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Abstract 
Recent literature in evolutionary game theory is devoted to the question of robust equilibrium selection 
under noisy best-response dynamics. In this paper we present a complete picture of equilibrium 
selection for asymmetric binary choice coordination games in the small noise limit. We achieve this by 
transforming the stochastic stability analysis into an optimal control problem, which can be solved 
generally. This approach allows us to obtain precise and clean equilibrium selection results for all 
canonical noisy best-response dynamics which have been proposed so far in the literature, among 
which we find the best-response with mutations dynamics, the logit dynamics and the probit dynamics. 
Thereby we provide a complete answer to the equilibrium selection problem in general binary choice 
coordination games.  
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1 Introduction

The notion of Nash equilibrium is the most prominent solution concept in the theory
of non-cooperative games. However, most games of interest in economic theory have
multiple Nash equilibria, leaving open the question of which equilibrium we should
regard as the most “relevant” one. Up to now there is no generally accepted theory of
equilibrium selection, which is a large problem in many contexts where non-cooperative
game theory is applied and empirically tested (see e.g. Bajari et al., 2010). To exam-
ine whether some outcomes in games are more likely than others, Foster and Young
(1990), Kandori et al. (1993) and Young (1993) proposed dynamic models of play with
persistent randomness. With the introduction of noise any outcome is obtainable in
these models, but one can study the long-run likelihood that a certain outcome is
obtained in a game when the noise term is tending to zero. An outcome is said to
be stochastically stable if the long-run probability with which it is observed does not
go to zero in the limit of vanishing noise. The central result of the aforementioned
papers is that this intuitive concept not only rules out unstable mixed equilibra, but
also allows us to select among strict Nash equilibria. These powerful results indicate
that stochastic “evolutionary” models may serve as a building block for a theory of
equilibrium selection.1 Fascinated by this powerful machinery, many researchers have
subsequently extended and refined the predictions made by these models. However,
the sober outcome of these studies is that we will not be able to build a robust the-
ory of equilibrium selection with these methods. Two sources of non-robustness have
mainly been identified by the literature. First, there is non-robustness to the speci-
fication of noise in the system (Bergin and Lipman, 1996). Second, the relative speed
of adjustment of the players may influence equilibrium selection (Kandori et al., 1993,
Alós-Ferrer and Netzer, 2010). Faced with these negative results we need to develop
quantitative methods which directly examine the stochastic potentials of equilibria in
order to foster our understanding of these models. The purpose of this paper is to
present a promising approach to obtain such quantitative measures.

1.1 Outline of the paper

This paper presents a general analysis of the equilibrium selection problem in asym-
metric binary choice coordination games under a general class of dynamic adjustment
models, which have been recently introduced as noisy best-response protocols (Sandholm,
2010b). In a binary choice coordination game the two strict Nash equilibria are absorb-
ing states under best-response processes without noise. Hence, once the players agree
to coordinate on one convention, there is no way out of this convention. The intro-
duction of noise, however, allows for small probability events in which the pattern of
play deviates from the conventions, and therefore may trigger a sequence of player ad-
justments which may lead to the alternative convention. Let us label such paths escape
paths. In the presence of small positive noise, it becomes a meaningful exercise to ask
for the probability that the process follows an escape path. Finding the escape paths
from both conventions with the highest probability allows us to compare the relative
likelihood that the process wanders from one convention to the other. These paths can

1For alternative (deterministic) evolutionary dynamics which are able to select among strict Nash
equilibria, see Matsui (1995), Hofbauer and Sorger (1999) and Oechssler and Riedel (2001).
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be interpreted as the maximum likelihood paths of escape. It is then intuitive to call one
Nash equilibrium point stochastically stable, if the probability of its maximum likelihood
escape path is lower than that identified for the competing equilibrium point.2 Thus,
the exercise we face is to find these maximum likelihood escape paths. It is well-known
that these paths can be characterized by solving a dynamic program, i.e. a shortest path
problem (see e.g. (Kandori et al., 1993, Kandori and Rob, 1995) and Young (1993; 1998)).
In this problem formulation the states are identified as vertices in a weighted graph
and the edge-weights are the costs of transiting from one state to another. Solving such
a dynamic program is feasible via standard algorithmic methods. However, in order to
obtain analytic results, this approach becomes rapidly infeasible. This is particularly
true once different dynamics to the classical “mutation counting” (or best-response with
mutations) dynamics are of interest. It seems that a different approach is needed to
obtain a general characterization of maximum likelihood escape paths. In this paper
we propose such an approach by deriving an optimal control problem whose solu-
tion will give us precisely a maximum likelihood escape path in the limit of large
player sets. This method is indeed very powerful. For the first time it allows us to
obtain a complete picture of the pattern of equilibrium selection in asymmetric binary
choice coordination games under the three canonical perturbed best-response models:
the best-response with mutations model of Kandori et al. (1993) and Young (1993), the
logit choice model of Blume (1993), and the probit choice of Myatt and Wallace (2003).
The classical results of Kandori et al. (1993) and Young (1993) tell us that the risk-
dominant equilibrium is selected in (symmetric or asymmetric) coordination games, if
the populations are of equal size.3 We recover this result with our optimal control ap-
proach. In the logit choice model we show that the equilibrium which is risk-dominant
in a suitably defined way, is uniquely stochastically stable. The probit choice model
shows a more intricate selection pattern, and we observe that, whenever the coordina-
tion game has an exact potential, we obtain the selection of risk-dominant equilibria.
In more general games this no longer holds. The evolutionary equilibrium selection of
non-risk dominant equilibria in asymmetric games should be contrasted with results
obtained by Blume (2003) and Sandholm (2010b). These authors have shown that for
symmetric coordination games with linear incentives, e.g. population games with ran-
dom matching of players, risk-dominant play is stochastically stable for any noisy-best
response process. We show that this is no longer true in asymmetric games.

1.2 The optimal control approach

At this stage the reader may wonder what the above outlined optimal control approach
buys us in the problem of equilibrium selection. Since the optimal control approach,
developed in this paper, arises naturally from the problem formulation of evolutionary
equilibrium selection, we would like to give an informal overview on the nature of the
problem.

2This is also the idea behind the Radius-Coradius Theorem of Ellison (2000).
3In the “Darwinian dynamics“ of Kandori et al. (1993) one has to add the assumption that the rel-

ative adjustment speed of the players is the same. In our model this would mean that the two player
populations are of the same size. For the truncated fictitious play process of Young (1993) the standard
bounds on sample and memory size must, of course, apply. Different population size can be interpreted
as different sample sizes; See Hehenkamp (2003) for a more detailed discussion.
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Stochastic evolutionary models are mainly concerned with the asymptotic properties of
the game dynamics. Technically this means that we are interested in the structure of
the invariant distribution of the Markov chain, which is (essentially) uniquely defined
as rare events of experimentation render the process ergodic. This invariant distribu-
tion captures the long-run behavior of the players in two complementary ways. First
it describes the long run behavior of almost all sample paths of the game dynamics.
Second it is the limit distribution of the process as the number of rounds played goes
to infinity. Thus, all the information about long-run play is stored in the invariant
distribution. The literature on stochastic evolution in games has developed different
approaches of equilibrium selection which can be paraphrased as the small noise limit,
the large population limit, and their logically possible double limits. In this paper we
focus on the small noise (double) limit. For a state-of-the-art discussion of stochastic
stability analysis the reader is referred to Sandholm (2010a), where a more detailed
discussion of stochastic stability techniques can be found.

The small noise limit emphasizes to role of small probability events of experimentation
by the players in a large population environment. Kandori et al. (1993) and Young
(1993), building on the work of Freidlin and Wentzell (1998), used trees defined on the
finite set of population states, to characterize those states that are played with non-
negligible frequency as the noise level vanishes. Kandori and Rob (1995) subsequently
demonstrated that this problem can be reduced to a dynamic program, which they
solve for symmetric games of pure coordination and symmetric supermodular games.
These optimization problems are defined on a discrete state space, the set of finite
strategy distributions, and can be interpreted as shortest path problems by identifying
the state space as a weighted directed graph. A drawback of this approach is that,
as the population of players gets large, the shortest path problems become readily
intractable. To overcome this “curse of dimensionality” problem, we show that the
solution of the dynamic program converges to the solution of a continuous optimal
control problem, which is solvable by standard methods. This convergence property
is an important result, as it assures us that we can “trust” the solution of the optimal
control problem if the population of players is sufficiently large.4 In fact the optimal
control problem in this paper turns out to be fairly easy to solve, and it allows us to
answer the central question we ask in this paper:

How is equilibrium selection in general binary choice coordination games
affected by the players’ choice functions?

1.3 Related literature

This paper makes a contribution to a recent literature which is devoted to identify-
ing the conditions for “detail-free” equilibrium selection in stochastic evolutionary
models.5 To the best of my knowledge, this paper is the first attempt to investigate
this question in asymmetric games. For symmetric binary choice coordination games,
Sandholm (2010b) provides a complete picture of equilibrium selection under noisy-
best response dynamics. He does not only investigate equilibrium selection in the

4Establishing precise error bounds is an interesting topic for future work.
5Related to this question is the robustness against incomplete information literature. See e.g.

Morris and Ui (2005) for a recent contribution.
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small noise limit, but also considers the behavior of the model under the small noise
and the large population limit. Moreover, he proves that these limits commute. We
focus here on asymmetric games with two distinct player populations and the small
noise limit. We obtain stochastic stability results by taking the large population limit.6

In this limiting scenario we capture the behavior of large populations of players who
are playing slightly perturbed best-responses, i.e. with a large probability a revising
player chooses a best-response, but there is a small chance of random experimentation.
For economic analysis this limit is therefore particular interesting, as it models the play
of populations of players who are with high probability expected utility maximizers,
though in an essentially myopic way. The literature on learning and evolution in games
has proposed many ways to rationalize this way of modeling game dynamics in eco-
nomics.7 It is an open question how the order of limits affects equilibrium selection in
general, and we regard this as an important topic for future research.

The rest of the paper is organized as follows: In Section 2 we present the set of bi-
nary choice coordination games for which we can give complete equilibrium selection
results. Section 3 presents the stochastic evolutionary model and defines noisy best-
response functions. Section 4 is devoted to the problem of equilibrium selection. We
report our results for the case of small player sets and large population sets, separately.
Section 5 concludes.

2 Binary choice coordination games with large player sets

We consider population games in the spirit of Sandholm (2010a), specialized to two
player populations and linear payoff functions. There are two populations of players
p ∈ P = {1, 2}. In each player population there are Np = Nmp identical agents
who are randomly matched with agents of the opponent population 3 − p to play this
game. The numbers N, Np, p ∈ P are integers, and M = m1 + m2 is the total mass
of the society. Let X := X

1 × X
2 = [0, m1] × [0, m2]. Agents are assumed to use only

pure actions, contained in the set S p = {s
p
1 , s

p
2}, p ∈ P . The aggregate distribution

of behavior in population p is completely described by the frequency of players using

action 1, denoted by xp ∈ X
p,N := {0, 1

N , . . . , Np

N }. A population state is a pair x =

(x1, x2), living in the discrete grid X
N := {x = (x1, x2) ∈ X|Nx ∈ N

2
0} = X

1,N × X
2,N .

The set X
N is an arbitrarily fine inner approximation of the rectangle X by choosing

N sufficiently large. From our uniform random matching hypothesis it follows that
expected payoff of an agent in population p ∈ {1, 2} when choosing action s

p
i , p ∈

{1, 2}, are linear, and given by the expressions

F
p
1 (x3−p) := apx3−p + cp(m

3−p − x3−p),

F
p
2 (x3−p) := dpx3−p + bp(m

3−p − x3−p),

6Hence, we prove equilibrium selection results in the small noise double limit in the sense of Sandholm
(2010a). Inspiration for this approach came from the work by Kifer (1988; 1990) who studied random
perturbations of discrete-time Markov chains satisfying a large-deviations principle.

7Fudenberg and Levine (1998) provides an intriguing discussion of learning models in economics.
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Figure 1: Illustration of a typical coordination game. Dots mark the position of Nash
equilibria. Here we illustrate a continuum population game with two player popula-
tions with masses m1 = 1 and m2 = 2. Arrows indicate the direction of the vector field
d. At the mixed equilibrium point x∗ this vector field is trivial.

for numbers (ap, bp, cp, dp) ∈ R
4. The essential information about the game is contained

in the incentive functions

d1(x2) := F1
2 (x2)− F1

1 (x2) = α1(x2
∗ − x2),

d2(x1) := F2
2 (x1)− F2

1 (x1) = α2(x1
∗ − x1),

(2.1)

where αp := (ap − dp) + (bp − cp) and x
p
∗ := mp b3−p−c3−p

α3−p for p ∈ {1, 2, }. The dynamic
models we consider in this paper only depend on the best-reply structure of the game.
Therefore, we can normalize payoffs so that α1 ≡ 1 and α2 ≡ α. The population game
is completely defined by the vector field

d = (d1, d2) : X → R
2, x = (x1, x2) 7→ d(x).

Generically, the population game (d1, d2) has one or three Nash equilibria. Since the
main concern in this paper is the question of evolutionary equilibrium selection, we
will focus on the class of coordination games, which is characterized by the conditions

d((0, 0)) > 0 and d((m1, m2)) < 0.

Following Harsanyi and Selten (1988), we call the stability set of strict Nash equilibrium
A the rectangle XA := [x1

∗, m1] × [x2
∗, m2]. Analogously, we call the stability set of

equilibrium B the rectangle XB := [0, x1
∗]× [0, x2

∗].

3 Stochastic evolution and stochastic stability

3.1 The stochastic evolutionary process

Our model of stochastic evolution builds on Hofbauer and Sandholm (2002; 2007) and
Sandholm (2010b), but we adopt a discrete-time formulation as in Benaïm and Weibull

5



(2003). At discrete points of time, contained in the set T := {0, 1
N , 2

N , . . .} a single, ran-
domly chosen player receives a revision opportunity in which he considers changing
his strategy. When a current i-player in population p receives a revision opportunity he
switches to strategy j 6= i with probability ση(π), where π ∈ R represents the current
payoff advantage of action j over i. The map ση : R → (0, 1) is called a choice function
and is parameterized by the noise level η > 0.8 The composition B

p
η := ση ◦ dp is a

noisy best-response function if

lim
η→0

B
p
η(x−p) =

{

1 if dp(x−p) < 0,
0 if dp(x−p) > 0.

(3.1)

This dynamic process of play defines a finite state Markov chain XN,η = {X
N,η
k/N}k∈N

on the lattice X
N with transition probabilities

P

(

X
N,η

(k+1)/N
= y|XN,η

k/N = x
)

= PN,η(x, y)

=
1

M

{

(mp − xp)B
p
η(x−p) if y = x + 1

N ep, p ∈ {1, 2},

xp(1 − B
p
η(x−p)) if y = x − 1

N ep, p ∈ {1, 2},

where e1 and e2 represent the canonical basis vectors of R
2 and t ∈ T. The set of

feasible transitions of the Markov chain is denoted by V = {±e1,±e2}, and v ∈ V
represents a feasible direction of motion (i.e. a positively or negatively oriented unit
vector). If y ∈ X

N but cannot be represented in the form x + 1
N v, v ∈ V, then we set

PN,η(x, y) = 0.

3.2 Choice functions and their costs

The central concept of stochastic stability analysis is the notion of costs of a transition.
Following Sandholm (2010b) we measure costs as the exponential rate of decay of the
choice probability function in the small noise limit.

Hypothesis 1.

(1) There exists a function w : R → R+, to be called the waste function, such that for all
π ∈ R

− lim
η→0

η log ση(π) = w(π) (3.2)

with convergence uniform on compact intervals.

(2) The waste function w : R → R+ is said to be admissible if

(2.i) w(π) > 0 if π > 0,

(2.ii) w(π) = 0 if π < 0,

(2.iii) w is non-decreasing,

8Our stochastic stability analysis can be extended to allow for heterogeneous choice functions by
simply changing notation.
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Note that we leave the waste function undefined at the point 0, i.e. we allow for
w(0) = 0 and w(0) > 0. As observed by Sandholm (2010b) this creates more modeling
freedom to allow for tie-breaking rules (see Example 1 below). Condition (1) says that
the exponential rate of decay of a choice function is governed by the waste function w.
Unpacking the expression (3.2) shows that for η → 0

ση(π) = exp

(

− 1

η
(w(π) + o(1))

)

, (3.3)

where o(1) represents terms which are negligible as η → 0. Any choice function whose
waste function satisfies conditions (2.i) and (2.ii) generates a perturbed best response
function B

p
η = ση ◦ dp. To see this note that Eq. (3.3) implies that

B
p
η(x−p) = exp

(

− 1

η
(w[dp(x−p)] + o(1))

)

as η → 0. Thus, if strategy 1 is a best response for player p then dp(x−p) < 0 and by
condition (2.ii) we must have w(dp(x−p)) = 0. This implies that B

p
η(x−p) → 0 as η → 0

in this case. But if strategy 2 is a best-response, then dp(x−p) > 0, and by condition (2.i)
we see that B

p
η(x−p) → 1, η → 0. Condition (2.iii) is a weak monotonicity assumption.

We now present the canonical examples of noisy best-response functions, together with
their waste functions.

Example 1 (Best-response with mutations). The most frequently applied model in stochastic
evolutionary game theory assumes that players select with probability 1 − ǫ a strategy that is
strictly better compared to their current strategy. With complementary probability ǫ a player
makes a random draw.9 Parameterizing the mutation probability by ǫ = exp(−1/η) gives the
choice function

ση(π) =

{

1 − exp(−1/η) if π < 0
exp(−1/η) otherwise.

For η → 0 the waste function of this choice function is the mutation counting function

w(a) ≡ wM(π) = 1[0,∞)(π). (3.4)

In particular, we see that w(0) = 1.

3

Example 2 (Logit choice). The logit choice function is defined as

ση(π) =
1

1 + exp(π/η)
.

For η → 0 its waste function is given by

w(π) ≡ wL(π) = max{0, π}. (3.5)

It is well known that this choice model can be derived from a random utility model with extreme-
value distributed errors (see e.g. McFadden (1981) or Anderson et al. (1992)).

9This models a probabilistic choice behavior where agents are biased for their current strategy since
a revising agent only makes a switch if the alternative promises a strictly higher (myopic) payoff. Alter-
native specifications of the choice model only changes the waste function at the point π = 0, which is
possible by Hypothesis 1. This observation is due to Sandholm (2010b).
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3

Example 3 (Probit choice). Beside the Logit, another well known model from the discrete-
choice literature is th Probit. While the logit choice model assumes extreme-value distributed
errors, the probit choice function assumes normally distributed errors. Consider player p = 1, 2
and assume that

ση(π) = P(ǫ1 − ǫ2 > π)

where ǫj, j ∈ {1, 2}, are i.i.d. N(0, η/2) distributed error terms. Denote by Z = ǫ1−ǫ2√
η ∼

N(0, 1). Then it follows that

ση(π) = P

(

Z >
π√

η

)

= 1 − Φ

(

π√
η

)

,

where Φ is the cumulative distribution function of the standard normal distribution. Consider-
ing the limit η → 0, it follows from the Laplace principle that the unlikelihood function is given
by

w(π) ≡ wP(π) =
π2

2
1[0,∞)(π). (3.6)

3

4 Equilibrium selection

For finite population size N and positive noise level η the stochastic evolutionary pro-
ces is a finite-state irreducible Markov chain. Standard results on Markov chains (see
e.g. Stroock (2005)) tell us that for every parameter pair (N, η) the process XN,η pos-
sesses a unique invariant distribution µN,η. Since the pioneering work of Kandori et al.
(1993) and Young (1993) it has been common practice to call a state x ∈ X

N stochas-
tically stable if it is contained in the support of the limiting invariant distribution
µN := limη→0 µN,η. Since in this paper we work with more general choice functions, we
are satisfied with a milder, large-deviations type, criterion of stochastic stability, which
has been recently proposed by Sandholm (2010a;b). By saying that a subset O ⊂ X is
open we mean open relative to X.

Definition 1. A state x ∈ X
N is called stochastically stable in the small noise limit if

− lim
η→0

η

N
log µN,η(x) = 0.

State x ∈ X is stochastically stable in the small noise large population double limit if for every
ǫ > 0 there exists an open set O ⊂ X containing x such that

− lim
N→∞

lim
η→0

η

N
log µN,η(O) ≤ ǫ.

In this section we introduce some general methods by which stochastically stable states
in the small noise limit and in the small noise large population double limit can be
identified. A more formal account of the material presented here can be found in
Appendix A.
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4.1 Measuring stochastic stability

We define a path of length K + 1 as a sequence of states φN := (φN
0 , φN

1 , . . . , φN
K ), where

(i) each φN
k ∈ X

N , and

(ii) N(φN
k+1 − φN

k ) ∈ V for all k ∈ {0, . . . , K − 1}.

ΦN
x is the set of admissible paths starting at x ∈ X. To measure the cost of a one-step

transition along a path, we need to attach costs to every feasible direction of motion at
a state x ∈ X

N . Therefore we introduce the functions10

κp(x, v) := sgn(vp)w
[

sgn(vp)dp(x−p)
]

, p ∈ {1, 2}, v ∈ V

κ(x, v) := (κ1(x, v), κ2(x, v))

and define the cost of a transition from a point x in direction v ∈ V as11

c(x, v) := κ1(x, v)v1 + κ2(x, v)v2 ≡ 〈κ(x, v), v〉 . (4.1)

The costs of a path φN are measured by the action functional

LT(φ
N) :=

T−1

∑
k=0

c[φN
k , φN

k+1 − φN
k ], L0 ≡ 0. (4.2)

From the definition of waste functions it is clear that the process can leave the set
XBA = X \ (XA ∪ XB) at zero costs by letting the player for whom it is a best reply to
do so adjust toward A or B (recall Figure 1). Every path that connects B with A (A
with B) must incur the positive costs needed to wander through the set XB (XA) and
no more. Hence, it is sufficient to define a path on XB (XA) to determine the costs of
going from B to A (A to B). Moreover, it suffices to define an escape path only up to
the point where it hits the outer boundary of the stability set, defined as

∂XB := ({x1
∗} × [0, x2

∗]) ∪ ([0, x1
∗]× {x2

∗}),
∂XA := ({x1

∗} × [x2
∗, m2]) ∪ ([x1

∗, m1]× {x2
∗}).

However, due to finite population effects, these sets will in general have an empty
intersection with the discrete grid X

N. To account for finite population effects we
define for p = 1, 2 the smallest point on the grid X

N which is larger than or equal
x

p
∗ as ξ

p
N := 1

N

⌈

Nx
p
∗
⌉

. Similarly we call the largest points smaller than or equal

x
p
∗ as ζ

p
N := 1

N

⌊

Nx
p
∗
⌋

. Then, we call ∂XN
B = ({ξ1

N} × [0, ξ2
N]) ∪ ([0, ξ1

N ] × {ξ2
N}) and

∂XN
A = ({ζ1

N} × [ζ2
N, m2]) ∪ ([ζ1

N, m1]× {ζ2
N}).

Suppose we are given a mixed equilibrium x∗ = (x1
∗, x2

∗), a waste function w, and
a population size parameter N ≥ N0. The stochastic potentials of the two strict Nash
equilibria A and B are defined as

γN
A (w, x∗, α) := min{LK(φ

N)|φN ∈ ΦN
B , φN

K ∈ ∂XN
B , K ∈ N}, (4.3)

γN
B (w, x∗, α) := min{LK(φ

N)|φN ∈ ΦN
A , φN

K ∈ ∂XN
A , K ∈ N}. (4.4)

10For π 6= 0 we define sgn(π) := π
|π| , and sgn(0) := 0.

11In general we denote the inner product between two vectors x, y as 〈x, y〉 := x1y1 + x2y2.
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We define the selection coefficient as the difference in stochastic potentials, i.e.

SN(w, x∗, α) := γN
A (w, x∗, α)− γN

B (w, x∗, α). (4.5)

A central result of stochastic stability analysis is that the strict Nash equilibrium with
the smaller stochastic potential is uniquely stochastically stable (see e.g. Young, 1993;
1998). Thus, equilibrium A is uniquely stochastically stable in the small noise limit
at population size N if SN(w, x∗, α) < 0. If SN(w, x∗, α) > 0 then equilibrium B is
uniquely stochastically stable in the small noise limit.
It is intuitively clear that in the population game (d1, d2) only the two strict Nash
equilibria are candidates for the being stochastically stable in the small noise limit.
Indeed, Young (1998, chapter 4) shows that this is true in his truncated fictitious play
process. However, since we consider general noisy best-response dynamics, this still
requires a proof.

Theorem 4.1. Fix a population parameter N ≥ N0 and a waste function w. The set of
stochastically stables states in the small noise limit in the population game (d1, d2) is contained
in the set {(0, 0), (m1, m2)}.

Proof. See Appendix A.

Hence, we have the following small noise limit characterization, whose proof can also
be found in Appendix A.

Proposition 4.1. For all N ≥ N0 we have

lim
η→0

| η

N
log

µN,η(B)

µN,η(A)
− SN(w, x∗, α)| = 0. (4.6)

This proposition endows us, in principle, with a general procedure for selecting be-
tween the two competing strict equilibrium points. In order to apply Proposition 4.1
one has to solve the dynamic program which underlies the definitions of the stochastic
potentials γN

A (w, x∗, α) and γN
B (w, x∗, α).12 Then one obtains equilibrium selection re-

sults for every population size parameter N. However, the larger N the finer the grid
X

N ⊂ X, and the more complex it becomes to solve the dynamic program lying behind
the definition of the stochastic potentials. We circumvent this problem by following
a common idea in evolutionary equilibrium selection, in which the action functionals
are approximated by line integrals, and the dynamic programs are replaced by optimal
control problems.13 To do this in a meaningful way we have to invest some effort in
making precise in which sense the equilibrium selection procedure for the finite state
model is related to a suitably defined continuum model. This requires mastering some
technical details which are collected in Appendix B. The prize for the effort is that we
obtain precise and clean equilibrium selection results.
First we introduce the continuous counterpart of a path. In the continuum popula-
tion model we call an absolutely continuous curve φ : [0, T] → X a path.14 We endow

12See Appendix A.
13Pioneers in this direction are Binmore et al. (1995), Binmore and Samuelson (1997), Maruta (2002),

Blume (2003) and Sandholm (2010b).
14Recall that a function φ : [0, T] → X is absolutely continuous if for every ǫ > 0 there exists a δ > 0

such that for any finite set of intervals [t0, t1), [t1, t2), . . . , [tn−1, tn) with ∑k(tk+1 − tk) < δ it follows
that ∑k ||φ(tk+1) − φ(tk)|| < ǫ. In particular, an absolutely continuous curve is differentiable almost
everywhere.
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R
2 with norm ||x|| := |x1| + |x2|. The sphere with respect to this norm is denoted

by U = {x ∈ R
2| ||x|| = 1} A path φ is admissible if for all t the tangent vector is

contained in the set

φ′(t) ∈ U(φ(t)) := {u ∈ U|(∃ǫ > 0) : φ(t) + ǫu ∈ X}.

The continuous equivalent to the cost function (4.1) is then the 1-form

(∀x ∈ X)(∀u ∈ U(x)) : c(x, u) = 〈κ(x, u), u〉 .

We define the line integral with respect to a piecewise continuously differentiable curve
φ : [0, T] → X as

L(ψ) :=
n−1

∑
k=0

∫ tk+1

tk

c[φ(t), φ′(t)]dt,

where over each interval [tk, tk+1) ⊆ [0, T] on which the curve φ is differentiable we
evaluate the integral as

∫ tk+1

tk

c[φ(t), φ′(t)]dt =
∫ tk+1

tk

(

κ1(φ(t), φ′(t))(φ1)′(t) + κ2(φ(t), φ′(t))(φ2)′(t)
)

dt.

Now, let us focus on the problem of finding a least-cost path to exit the stability set
XB.15 This can be formulated as the following variational problem:

min
∫ T

0 c[x(t), u(t)]dt
s.t. x′(t) = u(t) a.a t ∈ [0, T]

u(t) ∈ U(x(t)) a.a t ∈ [0, T]
x(0) = B, x(T) ∈ ∂XB

T ∈ [0, ∞)

(4.7)

A solution is a pair (φ̄(·), T), consisting of an absolutely continuous curve φ̄ : [0, T] →
X, satisfying all the listed constraints. This curve is called a least-cost path, and the time
point T is called the exit time of the least-cost path. Some comments are in order here.
First, in the formulation of the optimization problem (4.7) we anticipate that an optimal
control path for (4.7) will be non-decreasing, and non-increasing for the exit-problem
from the set XA. The reason for this is simple. Any non-monotonic path has segments
with zero costs because it points into the direction of the equilibrium point we want to
get away from. Without loss of generality we can cut out such segments. Second, we
restrict the tangent vector of any feasible path to lie in the set U(x). Also this is without
loss of generality; Since any least cost path must be monotonic we can normalize the
tangent vector to lie in the unit sphere without affecting optimality of the control.
Given this pre-information on the shape of a least cost exit path, we can write the
running costs in problem (4.7), with a slight abuse of notation, as

κ(φ̄(t), φ̄′(t)) ≡ κ(φ̄(t)).

The value function of the optimal control problem measures the cost of an exit path,
i.e.16

γA(w, x∗, α) =
∫ T

0
c(φ̄(t), φ̄′(t))dt =

∫ T

0

〈

κ(φ̄(t)), φ̄′(t)
〉

dt.

15The formulation of the least cost problem to exit XA is formulated in a symmetric way.
16This is the optimal value function corresponding to problem (4.7).
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As in the finite case, we declare the selection coefficient for the continuum problem to
be the differences in the optimal value functions, i.e.

S(w, x∗, α) := γA(w, x∗, α)− γB(w, x∗, α). (4.8)

The following central result justifies our focus on large population equilibrium selec-
tion.

Theorem 4.2.

lim
N→∞

lim
η→0

| η

N
log

µN,η(B)

µN,η(A)
− S(w, x∗, α)| = 0.

The proof of this theorem is rather long and technical so we present it in Appendix B.
Theorem 4.2 tells us that in the small noise large population double limit the odds-ratio
of the invariant distribution between the two strict Nash equilibria can be bounded as

exp

(

−N

η
S(w, x∗, α)− β

N,η
1

)

≤ µN,η(B)

µN,η(A)
≤ exp

(

−N

η
S(w, x∗, α) + β

N,η
2

)

for numbers β
N,η
1 , β

N,η
2 > 0 converging to 0 when we first take the small noise limit

and then the large population limit. The practical implication of Theorem 4.2 is that
it assures us that the selection coefficient defined in (4.8), obtained from the optimal
control problem, really gives us an informative equilibrium selection criterion.

4.2 Main results

Having collected all the theoretical results, we are now ready to apply these tools to
concrete equilibrium selection problems. We start with the relatively simple case in
which there is one player in each player role. This is a standard normal form game
in which two players repeatedly choose pure strategies according to the noisy-best
response function B

p
η . Afterwards we turn to the analysis of the large population case.

4.2.1 Equilibrium selection for the case Np = 1.

If there is only one player in each player role the solution of the equilibrium selection
problem is straightforward. The stochastic potential of the two Nash equilibria are17

γA(w, x∗, α) = min{w(x2
∗), w(αx1

∗)} = w
(

min{αx1
∗, x2

∗}
)

, (4.9)

γB(w, x∗, α) = min{w(α(1 − x1
∗)), w(1 − x2

∗)} = w
(

min{α(1 − x1
∗), 1 − x2

∗}
)

. (4.10)

To see that these are indeed the costs of transitions, observe that the cost of a switch
from action 1 to 2 is w(−dp(1)), while the cost of a switch from action 2 to 1 is
w(dp(0)), p ∈ {1, 2}. The relevant set of paths reduces to the set of sequences of the
form φ = (φ0, φ1, φ2), with φ0 = (0, 0) (all play strategy 2), φ2 = (1, 1) (all play strategy
1), and φ1 ∈ {(1, 0), (0, 1)}. Hence, to identify a least cost path only the first step of the
path matters, and therefore the minimum function is used.

17These formulas hold, mutatis mutandis, also if the unlikelihood functions are heterogeneous, i.e. if
the players use different noisy best-response protocols.
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Observation 1. The best-response with mutations dynamics of Example 1 does not allow us
to make any prediction in this case. Therefore, in the rest of this section we assume that w is
monotonically increasing on R+.

In the coordination game with incentive functions (d1, d2), equilibrium A is 1
2 -dominant

(Morris et al., 1995) if and only if max{x1
∗, x2

∗} < 1/2. It turns out that 1
2 -dominance is

a sufficient condition for stochastic stability under any noisy best-response protocol.18

Theorem 4.3. Consider the coordination game (d1, d2) with Np = 1. Then a 1
2 -dominant

equilibrium is stochastically stable.

Proof. We prove only the case where A is 1
2 -dominant. We have to distinguish the

following cases. Suppose first that α ≥ 1. From max{x1
∗, x2

∗} <
1
2 we get min{1− x1

∗, 1−
x2
∗} >

1
2 . From the monotonicity of the waste function it follows that γA(w, x∗, α) =

w
(

min{αx1
∗, x2

∗}
)

≤ w(x2
∗) < w(1/2), while γB(w, x∗, α) > w(1/2). Hence, S(w, x∗) <

0.
Now suppose that α < 1. Now the expression min{α(1 − x1

∗), 1 − x2
∗} can fall below

1/2 if α is sufficiently small. Hence, we have to distinguish two cases. First let us
assume that x2

∗ > αx1
∗. Thus γA(w, x∗, α) = w(αx1

∗). If γB(w, x∗, α) = w(α(1− x1
∗)) then

we see that S(w, x∗, α) = w(αx1
∗) − w(α(1 − x1

∗)) < 0 as x1
∗ < 1/2. If γB(w, x∗, α) =

w(1 − x2
∗) > κ(1/2) the claim follows from the fact that w(αx1

∗) < w(1/2). Second
assume that x2

∗ ≤ αx1
∗. Then γA(w, x∗, α) = w(x2

∗) and 1 − x2
∗ ≥ 1 − αx1

∗ > α(1 − x2
∗).

Hence, S(w, x∗, α) = w(x2
∗) − w(α(1 − x1

∗)) ≤ w(αx1
∗) − w(α(1 − x1

∗)) and the claim
follows from the argument above.

Proposition 4.2. Consider the coordination game (d1, d2) with Np = 1 p ∈ P . The implicit
function S(w, x∗, α) = 0 is solved by the piecewise linear curve

x2
∗ = σ(x1

∗, α) :=







1 − αx1
∗ if x1

∗ ∈ [0, 1
2α ),

1
2 if x1

∗ ∈ [ 1
2α , 2α−1

2α ],
α(1 − x1

∗) if x1
∗ ∈ (2α−1

2α , 1]

if α ≥ 1 and by

x1
∗ = σ̃(x2

∗, α) :=











1 − x2
∗

α if x2
∗ ∈ [0, α

2 ),
1
2 if x2

∗ ∈ [ α
2 , 2−α

2 ],
1−x2

∗
α if x2

∗ ∈ ( α−2
α , 1].

if α < 1.

Proof. We only provide a verification of the formula for the case α ≥ 1. The case where
α < 1 is shown by almost identical arguments. For the proof we have to distinguish
two cases.

(i) Assume that γA(w, x∗, α) = w(x2
∗). Then, by monotonicity, x2

∗ ≤ αx1
∗.

Case 1: If γB(w, x∗, α) = w(1 − x2
∗), then x2

∗ ≥ 1 − α(1 − x1
∗). These two inequali-

ties are consistent with S(w, x∗) = 0 if, and only if, 1/2 ∈ [1− α(1− x1
∗), αx1

∗],
or if x1

∗ ∈ [ 1
2α , 2α−1

2α ].

18Okada and Tercieux (2009) observe this for the logit choice.
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Case 2: If γB(w, x∗, α) = wα(1 − x1
∗)), then x2

∗ ≤ 1 − α(1 − x1
∗). S(w, x∗) = 0 if,

and only if x2
∗ = α(1 − x1

∗). This is consistent with the above inequality if,
and only if x1

∗ ≥ 2α−1
2α .

(ii) Assume that γA(w, x∗, α) = w(αx1
∗) ⇔ αx1

∗ < x2
∗, by monotonicity of the cost

function. Since α ≥ 1 it follows α(1 − x1
∗) ≥ 1 − αx1

∗, and therefore 1 − x2
∗ <

1 − αx1
∗ ⇔ γB(w, x∗, α) = w(1 − x2

∗). Then S(w, x∗, α) = 0 only if x2
∗ = 1 − αx1

∗,
which is consistent with the inequalities just established if, and only if, x1

∗ ≤ 1
2α .

A key quantity in stochastic stability analysis is the notion of risk-dominance. Let us
view the state space X as a measure space endowed with Lebesgue product measure
λ := λ1 × λ2. An intuitive notion of risk-dominance requires that the stability set of
one equilibrium covers a larger area in X than the stability set of the other equilibrium.
Hence, we have the following definition:

Definition 2. Strict Nash equilibrium A risk-dominates B if

λ(XA) > λ(XB) ⇔ (m1 − x1
∗)(m

2 − x2
∗) > x1

∗x2
∗.

Remark 1. For mp = 1, p ∈ P , this is the standard definition of risk-dominance as given
by Harsanyi and Selten (1988). For general population sizes our definition of risk-dominance
is equivalent to the stochastic dominance concept of Sandholm (2010b), as our population
games are characterized by linear incentives.

Theorem 4.4. If α = 1 and Np = 1, p ∈ P , then a strict Nash equilibrium is stochastically
stable under any noisy best-response protocol if, and only if, it is risk-dominant.

Proof. If α = 1 then σ(x1
∗, 1) = 1− x1

∗. Hence S(w, x∗, 1) > (<)0 if and only if x1
∗ + x2

∗ >
(<)1.

4.2.2 Equilibrium selection in large population environments

By construction of the revision dynamics we have ẋ1 + ẋ2 = 1. If we introduce the
variable u = ẋ1 we can write the variational problem (4.7) in the following, more
structured, form:

min
u(·),T

∫ T

0

{

w(x2
∗ − x2(t))u(t) + (1 − u(t))w(α(x1

∗ − x1(t)))
}

dt

s.t. ẋ1(t) = u(t), ẋ2(t) = 1 − u(t)
u(t) ∈ [0, 1]
x(0) = (x1(0), x2(0)) = (0, 0),
x(T) = (x1(T), x2(T)) ∈ ∂XB

T ∈ [0, M]

(4.11)

Once we have solved this problem, finding the exit path from XA is a relatively easy
task. Suppose ψ̄ is such an exit path from XA. Let us perform the change of vari-
ables φ̄p(t) := mp − ψ̄p(t) and denote by y

p
∗ := mp − x

p
∗ , p ∈ P . Then (φ̄p)′(t) =

−(ψ̄p)′(t). Now, if φ̄(·) is an admissible path for the problem of finding a least

14
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Figure 2: Plot of S(w, x∗, α) = 0. The diagonal line arises for α = 1. Below each of these
lines equilibrium A is stochastically stable, while above each of these lines equilibrium
B is stochastically stable.

cost path connecting equilibrium A with B it must be a non-increasing function, i.e.
(φ̄1)′(t) = u(t) ∈ [−1, 0] and (φ̄2)′(t) = 1 − u(t). Hence, (ψ̄p)′(t) = −u(t) ∈ [0, 1].
Additionally, the set ∂XA is transformed under this change of coordinates into the
set ∂YA =

(

{y1
∗} × [0, y2

∗]
)

∪
(

[0, y1
∗]× {y2

∗}
)

. Putting these insights together, we can
formulate the optimal control problem to exit the set XA with least cost as

min
u(·),T

∫ T

0

{

w(y2
∗ − y2(t))u(t) + (1 − u(t))w(α(y1

∗ − y1(t)))
}

dt

s.t. ẏ1(t) = u(t), ẏ2(t) = 1 − u(t)
u(t) ∈ [0, 1]
y(0) = (y1(0), y2(0)) = (0, 0),
y(T) = (y1(T), y2(T)) ∈ ∂+YA

T ∈ [0, M]

(4.12)

This dynamic optimization problem is isomorphic to problem (4.11), and thus we only
need to solve one of the two problems. In the rest of the paper we concentrate on the
solution of (4.11).
To actually solve the optimal control problems we apply Pontryagin’s Maximum prin-
ciple. Let λ := (λ0, λ1, λ2) denote the vector of adjoint functions. The Hamiltonian can
be written as

H(x(t), u(t), λ(t)) = I(x(t), λ(t)) + u(t)G(x(t), λ(t)),

where

I(x, λ) := λ2 − λ0w(α(x1
∗ − x)),

G(x, λ) : = λ0

(

w[α(x1
∗ − x1)]− w(x2

∗ − x2)
)

+ λ1 − λ2.
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As different degrees of convexity of the unlikelihood functions will generate different
sets of results, we organize our presentation of the results accordingly. The interested
reader may consult Appendix C for a full derivation of the solutions.

4.2.3 Strictly convex unlikelihood functions

Let us introduce the numbers

a(w; x∗, α) := αw′(αx1
∗), b(w; x∗, α) := w′(x2

∗). (4.13)

These quantities are the marginal costs at t = 0 for any path in X which starts at the
origin (0, 0) and moves either in the direction of increasing x1 or increasing x2. If
the players have unequal marginal costs, an optimal control path should exploit this
and put full weight on the cost function of the player with lower marginal costs. This
implies that ū(t) ∈ {0, 1} must be optimal on some interval [0, τ). The point τ will
depend on the data of the game and the unlikelihood function, and is defined as the
time point at which a path hits the line on which the marginal costs of the transitions
in the two feasible directions of motion are equalized. Once this is the case, we can
calculate the rate of increase of the path in the direction of the x1-axis as

g(x; x∗, α) :=
w′′(x2

∗ − x2)

w′′(x2∗ − x2) + α2w′′[α(x1∗ − x1)]
. (4.14)

Based on this intuition we have the following general result.

Proposition 4.3. Consider the optimal control problem (4.11) and suppose that the waste func-
tion w is strictly convex. Define

τ ≡ τ(w; x∗, α) :=

{

x2
∗ − (w′)−1(a(w; x∗, α)) if a(w; x∗, α) ≤ b(w; x∗, α)

x1
∗ − 1

α (w
′)−1(b(w; x∗, α)/α) otherwise.

(4.15)

The triple (φ̄(·), ū(·), T) with

ū(t) =

{

1 [a(w; x∗, w) > b(w, x∗, α)] if t ∈ [0, τ),
g(φ̄(t); x∗, α) if t ∈ [τ, T]

T = x1
∗ + x2

∗

φ̄1(t) =
∫ t

0
ū(s)d s, φ̄2(t) = t − φ̄1(t), t ∈ [0, T]

where g(x; x∗, α) is defined in equation (4.14), satisfies all the conditions provided by the Max-
imum principle with adjoint functions for a(w; x∗, α) ≤ b(w; x∗, α)

λ̄1(t) =

{

a(w; x∗, α)(τ − t) + w(x2
∗ − τ) if t ∈ [0, τ),

w(x2
∗ − φ̄2(t)) if t ∈ [τ, T]

, λ̄2(t) = w[α(x1
∗ − φ̄1(t))]

or

λ̄1(t) = w(x2
∗ − φ̄2(t)), λ̄2(t) =

{

b(w; x∗, α)(τ − t) + w(α(x1
∗ − τ)) if t ∈ [0, τ),

w(α(x1
∗ − φ̄1(t))) if t ∈ [τ, T]

for a(w; x∗, α) > b(w; x∗, α).
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Now, by the change of variables trick, we immediately get the reverse characterization
of least cost paths to exit the stability set XA.

Proposition 4.4. Consider the optimal control problem (4.12) and suppose that the waste func-
tion w is strictly convex. Set τ ≡ τ(w; m − x∗, α) as defined in equation (4.15). The triple
(ψ̄(·), ū(·), T) with

ū(t) =

{

1 [a(w; m − x∗, α) > b(w; m − x∗, α)] if t ∈ [0, τ),
g(m − ψ̄(t); m − x∗, α) if t ∈ [τ, T]

T = M − x1
∗ − x2

∗

ψ̄1(t) = m1 −
∫ t

0
ū(s)d s, ψ̄2(t) = M − t − ψ̄1(t), t ∈ [0, T]

where g(m − x; m − x∗, w) is defined in equation (4.14), satisfies all the conditions provided by
the Maximum principle with adjoint functions for a(w; m − x∗, α) ≤ b(w; m − x∗, α)

λ̄1(t) =

{

a(w; m − x∗, α)(τ − t) + w(m2 − x2
∗ − τ) if t ∈ [0, τ),

w(ψ̄2(t)− x2
∗) if t ∈ [τ, T]

, λ̄2(t) = w[α(ψ̄1(t)− x1
∗)]

or

λ̄1(t) = w(ψ̄2(t)− x2
∗), λ̄2(t) =

{

b(w; m − x∗, α)(τ − t) + w(α(m1 − x1
∗ − τ)) if t ∈ [0, τ),

w[α(ψ̄1(t)− x1
∗)] if t ∈ [τ, T]

for a(w; m − x∗, α) > b(w; m − x∗, α).

The probit choice is the only canonical noisy best-response model with a strictly convex
waste function. Thus, in order to get complete equilibrium selection results for the
probit choice model we just have to make the correct substitutions into the formulas
provided by Propositions 4.3 and 4.4. Recall from example 3 that the probit choice
function has waste function wP(π) = π2/2 for π ≥ 0. The stochastic potentials of the
strict Nash equilibria can be computed as

γA(wP, x∗, α) =







(αx1
∗)

2

2

[

x2
∗ − α2x1

∗
3

]

if x2
∗ ≥ α2x1

∗
(x2

∗)
2

2α2

[

w2x1
∗ − x2

∗
3

]

otherwise.

γB(wP, x∗, α) =







α2(m1−x1
∗)

2

2

[

(m2 − x2
∗)− α2(m1−x1

∗)
3

]

if m2 − x2
∗ ≥ α2(m1 − x1

∗)
(m2−x2

∗)
2

2α2

[

α2(m1 − x1
∗)− (m2−x2

∗)
3

]

otherwise.

Figure 3 presents an example of an optimal control path for the Probit.

Proposition 4.5. Consider a population game (d1, d2) with two equally sized populations of
mass mp = 1, p ∈ P . If α = 1, then an equilibrium is stochastically stable if and only if it is
risk-dominant.

Proof. The proof is a direct computation. The selection integral reduces in the case
α = 1 to

S(wP, x∗, 1) =

(

1 − x1
∗ − x2

∗
6

)

P(x1
∗, x2

∗),

where P(x, y) = −2 + x + x2 + y − 4xy + y2 is a polynomial in (x, y) which attains a
unique maximum at the point (0, 1) at which it vanishes, and otherwise is negative.
Hence S(wP, x∗, 1) < 0 if and only if x1

∗ + x2
∗ < 1, and S(wP, x∗, 1) > 0 if the reverse

inequality holds.

17



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x1

x2

Figure 3: Optimal control paths for the probit choice function for a game between two
populations of equal size with mixed Nash equilibrium x∗ = (0.6, 0.7) and α = 2.5. In
this game equilibrium B ≡ (0, 0) is stochastically stable.

4.2.4 The best-response with mutations

In the best-response with mutations model the waste function is the mutation counting
function wM(π) = 1{π>0}, π ∈ R. Hence, the criterion function for problem (4.11) is

c(x, ẋ) = 1{x2<x2∗} ẋ1 + 1{x1<x1∗} ẋ2.

By definition, these instantaneous costs are always contained in the unit interval [0, 1].
Let us consider the problem of how to direct a path in the most cost-efficient way away
from the equilibrium point B = (0, 0). By choosing an interior control, we select a path
with initial cost equal to 1. Directing the path either along the vertical or horizontal
axis of the state space gives the same costs. This is true at every point in the interior
of XB. However, choosing an interior control at some point inside this set increases the
length of any path until it hits the target set ∂XB. Hence, no optimal control path can
have an interior control at any point in intXB. It follows that there are two candidates
for a solution:

φ1(t) := (t, 0), t ∈ [0, T], T = x1
∗,

and
φ2(t) := (0, t), t ∈ [0, T], T = x2

∗.

The stochastic potential of equilibrium A is

γA(wM, x∗, α) = min{x1
∗, x2

∗}.

In the same way we see that the stochastic potential of equilibrium B is

γB(wM, x∗, α) = min{m1 − x1
∗, m2 − x2

∗}.
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The selection coefficient reads as

S(wM, x∗, α) = min{x1
∗, x2

∗} − min{m1 − x1
∗, m2 − x2

∗}.

For mp = 1, i.e. if both populations are of equal size, then we obtain the well-
known relationship between risk-dominance and stochastic stability as first observed
by Kandori et al. (1993) (see their section 9) and Young (1993), but proved with entirely
different methods.19 However, if relative population sizes differ, then this relationship
breaks down.

Proposition 4.6. In games with a risk-dominant equilibrium, the best-response with mutations
dynamics selects the risk-dominant equilibrium if and only if mp = 1.

Proof. As soon as mp 6= 1 for some p ∈ P the implicit function S(wM, x∗, w) = 0
no longer defines a global function x2

∗ = σ(x1
∗, w), but a sectionally smooth (linear)

function in the rectangle X, such as in Section 4.2.1.

4.2.5 The logit choice

The logit choice function has waste function wL(π) = max{π, 0} (recall example 2).
Consequently w′ = 1 on (0, ∞) and (w′)−1 is not a function (but a set-valued map).
Hence, for the logit the solutions of Proposition 4.3-4.4 are not valid, and therefore this
choice function has to be treated separately. Viewed from the origin of the rectangle
X the waste functions wL are distance functions for (0, 0) to the boundary points of
the stability XB, (x1

∗, 0) and (0, x2
∗). It is therefore intuitive that the optimal control

path should be the same as the one obtained in the best-response with mutations case,
i.e. we expect exit paths to be horizontal or vertical segments along the boundary of
the rectangle X. To test this intution in Proposition 4.7 we solve a series of auxiliary
optimal control problems, where we choose as terminal state x1

∗ or x2
∗. In both cases, the

optimal control is indeed a straight path heading directly to these points. In Appendix
C we then show that these are the only optimal control paths for the logit dynamics.
As a result we obtain the following Proposition, which lists all cases exhaustively.

Proposition 4.7. Consider the waste function of the logit choice function wL(π) = max{π, 0}.

(a) The triple (φ̄1, ū1, T1), defined as

T1 = x1
∗, φ̄1(t) = (t, 0), ū1(t) = 1, t ∈ [0, T1],

solves the optimal control problem

min
u,T

∫ T

0

{

u(t)(x2
∗ − x2(t)) + (1 − u(t))α(x1

∗ − x1(t))
}

d t

s.t. x(0) = (0, 0), ẋ(t) = (u, 1 − u), u ∈ [0, 1]
x1(T) = x1

∗, x2(T) ≤ x2
∗

provided that α > 1. The corresponding adjoint functions are

λ̄1(t) = x2
∗, λ̄2(t) = x1

∗ − t,

19To see this note that if mp = 1 we have x1
∗ < x2

∗ ⇒ 1− x1
∗ > 1− x2

∗, and similarly x1
∗ > x2

∗ ⇒ 1− x1
∗ <

1 − x2
∗. Hence, the selection coefficient takes the form S(wM, x∗, α) = x1

∗ + x2
∗ − 1.
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and the stochastic potential is

γA(wL, x∗, α) = x1
∗x2

∗.

(b) The triple (φ̄2, ū2, T2), defined as

T = x2
∗, φ̄2(t) = (0, t), ū2(t) = 0, t ∈ [0, T2],

solves the optimal control problem

min
u,T

∫ T

0

{

u(t)(x2
∗ − x2(t)) + (1 − u(t))α(x1

∗ − x1(t))
}

d t

s.t. x(0) = (0, 0), ẋ(t) = (u, 1 − u), u ∈ [0, 1]
x1(T) ≤ x1

∗, x2(T) = x2
∗

provided that α < 1. The corresponding adjoint functions are

λ̄1(t) = −α(t − x2
∗), λ̄2(t) = x1

∗,

and the stochastic potential is

γA(wL, x∗, w) = αx1
∗x2

∗.

(c) If α = 1, then an optimal control is given by ū3(t) ≡ ū ∈ {0, 1}, with T3 = max{x2
∗, x1

∗}.
The corresponding adjoint functions are

λ1(t) = x2
∗ − x2(t), λ2(t) = x1

∗ − x1(t).

The stochastic potential is given by

γA(wL, x∗, α) = x1
∗x2

∗

Having solved the problem of connecting equilibrium B with the target set ∂XB, we
can easily deduce the solution for the problem of finding the least cost path from
equilibrium A = (m1, m2) to the set ∂XA by the change of variables trick. Hence, we
obtain the following result:

Theorem 4.5. Consider the coordination game (d1, d2) played by large populations with masses
(m1, m2) where each player selects actions according to the log-linear choice rule. The selection
integral is given by

S(wL, x∗, α) = min{1, α}
[

x1
∗x2

∗ − (m1 − x1
∗)(m

2 − x2
∗)
]

. (4.16)

This allows us to conclude:

Corollary 4.1. A strict Nash equilibrium is uniquely stochastically stable under the log-linear
choice rule if and only if it is risk-dominant according to definition 2.

Proof of Theorem 4.5. From Proposition 4.7 we know that the stochastic potential of
equilibrium A ≡ (m1, m2) is given by

γA(wL, x∗, α) = min{1, α}x1
∗x2

∗.

By performing the change of variables we conclude that the stochastic potential of
equilibrium B ≡ (0, 0) is given by

γB(wL, x∗, α) = min{1, α}(m1 − x1
∗)(m

2 − x2
∗).
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4.2.6 Application to symmetric binary choice coordination games

Our approach applies also to symmetric 2 × 2 games. To illustrate this, suppose that
there is only a single population of players, where the fraction of 1-players is recorded
by the one-dimensional state variable x ∈ [0, 1].20 In this case α = 1 automatically
holds, and we have an exact potential game. The selection integral takes the form

S(w, x∗, 1) =
∫ x∗

0
w(x∗ − t)dt −

∫ 1

x∗
w(t − x∗)dt

=
∫ 1

0
[w(x∗ − t)− w(t − x∗)] dt

=
∫ 1−x∗

x∗
[w(y)− w(−y)] dy

=
∫ 1−x∗

x∗
w(y)dy.

From this expression it follows immediately that if x∗ > 1/2 then S(w, x∗, 1) < 0 and
equilibrium A is stochastically stable and risk-dominant. If x∗ < 1/2 then equilibrium
B is stochastically stable and risk-dominant. Finally if x∗ = 1/2 no selection is possible
according to either criteria. Symmetric binary choice coordination games have been
more thoroughly investigated by Blume (2003) and Sandholm (2010b).

5 Conclusion

After all these calculations, it is time to discuss our findings. We have now obtained a
complete picture of stochastic evolutionary equilibrium selection in asymmetric binary
choice coordination games under arbitrary noisy best-response protocols. Our method
of obtaining expressions for the stochastic potentials has relied on a particular choice
of taking limits. We calculate the ”unlikelihood“ that the dynamics cross the stability
sets of the two Nash equilibria by defining a path cost function. In the large popula-
tion limit we show that this path cost function can be approximated by a line integral.
This allows us to formulate an optimal control problem to characterize the most likely
path, paths we have called exit paths, among the unlikely ones. Evaluating the cost
functional under this path gives us an expression for the stochastic potential of the two
strict Nash equilibria. Since we are able to give a full characterization of exit paths, we
regard our optimal control approach to stochastic evolutionary equilibrium selection
as very valuable.
It has turned out that the stochastic potentials of Nash equilibria depend crucially on
the degree of convexity of the waste functions. The role of convexity can be seen in
the clearest way by looking at Figure 4. There we illustrate the regions of stochastic
stability for the two canonical random utility models, the logit and the probit model. In
this graph we plot the implicit function S(w, x∗, 3) = 0 for all positions of mixed equi-
librium points x∗ (we assume mp = 1, p ∈ P). In this case we know from our charac-
terization in Proposition 4.7 that if players choose pure strategies according to the logit
choice function, then long-run play settles down to the risk-dominant equilibrium in

20Taking the population mass to be one is without loss of generality here.
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Figure 4: Plot of S(w, x∗, α) = 0 for the logit and the probit for α = 3. Below the
curves equilibrium A is stochastically stable, while above the curve equilibrium B is
stochastically stable.

the small noise limit. In stark contrast to this, the probit choice model displays a much
more intricate pattern of equilibrium selection. In particular, we observe that for a large
set of games, identified by the position of their mixed equilibrium x∗ = (x1

∗, x2
∗), the two

models select different equilibria. In particular, what is selected by the probit protocol
need not be a risk-dominant equilibrium in the sense of Harsanyi and Selten (1988). It
is interesting to contrast this with recent results obtained by Sandholm (2010b). His
Corollary 2 states that in symmetric binary choice coordination games obtained from
random matching of players (i.e. when the incentive functions are linear) a Nash equi-
librium is stochastically stable under any noisy best-response protocol if and only if
it is risk-dominant. Proposition 4.5 extends this result to asymmetric binary choice
games if the payoff parameters are chosen such that α = 1, but not for α 6= 1.

The current analysis has been simplified since we only deal with binary choice asym-
metric coordination games with linear incentives. Future research should extend the
optimal control approach outlined here to more general population games.
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Appendix A Elements of stochastic stability analysis

For a fixed finite population size parameter N ∈ N, we consider a family of perturbed
Markov chains on the finite state space X

N, defined as

MN =
(

ΩN, (Y
η
k )k∈N,BN, P

N
)

η∈R+

where,

• ΩN = (XN)N is the set of infinite sequences x := (xk)k∈N where each xk ∈ X
N,

• Y
η
k is the canonical projection mapping, i.e.

Y
η
k : ΩN → X

N , x = (xk)k∈N 7→ Y
η
k (x) = xk

• BN = B(ΩN) the Borel σ-algebra on ΩN.

• P
N is a probability measure on ΩN associated with homogeneous Markov chains

having transition probabilities PN,η : XN × X
N → [0, 1], defined by

PN,η(xk−1, xk) := P
N(Y

η
k = xk|Yη

0 = x0, Y
η
1 = x1, . . . , Y

η
k−1 = xk−1)

= P
N(Y

η
k = xk|Yη

k−1 = xk−1)

for any sequence (x0, . . . , xk−2) ∈ (XN)k−1.

The basic assumptions on the transition probabilities of the Markov chain can be for-
mulated in terms of a large deviations principle which forms the basis of this article.

Hypothesis 2. (i) There exists a function ρN : XN × X
N → [0, ∞] such that for all x, y ∈

X
N

lim
η→0

η

N
log PN,η(x, y) = −ρN(x, y). (A.1)

(ii) The matrix
[

exp

(

−N

η
ρN(x, y)

)]

(x,y)∈XN×XN

is irreducible.

It follows from these assumptions that for every fixed N ≥ N0 and η > 0 the Markov
chain {Y

η
k }k∈N has a unique invariant distribution µN,η. The graph-theoretic approach

of Freidlin and Wentzell (1998) allows one to represent this invariant distribution in an
intuitive way. For every point x ∈ X

N call an x-graph g ∈ G(x) a collection of arrows
(x′ → x′′) such that (i) every point x′ 6= x is the origin of exactly one arrow, and (ii)
the graph contains no cycle. Define

θ
N,η
x := ∑

g∈G(x)

θN,η(g), θN,η(g) := ∏
(x′→x′′)∈g

PN,η(x′, x′′).
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Then one can show (see e.g the Appendix of Young (1998), or Lemma 5.5, p.80, in Kifer
(1988)), that the invariant distribution weights at x ∈ X

N as

µN,η(x) =
θ

N,η
x

∑y∈XN θ
N,η
y

.

From this representation, and hypothesis 2, it is easy to see that

− lim
η→0

η

N
log µN,η(x) = IN(x) := WN

x − min
y∈XN

WN
y

for a bounded function WN : XN → R+ which is defined as

(∀x ∈ X
N) : WN

x := min{WN(g)|g ∈ G(x)},

WN(g) := ∑
(x′→x′′)∈g

ρN(x′, x′′).

We immediately get the following general characterization of states which retain pos-
itive mass, at an exponential rate, in the limiting invariant distribution, proved by
Kandori et al. (1993) and Young (1993).

Theorem A.1. Any weak limit of the sequence of distributions {µN,η}η≥0 as η → 0 is a

probability distribution µN with support contained in the set {x ∈ X
N |IN(x) = 0}.

Points in the set (IN)−1(0) are population states appearing with highest probability at
a logarithmic scale.

Definition 3. The set {x ∈ X
N |IN(x) = 0} is called the set of stochastically stable states

in the small noise limit.

We now apply these general results to our model of stochastic evolution. Therefore we
set

X
N,η
k/N := Y

η
k , k ∈ N,

and identify the function ρN with

ρN(x, y) :=

{

c(x, y − x) if y − x ∈ 1
N UN(x),

+∞ otherwise.

Recall the definition of the action functional (4.2), which associates to every path φN ∈
ΦN its total costs, i.e.

LK(φ
N) =

K−1

∑
k=0

ρN(φN
k , φN

k+1) =
K−1

∑
k=0

c(φN
k , φN

k+1 − φN
k ),

L0 ≡ 0.

For every two points x, y ∈ X
N let us introduce the (normalized) cost function

1

N
CN(x, y) = inf{LK(φ

N)|φN ∈ ΦN
x,y, K ≥ 1}. (A.2)

We collect some properties of the cost function CN(x, y), which are easy to verify.
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Lemma A.1. The cost function (A.2) has the following properties:

(i) For every x, y ∈ X
N we have that CN(x, y) ∈ [0, ∞).

(ii) If x /∈ X
N
A then CN(x, B) = 0, and if x /∈ X

N
B then CN(x, A) = 0.

Hence, from any point outside the stability set of a strict equilibrium we can find a
path which connects that point with the other strict equilibrium point at zero costs.
Therefore, let us introduce the sets

DN
σ := {x ∈ X

N |CN(x, σ) = 0}, σ ∈ {A, B}. (A.3)

We can then prove the following fact, which also proves Theorem 4.1.

Lemma A.2. {x ∈ X
N |IN(x) = 0} ⊆ {A, B}.

Proof. If x /∈ {A, B} then, by Lemma A.1, CN(x, A) = 0 or CN(x, B) = 0. Suppose
CN(x, A) = 0. The case where CN(x, B) = 0 is analogous and therefore omitted. Con-
sider a least cost x-graph g∗x ∈ G(x) and let φN

A,x represent the unique path connecting

A = (m1, m2) with the point x on the least cost graph g∗x. Delete this path and add a
zero cost path φN

x,A ∈ ΦN
x,A. This is possible by hypothesis. Hence,

WN
A ≤ WN

x − CN(A, x) + CN(x, A) = WN
x − CN(A, x) < WN

x .

Hence x ∈ DN
A ⇒ WN

A < WN
x . Similarly it follows that x ∈ DN

B ⇒ WN
B < WN

x . Hence,

for all x /∈ {A, B} it follows that IN(x) > 0.

This shows that, in order to single out predictions which are expected to be the most
persistent ones, we are asked to compute the numbers WN

A , WN
B . These quantities are

known in the game-theoretic literature as the stochastic potentials of the equilibrium
points A and B. This shows that our analysis has to focus on the computation of the
numbers WN

A and WN
B .21

Lemma A.3. WN
σ = γN

σ (w, x∗), σ ∈ {A, B}.

Proof. We proof this Lemma only for the case σ = A. The case for the other equilibrium
point is proved analogously, by only changing notation. We need to show that the costs
accumulated on a least cost graph gA ∈ G(A) equals the costs accumulated on the least
cost path φN

A ∈ ΦN
B . Therefore, by Lemma A.1, we only need to consider states in X

N
B ,

as from all other states we find a null cost path which connects them to A. However,
on X

N
B the graph gA cannot have higher costs than the path φN

A , since otherwise we
could form a path with lower costs, leading to a contradiction.

Hence, equilibrium selection is determined entirely by the selection coefficient

SN(w, x∗, α) = γN
A (w, x∗, α)− γN

B (w, x∗, α).

21In particular, Lemma A.2 says that the mixed equilibrium point x∗, whenever it lies on the grid X
N ,

cannot be a candidate for a stochastically stable state.
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Let us now have a closer look at the programs lying behind the value functions
γN

σ (w, x∗), σ ∈ {A, B}. For sake of exposition let us focus on the the stochastic poten-
tial of equilibrium point A. It is by now clear that stochastic potentials are the value
functions of the following dynamic program:

min ∑
K−1
k=0 c(xk, uk)

s.t. x0 = B, xK /∈ XB

xk+1 = xk +
1
N uk

uk ∈ UN(xk) ∀k = 0, 1, . . . , K − 1
K ∈ N

(A.4)

where UN(x) := {u ∈ V|x + 1
N u ∈ X

N} is the set of feasible directions (the control

variable) at state x ∈ X
N . The dynamic program has a solution (it is a finite problem),

which we denote as a pair (φ̄N
BA, KN

BA). The (finite) sequence φ̄N
BA is a least-cost path

for the finite-state Markov chain XN,η.22 The optimal value function of the dynamic
program is exactly the action functional, evaluated under a least-cost path. Since this
is exactly the stochastic potential of a strict Nash equilibrium, we have

γN
A (w, x∗) = LKN

BA
(φ̄N

BA), γN
B (w, x∗) = LKN

AB
(φ̄N

AB).

The following Lemma gives a preliminary characterization of least cost paths.

Lemma A.4. Fix N ≥ N0 and consider the dynamic program (A.4). Then in order to wander
from point A to B (B to A) only non-increasing (non-decreasing) paths can be least-cost.

Proof. Focus on the problem to exit XB. From Lemma A.1 we only have to consider
paths with image on this set. But then any path which is not monotonic only makes
the path longer, without adding something to the performance. Since the length of a
path is part of the minimization problem, we can discard such paths.

Appendix B The large population limit

In this section we will show that solutions of a suitably defined variational problem are
intimately related to solutions of the dynamic program (A.4). To introduce a contin-
uum approximation we have to define our class of paths upon which we will then for-
mulate the optimization problem. We endow R

2 with the norm ||x|| := |x1|+ |x2| for
every x ∈ R

2. The 1-sphere with respect to this norm is the set U := {x ∈ R
2| ||x|| =

1}. For every point x ∈ X we define the set of admissible directions of motion as the
tangent space at x

U(x) := {u ∈ U|x + ǫu ∈ X for some ǫ > 0}.

Note that for every N ≥ N0 and x ∈ X
N we have UN(x) ⊆ U(x). Now, we need

to declare a continuous equivalent of the running cost index (4.1). For every tangent

22The associated control sequence can be, of course, reconstructed by looking at the increments of the
least-cost path.
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vector u ∈ U(x) a natural extension of the running cost index of the finite problem is
the mapping23

c(x, u) := 〈κ(x, u), u〉 (B.1)

The task of this section is to make it precise how and if the selection coefficients of the
finite problem are related to the selection coefficient of the continuum problem. This is
achieved by the following Theorem.

Theorem B.1.
lim

N→∞
|SN(w, x∗, α)− S(w, x∗, α)| = 0

This theorem says that the selection coefficients of the finite problems converge to
the selection coefficient of the continuum problem. The full justification of our large
population analysis is, however, obtained from Theorem 4.2 which we repeat at this
point for the reader’s convenience.

Theorem B.2.

lim
N→∞

lim
η→0

| η

N
log

µN,η(B)

µN,η(A)
− S(w, x∗, α)| = 0.

B.1 Proof of Theorem B.1

We will show that γN
A (w, x∗, α) → γA(w, x∗, α) and γN

B (w, x∗, α) → γB(w, x∗, α) as

N → ∞. It suffices to show that γN
A (w, x∗, α) → γA(w, x∗, α) since the same argument

can be used to establish existence of the other limit. This will prove Theorem B.1. We
proceed in several steps.

Step 1: Let φ̄ denote an optimal control path, defined on the time domain [0, T]. By
sampling points from the curve at the time points 0 < tN

1 < tN
2 . . . < tN

TN , where

tN
k := k/N and TN := ⌈NT⌉, we obtain a finite sequence of points

φ̄N := (φ̄(0), φ̄(tN
1 ), . . . , φ̄(tN

TN )).

For p ∈ P and z ∈ {0, 1, . . . , Np} let us introduce the family of intervals

I
p,N
z := (φ̄p)−1[z/N, (z + 1)/N) , 0 ≤ z ≤ Np − 1

I
p,N
Np := (φ̄p)−1({mp}).

If t ∈ I
p,N
z then z

N ≤ φ̄p(t) < z+1
N . Define the step function

ψp,N(t) :=
Np−1

∑
z=0

z

N
1

I
p,N
z

(t) + mp
1

I
p,N

Np
(t) (p ∈ P , N ≥ N0) (B.2)

Evaluating this function at the time points tN
0 , . . . , tN

TN−1
generates a finite se-

quence of (not necessarily distinct) points on the grid X
N , ψN(tN

k ), 0 ≤ k < TN.
Geometrically, what we achieve with this construction is a lower approximation
of the curve φ̄ with a step function in the (x1, x2)-plane. At the terminal point TN

23Note that V ⊂ U, so that this cost index is indeed an extension of the discrete cost measure 4.1.
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we complete the sequence by taking xN
TN the closest point to φ̄(TN) which lies in

the set ∂XN
B , i.e.

ψN(TN) = arg min{||φ̄(TN)− xN || : xN ∈ ∂XN
B }.

The so generated sequence is denoted, with an abuse of notation, as

ψN = (ψN(tN
0 ), . . . , ψN(tTN )).

By construction we have that ψN(tN
0 ) = B ≡ (0, 0). Moreover, ψN(t) ≤ φ̄(t) for

all t ∈ [0, T) and on this interval we have even ψN ↑ φ̄ uniformly. To establish
uniform convergence on the whole interval [0, T], observe that TN ↓ T and that
ψN(TN) → φ̄(T) as N → ∞. The last point follows from the fact that the closest
point projection is Lipschitz. Hence,

lim
N→∞

max
0≤t≤T

||ψN(t)− φ̄(t)|| = 0. (B.3)

For the two sequences φ̄N and ψN we can evaluate the action functional as

LTN(φ̄N) =
TN−1

∑
k=0

〈

κ(φ̄(tN
k ), φ̄(tN

k+1)− φ̄(tN
k )

〉

,

LTN(ψN) =
TN−1

∑
k=0

〈

κ(ψN(tN
k )), ψN(tN

k+1)− ψN(tN
k )

〉

.

Choose N sufficiently large, say N ≥ N0, so that for all N ≥ N0 the jumps
of the path ψN satisfy the constraints imposed on the admissible paths for the
dynamic program. Then ψN is an admissible path for the dynamic program
(A.4). Therefore it is true that

LTN (ψN) ≥ γN
A (w, x∗, α) ∀N ≥ N0. (B.4)

Step 2: Given an arbitrary path ψ : [0, T] → X we denote its variation as

V(ψ) := sup{
n−1

∑
k=0

||ψ(tN
k+1)− ψ(tN

k )|| : 0 = t0 < t1 < · · · < tn = T},

where the supremum is taken with respect to all partitions of [0, T]. A curve
ψ is of bounded variation, or rectifiable, if V(ψ) < ∞. It is easy to see that all
our paths are of bounded variation, i.e. rectifiable. For every N ≥ N0 the action
functional LTN(φ̄N) is a Riemann-Stieltjes sum with respect to the curve φ̄, and the
equidistant covering of [0, T] introduced above. Since φ̄ is absolutely continuous,
it is of bounded variation, and hence rectifiable. Since κ is uniformly continuous,
the definition of line integrals as a sequence of Riemann-Stieltjes sums gives us
the following immediate fact:

lim
N→∞

LTN(φ̄N) =
∫ T

0
c(φ̄(t), φ̄′(t))dt. (B.5)
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Step 3: Eq. (B.5) will be used to prove that

lim
N→∞

|LTN(ψN)− LTN(φ̄N)| = 0.

By an iterated application of the triangle inequality we get

|LTN(ψN)−LTN(φ̄N)|

≤
TN−1

∑
k=0

|
〈

κ(ψN(tN
k )), ψN(tN

k+1)− ψN(tN
k )

〉

−
〈

κ(φ̄(tN
k )), φ̄N(tN

k+1)− φ̄N(tN
k )

〉

|.

Now, observe that we can bound each individual term in this sum as follows:

|
〈

κ(ψN(tN
k )), ψN(tN

k+1)− ψN(tN
k )

〉

−
〈

κ(φ̄(tN
k )), φ̄(tN

k+1)− φ̄(tN
k )

〉

|

= |
〈

κ(ψN(tN
k ))− κ(φ̄(tN

k )), ψN(tN
k+1)− ψN(tN

k )
〉

−
〈

κ(φ̄(tN
k )), [(φ̄(t

N
k+1)− ψN(tN

k+1))− (φ̄(tN
k )− ψN(tN

k ))]
〉

|

≤ |
〈

κ(ψN(tN
k ))− κ(φ̄(tN

k )), ψN(tN
k+1)− ψN(tN

k )
〉

|

+ |
〈

κ(φ̄(tN
k )), [(φ̄(t

N
k+1)− ψN(tN

k+1))− (φ̄(tN
k )− ψN(tN

k ))]
〉

|
≤ ||κ(ψN(tN

k )− κ(φ̄(tN
k )|| · ||ψN(tN

k+1)− ψN(tN
k )||

+ |
〈

κ(0), [(φ̄(tN
k+1)− ψN(tN

k+1))− (φ̄(tN
k )− ψN(tN

k ))]
〉

|

In this derivation we have used in the first bound the triangle inequality, and in
the second bound the Cauchy-Schwarz inequality, together with the fact that the
largest cost always occur at the beginning of the exit path, i.e. κ(0) ≥ κ(x) for all
x ∈ XB. Setting K := max{κ1(0), κ2(0)}, we observe that

|
〈

κ(0), (φ̄(tN
k+1)− ψN(tN

k+1)− (φ̄(tN
k )− ψN(tN

k ))
〉

|
≤ K · ||(φ̄(tN

k+1)− ψN(tN
k+1)− (φ̄(tN

k )− ψN(tN
k ))||

≤ K
(

||(φ̄(tN
k+1)− ψN(tN

k+1)||+ ||(φ̄(tN
k )− ψN(tN

k ))||
)

.

This bound allows us to conclude that

∑
k

|
〈

κ(0), [(φ̄(tN
k+1)− ψN(tN

k+1))− (φ̄(tN
k )− ψN(tN

k ))]
〉

|

≤ 2K max
0≤t≤T

||φ̄(t)− ψN(t)||.

By eq. (B.3) we find for every ǫ > 0 an index N0 = N(ǫ) such that for all N ≥ N0

max
0≤t≤T

||φ̄(t)− ψN(t)|| < ǫ.

This fact, and the basic estimate above, allows us to bound the differences in the
action functionals for N ≥ N0 as

|LTN(ψN)− LTN (φ̄N)| ≤ max
0≤t≤T

||κ(ψN(t))− κ(φ̄(t))||V(ψN) + ǫ.
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As N → ∞ the step function ψN(·) converges uniformly to the optimal control
path. The function κ : X → R

2 is uniformly continuous and X compact. Hence,
we can find for every ǫ > 0 a population size N1 such that for all N ≥ N1

max
0≤t≤T

||κ(φ̄(t))− κ(ψN(t))|| < ǫ.

Hence, choosing N2 = max{N0, N1} gives us

|LTN(ψN)− LTN (φ̄N)| < ǫ

for all N ≥ N2. We conclude that

lim
N→∞

|LTN(ψN)− LTN(φ̄N)| = 0.

Together with eq. (B.5) this shows that

lim
N→∞

LTN(x̄N) = γA(w, x∗, α). (B.6)

Step 4: We claim that

γN
A (w, x∗, α) ≥ γA(w, x∗, α) ∀N ≥ N0. (B.7)

To prove this, let x̄N = (x̄N
0 , . . . , x̄N

KN ) denote a solution of the dynamic pro-

gram. Given this data set let us again introduce the time points tN
k , so that

0 < tN
1 < tN

2 . . . < tN
KN ≡ TN = 1

N KN. Then define the polygonal interpola-

tion ψ̃N : [0, TN] → X as

ψ̃N(0) := (0, 0),

ψ̃N(t) := x̄N
k + (Nt − k)(x̄N

k+1 − x̄N
k ), t ∈ [k/N, (k + 1)/N).

On each interval [k/N, (k + 1)/N) the curve ψ̃N is continuously differentiable,
where derivative at the boundary has to be understood as the adequate one-sided
derivative. Then we observe that

LTN(ψ̃N) =
KN−1

∑
k=0

∫ (k+1)/N

k/N

〈

κ(ψ̃N(tN
k )), (ψ̃

N)′(t)
〉

dt

≤
KN−1

∑
k=0

1

N

〈

κ(x̄N
k ), N(x̄N

k+1 − x̄N
k )

〉

= γN
A (w, x∗, α).

The inequality in the second line follows from the fact along the path out of the
stability set of B, costs are non-increasing, and therefore κ(x̄N

k ) is the largest cost

point on the line connecting x̄N
k with x̄N

k+1. Now, observe that each polygonal path

ψ̃N(·), generated by the data provided by the solution of the dynamic program
(A.4), is an admissible curve for the optimal control problem (4.7). This follows
from the fact that ψ̃N(0) = B = (0, 0), ψ̃N(TN) /∈ XB, and ψ̃N(·) is piecewise
continuously differentiable with admissible tangent vectors. Hence, it is true that

γN
A (w, x∗, α) ≥ γA(w, x∗, α) ∀N ≥ N0. (B.8)
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Step 5: We have shown in Step 1 and Eq. (B.7) that

LTN(ψN) ≥ γN
A (w, x∗, α) ≥ γA(w, x∗, α)

for all N ≥ N0. Now, from Step 3 we know that LTN(ψN) → γA(w, x∗). Hence, it
follows that γN

A (w, x∗) → γA(w, x∗) as well. This completes the proof.

B.2 Proof of Theorem 4.2

Note that for every N ≥ N0 we have that

| η

N
log

µN,η(B)

µN,η(A)
− S(w, x∗, α)| ≤ | η

N
log

µN,η(B)

µN,η(A)
− SN(w, x∗, α)|

+|SN(w, x∗, α)− S(w, x∗, α)|

Taking first η → 0 we get from Proposition 4.1 that

| η

N
log

µN,η(B)

µN,η(A)
− SN(w, x∗, α)| → 0

and then we take N → ∞ and cite Theorem B.1. This completes the proof of Theorem
4.2.

Appendix C Solutions to the optimal control problems

We now present a complete solution to the optimal control problem (4.11), and a-fortiori
of problem (4.12). Recall that the Hamiltonian associated with this problem is given by

H(x(t), u(t), λ(t)) = I(x(t), λ(t)) + u(t)G(x(t), λ(t)),

where

I(x, λ) := λ2 − λ0w(α(x1
∗ − x)),

G(x, λ) : = λ0

(

w[α(x1
∗ − x1)]− w(x2

∗ − x2)
)

+ λ1 − λ2.

Necessary conditions for a solution (x̄, ū, T) are (see e.g. Seierstadt and Sydsaeter, 1987,
pp.83 and pp. 143):

1. (λ0, λ1(t), λ2(t)) 6= (0, 0, 0), λ0 ∈ {0, 1},

2. ū(t) ∈ arg max
u∈[0,1]

H(x̄(t), u, λ̄(t)) for almost all t ∈ [0, T];

3. d
dt λ̄p(t) = − ∂H

∂xp (x̄(t), ū(t), λ(t)) whenever ū is continuous,

4. λ̄p(T) ≤ 0, with equality if xp(T) < x
p
∗ , p = 1, 2;

5. H(x̄(T), λ̄(T), ū(T)) = 0.
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The situation λ0 = 0 is particular since in this case the cost functional would not
influence the solution. The following Lemma shows that we can safely ignore this
case.

Lemma C.1. λ0 = 1 is always true.

Proof. For sake of contradiction suppose that λ0 = 0. Then the Hamiltonian reduces
to H = u(λ1 − λ2) + λ2. By the maximum principle, ū = 1 if λ1

> λ2. Since the
Hamiltonian is independent of x, the adjoint functions are constant, i.e. λp ≡ λ̄p.
Suppose that λ̄1 = λ̄2. Then u can be chosen arbitrarily in [0, 1]. Suppose u ∈ (0, 1).
Independently of the choice of the control, the condition H(x(T), u(T), λ(T)) = 0
implies that λ̄2 = 0, a contradiction. Now, without loss of generality we may assume
that λ̄1

< λ̄2. Then ū = 0 is optimal, and it must be true that λ̄2 = 0. However, since
x̄1(T) < x1

∗, transversality requires that λ̄1 = 0, a contradiction.

Given this fact we can exclude λ0 from our set of adjoint functions. We shall henceforth,
by an obvious abuse of notation, use the notation λ := (λ1, λ2) for the adjoint functions.
These functions solve the differential equations

λ̇1(t) = − ∂H

∂x1
[x(t), u(t), λ] = −(1 − u)αw′[α(x1

∗ − x1)], (C.1)

λ̇2(t) = − ∂H

∂x2
[x(t), u(t), λ] = −uw′(x2

∗ − x2). (C.2)

Since the Hamiltonian is linear in the control variable we can formulate the Maximum
principle as

ū(t) =

{

1 if G(x(t), λ(t)) > 0,
0 if G(x(t), λ(t)) < 0.

(C.3)

If G(x(t), λ(t)) ≡ 0 occurs on a path, the decision rule (C.3) gives us no information
where we should direct the path to. If this occurs then we have

w[α(x1
∗ − x1)]− w(x2

∗ − x2) = λ2 − λ1. (C.4)

Taking time derivatives in (C.4) and using (C.1)-(C.2) we obtain the marginal-cost
equalization condition

w′(x2
∗ − x2) = αw′[α(x1

∗ − x1)]. (C.5)

This equation determines a one-dimensional manifold in the (x1, x2)- plane by the map

h(x1, x2) := w′(x2
∗ − x2)− αw′[α(x1

∗ − x1)] ≡ 0.

The set Σ := h−1(0) is the singular surface, a one-dimensional manifold on which
u ∈ (0, 1) holds. If we assume that κ is C2, we can compute along a path x(t) =
(x1(t), x2(t)) ∈ Σ

d

d t
h(x1(t), x2(t)) = −(1 − u(t))w′′(x2

∗ − x2(t)) + α2u(t)w′′[α(x1
∗ − x1(t))] ≡ 0

⇒ u(t) = g(x(t); x∗, α) :=
w′′(x2

∗ − x2(t))

w′′(x2∗ − x2(t)) + α2w′′[α(x1∗ − x1(t))]
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Suppose a path x(·) hits the target set ∂XB while following the defining curve of the
manifold Σ. Then transversality requires that at the hitting time T we have H(x(T), u(T), λ(T)) =
0. Since u(T) ∈ (0, 1), it follows that I(x(T), λ(T)) = G(x(T), λ(T)) = 0. Since

I(x(T), λ(T)) = 0 ⇒ λ2(T) = w[α(x1
∗ − x1(T))],

it must be true that x1(T) = x1
∗, as transversality requires λ2(T) ≤ 0. Combining this

with the condition G(x(T), λ(T)) = 0 shows that also x2(T) = x2
∗ must be true. To

summarize:

Observation 2. (a) If a path x(·) hits the target set ∂XB by following the defining curve of
Σ, it must hit the mixed equilibrium point (x1

∗, x2
∗).

(b) If w(π) = max{π, 0}, e.g. the unlikelihood function of the logit choice model, then if
α 6= 1 no singular control surface appears.

Part (b) of this observation has the important implication that for the logit choice
function almost always controls of the “bang-bang”-type must be optimal. The only
chance for an interior control appears in the non-generic case when α = 1.24

The next observation recalls a well-known fact that for autonomous optimal control
problems the Hamiltonian is a constant of motion under any solution candidate.

Lemma C.2. Consider a triple (x(·), u(·), λ(·)) satisfying the Maximum principle. Then the
Hamiltonian is a constant of motion, i.e.

d

d t
H[x(t), u(t), λ(t)] = 0 ∀t ∈ [0, T].

Proof. We denote by Hx = ( ∂H
∂x1 , ∂H

∂x2 )
⊤ the column vector of partial derivatives w.r.t. x.

Then, using this notation, we see that

d

d t
H[x(t), u(t), λ(t)] = 〈Hx[x(t), u(t), λ(t)], ẋ(t)〉+ Hu[x(t), u(t), λ(t)]u̇(t)

+
〈

Hλ[x(t), u(t), λ(t)], λ̇(t)
〉

= 〈Hx[x(t), u(t), λ(t)], (ẋ(t)− Hλ[x(t), u(t), λ(t)])〉
+ Hu[x(t), u(t), λ(t)]u̇(t)

where we have used the adjoint equation λ̇(t) = −Hx[x(t), u(t), λ(t)] in the second
line. Since Hλ[x(t), u(t), λ(t)] = (u(t), 1 − u(t))⊤ = (ẋ1(t), ẋ2(t))⊤ = ẋ(t)⊤, this re-
duces to

d

d t
H[x(t), u(t), λ(t)] = Hu[x(t), u(t), λ(t)]u̇(t).

If u(t) is either 0 or 1 on some interval (t0, t1), then u̇(t) = 0, ∀t ∈ (t0, t1), and the claim
follows. If u(t) ∈ (0, 1) on some interval (t0, t1), then the Maximum principle gives us
Hu[x(t), u(t), λ(t)] = 0, ∀t ∈ (t0, t1).

From this observation we obtain the following result:

24Genericity refers here to the pure-strategy payoffs in the game.

33



Corollary C.1. Every solution candidate (x̄(·), ū(·), λ̄(·), T) must satisfy

(∀t ∈ [0, T]) : H(x̄(t), ū(t), λ̄(t)) = 0. (C.6)

Proof. The terminal point T must be chosen such that H(x̄(T), ū(T), λ̄(T)) = 0. Since
the Hamiltonian is a constant of motion, the triple (x̄(·), ū(·), λ̄(·)) must stay on the
same level set of the Hamiltonian for all times.

Therefore, if a path is on the manifold Σ not only h(x1(t), x2(t)) ≡ 0 must be true, but
also the adjoint functions are completely determined as

λ1(t) = w(x2
∗ − x2(t)), λ2(t) = w[α(x1

∗ − x1(t))]. (C.7)

This holds since I(x(t), λ(t)) = G(x(t), λ(t)) ≡ 0. Given all this information we are
now ready to verify Propositions 4.3 and 4.4.

C.1 Proof of Proposition 4.3

Suppose there exists an optimal control path with ū(t) = 0 for t ∈ [0, τ) for some
τ ≤ T. This means that x̄1(t) = 0 and x̄2(t) = t, t ∈ [0, τ). Then from Lemma C.2 we
know that for all t ∈ [0, τ)

H(x̄(t), ū(t), λ̄(t)) = I(x̄(t), λ̄(t)) = 0 ⇒ λ̄2(t) ≡ w(αx1
∗).

From (C.1) we get

d

d t
λ̄(t) = −αw′(αx1

∗) ≡ −a ⇒ λ̄1(t) = −at + K1.

The constant K1 must satisfy the condition

G(x̄(0), λ̄(0)) = K1 − w(x2
∗) < 0 ⇒ K1

< w(x2
∗).

Additionally, at time t = τ there should be a change in the control. Hence G(x̄(τ), λ̄(τ)) =
−aτ + K1 − w(x2

∗ − τ) = 0, form which it follows that

τ =
K1 − w(x2

∗ − τ)

a
. (C.8)

At t = τ the path x̄(·) hits the manifold Σ. Hence, for all t ≥ τ the state variables
satisfy the relations

x̄1(t) =
∫ t

τ
ū(s)d s, x̄2(t) = t − x̄1(t)

where ū(t) = g(x̄(t); x∗, α) as defined in equation (4.14). By (C.5) we get the condition

h(x̄1(τ), x̄2(τ)) = 0 ⇒ w′(x2
∗ − τ) = αw′(αx1

∗) = a.

Under strict convexity of the waste function w, its first derivative w′ is C1 and monoton-
ically increasing, and therefore possesses a continuous inverse function (w′)−1, which
is also monotonically increasing. Then we obtain

τ = x2
∗ − (w′)−1(a), (C.9)
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provided that this expression is nonnegative. This is the case if and only if w′(x2
∗) ≥

a = αw′(αx1
∗).

25 Assuming that this relation holds, we can use (C.8) to determine the
constant K1 as

K1 = w(x2
∗ − τ) + aτ. (C.10)

From time τ onwards the path x̄(·) is on the singular surface Σ, where the adjoint
functions are given by (C.7). From Observation 2 we know that x̄(t) → (x1

∗, x2
∗) as

t → T. Since x̄1(t) + x̄2(t) = t, ∀t, it immediately follows that T = x1
∗ + x2

∗. It remains
to show that the constructed path satisfies the Maximum principle on the interval [0, τ).
Note that for all t ∈ [0, τ)

G(x̄(t), λ̄(t)) = λ̄1(t)− w(x2
∗ − t)

= a(τ − t) + w(x2
∗ − τ)− w(x2

∗ − t).

At t = 0 this reduces to

G(x̄(0), λ̄(0)) = aτ + w(x2
∗ − τ)− w(x2

∗).

By the mean-value theorem there exists a ξ ∈ (x2
∗ − τ, x2

∗) such that

w(x2
∗)− w(x2

∗ − τ) = w′(ξ)τ.

Since x2
∗ − τ = (w′)−1(a) and w′ is monotonically increasing, it follows that w′(ξ) > a.

Hence
G(x̄(0), λ̄(0)) = aτ − w′(ξ)τ < aτ − aτ = 0.

Additionally, we observe that

d

d t
G(x̄(t), λ̄(t)) = w′(x2

∗ − t)− a > w′(x2
∗ − τ)− a = w′

(

(w′)−1(a)
)

− a = 0.

Consequently G is initially negative and monotonically increasing on [0, τ), with unique
root at t = τ. Setting a ≡ a(w; x∗, α) ≤ b(w; x∗, α) = w′(x2

∗) and τ = τ(w; x∗, α), we
have verified that the proposed triple (x̄(·), ū(·), T) satisfies all conditions provided by
the Maximum principle. Moreover, the adjoint functions satisfy the transversality con-
ditions. The construction of an optimal control path with u(t) = 1 on [0, τ) is similar.
From Lemma C.2 we know that

H(x̄(t), ū(t), λ(t)) = 0 ⇒ λ1(t) = w(x2
∗).

The adjoint equations (C.1)-(C.2) tell us that

λ̇1(t) = 0, λ̇2(t) = −w′(x2
∗) ≡ −b

on [0, τ). Hence, λ1(t) ≡ w(x2
∗) and λ2(t) = −bt + K2 for all t ∈ [0, τ). The regime-

switching time τ is defined by the condition

G(x̄(τ), λ(τ)) = 0 ⇒ τ =
K2 − w[α(x1

∗ − τ)]

b
.

25It is not difficult to verify that in the case where w′(x2
∗) = αw′(αx1

∗) it is true that τ = 0. Hence, in
this situation the path directly starts from the singular surface Σ.
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At t = τ the path hits the manifold Σ and we get therefore the additional condition

w′(x2
∗) = αw′[α(x1

∗ − τ)] ⇒ τ = x1
∗ −

1

α
(w′)−1(b/α)

where we have exploited the strict convexity of the unlikelihood function. We see that
τ > 0 if and only if b(w; x∗, α) = w′(x2

∗) < αw′(αx1
∗) = a(w; x∗, α). The constant K2 is

then given by

K2 = w[α(x1
∗ − τ)] + bτ.

Hence, the adjoint function on [0, τ) are λ1(t) = w(x2
∗), and λ2(t) = b(τ− t)+w[α(x1

∗−
τ)]. From time τ onwards the path follows the defining curve of the manifold Σ, whose
shape we already know. It remains to show that the Maximum principle is satisfied on
[0, τ). At t = 0 we see that

G(x̄(0), λ̄(0)) = −bτ + w(αx1
∗)− w[α(x1

∗ − τ)] = −bτ + w′(ξ)ατ

where ξ ∈ (α(x1
∗ − τ), αx1

∗), whose existence is guaranteed by the mean-value theorem.
From the monotonicity of κ′ it follows that αw′

> b, and consequently

G(x̄(0), λ̄(0)) > −bτ + bτ = 0.

Since,

d

d t
G(x̄(t), λ̄(t)) = b − αw′[α(x1

∗ − τ)] ≤ b − αw′
(

(w′)−1(b/α)
)

= 0

the result follows as above.

Since the Maximum principle gives only necessary conditions for optimal solutions, we
don’t actually know whether the solutions of Propositions 4.3-4.4 are really optimal. To
verify this, denote by (x̄(·), ū(·)) a candidate for a solution identified in Propositions
4.3 and 4.4, respectively. Consider a vector λ(t) = (λ1(t), λ2(t)) such that

λ̇p(t) = − ∂H

∂xp [x̄(t), ū(t), λ(t)], p = 1, 2 (C.11)

∂H

∂u
[x̄(t), ū(t), λ(t)](ū(t)− u) ≥ 0 ∀u ∈ [0, 1], ∀t ∈ [0, T] (C.12)

H(x, u, λ(t)) is concave in (x, u) for all t. By the Mangasarian sufficiency theorem
(Seierstadt and Sydsaeter, 1987, pp. 103) (x̄(·), ū(·)) is indeed a solution of the optimal
control problem (4.11), respectively (4.12). In particular, we can choose λ(t) = λ̄(t) to
test the conditions. It is easily verified that

∂H

∂u
[x̄(t), ū(t), λ̄(t)](ū(t)− u) = G(x̄(t), λ̄(t))(ū(t)− u) ≥ 0

for all u ∈ [0, 1] and all t ∈ [0, T]. Hence, the pair (x̄(·), ū(·)) satisfies also all sufficient
conditions. Hence, we have proved the following result:

Proposition C.1. The triple (x̄(·), ū(·), T) identified in Propositions 4.3-4.4 is a solution of
the optimal control problem (4.11), respectively (4.12).
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Having verified that the identified solution candidates are indeed optimal solutions,
we are ready to present the general formulas for the stochastic potentials of the two
strict Nash equilibria. Let us introduce the maps ĉ1(x2) := w(|x2

∗ − x2|), ĉ2(x1) :=
w(α|x1

∗ − x1|), and the 1-form

ω := ĉ1dx1 + ĉ2dx2, (C.13)

where dx1, dx2 are the differentials associated with the canonical coordinate functions
of R

2. The 1-form ω is continuously differentiable on X \ {(x1
∗, x2

∗)}. Denote by TA =
x1
∗ + x2

∗ and TB = M − TA, the respective hitting times of the optimal control paths
identified for problems (4.11) and (4.12). Moreover, let us call φ̄BA : [0, TA] → XB and
φ̄AB : [0, TB] → XA the curves corresponding to the respective optimal control paths
of problems (4.11) and (4.12). These curves are continuously differentiable almost
everywhere. Consequently, we can formulate the stochastic potentials in the elegant
way26

γA(w, x∗, α) =
∫

φ̄BA

ω :=
∫ TA

0

(

ĉ1(φ̄2
BA(t))(φ̄

1
BA)

′(t) + ĉ2(φ̄1
BA(t))(φ̄

2
BA)

′(t)
)

d t,

and similarly

γB(w, x∗, α) = −
∫

φ̄AB

ω := −
∫ TB

0

(

ĉ1(ψ2
AB(t))(φ̄

1
AB)

′(t) + ĉ2(φ̄1
AB(t))(φ̄

2
AB)

′(t)
)

d t.

Propositions 4.3 and 4.4 give us a complete characterization of optimal control paths
for all noisy-best response protocols which have strictly convex unlikelihood functions
on (0, ∞). As a corollary we obtain equilibrium selection results for the probit choice
function.

C.2 Solution for the Logit choice

We proof for each of the three cases that the proposed solution satisfies all the necessary
conditions for an optimal solution.

(a) We need to verify that the proposed solution satisfies the necessary conditions
given by Maximum principle and the appropriate transversality conditions (see
Seierstadt and Sydsaeter, 1987, pp.85):

λ1(T) no condition (C.14)

λ2(T) ≤ 0 with equality if x2(T) < x2
∗. (C.15)

The adjoint functions must satisfy equations (C.1)-(C.2), which are in our case

λ̇1 = 0, λ̇2(t) = −1 ⇒ λ1(t) ≡ A , λ2(t) = −t + B,

26The minus sign in the definition of γB(w, x∗, α) comes from the fact that φ̄′
AB ≤ 0 almost everywhere.

We could get rid of the minus sign by integrating over the time-reversed path, so the way of writing the
formula is a matter of taste.
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for constants A, B which have to be adequately chosen. The Hamiltonian is given
by

H(x̄(t), ū(t), λ̄(t)) = λ̄1(t)− x2
∗ = A − x2

∗ = 0

⇒A = x2
∗.

The control ū satisfies the Maximum principle if and only if

G(x̄(t), λ(t)) = α(x1
∗ − t)− x2

∗ + x2
∗ + t − B

= αx1
∗ − B + t(1 − α) > 0

for all t ∈ [0, T), with an eventual equality at the terminal point t = T = x1
∗. At

t = 0 this requires B < αx1
∗. Transversality requires that λ2(T) = 0. Therefore

B = x1
∗ < αx1

∗ iff α > 1. We observe that d
d t G(x̄(t), λ(t)) = 1 − w < 0 for

α > 1, and G vanishes exactly at the point t = x1
∗. Hence, G(x̄(t), λ̄(t)) ≥ 0 for

all t ∈ [0, T] with equality only at the terminal point t = T = x1
∗. Hence, the

triple (x̄, ū, T) satisfies all conditions provided by the Maximum principle, and is

therefore a candidate for an optimum. Since ∂H
∂u = G ≥ 0, we observe that

G(x̄(t), λ̄(t))(ū(t)− u) ≥ 0 ∀u ∈ [0, 1], ∀t ∈ [0, T].

The control region is the unit interval [0, 1], a convex and compact set, and the
adjoint functions are continuously differentiable. Moreover H(x, u, λ) is concave
in (x, u). Thus, the proposed solution satisfies the Mangasarian sufficiency con-
ditions (Seierstadt and Sydsaeter, 1987, Theorem 4, pp. 105) and is therefore a
solution to the auxiliary optimal control problem.

(b) As in (a) we need to verify that the proposed solution satisfies the Maximum
principle with the appropriate transversality conditions

λ1(T) ≤ 0, with equality if x1(T) < x1
∗ (C.16)

λ2(T) no condition (C.17)

Under ū(t) ≡ 0 the adjoint equations (C.1)-(C.2) read as

λ̇1(t) = −α ⇒ λ1(t) = −αt + A

λ̇2(t) = 0 ⇒ λ2(t) ≡ B

The Hamiltonian is given by

H(x̄(t), ū(t), λ(t)) = λ2(t)− αx1
∗ = 0

⇒B = αx1
∗

The proposed control ū satisfies the Maximum principle iff

G(x̄(t), λ(t)) = αx1
∗ − (x2

∗ − t)− αt + A − αx1
∗

= A − x2
∗ + t(1 − α) ≤ 0
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for all t ∈ [0, T], with equality eventually at the terminal point t = T = x2
∗. At

t = 0 this requires that A ≤ x2
∗. Transversality requires that λ1(T) = −αT + A =

0 ⇒ A = αx2
∗ < x2

∗ iff α < 1. Moreover d
d t G(x̄(t), λ̄(t)) = 1 − α > 0 iff α < 1.

Hence G is initially negative and monotonically increasing over time, with unique
root at t = T = x2

∗. Hence, the proposed solution satisfies the Maximum princi-
ple and the adjoint functions satisfy the corresponding transversality conditions.
Sufficiency follows again from the Mangasarian sufficiency theorem. We have
∂H
∂u = G ≤ 0, with equality only at t = T. Thus,

G(x̄(t), λ̄(t))(ū(t)− u) ≥ 0 ∀u ∈ [0, 1], ∀t ∈ [0, T].

(c) If α = 1 the adjoint equations (C.1)-(C.2) are

λ̇1(t) = −(1 − u(t)) = −ẋ2(t) ⇒ λ1(t) = −x2(t) + A

λ̇2(t) = −u(t) = −ẋ1(t) ⇒ λ2(t) = −x1(t) + B

We see that
G(x(t), λ(t)) = x1

∗ − x2
∗ + A − B = const

and
I(x(t), λ(t)) = B − x1

∗.

If u = 0 then B = x1
∗. If u = 1 then A = x2

∗. If u ∈ (0, 1) then both must
be true. Suppose that ū = 0. Then G(x(t), λ(t)) = −x2

∗ + A ≤ 0 ⇒ A ≤ x2
∗.

Transversality requires that λ1(T) = 0, so that A = x2
∗. Suppose that ū = 1. Then

G(x(t), λ(t)) = B − x1
∗ ≥ 0 ⇒ B ≥ x1

∗. Again, by transversality, we conclude
that B = x1

∗. Hence, ū ∈ {0, 1} together with these adjoint functions satisfies the
necessary conditions for an optimal control.

This completes the proof of Proposition 4.7.

We can also show that no optimal control can exhibit a jump discontinuity at some
intermediate point τ ∈ [0, T]. Suppose that α < 1 and consider the control

u(t) =

{

0 if t ∈ [0, τ],
1 if t ∈ (τ, T]

where τ ≤ T. The initial segment of the path x(·) generated by the proposed control
is as in part (b) of Proposition 4.7. Hence for all t ∈ [0, τ) we have

x(t) = (0, t), λ1(t) = −αt + A, λ2(t) = αx1
∗, A ≤ x2

∗.

At t = τ there is a jump in the control. In terms of the Maximum principle this implies
that

G(x(τ), λ(τ)) = 0 ⇒ τ =
x2
∗ − A

1 − α
≥ 0.

On (τ, T] the adjoint equations (C.1)-(C.2) read as

λ̇1(t) = 0 ⇒ λ1(t) ≡ A − ατ = x2
∗ − τ

λ̇2(t) = −1 ⇒ λ2(t) = −(t − τ) + αx1
∗.
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Some formal manipulations give

G(x(t), λ(t)) = (t − τ)(1 − α) ≥ 0

for all t ≥ τ since w < 1 by hypothesis. Since x(t) → (x1
∗, τ) a transversality condition

for any optimal control problem must be λ2(T) = 0, or equivalently (T − τ) = αx1
∗.

Since x(T) = x1
∗, it must be true that T − τ = x1

∗ > αx1
∗, a contradiction. Moreover we

need that λ1(T) ≤ 0, or equivalently τ ≥ x2
∗, which is another contradiction. Hence

τ = T = x2
∗ must be true, and we obtain the path of part (b) of Proposition 4.7.

Similarly we can show that there can be no optimal control of the form

u(t) =

{

1 if t ∈ [0, τ],
0 if t ∈ (τ, T]

for τ ≤ T if α > 1.
Finally, observe that if α > 1, there can be no path that has u(t) ≡ 0. This follows
immediately from G(x(0), λ(0)) = A − x2

∗ = αx2
∗ − x2

∗ > 0, contradiction! In the same
way we see that there can be no path with u(t) ≡ 1 if α < 1. This follows because we
know that G(x(0), λ(0)) = αx1

∗ − B = (α − 1)x1
∗ < 0, contradiction!
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