
DEPARTMENT OF ECONOMICS

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 EUI Working Papers

ECO 2011/20
DEPARTMENT OF ECONOMICS

 
 
 
 
 
 
 
 
 
 INTERNAL HIERARCHY AND STABLE COALITION STRUCTURES 
 
 
 
 
 
 
 
 
 
 
 
  
 

Massimo Morelli and In-Uck Park

 





 

 

EUROPEAN UNIVERSITY INSTITUTE, FLORENCE 
DEPARTMENT OF ECONOMICS

Internal Hierarchy and Stable Coalition Structures 

MASSIMO MORELLI 

and  

IN-UCK PARK

EUI Working Paper ECO 2011/20



 

 

 
This text may be downloaded for personal research purposes only. Any additional reproduction for 

other purposes, whether in hard copy or electronically, requires the consent of the author(s), editor(s). 
If cited or quoted, reference should be made to the full name of the author(s), editor(s), the title, the 

working paper or other series, the year, and the publisher. 
 
 

ISSN 1725-6704 
 

 

© 2011 Massimo Morelli and In-Uck Park 

Printed in Italy 
European University Institute 

Badia Fiesolana 
I – 50014 San Domenico di Fiesole (FI) 

Italy 
www.eui.eu 

cadmus.eui.eu

http://www.eui.eu/
http://www.eui.eu/


Internal Hierarchy and Stable Coalition Structures∗

Massimo Morelli
Columbia University & EUI

In-Uck Park
University of Bristol

May 11, 2011

Abstract. When an agent decides whether to join a coalition or not, she must
consider both i) the expected strength of the coalition and ii) her position in the
vertical structure within the coalition. We establish that there exists a positive
relationship between the degree of inequality in remuneration across ranks within
coalitions and the number of coalitions to be formed. When coalition size is unre-
stricted, in all stable systems the endogenous coalitions must be mixed and balanced
in terms of members’ abilities, with no segregation. When coalitions must have a
fixed finite size, stable systems display segregation by clusters while maintaining
the aforesaid feature within clusters. (JEL Codes: C71, D71)

Keywords: Stable Systems, Abilities, Hierarchy, Cyclic Partition.

1 Introduction

Circumstances abound in which individual agents interact via the organizations they
choose to belong to. From each agent’s perspective, the consequences of joining
an organization or another are determined by (i) what kind of outcome will be
generated by the interaction between the organization she chooses to join and its
rival organizations, and (ii) what will happen to herself within the organization
under that outcome. The second aspect is likely to be determined by the internal
structure of the organization and the agent’s position in it.

In a political setting, for example, politicians form parties and members of each
party decide on the party line and on the campaign strategy, given the perception of
their strengths and the opponents’ characteristics; then, the election outcome will be
determined by what kind of parties have been formed and their relative strengths;
and finally, the members of the winning party will be allocated a role depending

∗We thank Antonio Cabrales, Jon Eguia, Piero Gottardi, Sanjeev Goyal, Johannes Hörner,
Matthew O. Jackson, Hideo Konishi, David Levine, Jaime Luque, Andy Newman, Scott Page,
James Peck, Chen-Yu Pan, Nicola Persico, Daniel Seidmann, Rajiv Sethi, Paolo Siconolfi, David
Strauss, Fernando Vega-Redondo and Schlomo Weber for very useful suggestions. We are also
grateful for comments from workshop participants at the 2010 Bristol conference on social networks,
the 2011 Coalition Theory Network in Barcelona and the Decentralization conference at Ohio
State, as well as seminar participants at the University of Melbourne, Columbia, Yale, European
University Institute, Bologna, Madrid, and Yonsei University. The usual disclaimer applies.
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on their relative positions within the party, which will determine their payoffs. In
this and other examples (e.g., gangs and entrepreneurial organizations), the agents’
ranks within the organization appear to be an important factor in determining their
final payoffs.1

Understanding what determines the number and composition of coalitions (e.g.,
party systems, market concentration, economic and political integration) has been
a recurrent focus in many strands of literature (discussed below), but, to the best of
our knowledge, there is no systematic existing work on the relationship between such
horizontal segmentation incentives and the vertical structure of each endogenous
organization. We believe that, especially in contexts in which the relevant agents are
heterogeneous in ability, studying the interplay of these two dimensions could be very
important.2 This is what we do in this paper, through a cooperative game theory
analysis that yields a number of sharp results in an institution-free environment.

The first key assumption of our model is that the relevant agents3 have hetero-
geneous observable abilities, and the aggregate strength of a coalition depends on
the total ability of it’s members. Second, we assume that each endogenous coali-
tion must have a vertical structure, i.e., the coalition members must be ranked,
or assigned to different tasks of rankable importance, and payoff shares must be
non-decreasing in rank. In other words, the comparison of total abilities across
coalitions is assumed to determine the coalitions’ relative power (probability of win-
ning or market share, depending on the application), whereas payoff division within
each coalition is assumed to depend on the members’ ranks in the vertical structure
of the coalition. Then, given that abilities are observable, it is verified that competi-
tion between coalitions ensures that each coalition will endogenously assign internal
ranks following the ability ordering.

For analytical tractability, we assume that there are a countable infinity of rele-
vant agents, and that the fundamental distribution of abilities will be captured by
a single parameter that determines a geometric distribution of abilities. The role of

1Given that our focus is on the relationship between internal structure of coalitions and the
competition between the endogenous coalitions, our model and results will relate more to the
formation of competing parties, firms or gangs, than to the formation of clubs and jurisdictions,
since typically club and jurisdiction formation models are about sorting or matching preferences
(for example on local public goods), and the vertical differentiation dimension is not considered.

2For example, the (small) literature on party formation focuses almost exclusively on the incen-
tives that different institutional systems provide to form parties to represent different (horizontal)
segments of the voters’ population, whereas the impact of internal organization of parties on the
stability of different party systems is not studied (as a notable exception, see Persico. et al., 2008)
and could be quite important: Intuitively, the choice between becoming the leader of a new party
or remaining at a lower rank of an existing party must depend on how the different ranks are
treated.

3We use the term “relevant” because in each application there could be agents like voters (in the
political application), consumers (in the industrial organization application) and victims (in the
criminal organizations application) that are important in general but not relevant for the decisions
to merge, split or form strategic alliances.
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hierarchy for internal payoff division will also be captured by a single parameter, to
be interpreted as the fractional drop in the relative payoff from one rank to the next,
which will be our measure or proxy for vertical inequality. The expected utility of
each member of each coalition will then depend on both parameters, one through
her internal rank and the other through the expected power of the coalition.

The first part of the paper studies the conditions for the stability of different
partitions of players (or coalition structures) as a function of these two parame-
ters capturing the distribution of abilities and the distribution of payoffs within
coalitions. In particular, the fixed parameter capturing vertical, intra-coalition in-
equality is assumed to be determined by the ratio of the marginal contributions of
two consecutive ranks to the surplus achievable by the organization. In this part,
the analysis follows the logic of core stability of NTU games, in the sense that payoff
division or imputation rules are treated as given. Thus, the focus is on coalition
formation only. Later, in the second part of the paper, we examine what happens
when vertical inequality is endogenized.

The results of the first part are summarized as follows: First and foremost,
we establish that the lower is the inequality of payoffs across ranks, i.e., the lower
is vertical inequality, the smaller is the number of rival organizations that can be
sustained in a stable partition of the relevant agents. In particular, we show that
the exact range of vertical inequality that supports a stable partition consisting of
K coalitions (“K-partition,” for short) is higher for a larger K; Second, all stable
partitions must be cyclic in the sense that each of K coalitions consists of every
K-th player in ability ordering, and hence no two players in any K consecutive
ability types may belong to the same coalition; Third, the reward of every rank in
an organization belonging to a K-partition has to be between the rank’s marginal
contribution in a K-partition and that in a (K − 1)-partition.

In the second part of the paper, we move on to characterize the set of “strongly
stable systems,” i.e., the levels of vertical inequality and coalition structures that
survive coalitional deviations in an environment in which the players in each coali-
tion can choose any level of vertical inequality they wish. Allowing for this type of
endogeneity of vertical inequality, we obtain a very tight result: A system is strongly
stable if and only if each coalition is cyclic and every agent receives her “marginal
contribution”; given that the ability of the agent occupying each rank in the hierar-
chy decreases in K, the number of coalitions, it must be the case that the marginal
contribution of each rank also decreases in K, implying higher vertical inequality.
In other words, endogenizing the vertical inequality norm allows us to show that
partitions with any number of coalitions of players can be stable, together with an
appropriate level of vertical inequality that increases in the number of coalitions.
Specifically, we first characterize the set of symmetric strongly stable systems, i.e.,
the set of strongly stable systems in which all existing coalitions use the same ver-
tical inequality norm. We then extend the characterization to asymmetric strongly
stable systems, i.e., systems in which different coalitions may adopt different lev-
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els of vertical inequality, with lower vertical inequality prevailing in the stronger
coalitions.

While all the above analysis is conducted without imposing any restriction on
coalition size, obtaining that all coalitions in a stable partition contain a countable
infinity of players, in the last part of the paper we study the case in which each
coalition must have a fixed finite size. In this restricted setting we will show that
players endogenously form segregated clusters of coalitions, still maintaining the
cyclic structure of coalitions within clusters. This result provides interesting com-
parative statics in terms of inequalities within and across coalitions, approximating
the empirically-observed, “segregation by skill” phenomenon (elaborated later).

The paper is organized as follows: after a review of the related literature, Section
2 introduces the model and Section 3 provides a complete characterization of the
necessary and sufficient conditions for existence of stable partitions, preceded by a
number of general results. Section 4 fully characterizes strongly stable systems with
endogenous vertical inequality. Section 5 analyzes the case in which coalitions must
be of a fixed finite size, and Section 6 concludes.

Related Literature Our paper highlights at least two features of en-
dogenous formation of rival organizations that can be contrasted with the previous
literature on coalition formation: (1) the more skewed is the allocation of payoffs,
the more fragmented will be the rival coalitions to be formed; and (2) coalitions
consist of members from widely dispersed ability levels and have therefore similar
cyclic compositions. The latter feature of the unrestricted-size version of our model
is in contrast with the separation outcomes that are prevalent in the literature on
some other types of group formation, such as the important literature on clubs
and jurisdictions providing local public goods, preluded by Tiebout (1956).4 In our
model, a particular type of segregation appears when we assume that each coalition
must be of a fixed finite size.5

The literatures on social classes (Akerlof, 1997), partnerships (Farrell and Scotch-
mer, 1988), hedonic games (Banerjee, et al., 2001; Bogomolnaia and Jackson, 2002;
Le Breton, et al., 2008; Watts, 2007), social status (Milchtaich and Winter, 2002),
and organisation (e.g., Demange 2004; Garicano and Rossi-Hansberg, 2006; and an
earlier work on firm formation by Legros and Newman, 1996), are all related in a

4A sequence of formal advancements in that literature can be found in Ellickson (1973), Westhoff
(1977), Wooders (1978), Guesnerie and Oddou (1981), Greenberg and Weber (1986), Demange
(1994), Konishi, Le Breton and Weber (1998), Casella (2001), Ellickson et al (1999), Jehiel and
Scotchmer (2001), Zame (2009). These studies differ from ours because different jurisdictions
provide different local public good quantities and the endogenous coalitions do not play a constant
sum game. Moreover, typically agents are not differentiated in terms of ability.

5Segregation by skills (see, e.g., Kremer and Maskin, 1996) and increased inequality between
plants rather than within plants (see, e.g., Gavilan, 2011), are recognized phenomena in the applied
literature, and our fixed finite coalition size model (in Section 5) provides a clean theoretical
interpretation of such phenomena based solely on coalition formation forces.
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broad sense to what we do, but our approach is distinguished from these studies by
two key aspects: rivalry among endogenous coalitions and rank-dependent internal
rewards. As a result, agents face a dilemma between teaming up with more able
people for a more powerful coalition and teaming up with less able people for a
higher internal rank. Damiano, et al. (2010) consider a similar tension but in a
setting where agents decide which one to join from a fixed set of coalitions, moti-
vated by different contexts from ours.6 Watts (2007), on the other hand, analyzes
two separate settings, one in which agents desire to team up with higher ability
members (under the “average quality payoff”), and an opposite one in which they
desire to team up with lower ability members (under the “big fish payoff”).

The paper makes a conceptual contribution also in political economy, and in
particular to the literature on party formation, showing that even with similar in-
stitutions and preferences, different party systems can be stable, depending on the
parties’ internal organization.7 For more distantly related work on trade alliance
formation, see, e.g., Yi (1996) and Casella and Feinstein (2002).

We assume that groups can coordinate deviations, using a core-like cooperative
logic.8 Hence, parties, firms, teams or gangs are more natural types of coalitions
that fit our analysis than countries/jurisdictions where agents individually decide
whether to move in or out, like in Jehiel and Scotchmer (2001).

In hedonic games coalitional deviations are allowed, but players’ payoffs are
determined by the composition of their own coalition only. In our game the players’
utility depends on the rank and the degree of vertical inequality in the coalition,
as well as on the aggregate strength of the coalition, so it is not a proper hedonic
game.9 Our model can also be viewed as generalizing Gamson games (see, e.g., Le
Breton. et al., 2008): in this special class of hedonic games the total cake goes to
whichever coalition that has more than half of the total talent, whereas our analysis
includes settings where coalitions fight over market shares or power shares, with no
magic value given to passing a fifty percent threshold.

6In Damiano. et al. (2010) agents of different abilities choose between two organisations of a
fixed capacity of measure 1, when the agent’s utility increases both in the average ability of the
organisation (peer effect) and in her internal ranking (pecking order effect). If the value of each
coalition is a function of the average ability of agents, they obtain some degree of segregation of
ability types, with a larger overlap when the pecking order effect is stronger. Their results apply
to very different contexts, like students’ choices among a fixed set of universities, rather than
endogenous formation of organisations.

7On the importance of party formation and pre-election coalition formation across systems, see,
e.g., Levy (2004), Morelli (2004) and Bandyopadhyay, Chatterjee and Sjöström (2010). See also
Dhillon (2005) for a survey.

8See, e.g., Aumann and Drèze (1974) for some early study on the cooperative stability of
coalition structures.

9If we fix the degree of vertical inequality as in Section 3 and impose the ability ranking
assumption, our game is hedonic. However, generally it does not satisfy known conditions for
existence of a core, namely, balancedness (Scarf, 1967) and top-coalition property (Banerjee et al,
2001), neither in a finite setting nor when naturally extended to an infinite setting.
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2 Model

Consider an economy with a large number N of players with heterogeneous ability.
We conduct our analysis for the limit case of N → ∞, i.e., with countably infinite
agents. Each player i ∈ N has an observable ability ai (which could be political
ability, market ability, or criminal ability depending on the application). We order
players according to their ability, with the convention that a1 > a2 > · · · . In
particular, we assume a geometric distribution of abilities:

ai = ai−1 where a ∈ (0, 1). (1)

2.1 Hierarchical organization and coalitional strength

We consider an environment in which all players form hierarchical organizations that
compete for a contestable surplus. By a “hierarchical organization” we mean a coali-
tion of agents assigned to a collection of hierarchically ranked posts that perform
complementary tasks, whose marginal contribution to the total surplus/production
decreases in the post’s rank. The ratio of marginal contributions of any two consec-
utively ranked posts is assumed to be constant and denoted by ρ ∈ (0, 1). So, the
total surplus of a hierarchical organization formed by a coalition Z ⊂ N of agents is

S(Z) := p(Z)(1− ρ)(1 + ρ+ · · ·+ ρ#(Z)−1) = p(Z)(1− ρ#(Z)) (2)

where p(Z) ∈ [0, 1] is the “coalitional strength” of Z to be defined below. Multiply-
ing by (1− ρ) serves the purpose of normalizing the size of the total surplus to one
when the coalition has a countable infinity of members and a coalitional strength
of unity. The ratio of marginal contribution, ρ, is common to all hierarchical orga-
nizations.10 Throughout the paper, for brevity, we will use the term “coalition” to
always mean “a coalition that constitutes a hierarchical organization”.

The (coalitional) strength of a coalition Z ⊂ N is determined by an aggregate
measure p(Z) of the abilities of its members, relative to the aggregate measure of the
abilities of the whole population of players, N. Letting θ(Z) :=

∑
i∈Z ai−1 denote

the sum of abilities of members of Z, we specifically define

p(Z) :=
θ(Z)∑
j∈N a

j−1
= (1− a) · θ(Z). 11 (3)

10In the party formation application, the assumption of a common ρ is reasonable, since p(Z)
can be interpreted as the probability of winning an election, and then the various tasks to which
the winning party members are assigned are fixed government tasks. Hence, party members (of
different parties) who expect to have the same rank conditional on winning, have the same expected
marginal contribution, related to the task they will have to perform in the government structure.

11In future work we plan to extend the analysis to the case of structure externalities, by studying
a more general contest functional form for the relative power of a coalition, say Zi, when players
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Note that the sum of p(Z) across all coalitions is 1, allowing p(Z) to be interpreted
as the probability of winning or power share or market share depending on the
application.12 Yet, linearity of p(Z) in the sum of the members’ abilities ensures that
the total surplus of a coalition, (2), does not depend on the composition of other
coalitions. This feature exempts us from the unsettled issue of what a deviating
coalition should expect regarding the responses of the remaining agents.

2.2 Imputation ratio and ability ranking

Once all coalitions are formed, they constitute a partition of N, which we denote
by π. Within each coalition Z the members are assigned to posts/ranks, and the
generated surplus, S(Z), is divided among the members. Given that a coalition has a
hierarchical structure we assume that the division of surplus is also hierarchical, i.e.,
the surplus shares are rank-dependent. Formally, we capture the vertical inequality
of payoffs across ranks with a single parameter termed imputation ratio, which is
the ratio of the surplus share of a coalition member relative to that of the member
occupying the rank immediately above. Thus, a lower imputation ratio corresponds
to a greater inequality. Expressing the degree of vertical inequality with just one
parameter is a simplifying assumption, which nonetheless is broadly consistent with
the impression that in most societies and most contexts the different views about the
relative importance of different tasks and ranks are usually summarized by simple
statements or positions.13

In principal, the imputation ratio can be determined by a collective decision
within each coalition, hence may differ across coalitions. Prior to analyzing such a
case (in Section 4), we analyze in Section 3 the case in which there is an exogenously
determined imputation ratio that all coalitions abide by. In particular, we present
the intuitive benchmark case in which the exogenous imputation ratio is equal to
ρ, the ratio of marginal contributions between consecutive ranks.14 In this case,
denoting the rank of player i in a coalition Z ⊂ N by ri(Z), the expected utility of

are partitioned in K coalitions: p(Zi) =
(θ(Zi))

β

∑K
k=1(θ(Zk))

β . Keeping β = 1 in this paper allows us to use

core stability, while in the more general extension the choice of the appropriate solution concept
will be an issue.

12When p(·) is interpreted as a probability of winning in a winner-take-all contest, the utility of
members of losing parties is normalized to 0. Since the decision by the relevant players on whether
to form one coalition or another is made ex ante, it doesn’t matter whether p(·) is a probability
of winning in a winner-take-all system or a share in a proportional power sharing system. For the
difference between the two in terms of voting incentives, see Herrera and Morelli (2010).

13In the political economy literature it is very common to simplify the distributive views using
a single parameter, like the preferred tax rate in a linear taxation system. This assumption is as
brutal as ours.

14The case in which there is a fixed imputation ratio but different from ρ can also be analyzed,
and the results deliver essentially the same main insights as the case studied in this section,
although the details are more complex (available from the authors).
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player i in Z is

ui(Z) =
S(Z) · ρri(Z)−1

1 + ρ+ · · ·+ ρ#(Z)−1
= p(Z) · (1− ρ)ρri(Z)−1, (4)

regardless of the cardinality of Z. Thus, every agent should decide which coalition
to join not only on the basis of the coalition’s strength, p(Z), but also on the basis
of her expected rank in the coalition, ri, and the vertical inequality, ρ.

The next issue is how the members are assigned to ranks in each coalition. To
start with, we conduct the analysis assuming that ranks are assigned according to
the relative ability of members (henceforth “ability ranking”)15 , i.e.,

ri(Z) = #{n ∈ Z|n ≤ i}. (5)

We then verify in Section 3.4 that ability ranking indeed endogenously obtains as
a result of competition when the coalitions are free to assign ranks in any order
of their choice. Therefore, even if relative payoffs are not tied to relative abilities
explicitly, they are tied endogenously.

2.3 Stability

In Section 3, we study the structure of stable partitions under the assumption that
every coalition will adopt ρ as its imputation ratio. This case can be interpreted
as a short-run model in which the organizational structure may not be changed
quickly due to some institutional reasons.16 In a political context, for example,
even though the probability of winning of a party depends on the abilities of the
politicians involved, once a party grabs power and the various offices have to be
filled, at that point the relative payoffs of the various party members depend on
their assigned ranks (from president to secretary and so on), and these relative and
absolute payoffs take the form of pre-specified rank-related remunerations. In this
case, the notion of stability is akin to that of core stability in a NTU game: a
partition π is stable if there is no “profitable” deviation/subset D of N that would
give higher expected payoff to all members of D than in the original coalitions in
the partition π.

Over time, the organizational structure may change. In Section 4, allowing for
this possibility by letting coalitions determine their own imputation ratios, we char-
acterize strongly stable partitions that are immune to coalitional deviations where
each coalition chooses its own imputation ratio.

15Ability ranking in the internal organization (first assumed and then verified) has key implica-
tions on “who to team up with”, and thereby on the endogenous structure of rival coalitions.

16We share the view that “often, the rewards from joint effort are shared according to rather
rigid rules,” as conveyed, e.g., by Farrell and Scotchmer (1988) who, focusing on partnerships,
analyze the implications of the equal sharing rule on the size of partnerships and welfare.
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2.4 Discussion

Let us interpret and motivate here three main features of the model that have not
been fully addressed yet.

Ability as a “team asset”. An agent’s ability contributes to the coalition she
joins by enhancing the coalitional strength, but does not affect the relative produc-
tivity of the post she occupies. In this sense, a member’s ability is a team (rather
than personal) asset. This stresses two aspects of our environment. One is the
importance of coalitional competition among organazations that vie for (a share of)
contestable resources.17 The other is the complementary nature of the organiza-
tion’s operation. In an industrial organization application, for example, even if an
employee is recruited for a particular post, e.g., engineer, the employee’s ability is
valued to the extent that she contributes to extending the firm’s market share, by
complementing other parts of the firm’s operation to enhance the overall appeal of
the final product to customers.

A countable infinity of players. We consider a countable infinity of players
to avoid the artificial restrictions on partition structure that finite populations may
impose. For example, a partition of two equal-size coalitions is feasible with an even
number of players but not with an odd number of them. In addition, a countable
infinity of players places no a priori bound either on the possible number of coalitions
or on the maximum coalition size. As such, it allows us to focus on the relationship
between the intra-coalition structure and the endogenous formation of coalitions,
with minimal interference of other factors.

A related aspect is that there is some surplus loss if a finite coalition forms
(although this does not happen in stable partitions), in the sense that the total
surplus, (2), is equal to p(Z) for infinite coalitions but less than p(Z) for finite
coalitions.18 This is certainly realistic for coalitions of small sizes: In the political
competition example, if a party wins the elections in spite of having only a very small
number of members, it may cover only a small number of posts, forgoing payoffs
that would have been generated from lower rank offices.19 However, it is conceivable
that a finite coalition does not incur any surplus loss if it is above a certain, large
threshold size. Our model is consistent with this situation, too, so long as this
threshold is a random variable with an unbounded support. If this threshold is
finite, on the other hand, it would impose an upper bound on the coalition size.
In our setting of infinite agents, this would prevent meaningful comparisons of the

17In political applications, an agent’s political ability contributes to the likelihood that the
collective campaign efforts of a party will succeed in persuading enough voters to win the election.

18For example, with ρ = 2/3 a coalition Z of three players would have, conditional on winning
(with some probability p(Z)), payoffs equal to 1/3 for the first ranked player, 2/9 for the second,
and 4/27 for the third, which sum to 19/27 < 1.

19See Mattozzi and Merlo (2010) for other reasons behind the positive relationship between the
size of a party and its payoff.
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number of organizations that emerge under different environments, which are part
of our goals.

In any case, we analyze in Section 5 what happens in a complementary case in
which coalitions must have a fixed finite size (and thus, a coalition’s surplus is not
a function of its size).

Single parameter distributions. We specify the ability differential among play-
ers, the internal payoff inequality, and the relative contributions of ranks, each by
a single parameter. This is a simplification made in order to obtain clean analyt-
ical results, since our aim in this paper is to delineate stylized, yet clear insights
on endogenous formation of hierarchical organizations. Generalizations beyond our
geometric structure are probably feasible using computational methods, and indeed
it seems to us that the results proved in this paper could hold more generally, but
further analytical generalizations are beyond the scope of this paper.

3 Stable Partitions under a Fixed Imputation Ra-

tio ρ

For any partition π = {Z1, Z2, · · · } of N, we adopt the convention of labeling the
coalitions in the ability order of the most able member, or “leader’ for short, i.e., we
assume (without loss of generality) that 1 ∈ Z1 and ik < ik+1 for all k = 1, 2, · · · ,
where rik(Zk) = 1.

In this section we assume that every coalition adopts ρ as the imputation ratio.
Given the two key parameters of the model, (a, ρ), a deviation D ⊂ N is profitable
relative to a partition π if

ui(D) ≥ ui(π(i)) ∀i ∈ D 
= ∅
where π(i) is the coalition Zk ∈ π such that i ∈ Zk, and the inequality is strict
for some i ∈ D. A partition π is stable if there is no profitable deviation relative
to it. As mentioned earlier, initially we conduct our analysis taking it for granted
that every coalition adopts the ability ranking. In Section 3.4 we prove that every
coalition will indeed do so in any stable partition with more than one coalition.

A specific partition structure is key to our results: A “cyclic” K-partition is
πc
K = {Z1, · · · , ZK} such that Zk consists of all players k, k+K, k+2K, k+3K, · · · ,

i.e., Zk = {j ∈ N|j = k mod K}, so that, in particular,

θ(Zk) =
ak−1

1− aK
for k = 1, 2, · · · , K. (6)

The main result of this section is that cyclic K-partitions are the only stable
partitions when all coalitions adopt the imputation ratio ρ. Moreover, each cyclicK-
partition is stable for a range of ρ that decreases inK as specified below, establishing
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a positive relationship between the vertical inequality and the number of coalitions
to be formed endogeously:

Theorem 1 The cyclic K-partition πc
K is stable if and only if

aK ≤ ρ <
aK−1

1 + aK−1 − aK
. (7)

Furthermore, if a partition is stable for any (a, ρ), it is a cyclic K-partition for some
K ≥ 1 and it is the unique stable partition at (a, ρ). The fraction of area (7) within
aK ≤ ρ < aK−1 approaches 1 as K → ∞.

Figure 1 illustrates the areas of the parameter values (a, ρ) ∈ (0, 1)× (0, 1) that
satisfy (7) and thus, support stable cyclic K-partitions. Between the area for a
stable K-partition and that for a stable (K − 1)-partition, there is an area with no
stable partition. The fraction of this latter area, relative to the area for a stable
K-partition, converges to 0 as K → ∞.

K = 1

    K = 2

 K = 3  4          5     6

ρ

a

                  Figure 1

In the rest of this section, we gradually build up our analysis on stable partitions
to prove Theorem 1 eventually.

3.1 Some general properties

We start by observing that, in a stable partition, no coalition may consist of a
finite number of members because such a coalition would always be able to find an
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agent who would be willing to join as the lowest rank member, either because she is
ranked so low in another coalition or because her own coalition’s power is negligible,
as formalized below.

Lemma 1 In any stable partition, every coalition has countably infinite members.

Proof. To reach a contradiction, suppose there is a finite coalition, say Zf , in a
stable partition π. Let � be the least able member of Zf . If there is an infinite
coalition, say Zk ∈ π, then there exists a large enough j ∈ Zk such that j > � and
p(Zk)(1 − ρ)ρrj(Zk)−1 < p(Zf )(1 − ρ)ρ#(Zf ), so that j is better off by joining Zf .
Thus, D = Zf ∪ {j} would constitute a profitable deviation because the coalition’s
strength increases relative to Zf , i.e., θ(D) > θ(Zf ), while the ranks of members
of Zf are intact and thus, their payoffs are higher according to (4). This would
contradict the supposed stability of the partition. If all coalitions of π are finite,
on the other hand, there are infinitely many coalitions; consequently, there exists a
large enough j such that agent j is the most able agent of a coalition, say Z ′ ∈ π,
and p(Z ′)(1 − ρ) < p(Zf )(1 − ρ)ρ#(Zf ), leading to an analogous contradiction that
Zf ∪ {j} would be a profitable deviation.

Although this result is proved here for the case that the imputation ratio is fixed
at ρ (which is assumed in this section), we emphasize that the same result continues
to hold in the more general case in which the imputation ratio is endogenously deter-
mined, as analyzed in Section 4: Then, coalitions are free to choose an imputation
ratio for which they would not grow above a certain finite size, yet no coalition finds
it optimal to do so.

Next, we establish that in any stable partition the strength of each coalition is
increasing in the leader’s ability, since otherwise, the more able leader of a weaker
coalition would be happy to replace the less able leader of a stronger coalition, which
the latter coalition would also welcome.

Lemma 2 If π = {Z1, Z2, · · · , ZK} is a stable partition (where K = ∞ is allowed),
then θ(Z1) > θ(Z2) > · · · > θ(ZK).

Proof. If θ(Zk+1) ≥ θ(Zk) for some k, the deviation D =
(
Zk+1 \{ik+1}

) ∪ {ik}
would be profitable where ik and ik+1 are the most able members of Zk and Zk+1,
respectively, because (i) ik < ik+1 so that θ(D) > θ(Zk+1) ≥ θ(Zk), and (ii) every
member in D retains the same rank as in π.

By the same token, if a rank of a weaker coalition is occupied by a more able
agent than the same rank of a stronger coalition, then an analogous swap of the
agents for that rank would constitute a profitable deviation. Thus, for any member
i of any coalition in a stable partition, every stronger coalition must have more
members who are more able than i than i’s own coalition does. In fact, we prove
a stronger result: For any two consecutively ranked members of a weaker coalition,
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exactly one agent exists in each stronger coalition whose ability is between them
(Lemma 3). This lemma will in turn be used to show that every stable partition
must consist of a finite number of coalitions.

Consider any two coalitions Zk and Zk′ in a stable partition π where k < k′.
Suppose, for instance, that there is no agent in Zk whose ability is between the two
most able agents in Zk′ , say i′ and j′. Let i and j be the two consecutively ranked
members of Zk such that i < i′ < j′ < j, with no agent in Zk′ between j′ and j.
Then, every agent in Zk′ \ {i′} prefers D = (Zk′ \ {i′}) ∪ {i} to Zk′ because their
coalition becomes stronger, i.e., θ(D) > θ(Zk′), while maintaining their ranks. For
the deviation D to be not profitable, therefore, the agent i should be worse off in
D, i.e.,

θ(Zk)ρ
ri(Zk)−1 > θ(D) = θ(Zk′) + ai−1 − ai

′−1 > θ(Zk′). (8)

At the same time, for the deviation D′ = (Zk \{j})∪{j′} to be not profitable, since
all agents in Zk \ {j} prefer D′ to Zk, the agent j′ should be worse off in D′, i.e.,

θ(Zk′)ρ
rj′ (Zk′ )−1 > θ(D′)ρrj(Zk)−1 = (θ(Zk) + aj

′−1 − aj−1)ρri(Zk) > θ(Zk)ρ
ri(Zk)

=⇒ θ(Zk′)ρ
rj′ (Zk′ )−2 > θ(Zk)ρ

ri(Zk)−1, (9)

where the equality follows because agent i is one rank above j in Zk. Since rj′(Zk′) =
2, (8) and (9) lead to a contradictory conclusion that θ(Zk) > θ(Zk). This establishes
that there must be at least one agent in Zk whose ability is between i′ and j′.
Extending the same idea, we prove that:

Lemma 3 Let Zk and Zk′ be two coalitions in a stable partition π where k < k′.
For any two adjacently ranked agents in Zk′, exactly one agent exists in Zk whose
ability is between them.

Proof. See Appendix.

This implies that agents in Zk ∪Zk′ who are no more able than the leader of Zk′
alternate between the two coalitions as we go down along the ability ordering. If
there were infinitely many coalitions (all of which have infinite members by Lemma
1), therefore, the number of agents whose ability is between two adjacently ranked
agents in Z1 would increase without bound as we go down the rank. This means
that lower rank agents in Z1 would be compensated increasingly better relative to
their ability, which is inconsistent with stability because then there should be an
agent not in Z1 who would be willing to replace a less able agent occupying a certain
rank in Z1. Thus,

Lemma 4 Any stable partition consists of a finite number of coalitions.

Proof. Consider a partition π = {Zk}k∈N consisting of infinitely many coalitions.
Let Z1 = {1, �2, �3, · · · }, where agent �r is rank r (≥ 2) in Z1. Let ik be the leader
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of Zk. Note that θ(Zk) ≤ aik−1

1−ak
by Lemma 3. For π to be stable, if ik < �r then

�r+1 − �r ≥ k by Lemma 3 and consequently, �r+1 − �r → ∞ as k → ∞, which in
turn implies that �r/r → ∞ as r → ∞.

For arbitrarily large k, find r such that �r < ik < �r+1. Note that as k increases
without bound so does the corresponding r. Then, D = Z1 ∪ {ik} \ {�r+1} is

profitable for a sufficiently large k, because θ(Z1)ρ
r − θ(Zk) ≥ θ(Z1)ρ

r − aik−1

1−ak
=

ρr(θ(Z1)− aik−1

ρr
1

1−ak
) > 0 where the last inequality follows since �r/r → ∞ implies

a�r−1

ρr
→ 0 as k → ∞ and thus, �r < ik implies aik−1

ρr
1

1−ak
→ 0 as k → ∞.

Thus, we may limit attention to partitions consisting of a finite number of coali-
tions in what follows. Consider an arbitrary stableK-partition πK = {Z1, Z2, · · · , ZK}.
By Lemma 3, for any two adjacently ranked agents in ZK , there are exactly K − 1
agents whose ability is in between them (one from every other coalition). Thus,
ZK consists of every K-th agent in ability ordering starting from its leader, iK , and
consequently, θ(Zk) = aiK−1

1−aK
. Note that all players of D = ZK \ {iK} would be

strictly better off in D than in ZK if ρ < aK because then θ(D) = θ(ZK)− aiK−1 =
aiK−1·aK
1−aK

> θ(ZK)ρ, i.e., because the benefit of moving up one rank dominates the
reduced strength from losing the leader, iK . This places a lower bound on ρ for
stability of K-partitions as stated in Lemma 5. This bound decreases in K, which
implies that the degree of vertical inequality potentially allowed in a stable partition
increases with the number of coalitions.

Lemma 5 A necessary condition for any K-partition to be stable is that ρ ≥ aK.

3.2 Grand Coalition

When is the grand party ZG = N stable? Suppose there is a profitable deviation D
and let i be the first rank ofD: She has a payoff of (1−ρ)ρi−1 in ZG while p(D)(1−ρ)
in D. Note that the latter is largest when D consists of all players j ≥ i, in which
case p(D) = (1− a)

∑
n≥i a

n−1 = ai−1. Thus, no deviation is profitable if

(1− ρ)ρi−1 ≥ ai−1(1− ρ) ∀ i ⇐⇒ ρ ≥ a.

By Lemma 5, therefore, ZG is stable precisely when ρ ≥ a. Since ρ < a is necessary
for any other coalition structure to be stable as shown in (11) below, we establish:

Proposition 1 The grand coalition constitutes a stable partition if and only if ρ ≥
a. Furthermore, there is no other stable partition if ρ ≥ a.

3.3 Multiple Coalitions

Lemma 5 provides a lower bound of ρ for a stable K-partition, ρ ≥ aK , based on
the idea that excessive inequality would prompt lower rank members to revolt by
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throwing out their leader. We now derive an upper bound of ρ, based on the flip-
side idea that most able players may be sought after by multiple coalitions when
the inequality level is very low.

Consider an arbitrary stable K-partition. For each k = 2, · · · , K, letting ik
denote the leader of Zk, we have θ(Zk) > θ(Z1 \ {1, · · · , ik − 1}) because agents in
Z1 ∪Zk who are no more able than ik alternate between the two coalitions as we go
down along the ability ordering by Lemma 3. Let Dk = (Z1 ∩ {1, · · · , ik − 1})∪Zk.
Clearly, all members of Dk ∩ Z1 are better off in Dk than in Z1. Player ik’s payoff
is (1− a)θ(Zk)(1− ρ) in Zk; it is (1− a)θ(Dk)(1− ρ)ρνk in Dk where νk = #(Z1 ∩
{1, · · · , ik − 1}). For Dk to be not profitable, therefore, we need

θ(Dk)ρ
νk < θ(Zk) ⇐⇒ ρ <

( θ(Zk)

θ(Zk) +
∑

j∈Z1∩{1,··· ,ik−1} a
j−1

)1/νk
. (10)

For k = 2, we have Z1 ∩ {1, · · · , i2 − 1} = {1, · · · , i2 − 1} so that ν2 = i2 − 1, and

θ(Z2) ≤ ai2−1

1−a2
by Lemma 3. Thus, (10) for k = 2 implies that

ρ <
( ai2−1

ai2−1 + (1− a2)(1− ai2−1)/(1− a)

) 1
i2−1

=
( ai2−1

1 + a− ai2

) 1
i2−1

< a, (11)

identifying an upper bound of ρ for a stable K-partition, K ≥ 2, that establishes
Proposition 1 above.

However, this is not a tight upper bound as we show below. To do this, we focus
on cyclic partitions defined earlier. Suppose there exists a cyclic K-partition πc

K =
{Z1, · · · , ZK} that is stable. Then, the condition for the deviation D = {1} ∪ ZK

to be not profitable is (10) when k = K, νK = 1 and Z1 ∩ {1, · · · , iK − 1} = {1},
i.e., ρ < aK−1

1+aK−1−aK
. In conjunction with Lemma 5, therefore, (7) is a necessary

condition for a cyclic K-partition to be stable.

Theorem 1 states that (7) is also a sufficient condition for the cyclic K-partition
to be stable, and there is no other stable partitions. We prove this result formally
in the Appendix. Here, we provide a sketch of the proof.

To show that (7) is also a sufficient condition for the cyclic K-partition to be
stable, consider first the deviation of “i-onward break-off” from Zk, i.e., by Zi

k =
{n ∈ Zk|n ≥ i}. Each player j ∈ Zi

k is no better off in Zi
k than in Zk precisely when

(1− a)ak−1

1− aK
(1− ρ)ρ

j−k
K ≥ (1− a)ai−1

1− aK
(1− ρ)ρ

j−i
K ⇐⇒ ρ ≥ aK . (12)

Since this condition is independent of i and j ∈ Zi
k, we deduce that

[A] truncated break-offs are not profitable if and only if ρ ≥ aK .

Next, consider a deviation by D ⊂ N. If D is finite, let � be the last member
of D. Let � ∈ Zk ∈ πc

K . If D is profitable, i.e., all member of D is better off in
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D than in πc
K , then they are still so in the union of D and Z�

k = {n ∈ Zk|n ≥ �}.
Furthermore, in this union the payoff of j ≥ � is p(D∪Z�

k)(1−ρ)ρ|D|−1+(j−�)/K while
that in Zk is p(Zk)(1 − ρ)ρ(j−k)/K , so that j is better off in D ∪ Z�

k than in Zk if
and only if p(D ∪ Z�

k)ρ
|D|−1 ≥ p(Zk)ρ

(�−k)/K , which is postulated to hold for � ∈ D.
Since this inequality is independent of j, it further follows that

[B] If a finite D is profitable, there is an infinite profitable deviation.

Consequently, we only need to ensure that no deviation is profitable that consists
of infinite members. Consider an infinite D. For each n ∈ D, let en = rn(D) −
rn(Zk) where n ∈ Zk. Note that if {en|n ∈ D} is unbounded above then D is not
profitable since there is n large enough such that n’s payoff is lower in D because
p(D)ρrn(Zk)+en−1 − p(Zk)ρ

rn(Zk)−1 = p(Zk)ρ
rn(Zk)−1

(
p(D)ρen/p(Zk)− 1

)
< 0. Hence,

let e∗ = maxD en.
Let h = min{n ∈ D ∩ Z1 | en = e∗} if such h ∈ Z1 exists. If not, let h =

min{n ∈ D∩Z2 | en = e∗} if such h ∈ Z2 exists. Proceeding recursively, one can find
h = min{n ∈ D ∩ Zk | en = e∗} for a unique k, such that en < e∗ for all n ∈ Zk′ ∩D
if k′ < k. Then, define

Dh = D ∩ {1, 2, · · · , h} and D∗ = Dh ∪ Zh
k . (13)

As we detail in the proof of Theorem 1 (in Appendix), if an infinite deviation
D is profitable relative to πc

K , then so is D∗ because Zh
k \ {h} consists of more able

agents than D \Dh and agents in Zh
k \ {h} are happier in D∗ than in Zk so long as

h is. Consequently, by delineating the conditions under which no deviation of the
form Dh ∪ Zh

k is profitable for any h > 1 and k = 1, 2, · · · , K, we verify that the
cyclic K-partition is stable if and only if (7) holds. The lower bound is the condition
that no “break-off” deviation is profitable as explained above; The upper bound is
the condition that members of ZK would not recruit player 1 as their leader because
the enhanced power (winning probability) from the recruitment is overshadowed by
the payoff reduction from their ranks going down by one.

Finally, to show that there does not exist any stable partition that is not cyclic,
we need the following key lemma.

Lemma 6 Let Zk and Zk′ be two coalitions in a K-partition πK where k < k′. Let
y be the leader of Zk′; and let x1, x2, · · · , x� be, in that ability order, the agents in
Zk who are more able than y. If y − x� = xj+1 − xj for all j = 1, · · · , � − 1, and
� ≥ 2, then πK is not stable.

Proof. In Appendix.

Recall that Lemma 3 says that between any two coalitions their members al-
ternate in the ability ordering except possibly for the top ability group of agents
who may belong to the stronger coalition. Lemma 6 says that this top group of
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agents may not be superior to the leader of the weaker coalition by a certain degree.
Essentially, these lemmas mean that coalitions have similar compositions in stable
partitions. The proofs are relatively lengthy, so are deferred to the Appendix.

With these lemmas at hand, we are now ready to establish that no non-cyclic
partition can be stable. Observe from Lemma 6 that any partition fails to be stable
so long as {1, · · · , �} ⊂ Z1 and �+ 1 ∈ Z2 for some � ≥ 2.

Hence, focus on partitions such that 1 ∈ Z1 and 2 ∈ Z2. To reach a contradiction,
suppose that such a partition is stable but non-cyclic. Let K ≥ 3 be the second
rank agent of Z1. Then, by Lemma 3, j ∈ Zj for all j = 2, · · · , K − 1. Find m ≥ 1
such that m′(K−1)+ j ∈ Zj for all j = 1, · · · , K−1, for all m′ = 1, · · · ,m−1, but
m(K − 1) + j 
∈ Zj for some j = 1, · · · , K − 1. Such m exists since the partition is
assumed non-cyclic. Let κ be such that m(K−1)+κ 
∈ Zκ while m(K−1)+ j ∈ Zj

for all j < κ. The partition is not stable if m(K − 1) + κ ∈ Zj for j < κ or
κ + 1 ≤ j ≤ K − 1 by Lemma 3 (applied for k = j and k′ = κ in the former case,
and for k = κ and k′ = j in the latter). Therefore,

m(K − 1) + κ ∈ ZK . (14)

If κ = 1, then m ≥ 2 by supposition (if m = 1 then m(K − 1) + 1 = K ∈ Z1 as
posited above). Then, by Lemma 6 (applied for k = 1 and k′ = K), the partition is
not stable.

Alternatively, suppose κ ∈ {2, · · · , K − 1}. First, consider the case that m ≥ 2.
Since m′(K − 1)+κ ∈ Zκ for all m′ = 1, · · · ,m− 1, by Lemma 6 (applied for k = κ
and k′ = K), the partition is not stable.

It remains to consider the case that κ ∈ {2, · · · , K − 1} and m = 1. For the
deviation Z1 \ {1} not to be profitable, we need θ(Z1) − 1 ≤ θ(Z1)ρ ⇔ ρ ≥
θ(Z1)−1
θ(Z1)

. For the deviation D = ZK ∪ {κ} not to be profitable, since the agent

κ would be strictly better off in D than in Zκ by Lemma 3, we need θ(ZK) >

(θ(ZK) + aκ−1)ρ ⇔ ρ < θ(ZK)
θ(ZK)+aκ−1 . These two inequalities are inconsistent if

θ(Z1) ≥ 1+θ(ZK)/a
κ−1, because then we have θ(Z1)−1

θ(Z1)
≥ 1+θ(ZK)/aκ−1−1

1+θ(ZK)/aκ−1 = θ(ZK)
aκ−1+θ(ZK)

.

Indeed, θ(Z1) ≥ 1+ θ(ZK)/a
κ−1 holds since Lemma 3 implies, for every n ∈ N, that

yn − xn+1 ≥ κ − 1 where yn and xn+1 are the agents with ranks n and n + 1 in
ZK and Z1, respectively. This establishes that all stable partitions are cyclic and
thereby, the second part of Theorem 1.

3.4 Endogenous ability ranking

We have conducted the analysis so far under the assumption that any coalition with
any set of members would always rank them according to ability. We prove now
that ability ranking must hold in every stable partition due to competitive pressure.
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Lemma 7 Consider any triplet of agents, i, j and �, in decreasing order of ability.
No stable partition can display i and � in the same coalition, say Z, but in ranks of
reversed order, and j in another coalition, say Z ′.

Proof. Consider D = (Z \ {�}) ∪ {j}, where the agent j replaces the agent � at the
same rank. Since all members of Z \ {�} would accept j in place of � because it
would increase the strength, stability would require that j be worse off in D than in
Z ′. This implies that j’s payoff in Z ′ exceeds �’s payoff in Z, which in turn exceeds
i’s payoff in Z. Thus, i must be willing to replace j in Z ′, and the other members
of Z ′ would accept i in place of j, upsetting stability.

Proposition 2 In any stable partition with K ≥ 2, all coalitions must satisfy “abil-
ity ranking”.

Proof. Suppose there is a stable partition π with reversed ranking within coalitions.
Then, for any pair of agents i and j in the same coalition, say Zk, such that i < j
yet j is ranked higher than i, switch the ranking of i and j. In the new ranking
system, the partition is still stable. To verify this, suppose to the contrary that it
is not stable in the new ranking system. Then, a profitable deviation D, with a
deviation ranking d : D → N, exists that includes either i or j. If D included only
i, then the same D with d would be profitable relative to the old ranking as well,
because i is less happy in the old ranking. If D included only j, then D and d, with
j replaced by i, would be profitable relative to the old ranking, because i in the old
ranking is equally happy as j in the new ranking. If D included both i and j, then
the same D with d′ that switches the ranking of i and j, would be profitable relative
to the old ranking, because i (j) in the old ranking is equally happy as j (i) in the
new ranking.

By sequentially switching the reversed ranks in the manner described above,
therefore, we can construct a new ranking of the same partition π that satisfies
the ability ranking.20 Since stability is preserved, π in the ability ranking must be
cyclic by Theorem 1. This means that for any pair i and j in a coalition, there is an
agent in between in another coalition. Then, the Lemma 7 dictates that no reversed
ranking exists in the old ranking system.

20To be fully precise, there is a technical complication due to the possibility that one may not
finish the switching process in finite steps when there are infinite instances of reversed ranking
initially. However, the proofs of Lemma 3 and the relevant parts of Lemma 6 can be straightfor-
wardly modified to apply to the agents who are ability ordered when the ability ordering prevails
at least for the M most able agents, for arbitrarily large M . Consequently, the logic of the current
proof works with a finite number of switchings even if there may be infinite instances of reversed
ranking in the original partition under consideration. (At the end of the document we include, for
referees’ review, a supplementary material explaining in detail how this potential issue is resolved,
which may not be included in the final manuscript.)
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4 Endogenous Imputation Ratio and Strongly Sta-

ble Systems

We now extend the notion of stability to environments in which the imputation
ratio, now denoted by σ to distinguish from ρ, is endogenously determined within
each coalition. Since σ 
= ρ in general, a coalition Z with an imputation ratio σ
generates a total surplus S(Z) = p(Z)(1− ρ#(Z)) as before, but allocates according
to σ so that the payoff of player i ∈ Z is

ui(Z, σ) =
S(Z) · σri(Z)−1

1 + σ + · · ·+ σ#(Z)−1
=

p(Z)(1− ρ#(Z))(1− σ)σri(Z)−1

1− σ#(Z)
(15)

= p(Z)(1− σ)σri(Z)−1 if #(Z) = ∞.

Note that, for an infinite coalition, the payoffs are the same as those in the previous
section, (4), with ρ replaced by σ.

Since σ can be different across coalitions now, we define a “system” to be a pair
(π, 	σ) consisting of a K-partition π and a K-vector 	σ = (	σ1, · · · , 	σK) that specifies
one imputation ratio 	σk ∈ (0, 1) for each coalition Zk of π. A system is strongly stable
(s-stable) if there does not exist a profitable deviation (D, σ′) in the sense that every
member of D is weakly (some strictly) better off in D than in (π, 	σ) conditional on
σ′ being the imputation ratio in D: That is, recalling that π(i) denotes the coalition
in π to which agent i belongs to,

p(D)(1− ρ#(D))(1− σ′)(σ′)ri(D)−1

1− (σ′)#(D)
≥ p(π(i))(1− ρ#(π(i)))(1− 	σπ(i))(	σπ(i))

ri(π(i))−1

1− (	σπ(i))#(π(i))
∀i ∈ D

where the inequality is strict for some i ∈ D. If #(D) = #(π(i)) = ∞, this becomes

p(D)(1− σ′)(σ′)ri(D)−1 ≥ p(π(i))(1− 	σπ(i))(	σπ(i))
ri(π(i))−1 ∀i ∈ D. (16)

Note from S(Z) = p(Z)(1 − ρ#(Z)) that the marginal contribution of an agent
i to a coalition’s total surplus is largest at S(Z) − S(Z \ {i}) = (1 − a)ai−1 when
she joins a coalition of an infinite size. A key observation here is that every agent
can obtain this level of payoff if coalitions are free to choose their own imputation
ratios. Formally,

Lemma 8 If an agent i’s payoff in a system (π, 	σ) is strictly less than (1− a)ai−1,
then the system is not s-stable.

Proof. Let j1 be the agent whose payoff in the system (π, 	σ) is strictly lower than
(1 − a)aj1−1. Find a sufficiently low σ′ > 0 such that u′ = (1 − a)(1 − σ′)aj1−1

exceeds her payoff in (π, 	σ). For each r = 2, 3, · · · , one can find an agent, say jr,
whose payoff in the system (π, 	σ) falls short of u′ · (σ′)r−1, maintaining the feature
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that jr < jr+1. This is because there exists an agent i, i arbitrarily large, whose
payoff is arbitrarily low in the system either because her rank is arbitrarily low in an
infinite coalition, or in case there is no infinite coalition, because she is in a coalition
of arbitrarily small strength. Then, the deviation (D′ = {j1, j2, · · · }, σ′) is profitable
because agent jr would have a payoff of (1 − a)(1 − σ′)θ(D′)(σ′)r−1 > u′ · (σ′)r−1.
This proves that (π, 	σ) is not s-stable.

Lemma 8 implies that, in any s-stable system, agent i’s payoff is at least (1 −
a)ai−1. In fact, it is equal to (1− a)ai−1 in any s-stable system, since the maximum
possible surplus in the whole economy is (1 − a)

∑∞
i=1 a

i−1. This further implies
that any coalition Z in an s-stable system must generate a total surplus of (1 −
a)

∑
i∈Z ai−1 = p(Z), which is possible only if it is of an infinite size. Indeed, the

symmetric K-cyclic system (πc
K , 	σ) where πc

K is the K-cyclic partition and 	σ =
(aK , · · · , aK), delivers these payoffs and constitutes an s-stable system.

Proposition 3 For every a ∈ (0, 1) and K ∈ N, the K-cyclic system (πc
K , 	σ) is

s-stable if 	σ = (aK , · · · , aK).
Proof. Consider a system (πc

K , 	σ) where 	σ = (aK , · · · , aK). The equilibrium payoff
of agent i in this system is routinely calculated to be (1− a)ai−1 from (15):

(1− a)
ak(i)−1

1− aK
(1− aK)(aK)(i−k(i))/K = (1− a)ak(i)−1(aK)(i−k(i))/K = (1− a)ai−1

where k(i) is the first-ranked agent in the coalition that i belongs to in πc
K (so that

i’s rank in the coalition is (i− k(i))/K).
For any deviation (D, σ′), from (16) the total surplus of this deviation is

∑
i∈D

p(D)(1− ρ#(D))(1− σ′)(σ′)ri(D)−1

1− (σ′)#(D)
= p(D)(1− ρ#(D)) ≤ (1− a)

∑
i∈D

ai−1.

Since (1−a)
∑

i∈D ai−1 is the sum of payoffs of members of D in the system (πc
K , 	σ),

we deduce that no deviation is profitable relative to (πc
K , 	σ). This proves that (π

c
K , 	σ)

is s-stable.

Observe that for every a ∈ (0, 1) there are multiple s-stable symmetric systems,
namely, the symmetric K-cyclic systems (πc

K , (a
K , · · · , aK)) for K = 1, 2, · · · . Fur-

thermore, every agent i is indifferent across such symmetric s-stable systems because
her payoff is the same at (1−a)ai−1 in all such systems (payoff equivalence).21 There-

21This payoff coincides with the Shapley value of the TU coalitional game derived from our
game by defining the value of Z ⊂ N as v(Z) =

∑
i∈Z ui(Z). This game is superadditive with the

feature that the marginal contribution of each agent i is (1− a)ai−1 whenever she joins an infinite
coalition. Consequently, it is not hard to verify that the payoff allocation that imputes each agent
this level of her marginal contribution is in the core, with any partition that consists of infinite
coalitions. Given the restriction of our setting that in each coalition the imputation is governed
by a single parameter, σ, the generalized-cyclic systems defined below are the only configurations
in which the same imputation may be achieved.



21

fore, a system should be s-stable, symmetric or not, so long as every agent gets this
payoff. This is possible in so far as each coalition is lifted from a cyclic K-partition
for some K, along with the imputation ratio σ = aK . We refer to such a system as
a “generalized-cyclic” system, formalized as: A system (π, 	σ) is a generalized-cyclic
system if each coalition Zk consists of every κ-th agent for some κ ∈ N, starting
from a first ranked agent, say ik, with 	σk = aκ, i.e.,

Zk = {ik + nκ|n ∈ N} for some ik ∈ N, and 	σk = aκ. (17)

For example, the symmetric 4-cyclic system (πc
4, (a

4, a4, a4, a4)) constitutes a generalized-
cyclic system when coalitions Z1 and Z3 merge and adopt a2 as its imputation ratio.
We establish that a system is s-stable if and only if it is of this form.

Theorem 2 A system (π, 	σ) is s-stable if and only if it is a generalized-cyclic sys-
tem. Furthermore, agent i’s payoff in any s-stable system is (1− a)ai−1.

Proof. Consider an arbitrary generalized-cyclic system (π, 	σ). Then, it is routinely
calculated that every agent i has a payoff of (1− a)ai−1. If a deviation (D, σ′) were
profitable relative to this system, then D would be profitable relative to a s-stable
symmetric K-cyclic system. Since this would be a contradiction to Proposition 3,
any generalized-cyclic system must be s-stable.

Next, to reach a contradiction, suppose there is a s-stable system (π, 	σ) that is
not a generalized-cyclic one. We proved earlier that all coalitions in any s-stable
system will consist of infinite members. Thus, there is an infinite coalition Zk that is
not of the form (17), so that for any two consecutively ranked members, their payoff
ratio in the system (π, 	σ) is constant at 	σk, but their payoff ratio in a symmetric
s-stable system, in which each agent i gets (1−a)ai−1, is not constant. Note that the
sum of the members’ payoffs of Zk is (1−a)θ(Zk) in (π, 	σ), and that in a symmetric
s-stable system is also

∑
i∈Zk

(1 − a)ai−1 = (1 − a)θ(Zk). Therefore, there must
exist a member of Zk, say j, whose payoff in the system (π, 	σ) is strictly lower than
(1− a)aj−1. This contradicts to (π, 	σ) being s-stable by Lemma 8.

5 Finite coalition size and segregation by clusters

Two questions that may independently interest the readers are: (1) what if coalitions
are forced to have a fixed finite size (for example, due to technology) and (2) how
can we reconcile our cyclic partition findings with the observed segregation by skills
(see, for example, Kremer and Maskin, 1996)? In this section we show that the
answers to these two questions are intimately connected: if we assume that each
coalition has to have a finite size M , then a set of strongly stable partitions exhibits
what we describe as “segregation by clusters”. After proving this phenomenon in
the next proposition, we will show that the empirical findings discussed in Kremer
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and Maskin (1996) and, to some extent, in the subsequent literature summarized,
for example, in Gavilan (2011), can be compatible with our framework.

Let us first describe what a “clustered cyclic-partition” is: πcM
K will denote a

partition where the entire population is divided in clusters of consecutive MK play-
ers in the ability ordering, where each cluster of MK consecutively ordered players
form K coalitions consisting of M members each, with the cyclic structure de-
scribed in the previous sections. For example, the clustered partition πcM

2 has players
1, 3, ..., 2M−1 in the first coalition, players 2, 4, ..., 2M in the second coalition, which
completes the first cluster; then the third coalition (and first coalition of the second
cluster consisting of two coalitions) has players 2M +1, 2M +3, ..., 4M − 1, and so
on. For brevity, we use “(M,K)-partition” to refer to the clustered cyclic-partition
πcM
K for M,K ≥ 2.

Proposition 4 Suppose every coalition must consist of M members where M is a
finite integer. Then, for each K ∈ N, the (M,K)-partition πcM

K described above,
together with an imputation ratio σ = aK for every coalition, constitutes an s-stable
system.

Proof. Normalize to 1 the fixed operational output that any coalition Z of size
M produces, so that the expected total surplus of Z is p(Z). (For simplicity, we
assume that a coalition of any other size produces zero output.) Then, the expected
payoff of an agent, say i, of rank r in the k-th coalition of cluster n ∈ N in the
(M,K)-partition, denoted by Zn,k, is

ui(Zn,k) = (1− a)θ(Zn,k)
(1− σ)σr−1

1− σM

= (1− a)
aMK(n−1)+k−1(1− aMK)

1− aK
(1− σ)σr−1

1− σM
(18)

where σ is the imputation ratio prevailing in the coalition Zn,k. Here, the second
equality follows from θ(Zn,k) = aMK(n−1)(ak−1+ak−1+K+· · ·+ak−1+(M−1)K). Observe
that this agent is agent i = MK(n − 1) + k + K(r − 1). From (18), this agent’s
expected payoff is (1 − a)aMK(n−1)+k+K(r−1)−1 when σ = aK . This means that the
players’ expected payoffs in (M,K)-partition when σ = aK are identical to those in
the symmetric K-cyclic system, i.e., player i’s expected payoff is (1− a)ai−1. Thus,
no deviation D (of size M) with any imputation ratio σ′ is profitable because the
total surplus of this deviation, (1− a)θ(D), is equal to the sum of expected payoffs
that members of D receive in the (M,K)-partition when σ = aK .

Having shown that imposing a finite size on coalitions would generate stable
partitions that display a form of segmentation/segregation, we can now make some
potentially interesting remarks about income inequality within and across firms.

First of all, lower K means that there are a smaller number of firms of size M in
each cluster (interpretable as an increase in concentration of each cluster). Hence,
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each firm is composed by agents who are closer to each other in ability, implying
reduced inequality between members within a firm. At the same time, it also means
that the firm-level income distribution is more widely dispersed, implying enlarged
inequality across firms in the economy.22 This is broadly consistent with the findings
about within-plant and between-plant inequality summarized in Gavilan (2011).

On the other hand, payoff equivalence continues to hold and thus, no change
in K can affect the skill premium. The skill premium (and hence the inequality
of income between people of different ability) depends only on technology and the
level of competition, which are fixed in our model. What we capture instead is the
fact that even if and when the skill premium is stable, one can still observe different
degrees of segmentation and a negative (positive) correlation between concentration
of clusters and inequality within firms (inequality across firms in the economy).

One final caveat: our aim in this section is only to show that our model is
compatible with theoretical and empirical statements made in other papers about
segregation and inequality if we assume that coalitions should have a finite size.
Thus, we do not offer a full characterization of all s-stable systems like in the pre-
vious section, since we believe that the connection between vertical inequality and
the number and composition of parties/firms should remain our main focus, and
studying this relationship required to allow for coalitions of an infinite size. We con-
jecture that if one attempts a full characterization of s-stable systems for coalitions
of a finite size, the result will require a notion of “generalized cyclic clusters” in line
with the generalized cyclic characterization result of the previous section.

6 Concluding Remarks

In this paper we have shown some important connections between vertical inequal-
ity within coalitions and the endogenous formation of coalition structures. In order
to best emphasize the connection, we have first characterized how different distri-
butions of abilities and different distributions of payoffs determine which coalition
structures can be stable. Then we have shown that when the level of vertical in-
equality is endogenous, partitions consisting of any number of coalitions can be
strongly stable, for any distribution of abilities in the considered class, as long as
intra-coalition payoff inequality allows every player to receive her marginal contri-
bution. Since in a cyclic partition the agent occupying a given rank in a coalition
must have lower ability when there are more coalitions, this implies that vertical
inequality must indeed increase in the number of coalitions.

We have ended the analysis by showing that if coalitions are forced to be of
a finite size, then there is an endogenous determination of clusters of coalitions,

22Taking the range of total surplus levels of all firms in the economy as a crude measure of
inequality across firms, for example, it is straightforward to see that it is higher for lower K in our
model.



24

displaying segregation and some interesting connections between concentration of
clusters and various notions of inequality.

One limitation of our model is that the value of a coalition does not depend on
the partition of the rest of the players, while, for example, in plurality rule elections
it makes a big difference for a coalition expecting 30 percent of the votes whether
the rest is divided into 7 small parties of 10 percent each or two other parties of
35 each. This limitation is not important when coalitions are expected to be of
similar strengths like in our cyclic partitions. If asymmetric coalition structures
could emerge in a modified model, then the value of a coalition should reflect these
asymmetries in the partition of others. An extension of the model in which the
relative power of any coalition depends not only on the ability of it’s members but
also on some other dimension, like the exogenous distribution of voters’ preferences,
is in our future research agenda.

We note that our cooperative game theoretic results have the potential to be im-
plementable and extendable in a dynamic stability setting like the one introduced
by Acemoglu, Egorov and Sonin (2008), since the lack of commitment that consti-
tutes their main tenet is conceptually or implicitly assumed even in our core-like
cooperative logic. A dynamic stability analysis would therefore be a natural next
step of this research, perhaps confirming that multiple steady states with different
coalition structures and, accordingly, with different vertical inequality levels, can
exist, in line with our Theorem 2.

A final remark or two about the potential empirical relevance of our findings are
in order: In the literature on the number of parties, for example, the leading hy-
potheses elaborated and tested have all to do with the electoral formula (Duverger’s
law and Duverger’s hypothesis), but it is well documented that even controlling for
the electoral formula the number of parties of different countries varies enormously
(think of India and the United States in the set of countries using a majoritarian
system and Ireland and Italy within the set of countries using a more proportional
system). Within each set of countries with homogeneous electoral institutions, one
could verify whether vertical inequality across the major ranks of each party is
indeed higher in countries with a larger number of stable parties. Similarly, divid-
ing the US production of goods and services in a number of categories, we could
evaluate income distribution across ranks in each industry or category and see if
higher hierarchical inequality is correlated with a lower concentration in the sector
(of course controlling for economies of scale and other relevant differences across
sectors). However, verifying or falsifying our theoretical result is not going to be
easy: first of all, Willis and Rosen (1979) rejected empirically the hypothesis that
the ability or talent that matter for distribution of wages can be one dimensional;
second, when evaluating in the aggregate, one could argue that increasing inequality
and increasing concentration are the trends, and this connection has been discussed
in the last section, but the model is too abstract to offer quantitative predictions.
Perhaps one place where our results on the relationship between number of firms and
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inequality could be verified is by looking at hierarchical inequality of research sci-
entists when comparing, for example, the pharmaceutical industry and the bio-tech
sector, in the latter sector of which there are many more firms and vertical inequal-
ity might possibly be proved to be higher. One place where one could look for the
relevance of our cyclic partition or cyclic cluster results could be the allocation of
researchers across universities, or the composition of sport teams, provided that ad-
equate data are available on the rankings of individuals based on a unidimensional
measurement of ability, as well as the rankings of universities and teams.23

Appendix

Proof of Lemma 3: Let o : Zk ∪ Zk′ → N be the ordering of agents in Zk ∪ Zk′ ,
i.e., o(j) = #{i ∈ Zk ∪Zk′ |i ≤ j}. Let � ≥ 1 be the number of agents in Zk who are
more able that the leader of Zk′ , denoted by ik′ . Using o−1(n) to denote the player
j such that o(j) = n, we have o−1(�) ∈ Zk and o−1(�+ 1) = ik′ ∈ Zk′ .

If Lemma 3 failed, two or more consecutively ordered agents in {i ∈ Zk ∪Zk′ |i ≥
ik′} would belong to the same coalition. To reach a contradiction, therefore, suppose
that there are integersm ≥ �+1 andm′ > m with the following property: all players
j ∈ Zk ∪Zk′ such that m ≤ o(j) ≤ m′ belong to the same coalition. Without loss of
generality, suppose m is the smallest such integer. We first consider the case that
they all belong to Zk, but the same argument works when they all belong to Zk′ as
well, as shown later.

By the waym is defined above, we have o−1(�+1) = ik′ ∈ Zk′ and o−1(�+2) ∈ Zk.
In the deviation (Zk ∪ {o−1(�+ 1)}) \ {o−1(�+ 2)}, i.e., when the player o−1(�+ 1)
replaces o−1(�+2) in Zk, all remaining members of Zk are strictly better off because
the coalition’s strength increased while their rankings remain the same. For the
original partition to be stable, therefore, player o−1(� + 1) should be worse off in
this deviation, i.e.,

(
θ(Zk) + ao

−1(�+1)−1 − ao
−1(�+2)−1

)
ρ� < θ(Zk′). (19)

Note that, by retaking m′ if necessary, we may assume o−1(m′+1) ∈ Zk′ . In the
deviation D = (Zk′∪{o−1(m′)})\{o−1(m′+1)}, all members of D∩Zk′ are better off
in D because θ(D) > θ(Zk′) while their rankings remain the same. Thus, the payoff
of player o−1(m′) in D, (θ(Zk′) + ao

−1(m′)−1 − ao
−1(m′+1)−1)(1− ρ)ρ(m−�)/2, should be

lower than that in Zk, θ(Zk)(1 − ρ)ρ�+(m−�)/2+m′−m−1, which is impossible because

23Even though the total ability criterion and the average ability criterion yield identical rankings
for teams that have a fixed finite size, complementing our total ability criterion with some other
criterion that puts some weight on other statistics could in principle be useful to capture more
realistically the case of unrestricted coalition size. This study would require a separate (most likely
computational) analysis, which we leave for future research.
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(19) implies that the former payoff level is higher than the latter as calculated below:

(θ(Zk′) + ao
−1(m′)−1 − ao

−1(m′+1)−1)ρ(m−�)/2 − θ(Zk)ρ
(m+�)/2+m′−m−1

>
(
θ(Zk) + ao

−1(�+1)−1 − ao
−1(�+2)−1

)
ρ(m+�)/2 + (ao

−1(m′)−1 − ao
−1(m′+1)−1)ρ(m−�)/2

−θ(Zk)ρ
(m+�)/2+m′−m−1

= θ(Zk)ρ
(m+�)/2(1− ρm

′−m−1) + (ao
−1(�+1)−1 − ao

−1(�+2)−1)ρ(m+�)/2

+(ao
−1(m′)−1 − ao

−1(m′+1)−1)ρ(m−�)/2 > 0

where the first inequality follows from (19).
For completeness, we now consider the alternative case that all players j ∈

Zk ∪Zk′ such that m ≤ o(j) ≤ m′ belong to Zk′ . In the deviation (Zk′ ∪ {o−1(�)}) \
{o−1(�+1)}, all remaining members of Zk′ is strictly better off because the coalition’s
strength increased while their rankings remain the same. For the original partition
to be stable, therefore, player o−1(�) should be worse off in this deviation, i.e.,

(
θ(Zk′) + ao

−1(�)−1 − ao
−1(�+1)−1

)
< θ(Zk)ρ

�−1. (20)

Note that we may assume m′+1 ∈ Zk without loss of generality. In the deviation
D = (Zk ∪ {o−1(m′)}) \ {o−1(m′ + 1)}, all members of D ∩ Zk are better off in D
because θ(D) > θ(Zk) while their rankings remain the same. Thus, the payoff of
player o−1(m′) in D, (θ(Zk) + ao

−1(m′)−1 − ao
−1(m′+1)−1)(1 − ρ)ρ�+(m−�−1)/2, should

be lower than that in Zk′ , θ(Zk′)(1−ρ)ρ(m−�−1)/2+m′−m, which is impossible because
(20) implies that the the former payoff level is higher than the latter as calculated
below:

(θ(Zk) + ao
−1(m′)−1 − ao

−1(m′+1)−1)ρ(m+�−1)/2 − θ(Zk′)ρ
(m−�−1)/2+m′−m

>
(
θ(Zk′) + ao

−1(�)−1 − ao
−1(�+1)−1

)
ρ(m−�+1)/2

+(ao
−1(m′)−1 − ao

−1(m′+1)−1)ρ(m+�−1)/2 − θ(Zk′)ρ
(m−�−1)/2+m′−m

=
(
θ(Zk′)(1− ρm

′−m−1) + ao
−1(�)−1 − ao

−1(�+1)−1
)
ρ(m−�+1)/2

+(ao
−1(m′)−1 − ao

−1(m′+1)−1)ρ(m+�−1)/2 > 0.

QED.

Proof of Theorem 1. The discussion up to (13) in the main text has been done
formally. Thus, recalling the definition of D∗ from (13), we now prove

[C] If an infinite deviation D is profitable relative to πc
K , then so is D∗.

Assume D∗ 
= D to avoid triviality. Let dj > h denote dj ∈ D such that rdj(D) =
rh(D) + j for j = 1, 2, · · · .

To reach a contradiction, suppose dj < h+ jK for some j ≥ 1. If dj ∈ Zk, then
rdj(Zk) < rh(Zk) + j so that edj = rdj(D) − rdj(Zk) > rh(D) − rh(Zk) = e∗ (since
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rdj(D) = rh(D) + j), a contradiction. If dj ∈ Zk′ where k′ > k, then an analogous
argument establishes that edj = rdj(D) − rdj(Zk′) > rh(D) − rh(Zk) = e∗, again a
contradiction. If dj ∈ Zk′ where k′ < k, then an analogous argument establishes
that edj = rdj(D)− rdj(Zk′) ≥ rh(D)− rh(Zk) = e∗, but this still is a contradiction
to selection of h described above, in particular, en < e∗ for all n ∈ Zk′ ∩D if k′ < k.

Thus, we have proved that dj ≥ h + jK for all j = 1, 2, · · · . Consequently,
when members d1, d2, · · · of D are replaced by h + K, h + 2K, · · · , respectively,
the winning probability of the deviation increases, i.e., p(D∗) > p(D). For players
in Dh, therefore, the payoffs are higher in D∗ than in D because the ranks do
not change. Since D being profitable means p(D)ρrh(D)−1 ≥ p(Zk)ρ

rh(Zk)−1 and
thus, p(D∗)ρrh(D)−1 > p(Zk)ρ

rh(Zk)−1, it further follows that p(D∗)ρrh+jK(D∗)−1 =
p(D∗)ρrh(D)−1+j > p(Zk)ρ

rh(Zk)−1+j = p(Zk)ρ
rh+jK(Zk)−1 for all j = 1, 2, · · · . This

means that D∗ is profitable, proving [C].
We now return to the proof of the Theorem. First, we ensure that the deviation

{1} ∪ ZK is not profitable: Since player 1 is better off in this deviation because
θ(ZK) + 1 > θ(Z1), we need that members of ZK would be strictly worse off, i.e.,

(θ(ZK) + 1)ρ < θ(ZK) ⇔ ρ < θ(ZK)/(θ(ZK) + 1) =
aK−1

1 + aK−1 − aK
, (21)

which is the second inequality of (7). Since the first inequality of (7) has already
been shown to be a necessary and sufficient condition for no “break-off” deviation
to be profitable, it remains to show that no other deviation is profitable if (7) holds.
Due to [B] and [C] above, we only need to verify non-profitability of deviations of
the form Df ∪ Zh

k for some h ∈ Zk, where Df ⊂ Nh−1 := {1, 2, · · · , h − 1}. Hence,
we focus on such deviations D below.

The following result proves useful:

[D] If D is profitable, 1 
∈ D and (7) holds, then {i − minD + 1|i ∈ D} is also
profitable.

To see this, first note that if minD 
∈ Z1 then D′ = {i− 1|i ∈ D} is also profitable
because (i) player i’s payoff in D is (1− a)θ(D)(1− ρ)ρri(D)−1 while that of player
i− 1 in D′ is (1− a)θ(D′)(1− ρ)ρri(D)−1 = (1− a)θ(D)(1− ρ)ρri(D)−1/a, and (ii) in
the cyclic K-partition πc

K , player i’s payoff is no lower than a times that of player
i− 1 (because θ(Zk) = θ(Zk+1)/a and a > ρ ≥ aK). Furthermore, if D is profitable
and minD ∈ Z1 \ {1}, then D′ = {i−K|i ∈ D} is also profitable. To see this, note
that (i) player i’s payoff in D is (1−a)θ(D)(1−ρ)ρri(D)−1 while that of player i−K
in D′ is (1− a)θ(D′)(1− ρ)ρri(D)−1 = (1− a)θ(D)(1− ρ)ρri(D)−1/aK , and (ii) in πc

K

the payoff of player i − K is 1/ρ times that of player i where 1/ρ ≤ 1/aK due to
ρ ≥ aK . Without loss of generality, therefore, we assume that 1 ∈ D for a profitable
D in the sequel.

To reach a contradiction, suppose there is a profitable deviationD = Df∪Zh
k � 1.

For player 1 to be no worse off in D, we must have θ(D) ≥ θ(Z1).
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First, consider the possibility that θ(Z1) ≤ θ(D) < θ(ZK) + 1. If player j ∈ D
is ranked strictly lower in D than in πc

K , i.e., rj(D) > rj(Zk), then j’s payoff in D
would be no higher than θ(D)(1−ρ)ρ ·ρrj(Zk)−1 < θ(Zk)(1−ρ)ρrj(Zk)−1 because (21)
implies that θ(D)ρ < (θ(ZK) + 1)ρ < θ(ZK) ≤ θ(Zk). Since this would mean player
j is worse off in D than in πc

K , we deduce that every player j ∈ D is ranked at
least as high in D as in πc

K . This, in turn, means that there are at most t players in
D∩{1, 2, · · · , tK} for every t ∈ N. The maximum possible θ-value of suchD is θ(Z1),
which is obtained only when D = Z1. Therefore, we conclude that no profitable
deviation exists of the form D = Df ∪ Zh

k such that θ(Z1) ≤ θ(D) < θ(ZK) + 1.
Hence, θ(D) ≥ θ(ZK) + 1 must hold. Then, consider D′ = D \ {1}. Any player

j ∈ D′ has a payoff of (1 − a)(θ(D) − 1)(1 − ρ)ρrj(D)−2 in D′, i.e., θ(D)−1
θ(D)ρ

times of

her payoff in D. Since θ(D)−1
θ(D)ρ

increases in θ(D), in conjunction with (21) we deduce

that θ(D)−1
θ(D)ρ

≥ θ(ZK)
(θ(ZK)+1)ρ

> 1. Thus, D′ is also profitable and consequently, so is

D′′ = {i − minD′ + 1|i ∈ D′} by [D]. Then, θ(D′′) ≥ θ(ZK) + 1 must hold for
the same reason that θ(D) ≥ θ(ZK) + 1 must hold as shown above. By recursively
applying analogous argument to D′′ and so on, we are bound to eventually come to
a contradictory conclusion that θ(Z1) ≥ θ(ZK) + 1 (because D = Df ∪ Zh

k for some
finite Df ). This completes the proof that πc

K is stable if and only if (7) holds.
The second part of the Theorem is proved in the main text. The third part

follows from the observation that

aK−1 − aK−1

1+aK−1−aK

aK−1 − aK
=

aK−1( aK−1−aK

1+aK−1−aK
)

aK−1 − aK
=

aK−1

1 + aK−1 − aK

converges uniformly to 0 as K → ∞ on [0, ā] for all ā < 1. QED.

Proof of Lemma 6: Suppose to the contrary that � ≥ 2 and y − x� = xj+1 −
xj = b ≥ 1 is constant for all j = 1, 2, · · · , � − 1, yet the partition πK is stable.
For notational ease, let x denote the most able agent in Zk, i.e., x = x1. Then,
xj = x + (j − 1)b for j ≤ �; and x� = y − b. Lemma 3 implies that each agent
i ∈ (x, x2) belongs to a distinct coalition. This means that k′ ≥ b + 1, so that
θ(Zk′) ≤ ay−1

1−ab+1 by Lemma 3 and thus, in particular,

θ(Zk′) <
ay−1

1− ab
. (22)

Furthermore, since Lemma 3 also implies, for every n ∈ N, that yn+1 − x�+n ≥ b
where yn+1 and x�+n are the agents with ranks n+ 1 and �+ n, respectively, in Zk′

and Zk, we deduce that

θ(Zk) ≥ ax−1 − ay−b−1

1− ab
+

θ(Zk′)

ab
. (23)
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For the deviation Zk \ {x, x2, · · · , x�−1} not to be profitable, we need

θ(Zk)ρ
�−1 ≥ θ(Zk)− ax−1 − ay−b−1

1− ab
⇔ ρ ≥

(θ(Zk)− ax−1−ay−b−1

1−ab

θ(Zk)

)1/(�−1)

. (24)

For the deviation Zk′ ∪ {x�} not to be profitable, on the other hand, we need either

θ(Zk′) ≥ (θ(Zk′) + ay−b−1)ρ ⇔ ρ ≤ θ(Zk′)

θ(Zk′) + ay−b−1
(25)

or

θ(Zk)ρ
�−1 ≥ (θ(Zk′) + ay−b−1) ⇔ ρ ≥

(θ(Zk′) + ay−b−1

θ(Zk)

)1/(�−1)

. (26)

In addition, for the deviation Zk′ ∪ {x, x+ b, · · · , x+ (�− 1)b} not to be profitable,
we need

θ(Zk′) >
(
θ(Zk′) +

ax−1 − ay−1

1− ab

)
ρ� ⇔ ρ <

( θ(Zk′)

θ(Zk′) +
ax−1−ay−1

1−ab

)1/�

. (27)

First, we show that (24) and (25) cannot hold simultaneously, by verifying that

θ(Zk)− ax−1−ay−b−1

1−ab

θ(Zk)
>

( θ(Zk′)

θ(Zk′) + ay−b−1

)�−1

(28)

holds subject to (22) and (23). If � = 2, a routine calculation verifies that (28)
holds unless (23) holds as an equality. In this latter case, (25) holds as equal-
ity, so that members of Zk′ are indifferent in the deviation Zk′ ∪ {x + b}; Agent
x + b is better off in this deviation since θ(Zk′) + ax+b−1 − θ(Zk)ρ = θ(Zk′) +

ax+b−1 − (ax−1 +
θ(Zk′ )
ab

)
θ(Zk′ )

θ(Zk′ )+ax+b−1 = (θ(Zk′) + ax+b−1)(1 − θ(Zk′ )
abθ(Zk′ )+ax+2b−1 ) > 0

because
θ(Zk′ )

abθ(Zk′ )+ax+2b−1 < 1 given that θ(Zk′) <
ax+2b−1

1−ab
by (22).

Thus, consider � > 2. Since the RHS of both (24) and (25) increase in θ(Zk) and
θ(Zk′), respectively, it suffices to show that (28) holds at the lower bound of θ(Zk)
given by (23), i.e., that

θ(Zk′)
ax+b−1−ay−1

1−ab
+ θ(Zk′)

>
( θ(Zk′)

θ(Zk′) + ay−b−1

)�−1

, (29)

or equivalently, by taking log and subtracting, that

Δ := log
( θ(Zk′)

ax+b−1−ay−1

1−ab
+ θ(Zk′)

)
− (�− 1) log

( θ(Zk′)

θ(Zk′) + ay−b−1

)
> 0 (30)
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for all feasible θ(Zk′) as per (22). Given that x+�b = y, a routine calculation verifies
that Δ = 0 when θ(Zk′) = ay−1/(1− ab), the upper bound of θ(Zk′) by (22). Thus,
it suffices to show that the derivative of Δ wrt θ(Zk′),

Δ′ =
(a

x+b−1−ay−1

1−ab
)B − (�− 1)ay−b−1A

θ(Zk′)AB
(31)

is strictly negative for all θ(Zk′) < ay−1/(1− ab), where

A =
ax+b−1 − ay−1

1− ab
+ θ(Zk′) and B = ay−b−1 + θ(Zk′). (32)

Using y = x + �b, it is routinely calculated that the top line of Δ′, evaluated at
θ(Zk′) = ay−1/(1 − ab), is ax+y−2(1 − ab)−1

(
1 − ab(�−1) − (� − 1)(1 − ab)

)
. This is

easily verified to be negative because
(
1− ab(�−1) − (�− 1)(1− ab)

)
increases in a to

a value of 0 when a = 1. (The derivative of it is b(� − 1)(ab−1 − ab(�−1)−1) > 0). It
now therefore suffices to show that the derivative of the top line of Δ′ wrt θ(Zk′),
denoted by Δ′′ by a slight abuse of notation, is positive for all θ(Zk′) < ay−1/(1−ab).

Observe that

Δ′′ =
ax−1

ab − 1

(
ab�−ab−ab(�−1)(�−1)(ab−1)

)
=

αax−1

α− 1

(
α(�−1)−1−α(�−2)(�−1)(α−1)

)

(33)
where α = ab. Hence, it boils down to showing that f(α) = α(�−1) − 1− α(�−2)(�−
1)(α − 1) < 0 for all α ∈ (0, 1), which is the case because f ′(α) = −α�−3(α −
1)(� − 1)(� − 2) > 0 and f(1) = 0. This proves that (24) and (25) cannot hold
simultaneously.

This means that (26) must hold. Then, since θ(Zk) < θ(Zk′) +
ax−1−ay−1

1−ab
, (27) is

inconsistent with (26) if

( θ(Zk′) + ay−b−1

θ(Zk′) +
ax−1−ay−1

1−ab

)�

≥
( θ(Zk′)

θ(Zk′) +
ax−1−ay−1

1−ab

)�−1

(34)

for all θ(Zk′) < ay−1/(1− ab), or equivalently, by taking log and subtracting, if

Δ̃ := � log[θ(Zk′) + ay−b−1]−log[θ(Zk′) +
ax−1 − ay−1

1− ab
]−(�−1) log[θ(Zk′)] ≥ 0. (35)

Since it is routinely calculated that Δ̃ = 0 when θ(Zk′) = ay−1/(1−ab) as before,
to establish (34) it suffices to show that the derivative of Δ̃ with respect to θ(Zk′),
denoted by Δ̃′, is negative, i.e.,

Δ̃′ =
�

θ(Zk′) + ay−b−1
− 1

θ(Zk′) +
ax−1−ay−1

1−ab

− (�− 1)
1

θ(Zk′)
(36)

= C · 1

θ(Zk′)
≤ 0 for all 0 < θ(Zk′) < ay−1/(1− ab) (37)
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where C =
�θ(Zk′ )

θ(Zk′ )+ay−b−1 − θ(Zk′ )
θ(Zk′ )+

ax−1−ay−1

1−ab

+ 1 − �. Observe that solving C = 0

for θ(Zk′) produces a unique solution because the term containing θ(Zk′)
2 vanishes.

Hence, it suffices to show that the value of C is negative at both boundary points of
θ(Zk′). The value of C is 1−� < 0 at θ(Zk′) = 0. The value at θ(Zk′) = ay−1/(1−ab),
calculated to be 1− ay−x− �(1− ab), is also negative because it is 0 when a = 1 and
the derivative of 1− ay−x − �(1− ab) with respect to a is −(y− x)ay−x−1 + b�ab−1 =
−b�(ab�−1− ab−1) > 0 for a ∈ (0, 1) where the equality follows from y = x+ b�. This
establishes that (27) is inconsistent with (26) for relevant values of θ(Zk′), which
completes the proof. QED.
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Coalitions and Post-election Bargaining,” Mimeo.

[5] Banerjee, S., H. Konishi and T. Sömnez (2001): “Core in a Simple Coalition
Formation Game,” Social Choice and Welfare, 18, 135-53.

[6] Bogomolnaia A, and M.O. Jackson (2002): “The Stability of Hedonic Coalition
Structures,” Games and Economic Behavior, 38, 201-30.

[7] Casella, A. (2001): “The Role of Market Size in the Formation of Jurisdictions”,
Review of Economic Studies, 68, 83-108.

[8] Casella, A. and J. Feinstein (2002): “Public Goods in Trade: On the Formation
of Markets and Jurisdictions”, International Economic Review, 43, 437-62.

[9] Damiano, E., Hao Li, and W. Suen (2010): “First in Village or Second in
Rome?” International Economic Review, 51, 263-88.

[10] Dhillon, Amrita (2005): “Political parties and coalition formation.” In: G De-
mange, G and M.Wooders, M. (Eds), Group formation in economics: Networks,
Clubs and Coalitions, Cambridge University Press, New York, 289-311.



32

[11] G. Demange (1994): “Intermediate preferences and stable coalition structures,”
Journal of Mathematical Economics, 23, 45-58.

[12] Ellickson, B. (1973): “A Generalization of the Pure Theory of Public Goods,”
American Economic Review, 63, 417-32.

[13] Ellickson, B., B. Grodal, S. Scotchmer and W.R. Zame (1999): “Clubs and the
Market,” Econometrica, 67, 1185-217.

[14] Farrell, J., and S. Scotchmer (1988): “Partnerships”, Quarterly Journal of
Economics, 10, 279-97.

[15] Garicano, L., and E. Rossi-Hansberg (2006): “Organization and Inequality in
a Knowledge Economy,” Quarterly Journal of Economics, 121, 1383-1435.

[16] Gavilan, A. (2009): “Wage Inequality, Segregation by Skill and the Price of
Capital in an Assignment Model,” mimeo.

[17] Greenberg, J., and S. Weber (1986): “Strong Tiebout Equilibrium under Re-
stricted Preferences Domain,” Journal of Economic Theory, 38, 101-117.

[18] Guesnerie, R., and C. Oddou (1981): “Second best taxation as a game,” Journal
of Economic Theory, 25, 67-91.

[19] Herrera, H., and M. Morelli (2010): “Turnout and Power Sharing,” mimeo.

[20] Jehiel, P., and S. Scotchmer (2001), “Constitutional Rules of Exclusion in Ju-
risdiction Formation”, Review of Economic Studies 68, 393-413.

[21] Konishi, H., Le Breton, M., and S. Weber (1998): “Equilibrium in a Finite
Local Public Goods Economy,” Journal of Economic Theory, 79, 224-244.

[22] Kremer, M. and E. Maskin (1996): “Wage Inequality and Segregation by Skill,”
NBER w.p. 5718.

[23] Le Breton, M., Ortuno-Ortin and S. Weber (2008): “Gamson’s Law and Hedo-
nic Games,” Social Choice and Welfare, 30, 57-67.

[24] Legros, P., and A. Newman (1996): “Wealth Effects, Distribution, and the
Theory of Organization,” Journal of Economic Theory, 70, 312-41.

[25] Levy, G. (2004): “A model of political parties,” Journal of Economic theory,
115, 250-77.

[26] Mattozzi, A., and A. Merlo (2010): “Mediocracy”, mimeo, University of Penn-
sylvania and Universitat Autonoma de Barcelona.



33

[27] Milchtaich, I., and E. Winter (2002): “Stability and Segregation in Group
Formation,” Games and Economic Behavior, 38, 318-46.

[28] Morelli, M. (2004): “Party Formation and Policy Outcomes under Different
Electoral Systems,” Review of Economic Studies, 71, 829-853.

[29] Persico, N., J.C. Rodriguez and D. Silverman (2008): “Factions and Political
Competition”, mimeo, New York University.

[30] Scarf, H.E. (1967): “The Core of N Person Game,” Econometrica, 35, 50-69.

[31] Tiebout, C.M. (1956): “A Pure Theory of Local Expenditures,” Journal of
Political Economy, 64, 416-24.

[32] Watts, A. 2007.: “Formation of Segregated and Integrated Groups,” Interna-
tional Journal of Game Theory, 35, 505-19.

[33] Westhoff, F. (1977): “Existence of Equilibria in Economies with a Local Public
Good,” Journal of Economic Theory, 14, 84-112.

[34] Willis, R., and S. Rosen (1979): “Education and Self-Selection,” Journal of
Political Economy, 87, S7-36.

[35] Wooders, M. (1978): “Equilibria, the Core, and Jurisdiction Structures in
Economies with a Local Public Good,” Journal of Economic Theory, 18, 328-
48.

[36] Yi, S. (1996): “Endogenous formation of customs unions under imperfect com-
petition: open regionalism is good” Journal of International Economics, 41,
153-177.

[37] Zame, W.R. (2007): “Incentives, Contracts, and the Markets: a General Equi-
librium Theory of Firms,” Econometrica, 75, 1453-500.



34

Supplementary Material:
An elaboration of the proof of Proposition 2

We start with a lemma:

Lemma A. Let πK = {Z1, Z2, · · · , ZK} be a stable K-partition with coalitions
labelled according to the most able members’ abilities: ik < ik′ for 1 ≤ k < k′ ≤ K
(where ik is the most able member of Zk). Suppose ability ordering applies to all
agents i ≤ M for some M > iK . For Zk, Zk′ ∈ πK where k < k′, we have (i)
θ(Zk) > θ(Zk′) and (ii) all agents in {i ∈ Zk ∪ Zk′ |ik′ ≤ i ≤ M} alternate between
Zk′ and Zk as they go down the ability order.

Proof. (a) That θ(Zk) > θ(Zk′) is straightforward by the same reasoning as used in
the proof of Lemma 2. The second part follows from an argument analogous to the
proof of Lemma 3 as detailed below.

Let o : Zk ∪ Zk′ → N be the ability ordering of agents in Zk ∪ Zk′ , i.e., o(j) =
#{i ∈ Zk ∪ Zk′ |i ≤ j}. Let � ≥ 1 be the number of agents in Zk who are more able
that the leader of Zk′ , denoted by ik′ . Using o−1(n) to denote the player j such that
o(j) = n, we have o−1(�) ∈ Zk and o−1(�+ 1) = ik′ ∈ Zk′ .

If assertion (ii) did not hold, two or more consecutively ordered agents in {i ∈
Zk∪Zk′ |ik′ ≤ i ≤ M} would belong to the same coalition. To reach a contradiction,
therefore, suppose that there are integers m > � and m′ > m with the following
property: o−1(m′) ≤ M and all players j ∈ Zk∪Zk′ such that m ≤ o(j) ≤ m′ belong
to the same coalition. Without loss of generality, suppose m is the smallest such
integer. We discuss the case that they all belong to Zk below. The same argument
works when they all belong to Zk′ as well (which we omit here).

By the waym is defined above, we have o−1(�+1) = ik′ ∈ Zk′ and o−1(�+2) ∈ Zk.
In the deviation (Zk ∪ {o−1(�+ 1)}) \ {o−1(�+ 2)}, i.e., when the player o−1(�+ 1)
replaces o−1(�+2) in Zk, all remaining members of Zk are strictly better off because
the coalition’s strength increased while their rankings remain the same. For the
original partition to be stable, therefore, player o−1(� + 1) should be worse off in
this deviation, i.e.,

(
θ(Zk) + ao

−1(�+1)−1 − ao
−1(�+2)−1

)
ρ� < θ(Zk′). (38)

Without loss of generality, we may assume that either o−1(m′ + 1) ∈ Zk′ or
o−1(m′ + 1) > M . Consider the first case that o−1(m′ + 1) ∈ Zk′ . In the deviation
D = (Zk′ ∪ {o−1(m′)}) \ {o−1(m′ + 1)}, all members of D ∩ Zk′ are better off in D
because θ(D) > θ(Zk′) while their rankings remain the same. Thus, the payoff of
player o−1(m′) in D, (θ(Zk′) + ao

−1(m′)−1 − ao
−1(m′+1)−1)(1 − ρ)ρ(m−�)/2, should be

lower than that in Zk, θ(Zk)(1 − ρ)ρ�+(m−�)/2+m′−m−1, which is impossible because
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(38) implies that the former payoff level is higher than the latter as calculated below:

(θ(Zk′) + ao
−1(m′)−1 − ao

−1(m′+1)−1)ρ(m−�)/2 − θ(Zk)ρ
(m+�)/2+m′−m−1

>
(
θ(Zk) + ao

−1(�+1)−1 − ao
−1(�+2)−1

)
ρ(m+�)/2 + (ao

−1(m′)−1 − ao
−1(m′+1)−1)ρ(m−�)/2

−θ(Zk)ρ
(m+�)/2+m′−m−1

= θ(Zk)ρ
(m+�)/2(1− ρm

′−m−1) + (ao
−1(�+1)−1 − ao

−1(�+2)−1)ρ(m+�)/2

+(ao
−1(m′)−1 − ao

−1(m′+1)−1)ρ(m−�)/2 > 0

where the first inequality follows from (38).
Next, consider the other case that o−1(m′ + 1) > M . Let L > M be the player

who is ranked highest among all {i ∈ Zk′ |i > M}, i.e., her rank in Zk′ is (m−�)/2+1.
In the deviation D = (Zk′ ∪ {o−1(m′)}) \ {L}, all members of D ∩Zk′ are better off
in D because θ(D) > θ(Zk′) while their rankings remain the same. Thus, the payoff
of player o−1(m′) in D, (θ(Zk′) + ao

−1(m′)−1 − aL−1)(1− ρ)ρ(m−�)/2, should be lower
than that in Zk, θ(Zk)(1 − ρ)ρ�+(m−�)/2+m′−m−1, which is impossible because (38)
implies that the former payoff level is higher than the latter by the same calculation
as above (with o−1(m′ + 1) replaced with L).

We now turn to the proof of Proposition 2. Suppose there is a stableK-partition,
πK , with reversed rankings within coalitions. Let M be arbitrarily large integer such
that there are two agents in {i ≤ M} such that they are reversely ranked within the
same coalition. For each coalition Zk ∈ πK , find the most able agent i ∈ Zk whose
rank in Zk is strictly lower than her ability ranking in Zk, i.e., i’s rank in Zk is
strictly lower than #{j ∈ Zk|j ≤ i}, and switch the ranks of player i and the player
who is currently assigned to the rank #{j ∈ Zk|j ≤ i}. By the reasoning in the first
paragraph of the proof of Proposition 2, the partition with the switched ranking
is stable. Continue this process until all agents in {j ∈ Zk|j ≤ M} are ranked at
#{j ∈ Zk|j ≤ i}. Within a finite number of switching this process completes and
produces a new ranking of the same partition πK that satisfies ability ranking for
all agents i ≤ M , denoted by πM

K , which is stable. Without loss of generality, we
label coalitions in πM

K according to the best member’s abilities.
In πM

K , by Lemma A (ii), no two consecutively ranked agents in {i|i2 ≤ i ≤ M}
belong to the same coalition, where i2 is the leader of the coalition Z2. By Lemma
7, these agents must have been ability ordered in the original ranking. Hence, the
only remaining possibility of reverse ranking in the original ranking is that i2 > 2
and some agents in {i ∈ Z1|i ≤ i2} were reverse ranked.

Thus, let � = i2 − 1 be the number of agents in Z1 who are more able than i2.
Let y = i2 for notational ease. In πM

K , all agents i ≤ M are ability ordered. Consider
Z�

1 = {i ∈ Z1|i ≥ �}. If agents in Z�
1∪Z2 do not alternate their memberships between

Z1 and Z2 as they go down the ability order, then one can find large enough M ′ such
that πM ′

K is not stable by Lemma A (i.e., find M ′ such that there are two agents in
adjacent ability ranking in Z�

1 ∪ Z2 that belong to the same coalition). Since this
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would contradict the earlier observation that stability is preserved after switching
the ranks of two agents who were initially reversed ranked, we deduce that all agents
in Z�

1∪Z2 alternate their memberships between Z1 and Z2 as they go down the ability

order. This means that θ(Z1) ≥ 1−a�−1

1−a
+ θ(Z2)/a, i.e., (23) holds for the current

case, namely, x = 1, b = 1, so that y = � + 1. Hence, since the proof of Lemma
6 is independent of the ranking of agents i > i2, it can be established that πM

K is
not stable by the same argument. Since this would contradict the earlier assertion
that πM

K is stable, we conclude that i2 = 2. Since this in turn would contradict the
earlier finding that i2 > 2, we reach a final conclusion that our initial supposition
was wrong that a stable K-partition, πK , had reversed rankings within coalitions,
completing the proof.



 

 

 




