EUI Working Papers

RSCAS 2011/30
ROBERT SCHUMAN CENTRE FOR ADVANCED STUDIES
Global Governance Programme-06

FROM GLOBAL TO POLYCENTRIC CLIMATE GOVERNANCE

Daniel H. Cole
From Global to Polycentric Climate Governance

Daniel H. Cole
**Robert Schuman Centre for Advanced Studies**

The Robert Schuman Centre for Advanced Studies (RSCAS), created in 1992 and directed by Stefano Bartolini since September 2006, aims to develop inter-disciplinary and comparative research and to promote work on the major issues facing the process of integration and European society.

The Centre is home to a large post-doctoral programme and hosts major research programmes and projects, and a range of working groups and ad hoc initiatives. The research agenda is organised around a set of core themes and is continuously evolving, reflecting the changing agenda of European integration and the expanding membership of the European Union.

Details of the research of the Centre can be found on:

Research publications take the form of Working Papers, Policy Papers, Distinguished Lectures and books. Most of these are also available on the RSCAS website:

The EUI and the RSCAS are not responsible for the opinion expressed by the author(s).

**The Global Governance Programme at the EUI**

The Global Governance Programme (GGP) aims to share knowledge, and develop new ideas on issues of global governance, serve as a bridge between research and policy-making, and contribute the European perspective to the global governance debate.

The GGP comprises three core dimensions: training, research and policy. The Academy of Global Governance is a unique executive *training* programme which combines EUI’s top-level academic environment with some of the world’s leading experts in the field of global governance and is targeted to young executives and policy-makers, public sector officials, private sector professionals, junior academics, and diplomats. Diverse global governance issues are investigated in *research* strands and projects coordinated by senior scholars, both from the EUI and from internationally recognized top institutions. The *policy* dimension is developed throughout the programme, but is highlighted in the GGP High-Level Policy Seminars, which bring together policy-makers and academics at the highest level to discuss issues of current global importance.

For more information:

[www.globalgovernanceprogramme.eu](http://www.globalgovernanceprogramme.eu)
Abstract
Global governance institutions for climate change, such as those established by the United Nations Framework Convention on Climate Change and the Kyoto Protocol, have so far failed to make a significant impact on greenhouse gas emissions. Following the lead of Elinor Ostrom, this paper offers an alternative theoretical framework for reconstructing global climate policy in accordance with the polycentric approach to governance pioneered in the early 1960s by Vincent Ostrom, Charles Tiebout, and Robert Warren. Instead of a thoroughly top-down global regime, in which lower levels of government simply carry out the mandates of international negotiators, a polycentric approach provides for greater experimentation, learning, and cross-influence among different levels and units of government, which are both independent and interdependent. After exploring several of the design flaws of the existing set of global institutions and organizations for greenhouse gas mitigation, the paper explores how those global institutions and organizations might be improved by learning from various innovative policies instituted by local, state, and regional governments. The paper argues that any successful governance system for stabilizing the global climate must function as part of a larger, polycentric set of nested institutions and organizations at various governmental levels.

Keywords
Climate change, governance, Kyoto Protocol, polycentric, global, federalism
I. Introduction

Climate change is the greatest collective action problem the international community has ever confronted.1 Because the problem is global in scope—greenhouse gas (GHG) emissions from anywhere in the world contribute to rising global mean temperature and global mean temperature increases entail differential but substantial risks for all countries—it cannot be successfully resolved in the absence of effective global governance. Unfortunately, the global governance institutions created so far—consisting in the United Nations Framework Convention on Climate Change (UNFCCC),2 the Kyoto Protocol,3 and various subsidiary programs, policies, and administrative organizations—have been almost completely ineffectual because of flawed designs and implementation.

The purpose of this paper, however, is not to engage in hand-wringing about the current state of the global governance regime for climate change, or to recommend specific changes.4 Rather, the goal is to foster an improved understanding how global governance institutions for climate change must function (or fail to function) within a larger, polycentric set of nested institutions and organizations at various governmental levels.5

Elinor Ostrom recently observed that “‘[g]lobal solutions,’ negotiated at a global level—if not backed up by a variety of efforts at national, regional, and local levels—are not guaranteed to work effectively.”6 To the contrary, they are virtually doomed to fail. No global or international regime (defined as a set of institutions and organizations) can succeed in the absence of support ranging from national implementing legislation to national and sub-national monitoring and enforcement activities. Effective monitoring and enforcement may even require the active participation of non-governmental groups at the local level.7 So, effective global governance institutions inevitably are “polycentric” in nature.8

Polycentrism is not, however, just about the participation of multiple levels of government in providing a public good (or mitigating a public bad). A system that is purely hierarchical, with lower

---

4 That is, however, one purpose of my forthcoming book, SELLING HOT AIR: EMISSIONS TRADING AND OFFSETS IN CLIMATE POLICY (Cambridge University Press 2012).
5 For the sake of clarity, I follow Douglass North’s definition of “institutions” as the “rules of the game,” including both formal legal rules and informal social norms, that incentivize human behavior. On North’s definition, courts, legislative bodies, etc., are not “institutions,” but “organizations.” See, e.g., DOUGLASS C. NORTH, INSTITUTIONS, INSTITUTIONAL CHANGE, AND ECONOMIC PERFORMANCE 3-4 (1990). North’s is not the only definition of “institution,” of course. Neil Komesar, for example, defines an “institution” as a decision-making process. The products of such processes – the rules – are not, themselves, the institutions. See NEIL K. KOMESAR, LAW’S LIMITS: THE RULE OF LAW AND THE SUPPLY AND DEMAND OF RIGHTS (2001).
6 Id.
7 As we shall see, this is the case, for example, with respect to forest monitors for carbon offsets under the United Nations Reducing Emissions from Deforestation and Forest Degradation in Developing Countries Program (REDD+). See infra notes 72-74 and accompanying text.
8 The polycentric approach is presented in Section IV.
levels of government simply carrying out orders from those at higher levels, is not substantially polycentric, as that term is utilized in the literature. Rather, polycentric governance requires a certain level of independence, as well as interdependence, between governance institutions and organizations at various levels. The key issue—applicable to climate policy as it is to other areas of global or international concern—is to determine the appropriate division of responsibility and authority between governance institutions and organizations at global, national, state, and local levels.9

The next section of this paper briefly explores the role of global governance in international environmental law generally and explains why climate change presents an unparalleled challenge for global governance, entailing complications far beyond others the international community has confronted, including depletion of the stratospheric ozone layer. While the “Ozone Accords” (to phase out ozone depleting substances) are often pointed to as a model for global environmental agreements, including for climate change,10 the political and economic dynamics of climate change are far more complex than those involved in the ozone negotiations. Those complications largely explain the design flaws in, and failure (so far) of, the existing global climate governance regime, which are recounted in Section III. The Kyoto Protocol’s flaws virtually ensured that it would not reduce global GHG emissions even modestly. Section IV then introduces the polycentric governance approach pioneered by social scientists Vincent Ostrom, Charles Tiebout, and Robert Warren in the early 1960s, which provides a basis for rethinking the architecture of climate stabilization efforts.11 Section V observes various ways in which institutions at sub-global levels already are making important contributions to climate policy, and considers how greater attention to the appropriate nesting of polycentric climate institutions (presumably based on comparative institutional analysis) could improve the overall quality of climate governance. The paper concludes with further thoughts about the importance of polycentricity to the evolutionary development of future global climate governance.

II. International Environmental Law as a Realm of Global Governance

It is a truism that environmental problems do not respect legal or political boundaries. Pollution emitted from a source in one community, state, or country may harm public health, welfare or the environment in another community, state, or country. Such transboundary problems generally require cooperative solutions.12 In rare but important cases environmental problems impact the “global commons” (a.k.a., “global public goods”), seemingly requiring cooperation at the global level. Examples include the global trade in endangered species, global emissions of substances that deplete the stratospheric ozone layer, diseases that can cause global pandemics, such as smallpox, polio, and influenza, avoidance of potentially catastrophic asteroid strikes, and of course climate change. It is important to bear in mind, however, that the geographic scale of the threat does not, by itself, determine the scale of the regime needed to avert or minimize the threat. Not every global threat necessitates global governance. Even when global governance is necessary, institutions established at the international or global level are never sufficient, by themselves, for successfully resolving global problems.
Asteroid strikes are an interesting example of a potentially global problem that does not necessarily require a global governance solution. The prevention of large asteroid strikes is, as Scott Barrett describes it, a “single best effort” public good.  

A single wealthy country, such as the United States, may have the wherewithal, the technology, and the incentives (comparing the probability times the magnitude of harm from an asteroid strike with the costs of developing and deploying technologies to deflect near-earth objects) to alter the path of large asteroids before they can strike the earth, causing potentially catastrophic global harm. Some international or global collective action might be desirable (or even necessary) for logistical or political reasons, and several wealthy countries would likely be willing to cooperate voluntarily, for instance to minimize risk of error by a single decision-maker, but no global agreement would be needed to resolve the global threat.

Depletion of the stratospheric ozone layer presented the international community with a very different kind of global-public-good problem. Simply put, the problem stemmed from anthropogenic emissions of ozone depleting substances (ODSs)—primarily chemical refrigerants—emitted from millions of discrete sources throughout the world, but primarily from developed countries, where refrigeration and air conditioning are more prevalent. ODSs depleted the stratospheric ozone layer that protects the earth and its inhabitants from harmful ultraviolet radiation. Because ODSs were produced in several countries and every country emitted ODSs, a single country could not resolve the problem on its own. The problem was, however, successfully resolved through global collective action. The 1987 Montreal Protocol on Substances that Deplete the Ozone Layer, and other documents comprising the “Ozone Accords,” phased out of production and use the most harmful ozone depleting substances (ODSs), several of which are also harmful greenhouse gases.

So successful was the global governance regime for protecting the ozone layer that its framework-convention-and-protocol approach to resolving complex, international environmental issues became the model for all subsequent international environmental regimes, including for climate change. Indeed, efforts to deal with climate change have sometimes, albeit naively, been compared with those to protect the stratospheric ozone-layer, as if all the international community needed to do to solve the climate change problem was replicate the decision-making processes of the Vienna Convention and Montreal Protocol. Climate change does share some common features with protecting the ozone-layer. Both problems are global in scope and both have been subject to substantial scientific uncertainty and controversy. However, as I have explained elsewhere, climate change presents an almost immeasurably greater collective-action problem.

The ozone negotiations boiled down to a bilateral market conflict between the US and a few EU member states—the UK, France, and Germany—which were major producers of chlorofluorocarbons.
(CFCs) and other ODSs. The largest US producer, DuPont, had already developed reliable and affordable ODS substitutes, usable in existing systems. This technological edge effectively determined the US bargaining position in favor of phasing out ODSs. The US led the fight for the Montreal Protocol, burnishing its global environmental reputation while furthering its, and DuPont’s, commercial interests. On the other side, the EU called for more research before regulating ODS—a position that obviously was in the commercial best-interest of its own chemical producers. The US won the battle after a shift in EU leadership, several members of which did not share the vested interests of the UK, France, and Germany. Of course, the ozone negotiations also included other countries from around the world, including developing countries, which were mainly concerned with access to an affordable supply of reliable refrigerants. Their acquiescence was purchased, early on, by guarantees of compensation for the marginal cost increases stemming from the ODS phase-out and conversion to new refrigerants.\(^\text{18}\)

The fact that relatively few parties had significant commercial interests at stake in the ozone negotiations made it a relatively simple global problem to resolve. Climate change, by contrast, presents a far more difficult collective-action problem for several reasons (presented here in brief\(^\text{19}\)):

1. The costs and benefits of climate change (or climate change mitigation) are expected to be distributed differentially around the world, creating (comparatively at least) winners and losers;\(^\text{20}\)
2. The goal of climate stabilization conflicts with the countervailing need to meet rising global energy demand, which is a major concern for all developed and developing countries;\(^\text{21}\)
3. Low-carbon energy technologies that might ameliorate conflicts between the twin goals of reducing carbon emissions and increasing energy supplies are not yet “available” as substitutes for fossil fuels, and will certainly not supplant fossil fuels for at least the next couple of decades;\(^\text{21}\)
4. In large part because of (3), climate change mitigation lacks the kind of substantial corporate/commercial support DuPont supplied to the Ozone Accords. These reasons go a long way toward explaining the various flaws and weaknesses in the Kyoto Protocol and related global climate change agreements.

### III. Flaws in the Existing Global Climate Governance Regime

The design flaws of the existing global climate regime have been so thoroughly described in the literature\(^\text{22}\) that not much space needs to be devoted here to rehearsing them; a brief restatement should suffice. The vast majority of the problems arise under the Kyoto Protocol rather than the UNFCCC, which, as a framework convention, imposes few and only minor substantive obligations on the parties. This section focuses on four design flaws in the existing global governance regime: (1) the lack of sufficiently stringent emission-reduction targets; (2) the problem of “hot air”—excess emission credits that, if traded, would not represent actual emission reductions; (3) the reliance on inherently unreliable

---

\(^{18}\) See Cole, supra note 1, at 237.

\(^{19}\) For more detailed explanations of each of these reasons, see Cole, supra note 1; Also see Cass R. Sunstein, Of Montreal and Kyoto: A Tale of Two Protocols, 31 HARV. ENVT’L L. REV. 1 (2007).

\(^{20}\) This assumes moderate climate change with global mean temperature increases below 5°C. At higher temperatures, the risk of severe—even catastrophic—climate change increases. If global mean temperatures increase by 7 or 8°C, all countries may suffer heavy losses from climate change. See, e.g., Martin Weitzman, On modeling and interpreting the economics of catastrophic climate change, 91 REV. ECON. & STAT. 1 (2009).

\(^{21}\) The term “available” appears in scare quotes to denote its use as a quasi term of art. In this context, “available” means the technology exists, is reliable, and is not cost-prohibitive. On those metrics, it is clear that biofuels, solar, wind power, etc., are not “available” substitutes for fossil fuels; at best they are minor supplements. The International Energy Agency’s World Energy Outlook 2010 projects that fossil fuels will remain “the dominant energy sources in 2035” under various demand scenarios. See <http://www.worldenergyoutlook.org/docs/weo2010/WE02010_ES_English.pdf> at 4.

counterfactual baselines in offset programs; and (4) the high administrative costs of comprehensive trading in all GHGs from virtually all sources.

The Kyoto Protocol is, at once, exceedingly modest and overly ambitious. Modest are its mitigation targets for developed countries, which require national emission reductions averaging 5.2 percent, at least on paper, from 1990 levels. Ambitious are its elaborate emissions trading and offset programs, which the parties adopted without due consideration for technical and institutional problems, including high administrative costs (e.g., costs of monitoring and enforcement).

The parties to the Kyoto Protocol agreed that only developed countries (Annex I parties under the UNFCCC) would have binding emission-reduction targets, but they could not agree on a uniform level of emissions reduction for those countries. Parties bargained for individualized targets, ranging from 7% for the US, 6% for Canada, and 8% for the EU and its member states (subject to internal reallocation under the “EU bubble”). Specific emissions-reduction targets for individual countries are specified in Annex B of the Kyoto Protocol. The statistical average reduction called for in Annex B is 5.2% below 1990 levels. Several Annex I countries, including Iceland, Norway, and Australia, received allocations in excess of 1990 emissions. East European countries in transition accepted targets of no change from 1990 levels. This was, in effect, a generous gift of excess emissions allowances to those countries, which in the transition from socialism that began in 1990 (Kyoto’s baseline year), significantly reduced their GHG emissions, at first because of economic stagnation and then because of significant improvements in total factor productivity. Consequently, countries like Russia and Bulgaria obtained many thousands of tons of excess allowances—“hot air”—which they could sell to other countries through the Kyoto Protocol’s emissions trading and offset programs.

Russia, in particular, received an especially generous portion of “hot air” as a “side payment” for its ratification of the Kyoto Protocol, which became absolutely necessary for the Protocol to take legal effect after the US Senate announced (in a Resolution approved by a 95-0 vote, even before President Clinton flew to Kyoto to sign the agreement) that it would not ratify the Protocol.23 Unwisely, Russia’s participation and ratification were purchased with the very “currency” (GHG emissions) the international community was attempting to render scarce for the purpose of creating a viable GHG market.

Thanks to the “hot air” allowances, the Kyoto Protocol’s statistical average emissions reduction of 5.2% substantially overstates the actual, aggregate emissions reductions required from Annex I countries.24 Meanwhile, emissions from developing countries, which are not subject to mandatory reductions under the Kyoto Protocol, have been increasing so rapidly as to more than offset any emissions reductions from developed countries. Even assuming (unrealistically) full compliance with its mandates, the Kyoto Protocol has, from its inception, been entirely consistent with a net increase in global GHG emissions.

Given the Kyoto Protocol’s modest targets, one might wonder why the parties focused so much attention on minimizing the costs of achieving them by establishing various “flexibility mechanisms,” including emissions trading and the two project-based offset programs, “Joint Implementation” (JI) and the “Clean Development Mechanism” (CDM).25 It is unclear to what extent those programs have actually lowered compliance costs for countries with binding emission-reduction targets, but they have certainly undermined the environmental integrity of Kyoto’s mitigation regime. The various trading and offset programs exacerbated the problem of “hot air” (allowances in excess of actual emissions)

23 The Kyoto Protocol had to be ratified by 55% of signing parties, responsible for at least 55% of global GHG emissions, to take legal effect (Art. 25). Russia’s ratification had to be bought to make that happen.
25 Since Kyoto, a separate offset program designed especially for forestry-based projects, REDD+, has been integrated into the regime. That program shares many of the same flaws, discussed infra, that plague JI and CDM projects. See infra notes 72-74 and accompanying text.
by providing opportunities for countries to buy their way out of domestic emissions reductions with payments for “paper” (purely theoretical) reductions in other countries.

Among the trading programs, the most problematic in practice has been the CDM (if only because it has gotten off of the ground much more quickly than JI). The CDM has been substantially gamed by developing countries, especially China, which has hosted the majority of CDM projects undertaken so far. A sizeable majority of Chinese CDM projects have involved a single GHG, HFC-23, which is a chemical byproduct from the manufacture of the refrigerant HCFC-22. Kyoto parties with binding emission-reduction targets have been spending upwards of $800 million per year in China on CDM projects to reduce HFC-23 emissions that could have been incinerated or scrubbed at an estimated cost of just $31 million per year. So profitable have these projects become that HFC-23 has replaced HCFC-22 as the primary product for the Chinese plants. Given the discrepancy between the payments made by Annex I countries and the actual cost of disposing of HFC-23, the profits for the Chinese HCFC-22 manufacturers are huge, but funding parties also benefit from the transactions. Presumably, the credits (“Certified Emissions Reductions” or CERs) they receive and apply towards their Kyoto targets are less expensive than domestic emissions reductions would be (otherwise, they would not agree to participate in the CDM projects in the first place). But what might seem like a win-win situation for both parties actually undermines the environmental integrity of the global climate regime.

The Kyoto Protocol requires that emissions reductions from CDM and JI projects must be “additional” to what would be attained in their absence. Despite this requirement, David Victor has estimated that between one-third and two-thirds of CDM offsets do not reflect actual emissions reductions. This may be due partly to implementation problems—the CDM Executive Board was chronically under-staffed and -funded in its first several years of operation—but it is also due, at least in part to design flaws, not all of which may be correctable.

One design flaw is inherent to the “additionality” requirement, which inevitably depends on a counterfactual baseline—the estimated level of emissions in the absence of the CDM project—against which to determine the extent of emissions reductions from the project. To set this counterfactual baseline, the CDM Executive Board (EB) needs to determine, among other things, what the market demand for HCFC-22 in China (not to mention countries that import from China) is or should be. A related problem plagues forestry-related offset projects, where timber harvesting that is restricted in one area by an offset project may “leak” to another area beyond the boundaries of the CDM project. Under what circumstances can the CDM Executive Board be sure that the increased logging in the other area is not a “normal” increase due to market conditions, rather than “leakage” violating the additionality requirement? Such problems, because they involve counterfactual calculations, seem insuperable.

A more general design flaw in the Kyoto Protocol may be the comprehensive nature of its emission trading regime, which involves all GHGs from virtually all sources. The Kyoto parties gave little (if any) thought to the problems associated with measuring emissions of various GHGs from different types of sources. Carbon dioxide emissions from power plants are easily measured, at least in

---

27 This will likely change after 2012, when a new European Commission rule takes effect prohibiting the use of CDM credits from Chinese HFC-23 projects within its own Emissions Trading Scheme. To date, European member states have been the largest funding sources for those CDM projects.
29 See infra notes 72-74 and accompanying text on the REDD+ program, which provides for offsets from forest-conservation projects.
30 Accord Jeffrey Frankel, Formulas for quantitative emission targets, in ARCHITECTURES FOR AGREEMENT: ADDRESSING GLOBAL CLIMATE CHANGE IN A POST-KYOTO WORLD 27, 31 (J.E. Aldy and R.N. Stavins, eds., 2007).
technologically advanced countries—in the US, they have been monitored under the Clean Air Act since 1990. Indeed, CO₂ emissions from combustion do not need to be precisely measured at all but can be accurately estimated as a coefficient of the carbon content of the fuel and the combustion rate.31 However, the measurement problem is not so easily solved for other GHG cases and sources, including carbon emissions from decaying or burning forests, GHG emissions from leaky underground carbon sinks, or methane emissions from rice paddies, the digestive systems of cattle, or melting permafrost.32

The technical difficulties or complete inability to accurately and cost-effectively monitor emissions of all GHGs from all sources suggests that the Kyoto Protocol’s reliance on a comprehensive cap-and-trade approach to mitigate climate change was at least hasty and quite possibly mistaken. In particular, the parties neglected to account for the differential administrative costs, which are likely to be much higher—perhaps infinitely high—for a comprehensive cap-and-trade regime as opposed to a more limited regime (such as the EU Emissions Trading Scheme or the Regional Greenhouse Gas Initiative of the eastern US) focused on easily monitored GHGs and sources.33 Higher administrative costs might offset, or more than offset, the estimated compliance cost savings of a comprehensive cap-and-trade regime.

Richard Stewart and Jonathan Wiener have argued that a comprehensive cap-and-trade system for GHGs is preferable to one that is limited to easily monitored GHGs because a comprehensive system maximizes compliance-cost savings while minimizing the problem of ‘leakage.’34 By ‘leakage,’ they mean the transfer of GHG emitting activities from Annex I countries to Annex II countries, as well as substitution of unregulated GHGs for regulated GHGs within Annex I countries. For example, if only carbon dioxide emissions are regulated, power plants in Annex I countries might switch from coal to natural gas, which emits methane, a more potent greenhouse gas than carbon dioxide. This presumes that the regulatory costs associated with reducing carbon dioxide emissions make alternative energy sources cost-competitive, which might or might not be the case. Natural gas, for example, is a far more expensive fuel source currently than coal or oil. Still, Stewart and Wiener are correct that ‘leakage’ is a potential problem.

The question remains as to whether the ‘leakage’ problem is more significant than the monitoring problem associated with a comprehensive cap-and-trade regime for all GHGs and sources. Stewart and Wiener claim that it is, but without any supporting evidence. They blithely dismiss the monitoring problems associated with a comprehensive cap-and-trade system by noting that “[s]implified default rules can be adopted to deal with cross-gas comparison indexes and the uncertainties presented in measuring greenhouse gases such as agricultural methane and carbon dioxide sinks; those rules can be revised as monitoring and measurement techniques improve.”35 They do not specify what these default

32 See, e.g., Warwick J. McKibbin and Peter J. Wilcoxen, A credible foundation for long-term international cooperation on climate change, in ARCHITECTURES FOR AGREEMENT: ADDRESSING GLOBAL CLIMATE CHANGE IN THE POST-KYOTO WORLD 185, 205 (J.E. Aldy and R.N. Stavins, eds., 2007); Thomas Schelling, Epilogue: Architectures for agreement, in ARCHITECTURES FOR AGREEMENT: ADDRESSING GLOBAL CLIMATE CHANGE IN THE POST-KYOTO WORLD 343, 344 (J.E. Aldy and R.N. Stavins, eds., 2007) (‘Methane, with the possible exception of pipeline leaks, is probably not reliably measurable’).
33 See Daniel H. Cole and Peter Z. Grossman, Toward a Total-Cost Approach to Environmental Instrument Choice, in AN INTRODUCTION TO THE LAW AND ECONOMICS OF ENVIRONMENTAL POLICY: ISSUES IN INSTITUTIONAL DESIGN, 20 RESEARCH IN LAW AND ECONOMICS 223, 230, Fig. 1 (T. Swanson, ed., 2002) (showing how the achievement of a quota instrument might be infinitely costly).
35 Id. at 60.
rules might look like; nor do they explain how such rules might ensure reliable information about the
extent of methane emissions (or reductions in methane emissions) from a rice paddy in Vietnam or
carbon dioxide emissions reductions from foregone timber harvesting in Brazil.

The model for the Kyoto Protocol’s emissions trading program (and virtually all other such
programs) was the successful acid rain program from the 1990 Clean Air Act Amendments.36 But the
Kyoto parties (in contrast to the EU, when it established its own Emissions Trading Scheme) failed to
learn the appropriate lessons from the acid rain program, in which Congress paid close attention to
issues of monitoring, verification, and enforcement. Not only did Congress recognize the importance
of adequate monitoring to ensure the integrity of the trading system; it specifically required all
regulated facilities to install advanced continuous emissions monitoring systems, which report in real-
time to EPA headquarters in Washington.37 By contrast, the parties to the Kyoto Protocol did not
include any compliance regime at all, but merely called for future agreement on monitoring and
compliance mechanisms.

Compared to the US acid rain program, the Kyoto Protocol’s comprehensive cap-and-trade regime
for GHG emissions and sources is not just ambitious but arguably foolhardy for neglecting both the
technological and institutional obstacles in countries where rigorous enforcement of domestic—let
alone international—environmental rules is the exception rather than the norm. Many countries, and
not just ‘less developed’ ones, lack the institutional and/or technological, capacity for monitoring
emissions and enforcing compliance.38 As David Victor has observed, “[m]aking a trading system
work requires … the capacity to monitor the behavior of … enterprises and to enforce compliance.
These are not easy tasks. They are akin to what Western governments have had to do when overseeing
banking regulation—an area where even highly capable governments have failed, such as the United
States did with the savings and loan crisis.”39 (Victor wrote that sentence before the more recent and
even more devastating global financial crisis.)

Imagine the prospects for a reliable cap-and-trade regime in regions of African or Latin American
that lack not only sophisticated monitoring technologies but well-functioning market institutions and
non-corrupt governance institutions. According to a qualitative empirical study of the use of “market-
based instruments” (MBI), including cap-and-trade, in eleven Latin American and Caribbean
countries, the increasing use of MBI has “potentially increased technical and financial burdens on
already fragile institutional structures.” Not surprisingly, the study concludes that “MBIs require
strong institutions, adequate legislation, and effective monitoring and enforcement.”40 Of course, all
environmental instruments require strong institutions and effective monitoring and enforcement to be
effective. But institutional and technological constraints do not necessarily affect every environmental
instrument to the same degree.41

Virtually all of the design flaws of the Kyoto Protocol discussed in this section stem from the
collective action problems associated with climate change, addressed above in Section II. A few

36 See id. at 81-2.
37 See id. at 81-2.
38 See, e.g., Ruth Greenspan Bell and Clifford Russell, Environmental Policy for Developing Countries, ISSUES IN SCIENCE
39 David Victor, Fragmented carbon markets and reluctant nations: implications for the design of effective architectures, in
ARCHITECTURES FOR AGREEMENT: ADDRESSING GLOBAL CLIMATE CHANGE IN A POST-KYOTO WORLD 133, 143 (.E. Aldy
and R.N. Stavins, eds., 2007)
40 See, e.g., Ronaldo Serôa da Motta, Richard M. Huber, and H. Jack Ruitenbeek, Market based instruments for
environmental policymaking in Latin America and the Caribbean: lessons from eleven countries, 4 ENVT. & DEV. ECON.
177, 197 (1999).
41 See Daniel H. Cole and Peter Z. Grossman, When is Command-and-Control Efficient? Technology, Institutions, and the
Comparative Efficiency of Alternative Regulatory Regimes for Environmental Protection, 1999 WISC. L. REV. 887.
simple hypothetical questions should suffice to make the connection clear. First, if reliable and cost-effective substitutes for fossil fuels were readily available, would the Kyoto Protocol’s targets likely be more or less stringent? If moderate climate change were expected to cost both the US and Chinese economies 15% or more of annual GDP over the next 50 years, instead of less than 1%, as projected by influential economists, would those countries have supported efforts to establish more stringent, uniform emissions-reduction targets? And would President Bush have subsequently denounced the Kyoto Protocol in 2001? When Brazil first promoted the CDM as a flexibility mechanism under the Kyoto Protocol, did it really care about whether or not CDM projects actually reduced GHG emissions? If not, what was its primary concern, and why?

If the Kyoto Protocol is a weak treaty and, at best, a tentative half-step in the direction of a functional and effective global climate regime, could the parties have done better? As with many (if not most) global governance issues (especially those involving “weakest link” public goods), the climate regime reflects the lowest common denominator of the parties—what all 180+ parties were able to agree to at a given point in time. Given the scientific and social-scientific uncertainties about the climate change problem at the time the Kyoto Protocol was agreed, such a weak treaty was, perhaps, the best that reasonably could be expected. Indeed, it is not clear that the international community could accomplish even that much today, despite substantially less scientific and social-scientific uncertainty. As of mid-2011, we are not close to an agreement adopting a successor to the Kyoto Protocol, which is scheduled to expire at the end of 2012. In the face of that looming deadline, the potential benefits of adopting a truly polycentric approach to mitigating GHG emissions deserve more attention.

IV. A Brief Introduction to Polycentric Governance

In a 1961 article on municipal government, Vincent Ostrom, Charles Tiebout, and Robert Warren argued that “[t]he traditional pattern of government in a metropolitan area with its multiplicity of political jurisdictions may more appropriately be conceived as a ‘polycentric political system.” The term “polycentrism,” as they define it, connotes many centers of decision-making which are formally independent of each other. Whether they actually function independently, or instead constitute an interdependent system of relations, is an empirical question in particular cases. To the extent that they take each other into account in competitive relationships, enter into various contractual and cooperative undertakings or have recourse to central mechanisms to resolve conflicts, the various political jurisdictions in a metropolitan area may function in a coherent manner with consistent and predictable patterns of interacting behavior. To the extent that this is so, they may be said to function as a ‘system.’

While noting that large-scale governance, which V. Ostrom, Tiebout, and Warren label “Gargantua,” may be required to provide many large-scale public services, such as municipal water systems, port facilities, and mass transit, Gargantua may prove insensitive and unresponsive to “the variety of smaller sets of publics that may exist within its boundaries.”

Many of the interests of smaller publics might be properly negotiated within the confines of smaller political community without requiring the attention of centralized decision-makers concerned with the big system. This task of recognizing the smaller publics is a problem of ‘field’ or ‘area’ organization. The persistence of bureaucratic unresponsiveness in the big system, however, indicates it is not easily resolved. Large-scale, metropolitan-wide organization is

---

43 Ostrom, Tiebout, and Warren, supra note11, at 831.
44 Id.
unquestionably appropriate for a limited number of public services, but it is not the most appropriate scale of organization for the provision of all public services required in a metropolis.\textsuperscript{45}

Polycentricism is not just about the number of governmental levels or units. Rather, as Michael McGinnis has explained, it is characterized by “the concurrence of multiple opportunities by which participants can forge or dissolve links among different collective entities.…. [P]articipants must be able to pick and choose those producers and providers [of public goods] that are most appropriate to each specific issue at hand.”\textsuperscript{46} Instead of a “monocentric hierarchy,” where governmental units at higher levels make all the decisions and units at lower levels simply follow commands from above, a truly polycentric system is one in which governmental units both compete and cooperate, interact and learn from one another, and responsibilities at different governmental levels are tailored to match the scale of the public services they provide.\textsuperscript{47}

V. Ostrom, Tiebout, and Warren, and other early writers on polycentrism, were concerned primarily with issues of local governance, such as law enforcement.\textsuperscript{48} For example, one study found that residents of small communities served by a locally organized police force were more satisfied than those in demographically similar neighborhoods serviced by a larger, more centralized police force.\textsuperscript{49} Elinor Ostrom has summarized the basic conclusions from applications of the polycentric approach to metropolitan governance:\textsuperscript{50}

1. Public goods and services differ substantially in regard to their production functions and their scale of effects.
2. Policy preferences tend to be more homogeneous within smaller units than across an entire metropolitan area.
3. Citizens who live in areas served by multiple jurisdictions learn more about the performance of any one jurisdiction by seeing or hearing about how problems are handled in other jurisdictions.
4. The presence of large numbers of potential producers of urban goods and services in a metropolitan area allows elected officials more effective choice of producers.
5. Multiple jurisdictions with different scopes and scales of organization allow citizens and officials more choice in selecting modes of providing and producing public goods to try to utilize the best available technology, to achieve economies and avoid diseconomies of scale, and improve performance over time.
6. Producers who must compete for contracts are more likely to search for innovative technologies, to encourage effective team production, as well as citizen coproduction, so as to enhance their own performance.

A key factor running through several of the findings seems to be that the polycentric approach provides greater opportunity for experimentation, choice, and learning. Such considerations are important at virtually all levels of social organization.

Because the polycentric approach was developed, and has been applied, predominantly in the context of metropolitan governance, it is not so well known or appreciated by scholars focused on international or global issues. However, the model easily scales up for application to all governance levels, including global governance. Vincent Ostrom has observed, for example, that polycentric

\textsuperscript{45} Id. at 837-8.
\textsuperscript{48} See, e.g., ELINOR OSTROM, ROGER B. PARKS, AND GORDON P. WHITAKER, PATTERNS OF METROPOLITAN POLICING (1978).
\textsuperscript{50} Ostrom, \textit{supra} note 47, at 33-4.
governance is closely related to political theories of federalism and dual sovereignty underlying the US Constitution’s allocation of powers between the federal government and the states. More recently, Elinor Ostrom has introduced polycentricity into the climate policy literature, using a somewhat broader definition: “A polycentric system exists when multiple public and private organizations at multiple scales jointly affect collective benefits and costs.”

Applying the polycentric approach to climate change does not imply that global governance is either unnecessary or irrelevant. Rather, the idea is to improve global climate governance by: (a) differentiating issues that must be decided at the global level, from those that might more effectively be dealt with at other levels of government; and (b) putting global climate institutions and organizations in a position to learn from, and be influenced by, the experiences and insights derived from institutions and organizations at other levels of government (which, in turn, learn from their own experiences as well as those of other governance units at various levels). The next section describes how a polycentric approach might improve climate governance.

V. Improving Climate Governance by a Polycentric Approach

As noted in the Introduction, climate policy is at least weakly polycentric in that various programs have been established at different levels of government to mitigate GHG emissions. The European Union has established its own, internal Emissions Trading Scheme (ETS). In the US, the Obama Administration’s Environmental Protection Agency is in the process of establishing GHG regulations under the Clean Air Act, despite the fact that the US Senate has not ratified the Kyoto Protocol. And China, which has no binding emissions reduction obligations under the Kyoto Protocol, has promised to reduce the carbon intensity of its economic production to an extent that will require substantial deviation from business-as-usual emission trends.

At sub-national governmental levels, the State of California is in the process of implementing a serious mitigation program of its own, which includes emissions trading. California also belongs to the Western Climate Initiative, a consortium of US states and Canadian provinces working to establish a regional emissions-trading program for GHGs beginning in 2012 (which might or might not get off the ground). Already up and running is an emission trading program established by a consortium of states in the northeastern US—the Regional Greenhouse Gas Initiative (RGGI). Meanwhile, more

51 See Vincent Ostrom, Polycentricity (Part 1), in M.D. McGinnis (Ed.), Polycentricity and Local Public Economies 52 (1999). Recently, scholars have argued that traditional conceptions of federalism no longer accurately describe the allocation of governmental authority in the US. Instead, they offer new conceptions of “dynamic,” “adaptive,” or “interactive” federalism, which, they argue, better capture the concurrent, changeable, and cross-influential nature of relations between various levels of government. See, e.g., Kirsten H. Engel, Harnessing the Benefits of Dynamic Federalism in Environmental Law, 56 Emory L.J. 159 (2006); David E. Adelman and Kristen H. Engel, Adaptive Federalism: The Case Against Reallocating Environmental Regulatory Authority, 92 Minn. L.Rev. 1796 (2008); Robert A. Schapiro, Toward a Theory of Interactive Federalism, 91 Iowa L.Rev. 243 (2005). If anything, these new approaches to federalism are even more consistent with the polycentric approach than traditional notions of federalism and dual sovereignty.

52 Ostrom, supra note 1 and supra note 47.

53 Ostrom, supra note 1, at __.


56 See, e.g., David Cohen-Tanugi, Putting it into Perspective: China’s Carbon Intensity Target, NRCD White Paper (Oct. 2010).

57 See http://www.arb.ca.gov/cc/cc.htm; http://www.pewclimate.org/what_s_being_done/in_the_states/ab32.

58 See http://www.westernclimateinitiative.org/. The RGGI actually functions more like a carbon tax than a cap-and-trade program. This is due primarily to two factors: (1) the caps have been soft and (2) 100% of allowances are auctioned (with a price floor that has kept the value of allowances from falling to zero during the recent recession). The allowance
than half of American states have adopted Renewable Energy Portfolios, which are intended (at least, that is the claim) to reduce GHG emissions.59

Several local governments have undertaken useful actions to curb GHG emissions. As early as 1993, Portland, Oregon, for example, established a plan to reduce GHG emissions by 20% below 1990 levels by 2010. It did not meet the goal; in fact, nominal emissions rose by 0.7% between 1993 and 2005 mainly because of a rapidly rising local population. Nevertheless, per capita emissions fell by 12.5% during that period,60 which is no insignificant achievement (especially compared to the rest of the US, where per capita emissions rose during that same period). More recently, the City of Berkeley, California has launched a successful program to reduce GHG emissions by financing the installation of solar-heating systems in residences. Solar technology is expensive to install, but provides energy savings that, over time, more than compensate for the costs of installation and maintenance. Berkeley’s FIRST program provides homeowners with loans for solar installations, thereby reducing the high up-front costs. The homeowners then pay back the loans at a low rate of interest in regular instalments along with their property taxes.61 The savings on energy costs from the solar installations make those payments affordable.

Even private organizations have engaged in voluntary, collective action to reduce GHG emissions. The Chicago Climate Exchange (CCX) was a private trading market, established in 2003, with more than one hundred corporate members from all US states, eight Canadian provinces, and 16 other countries. Participants made legally-binding commitments to meet annual reduction targets (as against baselines set in accordance with historical emissions). They could meet those targets either through internal reductions in emissions or by purchasing emissions allowances through the CCX from other firms that reduced emissions below targeted levels. An explicit goal of the CCX was to position itself as the primary national exchange, once Congress got around to enacting a federal cap-and-trade scheme. As the years passed without any federal action to create a national cap-and-trade program, many CCX participants began to lose interest. In 2010, the CCX was acquired by the Intercontinental Exchange, which closed it down at the end of that year,62 after the Senate, once again, failed to pass a climate cap-and-trade bill. The story of the CCX and its demise is a sad one, but it highlights the important institutional connections required, across various levels of governance, to make a climate regime work.

Many of the programs discussed above have little to do with compliance with the Kyoto Protocol. In theory, the RGGI, California’s “Global Warming Solutions Act,” the City of Berkeley’s FIRST program, and even the CCX, could constitute mechanisms for US compliance with the Kyoto Protocol. But the US government has not expressed any intention of abiding by its Kyoto targets since President Bush denounced the Protocol in 2001.63 Consequently, regional, state, and local GHG

(Contd.)
reduction programs in the US are probably better viewed as independent programs, which in some cases deviate substantially from Kyoto’s regulatory architecture. For example, because the RGGI focuses on a single GHG (CO₂) from one major source (power plants), it constitutes a far more limited trading program than those established in the Kyoto Protocol.

Even programs that clearly are part of national Kyoto Protocol compliance strategies, such as the EU’s ETS, deviate substantially in structure from the Protocol’s flexibility mechanisms. The EU ETS, like the RGGI, focuses only on carbon dioxide emissions, albeit from a larger set of sources. It remains far more limited in scope than the comprehensive trading of all GHGs from virtually all sources authorized in the Kyoto Protocol. At the outset, the ETS greatly limited the use of offsets from Kyoto-based JI and CDM projects in order to preserve the environmental integrity of its trading system. Under the so-called “Linking Directive,” which ties the ETS to Kyoto’s offset programs, ETS participants originally were allowed to use CDM or JI offsets to meet at most 6% of their compliance obligations. ⁶⁴ In 2009 amendments to the ETS, ⁶⁵ however, the EU raised the ceiling to 50% for 2008-2020, but established fairly stringent conditions for offset use and authorized the EC to limit or prohibit certain kinds of offset projects. Indeed, the EC recently has used that authority to ban the use of offset credits (CERs) from HFC-23 CDM projects in China because of the rampant fraud described earlier, although the ban takes effect only in 2013, after the Kyoto compliance period ends. ⁶⁶

More generally, in designing the ETS, the European Commission paid much closer attention to the lessons of earlier emissions trading programs (including the US acid rain program) especially with respect to monitoring and other administrative costs. Indeed, it was precisely this concern over administrative costs that led the EC to limit the ETS, at least initially, to carbon dioxide emissions from a relative few, large-emitting sectors of the economy.

From a polycentric perspective, the ETS is not simply a Kyoto compliance mechanism for the EU but a possibly preferable, institutional alternative to Kyoto’s trading mechanisms, from which the UNFCCC parties might learn valuable lessons for a post-Kyoto treaty. The ETS is far from ideal. It has suffered from serious design flaws and implementation problems relating, for example, to the stringency of member state-imposed caps, the lack of a price floor for allowances (a problem exposed during the global economic recession), security of emission and trading logs, and even outright theft of allowances and tax scams. ⁶⁷ Despite those flaws, the European Commission was far more careful and deliberate in designing the ETS than the Kyoto parties were in determining the structure of Kyoto

(Contd.)

⁶⁴ It may seem odd that the EC proposed to link the ETS with Kyoto offset programs at all, given its evident concern with administrative costs in designing the ETS. No doubt, the EC understood many of the flaws of those offset programs, when it proposed the Linking Directive. However, as a matter of practical politics, the “Linking Directive” was vitally important for securing Russian ratification of the ETS, which, as noted earlier, was strictly necessary for the Kyoto Protocol to enter into legal effect. The legislative history makes clear that this was well understood within the EU at the time the Linking Directive was proposed and adopted.


Joshua Chaffin, Cyber-theft halts EU emissions trading, Financial Times, Jan 19, 2011 <http://www.ft.com/intl/cms/s/0/27ee8cb0-2401-11e0-bf0f-001446e489a.html#axzz1MZP2yV0>;

trading programs. Indeed, the legislative history of the ETS suggests that the EC specifically intended to *amend* and *improve* the Kyoto regime by establishing the world’s first large-scale carbon trading system.

In an August 2000 “Green paper on greenhouse gas trading within the European Union,” the EC called for implementation of a Union-wide GHG trading program prior to the start of the Kyoto Protocol compliance period in 2008, in order to “provide valuable insights that can be fed into the United Nations negotiating process.”\(^{68}\) The Commission apparently perceived that, by being a first-mover in creating a large, regional trading system, it could influence (for the better) the future development of global climate policy. Subsequent events (e.g., Copenhagen, Cancun, the failure of the US Congress to follow the EU’s lead in structuring its own trading program\(^{69}\)) have clearly disappointed EU hopes of influencing post-Kyoto negotiations by stealing a march in the development of international carbon markets. It was, however, a worthy goal.

Meanwhile, the EU has amended the ETS to ameliorate certain flaws in the system. In 2009, for example, the ETS Directive was amended to shift authority for setting national caps for each compliance period from the member states to the EC beginning in 2013.\(^{70}\) Similarly, as already noted, the EC has banned the use of offset credits from Chinese HFC-23 CDM projects starting in 2013. The relative ease of amending institutions within existing federal, national, state, or local government structures, as lessons are learned over time, is a significant advantage over the unwieldy process of international negotiation. Thus, despite its many flaws, the EU ETS has always been a far more serious, deliberative, and potentially effective endeavor than the Kyoto Protocol’s flexibility mechanisms for mitigating GHG emissions.

Had other major-emitting countries—especially the US—followed the EU’s lead, and established similar programs capable of linking up with the ETS, the result would have been a *de facto* global trading system that, while enabled by the Kyoto targets, deviated substantially (in a positive direction) from Kyoto’s “rules of the game” for trading. Instead of a top-down imposition of international legal rules resulting from global negotiations, a global carbon market might have emerged in a more bottom-up fashion (if that phrase sensibly applies to inter-linked *national* actions\(^{71}\)). Linking up separately created trading schemes created nationally, regionally, or even at the state level (as in the case of California) probably remains the best hope for improving the Kyoto Protocol’s environmentally dubious set of flexibility mechanisms.

Another example of the value of a polycentric approach to climate governance comes from the REDD+ program.\(^{72}\) “REDD” stands for “Reduced Emissions from Deforestation and Forest Degradation in Developing Countries.” The plus sign was added in 2007, when REDD was expanded to include projects for sustainable management of forest carbon stocks. REDD+ was negotiated separately from the Kyoto Protocol, which generally avoided practices related to “land use, land use changes, and forestry” (LULUCF) for mitigating GHG emissions. REDD+ creates an offset program

---


\(^{69}\) Virtually all proposals to establish GHG emissions-trading programs considered by Congress in recent years have been comprehensive, *a la* the Kyoto Protocol, rather than limited, *a la* the EU ETS (and the RGGI). Ironically, Congress has paid less attention than has the EC to the lessons of its own acid rain program, which was very much concerned with costs of monitoring and enforcement. *See supra* note 62 and accompanying text.

\(^{70}\) *See supra* note 65.

\(^{71}\) If nations in international negotiations are viewed like individuals in ordinary contracting situations, then it makes sense to think of inter-linked national actions as a bottom-up approach to international institution building, in contrast to the top-down imposition of regimes established in global negotiations.

that operates much like the CDM, and replicates many of its flaws, especially with respect to problems of “leakage” and “additionality” (based on counterfactual baseline estimates).  

In one very important respect, however, REDD+ differs from CDM and other Kyoto flexibility mechanisms: it explicitly recognizes the role of local, indigenous forest communities in monitoring and enforcing forest conservation projects. While remote sensing (e.g., by satellite) can provide some sense of the level of deforestation, it is not very useful for assessing changes in the carbon content of forests, which requires (among other things) the ability to actually measure the circumference of trees. In other words, adequate forest monitoring requires feet on the ground, and those feet have to be attached to people who have the right incentives to monitor the forests and enforce compliance with the terms of REDD+ projects.  

Incentives are, of course, directly affected by institutional structures, including those established at the global level. It would be absurd to suggest, however, that an institutional framework adopted by the international community could, by itself, either mandate or guarantee the right incentives for effective forest monitoring by local stakeholders. REDD+, far more than the Kyoto Protocol, recognizes the importance of nested institutions at all levels of government, which are responsive to differential national circumstances, levels of development (e.g., per capita GDP), local communities (including indigenous peoples), and other stakeholders. However, that recognition alone will not ensure that REDD+ projects achieve their GHG mitigation goals. It is up to national and sub-national governments to ensure that the proper institutions are put in place to create the proper incentives for local forest users.  

VI. Conclusion  
In recent years, scholars from various disciplines have questioned the wisdom of comprehensive, top-down climate governance. Robert Keohane and David Victor recently argued that “a climate change regime complex, if it meets specified criteria, has advantages over any politically feasible comprehensive regime, particularly with respect to adaptability and flexibility.” Their definition of “regime complex,” as a middle ground between “fully integrated institutions that impose regulation through comprehensive, hierarchical rules” and “highly fragmented collections of institutions with no identifiable core and weak or nonexistent linkages between regime elements,” is consistent with theories of polycentric governance, as defined in the social science literature and employed in this paper. In a similar vein, the international consulting firm Booz & Company recently published a paper arguing that nationally-based climate mitigation and adaptation strategies, tailored to each country’s specific needs and assets, constitute a more “realistic and viable approach to combating the effects of climate change” than a “top-down, internationally-directed approach.” Moreover, national and sub-national policies, if adopted by key actors, could have a substantial positive impact on international climate regimes. A very interesting recent working paper by Geoffrey Heal and Howard

---

73 Another inherent problem is permanence. For how long must a REDD+ project conserve a forest or forest-area against harvesting to warrant issuance of offset credits?  
74 See, e.g., Elinor Ostrom and Harini Nagendra, Insights on linking forests, trees, and people from the air, on the ground, and in the laboratory, 103 Proc. Nat’l Acad. Sci. 19224 (2006);  
76 Id. at 3-4.  

15
Kunreuther employs Thomas Schelling’s tipping model\textsuperscript{79} to show that a small set of countries, by adopting climate control measures, could “make it in the interests of all others to do likewise.”\textsuperscript{80} For example, Heal and Kunreuther find that “China and the EU between them have been instrumental in making carbon-free energy considerably less expensive, suggesting that they could be part of a tipping set, or even form one.”\textsuperscript{81} In a similar vein, as argued in this paper, if the US adopted a cap-and-trade regime similar in structure, scale, and scope to the EU ETS, the resulting market would predominate and possibly displace the Kyoto mechanisms. Such a development would constitute a significant improvement to the global climate regime (or “regime complex”), given the myriad flaws of the Kyoto structures. Even in the absence of US participation, the EU ETS, because it dominates global trading markets, \textit{should} at least influence their future institutional evolution.

Unfortunately, international negotiators do not appear to be even discussing—let alone conducting comparative cost-benefit analyses (an operationalized form of comparative institutional analysis) to determine—the proper scale and scope of emissions trading (in comparison with other mitigation instruments such as taxes or nontradable quotas). Nor is there evidence that the international community is paying due attention to climate policies at national or sub-national levels of government. To the contrary, participants in the global roving cocktail party known as the “Conference of the Parties” seem to be under the misapprehension that they alone make climate policy.

More than anything, the lack of due attention to (a) the flaws in the existing international legal order and (b) the existence of better institutional mechanisms at lower levels of government may simply indicate that we have not yet reached the kind of tipping point Heal and Kunreuther’s model suggests exists. From a polycentric perspective, the outcome of international negotiations over the next two years may have less long-term importance for the shape of global climate policy than what happens in the EU, US, China, and other key countries—both domestically and through smaller-scale international arrangements—over the next five to ten years.


\textsuperscript{81} \textit{Id.} at 14.
Author Contacts:

Daniel H. Cole
530 W. New York St.
Indianapolis, IN 46202
USA
Email: dancole@iupui.edu