relation
between Rt and F 0t . We allow for both a rotation and a shift of the factors
because neither Rt nor F 0t have to be zero mean processes and they may have
different levels and scalings.
Consider the rotation of F̃ toward Rt described by the regression

Rt = α+ β′
(
H̃−1′F̃t

)
+ ut

= α+ δ′F̃t + ut

Let
(
α̂, β̂
)
be the least-square estimator of (α, β) and R̂t = α̂+β̂

′ (
H̃−1′F̃t

)
.

From the identity δ′ = β′H̃−1′ it follows that δ̂
′
= β̂

′
H̃−1′. If Rt is a common

factor then the following proposition holds.

Proposition 10 Under the Assumptions A-F and no cross-section correlation
for the idiosyncratic errors, as N,T →∞ and N1/2

∥∥D−1∥∥→ 0

√
N
(
R̂t − α− β′F 0t

)
→d δ̂V −1QN (0,Γt)

where V , Q are defined in Lemma 6 and Γt is introduced in Assumption F.

Following Bai (2004), we will approximate the 95% confidence intervals as
follows (

R̂t − 1.96
√
S̃2t /N, R̂t + 1.96

√
S̃2t /N

)
(7)

where S̃2t =
(
δ̂V −1Q

)
Γt

(
δ̂V −1Q

)′
.

Remark 11 As stated in Bai (2003), the matrix

δ̂V −1D−2F̃ ′F 0ΓtF 0′F̃D−2V −1δ̂
′
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involves the product of F 0Λ0, which can be consistently estimated with F̃ Λ̃.
Hence, it can be substituted by

δ̂V −1D−2F̃ ′F̃ Γ̃tF̃ ′F̃D−2V −1δ̂
′
= δ̂V −1Γ̃tV −1δ̂

′

where

Γ̃t = lim
N→∞

(1/N)

N∑
i=1

N∑
j=1

λ̃iλ̃
′
jÊ (eitejt)

Remark 12 Bai and Ng (2006) propose two types of estimators of the matrix
Γ̃t that can be used for cross sectionally uncorrelated idiosyncratic errors eit

1. Γ̃t = 1
N

∑N
i=1 ẽ

2
itλ̃iλ̃

′
i

2. Γ̃ = σ̃2ε
1
N

∑N
i=1 λ̃iλ̃

′
i, where σ̃

2
ε =

1
NT

∑N
i=1

∑T
t=1 ẽ

2
it for errors with equal

variances σ2εi = σ
2
ε.

λ̃i and ẽit correspond to the estimates of λi and eit.

Remark 13 If the observable variable Rt belongs to the panel (Rt = Xit) then
the parameters

(
α̂, δ̂
)
can be replaced with

(
0, λ̂i

)
, where λ̂i are estimated factor

loadings.

Remark 14 In order to compute the confidence intervals, we need to ensure
that the idiosyncratic errors have zero mean5 . Otherwise E

(
R̂t − α− βF 0t

)
	= 0

and Γ̃t will not be a consistent estimator of the variance-covariance matrix Γt.

4 Model with I (1) factors with a deterministic
trend

So far, the literature considers only models with either stationary factors or
common trends without deterministic drift. Since most of time series have both
stochastic and deterministic trends, the theory does not match the needs of
macroeconomic modeling. Thus, we believe that the model that allows for a
deterministic trend is interesting, especially from an empirical point of view.
In this section, we discuss in more detail issues associated with an estima-

tion of a factor model with a linear time trend. We address the problem of
determining a number of common trends with a drift. We show the convergence
rates, limiting distributions of factors, factor loadings and common components.
Finally, we present the results in the context of a generalized factor model, as
in Bai (2004).

5One possible way to construct idiosyncratic errors with zero mean is to remove the mean
form the orginal data set.
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4.1 Modeling the time trend vs. detrending the data

Once we decide, on the basis of analysis of the variables in panel, that the
deterministic trend plays an important role in the model, we may consider two
strategies. The first approach leaves the data unchanged and models the trend
together with other factors. It is discussed in detail in the following sections.
The second approach consists of two steps. Firstly, the data is detrended and
secondly, the factors without trend are estimated as in Bai (2004). Its main
disadvantage is that it requires either a precise parametrization of the time
trend or a usage of some nonlinear filtering procedures. There is no agreement
on which of the detrending methods should be used in the context. Therefore,
we believe that our approach is a competitive alternative.

4.2 Number of common factors with a drift

The first issue is the number of identifiable common trends with a deterministic
drift. We show that a model with n > 1 common factors with time trends
can be represented as a model with only one factor with time trend and n − 1
factors without a deterministic drift. Consider a system with n factors, Ft =
(F1t, ..., Fnt)

′, that depends both on the time trend and a stochastic, zero mean
variable ωt = (ω1t, ..., ωnt)

′

Ft = At+Bωt

= [An×1 : Bn×n]
[
t
ωt

]

The matrix [An×1 : Bn×n] needs to have a rank n in order to ensure that all the
factors are identifiable. Since the factors are assumed to follow a deterministic
time trend, the vector A has to be non-zero. Then the system can be rewritten
as follow

Ft = C [In×n : Dn×1]
[
t
ωt

]
where C is a n × n full rank matrix and In×n is an identity matrix. Let us
construct a new set of factors F̃t = C−1Ft. Then

F̃t = [In×n : Dn×1]
[
t
ωt

]

and

F̃1t = t+D11ωnt

F̃2t = ω1t +D21ωnt
...

F̃nt = ωn−1t +Dn1ωnt
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Thus, among the factors F̃t only the first one has a time trend. Moreover, if all
the factors are nonstationary and noncointegrated then at least n− 1 of the ωt
elements have to be I (1) processes. We can order the elements of ωt in such a
way that only the last component ωnt is allowed to be stationary. Depending
on integration order of ωnt the first factor F̃1t will be trend stationary (when
ωnt is I (0)) or a random walk with a drift (when ωnt is I (1)).

We have shown that the factors Ft are a linear combination of F̃t, where
only one factor F̃1t has a time trend. Without loss of generality we can replace
Ft with F̃t. Therefore, in further analysis, we assume that there is only one
common factor with a deterministic linear trend.

Remark 15 The arguments are valid if the trend is not linear but is a function
of time f (t) and loads with weights A to the factors. Then, the factors Ft can
be replaced with F̃t, where only one of the elements of F̃t has a deterministic
component and other elements have a zero mean.

4.3 Static factor model

Let us first consider a static factor model with a single nonstationary factor with
a deterministic time trend. Some of the restrictive assumptions on the total
number of factors and the relation between factors and observable variables will
be relaxed in the Section 4.4, where a generalized dynamic factor model will be
discussed.
Define by Ft a common nonstationary factor with a deterministic trend such

that it is either I (1) with a drift

Ft = a+ Ft−1 + ut (8)

or trend stationary.
Ft = at+ ut

with a 	= 0.
Since the factor has a time trend then it needs to be scaled by T 3/2. Hence,

the scaling matrix D = T 3/2 and the limit of D−1F 0′F 0D−1 = T−3
∑T

t=1

(
F 0t
)2

equals a scalar Σ = a2/3

T−3
T∑
t=1

(
F 0t
)2

= T−3
T∑
t=1

a2t2 + op (1)

=

T∑
t=1

a2
(
t

T

)2
1

T
+ op (1)

→
∫ 1

0

a2x2dx = a2/3
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For t = [τT ] the limit of F 0t /T is Fτ = aτ . For a I (1) factor

1

T
F 0t = a

t

T
+
t

T

1

t

t∑
s=1

us

→ paτ + τEut = aτ

and for a trend stationary factor

1

T
F 0t = a

t

T
+
1

T
ut

→ paτ

Moreover, it can be assumed that for each i, as T →∞,
1√
T

T∑
t=1

1

T
F 0t eit →d N (0,Ωi)

where Ωi = limN→∞ (1/T )
∑T

t=1

∑T
s=1 a

2 ts
T 2E (eiteis). Thus, the variable Wi

has a normal distribution.

Remark 16 Suppose the deterministic trend is not linear and is described by a
function f (t). Then as long as

0 < lim
T→∞

T−3
T∑
t=1

(f (t))
2
< M

and
0 < lim

T→∞
1

T
f (τT ) < M

then the results hold and

1√
T

T∑
t=1

1

T
F 0t eit →d N (0,Ωi)

The matrix Ωi takes the following form form

Ωi = lim
N→∞

(1/T )
T∑
t=1

T∑
s=1

f (t) f (s)

T 2
E (eiteis)

4.3.1 Estimation

In Section 2, we derived estimators of the factor and factor loadings. Since
D = T 3/2 then

F̃ = T 3/2v

Λ̃′ = T−3F̃ ′X

where v = v1 (XX ′) is the eigenvector corresponding with the largest eigenvalue
of the matrix XX ′. Hence, the normalized factor and loadings can be computed
as in Lemma 2, with VNT being the largest eigenvalue of the matrixXX ′/(NT 3).
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4.3.2 Convergence rates

The convergence rates can be computed on the basis of Proposition 3 and Lemma
23. Since

∥∥D−1∥∥ = T−3/2 then
δ−1NT = max

{
N−1/2, T−3/2

}
and

F̂t −H ′F 0t = Op
(
N−1/2

)
+Op

(
T−2

)
The convergence rates are higher than in the model with only stationary factors
or common trends without a drift.

4.4 Generalized dynamic factor model

Finally, consider the generalized dynamic factor model with both stationary and
nonstationary factors

Xit = λ
r
i (L)F

r
t + λ

q
i (L)F

q
t + eit (9)

where λri (L) and λ
q
i (L) are lag polynomials corresponding to different types of

factors: F rt is a r×1 vector of common nonstationary factors with the first factor
having a time trend and F qt is a q × 1 vector of stationary factors. Hence, in
the generalized dynamic factor model we allow for more then one factor: there
are r nonstationary and q stationary dynamic factors.

F rt = A+ F rt−1 + u
r
t

F qt = uqt

with A = (a, 0, . . . , 0)
′. Following Bai (2004) and Forni, Hallin, Lippi, and

Reichlin (2003), we assume

λri (L) =
∞∑
j=0

λrijL
j

λqi (L) =
∞∑
j=0

λqijL
j

with
∑∞

j=0 j
∣∣λrij∣∣ <∞ and

∑∞
j=0 j

∣∣λqij∣∣ <∞ .
Since there are three types of factors the scaling matrix takes the form

D =

⎡
⎣ T 3/2 0 0

0 T · Ir−1 0
0 0 T 1/2 · Iq

⎤
⎦ (10)
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4.4.1 Static representation

The dynamic representation of the model (9) can not be directly estimated. In
order to construct the estimators, we need to rewrite the model in the static
form. Let us notice that (9) can be expressed as follows

Xit = λri (L)F
r
t + λ

q
i (L)F

q
t + eit

= ϕF rt + φ
r (L)ΔF rt + λ

q
i (L)F

q
t + eit

where the factors ΔF rt and F
q
t are stationary. In order to derive the asymptotic

distributions, we need to approximate the model with finite order lag polyno-
mials. Let us assume that φr (L), λqi (L) have an order p. Then the model can
be written as

Xit = ϕF
r
t +ΦGt (11)

whereGt =
(
ΔF rt , . . . ,ΔF

r
t−p, F

q
t , . . . , F

q
t−p
)′
summarizes the stationary factors.

Thus, the model has the static form that uniquely identifies the dynamic non-
stationary factors6 F rt . The representation (11) will be used in further analysis.

4.4.2 Estimation of the number of factors

In order to estimate the total number of factors, Bai (2004) proposes to use the
data in first differences7. If the data are I (1) then

ΔXit = λ
r
i (L)ΔF

r
t + λ

q
i (L)ΔF

q
t +Δeit (12)

and bothΔXit and factorsΔF rt ,ΔF
q
t are stationary. Therefore, the information

criteria PC introduced by Bai and Ng (2002) can be applied. As stated in Bai
(2004) the procedure allows for consistent estimation of the total number of
factors (both stationary and nonstationary).
The second issue is determining the number of stationary and nonstationary

factors separately. Bai (2004) shows that the number of nonstationary, dynamic
factors can be estimated directly form the data in levels on the basis of repre-
sentation (11). Bai and Ng (2004) constructs the information criteria IPC and
proves their consistency for panels without a deterministic trend. In the paper,
it is stated that the same information criteria can be used to estimate the total
number of nonstationary factors regardless of the existence of the deterministic
components and the order of integration. The number of stationary static fac-
tors, Gt, can be computed as the difference between the total number of factors
and the number of nonstationary dynamic factors as in Bai (2004).

6The identification is achieved under the assumption of no cointegration between the non-
stationary factors. See Bai (2004) for a discussion.

7 The aim of the differencing is to ensure that the common factors are stationary. Therefore,
the order of differencing should equal to the integration order of the data.
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4.4.3 Estimation and convergence rates

Since the number of factors can be consistently estimated with the information
criteria as in Bai and Ng (2002) and Bai (2004), then we assume that the true
number of both stationary and nonstationary factors is known. The common
factors can be estimated as follow

F̃ = vD

where v are the eigenvectors corresponding with the (r + q) largest eigenvalues
of a matrix XX ′ and D is given by (10). Thus,

1. A nonstationary common trend with a drift is estimated as the eigenvector
corresponding to the largest eigenvalue of the matrix XX ′ multiplied by
T 3/2.

2. Nonstationary common trends without a drift are estimated as the eigen-
vectors corresponding to 2 : r largest eigenvalues of the matrix XX ′ mul-
tiplied by T .

3. Stationary common trends are estimated as the eigenvectors corresponding
to (r + 1) : (r + q) largest eigenvalues of the matrix XX ′ multiplied by
T 1/2.

Let VNT be a diagonal matrix defined in Lemma 2. It has diagonal elements
Vi such that

1. V1 is the largest eigenvalue of the matrix XX ′/NT 3.

2. V2, . . . , Vr are the 2 : r largest eigenvalues of the matrix XX ′/NT 2.

3. V(1+r), . . . , V(r+q) are the (r+1) : (r + q) largest eigenvalues of the matrix
XX ′/NT .

Finally, we present the convergence rates. Since
∥∥D−1∥∥ = Op (T−1/2) then

the convergence rates are δ−1NT = min
{
N−1/2, T−1/2

}
and

F̂t −H ′F 0t = Op
(
N−1/2

)
+Op

(
T−1/2

)

5 Empirical example

In the paper, we study the behavior of 69 variables describing the real activity
of US economy (an industrial production, components of the real GDP, two
measures of the labor productivity and interest rates). The data are quarterly,
spanning the period from January 1961 to September 2008. The description of
the data is provided in the Appendix. Most of the variables in the panel are
nonstationary and have both deterministic and stochastic trends.
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5.1 Normalization

The literature on stationary panels underlines the need for data normalization.
Usually, variables in panels are divided by their standard deviations. This ap-
proach ensures that all variables have equal input to the total variability of the
panel. Therefore, the estimation method does not favour any of them. More-
over, the normalization does not change the theoretical results because it is
associated with multiplying the data by a diagonal matrix that converges to an
invertible matrix of asymptotic standard deviations.
This method cannot be directly applied for nonstationary panels because

the standard deviations diverge to infinity. Thus, it will affect the asymptotic
results of the estimation method. In order to normalize the data, we propose
dividing them by

σi =

(
T∑
t=1

(Xit − μi)2 /Tni
)1/2

where μi denotes the mean of the variable Xi and ni is chosen to ensure that
σi = Op (1) and that σi has a limit. For example, if a variable Xi is stationary
then ni = 1 and if Xi is an I (1) process without a deterministic drift then
ni = 1.5. Finally, for a I (1) variable Xi with a time trend there is ni = 2.

The normalization ensures that the variables with the same type of dynamics
have the same volatility. It has an intuitive interpretation for processes without
time trends because it corresponds to a standard deviation. For data with a
deterministic trend, the normalization guarantees that in the limit the slope of
the trend equalize across the panel variables. Thus, it standardizes the main
source of the volatility.

5.2 The number of factors

Firstly, we estimate the number of nonstationary factors using the IPC informa-
tion criteria described by Bai (2004) and applied for data in levels. We assume
that there are not more then ten common trends. Thus, we consider cases, in
which kmax ≤ 10. The results are presented in Table 2 and indicate that there
are either two or three nonstationary factors.
Finally, we estimate the number of factors from differenced data with the

PC criteria described in Bai (2003). The criteria do not give conclusive results
because they always choose the maximum permitted number of factors. It may
indicate that either the model has a long lag structure or the cross sectional
sample size is too small to provide correct estimates.
The literature discusses some alternative approaches that can be used to

select the number of factors. Child (2006) provides a review of less formal,
graphical methods that can be applied in this context. They are based on the
eigenvalues of the panel correlation matrix. It can be seen that the sum of
these eigenvalues equals the cross sectional dimension N . Therefore, the first
approach is to look at the number of the eigenvalues larger then one and hence,
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above the average. This criterion indicates 18 common factors, which explains
83.25% of the total variability. As stated by Child (2006), the large cross sec-
tional dimension leads to overestimation of the number of factors. Hence, we
analyze the plot of the correlation matrix eigenvalues and use a Scree test8 .
The eigenvalues are presented in Figure 1 and indicate that there are around
ten common factors. The plot starting from the eleventh eigenvalue is almost
linear and decreases steadily to zero. The first ten common factors explain
67.85% of the total variability of the panel. The result is in line with the out-
come of Stock and Watson (2005), which indicates the existence of nine static
factors in the stationary panel describing US economy.
Since we cannot choose the total number of factors consistently, we check

the robustness of the results with respect to the number of stationary factors.
We will use, as a benchmark, a model with ten factors (three common trends
and seven stationary factors).

5.3 Macroeconomic factors

Finally, we check whether some observable variables can be interpreted as com-
mon factors. Since the unobserved factors are consistently estimated then we
can use a formal test described in Section 3. In order to construct the confidence
intervals, we need to estimate the variance-covariance matrix Γt. We use the
estimator applied in Bai (2004). It is constructed as follow

Γt =
1

N

N∑
i=1

ẽ2itλ̃iλ̃
′
i

where λ̃i are the principle components estimates of the loadings matrices and
ẽit = Xit − λ̃iF̃t are the idiosyncratic residuals.

5.3.1 Interest rate

In most of the macroeconomics literature, interest rates are one of the driving
forces of the economy. In the analysis, we focus on the interest rate measured
by Federal Funds rate (FF ). We rotate the estimated factors toward FF by
running the regression FFt = α+δF̃t+εt. Next, we compute confidence intervals
around fitted values (7) and the percentage of FF observations that remain
outside the intervals. The results for different number factors are presented in
Table 4. The outcomes indicate that for models with at least ten factors, all
observations of FF remain inside the confidence intervals. Therefore, we cannot
reject the hypothesis that the FF is one of the factors driving the economy.
Figure 2 presents the observations of FF and the estimated confidence intervals
for the benchmark model.

8The Scree test was introduced by Cattell (1966) and is based on the observation that
the plot of correlation matrix eigenvalues for uncorrelated variables is almost flat and linearly
converges to zero.
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5.3.2 Private fixed investments vs. personal consumption expendi-
tures

Next, we consider the hypothesis that investments play an important role in the
economic development. Therefore, we examine if two measures of investments;
real private fixed investments in nonresidential structures and residential perma-
nent site structures, can be considered as common factors. We proceed as before
and regress the variables on the estimated common factors. Next, we construct
the confidence intervals as in (7) and compute the percentage of observations
that remain outside the confidence intervals. The results are presented in the
Table 4. They indicate that for sufficient number of factors both variables can
be interpreted as common trends.
Unfortunately, for a benchmark model with ten common factors, around 22%

of observations of the investments in nonresidential structures lay outside the
confidence intervals. The variable and the confidence intervals are presented in
Figure 3. Therefore, we consider another measure of nonresidential investments:
the real private fixed investments in nonresidential commercial structures. For
models with at least eight factors we can not reject the null that the variable is
a common factor. Moreover, for models with at least eleven factors, we could
not reject the hypothesis that both measures of investments in nonresidential
structures are common trends. Thus, we conclude that they are the driving
forces of the economy.
The outcomes for the investments in residential permanent site structures

are more clear. For all considered models, at least 90% of observations stay
inside the confidence intervals. Moreover, for a benchmark model only 6.28%
of observations fall outside the intervals (Figure 4). Hence, we interpret the
investments in residential site structure as a common factor.
Finally, we analyze whether different measures of real personal consumption

expenditures can be interpreted as common trends. The outcomes indicate that
the null hypothesis can be reject for all model setups. Thus, we do not find any
results supporting the view that the personal consumption is a main driving
force of the whole economy.

5.3.3 Government spendings

Since we do not find any arguments in favor of a hypothesis that the private
real consumption expenditure can be interpreted as common factors, we test
whether government spendings have an important effect on the economy. We
consider two measurements of government spendings: real federal consumption
expenditures and gross investments in national defence and nondefense sectors.
We proceed as before and construct the confidence intervals. The percentage of
variable observations that lay outside of the intervals are presented in Table 4.
The results indicate that for a model with at least nine factors both variables
can be interpreted as common factors. Figure 5 shows federal expenditures
in national defence and the confidence intervals for the benchmark model. It
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can be noticed that almost all observations stay inside the intervals (only less
then 2% are outside). Similar results are obtained for federal expenditures
in nondefense sectors (Figure 6). The outcomes support the hypothesis that
government spending have an impact on the whole economy.

6 Conclusions

This paper discusses the estimation methods of common factors with different
types of dynamics. We generalize the existing methodology by allowing for
other types of factors apart from stationary factors and common trends with-
out a deterministic drift. In particular, we focus on nonstationary factors with
a time trend. We believe that it is an important issue because most of the
macroeconomic variables are subjected to a time trend. Thus, the data should
be either detrended or the existence of a drift needs to be explicitly modeled.
The model setup is similar to the generalized factor model presented in Bai
(2004). Under some standard assumptions, we show that the common factors
can be consistently estimated with a principal component method (under the
assumption that both time and cross-sectional dimensions increase to infinity).
Additionally, we derive convergence rates and asymptotic distributions of fac-
tors, factors loadings and common components. It allows us to construct the
confidence intervals of a rotation of true factors and hence, to construct a formal
test to verify if an observable variable can be interpreted as a common factor.
We link the theory to the existing literature and present it as an extension to
the work of Bai (2003) and Bai (2004).
The theory is illustrated with an empirical example. We analyze 69 macro-

economic variables describing the real part of the U.S. economy. We show that
an interest rate, investments and government spendings can be interpreted as
common factors, thus they are the driving forces of the economy. The results
are in line with a macroeconomic literature. We do not find any arguments
in favor of a hypothesis that personal consumption is also one of the common
trends.
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7 Appendix: Data description and estimation

results

The appendix lists the variables used in the empirical analysis and describes the
applied transformation (column A in the following table). All variables are in
levels and all but the Federal Funds rate are expressed in logarithms

Nr Variable
1 Real Gross Domestic Product, Quantity Indexes; (2000=100,SA)
2 Real final sales to domestic purchasers; (2000=100,SA)
3 Real personal consumption expenditures; (2000=100, SA)
4 Real personal consumption expenditures: Durable goods; (2000=100, SA)
5 Real personal consumption expenditures: Motor vehicles and parts;(2000=100, SA)
6 Real personal consumption expenditures: Household equipment; (2000=100, SA)
7 Real personal consumption expenditures: Nondurable goods; (2000=100, SA)
8 Real personal consumption expenditures: Food; (2000=100, SA)
9 Real personal consumption expenditures: Clothing and shoes; (2000=100, SA)
10 Real personal consumption expenditures: Energy goods; (2000=100, SA)
11 Real personal consumption expenditures: Services; (2000=100, SA)
12 Real personal consumption expenditures: Housing; (2000=100, SA)
13 Real personal consumption expenditures: Household operation; (2000=100, SA)
14 Real personal consumption expenditures: Electricity and gas; (2000=100, SA)
15 Real personal consumption expenditures: Transportation; (2000=100, SA)
16 Real personal consumption expenditures: Medical care; (2000=100, SA)
17 Real personal consumption expenditures: Recreation;(2000=100, SA)
18 Real gross private domestic investment; (2000=100, SA)
19 Real private fixed investment; (2000=100, SA)
20 Real private fixed investment: Nonresidential: Structures; (2000=100, SA)
21 Real private fixed investment: Nonresidential: Commercial struct.;(2000=100, SA)
22 Real private fixed investment: Nonresidential: Manufacturing struct.; (2000=100,SA)
23 Real private fixed investment: Nonresidential: Power & communic. struct.; (2000=100, SA)
24 Real private fixed investment: Nonresidential: Mining struct.; (2000=100, SA)
25 Real private fixed investment: Nonresidential: Equipment and software; (2000=100, SA)
26 Real private fixed investment: Nonresidential: Information processing equipment and software;

(2000=100, SA)
27 Real private fixed investment: Nonresidential: Software; (2000=100, SA)
28 Real private fixed investment: Nonresidential: Equipment and software: Industrial equip-

ment;(2000=100, SA)
29 Real private fixed investment: Nonresidential: Equipment and software: Transportation equip-

ment; (2000=100, SA)
30 Real private fixed investment: Residential: Structures; (2000=100, SA)
31 Real private fixed investment: Residential: Structures: Permanent site; (2000=100, SA)
32 Real private fixed investment: Residential: Structures: Permanent site: Single family;

(2000=100, SA)
33 Real private fixed investment: Residential: Structures: Other structures; (2000=100, SA)
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Nr Variable
34 Real private fixed investment: Residential: Equipment; (2000=100, SA)
35 Real Exports; (2000=100, SA)
36 Real Exports: Goods; (2000=100, SA)
37 Real Exports: Services; (2000=100, SA)
38 Real Imports; (2000=100, SA)
39 Real Imports: Goods; (2000=100, SA)
40 Real Imports: Services; (2000=100, SA)
41 Real government consumption expenditures and gross investment; (2000=100, SA)
42 Real government consumption expenditures and gross investment: Federal; (2000=100, SA)
43 Real government consumption expenditures and gross investment: Federal: National defense;

(2000=100, SA)
44 Real government consumption expenditures and gross investment: Federal: National defense:

Consumption expenditures; (2000=100, SA)
45 Real government consumption expenditures and gross investment: Federal: National defense:

Gross investment; (2000=100, SA)
46 Real government consumption expenditures and gross investment: Federal: Nondefense;

(2000=100, SA)
47 Real government consumption expenditures and gross investment: Federal: Nondefense: Con-

sumption expenditures; (2000=100, SA)
48 Real government consumption expenditures and gross investment: Federal: Nondefense: Gross

investment; (2000=100, SA)
49 Real government consumption expenditures and gross investment: State and local;
50 Real government consumption expenditures and gross investment: State and local: Consump-

tion expenditures; (2000=100, SA)
51 Real government consumption expenditures and gross investment: State and local: Gross in-

vestment, (2000=100, SA)
52 Industrial Production Index: Total index; (2000=100, SA)
53 Industrial Production Index: Final products and nonindustrial supplies;(2000=100, SA)
54 Industrial Production Index: Consumer goods; (2000=100, SA)
55 Industrial Production Index: Durable consumer goods; (2000=100, SA)
56 Industrial Production Index: Nondurable consumer goods; (2000=100, SA)
57 Industrial Production Index: Business equipment; (2000=100, SA)
58 Industrial Production Index: Defense and space equipment; (2000=100, SA)
59 Industrial Production Index: Materials; (2000=100, SA)
60 Industrial Production Index: Construction supplies; (2000=100, SA)
61 Industrial Production Index: Business supplies; (2000=100, SA)
62 Industrial Production Index: Mining NAICS=21; (2000=100, SA)
63 Industrial Production Index: Manufacturing (SIC); (2000=100, SA)
64 Output Per Hour of All Persons: Nonfarm Business Sector; Index (1992=100,SA)
65 Output Per Hour of All Persons: Business Sector; Index (1992=100,SA)
66 Federal Fund rate
67 1-Year Treasury Constant Maturity Rate
68 3-Year Treasury Constant Maturity Rate
69 5-Year Treasury Constant Maturity Rate
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Table 2: Choice of the number of nonstationary dynamic factors, information
criteria IPC
Inf. Criteria\kmax 2 3 4 5 6 7 8 9 10

IPC1 2 2 2 3 3 3 3 3 4
IPC2 2 2 2 3 3 3 3 3 4
IPC3 2 2 2 3 3 3 3 4 4

Table 3: Variable names and description
Name Nr Description

Con 3 Real personal consumption expenditures;
ConD 4 Real personal consumption expenditures: Durable goods;
ConND 7 Real personal consumption expenditures: Nondurable goods;
ConS 11 Real personal consumption expenditures: Services;
InvS 20 Real private fixed investment: Nonresidential: Structures;
InvCS 21 Real private fixed investment: Nonresidential: Commercial

struct.;
InvRS 31 Real private fixed investment: Residential: Structures: Perma-

nent site;
GovD 43 Real government consumption expenditures and gross invest-

ment: Federal: National defense;
GovND 46 Real government consumption expenditures and gross invest-

ment: Federal: Nondefense;
FF 66 Federal Fund rate
NOTE: Variable number corresponds with the ordering defined in the data
description.
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Figure 1: First largest eigenvalues of the panel correlation matrix.

Figure 2: Federal Funds rate (solid line) and the confidence intervals (dotted
lines) for a benchmark model with ten factors; significance level 5%; normalized
data
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Figure 3: Real private fixed investments in nonresidential structures (solid line)
and confidence intervals (dotted lines) for a benchmark model with ten factors;
significance level 5%; normalized data.

Figure 4: Real private fixed investments in residential permanent site structures
(solid line) and confidence intervals (dotted lines) for a benchmark model with
ten factors; significance level 5%; normalized data.
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Figure 5: Real federal government consumption expenditures and gross invest-
ments in national defense (solid lines) and confidence intervals (dotted lines) for
a benchmark model with ten factors; significance level 5%; normalized data.

Figure 6: Real federal government consumption expenditures and gross invest-
ments in nondefence sectors (solid line) and confidence intervals (dotted lines)
for a benchmark model with ten factors; significance level 5%; normalized data.

31



Table 4: Percentage of observations that remain outside confidence intervals for
models with different number of factors
Variable Number of factors
Name 6 7 8 9 10 11 12 13 14

Con 51.83 53.40 18.85 24.61 31.41 25.13 26.70 31.94 28.27
ConD 72.25 72.77 72.77 71.73 74.35 63.87 49.74 38.22 27.23
ConND 80.10 65.97 34.56 38.22 42.93 39.27 45.55 48.17 45.55
ConS 14.14 17.80 15.18 17.23 18.32 23.04 36.70 30.37 32.46
InvS 78.53 44.50 52.88 23.56 21.99 0.00 0.00 0.00 0.00
InvCS 88.48 21.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00
InvRS 6.28 7.33 8.90 4.71 6.28 0.00 0.00 0.00 0.00
GovD 3.67 9.95 12.04 1.57 1.57 4.71 3.14 5.76 7.33
GovND 82.72 71.22 81.67 4.19 3.66 1.57 1.57 0.00 0.00
FF 38.22 46.60 56.54 60.21 0.00 0.00 0.00 0.00 0.00

NOTE: Variable name corresponds with the description presented in Table 3.

8 Appendix: Proofs

8.1 General algebra results

In the following sections we use some general properties of the Euclidean norm

‖A‖2 = tr (A′A)

The results can be found in Lütkepohl (1996).

1. ‖A‖ = ‖A′‖
2. ‖cA‖ = |c| ‖A‖
3. Cauchy-Schwarz inequality

‖AB‖ ≤ ‖A‖ ‖B′‖ = ‖A‖ ‖B‖

4. Parallelogram identity

‖A+B‖2 + ‖A−B‖2 ≤ 2
(
‖A‖2 + ‖B‖2

)
Thus,

‖A+B‖2 ≤ 2
(
‖A‖2 + ‖B‖2

)
≤ 2 (‖A‖+ ‖B‖)2

and therefore,
‖A+B‖ ≤

√
2 (‖A‖+ ‖B‖)
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Lemma 17 (Eigenvalues and singular values results) Let us define by σi (A) the
ith largest singular value of a matrix A and by λi (B) the ith largest eigenvalue
of a square matrix B. Then, for any real m× n matrix A the following results
holds

1. The matrices A′A and AA′ are square, symmetric and positive semidefinite

2. If m ≥ n then for i ≤ n there is λi (AA′) = λi (A′A)
3. A and B are m × n matrices, with r = min {m,n} then for 1 ≤ i, j, i +
j − 1 ≤ r

σi+j−1 (AB′) ≤ σi (A)σj (B)

4. A is a m × n matrix, with m ≥ n, B is a n × n square matrix then for
1 ≤ i, j, i+ j − 1 ≤ n

σi+j−1 (AB′) ≤ σi (A)σj (B)

Proof. The results (1) and (3) are presented in Lütkepohl (1996). Consider
(2). Since the matrices AA′ and A′A are symmetric and positive definite then
λi (AA

′) ≥ 0 and λi (A′A) ≥ 0. Moreover rk (AA′) = rk (A′A) = r and r equals
the number of the non-zero eigenvalues of the matrices AA′ and A′A. Therefore,
for all i = 1, ..., r there is λi (AA′) > 0 and λi (AA′) = λi (A′A) (see Lütkepohl
(1996)). For i > r we have λi (AA′) = λi (A′A) = 0. Thus, λi (AA′) = λi (A′A).

Consider (4). It follows directly from the part (3). We can construct a m×n
matrix B̄ such that

B̄ =

[
B

0(m−n)×n

]
and (

AB̄′
)′ (
AB̄′

)
=

[
(AB′)′ (AB′) 0

0 0

]

Then σj (B) = σj
(
B̄
)
and σi (AB′) = σi

(
AB̄′

)
for any i, j ≤ n. Therefore,

σi+j−1 (AB′) = σi+j−1
(
AB̄′

)
≤ σi (A)σj

(
B̄
)

= σi (A)σj (B)

8.2 Estimation

Proof of Lemma 2. The loadings matrix Λ̂ satisfies the condition

F̂ Λ̂′ = F̃ Λ̃′
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Moreover, we know that
Λ̃′ = D−2F̃ ′X

and therefore
F̂ Λ̂′ = F̃ Λ̃′ =

1

T 3
F̃D−2F̃ ′X

Thus,
F̂ ′F̂ Λ̂′ = F̂ ′F̃D−2F̃ ′X

and

Λ̂′ =
(
F̂ ′F̂

)−1
F̂ ′F̃D−2F̃ ′X (13)

From definition of the normalized factor F̂ = N−1XΛ̃ and the loadings Λ̃′ =
D−2F̃ ′X it follows that

F̂ =
1

N
XΛ̃ =

1

N
(XX ′) F̃D−2

Let us denote by ṼNT the diagonal matrix consisting of the first r largest eigen-
values of the matrix XX ′ and VNT = D−2ṼNT /N . Then by the fact that both
VNT and D are diagonal there is F̂ ′F̃ = VNTD2 and F̂ ′F̂ = V 2NTD

2

F̂ ′F̃ =
1

N
D−2F̃ ′ (XX ′) F̃ =

D−2

N
ṼNTD

2 = VNTD
2

F̂ ′F̂ =

(
1

N

)2
D−2F̃ ′ (XX ′) (XX ′) F̃D−2 =

D−2

N
ṼNT

D−2

N
D2 = V 2NTD

2

Finally, from equation (13) the normalized loadings are Λ̂ = Ṽ −1NT Λ̃

Λ̂′ =
(
V 2NTD

2
)−1 (

VNTD
2
)
D−2F̃ ′X = V −1NTD

−2F̃ ′X

= V −1NT Λ̃
′

Since F̂ Λ̂′ = F̃ Λ̃′ then
F̂ = VNT F̃

The following Lemma 18-19 discuss issues associated with the eigenvalues of
matrix VNT . They show that the matrix VNT = Op (1).

Lemma 18 Let us denote V ∗NT the diagonal matrix consisting of the first r
largest eigenvalues of the matrix F 0 (Λ′0Λ0/N)F

0′ in the descending order mul-
tiplied by D−2. Then V ∗NT = Op (1) and limT,N→∞ V ∗NT,i > 0, where V ∗NT,i
denotes the ith diagonal element of V ∗NT .

Proof. The ith diagonal element of the matrix V ∗NT is the ith largest eigenvalue
of the matrix

V ∗NT,i = λi

(
F 0

di

(
Λ′0Λ0
N

)
F 0′

di

)
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where di = Dii. We show that

λi

(
F 0

di

(
Λ′0Λ0
N

)
F 0′

di

)
= Op (1)

Let us first notice that since i ≤ r. Then by Lemma 17

λi

(
F 0

di

(
Λ′0Λ0
N

)
F 0′

di

)
= λi

((
Λ′0Λ0
N

)1/2
F 0′

di

F 0

di

(
Λ′0Λ0
N

)1/2)

= σ2i

(
F 0

di

(
Λ′0Λ0
N

)1/2)

where σi (A) denotes a ith largest singular value of a matrix A. From Lemma
17 it follows that

σi

(
F 0

di

(
Λ′0Λ0
N

)1/2)
≤ σi

(
F 0

di

)
σ1

((
Λ′0Λ0
N

)1/2)

= σi

(
F 0

di

)
λ1

(
Λ′0Λ0
N

)

We show that σi
(
F 0

di

)
= Op (1). Let us first notice that σi

(
d−1i D

)
= 1. Then

by Lemma 17

σi

(
F 0

di

)
≤ σ1

(
F 0D−1)σi (d−1i D

)
= σ1

(
F 0D−1)

→ dλ1 (Σ)

and λ1 (Σ) < M with probability 1. Since

λ1

(
Λ′0Λ0
N

)
→p λ1 (ΣΛ) < M

then

λi

(
F 0

di

(
Λ′0Λ0
N

)
F 0′

di

)
= Op (1)

Finally, we show that limT→∞ λi
(
F 0

di

(
Λ′0Λ0
N

)
F 0′
di

)
> 0. By Lemma 17

σi

(
F 0

di

(
Λ′0Λ0
N

)1/2)
σ1

((
Λ′0Λ0
N

)−1/2)
≥ σi

(
F 0

di

)

Moreover,

σi

(
F 0

di

)
σr−i+1

(
diD

−1) ≥ σr (F 0D−1)
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where σr−i+1
(
diD

−1) = 1 and σr (F 0D−1)→p λr (Σ) > 0. Thus,

lim
T→∞

σi

(
F 0

di

)
≥ λr (Σ) > 0

From Assumption B it follows that Λ′0Λ0/N →p ΣΛ and ΣΛ is symmetric,
positive definite. Thus

σ1

((
Λ′0Λ0
N

)−1/2)
= λ1

((
Λ′0Λ0
N

)−1)

= λr

((
Λ′0Λ0
N

))
→ pλr (ΣΛ)

where 0 < λr (ΣΛ) < M . Therefore,

lim
N,T→∞

σi

(
F 0

di

(
Λ′0Λ0
N

)1/2)
≥ lim

N,T→∞

σi

(
F 0

di

)
σ1

((
Λ′0Λ0
N

)−1/2)

≥ λr (Σ)

λr (ΣΛ)
> 0

and
lim

T,N→∞
V ∗NT,i > 0

Lemma 19 Under Assumptions A and F and N , T → ∞ the matrix VNT =
Op (1).

Proof. From the model setup it follows that

XX ′

N
= F 0

(
Λ′0Λ0
N

)
F 0′ + C

where C is a symmetric matrix

C =
F 0Λ′0e

′

N
+
eΛ0F

0′

N

Let us denote λi (A) the ith largest eigenvalue of the matrix A. By Lütkepohl
(1996)

λi (A+B) ≤ λi (A) + λmax (B)
for symmetric matrices A and B. Therefore,

λi

(
XX ′

N

)
≤ λi

(
F 0
(
Λ′0Λ0
N

)
F 0′
)
+ λmax (C)

≤ λi

(
F 0
(
Λ′0Λ0
N

)
F 0′
)
+ tr (C)
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Thus,
VNT ≤ V ∗NT + tr (C)D−2

From the definition of the trace operator and its properties (see Lütkepohl
(1996))

tr (C) = 2tr

(
eΛ0F

0′

N

)

= 2

T∑
t=1

(
1

N

N∑
i=1

eitλ
′
i

)
F 0t

Thus, by Assumptions A and F

∥∥tr (C)D−2∥∥ =

∥∥∥∥∥2
T∑
t=1

(
1

N

N∑
i=1

eitλ
′
i

)
F 0t D

−2
∥∥∥∥∥

=

∥∥∥∥∥2 1T
T∑
t=1

(
1

N

N∑
i=1

eitλ
′
i

)(√
TF 0t D

−1
)√

TD−1
∥∥∥∥∥

≤ 2

∥∥∥∥∥ 1T
T∑
t=1

(
1

N

N∑
i=1

eitλ
′
i

)(√
TF 0t D

−1
)∥∥∥∥∥
∥∥∥√TD−1

∥∥∥
= Op (1)

Hence, by Lemma 18

VNT ≤ V ∗NT +Op (1) = Op (1)

8.3 Consistency

In this section, we prove two important propositions: Propositions 3 and 4. They
show that the factors can be consistently estimated and derive the corresponding
convergence rates.
The following Lemmas 20 and 21 are needed to prove Proposition 3.

Lemma 20 Under the assumptions A-C for all T and N there exists some
M <∞ such that

1. T−1
∑T

s=1

∑T
t=1 γN (s, t)

2 �M

2. E
{(
N−1/2e′tΛ0

)2} �M
3. E

∥∥∥(NT )−1/2∑T
t=1 e

′
tΛ0

∥∥∥ �M
Proof. Points (1) - (3) are proved in Bai(2004).
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Lemma 21 Under Assumptions A-C and N , T →∞

1.
∥∥∥F 0′F̃D−2

∥∥∥ = Op (1)
2.
∥∥∥eΛ0F 0′F̃D−2

∥∥∥ = Op (√NT)

3. Define a symmetric T ×T matrix Φ by Φts = γN (t, s), then
∥∥∥ΦF̃D−2

∥∥∥ =
Op

(√
T
∥∥D−1∥∥)

4. Define a symmetric T × T matrix Υ as Υ = ee′ − Φ, then
∥∥∥ΥF̃D−2

∥∥∥ =
Op

(
T√
N

∥∥D−1∥∥)
Proof. Consider (1). Let us denote

H =
Λ′0X

′F̃D−2

N

Then by Lemma 19 and Assumption B ‖H‖ = Op (1) because

‖H‖ =

∥∥∥∥∥Λ
′
0XF̃

′D−2

N

∥∥∥∥∥
≤

∥∥∥∥ Λ′0√N
∥∥∥∥
∥∥∥∥∥X

′F̃D−2
√
N

∥∥∥∥∥
= Op (1) tr

(
D−2F̃ ′XX ′F̃D−2

N

)

= Op (1) tr (VNT ) = Op (1)

Moreover,

H =
Λ′0Λ0F

0′F̃D−2

N
+
Λ′0e

′F̃D−2

N

Then ∥∥∥∥∥Λ
′
0Λ0F

0′F̃D−2

N

∥∥∥∥∥ ≤
√
2

(
‖H‖+

∥∥∥∥∥Λ
′
0e
′F̃D−2

N

∥∥∥∥∥
)

We show that
∥∥∥Λ′0e′F̃D−2/N

∥∥∥2 = Op (1). By Lemma 20
∥∥∥Λ′0e′F̃D−2/N

∥∥∥ ≤
∥∥∥∥ Λ′0e′√

NT

∥∥∥∥∥∥∥F̃D−1
∥∥∥∥∥∥T 1/2D−1N−1/2

∥∥∥
= op (1)

Thus, Λ′0Λ0F
0′F̃D−2/N = Op (1). Since Λ′0Λ0/N converges to a positive defi-

nite matrix then it must be that F 0F̃D−2 = Op (1).
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Consider (2). From the first part of the lemma it follows that∥∥∥eΛ0F 0′F̃D−2
∥∥∥ ≤ ‖eΛ0‖

∥∥∥F 0′F̃D−2
∥∥∥

= Op

(√
NT
)

Consider (3) ∥∥∥ΦF̃D−2
∥∥∥2 ≤ ‖Φ‖∥∥∥F̃D−1

∥∥∥∥∥D−1∥∥
By Lemma 20, the last component is ‖Φ‖2 = Op (T ) because

‖Φ‖2 =

T∑
t=1

T∑
s=1

(γN (t, s))
2

= T

{
1

T

T∑
t=1

T∑
s=1

(γN (t, s))
2

}

= TOp (1) = Op (T )

Thus, ∥∥∥ΦF̃D−2
∥∥∥ = Op

(∥∥D−1∥∥2)Op (1)Op (T )
= Op

(√
T
∥∥D−1∥∥)

Finally consider (4). ∥∥∥ΥF̃D−2
∥∥∥ ≤ ‖Υ‖∥∥∥F̃D−1

∥∥∥∥∥D−1∥∥
Under the Assumption F.1 the last component is ‖Υ‖2 = Op

(
T 2/N

)
because

‖Υ‖2 =
T∑
t=1

T∑
s=1

(
e′tes
N

− γN (t, s)
)2

=
T 2

N

1

T 2

T∑
t=1

T∑
s=1

{
1

N1/2
(e′tes − E (e′tes))

}2

=
T 2

N
Op (1) = Op

(
T 2

N

)

Thus,

∥∥∥ΥF̃D−2
∥∥∥ = Op

(∥∥D−1∥∥)Op (1)Op
(
T√
N

)

= Op

(
T√
N

∥∥D−1∥∥)
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Proof of Proposition 3. Let us define a matrix H as in Lemma 21. The
matrix H takes the form

H =
Λ′0X

′F̃D−2

N

Then it was shown that ‖H‖ = Op (1) and thus the matrix is well defined. The
difference between the estimated factors and a rotation of the true factors can
be expressed as follow

F̂ − F 0H =
1

N
XX ′F̃D−2 − 1

N
F 0Λ′0X

′F̃D−2 (14)

=
1

N

{(
F 0Λ′0 + e

)
X ′ − F 0Λ′0X

}
F̃D−2

=
1

N

{
eΛ0F

0′ + ee′
}
F̃D−2

=
1

N

{
eΛ0F

0′ +NΥ+NΦ
}
F̃D−2 (15)

where Υ and Φ are defined as in Lemma 21.

1

4T

∥∥∥F̂ − F 0H∥∥∥2 ≤ 1

4TN2

∥∥∥{eΛ0F 0′ +NΥ+NΦ} F̃D−2
∥∥∥2

≤ 1

TN2

∥∥∥eΛ0F 0′F̃D−2
∥∥∥2 + N2

TN2

∥∥∥ΦF̃D−2
∥∥∥2

+
N2

TN2

∥∥∥ΥF̃D−2
∥∥∥2

From Lemma 21 it follows that

1

4T

∥∥∥F̂ − F 0H∥∥∥2 =
1

TN2
Op (NT ) +

1

T
Op

(
T ‖D‖−2

)
+
1

T
Op

(
T 2

N
‖D‖−2

)

= Op
(
N−1)+Op (‖D‖−2)+Op

(
T

N
‖D‖−2

)

Under the assumption T ‖D‖−2 = Op (1) we get
1

T

∥∥∥F̂ − F 0H∥∥∥2 = Op (N−1)+Op (‖D‖−2)
and

1

T

∥∥∥F̃ − F 0H̃∥∥∥2 =
1

T

∥∥∥(F̂ − F 0H)V −1NT

∥∥∥2
≤ 1

T

∥∥∥(F̂ − F 0H)V −1NT

∥∥∥∥∥V −1NT

∥∥2
= Op

(
δ−2NT

)

Next, we show Lemma 22 and a proof of Proposition 4.
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Lemma 22 Under Assumptions A-E, N , T → ∞ and T
∥∥D−1∥∥2 = Op (1) for

all t it holds

1.
∥∥∥D−2F̃ ′F 0Λ′0et/N

∥∥∥ = Op (N−1/2)
2.
∥∥∥e′te′F̃D−2/N

∥∥∥ = Op (∥∥D−1∥∥)
Proof. Consider (1). By Lemma 20 and Lemma 21∥∥∥∥∥D

−2F̃ ′F 0Λ′0et
N

∥∥∥∥∥ ≤
∥∥∥D−2F̃ ′F 0

∥∥∥∥∥∥∥Λ′0et√
N

∥∥∥∥N−1/2

= Op

(
N−1/2

)
Let us consider (2).∥∥∥∥∥e

′
te
′F̃D−2

N

∥∥∥∥∥ ≤
∥∥∥∥e′te′N

∥∥∥∥∥∥∥F̃D−1
∥∥∥∥∥D−1∥∥

The second component by definition is Op (1). It is now shown that the first
part is ‖e′te′/N‖ = Op (1).

‖e′te′/N‖2 =
1

N2

T∑
s=1

(e′tes)
2

≤
(
1

N

T∑
s=1

|e′tes|
)2

Moreover, by Assumption E

E

∣∣∣∣∣ 1N
T∑
s=1

|e′tes|
∣∣∣∣∣ =

T∑
s=1

E

∣∣∣∣e′tesN
∣∣∣∣

=
T∑
s=1

γ̄N (t, s)

= Op (1)

Therefore, ∥∥∥∥∥e
′
te
′F̃D−2

N

∥∥∥∥∥ = Op (1)
∥∥D−1∥∥

= Op
(∥∥D−1∥∥)
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Proof of Proposition 4. Form equation (14) it follows that

F̂t −H ′F 0t =
1

N

{
etΛ0F

0′ + e′te
′} F̃D−2

Thus, from Lemma 22 we get

F̂t −H ′F 0t = Op
(
N−1/2

)
+Op

(∥∥D−1∥∥)
Since F̃t − H̃ ′F 0t = V

−1
NT

(
F̂t − H̃ ′F 0t

)
then also

F̃t − H̃ ′F 0t = Op
(
N−1/2

)
+Op

(∥∥D−1∥∥)

The following Lemma 23 is a counterpart of the Proposition 4 for models
with only one type of nonstationary factors.

Lemma 23 If there is only one type of factors (hence, D = T dIr) and d ≥ 1
then for N , T →∞
1.
∥∥∥e′te′F̃D−2/N

∥∥∥ = Op (T−1/2 ∥∥D−1∥∥)+Op (N−1/2)
2. F̃t − H̃ ′F 0t = Op

(
N−1/2)+Op (T−1/2 ∥∥D−1∥∥)

Proof. Consider (1). Since D = T dIr then e′te
′F̃D−2/N = e′te

′F̃ /
(
T 2dN

)
and

e′te
′F̃ /
(
T 2dN

)
= NΥtF̃ /

(
T 2dN

)
+NΦtF̃ /

(
T 2dN

)
where Φt = (γN (t, 1) , ..., γN (t, T )) and Υt = ete

′/N − Φt.
We show that the first componentNΥtF̃ /

(
T 2dN

)
= Op

(
N−1/2T 3/2−2dδ−1NT

)
+

Op
(
T 1/2−dN−1/2).

NΥtF̃

NT 2d
=

1

T 2d

T∑
s=1

(
e′tes
N

− γN (s, t)
)
F̃s

=
1

T 2d

T∑
s=1

(
e′tes
N

− γN (s, t)
)(

F̃s − H̃ ′F 0s
)
+

1

T 2d

T∑
s=1

(
e′tes
N

− γN (s, t)
)
F 0s

The first part is Op
(
N−1/2T 3/2−2dδ−1NT

)
by Assumption F and Proposition 3

because

1

T 2d

T∑
s=1

(
e′tes
N

− γN (s, t)
)(

F̃s − H̃ ′F 0s
)

� 1

N1/2T 2d−3/2

(
1

T

T∑
s=1

(
F̃s − H̃ ′F 0s

)2)1/2

× 1
T

T∑
s=1

∣∣∣∣∣N−1/2
N∑
i=1

[eiteis − E (eiteis)]
∣∣∣∣∣

=
1

N1/2T 2d−1/2
Op
(
δ−1NT

)
Op (1)

= Op

(
N−1/2T 3/2−2dδ−1NT

)
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Since for all t, E
∣∣F 0t /T d−1/2∣∣ = Op (1), it follows that

E

(
1

T 2d

T∑
s=1

(
e′tes
N

− γN (s, t)
)
F 0s

)
� 1

T d−1/2N1/2
max
1�s�T

E

∣∣∣∣ F 0s
T d−1/2

∣∣∣∣
×E
(
1

T

T∑
s=1

∣∣∣∣∣ 1

N1/2

N∑
i=1

[eiteis − E (eiteis)]
∣∣∣∣∣
)

=
1

T d−1/2N1/2
Op (1)Op (1)

= Op

(
T 1/2−dN−1/2

)
Therefore,

NΥtF̃

NT 3
= Op

(
N−1/2T 3/2−2dδ−1NT

)
+Op

(
T 1/2−dN−1/2

)
= Op

(
N−1/2

)
+Op

(
T 1/2−dN−1/2

)
Next, we prove that NΦtF̃ /

(
T 2dN

)
= Op

(
T−1/2

∥∥D−1∥∥).
NΦtF̃

NT 3
=

1

T 2d

T∑
s=1

γNT (t, s) F̃s

=
1

T 2d

T∑
s=1

γNT (t, s)
(
F̃s − H̃ ′F 0s

)
+
H̃ ′

T 2d

T∑
s=1

γNT (t, s)F
0
s

The first expression is Op
(
T 1/2−2d

)
by Assumption E.1 and Proposition 3

1

T 2d

T∑
s=1

γNT (t, s)
(
F̃s − H̃ ′F 0s

)
� 1

T 2d−1/2

T∑
s=1

|γ̄NT (t, s)|
(
1

T

T∑
s=1

(
F̃s − hF 0s

)2)1/2

=
1

T 2d−1/2
Op (1)Op

(
δ−1NT

)
= Op

(
T 1/2−2d

)
The second expression is Op

(
T−1/2−d

)
because

1

T 2d

T∑
s=1

γNT (t, s)F
0
s �

1

T d+1/2

T∑
s=1

∣∣∣∣ F 0s
T d−1/2

∣∣∣∣ |γ̄NT (t, s)|
Since for all t, E

∣∣F 0t /T ∣∣ = Op (1) then by Assumption E.1
E

(
1

T d+1/2

T∑
s=1

∣∣∣∣ F 0s
T d−1/2

∣∣∣∣ |γNT (t, s)|
)

� 1

T d+1/2
max
1�s�T

E

∣∣∣∣ F 0s
T d−1/2

∣∣∣∣
T∑
s=1

|γNT (t, s)|

=
1

T d+1/2
Op (1)Op (1)

= Op

(
T−1/2−d

)
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Thus,

NΦtF̃

NT 3
= Op

(
T 1/2−2d

)
+Op

(
T−1/2−d

)
= Op

(
T−1/2−d

)
= Op

(
T−1/2

∥∥D−1∥∥)
Therefore,

e′te
′F̃D−2/N = Op

(
N−1/2

)
+Op

(
T 1/2−dN−1/2

)
+ T−1/2

∥∥D−1∥∥
= Op

(
N−1/2

)
+Op

(
T−1/2

∥∥D−1∥∥)
Consider (2). From Lemma 22 and the above point it follows that

F̂t −H ′F 0t =
1

N

{
etΛ0F

0′ + e′te
′} F̃D−2

= Op

(
N−1/2

)
+Op

(
N−1/2

)
+Op

(
T−1/2

∥∥D−1∥∥)
= Op

(
N−1/2

)
+Op

(
T−1/2

∥∥D−1∥∥)

Since F̃t − H̃ ′F 0t = V
−1
NT

(
F̂t − H̃ ′F 0t

)
then also

F̃t − H̃ ′F 0t = Op
(
N−1/2

)
+Op

(
T−1/2

∥∥D−1∥∥)

8.4 Asymptotic distribution

In this section, we derive the limiting distribution of the discussed estimators.
Firstly, we show some general results and prove Lemma 6. Next, we discuss
separately the issues associated with derivation of asymptotic distributions of
the estimators of factors, factor loadings and common components.

Lemma 24 Under Assumptions A-F, as N , T →∞,

∥∥∥N−1D−2F̃ ′ (XX ′) F̃D−2 −N−1D−2F̃ ′F 0 (Λ′0Λ0)F
0′F̃D−2

∥∥∥2 = op (1)
Proof. Let us denote

bNT = N
−1D−2F̃ ′ (XX ′) F̃D−2 −N−1D−2F̃ ′F 0 (Λ′0Λ0)F

0′F̃D−2
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Then

bNT = N−1D−2F̃ ′eΛ0F 0′F̃D−2 +N−1D−2F̃ ′F 0Λ′0e
′F̃D−2 +N−1D−2F̃ ′ee′F̃D−2

= D−2F̃ ′
(
eΛ0F

0′F̃D−2/N + F 0Λ′0e
′F̃D−2/N + ee′F̃D−2/N

)
= D−2F̃ ′

(
F̂ − F 0H

)
+D−2F̃ ′eΛ0F 0′F̃D−2/N

Thus, by Proposition 3

‖bNT ‖ /
√
2 ≤

∥∥∥D−2F̃ ′
(
F̂ − F 0H

)∥∥∥+ ∥∥∥D−2F̃ ′eΛ0F 0′F̃D−2/N
∥∥∥

≤
√
T
∥∥D−1∥∥∥∥∥D−1F̃ ′

∥∥∥( 1
T

∥∥∥F̂ − F 0H∥∥∥)1/2 + ∥∥D−1∥∥∥∥∥D−1F̃ ′
∥∥∥∥∥∥eΛ0F 0′F̃D−2/N

∥∥∥
≤ Op (1)Op

(
δ−1NT

)
+Op

(∥∥D−1∥∥)Op (1)Op (N−1/2
)

= Op
(
δ−1NT

)
Hence∥∥∥N−1D−2F̃ ′ (XX ′) F̃D−2 −N−1D−2F̃ ′F 0 (Λ′0Λ0)F

0′F̃D−2
∥∥∥ = op (1)

Proof of Lemma 6. Consider (1). From Lemma 24 it follows that∥∥∥D−2F̃ ′ (XX ′/N) F̃D−2 −D−2F̃ ′F 0 (Λ′0Λ0/N)F
0′F̃D−2

∥∥∥2 = op (1)
Let us denote V ∗NT the diagonal matrix consisting of the r largest eigenvalues
of the matrix F 0 (Λ′0Λ0/N)F

0′ multiplied by D−2 and F ∗, the corresponding
eigenvectors. Let us assume that D−1F ∗′F ∗D−1 = I. Then∥∥∥D−2F̃ ′F 0 (Λ′0Λ0/N)F

0′F̃D−2 −D−2F ∗′F 0 (Λ′0Λ0/N)F
0′F ∗D−2

∥∥∥2 = op (1)
and VNT = V ∗NT + op (1). Moreover, the diagonal elements of V

∗
NT are equal

to the eigenvalues of the matrix
(
F 0

′
F 0
)
(Λ′0Λ0/N) divided by D

−2and V ∗NT
converges to V , where Vii = limN,T→∞ V ∗NT,i > 0 by Lemma 18.
Consider (2). It can be shown that

D−1H̃ ′F 0′F 0H̃D−1 = D−1F̃ ′F̃D−1 + op (1)
= I + op (1)

Since H̃ = (Λ′0Λ0/N)F
0′F̃D−2V −1NT + op (1), it holds that

D−3V −1NT F̃
′F 0′ (Λ′0Λ0/N)F

0′F 0 (Λ′0Λ0/N)
0′
F 0′F̃ V −1NTD

−3 = I + op (1)

and

D−3V −1/2NT F̃ ′F 0′ (Λ′0Λ0/N)F
0′F 0 (Λ′0Λ0/N)

0′
F 0′F̃ V −1/2NT D−3 = VNT + op (1)
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Let us denote

RNT =

(
Λ′0Λ0
N

)1/2
QNTV

−1/2
NT

From the definition of QNT and Lemma 24 it follows that R′NTRNT = I+op (1).
Then the equation can be transformed into

D−1RNT

(
Λ′0Λ0
N

)1/2
F 0′F 0

(
Λ′0Λ0
N

)1/2
RNTD

−1 = VNT + op (1)

If the matrix D has all diagonal elements equal then it is straightforward
that

RNT

(
Λ′0Λ0
N

)1/2
D−1F 0′F 0D−1

(
Λ′0Λ0
N

)1/2
RNT = VNT + op (1)

and RNT converges in distribution to the eigenvectors of the matrix Σ
1/2
Λ ΣΣ

1/2
Λ .

Since the eigenvalues of the matrix Σ1/2Λ ΣΣ
1/2
Λ are distinct then R is unique.

Thus Q = Σ−1/2Λ RV 1/2 and Q is positive definite with probability 1.
If D has different elements on the diagonal then

Ri = lim
N,T→∞

vi

((
F 0

′
F 0/D2

ii

)
(Λ′0Λ0/N)

)

where vi (A) denotes the eigenvector of matrix A corresponding with the ith
largest eigenvalue.

8.4.1 Limiting distribution of estimated common factors

The following Lemma 25 is used in the proof of Proposition 7.

Lemma 25 Under Assumptions A-F, for N , T →∞
√
N
(
F̂t −H ′F 0t

)
→d Q′N (0,Γt)

Proof. Under the assumption N
∥∥D−2∥∥→ 0 by Proposition 4, we have

√
N
(
F̂t −H ′F 0t

)
= Op (1) +Op

(∥∥D−1∥∥N1/2
)

Thus, the limiting distribution is defined by the first term etΛ0F 0′F̃D−2/N and

√
N
(
F̂t −H ′F 0t

)
=

D−2F̃ ′F 0Λ′0et√
N

+ op (1)

= D−2F̃ ′F 0
1√
N

N∑
i=1

λieit + op (1)
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By Assumption F and Lemma 6

√
N
(
F̂t −H ′F 0t

)
→d Q′N (0,Γt)

where Q is independent of N (0,Γt) since it depends only on the common com-
ponents that are independent from idiosyncratic disturbances.
Proof of Proposition 7. Under the Lemma 2 and Lemma 25

√
N
(
F̃t − H̃ ′F 0t

)
= V −1NT

√
N
(
F̂t −H ′F 0t

)
→ dV −1QN (0,Γt)

8.4.2 Limiting distribution of estimated factors loadings

Firstly, in Lemmas 26-28, we present some general results that are needed to
prove Proposition 8. Then we present a proof of Proposition 8.

Lemma 26 Under the assumption A− F for N , T →∞ ,

H̄ = DH̃D−1 = Op (1)

and
H̄H̄ ′ →d Σ−1

Proof. Let us first notice that

D−1F̃ ′F̃D−1 = D−1H̃ ′F 0′F 0H̃D−1 +DH̃ ′F 0′
(
F̃ − F 0H̃

)
D−1

+D−1
(
F̃ − F 0H̃

)′
F 0H̃D−1

+TD−1 1
T

(
F̃ − F 0H̃

)′ (
F̃ − F 0H̃

)
D−1

By Proposition 3 and Assumption A∥∥∥∥TD−1 1
T

(
F̃ − F 0H̃

)′ (
F̃ − F 0H̃

)
D−1

∥∥∥∥ ≤ 1

T

∥∥∥F̃ − F 0H̃∥∥∥2 T ∥∥D−2∥∥
= Op

(
δ−2NT

)
= op (1)

Since D−1F̃ ′F̃D−1 = Ir = Op (1), then

H̄ ′ΣNT H̄ + H̄ ′B +B′H̄ = Op (1) (16)

where H̄ = DHD−1, ΣNT = D−1F 0′F 0D−1 andB = D−1F 0′
(
F̃ − F 0H̃

)
D−1.

Firstly, we show that ‖B‖ = Op (1). By Proposition 3 and Assumption A we
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have

‖B‖ =
∥∥∥D−1F 0′

(
F̃ − F 0H̃

)
D−1

∥∥∥
≤ ∥∥D−1F 0′

∥∥( 1
T

∥∥∥F̃ − F 0H̃∥∥∥2)1/2 ∥∥D−1∥∥√T
= Op

(
δ−2NT

)
= op (1)

Since ΣNT = Op (1) and B = op (1), then from the properties of the quadratic
form (16) it follows that H̄ ′ = Op (1). Then

H̄ ′B +B′H̄ = op (1)

and
H̄ ′ΣNT H̄ = I + op (1)

Thus, by Assumption A

H̄H̄ ′ = Σ−1NT + op (1)
→ dΣ−1

Lemma 27 Under Assumptions A-F, for N , T →∞

1. D−1F 0′
(
F̃ − F 0H̃

)
= Op

(
δ−1NT

)
2. D−1F̃ ′

(
F̃ − F 0H̃

)
= Op

(
δ−1NT

)
Proof. Consider (1). As noted by Bai (2004)

D−1F 0′
(
F̃ − F 0H̃

)
=

T∑
t=1

D−1F 0t
(
F̃t − H̃ ′F 0t

)′

≤ max
t

(√
TD−1F 0t

) 1√
T

T∑
t=1

∣∣∣F̃t − H̃ ′F 0t
∣∣∣′

Moreover,

(
T∑
t=1

∣∣∣F̃t − H̃ ′F 0t
∣∣∣′
)(

T∑
t=1

∣∣∣F̃t − H̃ ′F 0t
∣∣∣′
)′
≤ 2

T∑
t=1

(
F̃t − H̃ ′F 0t

)′ (
F̃t − H̃ ′F 0t

)

Thus, by Proposition 3∥∥∥∥∥
T∑
t=1

∣∣∣F̃t − H̃ ′F 0t
∣∣∣′
∥∥∥∥∥ ≤

∥∥∥F̃ − F 0H̃∥∥∥ = Op (δ−1NT√T)
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and under Assumption A

D−1F 0′
(
F̃ − F 0H̃

)
= Op

(
δ−1NT

)
Part (2) follows directly from (1)

D−1F̃ ′
(
F̃ − F 0H̃

)
= D−1

(
F̃ − F 0H̃

)′ (
F̃ − F 0H̃

)
+D−1H̃F 0′

(
F̃ − F 0H̃

)
= TD−1Op

(
δ−2NT

)
+Op

(
δ−1NT

)
= Op

(
δ−1NT

)

Lemma 28 Under Assumptions A-E, for N , T →∞, we have for each i(
λ̃i − H̃−1λ0i

)
= Op

(∥∥D−1∥∥ δ−1NT )+Op (∥∥D−1∥∥)
Proof. Let us consider an expression for λ̃i. Form the definition of Λ̃′ =
D−2F̃ ′X it follows that

λ̃i = D−2F̃ ′X̄i
= D−2F̃ ′

(
F0λ

0
i + ēi

)
= D−2

(
F̃ ′F0

)
λ0i +D

−2
(
F̃ ′ēi

)
Since D−2F̃ ′F̃ = I and F 0 = F 0 + F̃ H̃−1 − F̃ H̃−1 it follows

λ̃i = D−2F̃ ′F̃ H̃−1λ0i +D
−2F̃ ′

(
F 0 − F̃ H̃−1

)
λ0i +D

−2
(
F̃ ′ēi

)
= H̃−1λ0i +D

−2F̃ ′
(
F 0 − F̃ H̃−1

)
λ0i +D

−2
(
F̃ ′ēi

)
Hence,

λ̃i − H̃−1λ0i = D
−2F̃ ′

(
F 0H̃ − F̃

)
H̃−1λ0i +D

−2F̃ ′ēi

The first part is Op
(∥∥D−1∥∥ δ−1NT ). By Lemma 27∥∥∥D−2F̃ ′

(
F 0H̃ − F̃

)
H̃−1

∥∥∥ =
∥∥∥D−2F̃ ′

(
F 0H̃ − F̃

)∥∥∥∥∥∥H̃−1
∥∥∥

= Op
(∥∥D−1∥∥ δ−1NT )

From Assumption B it follows that λ0i = Op (1). Therefore,

D−2F̃ ′
(
F 0H̃ − F̃

)
H̃−1λ0i = Op

(∥∥D−1∥∥ δ−1NT )
The second part can be decomposed as follows

D−2F̃ ′ēi = D−2
(
F̃ − F 0H̃

)′
ēi +D

−2H̃ ′F 0′ēi
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By Proposition 3 the first expression

∥∥∥∥D−2
(
F̃ − F 0H̃

)′∥∥∥∥ = Op
(∥∥D−1∥∥ δ−1NT )

because ∥∥∥∥D−2
(
F̃ − F 0H̃

)′∥∥∥∥ =
∥∥D−2∥∥√T ( 1

T

∥∥∥F̃ − F 0H̃∥∥∥2)1/2
= Op

(∥∥D−2∥∥√T)Op (δ−1NT )Op (1)
= Op

(∥∥D−1∥∥ δ−1NT )
Since ēi = Op (1) then D−2

(
F̃ − F 0H̃

)′
ēi = Op

(∥∥D−1∥∥ δ−1NT ). The second
expression is D−2H̃ ′F 0′ēi = Op

(∥∥D−1∥∥)

D−2
T∑
i=1

F 0t eit � D−1max
∥∥∥√TD−1F 0t

∥∥∥ 1√
T

T∑
t=1

|eit|

= Op
(∥∥D−1∥∥)

Thus,

F̃ ′ēi
T 3

= Op
(∥∥D−1∥∥ δ−1NT )+Op (∥∥D−1∥∥)

= Op
(∥∥D−1∥∥)

Finally,

λ̂i −H−1λ0i = Op
(∥∥D−1∥∥ δ−1NT√N)+Op (∥∥D−1∥∥)

Proof of Proposition 8. By Lemma 28, we have

D
(
λ̃i − H̃−1λ0i

)
= Op

(
δ−1NT

)
+Op (1)

Thus, the limiting distribution of D
(
λ̃i − H̃−1λ0i

)
is determined by the last

term F 0′ēi. Therefore,

D
(
λ̃i − H̃−1λ0i

)
= DD−2H̃ ′F 0′ēi + op (1)

= H̄ ′ 1√
T

N∑
t=1

√
TD−1F 0t eit + op (1)

As discussed in Bai (2003), by Lemma 26

H̄H̄ ′ →d Σ−1

Thus
H̄ ′ →d H̄−1Σ−1
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where H̄ is defined in Lemma 26. Therefore, by Assumption G there is

D
(
λ̃i − H̃−1λ0i

)
→d H̄−1Σ−1N (0,Ωi)

Corollary 29 Under the Assumption A-F, for N , T →∞

D
(
λ̂i −H−1λ0i

)
→d V −1H̄−1Σ−1N (0,Ωi)

Proof. By Lemma 2 and Proposition 8

D
(
λ̂i −H−1λ0i

)
= V −1NTD

(
λ̃i − H̃−1λ0i

)
→ dV −1H̄−1Σ−1N (0,Ωi)

8.4.3 Limited distribution of estimated common components

Let us denote C0it = F 0′t λ
0
i and Ĉit = F̂ ′t λ̂i. The asymptotic distribution of

common components follows from the above Proposition 7 and 8.
Proof of Proposition 9. From the definition of Ĉit and C0it, we get

Ĉit − C0it =
(
F̃t − H̃ ′F 0t

)′
H̃−1λ0i + F̃

′
t

(
λ̃i − H̃−1λ0i

)
By Proposition 4 and Assumption B we have that(

F̃t − H̃ ′F 0t
)′
H−1λ0i = Op

(
N−1/2

)
+Op

(∥∥D−1∥∥)
Finally, by Proposition 8 and Lemma 28

F̃ ′t
(
λ̃i − H̃−1λ0i

)
= F̃ ′tD

−1√TD
(
λ̃i − H̃−1λ0i

)
T−1/2

= Op

(
T−1/2

)
+Op

(
δ−1NTT

−1/2
)
= Op

(
T−1/2

)
1. If N/T → 0 then N1/2

∥∥D−1∥∥→ 0 and

√
N
(
Ĉit − C0it

)
= Op (1) +Op

(
N1/2T−1/2

)
= Op (1) + op (1)

Thus, by Proposition 4
√
N
(
Ĉit − C0it

)
= λ0′i H̃

−1′√N
(
F̃t − H̃ ′F 0t

)
+ op (1)

→ dλ0′i
(
V −1QΣΛ

)−1
V −1QN (0,Γt)

= λ0′i ΣΛN (0,Γt)
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2. If T/N → 0 then

√
T
(
Ĉit − C0it

)
= Op

(
T 1/2N−1/2

)
+Op (1)

= op (1) +Op (1)

By Proposition 8 and under assumption t/T = τ

√
T
(
Ĉit − C0it

)
= F̃ ′t

√
TD−1D

(
λ̃i − H̃−1λ0i

)
+ op (1)

= F 0′t H̃
√
TD−1D

(
λ̃i − H̃−1λ0i

)
+ op (1)

= F 0′t
√
TD−1H̄D

(
λ̃i − H̃−1λ0i

)
+ op (1)

→ dF ′τ H̄
(
H̄
)−1

Σ−1Wi

= F ′τΣ
−1Wi

3. If N/T → π and t/T = τ

√
N
(
Ĉit − C0it

)
= Op (1) +

√
πOp (1)

= λ0′i H
−1′√N

(
F̂t −H ′F 0t

)
+
√
πF 0′t

√
TD−1D

(
λ̂i −H−1λ0i

)
+ op (1)

→ dλ0′i ΣΛN (0,Γt) +
√
πF ′τΣ

−1Wi

8.4.4 Confidence intervals

Consider the rotation of F̃ towards an observable variable Rt described by the
regression

Rt = α+ β
(
H̃−1F̃t

)
+ error

Let
(
α̂, β̂
)
be the least-squares estimator of (α, β) and R̂t = α̂+ β̂

(
H̃−1F̃t

)
.

In Lemma 30 we show some properties of the factor estimators that are used
in the proof of Proposition 10.

Lemma 30 Under Assumptions A-E and T
∥∥D−2∥∥ ≤M we have for N , T →

∞

1. If N1/2T−1/2
∥∥D−1∥∥→ 0 then∥∥∥N1/2T−1/2D−1F̃ ′

(
F̃ − F 0H̃

)∥∥∥ = N1/2T−1/2Op
(
δ−1NT

)
= op (1)
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2. If N1/2T−1/2
∥∥D−1∥∥→ 0 then∥∥∥∥∥N1/2T−1

T∑
t=1

(
F̃t − H̃ ′F 0t

)∥∥∥∥∥ = N1/2T−1/2Op
(
δ−1NT

)
= op (1)

3.
∥∥∥D−1T 1/2F̃t

∥∥∥ = Op (1)
Proof. Consider (1). Let us notice that∥∥∥N1/2T−1/2D−1F̃ ′

(
F̃ − F 0H̃

)∥∥∥ = ‖D‖T−1/2 ∥∥∥N1/2D−2F̃ ′
(
F̃ − F 0H̃

)∥∥∥
By Lemma 27∥∥∥N1/2D−2F̃ ′

(
F̃ − F 0H̃

)∥∥∥ = Op

(
N1/2

) (
Op
(
δ−2NTT

∥∥D−2∥∥)+Op (∥∥D−1∥∥ δ−1NT ))
= Op

(
N1/2δ−2NTT

∥∥D−2∥∥)+Op (N1/2
∥∥D−1∥∥ δ−1NT)

= Op

(
N1/2δ−2NT

)
+Op

(
N1/2

∥∥D−1∥∥ δ−1NT)
= Op

(
δ−1NT

)
+Op

(∥∥D−1∥∥) = op (1)
Thus, ∥∥∥N1/2T−1/2D−1F̃ ′

(
F̃ − F 0H̃

)∥∥∥ = ‖D‖T−1/2op (1)
= op (1)

Consider (2).

∥∥∥∥∥
T∑
t=1

(
F̃t − H̃ ′F 0t

)∥∥∥∥∥
2

= tr

⎛
⎝( T∑

t=1

(
F̃t − H̃ ′F 0t

))( T∑
t=1

(
F̃t − H̃ ′F 0t

))′⎞
⎠

≤ tr

(
2

T∑
t=1

(
F̃t − H̃ ′F 0t

)(
F̃t − H̃ ′F 0t

)′)

= 2tr

((
F̃ − F 0H̃

)′ (
F̃ − F 0H̃

))

= 2
∥∥∥F̃ − F 0H̃∥∥∥2 = Op (Tδ−2NT )

Thus, ∥∥∥∥∥N1/2T−1
T∑
t=1

(
F̃t − H̃ ′F 0t

)∥∥∥∥∥ = N1/2T−1/2Op
(
δ−1NT

)
Consider (3). D−1T 1/2F̃t can be decomposed into two parts∥∥∥D−1T 1/2F̃t

∥∥∥ = ∥∥∥D−1T 1/2
(
F̃t − H̃ ′F 0t

)∥∥∥+ ∥∥∥D−1T 1/2H̃ ′F 0t
∥∥∥
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By Proposition 4,
∥∥∥F̃t − H̃ ′F 0t

∥∥∥ = op (1). Moreover, by Assumption A∥∥∥D−1T 1/2F̃t
∥∥∥ = op (1) +

∥∥H̄ ′∥∥∥∥∥D−1T 1/2F 0t
∥∥∥

= op (1) +Op (1) = Op (1)

Proof of Proposition 10. One can express R̂t − α− βF 0t as follows

R̂t − α− βF 0t = α̂+ β̂
(
H̃−1′F̃t

)
− α− βF 0t

= (α̂− α) +
(
β̂ − β

)(
H̃−1′F̃t

)
+ βH̃−1′

(
F̃t − H̃ ′F 0t

)
Thus,
√
N
(
R̂t − α− βF 0t

)
=
√
N (α̂− α)+

√
N
(
β̂ − β

)(
H̃−1′F̃t

)
+
√
NβH̃−1′

(
F̃t − H̃ ′F 0t

)
It can be shown that the first two terms are op (1). Let us denote Zt =[

1,
(
H̃−1F̃t

)′]
and a T × (1 + r) matrix Z ′ = [Z ′1, . . . , Z

′
T ]. We write ι to

describe a T × 1 vector ι′ = [1, ..., 1]. The parameter vector ψ = (α, β)
′ is

estimated with the least-squares method. Thus, ψ̂ = (Z ′Z)−1 Z ′R. Under the
null Rt = α + βF 0t = α + β

(
H̃−1′F̃t

)
+ βH̃−1′

(
H̃ ′F 0t − F̃t

)
and in matrix

notation R = Zψ +
(
F 0H̃ ′ − F̃

)
H̃−1β′. Therefore,

ψ̂ = (Z ′Z)−1 Z ′R

= (Z ′Z)−1 Z ′Zψ + (Z ′Z)−1 Z ′
(
F 0H̃ ′ − F̃

)
H̃−1β′

= ψ + (Z ′Z)−1 Z ′
(
F 0H̃ ′ − F̃

)
H̃−1β′

So
ψ̂ − ψ = (Z ′Z)−1 Z ′

(
F 0H̃ ′ − F̃

)
H̃−1β′

Let us define a (1 + r)× (1 + r) diagonal matrix

DT =

[
T 1/2 0
0 D

]

where DT is the scaling matrix. Then(
ψ̂ − ψ

)
= D−1

T MD−1
T Z ′

(
F 0H̃ ′ − F̃

)
H̃−1β′

with M =
(
D−1
T Z ′ZD−1

T

)−1
= Op (1). Let us denote the blocks of the matrix

M as follow

M =

[
M11 M1F

MF1 MFF

]
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where M11 is a 1× 1 matrix and MFF is a r × r matrix.
This implies that by Lemma 27 and Lemma 30

∥∥∥√N (α̂− α)∥∥∥ = op (1)∥∥∥√N (α̂− α)∥∥∥ /√2 =
∥∥∥N1/2T−1/2MD−1

T Z ′
(
F 0H̃ ′ − F̃

)
H̃−1β′

∥∥∥ /√2
≤

∥∥∥N1/2T−1/2M11T
−1/2ι′

(
F 0H̃ ′ − F̃

)
H̃−1β′

∥∥∥
+
∥∥∥N1/2T−1/2M1FD

−1H̃−1′F̃ ′
(
F 0H̃ ′ − F̃

)
H̃−1β′

∥∥∥
= ‖M11‖

∥∥∥∥N1/2

T
ι′
(
F 0H̃ ′ − F̃

)∥∥∥∥∥∥∥H̃−2β′
∥∥∥

+ ‖M1F ‖
∥∥∥∥N1/2

T 1/2
D−1F̃ ′

(
F 0H̃ ′ − F̃

)∥∥∥∥∥∥∥H̃−2β′
∥∥∥

= Op (1) op (1)Op (1) +Op (1) op (1)Op (1)

= op (1)

By Lemma 30
√
N
(
β̂ − β

)(
H̃ ′F̃t

)
= op (1)∥∥∥√N (β̂ − β)(H̃ ′F̃t

)∥∥∥ /√2 =
∥∥∥N1/2D−1/2MD−1

T Z ′
(
F 0H̃ ′ − F̃

)
H̃−1β′H̃ ′F̃t

∥∥∥ /√2
≤

∥∥∥N1/2D−1MF1T
−1/2ι′

(
F 0H̃ ′ − F̃

)
H̃−1β′H̃ ′F̃t

∥∥∥
+
∥∥∥N1/2D−1MFFD

−1H̃−1′F̃ ′
(
F 0H̃ ′ − F̃

)
H̃−1β′H̃ ′F̃t

∥∥∥
= ‖MF1‖

∥∥∥∥N1/2

T
ι′
(
F 0H̃ ′ − F̃

)∥∥∥∥∥∥∥D−1T 1/2F̃t
∥∥∥∥∥∥H̃−3β′

∥∥∥
+ ‖MFF ‖

∥∥∥∥ N1/2

T−1/2
D−1F̃ ′

(
F 0H̃ ′ − F̃

)∥∥∥∥∥∥∥D−1T 1/2F̃t
∥∥∥∥∥∥H̃−2β′

∥∥∥
= op (1)

Therefore,
√
N
(
R̂t − α− βF 0t

)
= op (1) +

√
NβH̃−1′

(
H̃ ′F 0t − F̃t

)

Since
(
β̂ − β

)
= op (1) and

√
N
(
F̃t − H̃ ′F 0t

)
= Op (1), then β can be replaced

with β̂ and
√
N
(
R̂t − α− βF 0t

)
= op (1) +

√
Nβ̂H̃−1′

(
H̃ ′F 0t − F̃t

)
Finally, by Proposition 7

√
N
(
R̂t − α− βF 0t

)
→ dβ̂H̃−1′V −1QN (0,Γt)

= δ̂V −1QN (0,Γt)
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