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1 Introduction

Recursive methods have become a basic tool for the study of dynamic economic
models. For example, Stokey et al. (1989) and Ljungqvist and Sargent (2004)
describe a large number of macroeconomic models that can be analysed using
recursive methods. A main advantage of this approach is that it characterizes
optimal decisions – at any time t – as time-invariant functions of a small set of
state variables. In engineering systems, knowledge of the available technology
and of the current state is enough to decide the optimal control, since current
returns and the feasible set depend only on past and current predetermined
variables. In this case the value of future states is assessed by the value function
and, under standard dynamic programming assumptions, the Bellman equation
is satisfied and a standard recursive formulation is obtained.

However, one key assumption to obtain the Bellman equation is that future
choices do not constrain the set of today’s feasible choices. Unfortunately, this
assumption does not hold in many interesting economic problems. For example,
in contracting problems where agents are subject to intertemporal participation,
or other intertemporal incentive constraints, the future development of the con-
tract determines the feasible action today. Similarly, in models of optimal pol-
icy design agents’ reactions to government policies are taken as constraints and,
therefore, future actions limit the set of current feasible actions available to the
government. Many dynamic games – for example, dynamic political-economy
models – share the same feature that an agent’s current feasible actions depend
on functions of future actions.

In general, in the presence of forward-looking constraints – as in rational
expectations models where agents commit to contracts subject to incentive con-
straints (e.g. commitment may be limited) – optimal plans, or contracts, do not
satisfy the Bellman equation and the solution is not recursive in the standard
sense. In this paper we provide an integrated approach for a recursive formu-
lation of a large class of dynamic models with forward-looking constraints by
reformulating them as equivalent recursive saddle-point problems.

Our approach has a wide range of applications. In fact, it has already proved
to be useful in the study of very many models1. Just to mention a few exam-
ples: growth and business cycles with possible default (Marcet and Marimon
(1992), Kehoe and Perri (2002), Cooley, et al. (2004)); social insurance (At-
tanasio and Rios-Rull (2000)); optimal fiscal and monetary policy design with
incomplete markets (Aiyagari, Marcet, Sargent and Seppälä (2002), Svensson
and Williams (2008)), and political-economy models (Acemoglu, Golosov and
Tsyvinskii (2011)). For brevity, however, we do not present further applications
here and limit the presentation of the theory to the case of full information.

We build on traditional tools of economic analysis such as duality theory
of optimization, fixed point theory, and dynamic programming. We proceed in
three steps. We first study the planner’s problem with incentive constraints
(PP) as an infinite-dimensional maximization problem, and we embed this

1As we write this version google scholar reports that the working paper has been cited 290
times. Many of these citations are applications of the method.
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problem in a more general class of planner’s problems (PPμ); these problems
are parameterized by the weight (μ) of a (Benthamite) social welfare function,
which accounts for the functions appearing in the constraints with future con-
trols (forward-looking constraints). The objective function of PPμ is similar to
Pareto-optimal problems where μ is the vector of weights given to the different
infinitely-lived agents in the economy.

Second, we consider the Lagrangean which incorporates the forward-looking
constraints of the first period, which defines our starting saddle-point planner’s
problem (SPPμ) and we prove a duality result between this saddle-point prob-
lem and the planner’s problem (PPμ). This construction helps to characterize
the ‘non-recursivity problem’and provides a key step towards its resolution.

As is well known, the solution of dynamic models with forward-looking con-
straints is, in general, time-inconsistent, in the following sense: if at some period
t > 0 the agent solves PPμ for the whole future path given the state variables
found at t, the agent will not choose the path that he had chosen in period zero
(unless, of course, the forward-looking constraints are not binding, up to period
t). This ‘non-recursivity problem’is at the root of the difficulties in expressing
the optimal solution with a time-invariant policy function.

A key insight of our approach is to show that there is a modified problem
PPμ′ such that if the agent reoptimizes this problem at t = 1 for a certain μ′,
the solution from period t = 1 onwards is the same that had been prescribed
by PPμ from the standpoint of period zero. The key is to choose the vec-
tor of weights μ′ appropriately. We show that the appropriate μ′ is given by
the Lagrange multipliers of SPPμ in period zero. This procedure of sequen-
tially connecting saddle-point problems is well defined and it is recursive when
solutions are unique. The problem PPμ′ can be thought of as the ‘continu-
ation problem’that needs to be solved each period in order to implement the
constrained-efficient solution. This supports our claim that the recursive formu-
lation is obtained by introducing the vector μ, summarizing the evolution of the
Lagrange multipliers, as co-state variable in a time-invariant policy function.
As a result, with our method it is easy to guarantee existence of the solution to
PPμ′ for any μ′ ≥ 0, making the practical implementation of this method no
more complicated than standard dynamic programming problems.

Third, we extend dynamic programming theory to show that the sequence
of modified saddle-point problems (SPPμt

) satisfies a saddle-point functional
equation (SPFE; a saddle-point Bellman equation) and, conversely, that policies
obtained from solving the saddle-point functional equation (SPFE) provide a
solution to the original SPPμ and, therefore, to the PPμ problem. This latter
sufficiency result is very general; in particular, it does not rely on convexity
assumptions. This is important because incentive constraints do not have a
convex structure in many applications. However, this result is limited in that
we assume (local) uniqueness of solutions. We discuss the role this assumption
plays and, in particular, we show how our approach, and results, do not depend
on this assumption.

In addition, we also show how standard dynamic programming results, based
on a contraction mapping theorem, generalize to our saddle-point functional

2



equation (SPFE). An immediate consequence of these results is that one can
use standard computational techniques that have been used to solve dynamic
programming problems – such as the solution of first-order-conditions for a given
recursive structure of the policy function, or value function iteration – to solve
dynamic saddle-point problems. Not only the computational techniques needed
but also our assumptions are standard in dynamic economic models.

Our approach is related to other existing approaches that study dynamic
models with expectations constraints, in particular to the pioneering works of
Abreu, Pearce and Stacchetti (1990), Green (1987) and Thomas and Worrall
(1988), and the applications that have followed. We briefly discuss how these,
and other, works relate to ours in Section 6, after presenting the main body
of the theory in Sections 4 and 5. Section 2 provides a basic introduction to
our approach and Section 3 a couple of canonical examples (most proofs are
contained in the Appendix).

2 Formulating contracts as recursive saddle-point
problems

In this section we give an outline of our approach, leaving the technical details
and proofs to sections 4 and 5. Our interest is in solving problems that have
the following representation:

PP sup
{at,xt}

E0

∞∑
t=0

βtr(xt, at, st), (1)

s.t. xt+1 = �(xt, at, st+1), p(xt, at, st) ≥ 0, t ≥ 0, (2)

Et

Nj+1∑
n=1

βnhj
0(xt+n, at+n, st+n) + hj

1(xt, at, st) ≥ 0, j = 1, ...l, t ≥ 0,

(3)

x0 = x, s0 = s,

and at is measurable with respect to (. . . , st−1, st),

where r, �, p, h0, h1 are known functions, β, x, s known constants, {st}∞t=0 an
exogenous stochastic Markov process, Nj = ∞ for j = 0, ..., k, and Nj = 0 for
j = k + 1, ..., l.

Standard dynamic programming methods only consider constraints of form
(2) (see, for example, Stokey, et al. (1989) and Cooley, (1995)). Constraints
of form (3) are not a special case of (2), since they involve expected values
of future variables2. We know from Kydland and Prescott (1977) that, under
these constraints, the usual Bellman equation is not satisfied, the solution is
not, in general, of the form at = f(xt, st) for all t, and the whole history of

2One might think that expressing (3) in the form v(xt, st) − ψ(xt, st) ≥ 0, where v is the
discounted sum Et

P∞
n=0 β

nh0(xt+n, at+n, st+n), xt, at, st) and ψ = h1 − h0 converts (3)
into (2). But this does not solve the problem since v is not known a priori.
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past shocks st can matter for today’s optimal decision. By letting Nj = ∞
PP covers a large class of problems where discounted present values enter the
implementability constraint. For example, long term contracts with intertem-
poral participation constraints take this form.3 Alternatively, by letting Nj = 0
PP covers problems where intertemporal reactions of agents must be taken
into account. For example, dynamic Ramsey problems, where the government
chooses policy variables subject to optimal dynamic behavior by the agents in
the economy, have this form4. Even though we focus on the two canonical cases
Nj = ∞ and Nj = 0, intermediate cases can be easily incorporated. It is then
without loss of generality that we let Nj = ∞, for j = 0, ..., k, and Nj = 0 for
j = k + 1, ..., l.

A first step of our approach is to consider a more general class of problems,
parameterized by μ:

PPμ sup
{at,xt}

E0

l∑
j=0

Nj∑
t=0

βtμjhj
0(xt, at, st)

s.t. xt+1 = �(xt, at, st+1), p(xt, at, st) ≥ 0, (4)

Et

Nj+1∑
n=1

βnhj
0(xt+n, at+n, st+n) + hj

1(xt, at, st) ≥ 0, t ≥ 0, (5)

x0 = x, s0 = s, (6)
and at is measurable with respect to (. . . , st−1, st).

The main difference with PP is that in PPμ we have incorporated the hj
0

functions of the forward-looking constraints (3) into the objective function. Also,
the superindex j now starts from j = 0, with h0

0,, to account for the reward
function of the original problem. More precisely, if we let h0

0 = r, we set
μ = (1, 0, ..., 0) and we choose a very large h0

1 to guarantee that (5) is never
binding for j = 0, PPμ is the original PP. Furthermore, it should also be
noticed that the value function of this problem, when well defined – say, Vμ(x, s)
– is homogeneous of degree one in μ; a property that our approach exploits (and
the reason for collecting the original return function r of PP in the objective
function, together with the forward-looking elements of the constraints).

Notice that PPμ is an infinite-dimensional maximization problem which,
under relatively standard assumptions, is guaranteed to have a solution for
arbitrary μ ≥ 0. The solution is a plan5 a ≡ {at}t=0, where at(. . . , st−1, st) is a
state-contingent action (Proposition 1).

3Combining (2) and (3) accounts for a broad class of constraints. For example, a nonlinear
participation constraint of the form g(Et

P∞
n=0 β

nh(xt+n, at+n, st+n), xt, at, st) ≥ 0 can
easily be incorporated in our framework with one constraint of form (2), g(wt, xt, at, st) ≥ 0
(with control variables (wt, at)), and one of form (3), Et

P∞
n=0 β

nh(xt+n, at+n, st+n) = wt.
4See Section 6 for references to related work using constraints of the form Nj = ∞ and

Nj = 0.
5We use bold notation to denote sequences of measurable functions.
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An intermediate step in our approach is to transform program PPμ into a
saddle-point problem in the following way. Consider writing the Lagrangean for
PPμ when a Lagrange multiplier γ ∈ Rl+1 is attached to the forward-looking
constraints only in period t = 0 and the remaining constraints for t > 0 are left
as constraints. The Lagrangean then is

L(a,γ; μ) = E0

l∑
j=0

Nj∑
t=0

βtμjhj
0(xt, at, st) +

l∑
j=0

γj

⎛⎝E0

Nj+1∑
t=1

βthj
0(xt, at, st) + hj

1(x0, a0, s0)

⎞⎠ .

If we find a saddle-point of L subject to (4) for all t ≥ 0 and (5) for all t ≥ 1,
the usual equivalences between this saddle-point and the optimal allocation of
PPμ can be exploited. Using simple algebra it is easy to show that L can be
rewritten as the objective function in the following saddle point problem6:

SPPμ inf
γ∈Rl+1

+

sup
{at,xt}

μh0(x0, a0, s0) + γh1(x0, a0, s0)

+ β E0

l∑
j=0

ϕj(μ, γ)
Nj∑
t=0

βt hj
0(xt+1, at+1, st+1) (7)

s.t. xt+1 = �(xt, at, st+1), p(xt, at, st) ≥ 0, t ≥ 0,

Et

Nj+1∑
n=1

βnhj
0(xt+n, at+n, st+n) + hj

1(xt, at, st) ≥ 0, j = 0, ..., l, t ≥ 1,

for initial conditions x0 = 0 and s0 = s, where ϕ is defined as

ϕj(μ, γ) ≡ μj + γj if Nj = ∞, i.e. j = 0, ..., k
≡ γj if Nj = 0, i.e. j = k + 1, ..., l.

The usefulness of SPPμ comes from the fact that its objective function has a
very special form: the term inside the expectation in (7) is precisely the objective
function of PPϕ(μ, γ∗) given the states (x∗

1, s1). This will allow us to show that
if ({a∗

t }∞t=0, γ
∗) solves SPPμ for initial conditions (x, s) then {a∗

t+1}∞t=0 solves
PPϕ(μ, γ∗) given initial conditions (x∗

1, s1), where x∗
1 = �(x0, a∗

0, s1). That is,
the continuation problem that needs to be solved in the next period is precisely
a planner problem where the weights have been shifted according to ϕ.

We show that, under fairly general conditions, solutions to PPμ are solutions
to SPPμ (Theorem 1), and viceversa (Theorem 2). Also, the usual slackness
conditions will guarantee that if ({a∗

t }, γ∗) solves SPPμ, then

E0

l∑
j=0

γj∗

⎡⎣Nj+1∑
t=1

βthj
0(x

∗
t , a∗

t , st) + hj
1(x, a∗

0, s)

⎤⎦ = 0, (8)

6We use the notation μh0(x, a, s) ≡ Pl
j=0 μ

jhj
0(x, a, s).
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so that the values achieved by the objective functions of SPPμ and PPμ coin-
cide.

If PPμ were a standard dynamic programming problem (i.e. without (5)),
then the following Bellman equation would be satisfied:

Vμ(x, s) = sup
a

{μh0(x, a, s) + β E [Vμ(�(x, a, s′), s′) | s]} (9)

s.t. p(x, a, s) ≥ 0.

The reason that the Bellman equation holds is that in standard dynamic
programming if PPμ is reoptimized at period t = 1 given initial conditions
(x∗

1, s1), the reoptimization simply confirms the choice that had been previously
made for t ≥ 1. However, with forward-looking constraints (5) this Bellman
equation is not satisfied, the reason being that if the problem is reoptimized at
t = 1 the choice will violate the forward-looking constraint of period t = 0, if (5)
is binding at t = 0. A central element of our approach is that, as suggested by the
objective function of SPPμ, if the solution is reoptimized in period t = 1 with
the new weights μ′ = ϕ(μ, γ∗) – that is, if in period one the reoptimization is
for the problem PPμ′ , – the result confirms the solution of the original problem
PPμ. This allows the construction of a recursive formulation of our original
PPμ problem where the value function with modified weights is included in the
right-hand side of a functional ‘Bellman-like’equation to capture the terms in
(7). More specifically, we show that under fairly general assumptions solutions
to SPPμ obey a saddle-point functional equation (SPFE). More specifically,
we look for functions W that satisfy the following:

SPFE W (x, μ, s) = inf
γ≥0

sup
a

{μh0(x, a, s) + γh1(x, a, s) + β E [W (x′, μ′, s′)| s]}
s.t. x′ = �(x, a, s′), p(x, a, s) ≥ 0
and μ′ = ϕ(μ, γ),

and we show that this holds for W (x, μ, s) = Vμ(x, s) (Theorem 3).
We only consider problems where the infsup problem has unique optimal

choices.7 In this case optimal allocations and multipliers are uniquely deter-
mined and there is a policy function ψ, i.e. ( a∗, γ∗) = ψ(x, μ, s), associated
with a value function W satisfying SPFE. Finally we show that the following
recursive formulation

( a∗
t , γ∗

t ) = ψ(x∗
t , μ

∗
t , st)

μ∗
t+1 = ϕ(μ∗

t , γ∗
t )

gives the optimal policy we are seeking. More precisely, we first show that,
given {a∗

t , γ
∗
t } generated by ψ for initial conditions (x, μ, s), ({a∗

t }∞t=0, γ
∗
0) solves

SPPμ in state (x, s), that ({a∗
t }∞t=1, γ

∗
1) solves SPPμ∗

1
in state (x∗

1, s1), etc.
(Theorem 4). As a result, the path {a∗

t } for μ0 = (1, 0, ...0) is a solution to PP.

7We discuss this issue in more detail in Sections 4 and 5.
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In this sense, the modified problem PPμ is the ‘correct continuation problem’
to the planners’ problem: if μ is properly updated, the solution can be found
each period by re-optimizing PPμ∗

t
.

2.1 The Principle of Optimality with forward-looking con-
straints

We now briefly discuss in which sense our central result is not a simple re-
statement of the standard dynamic programming principle of optimality to our
saddle-point formulation8. This principle says (when there are no forward-
looking constraints)9: if Vμ satisfies the Bellman equation (9), evaluated at
(x, s)), it is the (sup) value of PPμ, when the initial state is (x, s), and a
sequence {a∗

t }∞t=1 solves PPμ if and only if it satisfies:

Vμ(x∗
t , st) = μh0(x∗

t , a∗
t , s) + βE

[
Vμ(x∗

t+1, st+1)| st

]
x∗

t+1 = �(x∗
t , a∗

t , st+1), x∗
t = x.

In our context, under standard assumptions it is true that if {a∗
t }∞t=1 solves PPμ

when the initial state is (x, s) and attains the value Vμ(x, s), then W (x, μ, s) ≡
Vμ(x, s) and

W (x∗
t , μ

∗
t , st) = μ∗

t h0(x∗
t , a

∗
t , st) + γ∗

t h1(x∗
t , a

∗
t , st) + β E

[
W (x∗

t+1, μ
∗
t+1, st+1)| st

]
(10)

x∗
t+1 = �(x∗

t , a∗
t , st+1), x∗

t = x

μ∗
t+1 = ϕ(μ∗

t , γ∗
t ), μ∗

0 = (1, 0, ..., 0),

where {γ∗
t }∞t=1 is the sequence of Lagrange multipliers associated with the se-

quence of SPPμ (Theorems 1 and 3).
However, the converse, sufficiency, theorem that if W (x, μ, s) satisfies SPFE

and ({a∗
t }∞t=1, {γ∗

t }∞t=1) satisfies (10) then Vμ(x, s) ≡ W (x, μ, s) is the value
of PPμ and {a∗

t }∞t=1 solves PPμ is only true if, in addition, W (x, μ, s) =
μω(x, μ, s) and

ωj(x∗
t , μ∗

t , st) = hj
0(x

∗
t , a∗

t , st) + β E
[
ωj(x∗

t+1, μ∗
t+1, st+1)| st

]
, (11)

if j = 0, ..., k, and
ωj(x∗

t , μ∗
t , st) = hj

0(x
∗
t , μ∗

t , st) if j = k + 1, ..., l. (12)

These recursive equations for the forward-looking constraints are needed to
guarantee that these constraints are also satisfied in the original PPμ. Notice
that if W (x, μ, s) is differentiable in μ then, by Euler’s Theorem, W (x, μ, s) =
μω(x, μ, s) (where ωj ≡ ∂μj W ) and equations (11) and (12) follow from the

8This subsection clarifies our approach and what is new with respect to our previous work;
it can be skipped by the reader only interested in how our approach works and in our main
results.

9See, for example, Stokey et al (1989).
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Envelope Theorem. We show, and use, the fact that if {a∗
t }∞t=1 is unique (at

least locally unique) then W (x, μ, s) is differentiable in μ and, therefore, we
recover the Principle of Optimality for our saddle-point formulation (Theo-
rems 4 and 5), without having to impose equations (11) and (12) as ‘promise-
keeping’constraints10.

Before we turn to these results in Sections 4 and 5, in the next Section we
show how our approach is implemented in a couple of canonical examples.

3 Two Examples

In this Section we illustrate our approach with two examples. In the first, there
are only intertemporal participation constraints, so it is a case when Nj = ∞ (i.e.
k = l); in the second, there are only intertemporal one-period (Euler) constraints
and hence it is a case with Nj = 0 (i.e. k = 0). The first is similar to the model
studied in Marcet and Marimon (1992), Kocherlakota (1996), Kehoe and Perri
(2002), among others, and it is canonical of models with intertemporal default
constraints; the second is based on the model studied by Aiyagari et al. (2002)
and it is a canonical model with Euler constraints, as in Ramsey equilibria of
optimal fiscal and monetary policy.

3.1 Intertemporal participation constraints.

We consider as an example a model of a partnership, where several agents can
share their individual risks and jointly invest in a project which can not be
undertaken by single (or subgroups of) agents. Formally, there is a single good
and J infinitely-lived consumers. The preferences of agent j are represented by
E0

∑∞
t=0 βt u(cj

t ); u is assumed to be bounded, strictly concave and monotone,
with u(0) = 0; c represents individual consumption. Agent j receives an endow-
ment of consumption good yj

t at time t and, given a realization of the vector yt,
agent j has an outside option that delivers total utility va

j (yt) if he leaves the
contract in period t, where va

j is some known function. It is often assumed that

the outside option is the autarkic solution: va
j (yt) = E

[∑∞
n=0 βn u(yj

t+n) | yj
t

]
,

which implicitly assumes that if agent j defaults in period t he is permanently
excluded from the partnership and he has no furhter claims on its production
or capital in, or after, period t.

Total production is given by F (k, θ), and it can be split into consumption c
and investment i. The stock of capital k depreciates at the rate δ. The joint pro-
cess {θt, yt}∞t=0 is assumed to be Markovian and the initial conditions (k0, θ0, y0)

10In our previous work (Marcet and Marimon (1998, 1999)) we assumed uniqueness of
solutions and used the fact that the contraction mapping theorem guarantees the uniqueness
of the value function. Messner and Pavoni (2004) showed how the principle of optimality could
fail in our context when solutions are not unique, the missing element being the recursivity
of the forward-looking constraints. The above statement of the principle of optimality for
problems with forward-llooking constraints and, correspondingly, our sufficiency theorems
address this issue, which we further discuss in Section 6.
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are given. The planner looks for pareto-optimal allocations that ensure that no
agent ever leaves the contract. Letting Yt =

∑J
j=1 yj

t > 0, the planner’s problem
takes the form:

PP max
{ct,it}

E0

∞∑
t=0

βt
J∑

j=1

αj u(cj
t )

s.t. kt+1 = (1 − δ)kt + it,

F (kt, θt) + Yt −
⎛⎝ J∑

j=1

cj
t + it

⎞⎠ ≥ 0, and

Et

∞∑
n=0

βn u(cj
t+n) ≥ va

j (yt) for all j, t ≥ 0.

It is easy to map this planner’s problem into our PP formulation. Let
s ≡ (θ, y); x ≡ k; a ≡ (i, c); �(x, a, s) ≡ (1 − δ)k + i; p(x, a, s) ≡ F (k, θ) +∑

j∈J yj −
(∑

j∈J cj + i
)

; r(x, a, s) ≡ ∑J
j=1 αj u(cj); hj

0(x, a, s) ≡ u(cj);

hj
1(x, a, s) ≡ u(cj)−va

j (yt), j = 1, ..., J. Problems PPμ and SPPμ are obtained
mechanically by insuring that (5) is not binding for j = 0.

Finally we obtain the recursive formulation that we are seeking. SPFE
takes the form11

W (k, μ, y, θ) = inf
γ≥0

sup
c,i

{
J∑

j=1

(μ0αj + μj) u(cj) + γj
(
u(cj) − va

j (y)
)

+ β E
[
W (k′, μ′, y′, θ′) |y, θ

]}
s.t. k′ = (1 − δ)k + i, F (k, θ) +

J∑
j=1

yj −
⎛⎝ J∑

j=1

cj + i

⎞⎠ ≥ 0

and μ′ = μ + γ.

We know that W (k, μ, y, θ) = Vμ(k, y, θ) solves this functional equation. Letting
ψ be the policy function associated with it, solutions to PP satisfy

(c∗t , i
∗
t , γ

∗
t ) = ψ(k∗

t , μ∗
t , θt, yt) and

μ∗
t+1 = μ∗

t + γ∗
t ,

with initial conditions (k0, μ0, θ0, y0), where μ0 = (1, 0, ..., 0).
The planner would obtain the full commitment solution (subject to intertem-

poral participation constraints) from period t onwards if in period t = 1 he
solved PPμ∗

1
given initial conditions (k∗

1 , θ1, y1), provided that the weights α
of the agents were adjusted according to μ∗

1. Co-state variables μ∗
t become the

additional weight that the planner should assign to each agent above the initial
11Here we incorporate the knowledge that γ0∗ = 0.
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weight αj if the planner reoptimizes in period one. The variable μt is all that
needs to be remembered from the past.

This recursive formulation allows easy computation of solutions using either
first-order conditions or value function iteration. It also helps in characterizing
the solution to the optimal problem: the weights μ∗

t evolve according to whether
or not their participation constraints are binding. Every time that the partici-
pation constraint for an agent is binding, his weight is increased permanently by
the amount of the corresponding Lagrange multiplier. An agent is induced not
to default by increasing his consumption permanently, not only in the period
where he is tempted to default, but smoothly over time.

Due to these changing weights, relative marginal utilities across agents are
not constant when participation constraints are binding, since the first-order-
conditions imply

u′(ci
t)

u′(cj
t )

=
αj + μj

t+1

αi + μi
t+1

, for all i, j and t.

It follows that individual paths of consumption depend on individual histories
(in particular, on past ‘temptations to default’) and not just on the initial wealth
distribution and the aggregate consumption path, as in the Arrow-Debreu com-
petitive allocations. This dependence on the past is completely summarized by
μt (and, by homogeneity, the weights αj + μj

t+1 can be normalized to add up
to one). This also shows that if enforcement constraints are never binding (e.g.
punishments are severe enough) then μt = μ0 and we recover the “constancy of
the marginal utility of expenditure”, and the “constant proportionality between
individual consumptions,” given by u′(ci

t)/u′(cj
t ) = αj/ αi. In other words, the

evolution of the co-state variables can also be interpreted as the evolution of
the distribution of wealth. If intertemporal participation constraints are bind-
ing infinitely often there may be a non-degenerate distribution of consumption
in the long-run; in contrast with an economy where intertemporal participation
constraints cease to be binding, as in an economy with full enforcement.12

The evolution of the weights μ also helps to characterize the decision for
capital: the intertemporal Euler equation of SPPμ is given by:

μi
t+1u

′(ci
t) = β Et

[
μi

t+2u
′(ci

t+1)
(
Fkt+1 + (1 − δ)

)]
.

That is, the ‘stochastic discount factor’ βu′(ci
t+1)/u′(ci

t) is distorted by
(
1 + γi

t+1/μi
t+1

)
,

a distortion which does not vanish unless the non-negative process
{
γi

t

}
con-

verges to zero.
12See, for example, Broer (2009) for a characterization of the non-degenerate stationary

distribution of consumption, in a similar model with a finite number of types and a continuum
of agents of each type.
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3.2 Intertemporal one-period constraints: a Ramsey prob-
lem

We present an abridged version of the optimal taxation problem studied by
Aiyagari at al. (2002). A representative consumer solves

max
{ct,et,bt+1}

E0

∞∑
t=0

δt [u(ct) + v(et)]

s.t. ct + bt+1p
b
t = et(1 − τ t) + bt and

bt+1 ≥ B, for a given b0,

where c is consumption and e is effort (e.g. hours worked). The government
must finance exogenous random expenditures g by issuing debt and collecting
taxes. Feasible allocations satisfy ct + gt = et. The budget of the government
mirrors the budget of the representative agent. For convenience we assume
the government can not get too much in debt due to a constraint bt+1 ≥ B.
In a competitive equilibrium, the following intertemporal and intratemporal
equations must be satisfied (provided bt+1 > B):

pb
tu

′(ct) = β Etu
′(ct+1)

−v′(et)
u′(ct)

= 1 − τ t.

In a Ramsey equilibrium the government chooses sequences of taxes and
debt that maximize the utility of the consumer subject to the allocations be-
ing a competitive equilibrium allocations. Substituting the above equilibrium
equations into the budget constraint of the consumer, the Ramsey equilibrium
can be found by solving

PP max
{ct,bt+1}

E0

∞∑
t=0

βt [u(ct) + v(et)]

s.t. Et [βbt+1u
′(ct+1)] = u′(ct)(bt − ct)−etv

′(et) (13)
bt+1 ≥ B, for a given b0,

where et = ct + gt is left implicit. This problem can be represented as a
special case of PP by letting s ≡ g; x ≡ b; a ≡ (c, b′); p(x, a, s) ≡ b′ −
B; �(x, a, s′) ≡ b′; r(x, a, s) ≡ u(c) + v(e), h1

0(x, a, s) ≡ βbu′(c); h1
1(x, a, s) ≡

u′(c)(b − c)−ev′(e). Problems PPμ and SPPμ are then easily defined.
Finally, we obtain the recursive formulation that we are seeking. In its

original notation, SPFE takes the form13

13Here we incorporate the knowledge that γ0∗ = 0.
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W (b, μ, g) = inf
γ1≥0

sup
c,i

{μ0 [u(ct) + v(et)] + μ1bu′(c)

+ γ1 [u′(c)(b − c)−ev′(e)] + β E [W (b′, μ′, g′) |g ]}
s.t. b′ ≥ B, μ0′ = μ0, μ1′ = γ1.

Letting ψ be the policy function associated with this functional equation,
efficient allocations satisfy

(c∗t , b
∗
t+1, γ

1∗
t ) = ψ(b∗t , μ∗

t , gt)

for μ∗
t+1 = (1, γ1∗

t ) with initial conditions (b0, μ0, g0), where μ0 = (1, 0).
It is clear that in this case the only element of μ that matters is the Lagrange

multiplier γt−1. The planner would obtain the full commitment solution from
period t onwards if in period t = 1 he solved PPμ∗

1
given initial conditions

(b∗1, g1),; that is, if the objective function were modified to include the term
γ1

0b1 u′(c1) in addition to the consumer’s discounted utility from t = 1 onwards.
This term captures the commitment to enforcing the Euler equation (13) at
t = 0.

This recursive formulation allows easy computation of solutions using ei-
ther first-order-conditions or value function iteration. It also helps charactere
the solution to the optimal problem. The first-order conditions of the Ramsey
problem imply that solutions satisfy

Et

[
(γ1

t − γ1
t+1)u

′(ct+1)
]

= 0. (14)

As discussed in Aiyagari et al. (2002), with incomplete markets, this implies
that

{
γ∗

1,t

}
is a non-negative submartingale. Lagrange multipliers modify the

weight given to debt relative to the complete markets case. The optimal policy
can now be understood as forcing the planner in each period to modify the
deadweight loss of taxation with weight γ∗

t−1.

4 The relationship between PPμ, SPPμ, and SPFE

This section proves the relationships between the initial maximization problem
PPμ, the saddle-point problem SPPμ and the saddle-point functional equation
SPFE discussed in the previous Sections. We first describe the basic structure
of the problems being considered.

4.1 Basic Structure

There exists an exogenous stochastic process {st}∞t=0, st ∈ S, defined on the
probability space (S∞,S, P ). As usual, st denotes a history (s0, ..., st) ∈ St and
St the σ-algebra of events of st; while {st}∞t=0 ∈ S∞, with S the corresponding
σ-algebra. An action in period t, history st, is denoted by at(st), where at(st) ∈

12



A ⊂ Rm; when there is no confusion, it is simply denoted by at. Given st and
the endogenous state xt ∈ X ⊂ Rn, an action at is feasible if p(xt, at, st) ≥
0. If the latter feasibility condition is satisfied, the endogenous state evolves
according to xt+1 = �(xt, at, st+1). Plans, a = {at}∞t=0, are elements of A =
{a : ∀t ≥ 0, at : St → A and at ∈ Lm

∞(St,St, P ), }, where Lm
∞(St,St, P )

denotes the space of m-valued, essentially bounded, St-measurable functions.
The corresponding endogenous state variables are elements of X = {x : ∀t ≥
0, xt ∈ Ln

∞(St,St, P )}.
Given initial conditions (x, s), a plan a ∈ A and the corresponding x ∈ X ,

the evaluation of the plan in PPμ is given by

f(x,μ.s)(a) = E0

k∑
j=0

Nj∑
t=0

βtμjhj
0(xt, at, st).

We can describe the forward-looking constraints by defining g : A → Lk+1
∞

coordinatewise as

g(a) j
t = Et

⎡⎣Nj+1∑
n=1

βnhj
0(xt+n, at+n, st+n)

⎤⎦+ hj
1(xt, at, st).

Given initial conditions (x, s), the corresponding feasible set of plans is then

B(x, s) = {a ∈ A : p(xt, at, st) ≥ 0, g(a) t ≥ 0, x ∈ X ,

xt+1 = �(xt, at, st+1) for all t ≥ 0, given (x0, s0) = (x, s)} .

Then PPμ can be written in compact form as

PPμ sup
a∈B(x,s)

f(x,μ.s)(a).

We denote solutions to this problem as a∗ and the corresponding sequence
of state variables x∗. When the solution exists we define the value function of
PPμ as

Vμ(x, s) = f(x,μ.s)(a∗) (15)

Similarly, we can also write SPPμ in a compact form, by defining

B′(x, s) = {a ∈ A : p(xt, at, st) ≥ 0, g(a) t+1 ≥ 0; x ∈ X
xt+1 = �(xt, at, st+1) for all t ≥ 0, given (x0, s0) = (x, s)} .

SPPμ inf
γ∈Rl

+

sup
a∈B′(x,s)

{
f(x,μ,.s)(a) + γg(a)0

}
.

Note that B′ only differs from B in that the forward-looking constraints in period
zero g(a) 0 ≥ 0 are not included as a condition in the set B′, but instead these
constraints form part of the objective function of SPPμ.
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4.2 Assumptions and existence of solutions to PPμ

We consider the following set of assumptions:

A1. st takes values on a set S ⊂ RK . {st}∞t=0 is a Markovian stochastic process
defined on the probability space (S∞,S, P ).

A2. (a) X ⊂ Rn and A is a closed subset of Rm. (b) The functions p :
X ×A×S → R and � : X ×A×S → X are measurable and continuous.

A3. Given (x, s), there exist constants B > 0 and ϕ ∈ (0, β−1), such that if
p(x, a, s) ≥ 0 and x′ = �(x, a, s′), then ‖a‖ ≤ B ‖x‖ and ‖x′‖ ≤ ϕ ‖x‖.

A4. The functions hj
i (·, ·, s), i = 0, 1, j = 0, ..., l, are continuous and uniformly

bounded, and β ∈ (0, 1).

A5. The function �(·, ·, s) is linear and the function p(·, ·, s) is concave. X and
A are convex sets.

A6. The functions hj
i (·, ·, s), i = 0, 1, j = 0, ..., l, are concave.

A6s. In addition to A6, the functions hj
0(x, ·, s), j = 0, ..., l, are strictly con-

cave.

A7. For all (x, s), there exists a program {ãn}∞n=0 , with initial conditions (x, s),
which satisfies the inequality constraints (4) and (5) with strict inequality.

Assumptions A1 and A2 are part of our basic structure, described in the
previous sub-section. These assumptions, together with A3-A4, are standard
and we treat them as our basic assumptions. Assumptions A5-A7 are often
made but they are not satisfied in some interesting models; however, these
assumptions are only used in some of the results below. For example, the
concavity assumptions A5-A6 are not needed for many results, and assumption
A7 is a standard interiority assumption, only needed to guarantee the existence
of Lagrange multipliers.

The following proposition gives sufficient conditions for a maximum to exist
for any μ. The aim is not to have the most general existence theorem14, but
to stress that one can find fairly general conditions under which PPμ has a
solution for any μ, which will be crucial in the discussion of how our approach
compares with that of Abreu, Pearce and Stachetti, since this ensures that the
continuation problem (namely PPϕ(μ,γ)) is well defined for any γ.

Proposition 1. Assume A1-A6 and that the set of possible exogenous states
S is countable. Fix (x, μ, s) ∈ X×Rl+1

+ ×S. Assume there exists a feasible
plan ã ∈ B(x, s) such that f(μ,x,s)(ã) > −∞. Then there exists a program
a∗ which solves PPμ with initial conditions x0 = x, s0 = s.

14For example, not requiring A6 or the countability of S, which will require additional
assumptions.
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Furthermore, if A6s is also satisfied then the solution is (almost surely) unique.

Proof: See Appendix.

4.3 The relationship between PPμ and SPPμ

The following result says that a solution to the maximum problem is also a
solution to the saddle point problem. It follows from the standard theory of
constrained optimization in linear vector spaces (see, for example, Luenberger
(1969, Section 8.3, Theorem 1 and Corollary 1). As in the standard theory,
convexity and concavity assumptions (A5 to A6), as well as an interiority
assumption (A7) are necessary to obtain the result.

Theorem 1 (PPμ =⇒ SPPμ). Assume A1-A7 and fix μ ∈ Rl+1
+ . Let a∗ be

a solution to PPμ with initial conditions (x, s). There exists a γ∗ ∈ Rl
+

such that (a∗, γ∗) is a solution to SPPμ with initial conditions (x, s).

Furthermore, the value of SPPμ is the same as the value of PPμ. more pre-
cisely:

Vμ(x, s) = f(x,μ,.s)(a∗) + γ∗g(a∗)0 (16)

Proof: This is an immediate application of Theorem 1 (8.3) in Luenberger
(1969), p. 217.

The following is a theorem on the sufficiency of a saddle point for a maximum.

Theorem 2 (SPPμ =⇒ PPμ). Given any (x, μ, s) ∈ X×Rl+1
+ ×S, let (a∗, γ∗)

be a solution to SPPμ for initial conditions (x, s). Then a∗ is a solution
to PPμ for initial conditions (x, s).

Furthermore, the value of the two programs is the same and (16) holds.

Notice that Theorem 2 is a sufficiency theorem ‘almost free of assumptions.’
All that is needed is the basic structure of section 4.1 defining the corresponding
infinite-dimensional optimization and saddle-point problems together with the
assumption that a solution to SPPμ exists. Once these conditions are satisfied
assumptions A2 to A7 are not needed.

Proof: The following proof is an adaptation, to SPPμ, of a sufficiency theo-
rem for Lagrangian saddle points (see, for example, Luenberger (1969),
Theorem 8.4.2, p.221).

If (a∗, γ∗) solves SPPμ, minimality of γ∗ implies that, for every γ ≥ 0,

( γ∗ + γ) g(a∗)0 ≥ γ∗g(a∗)0;

therefore, g(a∗) 0 ≥ 0, but since a∗ ∈ B′(x, s), it follows that a∗ ∈ B(x, s);
i.e. a∗ is a feasible program for PPμ. Furthermore, the minimality of γ∗

implies that
γ∗g(a∗)0 ≤ 0g(a∗)0 = 0,
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but since γ∗ ≥ 0 and g(a∗)0 ≥ 0, it follows that γ∗g(a∗)0 = 0. Now,
suppose there exists ã ∈ B(x, s) satisfying f(x,μ,s)(ã) > f(x,μ,s)(a∗). Then,
since γ∗g(ã)0 ≥ 0, it must be that

f(x,μ,s)(ã) + γ∗g(ã)0 > f(x,μ,s)(a∗) + γ∗g(a∗)0,

which contradicts the maximality of a∗ for SPPμ.

Finally, using γ∗g(a∗)0 = 0, we have f(x,μ,s)(a∗) + γ∗g(a∗)0 = Vμ(x, s) �

4.4 The relationship between SPPμ and SPFE

Recall that a function W : X×Rl+1
+ ×S → R satisfies SPFE at (x, μ, s) when

W (x, μ, s) = min
γ≥0

max
a∈A

{μh0(x, a, s) + γh1(x, a, s) + β E [W (x′, μ′, s′)| s]}
(17)

s.t. x′ = �(x, a, s), p(x, a, s) ≥ 0 (18)
and μ′ = ϕ(μ, γ). (19)

In (17) we substituted inf sup with min max, implicitly assuming that a solution
to the saddle point problem exists, in which case the value W (x, μ, s) is uniquely
determined15. In other words, the right-hand side of SPFE is well defined for
all (x, μ, s) and W for which a saddle point exists.

We say that W satisfies SPFE if it satisfies SPFE in any possible state
(x, μ, s) ∈ X × Rl+1

+ × S. Given W, we define the saddle-point policy correspon-
dence (SP policy correspondence) Ψ : X × Rl+1

+ × S → A × Rl+1
+ by

ΨW (x, μ, s) ={
( a∗, γ∗) : a∗ ∈ arg max

a∈A, x′∈X
μh0(x, a, s) + γ∗h1(x, a, s) + β E [W (x′, μ∗′, s′)| s]

for μ∗′ = ϕ(μ, γ∗) and (18);
γ∗ ∈ arg min

γ≥0
μh0(x, a∗, s) + γh1(x, a∗, s) + β E [W (x∗′, μ′, s′)| s] ,

for x∗′ = �(x, a∗, s) and (19)} .

If ΨW is single valued, we denote it by ψW , and we call it a saddle-point policy
function (SP policy function).

We define the function W ∗(x, μ, s) ≡ Vμ(x, s). The following theorem says
that W ∗ satisfies SPFE.

Theorem 3 (SPPμ =⇒ SPFE). Assume that SPPμ has a solution for any
(x, μ, s) ∈ X × Rl+1

+ × S. Then W ∗ satisfies SPFE. Furthermore, letting
(a∗, γ∗) be a solution to SPPμ at (x, s), we have (a∗

0, γ
∗) ∈ ΨW∗(x, μ, s).

15See Lemma 3A in Appendix B.
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As in Theorem 2, Theorem 3 is also a theorem ‘almost free of assumptions,’
once the underlying structure and the existence of a well-defined solution to
SPPμ at all possible (x, μ, s) is assumed.

Proof: By theorem 2, we have that whenever SPPμ has a solution W ∗ is well
defined. Then, we first prove that, for any given (x, μ, s), if (a∗, γ∗) solves
SPPμ at (x, s) the following recursive equation is satisfied:

W ∗(x, μ, s) = μh0(x, a∗
0, s)+γ∗h1(x, a∗

0, s)+β E [W ∗(x∗
1, ϕ(μ, γ∗), s′)| s]

(20)
To prove ≤ in (20) we write

W ∗(x, μ, s) = f(x,μ,s)(a∗) + γ∗g(a∗)0
= μh0(x, a∗

0, s) + γ∗h1(x, a∗
0, s)

+βE

⎡⎣ l∑
j=0

ϕj(μ, γ∗)
Nj∑
t=0

βt hj
0(x

∗
t+1, a∗

t+1, st+1) | s

⎤⎦
= μh0(x, a∗

0, s) + γ∗h1(x, a∗
0, s) + βE

[
f(x∗

1 ,ϕ(μ, γ∗),s1)(σa∗)| s]
≤ μh0(x, a∗

0, s) + γ∗h1(x, a∗
0, s) + βE

[
Vϕ(μ, γ∗)(x∗

1, s1)| s
]

= μh0(x, a∗
0, s) + γ∗h1(x, a∗

0, s) + βE [W ∗(x∗
1, ϕ (μ, γ∗, s))| s] ,

where σa∗ is the original optimal sequence shifted one period; formally,
letting the shift operator σ : St+1 → St be given by σ(st) = (s1, s2..., st),
we define the St+1-measurable function σa∗

t as σa∗
t (s) ≡ a∗

t+1(s). The
first equality follows from the definition of W ∗, and because Theorem
2 guarantees (16) the second equality follows from the definition of f, g
and simple algebra. The third equality follows from the definitions of f ,
ϕ, and a∗. The weak inequality follows from the fact that a∗ is a feasible
solution to the problem PPϕ(μ, γ∗) with initial conditions (x∗

1, s1) and that
this program achieves Vϕ(μ, γ∗)(x∗

1, s1) at its maximum. The last equality
follows from Theorem 2 and (16).

To show ≥ in (20) we construct a sequence a+ that consists of the optimal
choice for SPPμ for initial conditions (x, s) in the initial period, but sub-
sequently is followed by the optimal choices for PPϕ(μ, γ∗(x,μ,s)) for ini-
tial conditions (x∗

1, s1). To define a+ formally, we explicitly denote by
(a∗(x, μ, s), γ∗(x, μ, s)) a solution to SPPμ for given initial conditions
(x, s) and we let

a+
0 (x, μ, s) = a∗

0(x, μ, s) and
a+

t (x, μ, s) = σa∗
t−1(x

∗
1, ϕ (μ, γ∗(x, μ, s), s) , s1)

for all (x, μ, s) and t ≥ 1. Also, we let x+ be the corresponding sequence
of state variables.
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In what follows, we again simplify notation and go back to denoting a∗
t (x, μ, s)

by a∗
t , γ∗(x, μ, s) by γ∗, and a+

t (x, μ, s)(st) by a+
t . Then, we have:

W ∗(x, μ, s) = f(x,μ,s)(a∗) + γ∗g(a∗)0
≥ f(x,μ,s)(a+) + γ∗g(a+)0
= μh0(x, a+

0 , s) + γ∗h1(x, a+
0 , s)

+βE

⎡⎣ l∑
j=0

ϕ(μ, γ∗)j

Nj∑
t=0

βt hj
0(x

+
t+1, a+

t+1, st+1) | s

⎤⎦
= μh0(x, a∗

0, s) + γ∗h1(x, a∗
0, s)

+βE [W ∗(x∗
1, ϕ (μ, γ∗) , s1)| s] ,

where the first equality has been argued before, the first inequality follows
from the fact that a+(x, μ, s) is a feasible allocation in SPPμ for initial
conditions (x, s) but that a∗(x, μ, s) is a solution to the max part to SPPμ

at (x, s). The second equality just applies the definition of f and g, and
the last equality follows because a+ is optimal for PPϕ(μ, γ∗(x,μ),s) given
initial conditions (x∗

1, s1) from period 1 onwards and because Theorem 2
ensures that (16) holds.

Notice that for this step of the proof it is crucial that we use SPPμ in order
to obtain a recursive formulation. The first inequality above only works
because we are considering a saddle point problem. Indeed, the a+ se-
quence (which reoptimizes in period t = 1) is feasible for SPPμ because
this problem does not impose the forward looking constraints in t = 0.
The sequence a+ would not be feasible in the original problem PPμ, be-
cause by reoptimizing at period t = 1 the forward-looking constraints at
t = 0 would be typically violated.

This ends the proof of (20).

To show that W ∗ satisfies SPFE we now prove that the right-hand side of
SPFE is well defined at W ∗ and that (a∗

0, γ
∗) is a saddle point of the

right-hand side of (17) or, formally, that (a∗
0, γ

∗) ∈ ΨW∗(x, μ, s).

We first prove that a∗
0 solves the max part of the right-hand side of SPFE. Given

any ã ∈ A, p(x, ã, s) ≥ 0, letting ã∗
t (s

t) ≡ a∗
t−1(�(x, ã, s′), ϕ(μ, γ∗), s′)(σ(st))

for t ≥ 1, the definition of ã∗
t , and (16) give the following first equality:

μh0(x, ã, s) + γ∗h1(x, ã, s) + βE [W ∗(�(x, ã, s′), ϕ(μ, γ∗), s′)| s]
= μh0(x, ã, s) + γ∗h1(x, ã, s)

+βE

⎡⎣ l∑
j=0

ϕ(μ, γ∗)j

Nj∑
t=0

βt hj
0(x̃

∗
t+1, ã∗

t+1, st+1) | s

⎤⎦
= f(x,μ,s)(ã

∗) + γ∗g(ã∗)0
≤ f(x,μ,s)(a∗) + γ∗g(a∗)0
= W ∗(x, μ, s).

18



The second equality follows by definition, and the inequality holds because
(a∗, γ∗) solves the max part of SPPμ, while the third equality follows from
(16). Now we can combine this with (20) to obtain that for all feasible
ã ∈ A

μh0(x, ã, s) + γ∗h1(x, ã, s) + βE [W ∗(x∗
1, ϕ(μ, γ∗), s′)| s]

≤ μh0(x, a∗
0, s) + γ∗h1(x, a∗

0, s) + βE [W ∗(x∗
1, ϕ(μ, γ∗), s′)| s] ,

implying that a∗
0 solves the max part of the right-hand side of the SPFE.

A similar argument shows that γ∗ solves the min part. For any γ̃ ∈ Rl+1
+ now

let

μh0(x, a∗
0, s) + γ̃h1(x, a∗

0, s) + βE [W ∗(x∗
1, ϕ(μ, γ̃), s′)| s]

≥ μh0(x, a∗
0, s) + γ̃h1(x, a∗

0, s) +

+βE

⎡⎣ l∑
j=0

ϕ(μ, γ̃)j

Nj∑
t=0

βt hj
0(x

∗
t+1, a∗

t+1, st+1) | s

⎤⎦
= f(x,μ,s)(a∗) + γ̃ g(a∗)0
≥ f(x,μ,s)(a∗) + γ∗ g(a∗)0
= W ∗(x, μ, s)
= μh0(x, a∗

0, s) + γ∗h1(x, a∗
0, s) + βE [W ∗(�(x, a∗

0, s′), ϕ(μ, γ∗), s′)| s] ,

where the inequality follows from the facts that shifting the policies one
period back, the plan a∗ is a feasible plan for the PPϕ(μ, eγ) problem with
initial conditions (x∗

1, s
′) and that W ∗(x∗

1, ϕ(μ, γ̃), s′) is the optimal value
of PPϕ(μ, eγ). The second inequality follows because (a∗, γ∗) is a saddle
point of SPPμ and the equalities follow from definitions, Theorem 2 and
(20).

Therefore, γ∗ solves the min part of the right side of SPFE.

Therefore (a∗
0, γ

∗) is a saddle point of the right-hand side of SPFE. This
implies the first equality in

min
γ≥0

max
a∈A

{μh0(x, a, s) + γh1(x, a, s) + β E [W ∗(x′, μ′, s′)| s]}
= μh0(x, a∗

0, s) + γ∗h1(x, a∗
0, s) + β E [W ∗(x∗

1, ϕ(μ, γ∗), s′)| s]
= W ∗(x, μ, s),

and the second equality comes, again, from (20). This proves that W ∗ satisfies
SPFE.�

The argument used in the proof of Theorem 3 can be iterated a finite number
of times to show the underlying recursive structure of the PPμ formulation. If
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PPμ has a unique solution {a∗
t }∞t=0 at (x, s), then by Theorem 1 there is a SPPμ

at (x, s) with solution ({a∗
t }∞t=0 , γ∗), which in turn defines a PPϕ(μ, γ∗) prob-

lem. As has been seen in the proof of Theorem 3, {a∗
t }∞t=1 solves PPϕ(μ, γ∗)

at (�(x, a∗
0, s), s1) and by Theorem 1 there is a γ∗

1 such that ({a∗
t }∞t=1 , γ∗

1)
solves SPPϕ(μ, γ∗) at (�(x, a∗

0, s), s1). In turn, {a∗
t }∞t=2 solves PPϕ(2)(μ, γ∗) at

(�(2)(x, a∗
0, s), s1), where ϕ(2)(μ, γ∗) ≡ ϕ(ϕ(μ, γ∗), γ∗

1, s1) and �(2)(x, a∗
0, s) ≡

�(�(x, a∗
0, s), a∗

1, s1). Similarly, let ϕ(n+1)(μ, γ∗) ≡ ϕ(ϕ(n)(μ, γ∗), γ∗
n, sn). Then

by recursively applying the argument of the proof of Theorem 3 we obtain the
following result.

Corollary 3.1. (Recursivity of PPμ). If PPμ satisfies the assumptions of
Theorem 1 and has a unique solution {a∗

t }∞t=0 at (x, s), then, for any
(t, x∗

t , st),
{
a∗

t+j

}∞
j=0

is the solution to PPϕ(t)(μ, γ∗) at (x∗
t , st), where γ∗

is the minimizer of SPPμ at (x, s).

The value function has some interesting properties that we would like to
emphasize. First, notice that

W ∗(x, μ, s) = f(x,μ,s)(a∗) + γ∗g(a∗)0
= f(x,μ,s)(a∗)

= E0

l∑
j=0

Nj∑
t=0

βtμjhj
0(x

∗
t , a∗

t , st).

Therefore, if {a∗
t }∞t=0 at (x, s) is uniquely defined, then W ∗ has a unique repre-

sentation

W ∗(x, μ, s) =
l∑

j=0

μjω∗
j (x, μ, s)

= μω∗(x, μ, s),

where, for j = 0, ...k, ωj(x, μ, s) ≡ E0

∑∞
t=0 βthj

0(x
∗
t , a∗

t , st), and, for j = k +
1, ...l, ωj(x, μ, s) ≡ hj

0(x
∗
0, a∗

0, s0). Similarly, the value function of SPPϕ(μ, γ∗)

at (x∗
1, s1), x∗

1 = �(x, a∗
0, s), satisfies

W ∗(x∗
1, ϕ(μ, γ∗), s1) ≡ ϕ(μ, γ∗)ω∗(x∗

1, ϕ(μ, γ∗), s1).

This representation not only has an interesting economic meaning – for example,
as a ‘social welfare function,’ with varying weights, in problems with intertem-
poral participation constraints – but is also very convenient analytically. In
particular, this reprensentation shows16 that W ∗ is convex and homogenous of
degree one in μ, with W ∗(x, 0, s) = 0, for all (x, s)17. In addition, the fol-
lowing Corollary to Theorem 3 also shows that W ∗ satisfies what we call the

16See Lemma 2A in Appendix B.
17A function which is convex, homogeneous of degree one and finite at 0, is also called a

sublinear function (see Rockafellar, 1981, p.29).
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saddle-point inequality property SPI. Lemmas 1 and 2 below show how these
properties are extended to general W functions satisfying SPFE.

A function W (x, μ, s) =
∑l

j=0 μjωj(x, μ, s) satisfies the saddle-point inequal-
ity property SPI at (x, μ, s) if and only if there exist (a∗, γ∗) satisfying

μh0(x, a∗, s) + γ̃h1(x, a∗, s) + β E [ϕ(μ, γ̃)ω(x∗′, ϕ(μ, γ∗), s′)| s]
≥ μh0(x, a∗, s) + γ∗h1(x, a∗, s) + β E [ϕ(μ, γ∗)ω(x∗′, ϕ(μ, γ∗), s′)| s] . (21)

≥ μh0(x, ã, s) + γ∗h1(x, ã, s) + β E [ϕ(μ, γ∗)ω(x̃′, ϕ(μ, γ∗), s′)| s] , (22)

for any γ̃ ∈ Rl+1
+ and ( ã, x̃′) satisfying the technological constraints at (x, s);

that is, in SPI the multiplier minimization is taken in relation to the optimal
continuation values.

Corollary 3.2. (SPPμ =⇒SPI). Let W ∗(x, μ, s) ≡ Vμ(x, s) be the value of
SPPμ at (x, s), for an arbitrary (x, μ, s). Then W ∗(x, μ, s) =

∑l
j=0 μjω∗

j (x, μ, s)
satisfies SPI.

Proof: We only need to show that (21) is satisfied, but this is immediate from
the following identities:

f(x,μ,s)(a∗) = μh0(x, a∗
0, s) + β E

⎡⎣ k∑
j=0

μjω∗
j (x

∗
1, ϕ(μ, γ∗), s1)| s

⎤⎦
γg(a∗)0 = γ [h1(x, a∗

0, s) + β E [ω∗(x∗
1, ϕ(μ, γ∗), s1)| s]] ,

and the definition of SPPμ at (x, s); that is, for any γ̃ ∈ Rl+1
+ ,

μh0(x, a∗, s) + γ̃h1(x, a∗, s) + β E [ϕ(μ, γ̃)ω∗(x∗′, ϕ(μ, γ∗), s′)| s]
= f(x,μ,s)(a∗) + γ̃g(a∗)0
≥ f(x,μ,s)(a∗) + γ∗g(a∗)0
= μh0(x, a∗, s) + γ∗h1(x, a∗, s) + β E [ϕ(μ, γ∗)ω∗(x∗′, ϕ(μ, γ∗), s′)| s] .

�

We now show that, under fairly general conditions, programs satisfying
SPFE are solutions to SPPμ at (x, s). More formally,

Theorem 4 (SPFE =⇒ SPPμ) Assume W , satisfying SPFE, is continuous
in (x, μ) and convex and homogeneous of degree one in μ. If the SP policy
correspondence ΨW associated with W generates a solution (a∗,γ∗)(x,μ,s),
where (a∗)(x,μ,s) is uniquely determined, then (a∗,γ∗)(x,μ,s) is also a so-
lution to SPPμ at (x, s).

Notice that the assumptions on W are very general. In particular, if W (x, μ, s)
is the value function of SPPμ at (x, s) (i.e. W (x, μ, s) ≡ Vμ(x, s)) then (as
Lemma 2A in Appendix B shows) it is convex and homogeneous of degree one
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in μ and, if A2 - A5 are satisfied it is continuous and bounded in (x, μ).
The only ‘stringent condition’ is that (a∗)(x,μ,s) must be uniquely determined,
which is the case when W is concave in x and A6s is satisfied ( see Corollary
4.1.).

Before proving these results, we show that, as we have seen for W ∗, convex
and homogeneous functions W satisfying SPFE have some interesting proper-
ties, which are used in the proof of Theorem 4. First, without loss of generality
(see F2 and F3 in Appendix C), we can express the recursive equation (17) in
the form

μωd(x, μ, s) = μh0(x, a∗, s) + γ∗h1(x, a∗, s)

+β E
[
ϕ(μ, γ)ωd′

(x∗′, ϕ(μ, γ∗), s′)| s
]
, (23)

where μωd(x, μ, s) = W (x, μ, s), and the vectors ωd and ωd′
are (partial) di-

rectional derivatives in μ of W (x, μ, s) and W (x∗′, ϕ(μ, γ∗), s′), respectively.
Therefore, the SPFE saddle-point inequalities take the form

μh0(x, a∗, s) + γ̃h1(x, a∗, s) + β E
[
ϕ(μ, γ̃)ωd′

(x∗′, ϕ(μ, γ̃), s′)| s
]

≥ μh0(x, a∗, s) + γ∗h1(x, a∗, s) + β E
[
ϕ(μ, γ∗)ωd′

(x∗′, ϕ(μ, γ∗), s′)| s
]

(24)

≥ μh0(x, ã, s) + γ∗h1(x, ã, s) + β E
[
ϕ(μ, γ∗)ωd′

(x̃′, ϕ(μ, γ∗), s′)| s
]
, (25)

for any γ̃ ∈ Rl+1
+ and ( ã, x̃′) satisfying the technological constraints at (x, s).

Second, as we show in Lemma 1, there is an equivalence between this SPFE
property and the saddle-point inequality property, SPI, which substitutes (24)
with

μh0(x, a∗, s) + γ̃h1(x, a∗, s) + β E
[
ϕ(μ, γ̃)ωd′

(x∗′, ϕ(μ, γ∗), s′)| s
]

≥ μh0(x, a∗, s)+γ∗h1(x, a∗, s)+β E
[
ϕ(μ, γ∗)ωd′

(x∗′, ϕ(μ, γ∗), s′)| s
]
. (26)

Third, as we show in Lemma 2, if in addition (a∗,γ∗)(x,μ,s) is uniquely
determined, then W is differentiable in μ. Alternatively, if W is not differentiable
in μ′, then different choices of ωd′

can result in different solutions and the union
of all these different solutions are the solutions to the saddle point problem,
given by (26) and (25).

Lemma 1 (SPI ⇐⇒ SPFE). If W (x, ·, s) is convex and homogeneous of de-
gree one, then (24) is satisfied if and only if (26) is satisfied. Furthermore,
the inequality (26) is satisfied if and only if the following conditions are
satisfied, for j = 0, ..., l,:

hj
1(x, a∗

0, s) + β E
[
ωd′

j (x
∗
1, μ∗

1, s1)| s
]

≥ 0 (27)

γ∗j
[
hj

1(x, a∗
0, s) + β E

[
ωd′

j (x
∗
1, μ∗

1, s1)| s
]]

= 0. (28)
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Proof of Lemma 1: That SPI =⇒ SPFE follows from F4 (see Appendix C).
With respect to W (x∗′, ϕ(μ, γ), s′), F4 takes the form:

ϕ(μ, γ̃)ωd′
(x∗′, ϕ(μ, γ̃), s′) ≥ ϕ(μ, γ̃)ωd′

(x∗′, ϕ(μ, γ∗), s′).

Therefore, (26) together with this latter inequality results in the following
inequalities, which show that (24) is satisfied whenever (26) is satisfied:

μh0(x, a∗, s) + γ̃h1(x, a∗, s) + β E
[
ϕ(μ, γ̃)ωd′

(x∗′, ϕ(μ, γ̃), s′)| s
]

≥ μh0(x, a∗, s) + γ̃h1(x, a∗, s) + β E
[
ϕ(μ, γ̃)ωd′

(x∗′, ϕ(μ, γ∗), s′)| s
]

≥ μh0(x, a∗, s) + γ∗h1(x, a∗, s) + β E
[
ϕ(μ, γ∗)ωd′

(x∗′, ϕ(μ, γ∗), s′)| s
]
.

To see that SPFE =⇒ SPI, let

G(x, a∗, s)(γ, μ) ≡ μh0(x, a∗, s)+γh1(x, a∗, s)+β E
[
ϕ(μ, γ)ωd′

(x∗′, ϕ(μ, γ), s′)| s
]
,

and

F(x, a∗, s)(γ, μ) ≡ μh0(x, a∗, s)+γh1(x, a∗, s)+β E
[
ϕ(μ, γ)ωd′

(x∗′, ϕ(μ, γ∗), s′)| s
]
.

Then, (24) reduces to G(x, a∗, s)(γ, μ) ≥ G(x, a∗, s)(γ∗, μ) and (26) to F(x, a∗, s)(γ, μ) ≥
F(x, a∗, s)(γ∗, μ). Since G(x, a∗, s)(γ∗, μ) = F(x, a∗, s)(γ∗, μ), the above in-
equalities show that, if f(x, a∗, s)(γ∗, μ) ∈ ∂γF(x, a∗, s)(γ∗, μ) for all γ ≥ 0,
then

G(x, a∗, s)(γ, μ) − G(x, a∗, s)(γ∗, μ) ≥ F(x, a∗, s)(γ, μ) − F(x, a∗, s)(γ∗, μ)
(γ − γ∗) f(x, a∗, s)(γ∗, μ);

that is, f(x, a∗, s)(γ∗, μ) ∈ ∂γG(x, a∗, s)(γ∗, μ).

Now let g(x, a∗, s)(γ∗, μ) be an extreme point of ∂γG(x, a∗, s)(γ∗, μ). Since G(x, a∗, s)(γ, μ)
is homogenous of degree one in γ, it follows by F2 (Appendix C) that there
exists γk −→ γ∗, with G differentiable at γk and ∇G(x, a∗, s)(yk, μ) −→
g(x, a∗, s)(γ∗, μ). By homogeneity of degree zero of ωd′

(x∗′, μ′, s′) with re-
spect to μ′,

∇G(x, a∗, s)(γk, μ) = h1(x, a∗(x, μ, s), s)+β E
[
ωd′

(x∗′(x, μ, s), ϕ( μ, γk), s′)| s
]
.

Given the differentiability of ∇G(x, a∗, s)(yk, μ) at γk, the continuity18 of ϕ and
ωd′

implies that

g(x, a∗, s)(γ∗, μ) = h1(x, a∗(x, μ, s), s)+β E
[
ωd′

(x∗′(x, μ, s), ϕ( μ, γ∗), s′)| s
]
,

18The continuity of ωd′
is given, for example, by Theorem 4F (& Corollary 4G) in Rockafellar

(1981).
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and, therefore, g(x, a∗, s)(γ∗, μ) ∈ ∂γF(x, a∗, s)(γ∗, μ) – in fact, it is also an
extreme point of ∂γF(x, a∗, s)(γ∗, μ). This shows that ∂γF(x, a∗, s)(γ∗, μ) =
∂γG(x, a∗, s)(γ∗, μ), which, in turn, implies the equivalence between (24)
and (26).

Finally, the proof of the Kuhn-Tucker conditions is standard. First, the neces-
sity of (27) follows from the fact that γ∗ ≥ 0 is finite, which will not be
the case if, for some j = 0, ..., l,

hj
1(x, a∗

0, s) + β E
[
ωd′

j (x
∗
1, μ∗

1, s1)| s
]

< 0.

To see the necessity of (28), let γ∗j
(i) = γ∗j , if j �= i, and γ∗i

(i) = 0. Then
(26) results in:

μh0(x, a∗, s) + γ∗
(i)h1(x, a∗, s) + β E

[
ϕ(μ, γ∗

(i))ω
d′

(x∗′, ϕ(μ, γ∗), s′)| s
]

≥ μh0(x, a∗, s) + γ∗h1(x, a∗, s) + β E
[
ϕ(μ, γ∗)ωd′

(x∗′, ϕ(μ, γ∗), s′)| s
]
,

which, together with (27), implies that

0 ≥ γ∗j
[
hj

1(x, a∗
0, s) + β E

[
ωd′

j (x
∗
1, μ∗

1, s1)| s
]]

≥ 0.

To see that (27) and (28) imply (26), suppose they are satisfied and there
exists a γ̃ ≥ 0 for which (26) is not, then it must be that

γ̃
[
h1(x, a∗

0, s) + β E
[
ωd′

(x
∗
1, μ∗

1, s1)| s
]]

< γ∗
[
h1(x, a∗

0, s) + β E
[
ωd′

(x
∗
1, μ∗

1, s1)| s
]]

= 0,

which contradicts (27)�

Lemma 2. If (a∗,γ∗)(x,μ,s) is generated by ΨW (x, μ, s) and (a∗)(x,μ,s) is uniquely
defined, then W (x∗

t , μ
∗
t , st) is differentiable with respect to μ∗

t , for every
(x∗

t , μ
∗
t , st), with (x∗

t , μ
∗
t ) realized by19 (a∗,γ∗)(x,μ,s) .

Proof of Lemma 2: By (28) the recursive equation (23) simplifies to

μωd(x, μ, s) = μh0(x, a∗, s) + β E

⎡⎣ k∑
j=0

μjωd′
j (x∗′, μ + γ∗), s′)| s

⎤⎦ .

Assume, for the moment, that (a∗,γ∗)(x,μ,s) is uniquely determined. By
recursive iteration, it follows that

19That is, (x∗0, μ
∗
0) ≡ (x, μ), x∗t+1 = �(x∗t , a∗t , st+1) and μ∗t+1 = ϕ(μ∗t , γ∗t ).
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μωd(x0, μ0, s0) = μh0(x0, a∗
0, s0)

+β E0

⎡⎣ k∑
j=0

μj
(
hj

0(x
∗
1, a∗

1, s1) + βωd
′′

j (x∗
2, μ + γ∗

0 + γ∗
1), s2)

)
| s0

⎤⎦
= μh0(x0, a∗

0, s0) + β E0

⎡⎣ k∑
j=0

μj
∞∑

t=1

βthj
0(x

∗
t , a∗

t , st)| s0

⎤⎦ .

Therefore, the uniqueness of (a∗,γ∗)(x,μ,s) implies: i) ωd(x, μ, s) is uniquely
defined: ωd(x, μ, s) = ω(x, μ, s) ≡ ∇μW (x, μ, s), which, in turn, implies
that W (x, ·, s) is differentiable; and ii) ωj(x, μ, s) = E0

∑∞
t=0 βthj

0(x
∗
t , a∗(x∗

t , μ∗
t , st), st),

for j = 0, . . . k (with (x∗
0, μ∗

0, s0) ≡ (x, μ, s), x∗
t+1 = �(x∗

t , a∗(x∗
t , μ∗

t , st), st),
and μ∗

t+1 = μ∗ + γ∗(x∗
t , μ∗

t , st)), and ωj(x, μ, s) = hj
0(x, a∗(x, μ, s), s),

for j = k + 1 . . . l

Given (a∗)(x,μ,s), suppose now
(
a∗, γ̃∗)

(x,μ,s)
is also generated by ΨW (x, μ, s).

Both saddle-point paths must have the same value (see Lemma 3A in
Appendix B). In particular, following the same recursive argument,

μωd(x0, μ0, s0) = μh0(x0, a∗
0, s0) + β E

⎡⎣ k∑
j=0

μjωd′
j (x∗′, μ + γ̃∗), s′)| s

⎤⎦
= μh0(x0, a∗

0, s0) + β E0

⎡⎣ k∑
j=0

μj
∞∑

t=1

βthj
0(x

∗
t , a∗

t , st)| s0

⎤⎦ ,

which proves the differentiablity of W with respect to μ, even when
(γ∗)(x,μ,s) is not uniquely determined (i.e. there may be kinks in the
Pareto frontier)�

An immediate, and important, consequence of Lemma 2 is the following
result:

Corollary: If (a∗)(x,μ,s) is uniquely defined by ΨW (x, μ, s), from any initial
condition (x, μ, s), then the following (recursive) equations are satisfied:

ωj(x, μ, s) = hj
0(x, a∗(x, μ, s), s) + β E [ωj(x∗′(x, μ, s), μ∗′(x, μ, s), s′)| s] ,

if j = 0, ..., k, and (29)
ωj(x, μ, s) = hj

0(x, a∗(x, μ, s), s) if j = k + 1, ..., l. (30)

Furthermore, (a∗)(x,μ,s) is uniquely defined by ΨW (x, μ, s) whenever W (·, μ, s)
is concave and A6s is satisfied.
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Notice that, in proving Lemma 2, the uniqueness of the solution paths
has implied the uniqueness of the value function decomposition: W = μω.
This unique decomposition has implied the recursive equations (29) and (30).
Uniqueness of the value function decomposition is equivalent to the differentia-
bility of the value function. In fact, once it has been established that the value
function is differentiable, one can obtain equations (29) and (29) as a simple
application of the Envelope Theorem. For example, equation (29) is just20:

∂jW (x, μ, s) = hj
0(x, a∗(x, μ, s), s)+β E [∂jW (x∗′(x, μ, s), μ∗′(x, μ, s), s′)| s] .

We now turn to the proof of Theorem 4, where the recursive equations (29) and
(30) play a key role.

Proof (Theorem 4): By Lemma 2, there is a unique representation W (x, μ, s) =
μω(x, μ, s). To see that solutions of SPFE satisfy the participation con-
straints of SPPμ, we use the first-order-conditions (27) and (28), as well
as the recursive equations of the forward-looking constraints (29) and (30)
of the previous Corollary. As in the proof of Lemma 2, equation (29) can
be iterated to obtain

ωj(x, μ, s) = E0

[ ∞∑
t=0

βthj
0(x

∗
t , a∗

t , st)| s
]

, if j = 0, ..., k. (31)

Following the same steps for any t > 0 and state (x∗
t , μ∗

t , st), equation (30)
and (31) together with the inequality (27) show that the intertemporal
participation constraints in PPμ – and therefore in SPPμ – are satisfied;
that is,

Et

Nj+1∑
n=1

βn hj
0(x

∗
t+n, a∗

t+n, st+n)+hj
1(x

∗
t , a∗

t , st) ≥ 0, ; t ≥ 0, j = 0, ..., l.

(32)
Now, to see that solutions of SPFE are, in fact, solutions of SPPμ

we argue by contradiction. Suppose there exist a program {ãt}∞t=0 , and
{x̃t}∞t=0, x̃0 = x, x̃t+1 = �(x̃t, ãt, st+1) satisfying the constraints of SPPμ

with initial condition (x, s) and such that

μh0(x, ã0, s) + γ∗h1(x, ã0, s)

+ βE

⎡⎣ k∑
j=0

(
μj + γ∗j

) ∞∑
n=1

βt hj
0(x̃t, ãt, st) +

l∑
j=k+1

γ∗jhj
0(x̃1, ã1, s1)| s

⎤⎦
> μh0(x, a∗

0, s) + γ∗h1(x, a∗
0, s)

+ βE

⎡⎣ k∑
j=0

(
μj + γ∗j

) ∞∑
n=1

βt hj
0(x

∗
t , a∗

t , st) +
l∑

j=k+1

γ∗jhj
0(x

∗
1, a∗

1, s1)| s
⎤⎦ .

(33)

20We use the standard notation ∂jW (x, μ, s) ≡ ∂W (x,μ,s)
∂μi

, and also ωj(x, μ, s) ≡
∂jW (x, μ, s).
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The following string of equalities and inequalities, which we explain at the
end, contradict this inequality:

μh0(x, a∗
0, s) + γ∗

0h1(x, a∗
0, s)

+ βE

⎡⎣ k∑
j=0

(
μj + γ∗j

) ∞∑
n=1

βt hj
0(x

∗
t , a∗

t , st) +
l∑

j=k+1

γ∗jhj
0(x

∗
1, a∗

1, s1)| s
⎤⎦

= μh0(x, a∗
0, s) + γ∗

0h1(x, a∗
0, s) + β E [μ∗

1ω(x∗
1, μ∗

1, s1)| s] (34)
≥ μh0(x, ã0, s) + γ∗

0h1(x, ã0, s) + β E [μ∗
1ω(x̃1, μ∗

1, s1)| s] (35)
= μh0(x, ã0, s) + γ∗

0h1(x, ã0, s)
+ β E [μ∗

1h0(x̃1, a∗(x̃1, μ∗
1, s1), s1) + γ∗(x̃1, μ∗

1, s1)h1(x̃1, a∗(x̃1, μ∗
1, s1), s1)

(36)

+ βμ∗′(x̃1, μ∗
1, s1)ω(x∗′(x̃1, μ∗

1, s1), μ∗′(x̃1, μ∗
1, s1), s2)| s]

≥ μh0(x, ã0, s) + γ∗
0h1(x, ã0, s)

+ β E [μ∗
1h0(x̃1, ã1, s1) + γ∗(x̃1, μ∗

1, s1)h1(x̃1, ã1, s1) (37)
+ βμ∗′(x̃1, μ∗

1, s1)ω(x̃2, μ∗′(x̃1, μ∗
1, s1), s2)| s]

≥ μh0(x, ã0, s) + γ∗
0h1(x, ã0, s)

+ β E [μ∗
1h0(x̃1, ã1, s1) + γ∗(x̃1, μ∗

1, s1)h1(x̃1, ã1, s1) + βμ∗′(x̃1, μ∗
1, s1)ω(x̃2, μ∗

1, s2)| s]
(38)

≥ μh0(x, ã0, s) + γ∗
0h1(x, ã0, s)

+ β E [μ∗
1 [h0(x̃1, ã1, s1) + βω(x̃2, μ∗

1, s2)] | s] (39)
= μh0(x, ã0, s) + γ∗

0h1(x, ã0, s) + β E [μ∗
1h0(x̃1, ã1, s1)| s]

+ β2 E [μ∗
1h0(x̃2, a∗(x̃2, μ∗

1, s2), s2) + γ∗(x̃2, μ∗
1, s2)h1(x̃2, a∗(x̃2, μ∗

1, s2), s2)
(40)

+ βμ∗′(x̃2, μ∗
1, s2)ω(x∗′(x̃2, μ∗

1, s2), μ∗′(x̃2, μ∗
1, s2), s2)| s]

≥ μh0(x, ã0, s) + γ∗
0h1(x, ã0, s)

+ βE

⎡⎣ k∑
j=0

(
μj + γ∗j

) ∞∑
t=1

βt hj
0(x̃

,
t ãt, st) +

l∑
j=k+1

γ∗jhj
0(x̃1, ã1, s1)| s

⎤⎦ . (41)

Notice that the first equality (34) is just uses the value function decom-
position, the other two equalities (36) and (40) are simple expansions of the
saddle-point value paths (i.e., of (23)) and in these expansions equations (29)
and (30) play a key role. Inequalities (35) and (37) follow from the maximality
property of SPFE. Inequalities (38) and (39) require explanation. Inequality
(38) follows from one of the properties of convex and homogeneous of degree
one functions (i.e. F4: μ̂ω(μ̂) ≥ μ̂ω(μ), see Appendix), given that (38) is sim-
ply μ∗′(x̃1, μ∗

1, s1)ω(x̃2, μ∗′(x̃1, μ∗
1, s1) ≥ μ∗′(x̃1, μ∗

1, s1)ω(x̃2, μ∗
1, s2). Inequal-

ity (39) follows from applying the slackness inequality (27), as well as equa-
tions (30) and (31) to the plan generated by SPFE in state (x̃2, μ∗

1, s2) (i.e. to
{a∗

t (x̃2, μ∗
1, s2)}∞t=2); these inequalities are needed to show that this plan satisfies
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the corresponding SPP constraints (32); that is,
[
hj

1(x̃1, ã1, s1) + βωj(x̃2, μ∗
1, s2)

]
≥

0, j = 0, ..., l. Finally, since the equality (40) is simply the equality (36) after one
iteration, repeated iterations result in the last inequality (41), which contradicts
(33).

It only remains to be shown that the inf part of SPP is also satisfied.
Reasoning again by contradiction, suppose there exist a γ̃ ≥ 0 such that

μh0(x, a∗
0, s) + γ̃h1(x, a∗

0, s)

+ βE

⎡⎣ k∑
j=0

(
μj + γ̃j

) ∞∑
n=1

βt hj
0(x

∗
t , a∗

t , st) +
l∑

j=k+1

γ̃jhj
0(x

∗
1, a∗

1, s1)| s
⎤⎦

< μh0(x, a∗
0, s) + γ∗h1(x, a∗

0, s)

+ βE

⎡⎣ k∑
j=0

(
μj + γ∗j

) ∞∑
n=1

βt hj
0(x

∗
t , a∗

t , st) +
l∑

j=k+1

γ∗jhj
0(x

∗
1, a∗

1, s1)| s
⎤⎦ .

(42)

Using the value function decomposition representation, this inequality can also
be expressed as

γ̃ [h1(x, a∗(x, μ, s), s) + β E [ω(x∗′(x, μ, s), μ∗′(x, μ, s), s′)| s]]
< γ∗(x, μ, s) [h1(x, a∗(x, μ, s), s) + β E [ωj(x∗′(x, μ, s), μ∗′(x, μ, s), s′)| s]] ,

but the first-order-conditions (27) and (28) require that (26) is satisfied, i.e.

γ̃ [h1(x, a∗(x, μ, s), s) + β E [ω(x∗′(x, μ, s), μ∗′(x, μ, s), s′)| s]]
≥ γ∗(x, μ, s) [h1(x, a∗(x, μ, s), s) + β E [ωj(x∗′(x, μ, s), μ∗′(x, μ, s), s′)| s]] = 0,

which contradicts (42)�
The Corollary to Lemma 2 implies the following Corollary to Theorem 4:

Corollary 4.1. Assume W , satisfying SPFE, is continuous in (x, μ), convex
and homogeneous of degree one in μ, concave in x and that A6s is satisfied.
If (a∗,γ∗)(x,μ,s) is generated by ΨW (x, μ, s) then (a∗,γ∗)(x,μ,s) is also a
solution to SPPμ at (x, s).

5 DSPP and the contraction mapping theorem

In this Section we show how our main results – Theorems 3 and 4 – can also
be obtained by applying the Contraction Mapping Theorem to the Dynamic
Saddle-Point Problem, corresponding to SPFE. This Section provides more
general sufficient conditions for obtaining a solution to the original problem
PPμ starting from SPFE. While these conditions are satisfied whenever the
conditions of Theorem 4 are satisfied, they help to better understand the pas-
sage SPFE→PPμ and, in particular, they show how the standard method of
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value function iteration extends to our saddle-point problems and, therefore, that
computing solutions to our original PPμ does not require special computational
techniques. Furthermore, it also shows the interest of using the W = μω repre-
sentation in computing recursive contracts (i.e. taking ω as the starting vector
valued function) and how, in contrast with the ‘promise keeping’ approach to
solving contractual problems, ‘promised values’ are not part of the constraints,
but an outcome of the recursive contract21.

We first define some spaces of “value” functions:

Mb ={W : X ×Rl+1
+ × S → R

i)W (·, ·, s) is continuous, and W (·, μ, s) bounded, when ‖μ‖ ≤ 1,

ii)W (x, ·, s) is convex and homogeneous of degree one}
and

Mbc ={W ∈ Mb and
iii)W (·, μ, s) is concave}.

Mb is a space of continuous, bounded functions (in x), and convex and ho-
mogenous of degree one (in μ)22, while Mbc is the subspace of concave functions
(in x). Both spaces are normed vector spaces with the norm

‖W‖ = sup {|W (x, μ, s)| : ‖μ‖ ≤ 1, x ∈ X, s ∈ S} .

We show in Appendix D (Lemma 6A) that they are complete metric spaces;
therefore, suitable spaces for the Contraction Mapping Theorem.

Since, whenever W satisfies (ii) it can be represented as W (x, μ, s) =
μω(x, ·, s) (see Lemma 4A), it is convenient to define the corresponding spaces
of the functions:

Mb ={ω : X ×Rl+1
+ × S → Rl+1 s.t., for j = 0, ..., l,

i)ωj(·, ·, s) is continuous, and ωj(·, μ, s) bounded, when ‖μ‖ ≤ 1
ii)ωj(x, ·, s) is convex and homogeneous of degree zero}

and

Mbc ={ω ∈ Mb s.t., for j = 0, ..., l,

iii)ωj(·, μ, s) is concave}.
Notice that ω ∈ M uniquely defines a function W ∈ M, given by W ≡ μω,

but W ∈ M does not uniquely define a Rl+1 valued function ω ∈ M ; it does,
however, when, in addition, W is differentiable in μ (see Appendix C)23.

21We further discuss the ‘promise keeping’ approach in Section 6.
22Without loss of generality, we could also require that W (x, 0, s) < ∞ and then replace

(ii) with W (x, ·, s) is sublinear (see footnote 12).
23M denotes either Mb or Mbc.
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As we have seen in Section 424, when W ∗(x, μ, s) = Vμ(x, s) is the value
of SPPμ, with initial conditions (x, s), then W ∗(x, μ, s) =

∑l
j=0 μjω∗

j (x, μ, s)
with W ∗ ∈ Mb, whenever A2 - A4 are satisfied (and W ∗ ∈ Mbc if in addition
A5 - A6 are satisfied); furthermore, ω∗ ∈ M is unique whenever (a∗)(x,μ,s) is
uniquely defined.

Given a function ω ∈ M , and an initial condition (x, μ, s), we can define the
following Dynamic Saddle Point Problem:

DSPP

inf
γ≥0

sup
a

{μh0(x, a, s) + γh1(x, a, s) + β E [μ′ω(x′, μ′, s′)| s]}
s.t. x′ = �(x, a, s), p(x, a, s) ≥ 0
and μ′ = ϕ(μ, γ).

To guarantee that this problem has well-defined solutions we make an interiority
assumption:

A7b. For any (x, s) ∈ X × S, there exists an ã ∈ A, satisfying p(x, a, s) > 0,
such that, for any μ′ ∈ Rl+1

+ , ‖μ′‖ < +∞, and j = 0, ..., l, hj
1(x, ã, s) +

βE
[
ωj(�(x, ã, s′), μ′, s′)| s] > 0.

Notice that A7b is satisfied, whenever A7 is satisfied and μ′ω(�(x, ã, s′), μ′, s′)
is the value function of SPP(�(x, ea, s′),μ′,s′). In general, A7b is not a restrictive
assumption in the class of possible value functions if the original problem has
interior solutions. Nevertheless, an assumption, such as A7b is needed when
one takes DSPP(x,μ,s) as the starting problem. This is a relatively standard
min max problem, except for the dependency of ω on ϕ(μ, γ). The following
proposition shows that it has a solution. Obviously, solutions to DSPP(x,μ,s)

satisfy SPFE. . An immediate consequence of A7b, is the following lemma:

Lemma 3. Assume A4 and A7b and let ω ∈ Mb. There exists a B > 0 such
that if (a∗(x, μ, s), γ∗(x, μ, s)) is a solution to DSPP at (x, μ, s), then
‖γ∗(x, μ, s)‖ ≤ B ‖μ‖.

Proof: Denote by (a∗, γ∗) ≡ (a∗(x, μ, s), γ∗(x, μ, s)) the solution to DSPP at

24See also Lemma 2A in Appendix B.
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(x, μ, s), and let ã be the interior solution of A7b. Then

μh0(x, a∗, s) + γ∗h1(x, a∗, s) + β E [μ′ω(�(x, a∗, s), ϕ(μ, γ∗), s′)| s]

= μh0(x, a∗, s) + β E

⎡⎣ k∑
j=0

μjωj(�(x, a∗, s), ϕ(μ, γ∗), s′)| s
⎤⎦

+ γ∗ [h1(x, a∗, s) + β E [ω(�(x, a∗, s), ϕ(μ, γ∗), s′)| s]]

= μh0(x, a∗, s) + β E

⎡⎣ k∑
j=0

μjωj(�(x, a∗, s), ϕ(μ, γ∗), s′)| s
⎤⎦

≥ μh0(x, ã, s) + β E

⎡⎣ k∑
j=0

μjωj(�(x, ã, s), ϕ(μ, γ∗), s′)| s
⎤⎦

+ γ∗ [h1(x, ã, s) + β E [ω(�(x, ã, s), ϕ(μ, γ∗), s′)| s]] .

By assumption,

(μ/ ‖μ‖)h0(x, a∗, s)+β E

⎡⎣ k∑
j=0

(μj/ ‖μ‖)ωj(�(x, a∗, s), ϕ((μ/ ‖μ‖), (γ∗/ ‖μ‖)), s′)| s
⎤⎦

is uniformly bounded ( A4 and ω ∈ Mb imply that there is uniform bound
for the max value), while if (γ∗j/ ‖μ‖) > 0 then

(γ∗j/ ‖μ‖)
[
hj

1(x, ã, s) + βE [ωj(�(x, ã, s), ϕ((μ/ ‖μ‖), (γ∗/ ‖μ‖)), s′)| s]
]

> 0.

Therefore, there must be a B > 0 such that ‖γ∗‖ ≤ B ‖μ‖�

Proposition 2. Let ω ∈ Mbc and assume A1-A6 and A7b. There exists
(a∗, γ∗) that solves DSPP(x,μ,s). Furthermore if A6s is assumed, then
a∗(x, μ, s) is uniquely determined.

Proof: This is a relatively standard proof of existence of an equilibrium, based
on a fixed point argument; see Appendix D.

The following Corollary to Theorem 3, is a simple restatement of the theorem
in terms of the Dynamic Saddle Point Problem:

Corollary 3.3. (SPPμ(x, s) =⇒ DSPP(x,μ,s) ). Assume that SPPμ at (x, s)
has a solution (a∗, γ∗) with value Vμ(x, s) =

∑l
j=0 μjω∗

j (x, μ, s). Then
(a∗

0, γ
∗) solves DSPP(x,μ,s).

When DSPP(x,μ,s) has a solution, it defines a SPFE operator T ∗ : M −→
M given by
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(T ∗W )(x, μ, s) = min
γ≥0

max
a

{μh0(x, a, s) + γh1(x, a, s) + β E [W (x′, μ′, s′)| s]}
s.t. x′ = �(x, a, s), p(x, a, s) ≥ 0
and μ′ = ϕ(μ, γ),

When W ≡ μω, with ω ∈ M , and DSPP(x,μ,s) uniquely defines the values
hj

0(x, a∗(x, μ, s), s), j = 0, ..., l, then T ∗ defines a mapping, T : M −→ M ,
given by

(Tωj)(x, μ, s) = hj
0(x, a∗(x, μ, s), s)+β E [ωj(x∗′(x, μ, s), μ∗′(x, μ, s), s′)| s] ,

(43)
if j = 0, ..., k, and

(Tωj)(x, μ, s) = hj
0(x, a∗(x, μ, s), s), if j = k + 1, ..., l. (44)

Two remarks are in order. First, as already said, notice that (Tωj) corresponds
to the ‘promise keeping’ approach to solving contractual problems but in our
approach (Tωj) is not a constraint: it is an outcome. Second, a fixed point
of T ∗ does not imply a fixed point of T when ‘the planner’ is indifferent to T
reallocations (e.g. μi = μj , μi(Tωi)+ μj(Tωj) = constant) resulting in multiple
(indeterminate) continuation values (for i and j)25

Proposition 3. Assume DSPP has a solution for any ω ∈ M and (x, μ, s).
Then T ∗ : M → M is a well-defined contraction mapping. Let W ∗ =
T ∗(W ∗) and W ∗ = μω∗. If in addition the solutions a∗(x, μ, s) to DSPP
are unique, then ω∗ = T (ω∗) is unique.

Proof: The first part follows from showing that Blackwell’s sufficiency condi-
tions for a contraction are satisfied for T ∗ (see Lemmas 7A to 10A in
Appendix D); the second part from the definition of T .

Our last Theorem, Theorem 5, wraps up our sufficiency results and is, in
fact, a Corollary to Theorem 4. It shows how, starting from a Dynamic Saddle-
Point Problem and a corresponding well defined Contraction Mapping resulting
in a unique value function, one obtains the solution to our original problem
PPμ. The previous Propositions 2 and 3 provide conditions guaranteeing that
the assumptions of Theorem 5, regarding T , are satisfied.

Theorem 5 (DSPP(x,μ,s) =⇒ SPPμ(x, s)). Assume T : M → M has a unique
fixed point ω∗. Then the value function W ∗(μ, x, s) = μω∗(x, μ, s) is the
value of SPPμ at (x, s) and the solutions of DSPP define a saddle-point
correspondenceΨ, such that if (a∗,γ∗) is generated by Ψ from (x, μ, s),
then (a∗,γ∗) solves SPPμ at (x, s) and a∗ is the unique solution to PPμ

at (x, s).
25Messner and Pavoni’s ‘counterexample’ is one of these cases of ‘flats in the Pareto frontier’,

when one only considers the T ∗ map and not the T map; see Marimon, Messner and Pavoni
(2010).
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Proof: By assumption SPFE is satisfied. The proof of Theorem 4 is based
on having a unique representation W ∗(μ, x, s) = μω∗(x, μ, s) which, in
that proof, is given by Lemma 2. In Theorem 5 such a unique represen-
tation is assumed, which implicitly also means assuming that the values
hj

0(x, a∗(x, μ, s), s) j = 0, ..., l are uniquely determined, which in fact is
all that is needed in the proof of Theorem 4.

6 Related work

Precedents of our approach can be found in Epple, Hansen and Roberds (1985),
Sargent (1987) and Levine and Currie (1987), who introduced Lagrange mul-
tipliers as co-state variables in linear-quadratic Ramsey problems. Similarly,
recent studies of optimal monetary policy in sticky price models have included
Lagrange multipliers as co-states. Often, the reason given for including these
past multipliers as co-states is the observation that past multipliers appear in
the first-order-conditions of the Ramsey problem. Our work provides a formal
proof that, with standard assumptions, co-state past multipliers deliver the op-
timal solution in a general framework, encompassing a larger class of models
with forward-looking constraints.

The pioneer work of Abreu, et al. (1990) – APS, from now on, – character-
izing sub-game perfect equilibria, shows that past histories can be summarized
in terms of promised utilities. Earlier related work was by Green (1987) and
Thomas and Worral (1988). This approach has been widely used in macroeco-
nomics26. Some applications are by Kocherlakota (1995) in a model with partic-
ipation constraints, and Cronshaw and Luenberger (1994) in a dynamic game.
Also, as in the earlier work, Kydland and Prescott (1980), Chang (1998) and
Phelan and Stacchetti (1999) study Ramsey equilibria using promised marginal
utility as a state variable, and they note the analogy of their approach with
APS’s.

Both APS and our approach have in common that starting from non-recursive
problems allow optimal solutions to be obtained (obviously, the same solutions)
where forward-looking constraints have a recursive structure. In relatively sim-
ple problems (e.g., convex problems of full information and low dimensionality,
in terms of state variables and number of forward-looking constraints) the two
approaches can be seen as mirrors of each other. Nevertheless, there is a concep-
tual difference which sets these two approaches further apart as more complex
problems are analyzed: our state (including the co-state μ) is predetermined,
while promised-utilities – as co-state variables – are not; furthermore, in the
APS approach in taking future promised-utilities as choice variables, the recur-
sive structure of forward-looking constraints must be taken as ‘promise keeping’
constraints, while in our approach we obtain this recursive structure as a result
(see, Subsection 2.1)27.

26Ljungqvist and Sargent (2000) provides an excellent introduction, and reference, to most
of this recent work.

27We only provide a summary discussion of the contrast between the two approaches. See
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As is well known, promised utilities in the APS approach have to be re-
stricted to lie in a set where the continuation problem is well defined; otherwise
algorithmic computations break down. The set of feasible promised utilities is
not known beforehand. It can only be characterized numerically, often lead-
ing to very complicated calculations. Whenever there are several natural state
variables the set of feasible promised utilities is a function of the natural state
variables and the problem of finding the set of feasible utilities is daunting.
Considerable progress has been made either by improving algorithms or by re-
defining the problem at hand28, but the issue of constraining promised utilities
(or marginal utilities in a Ramsey problem) is always present.

One key advantage of our approach is that the continuation problem is given
by PPμ′ , and it is easy to find standard assumptions guaranteeing that this
problem has a solution for any co-state μ′ ≥ 0; in fact, the set of feasible co-
states is known beforehand: it is simply the positive orthant. The difficulties
associated with computing a set of co-states for which the continuation problem
is well defined are absent.

A second advantage lies in the dimensionality of the decision vector. In the
APS approach the planner has to decide at t the utility promised at all possible
states in t + 1. If the underlying exogenous state variable can take Ns possible
values the planner has to decide on at least Ns controls at t. Most applications of
APS constrain themselves to assuming that the exogenous variable is binomial
(say, it can be ‘high’or ‘low’), but if exogenous variables can take many values
a high-dimensional decision vector has to be solved for. Again, there are ways
of dealing with this, but it is no doubt an added difficulty. By contrast, in our
approach the dimensionality of the decision variable is independent of Ns.

An additional issue is that the initial conditions for the state variables in our
approach are given from the outset, namely μ0 = 1 and μj = 0 for j ≥ 1, while
in the promised utility approach the promised-utility in the first period has to
be solved for separately. It is well known that to do thisis necessary that the
Pareto frontier is downward slopping; otherwise the computations can become
very cumbersome.29

Finally, an interesting – but not exclusive – feature of our approach is that
the evolution of μ often helps to directly characterize the behavior of the model.
For example, in models with participation constraints the μ’s allow to interpret
the behavior of the model as changing the Pareto weights sequentially depending
on how binding the participation constraints become. In Ramsey type models
the behavior of the μ’s is associated with the commitment technology and the
role that budget constraints play in the objective function of the planner. We
have discussed these interpretations in Section 3. Also, our approach facili-

Marcet (2008) for more details.
28See, for example, Abraham and Pavoni (2005) or Judd, Yeltekin and Conklin (2003).
29Even with two agents and a downward slopping Pareto frontier, as in Kocherlakota (1996),

one may be interested in finding the efficient allocation that ex-ante gives the same utility to
both agents. While this is trivial with our approach (just give the same initial weights in the
PP problem), it becomes very tricky with the APS approach since the ‘right promise’ must
be made to determine the initial conditions.
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tates the identification of cases where despite the presence of forward-looking
constraints the co-state variables do not need to be introduced in the model.30

The APS approach does, however, have some strengths over our approach.
For example, it allows for the characterization of all feasible paths (not only the
constrained-efficient) and it naturally applies to models with private information
or models with multiple solutions. However, these initial advantages are also
being overcome. Sleet and Yeltekin (2010) and Mele (2010) have extended our
approach to address moral hazard problems. In problems with multiple (locally
unique) solutions, it is also possible to find other feasible paths using our ap-
proach by changing the objective function. However, as the example of Messner
and Pavoni (2004) shows, there are problems where optimal paths are bound
to have a continuum of solutions (i.e. when the constrained-efficient Pareto
frontier has flats). We have maintained the assumption of (local) uniqueness
in this paper; nevertheless, Marimon, Messner and Pavoni (2011) have recently
shown that there is a natural extension of our approach to solve problems with
non-uniqueness 31.

Many applications of our approach can be found in the literature, although
it is beyond the scope of this paper to discuss them in detail. This seems to be
testimony to the convenience of using our approach, especially in the presence
of intertemporal participation constraints with natural state variables such as
capital (as in Subsection 3.1) or first-order Euler equation constraints with bonds
as natural state (as in Subsection 3.2).

Perhaps most interesting is that the approach here can be used as an in-
termediate step in solving models that go beyond the pure formulation of PP.
For example, a second generation of models considers endogenous participation
constraints, as in the non-market exclusion models of Cooley et al. (2004), Ma-
rimon and Quadrini (2011), and Ferrero and Marcet (2005). In these models
the functions h that appear in the incentive constraints are endogenous; they
depend on the optimal or equilibrium solution, and the approach of this paper
is often used as an intermediate step, defining the underlying contracts. This
allows the study of problems where the outside option is determined in equili-
brum as in models of debt renegotiation and long-term contracts. Furthermore,
the work of Debortoli and Nunes (2010) extends our approach to study models
of partial commitment and political economy, and the work of Marimon and
Rendhal (2011) extends it to study models where agents can behave strategi-
cally with respect to their participation constraints, as in dynamic bargaining
problems with endogenous separations.

30This can be the case, for example, in Cooley, Quadrini and Marimon (2004) and Anag-
nostopoulos, Cárceles-Poveda and Marcet (2011).

31Marimon, Messner and Pavoni (2011) show how the results presented here can be applied
when the co-state is extended with the ‘last non-negative multiplier’. Cole and Kubler (2010)
also provide a solution for the non-uniqueness case. Their approach involves a mix of our
approach and of the APS approach; they provide a solution for the two-agent case with
intertemporal participation constraints.
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7 Concluding remarks

We have shown that a large class of problems with implementability constraints
can be analysed using an equivalent recursive saddle-point problem. This saddle-
point problem obeys a saddle point functional equation, which is a version of
the Bellman equation. This approach works for a very large class of models
with incentive constraints: intertemporal enforcement constraint, intertempo-
ral Euler equations in optimal policy and regulation design, etc. This means
that a unified framework can be provided to analyse all these models. The key
feature of our approach is that instead of having to write optimal contracts
as history-dependent contracts one can write them as a stationary function of
the standard state variables together with additional co-state variables. These
co-state variables are – recursively – obtained from the Lagrange multipliers as-
sociated with the intertemporal incentive constraints, starting from pre-specified
initial conditions. This simple representation also provides economic insight into
the analysis of various contractual problems; for example, with intertemporal
participation constraints it shows how the (Bethamite) social planner changes
the weights assigned to different agents in order to keep them within the social
contract; in Ramsey optimal problems it shows the cost of commitment to the
benevolent government.

We have provided here the first complete account of the basic theory of
recursive contracts. Nevertheless, we had already expounded most of the ele-
ments of the theory in our previous work (in particular, Marcet and Marimon
(1988 & 1999)), which has allowed others to built on it. Many applications are
already found in the literature, showing the convenience of our approach, espe-
cially when natural state variables are present. Useful extensions are already
available encompassing a larger set of problems than the ones considered here.
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APPENDIX

Appendix A (Proof of Proposition 1)

The proof of Proposition 1 relies on the following result:

Lemma 1A. Assume A1-A6 and that S is countable, then

i) B(x, s) is non-empty, convex, bounded and σ(L∞, L1) closed; therefore it is
σ(L∞, L1) compact;

ii) Given d ∈ R, the set
{
a ∈ A : f(x,μ,s)(a) ≥ d

}
is convex and σ(L∞, L1)

closed.

The proof of Lemma 1A builds on three theorems. First, the Urysohn
metrization theorem stating that regular topological spaces with a count-
able base are metrizable32. Second, the Mackey-Arens theorem stating
that different topologies consistent with the same duality share the same
closed convex sets; in our case, the duality is (L∞, L1) and the weak-
est and the strongest topology consistent with such duality; namely, the
weak-star, σ(L∞, L1) and the Mackey τ(L∞, L1) . Third, the Alaoglu
theorem stating that norm bounded σ(L∞, L1) closed subsets of L∞ are
σ(L∞, L1) compact33.

Proof:

Assumptions A2, and A4 - A6 imply that B(x, s) is convex, and closed under
pointwise convergence. Since, by assumption S is countable, Urysohn
metrization theorem guarantees that B(x, s) is, in fact, σ(L∞, L1) closed.
Assumptions A3 and A4 imply that B(x, s) is bounded in the ‖·‖β

∞ norm
as needed for compactness, according to the Alaoglu theorem.

Assumptions A5 and A6 imply that B(x, s) and the upper contour sets

{a ∈ A : fμ(a) ≥ d} ,

are convex and, together with the previous assumptions (A2, and A4),
Mackey closed and, therefore, σ(L∞, L1) closed34�

Proof of Proposition 1: As in Bewley (1991), the central element of the proof
follows from the Hausdorff maximal principle and an application of the

32See Dunford and Schwartz (1957) p. 24. in our case the metric we use is given by

ρβ
∞(a, b) =

∞X

n=0

βn sup
sn∈Sn

| an(s) − bn(s) | .

33See Schaefer (1966) p. 130 and p. 84, respectively.
34See Bewley (1972) for a proof of the Mackey continuity expected utility, without assuming

S to be countable.
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finite intersection property35. Let Pd =
{
a ∈ B(x, s) : f(x,μ.s)(a) ≥ d

}
.

Then by Lemma 1A , Pd is σ(L∞, L1) closed. By the interiority as-
sumption of Proposition 1, for d low enough, it is non-empty. In fact,
we can consider the family of sets {Pd : d ∈ D} for which Pd �= ∅, where
D ⊂ R. The sets Pd are ordered by inclusion; in fact, if d′ > d then
Pd′ ⊂ Pd and every finite collection of them has a non-empty inter-
section (i.e. {Pd : d ∈ D} satisfies the finite intersection property), but
then by compactness of B(x, s) any family of subsets of {Pd : d ∈ D}
– say, {Pd : d ∈ B ⊂ D} – has a non-empty intersection and, by inclu-
sion, there is P

bd = ∩{Pd : d ∈ B ⊂ D} �= ∅. In particular, there is
Pd∗ = ∩{Pd : d ∈ D} �= ∅ which – as the the minimal principle states
– is a minimal member of the family {Pd : d ∈ D}. It follows that if
a∗ ∈ Pd∗ then f(x,μ.s)(a∗) ≥ f(x,μ.s)(a) for any a ∈ B(x, s). Furthermore,
if strictly concavity is assumed then Pd∗ must be a singleton; otherwise
convex combinations of elements of Pd∗ will form a proper closed subset
of Pd∗ contradicting its minimality�

Appendix B (Some Properties of W ∗)

Lemma 2A. Let W ∗(x, μ, s) ≡ Vμ(x, s) be the value of SPPμ at (x, s), for an
arbitrary (x, μ, s). Then

i) W ∗(x, ·, s) is convex and homogeneous of degree one;

ii) if A2- A4 are satisfied W ∗(·, μ, s) is continuous and uniformly bounded;
and

iii) if A5 and A6 are satisfied W ∗(·, μ, s) is concave.

Proof: i) follows from the fact that, for any λ > 0, f(x,λμ.s)(a) = λf(x,μ.s)(a).
To see this, let (γ∗,a∗) satisfy SFPE, i.e.

f(x,μ.s)(a∗) + γg(a∗)0
≥ f(x,μ.s)(a∗) + γ∗g(a∗)0
≥ f(x,μ.s)(a) + γ∗g(a)0,

for any γ ∈ Rl+1
+ and a ∈ B′(x, s). Then (λγ∗,a∗) satisfies

f(x,λμ.s)(a∗) + γg(a∗)0
≥ f(x,λμ.s)(a∗) + λγ∗g(a∗)0
≥ f(x,λμ.s)(a) + λγ∗g(a)0,

for any γ ∈ Rl+1
+ and a ∈ B′(x, s). ii) and iii) are straightforward; in par-

ticular, ii) follows from applying the Theorem of the Maximum (Stokey,
Lucas and Prescott,1989, Theorem 3.6) and iii) follows from the fact that
the constraint sets are convex and the objective function concave.�

35See, Kelley (1955) p. 33-34. for the Hausdorff principle and the Minimal principle, and
p. 136 for the theorem stating that “a set is compact if and only if every family of closed sets
which has the finite intersection property has a non-void intersection.”
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Lemma 3A: If the inf sup problem SPFE at (x, μ, s), has a solution then the
value of this solution is unique.

Proof: It is a standard argument: consider two solutions to the right-hand side
of SPFE at (x, μ, s), (ã, γ̃) and (â, γ̂). Then repeated application of the
saddle-point condition implies:

μh0(x, ã, s) + γ̃h1(x, ã, s) + βE [W ∗(�(x, ã, s′), ϕ(μ, γ̃), s′)| s]
≥ μh0(x, â, s) + γ̃h1(x, â, s) + βE [W ∗(�(x, â, s′), ϕ(μ, γ̃), s′)| s]
≥ μh0(x, â, s) + γ̂h1(x, â, s) + βE [W ∗(�(x, â, s′), ϕ(μ, γ̂), s′)| s]
≥ μh0(x, ã, s) + γ̂h1(x, ã, s) + βE [W ∗(�(x, ã, s′), ϕ(μ, γ̂), s′)| s]
≥ μh0(x, ã, s) + γ̃h1(x, ã, s) + βE [W ∗(�(x, ã, s′), ϕ(μ, γ̃), s′)| s] .

Therefore the value of the objective at both (ã, γ̃) and (â, γ̂) coincides �

Appendix C (Some Properties of convex homogeneous functions)

To simplify the exposition of these properties let F : Rm
+ → R be continuous,

convex and homogeneous of degree one. The subgradient set of F at y,
denoted ∂F (y), is given by

∂F (y) =
{
z ∈ Rm | F (y′) ≥ F (y) + (y′ − y)z for all y′ ∈ Rm

+

}
.

The following facts, regarding F , are used in proving Lemmas 1 and 2:

F1. If F is convex, then it is differentiable at y if, and only if, ∂F (y) consists of
a single vector; i.e. ∂F (y) = {∇F (y)} , where ∇F (y) is called the gradient
of F at y.

F2. If F is convex and finite in a neighborhood of y, then ∂F (y) is the convex
hull of the compact set

{z ∈ Rm | ∃ yk −→ y with F differentiable at yk and ∇F (yk) −→ z} .

F3. Lemma 4A (Euler’s formula). If F is convex and homogeneous of de-
gree one and z ∈ ∂F (y) then F (y) = yz.

F4. Lemma 5A. If F is convex and homogeneous of degree one, for any pair(
f, f̂
)

, if fd(y) ∈ ∂F (y) and fd(ŷ) ∈ ∂F (ŷ), then ŷfd(ŷ) ≥ ŷfd(y).

F1 is a basic result on the differentiability of convex functions (see, Rock-
afellar, 1981, Theorem 4F, or 1970, Theorem 25.1). F2 is a very convenient
characterization of the subgradient set of a convex function (see Rockafellar,
1981, Theorem 4D, or 1970, Theorem 25.6). We now provide a proof of the last
two facts.
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Proof of Lemma 4A: Let z ∈ ∂F (y). Then for any λ > 0, F (λy) − F (y) ≥
(λy − y)z, and, by homogeneity of degree one: (λ − 1)F (y) ≥ (λ − 1)yz.
If λ > 1 this weak inequality results in F (y) ≥ yz; while if λ ∈ (0, 1) in
F (y) ≤ yz�36

Proof of Lemma 5A: To see F4 notice that if fd(y) ∈ ∂F (y) and fd(ŷ) ∈
∂F (ŷ), by convexity, homogeneity of degree one, and Euler’s formula:
F (ŷ) = ŷfd(ŷ) and

F (ŷ) ≥ F (y) + (ŷ − y)fd(y)
= yfd(y) + ŷfd(y) − yfd(y) = ŷfd(y).

Appendix D (Proof of Propositions 2 and 3)

Proof of Proposition 2: Given the assumptions of Proposition 2, for any
(x, μ, s), and γ ∈ Rl+1

+ , let

F(x,μ,s)(γ) = arg sup
a

⎧⎨⎩μh0(x, a, s) + β E

⎡⎣ k∑
j=0

μjωj(x′, μ′, s′)| s
⎤⎦⎫⎬⎭

s.t. x′ = �(x, a, s), p(x, a, s) ≥ 0
and μ′ = ϕ(μ, γ),

and hj
1(x, a, s) + βE

[
ωj(x′, μ′, s′)| s] ≥ 0, j = 0, ..., l. (45)

Since this is a standard maximization problem of a continuous function on
a compact set, there is a solution a∗(x, μ, s; γ) ∈ F(x,μ,s)(γ). Furthermore,
given that the constraint set is convex and has a non-empty interior (by
A2 and A7b), there is an associated multiplier vector; let γ∗j(x, μ, s; γ)
be the multiplier corresponding to (45) for j. In particular, by Lemma 3,
γ∗(x, μ, s; γ) ∈ G(x,μ,s)(a∗), where

G(x,μ,s)(a) =
arg inf

{γ≥0:‖γ‖≤B‖μ‖}
{μh0(x, a, s) + γh1(x, a, s) + β E [ϕ(μ, γ)ω(x′, ϕ(μ, γ), s′)| s]}

s.t. x′ = �(x, a, s), p(x, a, s) ≥ 0.

The rest of the proof is a trivial application of the Theorem of the Maxi-
mum (e.g. Stokey et al. (1989), p. 62) and of Kakutani’s Fixed Point The-
orem (e.g. Mas-Colell et al. (1995), p.953). First notice that μh0(x, a, s)+
β E
[∑k

j=0 μjωj(x′, μ′, s′)| s
]

is continuous in a and. By A2, A4 and the
definition of Mbc, G∗

(x,μ,s)(·) is also continuous. Second, let A(x, s) ≡
{a ∈ A : p(x, a, s) ≥ 0}, by A2 and A3 A(x; s) is compact and by A5 is
convex, while Ψ(μ) ≡ {γ ≥ 0 : ‖γ‖ ≤ B ‖μ‖} is trivially compact and
convex. Therefore, F(x,μ,s) : Ψ(μ) → A(x; s) and G∗

(x,μ,s) : A(x; s) →
36Notice that this does not imply that F is linear, which requires that F (−y) = −F (y).
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Ψ(μ) are upper-hemicontinuous, non-empty and convex-valued correspon-
dences, jointly mapping a convex and compact set Ψ×A(x; s) onto itself.
By Kakutani’s Fixed Point Theorem there is a fixed point (a∗, γ∗) which is
a solution to DSPP(x,μ,s). Furthermore, F(x,μ,s)(·) is a continuous func-
tion, when A6s is assumed�

Lemma 6A. M is a nonempty complete metric space.

Proof: That it is non-empty is trivial. Except for the homogeneity property,
that every Cauchy sequence {Wn} ∈ Mbc converges to W ∈ Mbc sat-
isfying i), iii), and the convexity property ii), follows from standard
arguments (see, for example, Stokey, et al. (1989), Theorem 3.1 and
Lemma 9.5). To see that the homogeneity property is also satisfied, for
any (x, μ, s) and λ > 0,

|W (x, λμ, s) − λW (x, μ, s)|
= |W (x, λμ, s) − Wn(x, λμ, s) + λWn(x, μ, s) − λW (x, μ, s)|
≤ |W (x, λμ, s) − Wn(x, λμ, s)| + λ|Wn(x, μ, s) − W (x, μ, s)|
→ 0

�

Lemma 7A. Assume A2 - A6 and A7b. The operator T ∗ maps Mbc onto
itself.

Proof: First, notice that by Proposition 2, given W ∈ Mbc, T ∗W is well de-
fined. The correspondences Γ : X → X and Φ : Rl+1

+ → Rl+1
+ defined by

Γ(x)(μ,s) ≡ {x′ ∈ X : x′ = �(x, a, s), p(x, a, s) ≥ 0, for some a ∈ A} and

Φ(μ)(x,s) ≡
{
μ′ ∈ Rl+1

+ : μ′ = ϕ(μ, γ), for some γ ∈ Rl+1
+

}
are continuous and compact-valued (by A2, A3 and A5, and the defini-
tion of ϕ, respectively) and, as in the proof of Proposition 2, by continuity
of the objective function, it follows that T ∗W (·, ·, s) is continuous, and
given A3 and A4, and the boundedness condition on W , it follows that
T ∗W also satisfies (i).To see that the homogeneity properties are satisfied,
let (a∗, γ∗) satisfy

(T ∗W )(x, μ, s) = μh0(x, a∗, s) + γ∗h1(x, a∗, s) + βEW (x∗, μ∗, s′).

Then, for any λ > 0

λ(T ∗W )(x, μ, s) = λ[μh0(x, a∗, s) + γ∗h1(x, a∗, s) + βEW (x∗, μ∗, s′)].

Furthermore,

λμh0(x, a∗, s) + λγ∗h1(x, a∗, s) + βEW (x∗, λμ∗′
, s′)

= λ
[
μh0(x, a∗, s) + γ∗h1(x, a∗, s) + βEW (x∗, μ∗′

, s′)
]
.
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To see that SPFE is satisfied, let γ ≥ 0, μ′ = ϕ(λμ, γ), a ∈ A(x, s) and
x′ = �(x, a, s′). Then

λμh0(x, a∗, s) + γh1(x, a∗, s) + βEW (x∗, μ′, s′)
= λ

[
μh0(x, a∗, s) + γλ−1h1(x, a∗, s) + βEW (x∗, μ′λ−1, s′)

]
≥ λ

[
μh0(x, a∗, s) + γ∗h1(x, a∗, s) + βEW (x∗, μ∗′

, s′)
]

≥ λ
[
μh0(x, a, s) + γ∗h1(x, a, s) + βEW (x′, μ∗′

, s′)
]
.

It follows that

(T ∗W )(x, λμ, s) = λμh0(x, a∗, s) + λγ∗h1(x, a∗, s) + βEW (x∗, λμ∗′
, s′)

= λ(T ∗W )(x, μ, s).

Finally, since W ∈ Mbc, it is straightforward to show that TW is concave
in x (by A5 and A6), and convex in μ�

Lemma 7A (monotonicity) Let Ŵ ∈ M and W̃ ∈ M be such that Ŵ ≤ W̃ ,
then (T ∗Ŵ ) ≤ (T ∗W̃ ).

Proof Fix (μ, x, s). Then for any μ′ satisfying μ′ = ϕ(μ, γ) ≥ 0, for a given
γ ≥ 0,

max
a∈A(x,s)

{μh0(x, a, s) + γh1(x, a, s) + βEŴ (�(x, a, s), μ′, s′)}

≤ max
a∈A(x,s)

{μh0(x, a, s) + γh1(x, a, s) + βEW̃ (�(x, a, s), μ′, s′)}.

It follows that

min
γ≥0

max
a∈A(x,s)

{μh0(x, a, s) + γh1(x, a, s) + βEŴ (�(x, a, s), ϕ(μ, γ), s′)}

≤ min
γ≥0

max
a∈A(x,s)

{μh0(x, a, s) + γh1(x, a, s) + βEW̃ (�(x, a, s), ϕ(μ, γ), s′)}.

�

Notice that if W ∈ Mbc and r ∈ R, (W + r)(x, μ, s) = μ(ω + r)(x, μ, s) =
μω(x, μ, s) + r ‖μ‖.
Lemma 8A (discounting) Assume A4 and A7b. For any W ∈ Mb, and

r ∈ R+, T ∗(W + r) ≤ T ∗W + βr.

Proof First notice that, for any (x, μ, s) and γ ≥ 0,

max
a∈A(x,s)

{μh0(x, a, s) + γh1(x, a, s) + βE(W + r)(�(x, a, s), ϕ(μ, γ), s′)}
= max

a∈A(x,s)
{μh0(x, a, s) + γh1(x, a, s) + βEW (�(x, a, s), ϕ(μ, γ), s′) + βr ‖ϕ(μ, γ)‖}

= max
a∈A(x,s)

{μh0(x, a, s) + γh1(x, a, s) + βEW (�(x, a, s), ϕ(μ, γ), s′)} + βr ‖ϕ(μ, γ)‖ .
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Now, given (x, μ, s) and a ∈ A(x, s), denote by γ+(a) the solution to the
following problem:

min
{γ≥0:‖γ‖≤B‖μ‖}

{
μh0(x, a, s) + βE

∑k
j=0 μj(ωj + r)(�(x, a, s), ϕ(μ, γ), s′)

+
∑l

j=0 γj
[
hj

1(x, a, s) + βE(ωj + r)(�(x, a, s), ϕ(μ, γ), s′)
] }

= μh0(x, a, s) + βE
k∑

j=0

μjωj(�(x, a, s), ϕ(μ, γ+(a)), s′)

+ γ+(a)
[
h1(x, a, s) + βEω(�(x, a, s), ϕ(μ, γ+(a)), s′)

]
+ βr

∥∥ϕ(μ, γ+(a))
∥∥

and let γ∗(a) be the solution to

min
{γ≥0:‖γ‖≤B‖μ‖}

{
μh0(x, a, s) + βE

∑k
j=0 μjωj(�(x, a, s), ϕ(μ, γ), s′)∑l

j=0 γj
[
hj

1(x, a, s) + βEωj(�(x, a, s), ϕ(μ, γ), s′)
] }

= μh0(x, a, s) + βE
k∑

j=0

μjωj(�(x, a, s), ϕ(μ, γ∗(a)), s′)

+ γ∗(a) [h1(x, a, s) + βEω(�(x, a, s), ϕ(μ, γ∗(a)), s′)] .

Therefore,

μh0(x, a, s) + βE
k∑

j=0

μjωj(�(x, a, s), ϕ(μ, γ+(a)), s′)

+ γ+(a)
[
h1(x, a, s) + βEω(�(x, a, s), ϕ(μ, γ+(a)), s′)

]
+ βr

∥∥ϕ(μ, γ+(a))
∥∥

≤ μh0(x, a, s) + βE
k∑

j=0

μjωj(�(x, a, s), ϕ(μ, γ∗(a)), s′)

+ γ∗(a) [h1(x, a, s) + βEω(�(x, a, s), ϕ(μ, γ∗(a)), s′)] + βr ‖ϕ(μ, γ∗(a))‖ .

Piecing things together (denoting, as usual, a∗ ≡ a∗(x, μ, s) and γ∗ ≡
γ∗(x, μ, s)); that is, γ∗ ≡ γ∗(a∗)), we have:

T ∗(W + r)(x, μ, s)

= min
γ≥0

max
a∈A(x,s)

{
μh0(x, a, s) + βE

∑k
j=0 μjωj(�(x, a, s), ϕ(μ, γ), s′)

+
∑l

j=0 γj
[
hj

1(x, a, s) + βEωj(�(x, a, s), ϕ(μ, γ), s′)
] }

≤ μh0(x, a∗, s) + βE
k∑

j=0

μjωj(�(x, a∗, s), ϕ(μ, γ∗, s′)

+ γ∗ [h1(x, a∗, s) + βEω(�(x, a∗, s), ϕ(μ, γ∗), s′)] + βr ‖ϕ(μ, γ∗)‖

= μh0(x, a∗, s) + βE
k∑

j=0

μjωj(�(x, a∗, s), ϕ(μ, γ∗, s′) + βr ‖ϕ(μ, γ∗)‖

≤ μh0(x, a∗, s) + βE
k∑

j=0

μjωj(�(x, a∗, s), ϕ(μ, γ∗, s′) + βr(1 + B) ‖μ‖ .
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By homogeneity, without loss of generality we can choose an arbitrary
μ �= 0 such that: ‖μ‖ ≤ (1 + B)−1. The above inequalities show that
T ∗(W + r) ≤ T ∗(W ) + βr�

Lemma 9A (Contraction property): The argument is the standard Black-
well’s argument. We show that the contraction property is satisfied. Let
W, Ŵ ∈ Mbc.

Notice that W ≤ Ŵ +
∥∥∥W − Ŵ

∥∥∥. Then, using the results of Lemmas 7A
and 8A,

T ∗W ≤ T ∗(Ŵ +
∥∥∥W − Ŵ

∥∥∥) ≤ T ∗(Ŵ ) + +β
∥∥∥W − Ŵ

∥∥∥).
Reversing the roles of W and Ŵ , we obtain that∥∥∥T ∗W − T ∗Ŵ

∥∥∥ ≤ β
∥∥∥W − Ŵ

∥∥∥ .

Therefore, T ∗ is a contraction mapping�
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