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ABSTRACT 

The present study builds upon the seminal work of Engel and West [2005, Journal of Political Economy 113, 

485-517] and in particular on the relationship between exchange rates and fundamentals. The paper 

discusses the well-known puzzle that fundamental variables such as money supplies, interest rates, outputs 

etc. provide help in predicting changes in floating exchange rates. It also tests the theoretical result of Engel 

and West (2005) that in a rational expectations present-value model, the asset price manifests near–random 

walk behaviour if the fundamentals are I(1) and the factor for discounting future fundamentals is near one. 

The study explores the direction and nature of causal interdependencies and cross-correlations among the 

most widely traded currencies in the world, their country-specific fundamentals and their US-differentials. 

A new VAR/VECM-GARCH multivariate filtering approach is implemented, whilst linear and nonlinear 

non-causality is tested on the time series. In addition to pairwise causality testing, several different 

groupings of variables are explored. The methodology is extensively tested and validated on simulated and 

empirical data. The implication is that although exchange rates and fundamentals appear to be linked in a 

way that is broadly consistent with asset-pricing models, there is no indication of a prevailing causal 

behaviour from fundamentals to exchange rates or vice-versa. When nonlinear effects are accounted for, the 

evidence implies that the pattern of leads and lags changes over time. These results may influence the 

greater predictability of currency markets. Overall, fundamentals may be important determinants of FX 

rates, however there may be some other unobservable variables driving the currency rates that current asset-

pricing models have not yet captured. 
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1. INTRODUCTION  

In their seminal work Engel and West (2005) deal with the long-standing puzzle in 

international economics, i.e., the difficulty of linking floating exchange rates to macroeconomic 

fundamentals. It might well be that the exchange rate is determined by such fundamental 

variables, but in many occasions FX rates are in fact well approximated as random walks. Meese 

and Rogoff (1983a, 1983b) first established the result that fundamental variables do not help 

predict future changes in exchange rates. They evaluated the out-of-sample behaviour of several 

models of exchange rates, using data from the 1970s. They found that forecast accuracy generally 

increased when the assumption of unchanged exchange rate was employed, compared to the 

predictions from the exchange rate models. While a large number of studies have subsequently 

claimed to find success for various versions of fundamentals-based models, sometimes at longer 

horizons and over different time periods, the success of these models has not proved to be robust. 

Cheung et al. (2002) show that no particular model/specification is very successful and conclude 

that it may be that one model will do well for one exchange rate, and not for another. Engel and 

West (2005) show analytically that in a rational expectations present-value model, an asset price 

manifests near–random walk behaviour if fundamentals are ( )I 1  and the factor for discounting 

future fundamentals is near one. They also argue that the data do exhibit a related link suggested 

by standard models and that the exchange rates help predict fundamentals. The implication is that 

exchange rates and fundamentals are linked in a way that is broadly consistent with asset-pricing 

models of the exchange rate. 

The present study builds upon the seminal work of Engel and West (2005), and in 

particular on the relationship between exchange rates and fundamentals. In this paper a new line 

of attack is taken on the question of linear and nonlinear causality and co-movement between FX 

rates and fundamentals. The conventional class of asset-pricing models of Engel and West (2005) is 

utilized, in which the exchange rate is the expected present discounted value of a linear 

combination of observable fundamentals and unobservable shocks. Linear driving processes are 

posited for fundamentals and shocks. In their work Engel and West (2005) present a theorem 

concerning the behaviour of an asset price determined in a present-value model. They show that 

in the class of present-value models, asset prices will follow a process arbitrarily close to a random 
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walk if at least one forcing variable has a unit autoregressive root and the discount factor is near 

unity. So, in the limit, as the discount factor approaches unity, the change of the asset price in time 

t will be uncorrelated with information known at time t-1. Hence, as the discount factor 

approaches unity the model puts relatively more weight on fundamentals far into the future in 

order to estimate the asset price. Transitory shocks in the fundamentals become less important 

than the permanent components. As the discount factor approaches one, the variance of the 

change of the discounted sum of the random walk component approaches infinity, whereas the 

variance of the change of the stationary component approaches a constant. Whether a discount 

factor of 0.9 or 0.99 is required to deliver a process statistically indistinguishable from a random 

walk depends on the sample size used to test for random walk behaviour and the entire set of 

model parameters. Engel and West (2005) present some correlations calculated analytically in a 

simple stylized model. This study begins by presenting correlations estimated from simulations 

based on the simple stylized model of Engel and West (2005). A simple univariate process for 

fundamentals is assumed, with parameters chosen to reflect data from recent floating periods and 

discount factors from 0.5 to 0.95, the latter of which suffice to yield near-zero correlations between 

the period t and t-1. An attempt is made to verify the theoretical conclusion of Engel and West 

(2005) that large discount factors account for random walk behaviour in exchange rates.  

Moreover, the important question of model validation arises from the FX rate 

unpredictability implied by the random walk behaviour of the present-value models. Surely much 

of the short-term fluctuation in FX rates is driven by changes in expectations about the future. 

Assuming that the models are good approximations and that expectations reflect information 

about future fundamentals, the exchange rate changes will be useful in forecasting these 

fundamentals. In other words, exchange rates Granger-cause the fundamentals. Engel and West 

(2005) find a unidirectional Granger causality from exchange rates to fundamentals and a far 

weaker causality from fundamentals to exchange rates. Overall, the statistical significance of the 

predictability is not uniform and suggests a link between exchange rates and fundamentals that 

perhaps is modest in comparison with the links among other economic variables. In this study the 

validity of Engel and West (2005) results is investigated as well as implications are discussed of a 

possible unidirectional causality running from exchange rate to fundamentals and vice-versa, or of 
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a dynamic bi-directional causality. The plausibility of their conclusions is explored also in terms of 

cointegration detection and application of nonlinear forecasting models (Taylor et al., 2001; Kilian 

and Taylor 2003). Evidence is provided in the literature of forecasting changes in exchange rates at 

longer horizons using nonlinear methods. MacDonald and Taylor (1994), Chinn and Meese (1995) 

and Mark (1995) have all reported success in forecasting FX rates at longer horizons imposing 

long-run restrictions from monetary models. Groen (2000) and Mark and Sul (2001) find greater 

success using panel methods. Kilian and Taylor (2003) suggest that models which incorporate 

nonlinear mean reversion can improve the forecasting accuracy of fundamentals models, though it 

proved difficult to detect the improvement in out-of-sample forecasting exercises. Thus, it seems 

natural to pursue the question of whether exchange rates can forecast fundamentals. This paper 

investigates the validity of the results in Engel and West (2005) also in the direction of possible 

forecasting applications.  

In regard to causality detection, the Granger test (Granger, 1969) is used as a benchmark in 

the literature. Basically, it assumes a parametric linear, time series model for the conditional mean. 

However, this test is sensitive only to causality in the conditional mean while covariables may 

influence the conditional distribution of the time series in nonlinear ways. Baek and Brock (1992) 

noted that parametric linear Granger causality tests have low power against certain nonlinear 

alternatives. In view of this, nonparametric techniques have been applied with success because 

they place direct emphasis on prediction without imposing a linear functional form. The test by 

Hiemstra and Jones (1994) which is a modified version of the Baek and Brock (1992) test is 

regarded as a test for a nonlinear dynamic causal relationship. This test is employed in the present 

project in order to detect the direction and nature of causalities between exchange rates and 

fundamentals. 

The research methodology in this paper incorporates theoretical implications, extensive 

simulations and empirical applications. Based on the simple stylized model of Engel and West 

(2005) and via Monte Carlo simulations, the correlation structure between fundamentals and 

exchange rates for various discount factors is revealed. First, an attempt is made to confirm the 

theoretical conclusion of Engel and West (2005) that large discount factors lead to random walk 

behaviour in exchange rates. Then, the direction and nature of causalities (linear or nonlinear) 
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among the different exchange rates is investigated using levels, returns and a second-moments 

measure (conditional volatility), both on the simulation-driven and empirical time series. The 

empirical study examines the most liquid and widely traded currencies in the world (also known 

as “FX majors”) as well as the outdated German mark. Many country-specific fundamental drivers 

are explored including money, consumer price index, interest rate, industrial production etc., as 

well as their differentials with the US.  

The rest of the paper is organized as follows. Section 2 briefly reviews the linear Granger 

causality framework and provides a description of the nonparametric test for nonlinear causality. 

Section 3 presents a new multivariate VAR/VECM-GARCH filtering approach for causality 

detection. In section 4, extensive Monte Carlo simulations are presented based on the stylized 

model of Engel and West (2005). Section 5 describes the data and section 6 presents the empirical 

results. Finally, section 7 summarizes and concludes. 

 

2. CAUSALITY TESTING 

In this study linear and nonlinear causality detection is performed via the Granger test and 

the modified Baek-Brock (1992) test, respectively. The conventional approach of causality testing is 

based on the Granger test (Granger, 1969), which assumes a parametric, linear model for the 

conditional mean. This specification is simple and appealing as the test is reduced to determining 

whether the lags of one examined variable enter into the equation of the other, albeit it requires 

the linearity assumption. In this setup, vector autoregressive residuals are sensitive only to 

causality in the conditional mean while co-variables may affect the conditional distribution in 

nonlinear patterns. Baek and Brock (1992) noted that the parametric linear Granger causality test 

has low power against certain nonlinear alternatives or higher moments. As a result, 

nonparametric causality tests have been proposed in the literature directly emphasizing on 

prediction without imposing a linear functional form. Hiemstra and Jones (1994) proposed a 

modified Baek-Brock test. It is a causality-in-probability test for nonlinear dynamic relationship 

which is applied to the residuals of vector autoregressions and it is based on the conditional 

correlation integrals of lead–lag vectors of the variables. This test relaxes Baek and Brock’s 

assumption of i.i.d time series and instead allows each series to display weak (or short-term) 

temporal dependence. It can detect the nonlinear causal relationship between variables by testing 
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whether past values influence present and future values. In what follows, the two causality tests 

are formally described. 

 

2.1 Granger causality test 

The linear Granger causality test (Granger, 1969) is based on a reduced-form vector 

autoregression (VAR) model. If 
1
,...,

t t t
y y =   

y
ℓ

 is the vector of endogenous variables and ℓ  the 

number of lags, the VAR( ℓ )  model is given by 

1
t s t s t

s

ε
−

=

= Φ +∑y y
ℓ

      (1) 

where 
s

Φ  is the ×ℓ ℓ  parameter matrix and 
t
ε  the residual vector, for which ( )  

t
E ε = 0 and 

'    
( )  

      t s

t s
E

t s
ε
ε

ε ε
  = =  
 ≠  
0

. In case of the stationary time series { }tx ,{ }ty  the bivariate VAR is 

                 ,

,

( ) ( )
       1,2,...,

( ) ( )
t t t x t

t t t y t

x x y
t N

y x y

ε

ε

= Φ + Χ +
=

= Ψ + Ω +

ℓ ℓ

ℓ ℓ
     (2)  

where ( ), ( ), ( )Φ Χ Ψℓ ℓ ℓ  and ( )Ω ℓ  are lag polynomials with roots outside the unit circle and the error 

terms are i.i.d. processes with zero mean and constant variance. The test whether y  strictly 

Granger causes x  is simply a test of the joint restriction that all coefficients of the lag polynomial 

( )Χ ℓ  are zero, whilst a test of whether x  strictly Granger causes y  is a test regarding ( )Ψ ℓ . In the 

unidirectional case the null hypothesis of no Granger causality is rejected if the exclusion 

restriction is rejected, whereas if both ( )Χ ℓ  and ( )Ψ ℓ  joint tests for significance are different from 

zero the series are bi-causally related. However, in order to explore possible effects of 

cointegration a vector autoregression model in error correction form (Vector Error Correction 

Model-VECM) is estimated using the methodology developed by Engle and Granger (1987) and 

expanded by Johansen (1988) and Johansen and Juselius (1990). The bivariate VECM model has 

the following form 

    
1 1 1 ,

2 1 1 ,

1  ( ) ( )
   1, 2, ...,

1  ( ) ( )

T

t t t t t x t

T

t t t t t y t

x p y x x y

t N

y p y x x y

λ ε

λ ε

− − ∆

− − ∆

     ∆ = − − ⋅ + Φ ∆ + Χ ∆ +        
=

     ∆ = − − ⋅ + Ψ ∆ + Ω ∆ +        

ℓ ℓ

ℓ ℓ

      (3)  
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where 1 λ −  
  the cointegration row-vector and λ  the cointegration coefficient. Thus, in case of 

cointegrated time series { }tx  and { }ty  linear Granger causality should be investigated on ( )Χ ℓ  

and ( )Ψ ℓ  via the VECM specification.  

 

2.2 Nonparametric nonlinear causality test 

Let 
1t−

Θ  denote an information set and ( )1t t
F x

−
Θ  the conditional probability distribution 

of 
t
x  given the information set 

1t−
Θ , which consists of an 

x
L -length lagged vector of 

t
x , 

( )1 1
, ,...,x

x xx

L

t L t L tt L
x x x

− − + −−
≡x  and an 

y
L -length lagged vector of 

t
y , 

( )1 1
, ,...,y

y yy

L

t L t L tt L
y y y

− − + −−
≡y . Hiemstra and Jones (1994) tested the following null hypothesis for 

a given pair of lags 
x
L  and 

y
L   

   ( )0 1 1
: y

y

L

t t t t t L
H F x F x

− − −

 Θ = Θ −   
y      (4)  

Denoting the m -length lead vector of ( )1 1
, , ...,m

t t t t m
x x x

+ + −
≡x ,  for t ∈ Z , the claim made by 

Hiemstra and Jones (1994) is that the null hypothesis given in Eq. (4) implies for all 0ε >  

       

,

                          

                         

y yx x

x x y y

x x

x x

l Ll Lm m

t s t L s L t L s L

l Lm m

t s t L s L

P

P

ε ε ε

ε ε

− − − −

− −

  − < − < − <   
 = − < − <   

x x x x y y

x x x x      (5)  

For the time series of realizations { }tx  and { }ty , 1,...,t T= , the nonparametric test consists of 

choosing a value for ε  typically in 0.5,  1.5 
   after unit variance normalization, and testing Eq. (5) 

by expressing the conditional probabilities in terms of the corresponding ratios of joint 

probabilities  

            

( )

( )

( )

( )

1

2

3

4

, , ,

, , ,

,

,

y yx x

x x y y

y yx x

x x y y

x x

x x

x x

x x

L Lm L m L

x y t L s L t L s L

L LL L

x y t L s L t L s L

m L m L

x t L s L

L L

x t L s L

C m L L P

C L L P

C m L P

C L P

ε ε ε

ε ε ε

ε ε

ε ε

+ +

− − − −

− − − −

+ +

− −

− −

 + ≡ − < − <   
 ≡ − < − <   

 + ≡ − <   
 ≡ − <   

x x y y

x x y y

x x

x x

       (6)  

Thus, Eq. (5) can be formulated as 
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( )

( )
( )

( )
1 3

42

, , ,

,, ,

x y x

xx y

C m L L C m L

C LC L L

ε ε

εε

+ +
=        (7)  

Using correlation-integral estimators and under the assumptions that { }tx  and { }ty  are strictly 

stationary, weakly dependent and satisfy the mixing conditions of Denker and Keller (1983), 

Hiemstra and Jones (1994) showed that  

                
( )

( )
( )

( )
( )( )1 3 2

42

, , , , ,
0, , , ,

, ,, , ,

x y x

x y

xx y

C m L L n C m L n
n N m L L

C L nC L L n

ε ε
σ ε

εε

 + +   −    

∼      (8)  

with ( )2 , , ,
x y

m L Lσ ε  as given in an appendix. One-sided critical values are used based on this 

asymptotic result, rejecting when the observed value of the test statistic in Eq. (8) is too large.  

 

3. VAR/VECM-GARCH FILTERING 

This study presents a multi-step methodology for examining dynamic relationships 

between exchange rates and fundamentals as well as among exchange rates. Initially, the 

nonlinear and linear dynamic linkages are explored through the application of the nonparametric 

nonlinear test, and the Granger causality test after controlling for cointegration. Then, after 

filtering the series using the properly specified VAR or VECM model, the residuals are examined 

by the modified Baek-Brock test. In addition to applying the usual bivariate VAR or VECM model 

to each pair of time series, residuals of a full-variate model are also considered to account for the 

possible effects of the other variables. In this way any remaining causality is strictly nonlinear in 

nature, as the VAR or VECM model has already purged the residuals of linear dependence. 

Finally, in the last step, the null hypothesis of nonlinear non-causality is investigated after 

controlling for conditional heteroskedasticity in the data using a multivariate GARCH-BEKK 

model again both in a bivariate and in a full model representation. Thus, the short-run movements 

are accounted for and the volatility persistence mechanism is captured. 

The use of the nonlinear test on filtered data with a multivariate GARCH model enables to 

determine whether the utilized model is sufficient to describe the relationship among the series. 

Consequently, the statistical evidence of nonlinear Granger causality would be strongly reduced 

when the appropriate multivariate GARCH model is fitted to the raw or linearly filtered data. 

However, failure to accept the no-causality hypothesis may also constitute evidence that the 
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selected multivariate GARCH model is mispecified1. In general, many GARCH models can be 

used for second-moment filtering. The present study employs the GARCH-BEKK model. 

Considering { }ty  to be a vector stochastic return process of dimension 1Ν×  and ω  a finite vector 

of parameters, let ( )t t t
y µ ω ε= +   where ( )t

µ θ is the conditional mean vector and ( )
1 2

t t t
H zε ω=  

where ( )
1 2

t
H ω  is a N N× positive definite matrix. The random vector 

t
z  has ( ) 0

t
E z =  and 

( )t N
Var z I= as the first two moments where 

N
I  is the identity matrix. Hence, 

t
H  is the 

conditional variance matrix of 
t
y . It is difficult to guarantee the positivity of 

t
H  in the VEC-

GARCH representation of Bollerslev et al. (1988) without imposing strong restrictions on the 

parameters. Engle and Kroner (1995) proposed a new parametrization of 
t
H  that imposes its 

positivity, namely the Baba-Engle-Kraft-Kroner (BEKK) model. The full BEKK(1, 1, K) model is 

defined as: 

                                        
1 1 1

1 1

K K

t k t t k k t k
k k

H A A B B C H Cε ε∗ ∗ ∗ ∗ ∗ ∗
− − −

= =

′ ′ ′′= + +∑ ∑              (9) 

where ,
k

A B∗ ∗  and 
k
C ∗  are N N×  matrices but A∗  is upper triangular. The summation limit K  

determines the generality of the process and the sufficient conditions to identify BEKK models are 

that 
,11 ,11
,

k k
B C∗ ∗  and the diagonal elements of A∗  are restricted to be positive. To reduce the 

number of parameters in the BEKK(1,1,1) model and consequently to reduce the generality, a 

diagonal BEKK model can be imposed, i.e. 
k
B∗  and 

k
C ∗  in (8) are diagonal matrices. The maximum 

likelihood method is used to estimate the BEKK model.  

 

4. MONTE CARLO SIMULATIONS 

Let 
t
s  be the asset price expressed as a discounted sum of current and expected future 

fundamentals. The examined asset-pricing model is of the form 

( ) ( ) ( )1 2
0 0

1 ,   0 1j j

t t t j t t j
j j

s b b E a x b b E a x b
∞ ∞

+ +
= =

′ ′= − + < <∑ ∑           (10) 

                                                 
1
 This line of analysis is similar to the use of the univariate BDS test on raw data and on GARCH models (Brock et al., 1996; Brooks, 

1996; Hsieh, 1989) 



 10 

where 
t
x  is the 1n×  vector of fundamentals, b  is a discount factor, and 

1
a  and 

2
a  are 1n×  

vectors. Campbell and Shiller (1987) and West (1988) consider this model for stock prices where 
t
s  

is the level of the stock price, 
t
x  the dividend (a scalar), 

1
0a =  and 

2
1a = . The log-linearized 

model of Campbell and Shiller (1988) also has this form, where 
t
s  is the log of the stock price, 

t
x  is 

the log of the dividend and 
1
1a = , 

2
0a = . In this study 

t
s  is the log of the exchange rate and 

t
x  

contains such variables as interest rates and logs of prices, money supplies etc. Assume that at 

least one element of the vector 
t
x  is an ( )1Ι  process, with the Wold innovation being a 1n×  

vector 
t
ε . Engel and West (2005) require that either (1) ( )1

1
t

a x′ Ι∼ and 
2
0a =  or (2) ( )2

1
t

a x′ Ι∼ , 

with the order of integration of 
1 t
a x′  essentially unrestricted ( ( )0Ι , ( )1Ι , or identically zero). In 

either case, for b  near one, 
t
s∆  is well approximated by a linear combination of the elements of 

the unpredictable innovation 
t
ε . Moreover, as suggested by Engel and West (2005) there is 

continuity in the autocorrelations in the sense that for b  near one the autocorrelations of 
t
s∆  will 

be near zero if the condition that certain variables are ( )1Ι , is replaced with the condition that 

those variables are ( )0Ι  but with an autoregressive root very near one.  

In this study the correlation structure of exchange rates and fundamentals is estimated 

from simulations based on the simple stylized model of Engel and West (2005). A simple 

univariate process for fundamentals is assumed, with parameters chosen to reflect data from 

recent floating periods and discount factors from 0.5 to 0.95, the latter of which suffice to yield 

near-zero correlations between the periods t-1 and t. Overall, an attempt is made to simulatively 

verify the theoretical conclusion of Engel and West (2005) that large discount factors account for 

random walk behaviour in exchange rates. The results of simulations are depicted in Tables 1-3. 

The model used is a simplified version of Eq. (10), i.e., ( )
0

1 j

t t t jj
s b b E x

∞

+=
= − ∑  or 

0

j

t t t jj
s b b E x

∞

+=
= ∑ . The fundamentals variable 

t
x  follows an AR(2) process with autoregressive 

roots 
1
ϕ  and ϕ . When 

1
1.0ϕ = , 

t
x∆ ∼AR(1) with parameter ϕ  and in the limit, as 1b → , each 

of the correlations approaches zero. The setup of the simulations is the following: 
t
x =1500 
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observations are simulated with j =5000 forward steps to the future. Thus, in total a path of 6500 

observations is produced. Next, the first burn-out 500 points are discarded. The final examined 

processes for  
t
x  (fundamental), 

t
s (FX series) and 

t
z  (another FX series) include 1000 

observations. Then correlations are computed, the paths are replicated 2000 times and the mean, 

median and mode of the correlations are produced. Columns 4-9 present correlations of 
t
s∆  with 

time t-1 information when 
t
x  follows a scalar univariate AR(2). Either 

1
0a =  and 

2
1a =  or 

1
1a =  and 

2
0a =  can be assumed. These two possibilities can be considered interchangeably as 

for given 1b < , the autocorrelations of 
t
s∆  are not affected by whether or not a factor of 1 b−  

multiplies the present value of fundamentals. Rows 1–9 in Tables 1-3 assume that ( )1t
x Ι∼ , 

specifically 
t
x∆ ∼AR(1) with parameterϕ . For 0.5b =  the autocorrelations in columns 4–6 and 

the cross correlations in columns 7–9 are significant, whereas for 0.9b = , they are dramatically 

smaller. Finally, from rows 10–13 it can be inferred that if the unit root in 
t
x  is replaced by an 

autoregressive root of 0.9 or higher, the autocorrelations and cross-correlations of 
t
s∆  are not 

much changed. Overall, Tables 1-3 provide very similar results to the ones produced analytically 

by Engel and West (2005). 

Next, results from an extensive cross-correlation and causality exercise are presented with 

the use of stepwise multivariate filtering, on the simulated series that correspond to rows 1-3 and 

7-9 of Tables 1-3 (i.e., with 0.5b =  and 0.95b = ). The causality analysis is conducted at the 5% 

and 1% significance level and it involves the utilization of three paradigms, namely between the 

simulated currency and fundamentals series, between two different currency series as well as two 

different FX series with the same fundamentals driver. The case of cointegration is also 

investigated via the Johansen trace statistic in order to use the right specification for the Granger 

causality testing, i.e., VAR or VECM.  Also, the second-moment filtering is conducted via a 

GARCH-BEKK model. The results are presented in Tables 4-6. The mode, mean and median of the 

correlations are presented. In all cases the GARCH filtering on the VAR/VECM residuals purges 

all linkages between the examined series. The numbers presented for causality results are the 

percentages of the Granger-caused series detected. It appears that cointegration results vary 
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among the investigated paradigms. The case of two different FX series presents the lowest 

percentages, whereas the Granger-causality investigation reveals a unidirectional causality link 

from fundamentals to FX series. This corroborates with the theoretical and empirical result of 

Engel and West (2005). In the other two cases the causality results are qualitatively similar for both 

directions, while the percentage detected is higher in case of the two different FX series with the 

same fundamentals driver. These results on the simulated series will be juxtaposed with the 

empirical results in section 6.  

Finally, a forecasting exercise is conducted with various asset-pricing autoregressive 

models using the data generating processes produced by the simulations (Table 7). The three-step 

filtering methodology for examining dynamic relationships is implemented in each step of the 

causality estimation via a rolling window for the out-of-sample forecasting exercise. Specifically, 

four AR(1) specifications are used with the lagged variable being the FX series ( β ε
−

= +
1t t t

s s ), the 

fundamentals series ( γ ε
−

= +
1t t t

s x ) and the FX series with the same and different fundamental 

driver ( ζ ε
−

= +
1t t t

s z  and δ ε
−

= +
1t t t

s z ). In addition, two AR(1) specifications employing both a 

lagged fundamental and an FX series with the same and different fundamental driver 

( γ γ ε
− −

= + +
1 11 2t t t t

s x z  and β β ε
− −

= + +
1 11 2t t t t

s x z ) are used. The out-of-sample measure is the 

RMSE and in particular the RMSE ratios are reported against the first AR(1) specification which is 

used as a benchmark. The simulated series again correspond to rows 1-3 and 7-9 of Tables 1-3, that 

is with 0.5b =  and 0.95b = .  Also, the mode, mean and median is reported. The best out-of-

sample performance is indicated for the AR(1) specification employing a lagged fundamental and 

an FX series with the same fundamental driver. The worst was observed for the AR(1) 

specification with the lagged variable being the fundamental series, while the other models yield 

similar results with their predictability being close to the one of the benchmark.  

 

5.  DATA  

The data comprises monthly foreign exchange rates denoted relative to United States 

dollar (USD), namely Euro (EUR), Great Britain Pound (GBP), Japanese Yen (JPY), Swiss Frank 

(CHF), Australian Dollar (AUD), Canadian Dollar (CAD) and German mark (DM). The exact 

ratios represent EUR/USD, GBP/USD, USD/JPY, USD/CHF, AUD/USD, USD/CAD and DM/USD 
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respectively. These are the most liquid and widely traded currency pairs in the world and make 

up about 90% of total Forex trading worldwide. The data covers the Great Moderation period, the 

dot-com bubble, and the period just before the outbreak of the 2007-2010 financial crisis, which 

was triggered by a liquidity shortfall in the US banking system. The country-specific fundamentals 

are the seasonally adjusted money supply m , the industrial production y  (used as a proxy for the 

real, seasonally adjusted gross domestic product), the consumer price index (CPI) p , the three-

month rate i , while the m y−  (=Money-IP) variable is also considered. Datastream is the source of 

the data. All data but interest rates is converted by taking logs and multiplying by 100. The Chow-

Lin method (1971) was used to interpolate the AUDCPI, AUDIP, CHFIP and backdate the JPYi. 

Additionally, an asterisk used as superscript denotes the corresponding measure of fundamentals 

in the United States relative to the country-specific, i.e., the symbol (*) denotes the non-US value in 

the differentials. The differentials are ( )m m∗− , ( )p p∗− , ( )i i∗− , ( )y y∗− , ( )m y m y∗ ∗ − − − 
 

. 

Correlations and causalities are investigated on the ∆ (differentials). Overall, the examined period 

is in levels 4/1986–7/2008, while for the Euro it spans 1/1999–7/2008.  

 

6. EMPIRICAL RESULTS  

In this section, the implications of the asset-pricing models of Engel and West (2005) are 

empirically investigated, as well as the hypothesis that asset price might help to predict the 

fundamentals or vice-versa is tested. The causal relationships between the FX rates and the five 

measures of fundamentals are investigated. As in Engel and West (2005), many autoregressive 

specifications are utilized, e.g., pairwise, tri-variate, four-variate as well as the full systems of 

variables (5x5). Additionally, the empirical results are juxtaposed with the Monte Carlo 

simulations. The statistical significance is presented at the 5% (*) and 1% (**) levels. The lag 

lengths of VECM/VAR specification are investigated and set using the SIC and Wald exclusion 

criterion and the cointegrating vectors using the Johansen trace statistic (Johansen, 1991). In their 

work Engel and West (2005) concluded that it will probably not do great violence to assume lack 

of cointegration and so they used for all VAR models four lags2. Instead, in this paper 

                                                 

2 They consider lack of cointegration to be evidence that unobserved variables such as real demand shocks, real money demand shocks, 

or possibly even interest parity deviations have a permanent component, or at least are very persistent. Yet, it may be that the data they 

used to measure the economic fundamentals have some errors with permanent or very persistent components. For example, it may be 
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cointegration tests were conducted between the exchange rate and each of the fundamentals 

differentials in all specifications. The number of lags identified and the cointegrating vectors are 

presented in parenthesis as (lags, coint. vectors). For testing reasons linear Granger causality was 

further investigated on the VAR/VECM and GARCH residuals, but it was no longer detected. The 

nonlinear causality is investigated with the modified Baek-Brock test and the number of lags used 

are 1==
YX
ℓℓ  . The second moment filtering is performed with a GARCH-BEKK (1,1) model.  

The results for all examined multivariate specifications are depicted in Tables 8-21. For the 

pairwise investigation, the variables included in the VAR/VECM model are 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ },  ,  ,  ,  ,  ,  s m m p p i i i i y y m m y y∗ ∗ ∗ ∗ ∗ ∗ ∗ ∆ ∆ − ∆ − − ∆ − ∆ − ∆ − −∆ − 
 

. In this 

case VAR(1,0) is identified except VAR(2,0) in GBP ( )s m m
∗

∆ − ∆ − , GBP ( )s m m
∗

∆ − ∆ − and 

DM ( )s i i
∗

∆ − − . VECM (2,1) is identified in all cointegrated pairs except AUD ( )s i i
∗

∆ − ∆ − , which 

is VECM(1,1). Based on the results there is no consistent evidence that exchange rates predict 

fundamentals after examining linear and nonlinear causal interdependencies. Some bidirectional 

links also appear but for different fundamentals each time.  Overall, the evidence is modest that 

there exists a prevailing direction in the examined causalities, i.e., that either exchange rates help 

to predict fundamentals, or the ability of fundamentals to predict exchange rates is stronger. This 

result is not in full accordance with Engel and West (2005) who observe a stronger unidirectional 

linkage in favour of exchange rate predictability. Of course there were some major economic and 

non-economic developments during the sample that might perturb any consistent relationships. 

Several of the European countries’ exchange rates and monetary policies became more tightly 

linked in the 1990s because of the evolution of the European Monetary Union, Germany’s 

economy was transformed dramatically in 1990 because of reunification, the dot-com bubble hit 

the global economies in the mid-90s, while the Asian crisis of 1997 caused a turmoil in the 

international FX markets. Interestingly, two consistent results emerge from the investigation, 

namely that (1) linear and nonlinear links differ significantly in all examined specifications and 

that (2) after multivariate GARCH filtering most of the nonlinear interdependencies are purged. 

This indicates that the nonlinear causality is largely due to simple volatility effects. Some 

                                                                                                                                                                  

that the appropriate measure of the money supply has permanently changed because of numerous financial innovations over the 

sample, so that the money supply series varies from the “true” money supply by some I(1)  errors. 
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remaining nonlinear causalities imply that FX rates may exhibit statistically significant higher-

order moments or that other multivariate GARCH models could capture the transmission 

mechanism of the volatility shocks more efficiently.  

In addition to causality testing for the bivariate VAR/VECMs, cointegration and causality 

tests based on other VAR/VECM specifications are performed. Several different combinations of 

variables are included in the VAR/VECM models. Six groupings were tested:  

1. ( ) ( ) ( ) ( ){ },  ,  ,  ,  s m m p p i i y y∗ ∗ ∗ ∗∆ ∆ − ∆ − ∆ − ∆ −  

2. ( ) ( ) ( ){ },  ,  ,  s p p i i y y∗ ∗ ∗∆ ∆ − ∆ − ∆ −  

3. ( ) ( ) ( ){ },  ,  ,  s m m p p y y∗ ∗ ∗∆ ∆ − ∆ − ∆ −  

4. ( ) ( ) ( ){ },  ,  ,  s p p i i y y∗ ∗ ∗∆ ∆ − ∆ − ∆ −  

5. ( ) ( ){ },  ,  s p p y y∗ ∗∆ ∆ − ∆ −  and 

6. ( ) ( ){ },  ,  s m m y y∗ ∗∆ ∆ − ∆ −   

For the first grouping the number of lags identified and the cointegrating vectors presented as 

(lags, coint. vectors) are {GBP(5,1), JPY(4,1), CHF(8,1), AUD(3,1), CAD(4,1), DM(2,2), EUR(1,0)}. In 

case of the second the number of lags and the cointegrating vectors are {GBP(1,0), JPY(1,0), 

CHF(5,1), AUD(1,0), CAD(1,0), DM(2,2), EUR(2,1)} while for the third they are {GBP(5,2), JPY(4,1), 

CHF(2,1), AUD(2,0), CAD(4,1), DM(2,1), EUR(1,0)}. For the fourth these are {GBP(1,0), JPY(1,0), 

CHF(1,0), AUD(1,0), CAD(1,0), DM(1,0), EUR(2,0)}, while for the last two specifications they are 

{GBP(2,1), JPY(1,0), CHF(1,0), AUD(1,0), CAD(1,0), DM(2,1), EUR(1,0)} and {GBP(1,0), JPY(2,1), 

CHF(2,1), AUD(1,0), CAD(1,0), DM(1,0), EUR(2,1)} respectively. Linear and nonlinear causality 

tests were conducted for the null that Δs does not Granger-cause each of the fundamentals or the 

fundamentals as a group, and conversely. The results are similar to those from the bivariate 

VAR/VECMs. There is no consistent evidence that causality runs from the fundamentals to the 

exchange rates. In total, the evidence is not conclusive that there exists a prevailing direction in the 

examined causalities. Again, linear and nonlinear links differ significantly whilst multivariate 

GARCH filtering purged most of the nonlinear interdependencies. The evidence is far from 
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overwhelming, but overall there does not appear to be a link from FX rates to fundamentals going 

in the direction that FX rates help forecast fundamentals, as advocated by Engel and West (2005). 

 

7. CONCLUSIONS 

Engel and West (2005) argued that when standard exchange rate models are plausibly 

calibrated, they have the property that the FX rates should nearly follow a random walk. Evidence 

that the exchange rate change is not predictable is an implication of the models, albeit observing 

that FX rates follow random walks is not a very complete validation of the models. Another 

possible explanation of the random walk behaviour of exchange rates could be that they are 

dominated by unobservable shocks which are well approximated by random walks. The 

fundamentals may not be important determinants of FX rates, and instead there may be some 

other variable that models have not captured or that is unobserved that drives the currency rates. 

Campbell and Shiller (1987) observe that when a currency variable is the present value of a 

fundamentals variable, then either (1) FX rate Granger-causes fundamentals relative to the 

bivariate information set consisting of their lags or (2) FX rate is an exact distributed lag of current 

and past values of the fundamental variable. Nonetheless, exchange rate models must allow for 

unobservable fundamentals. Failure to find Granger causality from the FX rate to the observable 

variables no longer implies an obviously restriction that the FX rate is an exact distributed lag of 

observables. It is clear, that a finding of Granger causality is supportive of a view that FX rates are 

determined as a present value that depends in part on observable fundamentals. 

The results of this paper provide some counterbalance to the suitability - especially in the 

short run - of rational expectations present-value models of currency rates that became 

predominant since Meese and Rogoff (1983a, 1983b). Extensive Monte Carlo simulations in this 

work provide evidence that FX rates may incorporate information about future fundamentals. It 

was shown that under some assumptions the inability to forecast exchange rates is a natural 

implication of the models, which suggests that innovations in the FX rates ought to be highly 

correlated with news about future fundamentals. This relationship was also reported in the study 

of Andersen et al. (2003), who found strong evidence of exchange rate reaction to news in intraday 

data and in a direction consistent with standard models. The analytical results of Engel and West 



 17 

(2005) have been corroborated, in that if discount factors are large (and fundamentals are ( )I 1 ), 

then it may not be surprising that present-value models cannot out-perform in terms of 

forecastability the random walk model of exchange rates.  

Yet, a conclusive support for the link between fundamentals and the exchange rate in the 

direction that exchange rates can help forecast the fundamentals was not found, as in Engel and 

West (2005). Whilst in some cases and under certain vector autoregressive modelling there was 

evidence of this directional predictability, a generic result cannot be drawn. It might be that 

exchange rates and fundamentals are linked in a way that is broadly consistent with asset pricing 

models of the exchange rate, but no evidence was found of a prevailing direction in the examined 

causalities, i.e., that either exchange rates help to predict fundamentals, or the ability of 

fundamentals to predict exchange rates is stronger. Specifically, the empirical findings in this 

study do not fully accord with the results of Engel and West (2005) on the weak causality from 

exchange rates to fundamentals. Indeed there are several caveats. First, while the results from 

simulations are consistent with the implications of the present-value models - that exchange rates 

should be useful in forecasting future economic variables - there might be other possible 

explanations for the discrepancy in the empirical findings. It may be, for example, that currencies 

might Granger-cause money supplies because monetary policy makers react to the exchange rate 

in setting the money supply. Thus, the present-value models are not the only models that imply 

Granger causality from exchange rates to other economic variables. In general the results from 

simulations provided evidence on the correlation of exchange rate changes with the change in the 

expected discounted fundamentals, as well as that the Granger causality results are generated by 

the present-value models.  

Moreover, the empirical results are not uniformly strong and overall the evidence is 

inconclusive that there exists a prevailing direction in the examined causalities. Additionally, 

linear and nonlinear links differ significantly and multivariate GARCH filtering purged most of 

the nonlinear interdependencies. This indicates that the nonlinear causality is largely due to 

simple volatility effects. Some remaining nonlinear causalities imply that FX rates may exhibit 

statistically significant higher-order moments or other multivariate GARCH models could capture 

the transmission mechanism of the volatility shocks more efficiently. As opposed to Engel and 
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West (2005) cointegration was detected between exchange rates and fundamentals. In accordance 

with the exchange rate literature, there was not much evidence that the exchange rate is explained 

only by the “observable” fundamentals. However, observables do not obviously dominate 

exchange rate changes and it is perhaps unrealistic to believe that only observable fundamentals 

affect currency rates.  

Finally, the results of this study may also help explain the near-random walk behaviour 

and the causality structure of other asset prices and their markets (equities, bonds etc.) 

Theoretically, asset prices follow random walks only under very special circumstances. An 

empirical investigation of the causal behaviour of a variety of asset prices could be an interesting 

line of future research. 
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TABLE 1: AUTOCORRELATIONS AND CROSS-CORRELATIONS OF FX AND FUNDAMENTALS (MEAN) 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notation: The model is ( )
0

1
j

t t t jj
s b b E x

∞

+=
= − ∑  or 

0

j

t t t jj
s b b E x

∞

+=
= ∑ . The scalar variable 

t
x  follows an ( )AR 2  process with autoregressive roots 

1
ϕ  and ϕ . When 

1
1.0ϕ = , ( )AR 1

t
x∆ ∼  with parameter ϕ . If 

1
1.0ϕ = , as in rows 1–9, then in the limit, as 1b → , each of these correlations approaches zero. The setup of the simulations is the 

following: 
t
x =1500 observations are produced with j =5000 forward steps to the future. Thus in total a path of 6500 observations is generated. Next, the first burn-out 500 points are 

discarded. Therefore the examined processes for  
t
x  (fundamental), 

t
s (currency) and 

t
z  (another currency series) include 1000 observations. Then correlations are computed, the 

paths are replicated 2000 times and the mean, median and mode of the correlations are estimated. 

 

 

 

 

 

 

 

 

 

 

   Correlation of Δst with 

b φ1 φ Δst-1 Δst-2 Δst-3 Δxt-1 Δxt-2 Δxt-3 

0.5 1.0 0.3 0.11 0.08 0.03 0.13 0.08 0.06 

  0.5 0.32 0.20 0.12 0.38 0.18 0.13 

  0.8 0.45 0.39 0.32 0.50 0.43 0.40 

0.9 1.0 0.3 0.01 0.00 0.00 0.02 0.01 0.00 

  0.5 0.02 0.01 0.01 0.04 0.02 0.01 

  0.8 0.03 0.02 0.02 0.08 0.06 0.05 

0.95 1.0 0.3 0.00 0.00 -0.00 0.01 0.00 0.00 

  0.5 -0.00 0.01 0.00 0.01 0.01 0.00 

  0.8 -0.02 0.02 0.01 0.05 0.03 0.02 

0.9 0.9 0.5 -0.00 -0.02 -0.02 -0.01 -0.04 -0.05 

0.9 0.95 0.5 -0.00 0.00 -0.01 0.00 -0.02 -0.02 

0.95 0.95 0.5 0.00 -0.00 -0.01 -0.00 -0.01 -0.02 

0.95 0.99 0.5 -0.00 0.00 -0.00 0.00 0.00 -0.00 
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TABLE 2: AUTOCORRELATIONS AND CROSS-CORRELATIONS OF FX AND FUNDAMENTALS (MEDIAN) 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Notation: Same as in Table 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Correlation of Δst with 

b φ1 φ Δst-1 Δst-2 Δst-3 Δxt-1 Δxt-2 Δxt-3 

0.5 1.0 0.3 0.09 0.06 0.05 0.11 0.07 0.05 

  0.5 0.30 0.22 0.10 0.35 0.16 0.12 

  0.8 0.42 0.35 0.31 0.48 0.41 0.39 

0.9 1.0 0.3 0.01 0.00 -0.00 0.02 0.01 -0.00 

  0.5 0.02 0.00 0.00 0.05 0.02 0.02 

  0.8 0.03 0.03 0.02 0.09 0.07 0.04 

0.95 1.0 0.3 -0.00 -0.00 0.00 0.01 -0.00 -0.00 

  0.5 0.01 0.01 0.00 0.01 0.01 0.00 

  0.8 -0.02 0.02 0.01 0.04 0.03 0.02 

0.9 0.9 0.5 0.00 -0.02 -0.03 -0.02 -0.04 -0.05 

0.9 0.95 0.5 0.00 -0.00 -0.00 0.00 -0.02 -0.02 

0.95 0.95 0.5 -0.00 -0.00 -0.01 -0.01 -0.02 -0.02 

0.95 0.99 0.5 -0.01 0.00 -0.00 0.00 -0.00 -0.00 
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TABLE 3: AUTOCORRELATIONS AND CROSS-CORRELATIONS OF FX AND FUNDAMENTALS (MODE) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Notation: Same as in Table 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Correlation of Δst with 

b φ1 φ Δst-1 Δst-2 Δst-3 Δxt-1 Δxt-2 Δxt-3 

0.5 1.0 0.3 0.09 0.04 0.03 0.11 0.05 0.02 

  0.5 0.29 0.20 0.11 0.32 0.15 0.10 

  0.8 0.42 0.33 0.30 0.44 0.39 0.37 

0.9 1.0 0.3 0.01 0.00 0.00 0.02 0.01 0.00 

  0.5 0.02 -0.00 0.01 0.04 0.02 0.01 

  0.8 0.03 0.02 0.02 0.09 0.07 0.05 

0.95 1.0 0.3 -0.00 0.00 0.00 0.00 -0.00 0.00 

  0.5 0.00 0.00 0.00 0.01 0.00 0.00 

  0.8 -0.02 0.01 0.01 0.04 0.03 0.02 

0.9 0.9 0.5 -0.00 -0.02 -0.02 -0.01 -0.04 -0.05 

0.9 0.95 0.5 0.00 0.00 -0.00 0.00 -0.01 -0.02 

0.95 0.95 0.5 -0.00 -0.00 -0.02 -0.00 -0.01 -0.02 

0.95 0.99 0.5 -0.01 0.00 -0.00 0.00 0.00 -0.00 
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TABLE 4: CAUSALITY AND CROSS-CORRELATION OF THE SIMULATED FX AND FUNDAMENTALS SERIES 
 

 

Granger-causality on the Raw series 

 

 
 

 

 

 

 

 

 

 

 

 
 

Correlation on the Filtered series 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

GC: s->x GC: x->s 
b φ1 φ 

0.95 0.99 0.95 0.99 
CI (s,x) 

0.5 1.0 0.3 5.9% 1.75% 62.2% 40.5% 100% 

  0.5 4.8% 1.1% 68% 57% 100% 

  0.8 5.3% 1.1% 88.7% 77.8% 100% 

0.95 1.0 0.3 4.75% 1.2% 18% 12.2% 98.5% 

  0.5 3.8% 1% 29% 23% 97.1% 

  0.8 4.8% 0.95% 38.8% 28.7% 97.2% 

Correlation (s,x) 
b φ1 φ 

0.5 1.0 0.3 
Mode Median Mean St.Err 

Raw data 0.93 0.93 0.93 0.00 

VECM/VAR filtering 0.96 0.96 0.96 0.00 

GARCH filtering 0.00 0.00 0.00 0.00 

0.95 1.0 0.3 Mode Median Mean St.Err 

Raw data 0.84 0.84 0.84 0.00 

VECM/VAR filtering 0.93 0.92 0.91 0.00 

GARCH filtering 0.00 0.00 0.00 0.00 
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Notation: The model is ( )
0

1
j

t t t jj
s b b E x

∞

+=
= − ∑  or 

0

j

t t t jj
s b b E x

∞

+=
= ∑ . The scalar variable 

t
x  follows an ( )AR 2  process with autoregressive roots 

1
ϕ  and ϕ . When 

1
1.0ϕ = , ( )AR 1

t
x∆ ∼  with parameter ϕ . If 

1
1.0ϕ = , as in rows 1–9, then in the limit, as 1b → , each of these correlations approaches zero. The setup of the simulations is the 

following: 
t
x =1500 observations are produced with j =5000 forward steps to the future. Thus in total a path of 6500 observations is generated. Next, the first burn-out 500 points are 

discarded. Therefore the examined processes for  
t
x  (fundamental), 

t
s (currency) and 

t
z  (another currency series) include 1000 observations. Then correlations are computed, the 

paths are replicated 2000 times and the mean, median and mode of the correlations are estimated. Granger causality (GC) is investigated via a VAR or VECM representation 

depending on the whether the Johansen trace statistic rejects the null of no cointegration (CI) or not for each pair of the examined simulated paths. The numbers presented for GC are 

the percentages of the Granger-caused series detected. Next, the GARCH-BEKK is applied for second-moment filtering. 

Correlation (s,x) 
b φ1 φ 

0.5 1.0 0.5 
Mode Median Mean St.Err 

Raw data 0.90 0.89 0.88 0.00 

VECM/VAR filtering 0.97 0.97 0.97 0.00 

GARCH filtering 0.00 0.00 0.00 0.00 

0.95 1.0 0.5 Mode Median Mean St.Err 

Raw data 0.72 0.72 0.72 0.00 

VECM/VAR filtering 0.87 0.89 0.89 0.00 

GARCH filtering 0.00 0.00 0.00 0.00 

Correlation (s,x) 
b φ1 φ 

0.5 1.0 0.8 
Mode Median Mean St.Err 

Raw data 0.83 0.83 0.83 0.00 

VECM/VAR filtering 0.96 0.96 0.96 0.00 

GARCH filtering 0.00 0.00 0.00 0.00 

0.95 1.0 0.8 Mode Median Mean St.Err 

Raw data 0.45 0.46 0.46 0.00 

VECM/VAR filtering 0.74 0.71 0.72 0.00 

GARCH filtering 0.00 0.00 0.00 0.00 
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TABLE 5: CAUSALITY AND CROSS-CORRELATION OF TWO DIFFERENT SIMULATED FX SERIES  

 
 

Granger-causality on the Raw series 

 

 
 

 

 

 

 

 

 

 

 
Correlation on the Filtered series 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GC: s->z GC: z->s 
b φ1 φ 

0.95 0.99 0.95 0.99 
CI (s,z) 

0.5 1.0 0.3 8.5% 2.2% 9.95% 2.4% 20% 

  0.5 8.3% 1.4% 9.7% 2.1% 14.3% 

  0.8 9.7% 2.5% 9.8% 2.4% 22.3% 

0.95 1.0 0.3 7.95% 1.65% 7.6% 1.35% 18.2% 

  0.5 9.5% 2.2% 7.75% 2.1% 13.5% 

  0.8 9.4% 2.35% 9.85% 2.45% 25.15% 

Correlation (s,z) 
b φ1 φ 

0.5 1.0 0.3 
Mode Median Mean St.Err 

Raw data 0.00 -0.00 -0.00 0.00 

VECM/VAR filtering 0.00 -0.00 -0.00 0.00 

GARCH filtering 0.00 0.00 0.00 0.00 

0.95 1.0 0.3 Mode Median Mean St.Err 

Raw data -0.00 -0.00 -0.00 0.00 

VECM/VAR filtering -0.00 -0.00 -0.00 0.00 

GARCH filtering 0.00 0.00 0.00 0.00 
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Notation: Same as in Table 4 

 

 

 

 

 

 

Correlation (s,z) 
b φ1 φ 

0.5 1.0 0.5 
Mode Median Mean St.Err 

Raw data -0.00 -0.00 0.00 0.00 

VECM/VAR filtering -0.00 0.00 -0.00 0.00 

GARCH filtering 0.00 -0.00 0.00 0.00 

0.95 1.0 0.5 Mode Median Mean St.Err 

Raw data 0.00 0.00 0.00 0.00 

VECM/VAR filtering 0.00 0.00 0.00 0.00 

GARCH filtering 0.00 0.00 0.00 0.00 

Correlation (s,z) 
b φ1 φ 

0.5 1.0 0.8 
Mode Median Mean St.Err 

Raw data 0.00 0.00 0.00 0.00 

VECM/VAR filtering 0.00 0.00 0.00 0.00 

GARCH filtering 0.00 0.00 0.00 0.00 

0.95 1.0 0.8 Mode Median Mean St.Err 

Raw data 0.00 0.00 0.00 0.00 

VECM/VAR filtering 0.00 0.00 0.00 0.00 

GARCH filtering 0.00 0.00 0.00 0.00 
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TABLE 6: CAUSALITY AND CROSS-CORRELATION OF TWO DIFFERENT SIMULATED FX SERIES WITH THE SAME FUNDAMENTALS DRIVER 

 

 
Granger-causality on the Raw series 
 

 

 

 

 

 

 

 

 
 

 
Correlation on the Filtered series 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GC: s->z2 GC: z2->s 
b φ1 φ 

0.95 0.99 0.95 0.99 
CI (s,z2) 

0.5 1.0 0.3 23.25% 15.25% 25.35% 15.05% 100% 

  0.5 24.4% 26.5% 23% 25.1% 100% 

  0.8 26.4% 19.3% 26.1% 18.8% 100% 

0.95 1.0 0.3 12.05% 6.3% 11.5% 7.2% 100% 

  0.5 8.9% 3.7% 8.25% 3.6% 100% 

  0.8 9.3% 7.21% 12.8% 7.3% 100% 

Correlation (s,z2) 
b φ1 φ 

0.5 1.0 0.3 
Mode Median Mean St.Err 

Raw data 0.93 0.93 0.93 0.00 

VECM/VAR filtering 0.95 0.95 0.96 0.00 

GARCH filtering 0.00 0.00 0.00 0.00 

0.95 1.0 0.3 Mode Median Mean St.Err 

Raw data 0.78 0.78 0.78 0.00 

VECM/VAR filtering 0.85 0.85 0.86 0.00 

GARCH filtering 0.00 0.00 0.00 0.00 
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Notation: Same as in Table 4 

 

 

 

 

 

 

 
 

Correlation (s,z2) 
b φ1 φ 

0.5 1.0 0.5 
Mode Median Mean St.Err 

Raw data 0.93 0.93 0.94 0.00 

VECM/VAR filtering 0.96 0.96 0.96 0.00 

GARCH filtering 0.00 0.00 0.00 0.00 

0.95 1.0 0.5 Mode Median Mean St.Err 

Raw data 0.69 0.68 0.68 0.00 

VECM/VAR filtering 0.80 0.80 0.78 0.00 

GARCH filtering 0.00 0.00 0.00 0.00 

Correlation (s,z2) 
b φ1 φ 

0.5 1.0 0.8 
Mode Median Mean St.Err 

Raw data 0.95 0.95 0.95 0.00 

VECM/VAR filtering 0.97 0.96 0.96 0.00 

GARCH filtering 0.00 0.00 0.00 0.00 

0.95 1.0 0.8 Mode Median Mean St.Err 

Raw data 0.61 0.61 0.61 0.00 

VECM/VAR filtering 0.71 0.70 0.69 0.00 

GARCH filtering 0.00 0.00 0.00 0.00 
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TABLE 7: PREDICTABILITY OF DIFFERENT FX AND FUNDAMENTALS DATA GENERATING PROCESSES 
 

 
b φ1 φ Mode Median Mean St.Err Mode Median Mean St.Err Mode Median Mean St.Err 

   R1 (RMSE1/RMSE2) R2 (RMSE1/RMSE3) R3 (RMSE1/RMSE4) 

0.5 1.0 0.3 0.98 0.98 0.97 0.00 0.10 0.09 0.14 0.00 0.99 0.99 1.00 0.00 

  0.5 0.98 0.97 0.96 0.00 0.11 0.09 0.15 0.00 1.00 1.00 0.99 0.00 

  0.8 0.99 0.99 0.98 0.00 0.11 0.10 0.16 0.00 1.00 1.00 1.00 0.00 

0.95 1.0 0.3 0.99 0.99 0.98 0.00 0.19 0.15 0.15 0.00 0.99 0.99 1.00 0.00 

  0.5 0.99 0.99 0.98 0.00 0.21 0.15 0.15 0.00 1.00 1.00 1.00 0.00 

  0.8 0.99 1.00 0.99 0.00 0.21 0.19 0.16 0.00 1.00 1.00 1.01 0.00 

 

b φ1 φ Mode Median Mean St.Err Mode Median Mean St.Err 

   R4 (RMSE1/RMSE5) R5 (RMSE1/RMSE6) 

0.5 1.0 0.3 0.96 0.97 0.97 0.00 0.99 1.00 1.00 0.00 

  0.5 0.97 0.97 0.97 0.00 1.00 1.00 1.00 0.00 

  0.8 0.98 0.97 0.97 0.00 1.06 1.06 1.07 0.00 

0.95 1.0 0.3 0.98 0.99 1.00 0.00 1.01 1.01 1.01 0.00 

  0.5 0.98 0.98 1.00 0.00 1.02 1.02 1.02 0.00 

  0.8 0.98 0.98 0.99 0.00 1.02 1.02 1.03 0.00 

 
 

Notation: Various data generating processes are produced by the simulations. Specifically, four ( )AR 1  specifications are used with the lagged variable being the FX series, the 

fundamentals series, the FX series with the same and different fundamental driver, i.e., (1) β ε
−

= +
1t t t

s s , (2) γ ε
−

= +
1t t t

s x , (3) δ ε
−

= +
1t t t

s z  (with different fundamentals driver), 

(4) ζ ε
−

= +
1t t t

s z   (with same fundamentals driver). Also two ( )AR 1  specifications are used employing both a lagged fundamental and an FX series with the same and different 

fundamental driver, i.e., (5) β β ε
− −

= + +
1 11 2t t t t

s x z (with different fundamentals driver) and (6) γ γ ε
− −

= + +
1 11 2t t t t

s x z (with same fundamentals driver).  The out-of-sample 

measure is the RMSE and in particular the RMSE ratios are reported against the first ( )AR 1  model which is used as a benchmark. The simulated series again correspond to rows 1-3 

and 7-9 of Tables 1-3, that is with 0.5b =  and 0.95b = .  Also, the mode, mean and median is reported.  
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TABLE 8: LINEAR CAUSALITY (PAIRWISE)  

 
Variable Panel A: Linear Granger Causality 

Raw data VAR / VECM residuals GARCH-BEKK residuals 

X→Y Y→X X→Y Y→X X→Y Y→X 
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∆s ∆(m-m*)          *  *  *                             

∆s ∆(p-p*)                                           

∆s i-i*    *          *                             

∆s ∆(i-i*)    *                                        

∆s ∆(y-y*)   *  **        *                               

∆s 
∆(m-m*)      

- ∆(y-y*) 
    **      *  **                               

 
X→Y: rX does not Granger Cause r Y.  Statistical significance 5% (*), 1% (**).The foreign exchange rates are Euro (EUR), Great Britain Pound (GBP), Japanese Yen (JPY), Swiss Frank (CHF), Australian Dollar 

(AUD), Canadian Dollar (CAD) and German mark (DM) are denoted relative to United States dollar (USD). The exact ratios represent EUR/USD, GBP/USD, USD/JPY, USD/CHF, AUD/USD, USD/CAD and 

DM/USD respectively. The FX rates are denoted as s and fundamentals as: m=Money, p=CPI, i=Interest rate, y=IP, m-y=Money- IP. In differentials (*) denotes non-US value. Causalities are investigated on 

Δ(differentials). All data but interest rates are converted by taking logs and multiplying by 100. The Chow-Lin method was used to interpolate AUDCPI, AUDIP, CHFIP and backdate JPYi. Total period (levels): 

4/1986 – 7/2008. EURO period (levels): 1/1999 – 7/2008. 

 
Panel A: Linear Granger Causality  
All data (levels) were investigated with a VECM specification and the null of no cointegration was not rejected for all except DM: Δs-Δ(p-p*), AUD: Δs-Δ(i-i*), JPY: Δs-Δ(i-i*), EUR: Δs-Δ(i-i*). The lag lengths 

of VECM/VAR specification are investigated and set using the SIC and Wald exclusion criterion and the cointegrating vectors using the Johansen trace statistic. The number of lags identified and the 

cointegrating vectors are presented in parenthesis as (lags, coint. vectors). VAR(1,0) is identified except VAR(2,0) in GBP: Δs-Δ(m-m*), GBP: Δs-Δ(m-m*), DM: Δs-(i-i*). VECM (2,1) is identified in all 

cointegrated pairs except AUD: Δs-Δ(i-i*), which is VECM(1,1). For testing reasons Linear Granger causality was further investigated in the VAR/VECM or GARCH residuals, but not detected.  
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TABLE 9: NONLINEAR CAUSALITY (PAIRWISE)  

 
Variable Panel B: NonLinear Causality 

Raw data VAR / VECM residuals GARCH-BEKK residuals 

X→Y Y→X X→Y Y→X X→Y Y→X 
X Y 
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∆s ∆(m-m*) *              *              *              

∆s ∆(p-p*)                                           

∆s i-i* * *      **  *     * *      *                     

∆s ∆(i-i*) * *    *  *       * *    *  *                     

∆s ∆(y-y*)        *  *              *              *     

∆s 
∆(m-m*)      

- ∆(y-y*) 
                                          

 
Panel B: Non-Linear Causality 
The number of lags used for the nonlinear causality test are 1==

YX
ℓℓ  . The data used are log-returns. The nonlinear causality was investigated on the VAR/VECM residuals based on Panel A 

identification. The number of lags and cointegrating vectors are reported in Panel A. The second moment filtering was performed with a GARCH-BEKK (1,1) model. The Chow-Lin method was used to 

interpolate AUDCPI, AUDIP, CHFIP and backdate JPYi. Total period (levels): 4/1986 – 7/2008. EURO period (levels): 1/1999 – 7/2008. 
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TABLE 10: LINEAR CAUSALITY (5X5)  

 
Variable Panel A: Linear Granger Causality 

Raw data VAR / VECM residuals GARCH-BEKK residuals 

X→Y Y→X X→Y Y→X X→Y Y→X 
X Y 
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∆s ∆(m-m*)           * *  *                             

∆s ∆(p-p*)         **                                  

∆s ∆(i-i*)                                           

∆s ∆(y-y*)     **   *  *  *                               

 

X→Y: rX does not Granger Cause r Y.  Statistical significance 5% (*), 1% (**).The foreign exchange rates are Euro (EUR), Great Britain Pound (GBP), Japanese Yen (JPY), Swiss Frank (CHF), Australian Dollar 

(AUD), Canadian Dollar (CAD) and German mark (DM) are denoted relative to United States dollar (USD). The exact ratios represent EUR/USD, GBP/USD, USD/JPY, USD/CHF, AUD/USD, USD/CAD and 

DM/USD respectively. The FX rates are denoted as s and fundamentals as: m=Money, p=CPI, i=Interest rate, y=IP, m-y=Money- IP. In differentials (*) denotes non-US value. Causalities are investigated on 

Δ(differentials). All data but interest rates are converted by taking logs and multiplying by 100. The Chow-Lin method was used to interpolate AUDCPI, AUDIP, CHFIP and backdate JPYi. Total period (levels): 

4/1986 – 7/2008. EURO period (levels): 1/1999 – 7/2008. 

 

Panel A: Linear Granger Causality  
The 5x5 system of the data (levels) for each FX was investigated with a VECM specification and the null of no cointegration was rejected for all except EUR. The lag lengths of VECM/VAR specification are 

investigated and set using the SIC and Wald exclusion criterion and the cointegrating vectors using the Johansen trace statistic. The number of lags identified and the cointegrating vectors are presented in 

parenthesis as (lags, coint. vectors): GBP(5,1), JPY(4,1), CHF(8,1), AUD(3,1), CAD(4,1), DM(2,2), EUR(1,0). For testing reasons Linear Granger causality was further investigated in the VAR/VECM or GARCH 

residuals, but not detected.  
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TABLE 11: NONLINEAR CAUSALITY (5X5)  

 
Variable Panel B: NonLinear Causality 

Raw data VAR / VECM residuals GARCH-BEKK residuals 

X→Y Y→X X→Y Y→X X→Y Y→X 
X Y 

G
B

P
 

J
P

Y
 

C
H

F
 

A
U

D
 

C
A

D
 

D
M

 

E
U

R
 

G
B

P
 

J
P

Y
 

C
H

F
 

A
U

D
 

C
A

D
 

D
M

 

E
U

R
 

G
B

P
 

J
P

Y
 

C
H

F
 

A
U

D
 

C
A

D
 

D
M

 

E
U

R
 

G
B

P
 

J
P

Y
 

C
H

F
 

A
U

D
 

C
A

D
 

D
M

 

E
U

R
 

G
B

P
 

J
P

Y
 

C
H

F
 

A
U

D
 

C
A

D
 

D
M

 

E
U

R
 

G
B

P
 

J
P

Y
 

C
H

F
 

A
U

D
 

C
A

D
 

D
M

 

E
U

R
 

∆s ∆(m-m*) *                                          

∆s ∆(p-p*)                                           

∆s ∆(i-i*) * *    *  *       *     *  *                     

∆s ∆(y-y*)        *  *                                 

 
Panel B: Non-Linear Causality 
The number of lags used for the nonlinear causality test are 1==

YX
ℓℓ  . The data used are log-returns. The nonlinear causality was investigated on the VAR/VECM residuals based on Panel A System 

identification. The number of lags and cointegrating vectors are reported in Panel A. The second moment filtering was performed with a GARCH-BEKK (1,1) model. The Chow-Lin method was used to 

interpolate AUDCPI, AUDIP, CHFIP and backdate JPYi. Total period (levels): 4/1986 – 7/2008. EURO period (levels): 1/1999 – 7/2008. 
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TABLE 12: LINEAR CAUSALITY (4X4)  

 
Variable Panel A: Linear Granger Causality 

Raw data VAR / VECM residuals GARCH-BEKK residuals 

X→Y Y→X X→Y Y→X X→Y Y→X 
X Y 
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∆s ∆(p-p*)                                           

∆s ∆(i-i*)    *                                       

∆s ∆(y-y*)     **       *                               

 
X→Y: rX does not Granger Cause r Y.  Statistical significance 5% (*), 1% (**).The foreign exchange rates are Euro (EUR), Great Britain Pound (GBP), Japanese Yen (JPY), Swiss Frank (CHF), Australian Dollar 

(AUD), Canadian Dollar (CAD) and German mark (DM) are denoted relative to United States dollar (USD). The exact ratios represent EUR/USD, GBP/USD, USD/JPY, USD/CHF, AUD/USD, USD/CAD and 

DM/USD respectively. The FX rates are denoted as s and fundamentals as: m=Money, p=CPI, i=Interest rate, y=IP, m-y=Money- IP. In differentials (*) denotes non-US value. Causalities are investigated on 

Δ(differentials). All data but interest rates are converted by taking logs and multiplying by 100. The Chow-Lin method was used to interpolate AUDCPI, AUDIP, CHFIP and backdate JPYi. Total period (levels): 

4/1986 – 7/2008. EURO period (levels): 1/1999 – 7/2008. 

 
Panel A: Linear Granger Causality  
The 4x4 system of the data (levels) for each FX was investigated with a VECM specification and the null of no cointegration was rejected for all except GBP, JPY, AUD and CAD. The lag lengths of 

VECM/VAR specification are investigated and set using the SIC and Wald exclusion criterion and the cointegrating vectors using the Johansen trace statistic. The number of lags identified and the 

cointegrating vectors are presented in parenthesis as (lags, coint. vectors): GBP(1,0), JPY(1,0), CHF(5,1), AUD(1,0), CAD(1,0), DM(2,2), EUR(2,1). For testing reasons Linear Granger causality was further 

investigated in the VAR/VECM or GARCH residuals, but not detected.  
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TABLE 13: NONLINEAR CAUSALITY (4X4)  

 
Variable Panel B: NonLinear Causality 

Raw data VAR / VECM residuals GARCH-BEKK residuals 

X→Y Y→X X→Y Y→X X→Y Y→X 
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∆s ∆(p-p*)                                           

∆s ∆(i-i*) * *    *  *       * *    *  *            *         

∆s ∆(y-y*)        *  *                                 

 
Panel B: Non-Linear Causality 
The number of lags used for the nonlinear causality test are 1==

YX
ℓℓ  . The data used are log-returns. The nonlinear causality was investigated on the VAR/VECM residuals based on Panel A System 

identification. The number of lags and cointegrating vectors are reported in Panel A. The second moment filtering was performed with a GARCH-BEKK (1,1) model. The Chow-Lin method was used to 

interpolate AUDCPI, AUDIP, CHFIP and backdate JPYi. Total period (levels): 4/1986 – 7/2008. EURO period (levels): 1/1999 – 7/2008. 
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TABLE 14: LINEAR CAUSALITY (4X4)  

 
Variable Panel A: Linear Granger Causality 

Raw data VAR / VECM residuals GARCH-BEKK residuals 

X→Y Y→X X→Y Y→X X→Y Y→X 
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∆s ∆(m-m*)                                           

∆s ∆(p-p*)                                           

∆s ∆(y-y*)     **   *    *                               

 
X→Y: rX does not Granger Cause r Y.  Statistical significance 5% (*), 1% (**).The foreign exchange rates are Euro (EUR), Great Britain Pound (GBP), Japanese Yen (JPY), Swiss Frank (CHF), Australian Dollar 

(AUD), Canadian Dollar (CAD) and German mark (DM) are denoted relative to United States dollar (USD). The exact ratios represent EUR/USD, GBP/USD, USD/JPY, USD/CHF, AUD/USD, USD/CAD and 

DM/USD respectively. The FX rates are denoted as s and fundamentals as: m=Money, p=CPI, i=Interest rate, y=IP, m-y=Money- IP. In differentials (*) denotes non-US value. Causalities are investigated on 

Δ(differentials). All data but interest rates are converted by taking logs and multiplying by 100. The Chow-Lin method was used to interpolate AUDCPI, AUDIP, CHFIP and backdate JPYi. Total period (levels): 

4/1986 – 7/2008. EURO period (levels): 1/1999 – 7/2008. 

 

Panel A: Linear Granger Causality  
The 4x4 system of the data (levels) for each FX was investigated with a VECM specification and the null of no cointegration was rejected for all except AUD and EUR. The lag lengths of VECM/VAR 

specification are investigated and set using the SIC and Wald exclusion criterion and the cointegrating vectors using the Johansen trace statistic. The number of lags identified and the cointegrating vectors 

are presented in parenthesis as (lags, coint. vectors): GBP(5,2), JPY(4,1), CHF(2,1), AUD(2,0), CAD(4,1), DM(2,1), EUR(1,0). For testing reasons Linear Granger causality was further investigated in the 

VAR/VECM or GARCH residuals, but not detected.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 38 

TABLE 15: NONLINEAR CAUSALITY (4X4)  

 
Variable Panel B: NonLinear Causality 

Raw data VAR / VECM residuals GARCH-BEKK residuals 

X→Y Y→X X→Y Y→X X→Y Y→X 
X Y 
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∆s ∆(m-m*) *                                          

∆s ∆(p-p*)                                           

∆s ∆(y-y*)        *  *              *              *     

 
Panel B: Non-Linear Causality 
The number of lags used for the nonlinear causality test are 1==

YX
ℓℓ  . The data used are log-returns. The nonlinear causality was investigated on the VAR/VECM residuals based on Panel A System 

identification. The number of lags and cointegrating vectors are reported in Panel A. The second moment filtering was performed with a GARCH-BEKK (1,1) model. The Chow-Lin method was used to 

interpolate AUDCPI, AUDIP, CHFIP and backdate JPYi. Total period (levels): 4/1986 – 7/2008. EURO period (levels): 1/1999 – 7/2008. 
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TABLE 16: LINEAR CAUSALITY (4X4)  

 
Variable Panel A: Linear Granger Causality 

Raw data VAR residuals GARCH-BEKK residuals 

X→Y Y→X X→Y Y→X X→Y Y→X 
X Y 
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∆s ∆(p-p*)                                           

∆s i-i*    *                                       

∆s ∆(y-y*)     **       *                               

 
X→Y: rX does not Granger Cause r Y.  Statistical significance 5% (*), 1% (**).The foreign exchange rates are Euro (EUR), Great Britain Pound (GBP), Japanese Yen (JPY), Swiss Frank (CHF), Australian Dollar 

(AUD), Canadian Dollar (CAD) and German mark (DM) are denoted relative to United States dollar (USD). The exact ratios represent EUR/USD, GBP/USD, USD/JPY, USD/CHF, AUD/USD, USD/CAD and 

DM/USD respectively. The FX rates are denoted as s and fundamentals as: m=Money, p=CPI, i=Interest rate, y=IP, m-y=Money- IP. In differentials (*) denotes non-US value. Causalities are investigated on 

Δ(differentials). All data but interest rates are converted by taking logs and multiplying by 100. The Chow-Lin method was used to interpolate AUDCPI, AUDIP, CHFIP and backdate JPYi. Total period (levels): 

4/1986 – 7/2008. EURO period (levels): 1/1999 – 7/2008. 

 
Panel A: Linear Granger Causality  
The 4x4 system of the data (levels) for each FX was investigated with a VECM specification and the null of no cointegration was rejected for all. The lag lengths of VAR specification are investigated and set 

using the SIC and Wald exclusion criterion. The number of lags identified and the cointegrating vectors are presented in parenthesis as (lags, coint. vectors): GBP(1,0), JPY(1,0), CHF(1,0), AUD(1,0), CAD(1,0), 

DM(1,0), EUR(2,0). For testing reasons Linear Granger causality was further investigated in the VAR or GARCH residuals, but not detected.  
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TABLE 17: NONLINEAR CAUSALITY (4X4)  

 
Variable Panel B: NonLinear Causality 

Raw data VAR / VECM residuals GARCH-BEKK residuals 

X→Y Y→X X→Y Y→X X→Y Y→X 
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∆s ∆(p-p*)                                           

∆s i-i* * *      *       * *      *        *             

∆s ∆(y-y*)                                           

 
Panel B: Non-Linear Causality 
The number of lags used for the nonlinear causality test are 1==

YX
ℓℓ  . The data used are log-returns. The nonlinear causality was investigated on the VAR residuals based on Panel A System 

identification. The number of lags and cointegrating vectors are reported in Panel A. The second moment filtering was performed with a GARCH-BEKK (1,1) model. The Chow-Lin method was used to 

interpolate AUDCPI, AUDIP, CHFIP and backdate JPYi. Total period (levels): 4/1986 – 7/2008. EURO period (levels): 1/1999 – 7/2008. 
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TABLE 18: LINEAR CAUSALITY (3X3)  

 
Variable Panel A: Linear Granger Causality 

Raw data VAR / VECM residuals GARCH-BEKK residuals 

X→Y Y→X X→Y Y→X X→Y Y→X 
X Y 
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∆s ∆(p-p*)                                           

∆s ∆(y-y*)     **   **    *                               

 
X→Y: rX does not Granger Cause r Y.  Statistical significance 5% (*), 1% (**).The foreign exchange rates are Euro (EUR), Great Britain Pound (GBP), Japanese Yen (JPY), Swiss Frank (CHF), Australian Dollar 

(AUD), Canadian Dollar (CAD) and German mark (DM) are denoted relative to United States dollar (USD). The exact ratios represent EUR/USD, GBP/USD, USD/JPY, USD/CHF, AUD/USD, USD/CAD and 

DM/USD respectively. The FX rates are denoted as s and fundamentals as: m=Money, p=CPI, i=Interest rate, y=IP, m-y=Money- IP. In differentials (*) denotes non-US value. Causalities are investigated on 

Δ(differentials). All data but interest rates are converted by taking logs and multiplying by 100. The Chow-Lin method was used to interpolate AUDCPI, AUDIP, CHFIP and backdate JPYi. Total period (levels): 

4/1986 – 7/2008. EURO period (levels): 1/1999 – 7/2008. 

  

Panel A: Linear Granger Causality  
The 3x3 system of the data (levels) for each FX was investigated with a VECM specification and the null of no cointegration was rejected for all except JPY, CHF, AUD, CAD, EUR. The lag lengths of 

VECM/VAR specification are investigated and set using the SIC and Wald exclusion criterion and the cointegrating vectors using the Johansen trace statistic. The number of lags identified and the 

cointegrating vectors are presented in parenthesis as (lags, coint. vectors): GBP(2,1), JPY(1,0), CHF(1,0), AUD(1,0), CAD(1,0), DM(2,1), EUR(1,0). For testing reasons Linear Granger causality was further 

investigated in the VAR/VECM or GARCH residuals, but not detected.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 42 

TABLE 19: NONLINEAR CAUSALITY (3X3)  

 
Variable Panel B: NonLinear Causality 

Raw data VAR / VECM residuals GARCH-BEKK residuals 

X→Y Y→X X→Y Y→X X→Y Y→X 
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∆s ∆(p-p*)                                           

∆s ∆(y-y*)        *  *              *                   

 
Panel B: Non-Linear Causality 
The number of lags used for the nonlinear causality test are 1==

YX
ℓℓ  . The data used are log-returns. The nonlinear causality was investigated on the VAR/VECM residuals based on Panel A System 

identification. The number of lags and cointegrating vectors are reported in Panel A. The second moment filtering was performed with a GARCH-BEKK (1,1) model. The Chow-Lin method was used to 

interpolate AUDCPI, AUDIP, CHFIP and backdate JPYi. Total period (levels): 4/1986 – 7/2008. EURO period (levels): 1/1999 – 7/2008. 
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TABLE 20: LINEAR CAUSALITY (3X3)  

 

Variable Panel A: Linear Granger Causality 

Raw data VAR / VECM residuals GARCH-BEKK residuals 

X→Y Y→X X→Y Y→X X→Y Y→X 
X Y 
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∆s ∆(m-m*)            *                               

∆s ∆(y-y*)     **       *                               

 
X→Y: rX does not Granger Cause r Y.  Statistical significance 5% (*), 1% (**).The foreign exchange rates are Euro (EUR), Great Britain Pound (GBP), Japanese Yen (JPY), Swiss Frank (CHF), Australian Dollar 

(AUD), Canadian Dollar (CAD) and German mark (DM) are denoted relative to United States dollar (USD). The exact ratios represent EUR/USD, GBP/USD, USD/JPY, USD/CHF, AUD/USD, USD/CAD and 

DM/USD respectively. The FX rates are denoted as s and fundamentals as: m=Money, p=CPI, i=Interest rate, y=IP, m-y=Money- IP. In differentials (*) denotes non-US value. Causalities are investigated on 

Δ(differentials). All data but interest rates are converted by taking logs and multiplying by 100. The Chow-Lin method was used to interpolate AUDCPI, AUDIP, CHFIP and backdate JPYi. Total period (levels): 

4/1986 – 7/2008. EURO period (levels): 1/1999 – 7/2008. 

  

Panel A: Linear Granger Causality  
The 3x3 system of the data (levels) for each FX was investigated with a VECM specification and the null of no cointegration was rejected for all except GBP, AUD, CAD, DM. The lag lengths of VECM/VAR 

specification are investigated and set using the SIC and Wald exclusion criterion and the cointegrating vectors using the Johansen trace statistic. The number of lags identified and the cointegrating vectors 

are presented in parenthesis as (lags, coint. vectors): GBP(1,0), JPY(2,1), CHF(2,1), AUD(1,0), CAD(1,0), DM(1,0), EUR(2,1). For testing reasons Linear Granger causality was further investigated in the 

VAR/VECM or GARCH residuals, but not detected.  
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TABLE 21: NONLINEAR CAUSALITY (3X3)  

 
Variable Panel B: NonLinear Causality 

Raw data VAR / VECM residuals GARCH-BEKK residuals 

X→Y Y→X X→Y Y→X X→Y Y→X 
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∆s ∆(m-m*) *                                          

∆s ∆(y-y*)        *  *              *              *     

 
Panel B: Non-Linear Causality 
The number of lags used for the nonlinear causality test are 1==

YX
ℓℓ  . The data used are log-returns. The nonlinear causality was investigated on the VAR/VECM residuals based on Panel A System 

identification. The number of lags and cointegrating vectors are reported in Panel A. The second moment filtering was performed with a GARCH-BEKK (1,1) model. The Chow-Lin method was used to 

interpolate AUDCPI, AUDIP, CHFIP and backdate JPYi. Total period (levels): 4/1986 – 7/2008. EURO period (levels): 1/1999 – 7/2008. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 




