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Abstract 
In a Bayesian interaction game players have diverse preferences and are randomly matched according 
to an inhomogeneous random graph. A co-evolutionary process of networks and play gives a dynamic 
formalism for the joint evolution of the random graph and the actions the players use per match. 
Assuming that the players select actions and links according to log-linear functions taking as 
arguments the reward per match, we provide closed form solutions for the joint invariant distribution 
of the co-evolutionary process. We give sufficient conditions for the general selection of potential 
maximizers in the small noise limit, and also discuss concentration of the invariant distribution in the 
large population limit. Further, we present a general characterization theorem that a co-evolutionary 
process generates inhomogeneous random graphs, a large and important class of random graphs 
recently discussed in the economic and mathematical literature on random networks. 
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1 Introduction

In an interaction game (Morris, 1997) players are involved in a series of in-

teractions. An interaction, or matching, can be modeled as the outcome of

a random graph process. Random graph models provide a flexible model-

ing environment to study interaction games on general interaction struc-

tures, and therefore have been used frequently in the literature on social

interactions (Horst and Scheinkman, 2006), communication (Kirman et al.,

1986) and diffusion (Jackson and Yariv, 2008).1 In these papers it is as-

sumed that there exists a certain exogenous and independent probability

that two agents are randomly matched in order to play some given game.

The purpose of this paper is to propose a model where these interaction

probabilities (or edge-success probabilities) evolve over time as a function of

the actions used by the two players, which are themselves dynamic vari-

ables. Such a two-sided process, which we call a co-evolutionary process of

networks and play, has been studied in Staudigl (2010b) in the context of

partnership games (Hofbauer and Sigmund, 1988). We extend our previ-

ous work by presenting some more general results in terms of the induced

interaction structure and by introducing (random) heterogeneity in the

preferences of the players.2 On the technical side we make in this paper

the transition rates dependent on the population size, which gives us an

additional adjustable parameter. This added flexibility of the model will

lead to new insights, both in terms of the long-run interaction structure

as well as the distribution over strategies players use in the long run. In

terms of economic interpretations, we prove a general representation the-

orem that says that a co-evolutionary process of networks and play gener-

ates an inhomogeneous random graph. This type of random graph has been

studied in physics and mathematics intensively (see e.g. Söderberg (2002)

and Bollobás et al. (2007)). In the field of social and economic networks

this random graph has been used by Golub and Jackson (2010) (who call

it a multi-type random network) to study the influence of homophily in

models of social learning.

As static model we consider Bayesian interaction games. For a fixed (com-

monly known) pattern of interactions we assume that each player’s util-

ity function consists of two terms; (i) the expected reward of a player in

an interaction game having the partnership structure and (ii) an idiosyn-

1The explosive field of social and economic networks is nicely surveyed by the books

of Goyal (2007), Jackson (2008b) and Vega-Redondo (2007) where many more possible

applications can be found.
2See also the models of Ehrhardt et al. (2006a;b; 2008) for early proponents of the co-

evolutionary approach in economics.
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cratic payoff component interpreted as the type of the player. Assump-

tion (i) guarantees that the game is an exact potential game in the sense

of Monderer and Shapley (1996). Types are random realizations from an

i.i.d. draw from a common finite type space.3 Utility functions of this

kind can be used in various social and economic settings, and we provide

two canonical examples, a coordination game on a network and the linear-

quadratic game of Ballester et al. (2006), which fall into the class of games

we study. For our dynamic study we fix an arbitrary profile of types in

the population and study the asymptotic behavior of a continuous-time

Markov process similar to Staudigl (2010b) (this could be interpreted as

a dynamic process on the ex-post stage of the Bayesian game, i.e. when

players get to know their own types). Our results concerning the random

dynamics are as follows.

We start in Section 3.1 with the characterization of the structure of the

random graph generated by the process. As mentioned above, we show

that a co-evolutionary process of networks and play can be used as a

dynamic model that explains the formation of inhomogeneous random

graphs (IHRG). Our representation theorem is proved as a conditional

statement. First, we condition on a type profile, and second we condition

on an arbitrary action profile. For every pair of type-action profiles the

full structure of the IHRG is proven, so that at each point in the relevant

part of the state space a full characterization of the random graph is avail-

able. We then proceed in Section 3.2 in presenting a closed form solution

of the joint invariant distribution of the Markov process under the addi-

tional assumption that the attachment mechanism, describing how two

players get to form a link with each other, is a log-linear function of the

mutual rewards the players receive per interaction.4 The economic inter-

pretation is that players who expect a higher reward, are more likely to

meet in the link creation process.5 By making this functional assumption

we do not only gain the possibility to proceed with a full analytical study

3Our terminology of calling the normal form game a Bayesian interaction game comes

from the fact that viewing the game from an aggregate perspective the model can be seen

as a particular version of the Bayesian population games of Ely and Sandholm (2005). The

word interaction should highlight that our games are played on (random) networks, and

so the utilities of the agents will depend on the (realized) network.
4Log-linear functions are very common in the statistical literature on random graphs.

The p∗-models, building on the Markov graphs of Frank and Strauss (1986), are a promi-

nent examples. See Robins et al. (2007) for a recent survey.
5As in Staudigl (2010b) we could alternatively interpret the link creation process as a

process where players engage in active search for new interaction partners, where the rate

at which two players find themselves is an increasing function in the utility they get from

being connected.
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of the random dynamics, but also gives a modeler a socio-economic in-

terpretation of the IHRG, as we argue in Section 3.1.6 The closed form

of the joint invariant distribution is an extension of Staudigl (2010b) and

is key to our final investigation of equilibrium selection, which we start

in Section 4. Conditional on a realization of types, the co-evolutionary

process depends on two exogenous parameters: The number of players

(N), and a noise parameter (β) modeling the degree of (bounded) ratio-

nality of the players, how they form links and how they choose actions.

When either N goes to infinity or β shrinks to 0 we obtain a sequence

of invariant distributions, whose support will concentrate on certain sub-

sets of the state space. Hence, both of these limit exercises can be used

for equilibrium selection.7 In the small noise limit we provide sufficient

conditions on the shape of the rate functions of the co-evolutionary pro-

cess which guarantee the selection of potential maximizers in the long-

run. This extends previous results of Staudigl (2010b) to more general

network formation dynamics. Further, it gives an alternative way to assess

the robustness of potential maximizers against endogenous interaction.8

In particular, this results implies that in the small noise limit all pairs of

networks and action profiles, which are in the support of the limiting in-

variant distribution, are mutually consistent in the sense that the action

profile is a Nash equilibrium on the respective network. This observation

is used to give a game-theoretic interpretation of the invariant distribu-

tion as a correlation device of the players, which we call a (β, ρ)-correlated

equilibrium.9 Finally, our investigation of the large population limit fo-

cuses on the marginal distribution over action profiles. Since the interac-

tion structure is completely characterized in Section 3.1, the study of the

marginal distribution on the set of action profiles is the only remaining

part in order to achieve a complete characterization of the long-run be-

havior of the invariant distribution. In the large population limit we are

6In his recent book Jackson (2008b) criticizes the use of random graph models exactly

because they lack any socio-economic foundation. We think that our model is one possi-

bility to provide such a foundation.
7As discussed in more detail in section 3.1 we are not able to take the double limit

(N, β) → (∞, 0) at the same speed, due to the connection with law of the random graph

and the noise level β. In essence, as β → 0 the random graph tends to be degenerate at

the complete network at an exponential rate (this comes from our log-linear specification).

Hence, we have to take these two limits separately to get meaningful results.
8It has been shown in Ui (2001), and extended in Morris and Ui (2005), that potential

maximizers are robust against incomplete information in the sense of Kajii and Morris

(1997).
9See Mailath et al. (1997) for a similar result. This (approximate) equilibrium concept

is inspired by the ex-post Nash equilibrium of Kalai (Kalai, 2004, Definition 4, p. 1641).
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interested in the aggregate play of the agents, which we measure in terms

of Bayesian strategies. A Bayesian strategy records the relative frequency

of players of a certain type who play a certain action, and can therefore

be interpreted as a map from the type space to the action space. Hence,

it formally agrees with the conventional definition of a Bayesian strategy,

justifying its name.10 In this section we show that, for a fixed and positive

level of noise, the measure over Bayesian strategies selects maximizers of a

so-called “logit-potential function” (Hofbauer and Sandholm, 2002; 2007).

Maximizers of a logit-potential function are approximate Nash equilibria,

whose distance from Nash equilibrium population profiles depends on

the degree of noise. Hence, small noise limits and large population lim-

its will, in general, predict different outcomes in the long-run. Moreover,

the large population limit produces a well-defined random graph model,

whereas the small noise limit always has the tendency to produce densely

connected networks (see section 3.1 for a formal statement). Therefore, we

think that in a model of the kind studied in this paper the large population

limit should be of more relevance.11

The rest of the paper is organized as follows. Section 2 introduces Bayesian

interaction games and the co-evolutionary process of networks and play.

Section 3 starts our investigation of the long-run properties of the co-

evolutionary process, conditional on an arbitrary type profile. The random

graph representation theorem is provided in Section 3.1. Section 3.2 gives

the closed-form of the joint invariant distribution of the co-evolutionary

process. The final section of this paper is concerned with equilibrium

selection. Section 4.1 treats the small noise limit behavior of the invari-

ant distribution, while section 4.2 studies the large population limit. Two

technical appendices accompany the paper where lengthy and technical

proofs, omitted from the main text, are collected.

2 Co-evolutionary dynamics

One of the main concerns of this paper is to propose a dynamic model

where players adjust their actions and their interaction network perpetu-

ally. We do this in form of a stochastic evolutionary process, which we

10This population based interpretation of Bayesian strategies is due to Ely and Sandholm

(2005).
11The large population limit also captures the fact that most social and economic net-

works of interest are large and show a complicated topological structure. In evolutionary

game theory there is a long lasting debate on which limit should be given precedence. An

early account of the different aspects the two limit operations emphasize can be found in

Binmore et al. (1995) and Binmore and Samuelson (1997).
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call a co-evolutionary process of networks and play. Before describing the ran-

dom dynamics in some detail, we present the static game-theoretic model.

The notation we employ is as follows. For any finite set V we denote by

V2 the set of ordered pairs of elements in this set, while V (2) is the set of

unordered pairs of elements. The set of probability distributions on the

finite set V is denoted by ∆(V). The indicator function of an arbitrary set

A is denoted as 1A(·), i.e. 1A(x) = 1 if x ∈ A and 0 otherwise. Bold

letters are used to denote tuples and matrices. On the real vector space

Rn we declare the standard inner product as 〈x, y〉 := ∑
n
i=1 xiyi for all

x, y ∈ Rn. We identify networks (or graphs) as a tuple of binary variables

g = (gij)(i,j)∈V (2) , gij ∈ {0, 1}. For a given network g we use the notation

g ⊕ (i, j) to indicate that the (previously not existing) edge (i, j) is added to

the network. Similarly, we denote by g ⊖ (i, j) the network obtained from

g by deleting the edge (i, j).

2.1 Bayesian interaction games

We start by presenting the game theoretic framework on which the co-

evolutionary dynamics operate. At the end of the section we provide two

concrete examples to which a Bayesian interaction game may be applied.

We consider a family of normal form games Γ, whose members are Bayesian

interaction games ΓN
p =

〈

[N], A, Θ, (Ui(·, p, τ̃i))i∈[N]

〉

. [N] := {1, 2, . . . , N}
is the set of players, A is a finite set of actions and Θ := {θ1, . . . , θK|θk :

A → R} is the finite set of types of the players. We denote by ai the action

of player i. τi is a realization of the random variable τ̃i ∈ Θ modeling the

type of player i ∈ [N]. Each player can be of K different types, where K

is an arbitrary integer. An action profile is a list a := (a1, . . . , aN) and a

type profile is a list τ := (τ1, . . . , τN). The array p := (pij)j>i is a list of

interaction probabilities which are commonly known to the players. Interac-

tion probabilities have the property that (i) they are symmetric, i.e pij = pji

for all j 6= i, and (ii) there is no self-matching, i.e pii = 0 for all i ∈ [N].

The number pij ∈ [0, 1] is the independent probability that player i will

be matched with player j (and vice versa). We therefore have in mind

that matchings are realizations of an inhomogeneous random graph (IHRG),

according to the following definition.

Definition 1. For a given number of players N let G[N] denote the set of all

undirected and unweighted graphs on the vertex set [N] identified by a tuple g :=

(gij)(i,j)∈[N](2) . The indicator function gij ∈ {0, 1} is interpreted as a link (edge)

between player i and j (and vice versa). An inhomogeneous random graph is

a probability model G[N, p] in which each link is an independent Bernoulli(pij)
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random variable.

Remark 1. Note that the above definition covers “degenerate” situations where

the random graph puts probability 1 to a given fixed network g.

Given an action profile a and a profile of types τ, the expected payoff of

player i is assumed to be

Ui(a, p, τi) = ∑
j 6=i

πi(ai, aj)pij + τi(ai). (2.1)

The interpretation of this utility function is that each player is involved in

a series of 2-player games, each of these is played with the independent

probability pij. In a match with an opponent player i’s reward is measured

by the function πi. The weighted sum of all rewards measures the total

reward the player makes out of his interactions. On top of this, each

player can have an idiosyncratic preference over the set of available actions.

For our analytical results we require additional structure on the form of

the reward functions of the players. We say that an interaction game is

an exact potential game (Monderer and Shapley, 1996) if there exists a

function V(·, p, τ) : AN → R with the property that

V((a, a−i), p, τ)−V((b, a−i), p, τ) (2.2)

= Ui((a, ai), p, τi)− Ui((b, a−i), p, τi)

for all i ∈ [N], a, b ∈ A, a−i ∈ AN−1. Sufficient (though not necessary) for

being a potential game is that ΓN
p has the partnership structure (Hofbauer and Sigmund,

1988), i.e. if the reward function of every player i ∈ [N] can be expressed

through a single function v : A2 → R+ such that

πi(a, b) = v(a, b) = v(b, a)

for all a, b ∈ A. Interaction games with the partnership structure capture

situations where all agents have the same reward function, and the payoff

function of every player is the sum of all per-interaction rewards.12 We

call ΓN
p (τ) the complete information game when the type profile is fixed

to be τ.

Lemma 2.1. The interaction game ΓN
p (τ) with common reward function v is an

exact potential game with potential function

V(a, p, τ) =
1

2 ∑
i,j∈[N]

v(ai, aj)pij + ∑
i∈[N]

τi(ai) (2.3)

12However, having the partnership structure does not imply that all agents earn the

same payoff in the interaction game since the interaction model will in general prescribe

different interactions to different players.
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Proof. We have to show that the function V(·, p, τ) satisfies condition (2.2).

If V is defined as in (2.3), then the left-hand side boils down to

1

2 ∑
j∈[N]

[

v(a, aj)− v(b, aj)
]

pij +
1

2 ∑
j∈[N]

[

v(aj, a)− v(aj, b)
]

pji + τi(a)− τi(b)

and the claim follows by symmetry of the reward function v and the inter-

action probabilities pij.

Note that the characterization of the potential function is in particular true

in the case of degenerate interactions, i.e. where player interaction takes

place on a deterministic network g. Further it is “global” in the sense

that it holds for every realization of types and every array of interaction

probabilities p. An interaction game is played as follows. First we fix the

number of players N ≥ N0 ≥ 2. Then each player receives his type τi inde-

pendently of any other player. The distribution of types in the population

depends on the population size N and is governed by a reference proba-

bility vector q := (q1, . . . , qK) ∈ int ∆(Θ), which can be interpreted as the

common prior of the players. A random type profile is an N-sequence

of random variables τ̃(N) := (τ̃
(N)
1 , . . . , τ̃

(N)
N ). A realization defines a type

profile τ ∈ ΘN . Every realized type profile generates an (empirical) type

distribution, denoted as MN = (MN
1 , . . . , MN

K ), which is a point in ∆(Θ),

and defined as

MN
k (τ) :=

1

N

N

∑
i=1

1θk
(τi)

for all 1 ≤ k ≤ K. It is a random element of the set

LN := {m ∈ ∆(Θ)|(∃τ ∈ ΘN) : MN(τ) = m}.

Conversely, we can also consider the set of type realizations which result

in a targeted distribution m ∈ ∆(Θ). Formally, let us define the type class

set

T N(m) := {τ ∈ ΘN|MN(τ) = m}.

The probability that a type profile τ ∈ T N(m) is realized under q is there-

fore

Pq(τ̃
(N) = τ) =

K

∏
k=1

qNmk

k (2.4)

Finally we decide upon the inhomogeneous random graph (which could

be a single network g, recall remark 1). Players choose actions indepen-

dently and are paid according to their utility function Ui(a, g, τi), where g

is a realized network from the random graph G[N, p]. Let us close this sec-

tion with two examples illustrating the possible applications of Bayesian

interaction games.
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Example 1 (Technology-choice game). Let us consider the following version

of a technology choice game. There is a large population of players, where each

player must make a choice between two competing technologies, say two com-

peting operating systems for a PC, independently of the choices of the opponent

players. For simplicity let us assume that the random graph is degenerate in the

sense that all interactions take place on a fixed network g. For illustration we only

need to assume that players know their neighbors but not necessarily the complete

topology of the network.13 In a pairwise interaction the reward function is given

by the payoff matrix

v =

(

1 0

0 4

)

.

There are two types of players in the population. The first type, θ1, has a strong

preference for operating system 1, which means that his idiosyncratic preference

may look like θ1(1) = 8 and θ1(2) = 0. The second type, θ2, is indifferent to

the operating systems so that we may set θ2(1) = θ2(2) = 1. The payoffs of an

agent of type θ1 using action 1 is Ui((1, a−i), g, θ1) = di(g)− di,2(g) + 8, where

di,2(g) denotes the number of interactions of player i in which he meets players

who choose the second operating system and di(g) measures the total number of

interactions of player i (i.e. his degree). Similarly, the payoff to player i from

action 2 is Ui((2, a−i), g, θ1) = 4di,2(g). Adopting the second operating system,

a choice contradicting the idiosyncratic preference, is a best response for i if and

only if
di,2(g)
di(g)

>
1
5 + 8

5di(g)
. Hence, a player who has to coordinate his decision

with many other agents, will put less weight on his idiosyncratic preference and

more weight on the common reward function.

Example 2 (Linear-quadratic games). The linear-quadratic game of Ballester et al.

(2006) is a Bayesian interaction game with the partnership structure, if we restrict

their utility function to a finite subset of the integers. Let A := {0, 1, . . . , n}, and

define the reward functions of the players as v(a, b) := κab. κ is a real parameter

which defines whether the actions of the players are strategic substitutes (κ < 0)

or strategic complements (κ > 0). The type space is degenerate to a single point

Θ = {θ}, where θ(a) := a − 1
2 a2. Hence, the utility function of player i takes

the form

Ui(a, g, τi) ≡ Ui(a, g) = κ · ai

N

∑
j=1

gijaj + ai −
1

2
a2

i ,

which is seen to be a particular version of the linear-quadratic game studied by

Ballester et al. (2006), restricted to binary interactions and discrete action spaces.

13This may not suffice for players to compute a (Bayes) Nash equilibrium, a thing we

deliberately don’t do in this paper.

8



This game has an exact potential function given by14

V(a, g, τ) :=
N

∑
i=1

ai −
1

2

(

N

∑
i=1

a2
i − κ ∑

i,j

gijaiaj

)

,

which is easily seen to be of the form (2.3).

2.2 Co-evolution of networks and play

Our dynamic model builds on a class of continuous-time Markov pro-

cesses, which we have called in Staudigl (2010b) co-evolutionary processes

of networks and play. A co-evolutionary model is a time-homogeneous

Markov jump process {Xβ,τ,N(t)}t≥0 taking values on the finite state space

ΩN = AN × G[N]. An element of this space is denoted by ω = (a, g) and

is called a population state. The process is parameterized by three variables:

• β the behavioral noise,

• τ the realized type profile, and

• N the population size.

For every population state ω we can define projection mappings α : ΩN →
AN and γ : ΩN → G[N]. The evolutionary process must be specified for

the events of action revision, link creation and link destruction. These

events are modeled as conditionally independent random processes, each

defined by a collection of rate functions so that the dynamics is described

by the infinitesimal generator (η
β,τ,N
ω,ω′ )ω,ω′∈ΩN . The rate of a transition from

a state ω to some other state ω′ is defined as

η
β,τ,N
ω,ω′ =















ℓ
i,β
a (ω|τi) if ω′ = ((a, α−i(ω)), γ(ω)),

c
β,N
ij (α(ω), τ) if ω′ = (α(ω), γ(ω)⊕ (i, j)),

ξ
β,N
ij (τ) if ω′ = (α(ω), γ(ω)⊖ (i, j)).

The meaning of these rate functions will be clarified below. Sample paths

of the process are characterized by random jump times {Jn}n≥0. The chain

sampled at the jump times has values Xβ,τ,N(Jn) = X
β,τ,N
n , and appears

formally as a discrete-time Markov chain.15 Each Jn+1 is measurable with

respect to the filtration Fn = σ
(

{J0, . . . , Jn}, {X
β,τ,N
0 , . . . , X

β,τ,N
n }

)

, n ≥ 0.

We set J0 = 0 and Xβ,τ,N(0) = X
β,τ,N
0 , which is an arbitrarily chosen

14See also König and Staudigl (2010) for the case with continuous action spaces, and

further investigations of this model in the light of network formation algorithms.
15This is called the embedded jump chain of the process. See e.g. Stroock (2005).
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network g and an action profile a ∈ AN . The rates will be constructed

such that Jn < ∞ for all n ≥ 1. For all ω ∈ ΩN let us define

η
β,τ,N
ω := ∑

ω′∈ΩN\{ω}
η

β,τ,N
ω,ω′ ∈ (0, ∞).

This measures the rate of leaving state ω. For all t ≥ 0 transitions of

Xβ,τ,N(t) are described by

P

(

X
β,τ,N
Jn+1

= ω′, Jn+1 − Jn > t|Fn

)

= P

(

X
β,τ,N
Jn+1

= ω′, Jn+1 − Jn > t|Xβ,τ,N
Jn

)

= exp(−tη
β,τ,N
ω )

η
β,τ,N
ω,ω′

η
β,τ,N
ω

We turn now to the interpretation of the rate functions. If not stated differ-

ently, these are all the properties we assume on the nature of the transition

rates.

Action adjustment: Each agent is endowed with an independent Poisson

alarm clock of intensity 1, so that the conditional probability that

agent i receives an action revision opportunity is 1/N. In case of

such an event we assume that the agent switches to action a ∈ A

with probability determined by the log-linear response function

(∀a ∈ A) : ℓ
i,β
a (ω|τi) =

exp
(

β−1Ui((a, α−i(ω)), γ(ω), τi)
)

∑b∈A exp (β−1Ui((b, α−i(ω)), γ(ω), τi))

The rate of the transition ω → ω′ = ((a, α−i(ω)), γ(ω)) is therefore

η
β,τ,N
ω,ω′ = ℓ

i,β
a (ω|τi). (2.5)

Link creation: A process of link creation describes the rates at which the

indicator functions (gij)j>i flip from 0 to 1. These rates are defined

via an attachment mechanism.

Definition 2. An attachment mechanism Cβ,τ,N is a collection of func-

tions c
β,N
ij (·, τ) : AN → R+, such that for all β > 0 the conditions

(B) supa∈AN ∑j>i c
β,N
ij (a, τ) < ∞, and

(Sym) (∀i, j ∈ [N])(∀a ∈ AN) : c
β,N
ij (a, τ) = c

β,N
ji (a, τ)

are satisfied.

The rate of the transition ω → ω′ = (α(ω), γ(ω)⊕ (i, j)) is therefore

η
β,τ,N
ω,ω′ = (1 − γij(ω))c

β,N
ij (α(ω), τ). (2.6)
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Link destruction: A process of link destruction describes the rates at which

the indicator functions (gij)j>i flip form 1 to 0. These rates are de-

scribed via a volatility mechanism.

Definition 3. A volatility mechanism Ξ
β,τ,N is a collection of positive

functions (ξ
β,N
ij (τ))i,j∈[N], where each ξ

β,N
ij (τ) depends on the type realiza-

tions of players i and j alone. It is called an admissible volatility mech-

anism if every function satisfies conditions (B) and (Sym) of definition 2,

and additionally

(SNB) For all τ ∈ ΘN and all i, j ∈ [N], it satisfies small noise bounded-

ness, i.e. the bound

0 < ξN
− ≤ ξ

β,N
ij (τ) ≤ c exp( f

β
τi ,τj

)

holds uniformly in β ∈ (0, ∞) for some function f β : Θ2 → R+ that

satisfies limβ→0 β f
β
θk ,θl

= 0 for all 1 ≤ k, l ≤ K.

(LPB) For all τ ∈ ΘN and all i, j ∈ [N], it satisfies large population

boundedness

0 < ξ
β
− ≤ lim

N→∞

{

inf
j>i

ξ
β,N
ij (τ)

}

≤ lim
N→∞

{

sup
j>i

ξ
β,N
ij (τ)

}

≤ ξ
β
+ < ∞

The numbers ξ
β,N
ij (τ) are the volatility rates and are fixed scalars

once the types of the players are fixed. The rate of the transition

ω → ω′ = (α(ω), γ(ω)⊖ (i, j)) is

η
β,τ,N
ω,ω′ = γij(ω)ξ

β,N
ij (τ). (2.7)

3 Asymptotic properties of the process

A co-evolutionary process of networks and play describes a random dy-

namics on the joint space of action profiles and networks. In the following

sections we give a complete description of the long-run properties of this

process.

3.1 Inhomogeneous random graphs

A first characterization of the invariant regime of the dynamics is obtained

when we condition the process to the a-section of the state space, by which

we mean the set ΩN
a = {ω ∈ ΩN |α(ω) = a}. All population states in this

set differ only in the interaction network. Thus, if we constrain the process

11



{Xβ,τ,N(t)}t≥0 to take values in this set only, we obtain an ergodic random

graph process Gβ,τ,N = {Gβ,τ,N(t)}t≥0 whose generator describes a multi-

type birth-death process with “birth rates” of the link (i, j) given by the

deterministic scalar c
β,N
ij (a, τ), and “death-rates” ξ

β,N
ij (τ). In this section

we make no specific assumptions on these quantities, beside that they are

admissible. The main result of this section is the following characterization

theorem of the class of random graphs generated by the co-evolutionary

process. Note that this characterization theorem is rather general since

we do not impose any specific functional form on the attachment and

volatility mechanism, despite that they are admissible.16

Theorem 3.1. The random graph process Gβ,τ,N with admissible attachment

mechanism Cβ,τ,N and volatility mechanism Ξ
β,τ,N has a unique invariant graph

measure

µβ,τ,N(ω|ΩN
a ) =

N

∏
i=1

∏
j>i

p
β,N
ij (a, τ)γij(ω)

(

1 − p
β,N
ij (a, τ)

)1−γij(ω)
, (3.1)

which generates the interaction model G[N, (p
β,τ,N
ij (a))j>i] with interaction prob-

abilities

p
β,N
ij (a, τ) =

c
β,N
ij (a, τ)

c
β,N
ij (a, τ) + ξ

β,N
ij (τ)

. (3.2)

Proof. See Appendix A.

Hence, for each pair of players we can derive the conditional probability

that they will be matched in the long run, given that we know the action

and the type profile.

The IHRG in theorem 3.1 respects the labels of the individual players and

might be useful in models where the labels of the players are important,

or there is a subgroup of agents that influence the behavior of all other

agents in a non-negligible way, as illustrated by the following example.

Example 3 (Almost a star). Consider the co-evolutionary process of networks

and play with admissible attachment mechanism

c
β,N
1j (a, τ) = N1+ǫ, ∀j > 1,

c
β,N
ij (a, τ) = N−ǫ, ∀i, j > 1,

16However, in many applications one would like to formulate the volatility rates as

functions of the rewards of the players (see e.g. Jackson and Watts, 2002, for such a model).

In Staudigl (2010a) we allow for such a scenario and prove that a co-evolutionary process

still generates inhomogeneous random graphs such as in Theorem 3.1.

12



where ǫ > 0 is a given number, and admissible volatility mechanism

ξ
β,N
ij (τ) ≡ ξ > 0.

This generates a random graph process which is independent of the types and the

actions of the players. However, there is asymmetry in the process since there is

one distinguished player, player 1, to whom all other players want to be connected

with very high probability. Indeed, plugging into formula (3.2), we see that

p
β,N
1j (a, τ) =

N1+ǫ

N1+ǫ + ξ
, ∀j > 1

p
β,N
ij (a, τ) =

N−ǫ

N−ǫ + ξ
, ∀i, j > 1.

For N sufficiently large player 1 will be incident to almost all edges and can

therefore be called a star-player in the network. Edges not incident to player 1

appear with vanishing probability as N gets large.

If individual players are small it might be of more economic significance

to model the co-evolutionary process by dropping the names of the play-

ers while focusing on the observable characteristics of the players: their

actions and their types. We would like to do so in a manner that allows us

to give a comprehensive characterization of the long-run properties of the

co-evolutionary process. Therefore we need to impose more structure on

the random graph process. A specifically interesting functional form for

an attachment mechanism is the type-independent exponential flip rate

c
β,N
ij (a, τ) =

2

N
exp(v(ai, aj)/β), (3.3)

which arises naturally in a random utility formulation of active search for

new interaction partners.17

Assumption 1. Unless indicated differently we henceforth assume that the at-

tachment mechanism Cβ,τ,N is given by the exponential flip rates (3.3).

To capture the types of the players in the linking probabilities we introduce

the concept of a semi-anonymous volatility mechanism.

Definition 4. We call an admissible volatility mechanism Ξβ,·,N semi-anonymous

if for all N ≥ 2, τ ∈ ΘN , and all agents i, j ∈ [N], it is true that

ξ
β,N
ij (τ) = ξ

β,N
kl whenever τi = θk and τj = θl .

17See Staudigl (2010b) for the details of the construction.
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Remark 2. Under the assumption that our feasible attachment mechanism is

given by (3.3), the reward function is already incorporated into the random graph.

Effects coming from the types of the players are incorporated by the volatility

mechanism. A good reason why this separation of effects may be useful can be

given in light of potential statistical applications. Once we know the reward func-

tions, the actions and the interaction probabilities of the players, one can identify

the volatility rates by estimating the likelihood ratios of interactions among play-

ers. To see this, consider the odds-ratio

p
β,N
ij (a)

1 − p
β,N
ij (a)

=
c

β,N
ij (a, τ)

ξ
β,N
ij

. (3.4)

Thus, the model is theoretically and empirically flexible with respect to the volatil-

ity mechanism, once we agree on a functional form on the attachment mechanism.

Given that the attachment mechanism is of the form (3.3) and the volatility

mechanism is semi-anonymous we can define for all 1 ≤ k, l ≤ K and

a, b ∈ A the scalars

ϕ
β,N
kl (a, b) :=

2β exp(v(a, b)/β)

ξ
β,N
kl

,

and the symmetric matrices

ϕ
β,N
kl :=

(

ϕ
β,N
kl (a, b)

)

(a,b)∈A2
, ϕβ,N =

(

ϕ
β,N
kl

)

1≤k,l≤K
.

In terms of these quantities the edge-success probabilities can be written

as

p
β,N
kl (a, b) =

ϕ
β,N
k,l (a, b)

Nβ + ϕ
β,N
kl (a, b)

. (3.5)

We see that the interaction model can in fact be characterized without

conditioning on any a-section at all. The matrices

p
β,N
kl :=

(

p
β,N
kl (a, b)

)

(a,b)∈A2
∈ Rn×n

+ , pβ,N :=
(

p
β,N
kl

)

1≤l,k≤K
(3.6)

always give a complete characterization of the long-run interaction model

of the society. Moreover, once we know the actions of the players and

the reward function, it should be possible to identify the volatility rates

from the likelihood ratio (3.4). Given these functional assumptions we can

collect the following facts on the interaction probabilities.

Observation 1. (i) Each matrix p
β,N
kl is symmetric and for β > 0 positive.
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(ii) Under assumption (LPB) for all 1 ≤ k, l ≤ K and a, b ∈ A we have

limN→∞ p
β,N
kl (a, b) = 0.

(iii) Under assumption (SNB) for all 1 ≤ k, l ≤ K and a, b ∈ A we have

lim
β→0

p
β,N
kl (a, b)











= 1 if v(a, b) > 0

≤ 2
2+NξN

−
if v(a, b) = 0

= 0 if v(a, b) < 0

Item (i) just says that the generated random graph is undirected and the

interaction pattern is irreducible, in the sense that the network will almost

surely have a single connected component. Item (ii) in turn says that all

interaction probabilities are o(N). In particular this rules out the presence

of a star player such as in example 3. Item (iii) investigates the small noise

behavior of the interaction probabilities. To verify that the stated condition

holds consider the odds-ratios of interaction probabilities

p
β,N
kl (a, b)

1 − p
β,N
kl (a, b)

=
2 exp(v(a, b)/β)

Nξ
β,N
kl

.

By (SNB) we can upper and lower bound this ratio as

2

Nc
exp(v(a, b)/β − f

β
kl) ≤

p
β,N
kl (a, b)

1 − p
β,N
kl (a, b)

≤ 2 exp(v(a, b)/β)

NξN
−

.

We see that if v(a, b) < 0 the lower and the upper bounds go to 0 and

consequently p
β,N
kl (a, b)

β→0→ 0. If v(a, b) > 0 the lower bound goes to

∞ implying that p
β,N
kl (a, b)

β→0→ 1. Finally, if v(a, b) = 0 then it must be

true that p
β,N
kl (a, b) ∈ [0, 2

2+NξN
−
]. This shows that in the small noise limit

interaction networks are almost deterministic and players interact with

positive probability if and only if they obtain a non-negative reward. This

holds for arbitrary large (but finite) population size N.

Remark 3. In terms of play this has the consequence that the network formation

process clusters players together that play actions which yield high mutual reward.

The observation is actually troublesome, since it makes it very likely that in the

limit of infinitely many players the utility functions of the players are not defined

anymore.18 This follows because each agents’ utility function is the sum of all

rewards. As β → 0 there is the possibility that interaction probabilities between

18This problem is also addressed in the general study of Horst and Scheinkman (2006)

concerning existence and uniqueness of equilibria in systems of general (random) social

interactions.
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two player groups are not scaled by population size, and so the expected number

of interactions will go to infinity as N grows large. This calls for our attention to

consider the small noise limit for finite populations and the large population limit

for positive noise as two separate parameters, which should not be taken to their

limit jointly. One could perform a double limit analysis by picking a sequence

(βN , N) → (0, ∞), where N goes to infinity at a much faster rate than β. The

necessary speed regulation will be exponential. We have not pursued such an

analysis yet.

Finally, we would like to emphasize that inhomogeneous random graphs

can be used in a quite satisfactory way to capture the phenomenon of

homophily.19 Motivated by Jackson (2008a), suppose we have a bounded

and monotonically increasing function w : R → R+ such that ξ
β,N
kl =

w (||θk − θl ||), where we interpret the types of the players as points in Rn

and || · || is some norm on this vector space. Assume that this specifica-

tion of a volatility mechanism satisfies (SNB) and (LPB). This volatility

mechanism has the interpretation that larger differences in the idiosyn-

cratic preferences of the players lead to a higher rate of link destruction.

In equilibrium this manifests itself into a lower probability of interaction.

This induces a natural ordering on odds-ratios. To illustrate this let us

consider three players h, i, j with ai = a and aj = ah = b. Suppose that

player i is of type θk while player j is of type θl and player h is of type θm.

If ||θk − θl || < ||θk − θm|| then it follows that

p
β,N
kl (a, b)

p
β,N
km (a, b)

=
2 exp(v(a, b)/β) + ξ

β,N
km

2 exp(v(a, b)/β) + ξ
β,N
kl

> 1.

Hence, although the interaction between player i and j would yield the

same reward as the interaction between player i and h, the likelihood that

i interacts with player j is relatively higher than the interaction with player

h, and this can be explained only through the difference in idiosyncratic

preferences.

3.2 Joint invariant distribution

In this section we provide a closed form expression for the unique invari-

ant distribution of the co-evolutionary process under the assumption that

the attachment mechanism is of the exponential form (3.3). The volatility

mechanism is admissible, but need not be semi-anonymous for the re-

sults to hold. Let M(ΩN) denote the set of probability measures on the

19On the role of homophily in social networks we refer to Currarini et al. (2009) and the

references therein.
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finite space ΩN endowed with its σ-algebra 2ΩN
. The main result of this

section is the following theorem, which specifies for every type sequence

τ a unique invariant measure µβ,τ,N ∈ M(ΩN) of the Markov process

{Xβ,τ,N(t)}t≥0. Recall that the potential function of the interaction game

is denoted by V(ω, τ).

Theorem 3.2. The unique invariant distribution of the Markov jump process

{Xβ,τ,N(t)}t≥0 is the Gibbs measure

µβ,τ,N(ω) =
exp(β−1Hβ,N(ω, τ))

∑ω′∈ΩN exp(β−1Hβ,N(ω′, τ))
(3.7)

=
µ

β,τ,N
0 (ω) exp

(

β−1V(ω, τ)
)

∑ω′∈ΩN µ
β,τ,N
0 (ω′) exp (β−1V(ω′, τ))

(3.8)

where for all ω ∈ ΩN

Hβ,N(ω, τ) := V(ω, τ) + β log µ
β,τ,N
0 (ω), (3.9)

µ
β,τ,N
0 (ω) :=

N

∏
i=1

∏
j>i





2

Nξ
β,N
ij (τ)





γij(ω)

. (3.10)

Proof. See Appendix A.

The function Hβ,N provides a complete description of the invariant distri-

bution weights. The Gibbs measure is game-theoretically interesting, since

it shows that we can formulate the invariant distribution as a product of

a “graph weight function” µ
β,τ,N
0 , and the term exp(β−1V(ω, τ)).20 The

second term is only driven by the value of the potential function at the

population state ω, which is, recall eq. (2.3), given by the welfare measure

V(ω, τ) = ∑
j>i

v(αi(ω), αj(ω))γij(ω) +
N

∑
i=1

τi(αi(ω)).

The graph weight function µ
β,τ,N
0 collects the effects arising from the volatil-

ity of the interaction structure. It is clear that the exact value of these

weights depends on the realization of the types of the agents in the pop-

ulation. As types are random realizations the resulting invariant measure

is a random element of the set of measures M(ΩN). Each measure µβ,τ,N

is realized with the probability that the population is characterized by the

20In this sense one can view the stationary distribution (3.7) as a perturbation of the

invariant measure found by Blume (1993; 1997) in the context of interaction games on

fixed networks.
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type profile τ. Hence, we can define the joint probability measure on the

extended state space ΩN × ΘN as

µβ,N(ω, τ) := Pq

(

τ̃(N) = τ
)

µβ,τ,N(ω). (3.11)

4 Limit behavior of the invariant distribution

The transition rates of our co-evolutionary process depend on two exoge-

nous parameters, β and N. In both cases it can be shown that the invariant

distribution has a tendency to single out certain subsets of the state space

when these two parameters are taken to their respective limits, i.e. β → 0

and/or N → ∞. In view of Remark 3 we treat these two limits as com-

plementary ways to study the concentration of the invariant distribution,

and a fortiori two complementarity ways to obtain exact results concerning

equilibrium selection.

4.1 Small Noise Limit

A standard result in the study of potential games with log-linear response

functions is that the family of stationary distributions {µβ,τ,N}β>0 concen-

trates on the set of potential maximizers.21 In order to examine the lim-

iting invariant distribution we employ the following notion of stochastic

stability.22

Definition 5. A population state ω ∈ ΩN is called stochastically stable in the

small noise limit if

lim
β→0

β log µβ,τ,N(ω) = 0.

As discussed in the Introduction the argmax of a potential function serves

as a natural device for equilibrium selection in games. Moreover points in

this set possess in our model the important property that they are social

welfare maximizing, taking the sum of utilities of the agents as a welfare

measure (recall the definition of the potential function in eq. (2.3)). It is

therefore important to have sufficient conditions under which the potential

maximizers retain their robustness property. A characterization in this

direction is given by the following lemma.

21See Blume (1997) and Sandholm (2010, ch. 12) for the most general results in this

direction.
22The notion of stochastic stability we employ in this paper is weaker than the one of

Young (1993) or Ellison (2000). We refer to Sandholm (2010) for a more thorough discussion

of the differences between the two definitions.
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Lemma 4.1. Fix N ≥ 2 and an arbitrary type profile τ ∈ ΘN . Then

lim
β→0

max
ω∈ΩN

|Hβ,N(ω, τ)− V(ω, τ)| = 0 (4.1)

if and only if

lim
β→0

max
ω∈ΩN

β| log µ
β,τ,N
0 (ω)| = 0. (4.2)

Proof. This follows immediately from eq. (3.9).

We see that if the co-evolutionary dynamics has an admissible volatility

mechanism, or only satisfies (B), (Sym) and (SNB), then the potential

function dominates the perturbation coming from the graph weight func-

tion µ
β,τ,N
0 in the small noise limit. The main result of this section is the

following theorem, which proves that the family of invariant measures

{µβ,τ,N}β>0 satisfies a large deviations principle. This result gives us not

only the information that the invariant distribution concentrates (on a log-

arithmic scale) on certain subsets of the state space (to be precise minimiz-

ers of a rate function to be specified in the statement of the theorem), but

moreover it gives us an estimate on the rate of this convergence (again at

a logarithmic scale).

Theorem 4.1. If Ξβ,τ,N is an admissible volatility mechanism then the family

of invariant measures {µβ,τ,N}β>0 satisfies a large deviations principle with rate

function R(ω, τ) := maxω′∈ΩN V(ω′, τ)− V(ω, τ), i.e.

lim
β→0

β log µβ,τ,N(ω) = −R(ω, τ) (4.3)

for all ω ∈ ΩN .

Proof. Recall from equation (3.7) that

µβ,τ,N(ω) =
exp(β−1Hβ,N(ω, τ))

∑ω′∈ΩN exp(β−1Hβ,N(ω′, τ))

for all ω ∈ ΩN . Further, if the volatility mechanism is admissible it satisfies

in particular (SNB). Thus, we know from Lemma 4.1 that the Hamiltonian

function converges uniformly to the game potential function as β → 0.

Thus,

− lim
β→0

β log µβ,τ,N(ω) = max
ω′∈ΩN

lim
β→0

Hβ,N(ω′, τ)− lim
β→0

Hβ,N(ω, τ)

= max
ω′∈ΩN

V(ω′, τ)− V(ω, τ)

= R(ω, τ).

for all ω ∈ ΩN .
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An immediate consequence of this theorem are the following two obser-

vations:

Corollary 4.1. Let Ξβ,τ,N be an admissible volatility mechanism.

(i) Let

Ω∗,N(τ) := {ω ∈ ΩN | lim
β→0

β log µβ,τ,N(ω) = 0}

denote the set of stochastically stable states in the small noise limit for the

realized type profile τ. We have the equivalence

Ω∗,N(τ) = arg max
ω∈Ω

V(ω, τ).

(ii) The invariant distribution is exponentially tight in the sense that for every

ǫ > 0 there exists a subset Xǫ ⊆ ΩN such that

lim
β→0

β log µβ,τ,N(Xǫ) < −ǫ

Proof. Only the second point requires a proof. Denote the level sets of

the rate function R as LR(ǫ) := {ω ∈ ΩN |R(ω, τ) ≤ ǫ}. For all ǫ > 0

these sets are nonempty, since always Ω∗,N(τ) ⊆ LR(ǫ), with equality

as ǫ ↓ 0. Fix an ǫ > 0 and consider the set Xǫ := ΩN \ LR(ǫ). Then

RXǫ(τ) := minω∈Xǫ R(ω, τ) > ǫ. We claim that

lim
β→0

β log µβ,τ,N(Xǫ) = lim
β→0

β log

(

∑
ω∈Xǫ

µβ,τ,N(ω)

)

= max
ω∈Xǫ

lim
β→0

β log µβ,τ,N(ω)

= − min
ω∈Xǫ

R(ω) < −ǫ.

The argument for this is as in the proof of Theorem 4.1. We have

∑
ω∈Xǫ

µβ,τ,N(ω) = exp(−β−1RXǫ(τ))B
β,N
Xǫ

(τ)rXǫ(β)

for some functions B
β,N
Xǫ

, rXǫ(β). Taking logarithms on both sides and mul-

tiplying by β shows that

β log

(

∑
ω∈Xǫ

µβ,τ,N(ω)

)

= −RXǫ(τ) + β log B
β,N
Xǫ

(τ) + β log rXǫ(β)

and it is easy to see that the left hand side is −RXǫ(τ)(1 + o(1)), for β →
0.
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Theorem 4.1 is an extension of a result of Staudigl (2010b). It shows that

in the small noise limit and for every type profile τ ∈ ΘN the invariant

distribution concentrates on the set of potential maximizers. The only

crucial assumption on the nature of the volatility rates needed for this

result to hold is (SNB). The message of Corollary 4.1 is that stochastically

stable states are global maximizers of the potential function. Part (ii) of

the Corollary says that the family of measure {µβ,τ,N}β>0 puts arbitrary

small weight on certain subsets of the state space.

4.1.1 Game theoretic interpretation of the invariant distribution

Before studying the large population case, we provide an interesting game-

theoretic interpretation of the invariant distribution µβ,τ,N . In the dynamic

model we assumed that players always play pure actions and we would

like to know whether the actions chosen by the players are individually

rational in some sense. This requires a notion of equilibrium in actions.

It turns out that the right notion of equilibrium in actions is Aumann’s

correlated equilibrium (Aumann, 1987). We take the state space ΩN as the

set of possible states of the world. The common prior of the players is

µβ,τ,N , which for simplicity is denoted by µ. The information partition

Pi of player i, consists of the sets Pi(a) := {ω ∈ ΩN |αi(ω) = a}, a ∈ A.

A strategy of player i is a map si : ΩN → A that is measurable with

respect to his information partition Pi, i.e. si(ω) = si(ω
′) = a, whenever

ω, ω′ ∈ Pi(a).23 A profile of strategies is denoted as s = (si)i∈[N]. The inter-

pretation is the following; Suppose the evolutionary process has settled to

a dynamic equilibrium. Now we replicate the population by introducing

N players who have the types (τ1, . . . , τN) and the information structure
〈

ΩN , µ,Pi

〉

. Suppose we recommend each player to follow the strategy

si(ω) = αi(ω), ∀ω ∈ ΩN . Would player i follow that recommendation?

Since for positive noise the measure µ has a full support, all states of the

world are realized with a positive probability. However, in general not

all strategies (i.e. functions that are measurable w.r.t. Pi) will be ”good“

recommendations for a player. But we know from Theorem 4.1 that in the

small noise limit only states of the world appear with non-vanishing prob-

ability which are potential maximizers. It is not surprising that the players’

actions are compatible on this set in the sense of Nash equilibrium.

Lemma 4.2. Let τ ∈ ΘN be an arbitrary type-profile. For all i ∈ [N] consider

the strategy si(ω) = αi(ω), ω ∈ ΩN . The profile s is a Nash equilibrium in

23Technically, we would need to index this function with the type of the player. We omit

this dependence for notational simplicity.
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actions at all states ω ∈ Ω∗,N(τ).

Proof. The proposed mappings si are clearly Pi measurable, i.e. they are

strategies. Fix an arbitrary player i ∈ [N] and let ŝi be some other strategy.

At a fixed ω ∈ ΩN the deviation payoffs of player i are

Ui[s(ω), γ(ω), τi]− Ui[(ŝi(ω), s−i(ω)), γ(ω)), τi]

= V((s(ω), γ(ω)), τ)− V((ŝi(ω), s−i(ω), γ(ω)), τ)

by definition of the potential function (2.3). This expression is non-negative

on Ω∗,N(τ).

To get a global characterization of individually rational actions, we con-

sider the following notion of equilibrium.24

Definition 6. The quadruple
〈

ΩN , µβ,τ,N , (Pi)i∈[N], (si)i∈[N]

〉

is a (β, ρ)-correlated

equilibrium if for every ρ > 0 there exists a β > 0, such that for all i ∈ [N] and

all strategies ŝi we have

∑
ω∈ΩN

µβ′,τ,N(ω)Ui(s(ω), γ(ω), τi) ≥ ∑
ω∈ΩN

µβ′,τ,N(ω)Ui[(ŝi(ω), s−i(ω)), γ(ω), τi]− ρ

for all β′ < β.

Proposition 4.1. For all i ∈ [N] consider the strategy si(ω) = αi(ω), ω ∈ ΩN .
〈

ΩN , µβ,τ,N , (Pi)i∈[N], (si)i∈[N]

〉

is a (β, ρ)-correlated equilibrium.

Proof. Consider a player i ∈ [N] and an arbitrary alternative strategy ŝi.

The deviation payoffs of player i are bounded by

∑
ω∈ΩN

µβ,τ,N(ω) {Ui[(ŝi(ω), s−i(ω)), γ(ω), τi]− Ui(s(ω), γ(ω), τi)}

= ∑
ω∈Ω∗,N(τ)

µβ,τ,N(ω) {V((ŝi(ω), s−i(ω), γ(ω)), τ)− V(ω, τ)}

+ ∑
ω/∈Ω∗,N(τ)

µβ,τ,N(ω) {V((ŝi(ω), s−i(ω), γ(ω)), τ)− V(ω, τ)}

≤ µβ,τ,N(ΩN \ Ω∗,N(τ))C

where C := maxω/∈Ω∗,N(τ) {V((ŝi(ω), s−i(ω), γ(ω)), τ)− V(ω, τ)}. This

upper bound follows from the fact that the first summand in the second

line is non-positive by definition of the set Ω∗,N(τ). If C < 0 we are

done. If C ≥ 0 we apply exponential tightness of the invariant distribution.

24This definition is inspired by the concept of ex-post Nash equilibrium of Kalai (Kalai,

2004, Definition 4, p. 1641).
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Corollary 4.1 tells us that we can find an ǫ > 0 such that µβ,τ,N(ΩN \
Ω∗,N(τ)) ≤ exp

(

− ǫ
β (1 + o(1))

)

=: δ(β) for β ↓ 0, and δ(β) → 0 in the

respective limit. From this it follows that for every given ρ > 0 we can

push down the established upper bound to be below ρ by choosing β

sufficiently small.

Thus, at least for sufficiently small noise we can be sure that the players

are willing to follow the recommendation if we allow for small deviations

from pure best responding. In a sense this means that if we sample states

ω from the invariant distribution, then we can replicate the process by

giving players the respective information partition.

4.2 Large population limit

In this final section we fix a positive noise level β > 0 and take the pop-

ulation size as a selection parameter. As in our study of the small noise

limit we assume henceforth that the attachment mechanism is given by the

log-linear function (3.3) and the volatility mechanism is semi-anonymous.

Once we make this assumption we achieve that the labels of the players are

unimportant for the weight of the invariant distribution µβ,τ,N at the vari-

ous population states ω ∈ ΩN . This will allow us to define population ag-

gregates in a meaningful way and their distribution induced by the invari-

ant measure. More specifically, in this section we will be concerned with

the empirical distribution over actions, denoted as σ̂N = (σ̂N
1 , . . . , σ̂N

K ),

which we interpret as Bayesian strategies.25 Each component of a Bayesian

strategy σ̂k is a probability distribution on the action set A, whose coor-

dinates are denoted by σ̂k(a), a ∈ A. Formally it is the empirical measure

σ̂N
k (a)(ω, τ) :=

1

NMN
k (τ)

N

∑
i=1

1a(αi(ω))1θk
(τi) (4.4)

for all a ∈ A and 1 ≤ k ≤ K. Since we can view σ̂ as a map from

the type space Θ to the set of mixed strategies ∆(A) we have formally

indeed a Bayesian strategy in the classical game theoretic sense. Denote

by Σ := ∆(A)K the set of Bayesian strategies. Measurable sets generated

by the mapping σ̂N are defined as

[σ, m] := {(ω, τ) ∈ ΩN × ΘN |σ̂N(ω, τ) = σ & MN(τ) = m}. (4.5)

25The interaction structure has been completely characterized in Section 3.1. Hence, the

study of the marginal distribution on the set of action profiles is the only remaining part

in order to achieve a complete characterization of the long-run behavior of the invariant

distribution.
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for (σ, m) ∈ Σ × ∆(Θ). Our goal in this section will be to derive a closed-

form expression for the mass the invariant measure µβ,N ∈ M
(

ΩN × ΘN
)

,

defined in eq. (3.11), puts on the set [σ, m]. By definition we can compute

this mass as

µβ,N([σ, m]) = ∑
(ω,τ)∈[σ,m]

µβ,N(ω, τ)

= ∑
τ∈T N(m)

Pq(τ̃
(N) = τ) ∑

ω∈(σ̂N,τ)
−1(σ)

µβ,τ,N(ω),

where σ̂N,τ(·) = σ̂N(·, τ) and

(

σ̂N,τ
)−1

(σ) = {ω ∈ ΩN |σ̂N(ω, τ) = σ}.

From the definition of a Bayesian strategy it follows that all states in ΩN
a ×

{τ}, for τ ∈ T N(m), are in the set [σ, m], and with it so are all sections

resulting from permuting the players labels. Therefore we can define an

equivalence relation ∼[σ,m] such that (a, τ) ∼[σ,m] (a′, τ′) if and only if

τ, τ′ ∈ T N(m) and σ̂N(ΩN
a , τ) = σ̂N(ΩN

a′ , τ′) = σ. Putting it differently,

with the equivalence relation ∼[σ,m] we declare a pair of action and type

profiles as [σ, m]-equivalent if these profiles generate the same aggregate

statistic (σ, m). From this it follows that
(

σ̂N,τ
)−1

(σ) is a union of a-

sections, In Appendix B we derive a closed form expression for the masses

µβ,τ,N(ΩN
a ) for all a ∈ AN . Under semi-anonymity this measure only

depends on the frequency of players of a certain type who play a certain

action. By taking care of the combinatorial terms coming from all possible

permutations of the players, we arrive at the following measure over (finite

population) Bayesian strategies (see Theorem B.1 in Appendix B)

ψβ,N(σ|m) = Kβ,N(m)−1
K

∏
k=1

(Nmk)!

∏a∈A(Nmkσk(a))!
exp

(

Nmk f
β,N
k (σ, m)

)

.

(4.6)

In this expression the factor Kβ,n(m) is a function that normalizes the

measure to be a probability measure. The support of the probability dis-

tribution ψβ,N(·|m) is the subset

supp(ψβ,N(·|m)) = ΣN(m) := {σ ∈ Σ|Nmkσk(a) ∈ N, ∀a ∈ A, 1 ≤ k ≤ K},

a finite inner approximation of the polyhedron of Bayesian strategies Σ.

The functions f
β,N
k : Σ × ∆(Θ) → R capture interaction payoffs players

of type k earn from matches with players of type l ≥ k, after we have

aggregated over all possible networks and have taken care of their own
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idiosyncratic preferences.26 While their finite N form is not very pretty27,

as N goes to infinity we can show that the sequence { f
β,N
k }N≥N0 converges

almost everywhere to the limit function

f
β
k (σ, m) := 〈σk, θk〉+ ∑

l≥k

ml

1 + δkl

〈

σk,ϕ
β
klσl

〉

. (4.7)

In this formulation we have identified the type θk : A → R with the n-

dimensional vector θk = (θk(a))a∈A. The probability measure (4.6) is our

candidate for proving a large deviations principle for the family {ψβ,N(·|MN)}N≥N0 .

As in Theorem 4.1 this requires the identification of a rate function r :

Σ×∆(Θ) → [0, ∞] such that for all converging sequences {(σN , mN)}N≥N0

with limit (σ, m) ∈ Σ × ∆(Θ) we have

− lim
N→∞

β

N
log ψβ,N(σN |mN) = rβ(σ, m).

Unpacking this expression shows that, in the limit of large populations, the

probability of observing a Bayesian strategy σ ∈ Σ, given the limiting type

distribution m, is on the (logarithmic) order of exp
(

−N
β r(σ, m)

)

. Hence,

Bayesian strategies appearing with highest probability (on a logarithmic

scale) are those for which r(σ, m) = 0. We turn now to the identification

of this rate function. While in Theorem 4.1 the rate function corresponds

to a rescaled potential function of the game this will not be the right rate

function for the present purposes. It turns out that the “logit potential

functions” (Hofbauer and Sandholm, 2002; 2007)

(1 ≤ k ≤ K) : f̃
β,N
k (σ, m) := f

β,N
k (σ, m) + βh(σk),

f̃ β,N(σ, m) :=
K

∑
k=1

mk f̃
β,N
k (σ, m)

(4.8)

play a key role, where h(x) = −∑i xi log xi is the entropy of a distribution

x.28 These functions depend on the distribution of types in the population.

Since we consider a growing population of players, the distribution of

types changes over time, and in fact, a version of the strong law of large

numbers, proved in Appendix B (Lemma B.5), shows that

26The reason why only interactions with types l ≥ k are included in this function is to

avoid double counting. Please see Appendix B for the details.
27For a definition of these functions we refer the reader to our results presented in

Appendix B.
28Similar functions have been identified by Hofbauer and Sandholm (2002; 2007) to serve

as Lyapunov functions for the mean-field dynamic generated by a stochastic evolutionary

process where players revise their actions according to a general perturbed best-response

rule. We do not look at mean-field equations here but instead are interested in large-

deviations of the Bayesian strategies produced by the co-evolutionary process.
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Lemma 4.3. MN a.s.→ q for N → ∞.

Hence, almost all realizations of nature’s type assignment process will lead

to a type distribution that is close to the prior q, provided N is sufficiently

large. We may thus focus on the set of type realizations on which MN →
q, and ignore the limiting behavior of the measure ψβ,N(·|MN) on the

Pq-measure 0 set where this convergence may fail. Our main result of

this section is the following theorem which establishes the desired large

deviations principle for the family of measures
{

ψβ,N(·|mN)
}

N≥N0 , where

(mN)N≥N0 is a type distribution that converges to q.

Theorem 4.2. Let (mN)N≥N0 be a sequence of type distributions which converges

to the prior distribution q. The family {ψβ,N(·|mN)}N≥N0
, generated under

an admissible semi-anonymous volatility mechanism, satisfies a large deviations

principle with rate function rβ(σ, q) := maxσ′∈Σ f̃ β(σ′, q) − f̃ β(σ, q), for all

σ ∈ Σ, in the sense that

lim
N→∞

β

N
log ψβ,N(σN |mN) = −rβ(σ, q) (4.9)

for every sequence
{

σN
}

N≥N0 such that σN ∈ ΣN(mN), ∀N ≥ N0 and σN →
σ.

Proof. See Appendix B.

As the large deviations principle derived in Theorem 4.1 the message of

Theorem 4.2 is that the family of measures {ψβ,N(·|mN)}N≥N0 concentrates

on a logarithmic scale at Bayesian strategies which solve the program

max
σ′∈Σ

f̃ β(σ′, q). (4.10)

It is well known (see for instance Fudenberg and Levine, 1998, Hofbauer and Sandholm,

2002) that solutions of this program are logit equilibria (McKelvey and Palfrey,

1995), i.e. Bayesian strategies which are defined by the fixed-point condi-

tion

σ∗
k (a) =

exp
(

β−1(πk
a(σ

∗, q) + θk(a))
)

∑b∈A exp
(

β−1(πk
b(σ

∗, q) + θk(b))
) ,

where

πk
a(σ, q) :=

K

∑
l=1

ql ∑
b∈A

ϕ
β
kl(a, b)σl(b) ≡

K

∑
l=1

ql

(

ϕ
β
klσl

)

a

for all a ∈ A and 1 ≤ k ≤ K. To show this, simply note that solutions of

the program (4.10) can be determined by solving a standard constrained

optimization problem with Lagrangian

L = f̃ β(σ, q)−
K

∑
k=1

λk

(

∑
a∈A

σk(a)− 1

)

.
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First order conditions give necessary and sufficient conditions for an opti-

mum, which will be interior and unique for β sufficiently large and posi-

tive. Formally, the first-order conditions are

∂ f̃ β(σ, q)

∂σk(a)
− ∂ f̃ β(σ, q)

∂σk(b)
= 0

for all 1 ≤ k ≤ K and a, b ∈ A. Since, by symmetry of the matrices ϕ
β
kl , we

have

∂ f
β
l (σ, q)

∂σk(a)
=















0 if l > k

θk(a) + ∑l′≥k ql′
(

ϕ
β
kl′σl′

)

a
if l = k

qk

(

ϕ
β
klσl

)

a
if l < k,

we obtain

∂ f̃ β(σ, q)

∂σk(a)
= qk

[

θk(a) +
K

∑
l=1

ql

(

ϕ
β
klσl

)

a
− β(log σk(a) + 1)

]

.

Using this expression for the first-order conditions shows that in an opti-

mum we need that

log
σk(a)

σk(b)
=

1

β

[

K

∑
l=1

ql

(

ϕ
β
klσl + θk

)

a
− ql

(

ϕ
β
klσl + θk

)

b

]

= β−1
[

(πk
a(σ, q) + θk(a))− (πk

b(σ, q) + θk(b))
]

,

from which the rest follows immediately by using the constrained ∑a∈A σk(a) =

1.

To summarize, in the small noise limit we have seen in section 4.1 that the

invariant distribution of the co-evolutionary process concentrates on the

set of potential maximizers. In the large population limit a completely dif-

ferent prediction obeys. For finite N and in the small noise limit we have

seen in section 3.1 that networks tend to cluster strongly. In the larger pop-

ulation limit with positive noise networks do not tend to cluster strongly

(in general) but are well defined inhomogeneous random graphs, whose

connectivity depends on the underlying volatility mechanism. Action pro-

files do not maximize a potential function but rather a “logit potential

function”.29

29See also Hofbauer and Sandholm (2007) for qualitatively the same result but in a

purely game theoretic setting.
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5 Conclusion

This paper presents an analytically solvable model on the co-evolution of

networks of play in settings where players have diverse preferences. Un-

der the assumptions that players have reward functions of the partnership

type and use log-linear functions in the action choice and linking choice,

we can give a closed-form solution of the (unique) invariant distribution

of the process. This in turn allows us to investigate the robustness of cer-

tain equilibria in the case of small noise in the behavioral rules, and large

populations. Many results presented in the paper hinge on the specific

assumptions made in order to proceed with analytical methods. However,

as mentioned in the main text, there are also some results which extend

beyond the present framework. Among these is the creation of inhomo-

geneous random graphs. However, it remains an open problem how a co-

evolutionary model behaves outside the world of exact potential games.

This is, however, a general problem of stochastic evolutionary dynamics,

where little is known about the exact long-run behavior of the dynamics

once no closed-form solution of the invariant distribution is available.

Appendix A The joint invariant distribution and the

small noise limit

A.1 Proof of Theorem 3.1

As an ansatz for the invariant distribution we consider the detailed balance con-

ditions

µβ,τ,N(ω|ΩN
a )η

β,τ,N
ω,ω′ = µβ,τ,N(ω′|ΩN

a )η
β,τ,N
ω′,ω (A.1)

for all ω, ω′ ∈ ΩN
a . By force of normalization, given by the constant Zβ,τ,N(a),

this system of equations has a unique solution

µβ,τ,N(ω|Ωn
a) = Zβ,τ,N(a)−1

N

∏
i=1

∏
j>i





c
β,N
ij (a, τ)

ξ
β,N
ij (τ)





γij(ω)

. (A.2)

Define for all i = 1, 2, . . . , N and j > i the numbers

x
β,N
ij (a, τ) := log





c
β,N
ij (a, τ)

ξ
β,N
ij (τ)



 ,

and on ΩN
a the function

H0(ω|ΩN
a ) :=

N

∑
i=1

∑
j>i

x
β,N
ij (a, τ)γij(ω).
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Direct substitution into eq. (A.2) gives the alternative representation of the in-

variant distribution as

µβ,τ,N(ω|ΩN
a ) =

exp(H0(ω|ΩN
a ))

∑ω∈ΩN
a

exp(H0(ω|ΩN
a ))

. (A.3)

Define the probabilities p
β,N
ij (a, τ) as in eq. (3.2) we can compute the numerator

of eq. (A.3) as

∑
ω′∈ΩN

a

exp(H0(ω
′|ΩN

a )) = ∑
ω′∈ΩN

a

N

∏
i=1

∏
j>i

exp(x
β,N
ij (a, τ)γij(ω

′))

=
N

∏
i=1

∏
j>i

(1 + exp(x
β,N
ij (a, τ))

=
N

∏
i=1

∏
j>i



1 +
c

β,N
ij (a, τ)

ξ
β,N
ij (τ)





=
N

∏
i=1

∏
j>i

(

1 − p
β,N
ij (a, τ)

)−1

Further, for all ω ∈ ΩN
a we have

exp(H0(ω|ΩN
a )) =

N

∏
i=1

∏
j>i





p
β,N
ij (a, τ)

1 − p
β,N
ij (a, τ)





γij(ω)

.

Combining these last two observations, we obtain the desired product measure

on ΩN
a

µβ,τ,N(ω|ΩN
a ) =

N

∏
i=1

∏
j>i

(

p
β,N
ij (a, τ)

)γij(ω) (

1 − p
β,N
ij (a, τ)

)1−γij(ω)
.

2

A.2 Proof of Theorem 3.2

In order to proof Theorem 3.2 we need the following intermediate result.

Lemma A.1. The Markov jump process {X
β,τ,N
t }t≥0 with infinitesimal generator {η

β,τ,N
ω,ω′ }ω,ω′∈ΩN

whose rate functions are admissible has the unique invariant distribution

µβ,τ,N(ω) = (Zβ,τ,N)−1
N

∏
i=1

∏
j>i





2

N

exp(v(αi(ω), αj(ω))/β)

ξ
β,N
ij (τ)





γij(ω)

exp(τi(αi(ω))/β)

(A.4)

Proof. It is sufficient to show that the measure (A.4) satisfies the detailed balance

condition (A.1) for all ω, ω′ ∈ ΩN . We can split the proof of the claim in two parts:
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Action revision and link creation. The case of link destruction is symmetric to the

case of link creation, thus must not be treated separately. Hence, start with the

process of link creation. Let ω = (a, g), ω̂ = (a, g ⊕ (i, j)). We see that

η
β,τ,N
ω,ω̂

η
β,τ,N
ω̂,ω

=
2 exp(v(ai, aj)/β)

Nξ
β,N
τi ,τj

. (A.5)

Now, consider the ratio µβ,τ,N(ω̂)/µβ,τ,N(ω). Due to the product structure, we

see easily that all factors appearing in these two measures cancel out, and the

only remaining factor is (A.5).

Next consider two states ω = (a, g), ω̂ = ((a′, a−i), g), a′ ∈ A. We see that

η
β,τ,N
ω,ω̂

η
β,τ,N
ω̂,ω

=
ℓ

i,β
a′ (ω|τi)

ℓ
i,β
a (ω̂|τi)

= exp

[

1

β

(

Ui((a′, a−i), g)− Ui(a, g)
)

]

.

To compute the odds ratio observe that

µβ,τ,N(ω)

µβ,τ,N(ω̂)
=

i

∏
j=1

∏
k>j

[

2 exp(v(αj(ω),αk(ω))/β)

ξ
β,N
τj ,τk

]γjk(ω)

exp(τj(αj(ω))/β)

[

2 exp(v(αj(ω̂),αk(ω̂))/β)

ξ
β,N
τj ,τk

]γjk(ω̂)

exp(τj(αj(ω̂))/β)

×
N

∏
j=i+1

∏
k>j

[

2 exp(v(αj(ω),αk(ω))/β)

ξ
β,N
τj ,τk

]γjk(ω)

exp(τj(αj(ω))/β)

[

2 exp(v(αj(ω̂),αk(ω̂))/β)

ξ
β,N
τj ,τk

]γjk(ω̂)

exp(τj(αj(ω̂)/β)

The second multiplicative term is independent of player i and so the ratio is equal

to 1. Multiplying out the first term, and taking care of the symmetry of the reward

function v, shows that

µβ,N(ω)

µβ,N(ω̂)
= exp

[

1

β

(

N

∑
j=1

(v(αi(ω), αj(ω))− v(αi(ω̂), αj(ω̂))) + τi(αi(ω)− τi(αi(ω̂))

)]

= exp

[

1

β

(

Ui(a, g, τi)− Ui((a′, a−i), g)
)

]

=
η

β,τ,N
ω̂,ω

η
β,τ,N
ω,ω̂

.

Proof of Theorem 3.2. As in Lemma A.1 we define, with a slight abuse of notation,

for all i, j ∈ [N] and ω ∈ ΩN the functions

x
β,N
ij (ω, τ) : = log





2

N

exp(v(αi(ω), αj(ω))/β)

ξ
β,N
ij (τ)



 (A.6)

=
1

β
v(αi(ω), αj(ω)) + log





2

Nξ
β,N
ij (τ)



 . (A.7)
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Then (A.4) can be written as

µβ,τ,N(ω) = (Zβ,τ,N)−1
N

∏
i=1

∏
j>i

exp
(

x
β,N
ij (ω, τ)γij(ω) + β−1τi(αi(ω)

)

= (Zβ,τ,N)−1 exp

[

β−1
N

∑
i=1

∑
j>i

(

x
β,N
ij (ω, τ)γij(ω) + τi(αi(ω)

)

]

= (Zβ,τ,N)−1 exp
[

β−1
(

V(ω, τ) + β log µ
β,τ,N
0 (ω)

)]

= (Zβ,τ,N)−1 exp
[

β−1Hβ,N(ω, τ)
]

.

Appendix B Aggregation and the large population limit

We are interested in the distribution of actions in the large population limit. To-

gether with our results on the characterization of the inhomogeneous random

graph in Section 3.1 this gives a complete description of the asymptotics of the

co-evolutionary process. Our first step is to determine the marginal distribution

on AN for a given (but arbitrary) type profile τ ∈ ΘN . Under semi-anonymity this

gives already (up to a combinatorial term) a distribution on the set of Bayesian

strategies Σ with a support which depends on the type class T N(m), m ∈ LN

in which the type profile τ happens to fall in. Before coming to the statement

of some technical preparatory lemmas we need some additional notation. For

aggregation purposes it is useful to have a partition of the set of players at hand

that categorizes the players according to their action and their type. Formally, let

us define the set

Iτ
k (a)(ω) := {i ∈ [N]|αi(ω) = a & τi = θk}

for all 1 ≤ k ≤ K and a ∈ A. Obviously, for a given type profile τ ∈ ΘN the

family of sets
{

{Iτ
k (a)}a∈A

}K

k=1
is a partition on [N]. Under semi-anonymous

volatility mechanisms the random graph measure (3.1) treats all edges between

players ∈ Iτ
k (a) and j ∈ Iτ

l (b) as i.i.d. random variables. Therefore, we can define

a Binomially distributed random variable (with parameter pkl(a, b))

EN,τ
kl (a, b)(ω) := ∑

(i,j)∈[Iτ
k (a)∪Iτ

l (b)]
(2)

γij(ω).

Given a type profile τ and an a-section ΩN
a we denote by EN,τ

kl (a, b) the maximal

number of edges that can be formed between agents of type k who play action a

and agents of type l who play action b and ekl(a, b) a realization of the random

variable EN,τ
kl (a, b)(·). We start with some important Lemmas.

Lemma B.1. Consider a given type profile τ ∈ T N(m) and a semi-anonymous volatility

mechanism Ξβ,τ,N .
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(i) On the a-section ΩN
a , the fraction of a-players is fixed at

σk(a) = σ̂k(a)(ω, τ) ∀ω ∈ ΩN
a .

Call σ := (σk(a); 1 ≤ k ≤ K, a ∈ A) ∈ ΣN(m).

(ii) We have

µβ,τ,N(ΩN
a ) ∝

K

∏
k=1

n

∏
a=1

Φa
k(σ, β, N)Nmkσk(a) (B.1)

where, for all types 1 ≤ k < l ≤ K, and actions 1 ≤ a ≤ n, Φa
k(·) is defined as

Φa
k(σ, β, N) := ∏

l≥k

Φa
kl(σ, β, N),

Φa
kk(σ, β, N) := exp

(

θk(a)

β

)

∏
b≥a

(

1 +
1

Nβ
ϕ

β,N
kk (a, b)

)

Nmkσk(b)−δa,b
1+δa,b

,

Φa
kl(σ, β, N) :=

n

∏
b=1

(

1 +
1

Nβ
ϕ

β,N
kl (a, b)

)Nmlσl(b)

.

Proof. For notational simplicity let us drop the dependence of β, τ and N from

the involved functions and distributions. Let us denote the absolute number of

a-players of type θk as zk(a) := Nmkσk(a). Item (i) of the Lemma is trivial. To

prove item (ii) we proceed as follows;

For all ω ∈ ΩN define ρ(ω, τ) := µ0(ω) exp(V(ω, τ)/β). Using the functions

xij(·, ·) of eq. (A.6), we can formulate this map as

ρ(ω, τ) =
N

∏
i=1

∏
j>i

exp(xij(ω, τ)γij(ω)) exp(τi(αi(ω))/β). (B.2)

For all ω ∈ ΩN
a the action classes are fixed by definition, and therefore Iτ

k (a)(ω) =
Iτ
k (a) for all 1 ≤ k ≤ K, a ∈ A and ω ∈ ΩN

a . For all agents i ∈ Iτ
k (a), j ∈ Iτ

l (b) we

observe that

xij(ω, τ) ≡ xkl(a, b) :=
1

β
v(a, b) + log(

2

Nξkl
).

Thus, we can aggregate the product of (B.2) as

ρ(ω, τ) = ρ̃[σ,m](ω) :=
K

∏
k=1

n

∏
a=1

exp

(

θk(a)zk(a)

β

)

∏
b≥a

exp [xkk(a, b)]E
N,τ
kk (a,b)(ω)

× ∏
k,l>k

∏
a,b∈A

exp [xkl(a, b)]E
N,τ
kl (a,b)(ω)

(B.3)

which is seen only to depend on the population state via the number of edges the

network at ω has.30 Now we aggregate this expression over all states ω ∈ ΩN
a .

30It does also not depend on the specific type profile but rather the realized type distri-

bution. For notational unity we keep the index τ however.
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This requires integrating over all possible edges that connect players playing a

specific action and being of a specific type. The integration procedure can be per-

formed iteratively (an elementary version of Fubini’s Theorem) by the following

algorithm:

Initialization: Set k = 1 and a = 1.

Loop 1: Consider l = k. Integrate over all possible edges ekl(a, b) for b ≥ a. If b = n

set l → l + 1 and go to Loop 2.

Loop 2: Integrate over possible edges ekl(a, b) for b ∈ A. If l ≤ K − 1 set l → l + 1

and repeat this procedure; otherwise go to Loop 3.

Loop 3: If a ≤ n − 1 and k ≤ K − 1 go to Loop 1 with the same k and a → a + 1. If

a = n and k ≤ K − 1 go to Loop 1 with k → k + 1 and a → 1. If a = n and

k = K STOP.

To illustrate what this algorithm does we present the result after the initializa-

tion step and Loop 1 has been executed. Loop 1 starts with integrating over

all possible edges connecting agents belonging to action class Iτ
1 (1) with itself.

To perform this integral, note that the only factor affected by the aggregation is

exp(x11(1, 1))E
N,τ
11 (1,1)(ω), ω ∈ ΩN

a . Hence, if we collect terms unaffected by the ag-

gregation under the placeholder B1, we see that ρ(ω, τ) = B1 exp(x11(1, 1))E
N,τ
11 (1,1)(ω).

Next, we have to take care of combinatorial identities since there are many possi-

bilities to connect agents in the respective action classes in order to produce the

event
{

EN,τ
11 (1, 1) = e11(1, 1)

}

. Adjusting for this we see that the output of the

algorithm after the first round is

B1

EN,τ
11 (1,1)

∑
e11(1,1)=0

(

EN,τ
11 (1, 1)
e11(1, 1)

)

exp(x11(1, 1))eN
11(1,1) = B1 (1 + exp(x11(1, 1)))EN,τ

11 (1,1)

= B1

(

1 +
1

Nβ
ϕ

β,N
11 (1, 1)

)

z1(1)(z1(1)−1)
2

The next step performed by the algorithm inside Loop 1 will be to sum over all

possible connections between players in the action cells Iτ
1 (1) and Iτ

1 (2). There-

fore we have to take the relevant factor out of the placeholder B1 and perform the

integral as above. This gives the intermediate result

B2

(

1 +
1

Nβ
ϕ

β,N
11 (1, 1)

)

z1(1)(z1(1)−1)
2

(

1 +
1

Nβ
ϕ

β,N
11 (1, 2)

)z1(1)z1(2)

.

Repeating this, as prescribed by the algorithm, we obtain after n steps the function

Φ1
11(σ, β, N)z1(1) = exp

(

θ1(1)z1(1)

β

)

∏
b≥1

(

1 +
1

Nβ
ϕ

β,N
11 (1, b)

)

z1(1)(z1(b)−δ1,b)

1+δ1,b
.

Recalling that zk(a) = Nmkσk(a), we see that this agrees with the definition of the

function Φ1
11(σ, β, N) in the text of the Lemma. Executing the remaining steps of

the algorithm gives the desired result.
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This proposition shows how the invariant distribution weights on the a-sections

of the state space. From the proof it is clear that not the specific action profile is

important for the invariant distribution weight, but only the Bayesian strategy it

generates.

Lemma B.2. If τ, τ′ ∈ T N(m) and σ̂N(ΩN
a , τ) = σ̂N(ΩN

a′ , τ′) then

µβ,τ,N(ΩN
a )

µβ,τ′,N(ΩN
a′)

= 1.

Proof. Call σ the commonly generated Bayesian strategy on the subsets ΩN
a and

ΩN
a′ respectively. From eq. (B.3) we immediately see that for any ω ∈ ΩN

a and

ω′ ∈ ΩN
a′ we have

ρ(ω, τ) = ρ̃[σ,m](ω), ρ(ω′, τ′) = ρ̃[σ,m](ω
′).

We are done if we can show that

∑
ω∈ΩN

a

ρ̃[σ,m](ω) = ∑
ω′∈ΩN

a′

ρ̃[σ,m](ω
′),

since this is the operation performed by the algorithm defined in the proof of

Proposition B.1. But this follow from the fact that the networks that can be formed

on ΩN
a are isomorphic to the networks that can be formed on ΩN

a′ .
31

Note that the fact that networks can be mapped from ΩN
a to ΩN

a′ is a consequence

of semi-anonymity and our conditioning on T N(m), so that the frequency of

players of a certain type is constant. Equipped with this insight, we finally obtain

a distribution over Bayesian strategies.

Theorem B.1. Conditional on the type class T N(m) the probability distribution on the

set of Bayesian strategies Σ is given by

ψβ,N(σ|m) = Kβ,N(m)−1
K

∏
k=1

ν
β,N
k (σ|m), (B.4)

where for all 1 ≤ k ≤ K

ν
β,N
k (σ|m) :=

(Nmk)!

∏a∈A(Nmkσk(a))!

n

∏
a=1

Φa
k(σ, β, N)Nmkσk(a). (B.5)

The support of this probability distribution is the subset

supp(ψβ,N(·|m)) = ΣN(m) = {σ ∈ Σ|Nmkσk(a) ∈ N, ∀a ∈ A, 1 ≤ k ≤ K},

a finite inner approximation of the polyhedron of Bayesian strategies Σ.

31We call two networks g, g′ isomorphic if there exists a permutation of players that

preserves adjacency, i.e. if π is a permutation then gij = 1 iff gπ(i),π(j) = 1.
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Proof. From Corollary B.2 we know that if the pair (a′, τ′) results from (a, τ) by a

permutation of the players labels, then µβ,τ′,N(ΩN
a′) = µβ,τ,N(ΩN

a ). If τ ∈ T N(m)
and on ΩN

a the Bayesian strategy σ prevails, then there are Nmk players of type θk

and simple combinatorics tells us that there are
(Nmk)!

∏a∈A(Nmkσk(a))!
ways to generate

an action class with Nmkσk(a) players in subpopulation 1 ≤ k ≤ K who play

action a ∈ A. This number of combinations is the same for all type profiles

τ ∈ T N(m).

The closed-form for the invariant distribution over Bayesian strategies has another

compact representation, which will turn out to be useful in studying the large

population behavior of the measure. We introduce the functions

(1 ≤ k ≤ K) : f
β,N
k (σ, m) := ∑

a∈A

σk(a) ∑
l≥k

log Φa
kl(σ, β, N),

f β,N(σ, m) :=
K

∑
k=1

mk f
β,N
k (σ, m).

(B.6)

In terms of these maps we can write the distribution (B.4) as

ψβ,N(σ|m) = Kβ,N(m)−1
K

∏
k=1

(Nmk)!

∏a∈A(Nmkσk(a))!
exp

(

Nmk f
β,N
k (σ, m)

)

.

It should be clear that the large population behavior of the law of Bayesian strate-

gies depends on the convergence of the functions { f
β,N
k }N≥N0 . First we show that

the sets ΣN(m)×LN , for m ∈ LN , approximate the continuous spaces Σ × ∆(Θ)
arbitrarily well as N → ∞. For our purposes it is enough to show this for the

case where all types appear with a positive limiting frequency.32 We hence have

the following Lemma to prove.

Lemma B.3. For every Bayesian strategy σ ∈ Σ and type distribution m ∈ int ∆(Θ)
there exists a sequence {(σN , mN)}N≥N0

, with σN ∈ ΣN(mN) and mN ∈ LN for all

N ≥ N0, such that (σN , mN) → (σ, m) as N → ∞.

Proof. The proof proceeds in two steps. First we show that we can find a sequence

mN ∈ LN that converges to m in total variation distance as N → ∞.33 Then we

use this sequence to construct the sequence of Bayesian strategies.

(i) On ∆(Θ) define the total variation distance between two distributions x, y ∈
∆(Θ) as

||x − y||TV,Θ :=
1

2

K

∑
k=1

|xk − yk|,

32The reason for this is that we will later look at the convergence of the empirical mea-

sure MN(·) as N → ∞. Since this measure is generated by a sequence of i.i.d. random

variables with common law q ∈ int ∆(Θ) we can prove a strong law of large numbers that

states that MN(·) → q almost surely (i.e. for all infinite sequences of types up to a set of

Pq-measure zero).
33Any other norm will also do the job.
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If mN ∈ LN then each coordinate mN
k ∈ {0, 1

N , . . . , N
N }. Thus, if m ∈

∆(Θ) then for every 1 ≤ k ≤ K there is a mN
k ∈ {0, 1

N , . . . , N
N } such

that |mk − mN
k | ≤ 1

N . Thus, for every N we find a vector mN such that

||mN − m||TV,Θ ≤ K
2N . Consequently, for a given δ > 0 sufficiently small

the set N δ(m) := {y ∈ ∆(Θ)| ||y − m||TV,Θ < δ} is an open ball around m

that contains mN for all N ≥ N(δ), where N(δ) is a suitably chosen integer.

Hence mN → m in total variation distance.

(ii) Given the sequence of empirical type distribution (mN)N≥N0
identified in

item (i), let σN ∈ ΣN(mN) for all N ≥ N0. On the product space Σ we

measure distance via the maximum-norm, that is

||σ − σ′||TV,Σ := max
1≤k≤K

||σk − σ′
k||TV .

for all σ, σ′ ∈ Σ. As in (i) we see that for all 1 ≤ k ≤ K one can bound the

distance between σN
k and σk by

||σN
k − σk||TV ≤ n

2NmN
k

Consequently for all N sufficiently large we have

||σ − σN ||TV,Σ ≤ n

2N
max

1≤k≤K

1

mN
k

.

Since mN → m ∈ int ∆(Θ) it follows that for N sufficiently large there exists

a ǫ > 0 so that mN
k ≥ ǫ > 0 for all 1 ≤ k ≤ K. Hence, for δ > 0 sufficiently

small we may define a neighborhood N δ(σN) as we did in point (i) and we

observe that for N ≥ N(δ), σN ∈ N δ(σ). This completes the proof of the

Lemma.

This gives us the security that we can always approximate a pair (σ, m) ∈ Σ ×
∆(Θ) by a converging sequence of discrete distributions (σN , mN) which are mea-

surable for the finite population process.

Lemma B.4. For all 1 ≤ k ≤ K and along any sequence
{

(σN , mN)
}

N≥N0 , σN ∈
ΣN(mN), mN ∈ LN , with limit (σ, m) ∈ Σ × int ∆(Θ) we have

lim
N→∞

f
β,N
k (σN , mN) =

1

β
f

β
k (σ, m),

where f
β
k : Σ × ∆(Θ) → R is the continuous function

f
β
k (σ, m) := 〈σk, θk〉+ ∑

l≥k

ml

1 + δkl

〈

σk,ϕ
β
klσl

〉

. (B.7)
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Proof. As a first step we have to determine the asymptotic behavior of the factors

determining the functions Φa
k(·), i.e. the large population behavior of the num-

bers ϕ
β,N
k,l (a, b) =

2β exp(v(a,b)/β)

ξ
β,N
kl

. It follows from (LPB) that for all 1 ≤ k, l ≤ K

and a, b ∈ A

lim
N→∞

1

N
ϕ

β,N
k,l (a, b) = 0, lim

N→∞
ϕ

β,N
k,l (a, b) =

2 exp(v(a, b)/β)

ξ
β
kl

which implies that the first-order approximation

log

(

1 +
ϕ

β,N
kl (a, b)

Nβ

)

=
ϕ

β,N
kl (a, b)

Nβ
+ O(N−2β−1)

gives the right asymptotic behavior for sufficiently large N. For all a ∈ A and

1 ≤ k < l ≤ K observe that

logΦa
kk(σ

N , β, N) =
1

β
θk(a) + ∑

b≥a

(

NmN
k σN

k (b)− δa,b

1 + δa,b

)

log

(

1 +
ϕ

β,N
kl (a, b)

Nβ

)

=
1

β

[

θk(a) +
1

2
mN

k σN
k (a)ϕ

β,N
kk (a, a) + ∑

b>a

mN
k σN

k (b)ϕ
β,N
kk (a, b) + O(1/N)

]

and

log Φa
kl(σ

N , β, N) =
1

β

[

mN
l ∑

b∈A

σN
l (b)ϕ

β,N
kl (a, b) + O(1/N)

]

.

Thus, for all 1 ≤ k ≤ K we see that

f
β,N
k (σN , mN) = ∑

a∈A

σN
k (a) ∑

l≥k

log Φa
kl(σ

N , β, N)

=
1

β

[

〈

σN
k , θk

〉

+ ∑
l≥k

mN
l

1 + δkl

〈

σN
k ,ϕ

β,N
kl σN

l

〉

+ O(1/N)

]

=
1

β

(

f
β
k (σ

N , mN) + O(1/N)
)

.

By (LBP) all the functions appearing in the definition of f
β
k (σ

N , mN) have a well

defined limit as N → ∞, and therefore the proof is completed.

Corollary B.1. The sequence of functions { f β,N}N≥N0 converges almost everywhere to

the limit function f β.

Proof. This follows from Lemma B.3 together with Lemma B.4.

In the preceding results all statements have been given for general sequences of

type distributions. In the Bayesian interaction game the nature of the type assign-

ment process is i.i.d with common law q. Hence, asymptotically, the strong law of

large numbers shows that type distributions resulting from the type assignment

process must be close to q. To be precise we have
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Lemma B.5. MN a.s.→ q for N → ∞.

Proof. We take as metric on ∆(Θ) again total variation distance34, i.e. ||m −
q||TV := 1

2 ∑
K
k=1 |mk − qk|, ∀m, q ∈ ∆(Θ). Recall that q ∈ int ∆(Θ) is the com-

mon law of the types τ̃
(N)
i . Around this point consider the countable family of

open sets {Bq,ǫ}ǫ∈Q+ , where for all ǫ ≥ 0 Bq,ǫ := {m ∈ ∆(Θ)| ||m − q||TV > ǫ},

and The law induced by the empirical process {MN}N≥N0
assigns mass to these

sets as

P̂N
q (Bq,ǫ) = Pq({τ|MN(τ) ∈ Bq,ǫ})

From Sanov’s Theorem it follows that

lim
N→∞

1

N
log P̂N

q (Bq,ǫ) = − inf
m∈Bq,ǫ

h(m|q),

where h(m|q) := ∑
K
k=1 mk log mk

qk
is the relative entropy.35 It is easily seen that

h(·|q) ≥ 0 with equality only at q (apply Jensen’s inequality). Since q /∈ Bq,ǫ for

all ǫ ≥ 0, it follows that for each such ǫ we can find a constant cǫ ∈ (0, ∞) such

that

P̂N
q (Bq,ǫ) ≤ e−Ncǫ . (B.8)

We now translate the set Bq,ǫ into an event of nature’s type assignment experi-

ment. Consider the set

AN(ǫ) := {τ|MN(τ) ∈ Bq,ǫ} = {τ| ||MN(τ)− q||TV > ǫ}.

This event has Pq-probability P̂N
q (Bq,ǫ) by construction. Combined with equation

(B.8) we see that

∑
N≥N0

Pq(AN(ǫ)) = ∑
N≥N0

P̂N
q (Bq,ǫ) ≤ ∑

N≥N0

e−Ncǫ < ∞

Hence, by the first Borel-Cantelli Lemma36 we conclude Pq(lim supN→∞ AN(ǫ)) =
0 for all ǫ ∈ Q+, which gives us almost sure convergence of the empirical process

{MN}N≥N0
.

In the main text of the paper we have argued that the “logit potential functions”

play a vital role in deriving the large deviations principle for the family of mea-

sures {ψβ,N(·|MN)}N≥N0 . Recall that these function are defined as

(1 ≤ k ≤ K) : f̃
β,N
k (σ, m) := f

β,N
k (σ, m) + βh(σk),

f̃ β,N(σ, m) :=
k

∑
k=1

mk f̃
β,N
k (σ, m)

(B.9)

We have to proof the following

34As in Lemma B.4 the particular choice of a metric is not important
35We set 0 log 0 = 0 and 0 log 0

0 = 0. Recall also that q ∈ int ∆(Θ), and hence the relative

entropy is well-defined on all of ∆(Θ). Sanov’s Theorem is related to Cramér’s Theorem,

but considers large deviations of empirical processes. See Dembo and Zeitouni (1998),

chapter 2.
36See for instance Dudley (2002, Theorem 8.3.4).
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Theorem B.2. Let (mN)N≥N0 be a sequence of type distributions which converges to

the prior distribution q. The family {ψβ,N(·|mN)}N≥N0
, generated under an admissi-

ble semi-anonymous volatility mechanism, satisfies a large deviations principle with rate

function rβ(σ, q) := maxσ′∈Σ f̃ β(σ′, q)− f̃ β(σ, q), for all σ ∈ Σ, in the sense that

lim
N→∞

β

N
log ψβ,N(σN |mN) = −rβ(σ, q) (B.10)

for every sequence
{

σN
}

N≥N0 such that σN ∈ ΣN(mN), ∀N ≥ N0 and σN → σ.

Proof. By Lemma B.5 we can pick a sequence (mN)N≥N0 that converges to q with

probability 1. Let us denote by e1 = (e1(1), . . . , eK(1)) the Bayesian strategy

where all players of all types play action 1, i.e. for each 1 ≤ k ≤ K, ek(1) is the

unit vector of Rn with 1 in its first component and zero in its n − 1 remaining

components. Of course e1 ∈ ΣN(mN) for all N. Then for all σ ∈ ΣN(mN)

ψβ,N(σ|mN)

ψβ,N(e1|mN)
=

K

∏
k=1

(Nmk)!

∏a∈A(NmN
k σN

k (a))!
exp

[

NmN
k

(

f
β,N
k (σN , mN)− f

β,N
k (e1, mN)

)]

.

(B.11)

Taking logarithms and multiplying by
β
N gives us

β

N
log

ψβ,N(σN |mN)

ψβ,N(e1|mN)
=

β

N

K

∑
k=1

log

(

(NmN
k )!

∏a∈A(NmN
k σN

k (a))!

)

+
K

∑
k=1

mN
k

(

f
β,N
k (σN , mN)− f

β,N
k (e1, mN)

)

To handle the limit of the combinatorial terms the following simple version of

Stirling’s formula n! ∼=
√

2πn
(

n
e

)n
will be sufficient for us. Some tedious, but

straightforward algebra, gives us

1

N
log

(

(NmN
k )!

∏a∈A(NmN
k σN

k (a|mN))!

)

= mN
k

[

h(σN
k ) + O(1/N)

]

.

From Lemma B.4 we know that f β,N(σN , mN) → f β(σ, q) along the converging

sequence {(σN , mN)}N≥N0 . It follows that

lim
N→∞

β

N

ψβ,N(σN |mN)

ψβ,N(e1|mN)
= f̃ β(σ, q)− f̃ β(e1, q) (B.12)

where f̃ β(·, ·) is the logit potential function defined in (B.9). Next, let σN∗ be a

maximizer of the function

f̃ β,N(σN , mN) :=
K

∑
k=1

mN
k

[

f
β,N
k (σN , mN) + βh(σN

k )
]

, σN ∈ ΣN(mN)

for all N ≥ N0. Then, by uniform convergence, we have f̃ β,N(σN∗ , mN) →
f̃ β(σ∗, q) as N → ∞, and the limit point is a maximizer of f̃ β(·, q). It follows

from Sandholm (2010, Theorem 12.2.2) that

lim
N→∞

β

N
log ψβ,N(σN

∗ |mN) = 0. (B.13)
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This completes the proof, since for all σN → σ ∈ Σ we know from (B.11) that

lim
N→∞

β

N
log ψβ,N(σN |mN) = lim

N→∞

[ β

N
log

ψβ,N(σN |mN)

ψβ,N(e1|mN)

− β

N
log

ψβ,N(σN∗ |mN)

ψβ,N(e1|mN)
+

β

N
log ψβ,N(σN

∗ |mN)
]

= f̃ β(σ, q)− f̃ β(σ∗, q) |by (B.13)

= −rβ(σ, q).
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