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Abstract 

In an otherwise unique-equilibrium model, agents are segmented into a few informational islands 
according to the signal they receive about others' expectations. Even if agents perfectly observe 
fundamentals, rational-exuberance equilibria (REX) can arise as they put weight on expectational 
signals to refine their forecasts. Constant-gain adaptive learning can trigger jumps between the 
equilibrium where only fundamentals are weighted and a REX. This determines regime switching in 
aggregate volatility despite unchanged monetary policy and time-invariant distribution of exogenous 
shocks. In this context, a thigh inflation-targeting policy can lower expectational complementarity 
preventing rational exuberance, although its effect is non-monotone.    
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1 Introduction

What are the determinants of switches in the volatility of macro-variables? In principle,

a persistent reduction in the amplitude of business fluctuations can be thought to be

either the result of good policy, namely a change of policy by some major actor within

the economy, or of good luck, that is, a decrease of volatility of the exogenous shocks

hitting the economy. It is not always easy to distinguish between the two. An example

is provided by the intense debate on the sources of the "great moderation" in the 80s’

(Stock and Watson, 2002; Mc Connell M.M. and Perez-Quiros, 2000).

This paper presents a simple model where the introduction of signals about expecta-

tions of others jointly with adaptive learning can generate shifts in aggregate volatility

with unchanged monetary policy and time-invariant distribution of exogenous shocks.

Still, it assigns to monetary policy an important but ambiguous role. Policies of tight

targeting on inflation can in fact kill the possibility of regimes of high volatility, even if,

only marginal hardening is counter productive once high volatility occurs.

I consider a monopolistic competition economy where only a fraction of producers

have to set their price before knowing the aggregate price. A policy maker enforces a

flexible targeting rule according to his preferred trade-offbetween output gap and inflation

volatility. In this model the actual output gap responds to actual inflation that in turns

responds to uninformed producers’aggregate expectation about current inflation. Under

homogenous information a unique rational expectation equilibrium exists. In this context

two main twists are introduced.

First, the economy is split into two symmetrical islands. On each island, the expec-

tation of each uninformed producer is just a private noisy signal of the forecast of an

island-specific type of professional forecaster. The latter is intended as a medium or a

statistical offi ce that releases reports on the future course of inflation. Thus, there is

an information transmission channel that maps professional forecasts into naive produc-

ers’ expectations depending on the distribution of the observational noises across the

population.

The professional forecasters perfectly observe all the fundamental determinants of

inflation, but they also receive a private signal of the other professional forecaster’s ex-

pectation. That is, each professional forecaster can anticipate the forecasts of the other

with some uncertainty. Expectational signals are the only sources of heterogeneity be-

tween the professional forecasters since each one observes a signal from the other one.

The introduction of heterogeneous expectational signals can give origin to a multi-

plicity of rational expectation equilibria. A fundamental equilibrium always exists in

which experts just use fundamental information and do not put weight on expectational
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signals. Then, two rational exuberance equilibria can arise in which experts put weight

on expectational signals self-fulfilling rational exuberance. In particular, a multiplicity

of equilibria exist under two conditions: i) the monetary policy is not aggressive enough

about the inflation target and ii) the map from professional forecasts to producers’ex-

pectations entails an amplification of the non-fundamental component. The sum of these

two effects can provide the degree of complementarity needed to self-fulfil the predic-

tive power of expectational signals. In the case of a rational exuberance equilibrium,

non-fundamental volatility driven by observational noises transmits to actual inflation

entailing a regime of higher volatility.

The concept of rational exuberance equilibria is developed in Gaballo (2011). As in

a typical sunspot equilibrium, at a rational exuberance equilibrium it is optimal to put

weight on some non-fundamental signal if everybody does the same. Nevertheless the

two equilibrium concepts are essentially different1. The latter require that a commonly

understood exogenous signal drives the coordination of agents’beliefs, the former instead

originate with heterogeneous signals that are endogenous to the forecasting rule. Expec-

tational signals are not simple coordination devices, but they entail a signal extraction

problem that sustains a multiplicity of equilibria. In fact, as with the model at hand,

rational exuberance equilibria can exist where typical sunspots do not.

The second twist is to explore the consequences of professional forecasters acting like

econometricians, that is using linear regressions on observables to form their forecasts

(Evans and Honkapohja, 2001). In particular, I explore the possibility that they learn

with a constant gain, so that exponentially decreasing weights are given to later data.

This class of learning algorithms is particularly suited to learn about stochastic processes

that are potentially open to sudden structural changes.

The paper proves that whenever rational exuberance equilibria exist at least one

of them is learnable under adaptive learning2. Moreover, the learnability of rational

exuberance equilibria and of the fundamental equilibrium coexists in a large region of the

parameter space. Therefore, in this region, constant gain learning selects among them

and potentially triggers unpredictable and endogenous jumps among learnable equilibria

following few lucky or unlucky expectational aggregate shocks. This is possible as long as

a small number of types is considered, so that, when expectational signals are weighted,

the impact of observational noises do not vanish into the aggregation. In this way different

regime switching in volatility can occur despite unchanged monetary policy and a time-

invariant distribution of exogenous shocks.

Nevertheless, the monetary authority still has an important role. By implementing a

1For comprehensive reviews on sunspots see Benhabib and Farmer (1999) and Guesnerie (2001).
2This is an other difference with typical sunspot equilibria that instead are learneable only in some

limited cases under special representations (see Evans and McGhough (2011))
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flexible targeting rule the central bank can amplify or dampen the impact of aggregate

expectation on actual inflation. In particular, a suffi ciently high focus on price stability

can prevent a multiplicity of equilibria. Still, a more aggressive monetary policy is locally

not beneficial whenever rational exuberance is already in play. This means that the change

of monetary policy must be drastic. Only a gradual focus on price stability instead is

fated to generate periods of even higher volatility. In this sense, good policy is not strictly

necessary, but it is suffi cient to prevent bad luck if appropriately conducted.

The dynamic system is finally simulated for several calibrations in the cases of two and

more-than-two informational islands. With a finite number of islands the same qualitative

results obtain even if the quantitative dimension becomes less important as the number

of islands increases.

2 Related literature

Angeletos and Werning (2006) and Hellwig and others (2006) have emphasized the impor-

tance of endogenous signals in restoring multiplicity in the static version of the benchmark

currency attack model when agents are privately uncertain about the fundamentals. As

shown in more detail in Gaballo (2011), the effect of expectational signals goes beyond

their fundamental content. They do not just restore multiplicity, but they can give origin

to a multiplicity of equilibria in otherwise unique-equilibrium static models even when

agents are perfectly informed on fundamentals.

The attempt to reconcile macro-volatility regime switches with constant gain learning

is shared with Branch and Evans (2007). In their model, stochastic volatility is the

result of an evolutionary competition among different misspecified predictors. Sargent

and others (2008) also use misspecified constant-gain learning to explain the rise and

fall of South American inflation. The results in this paper do not rely on misspecified

forecasting rules, but rather on informational frictions.

Other works have proved that a very aggressive monetary policy stabilizes macro-

volatility when agents learn. Orphanides and Williams (2005) show that when agents use

perpetual adaptive learning schemes then reduced price fluctuations are reflected in a low

volatility of expectations, which in turn stabilizes output. In Branch and others (2009)

agents choose a level of attention by balancing the effect of active monetary policy on

output volatility. Adam (2009) proves the local uniqueness of an equilibrium where fully

rational inattentive firms can more easily process data when prices are stable, contributing

to overall stability. In the present model there are two important differences: the change

in monetary policy has to be drastic to be beneficial when exuberance is already in play,

and good policy is not necessary for the stability of the system.
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3 Baseline model

3.1 Aggregate supply with uninformed suppliers

This section introduces a simple model to address the issue of regime switching in volatil-

ity driven by heterogeneous expectations. The basic framework (details in appendix) is

a textbook monopolistic competition model populated by a continuum of suppliers with

unit mass along the lines of Woodford (2003).

To allow for heterogeneous expectations, I assume there is a fraction 1 − τ of firms
that price their product before knowing the current aggregate price. The log-linearized

optimal pricing rule of uninformed producers is

pi,t = Ei
t−1pt + ωyyt + ωcci,t + z̃t−1, (1)

where, Ei
t−1pt denotes the expectation of producer i of the aggregate price pt, yt is the

output gap, ci,t is the consumption by workers type i, z̃t−1 is a a predetermined technology

shock drawn from a normal distribution centred on zero with finite variance σz, finally

ωy and ωc are deep parameters. The rest of the producers are perfectly informed of the

aggregate price, so their price is given by (1) with Ei
t−1pt = pt. In other words, each firm

knows the aggregate quantity supplied and the consumption of its own workers, but only

a fraction τ sets price before knowing others’current pricing3. After aggregation we have

pt = τpt + (1− τ)Et−1pt + (ωy + ωc) yt + z̃t−1

where

Et−1pt ≡ (1− τ)−1
∫ 1−τ

0

Ei
t−1pt di (2)

denotes the average expectation across uninformed firms. After simple manipulation, the

aggregate supply (AS) relation is written as

yt = κ (pt − Et−1pt) + zt−1, (3)

where zt−1 is an appropriate re-scaling of z̃t−1and κ ≡ ((ωy + ωc))
−1 (1− τ) > 0 captures

the degree of strategic complementarity in price setting determined by the degree of

market power, the technology process, the elasticity of consumption and the fraction of

uninformed producers. The AS is a kind of new classical Phillips curve encompassing

that in Lucas (1973), and Kydland and Prescott (1977).

3This informational assumption implies a weaker departure from full knowledge with respect to the
one originally postulated in Woodford (2003).
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3.2 Monetary policy

Amonetary authority has the instruments to successfully implement the following flexible

targeting rule

πt + φyt = π∗ + η̃t, (4)

where πt ≡ pt−pt−1 is the inflation rate, π̃ is the publicly announced inflation target, η̃t are
i.i.d. white noise shocks with finite variance interpreted as monetary transmission frictions

and φ ≥ 0 represents the degree of flexibility of the targeting rule. Specifically, φ = 0

entails the most restrictive monetary regime with actual inflation being on average equal

to the target. As φ increases, the response to inflation becomes weaker during recessions

and stricter in expansionary periods. This specification is a simple and general way to

embody the implications of different degrees of policy-maker tolerance to deviations from

the inflation target conditional on output deviations from the steady state.

3.3 The equilibrium under homogeneous expectations

The policy rule (4) together with (3) yields the following reduced form:

πt = α′zt−1 + βEt−1πt + ηt, (5)

where

α ≡
[

φ−1

κ+φ−1

− 1
κ+φ−1

]
, zt−1≡

[
π∗

zt−1

]
, β ≡ κ

κ+ φ−1
, ηt ≡

φ−1

κ+ φ−1
η̃t,

which describes the course of actual inflation given producers’expectations. Notice β

measures the impact of aggregate expectations of the current course of inflation. It

depends on the structural parameters of the economy and the policy of the monetary

authority.

Definition 1 The fundamental rational expectation equilibrium of the model (FREE) is

characterized by

πt = π∗ − φzt−1 + ηt,

yt = ψt−1 + κηt

Ei
t−1πt = πt ≡ π∗ − φzt−1

for each i, that is, the unique stationary sequence of inflation rates, output gaps and indi-

vidual expectations that satisfies (1), (2), (3) and (5) under the restriction of homogeneous

expectations, namely Et−1πt = Ei
t−1πt for each i.
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The fundamental equilibrium arises when every uninformed producer expects the fun-

damental inflation rate πt, that is, the one predicted by the fundamentals of the economy:

the inflation target and the predetermined technology shock. The mere existence of the

FREE cannot explain macro-volatility switches unless there are structural changes in the

distribution of the exogenous shocks or shifts in the preferences of the monetary authority.

4 Introducing heterogeneous expectations

In the following I will introduce heterogeneity in expectations. I will develop the simplest

(and more transparent) case when uninformed producers are symmetrically segmented

into two informational islands, namely ı and . Extensions to a finite number of islands

can be easily obtained and will be briefly discussed through numerical simulations at the

end of the paper.

Professional Forecasters. On each island there is an island-specific type of pro-
fessional forecasters whose only aim is to truthfully provide the best projections of the

inflation course (in the mean square error sense) to uninformed producers inhabiting their

own island. Professional forecasters neither produce nor consume. They can be thought

of as media or statistical offi ces that serve a certain industrial district, as well as insti-

tutional agencies that release reports on the expected course of the economy based on

available information.

The information set of the professional forecaster type ι is

Ωι
t−1 ≡ [{zτ}t−1τ=−∞, {sι,τ}t−1τ=−∞], (6)

with

sι,t−1 ≡ E
t−1πt + ηι,t−1,

where ηι,t−1 is a type-specific white noise measurement error drawn from a normal distri-

bution N (0, σ) with zero mean and finite variance σ. The noises in expectational signals

are orthogonal to fundamental variables and independently distributed in time. The infor-

mation set of professional forecaster type  is a mirror image. In other words, professional

forecasters observe fundamentals (the inflation target and the predetermined technology

shock) and a signal of the simultaneous expectation of the professional forecaster on the

other island. Expectational signals captures uncertainty about others’expectations mea-

sured by the size of σ. The case of perfect information obtains in the limit of σ → 0,

whereas the case of no information about others’forecasts arises in the limit of σ →∞.
Individual-specific noises in the expectational signals are the only source of hetero-

geneity in the information set of the professional forecasters. This feature allow us to
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divide their forecasting problem into two sequential tasks: estimating the fundamental

rate of inflation and estimating non-fundamental fluctuations from the fundamental. In

fact, the professional forecasters form expectations about the fundamental rate πt condi-

tioning on the commonly observed fundamental variables according to

Eι
t−1πt = E

t−1πt = πet ≡ a′zt−1, (7)

where a is a vector of real weights. The expected fundamental rate is the same since both

types of professional forecasters use the same fundamental information.

Even in the case that the professional forecasters correctly estimate the fundamental

inflation rate, unexpected fluctuations are caused by the exogenous unobserved distur-

bance ηt. However, the professional forecasters are uncertain whether such departures are

truly exogenous or partly due to expectations of non-fundamental fluctuations held on the

other island. In this case the expectational signal would be a useful predictor of course

of the actual inflation. Therefore, the professional forecasters estimate non-fundamental

fluctuations around the estimated fundamental rate using the linear rule

Eι
t−1πt − πet = b

(
E
t−1πt + ηι,t−1 − πet

)
,

E
t−1πt − πet = c

(
Eι
t−1πt + η,t−1 − πet

)
,

where b and c are weights to be determined. Following this rule, each professional fore-

caster expects a departure of the actual inflation from the fundamental rate proportional

to his own noisy perception of the other’s mirror-like expectation. Solving the equations

above for the professional forecasts, we can rewrite them as functions of the expected

fundamental rate and observational errors. We have

Eı
t−1πt = πet +

bc

1− bcη,t−1 +
b

1− bcηı,t−1, (8a)

E
t−1πt = πet +

bc

1− bcηı,t−1 +
c

1− bcη,t−1, (8b)

with bc 6= 1. Notice that both types of professional forecasts are determined by both b

and c. In particular they collapse to (7) if and only if both b and c are equal to zero.

Uninformed producers. Actual inflation reacts to the aggregate expectation of
uninformed agents, and not directly to that of professional forecasters. I assume that

uninformed producers do not have a particular theory of how the economy works, but

rather they rely on the expectations of a more sophisticated agent. Imagine that although

the reports of the professional forecasters are public they can be perceived or interpreted

in different ways. For the sake of simplicity, I assume producer i on the island ι holds
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the following naive expectation:

Ei
t−1πt = si,t−1 ≡ Eı

t−1πt + ηi,t−1,

where ηi,t−1 is an individual-specific white noise measurement error drawn from a normal

distribution with zero mean and finite variance. In other words, producers’expectations

are just their own noisy perceptions of the professional forecast on their own island. The

aggregate expectation of the uninformed producers (2) is equal to

Et−1πt =
1

2

(
Eı
t−1πt + E

t−1πt
)

+ (1− τ)−1
∫ 1−τ

0

ηi,t−1 di. (9)

The relation above entails a map from the average professional forecast to the average

expectation across uninformed producers. The properties of this map depends on the

aggregation of observational noises.

The transmission channel. This structure shapes a relation between experts and
the private sector, which is illustrated in figure 1.

[ figure 1 about here ]

Two types of professional forecasters equally affect the aggregate expectation calcu-

lated over a continuum of uninformed suppliers. The aggregate expectation yields the

actual inflation rate as implied by (5). The professional forecasters observe fundamentals

and have noisy perceptions of each others’expectations.

Notice that the last term in (9) shapes the degree of neutrality of the transmission

channel from experts to the private sector: it is zero if and only if the cross-sectional

correlation across uninformed producers of expectational signals is zero . Here instead I

want to allow for a particular case, that in which the observational noises of uninformed

producers have a correlation with the non-fundamental component of the professional

forecast they rely on. To capture this effect one can express ηi,t ∼ N (0, σi,t) in the

following way:

ηi,t−1 = γ(Eı
t−1πt − πet ) + εi,t,

where εi,t is a i.i.d. shock normally distributed according to N(0, σε) across agents and

time. With this form, the aggregate expectation can be written simply as

Et−1πt = πet + (1 + γ)

(
Eı
t−1πt + E

t−1πt
2

− πet
)
, (10)

where γ measures the effect of the transmission channel from professional to naive fore-
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casts. Notice that the impact of the non-fundamental component of the professional

forecasts on the aggregate expectation is amplified or dampened according to the sign

and size of γ.

I focus on this particular assumption for two reasons. First, the relations (7), (8)

and (10) together are able to capture well-documented stylized facts recovered from the

examination of expectation surveys. Mankiw, Reis and Wolfers (2004) prove important

claims about the relation between disagreement in the Survey of Professional Forecasters

(SPF) and the Michigan Survey of Consumers’expectations: i) both cross-sectional dis-

tributions are closely centred on the right value of inflation, that is, average expectations

are almost rational expectations; ii) both present similar slow reactions to news about

fundamental macroeconomic data that only account for a small fraction of the overall

volatility4; iii) both types of expectations present substantial correlation, so they seem

to react to similar fundamental and non-fundamental shocks. On top of that, the obser-

vation that the expectations of the private sector are systematically more volatile than

professional ones, although they exhibit a strong correlation but a similar slow reaction

to fundamental news5, supports a positive value of γ. That is, the private sector is more

sensitive than professional forecasters to non-fundamental shocks, which in this model

are captured by the noises in expectational signals.

A second more pedagogical reason for this ad-hoc assumption is that it allows a simpler

understanding of the dynamics. In fact, β and γ will be the only parameters determining

the expectational complementarity between the professional forecasters’ expectations,

which is ultimately what matters for the emergence of a multiplicity of equilibria. With

different assumptions on the correlation of expectational signals one can still obtain a

multiplicity of equilibria but at the cost of much more cumbersome conditions. One other

possibility is to assume a correlation between fundamentals and observational noises as

shown in Gaballo (2011), but this would also make the mechanism less transparent. I

refer the interested reader to that work. I choose here to prioritize the very purpose of

this paper which is to show how constant gain learning can trigger endogenous regime

switching in volatility with unchanged monetary policy while keeping the distribution of

exogenous shocks time-invariant.

4In particular, this can reflect the fact that expectations adaptively incorporates news concerning
fundamental data.

5Carrol (2003) presents an epidemiological model where the private sector’s expectations exhibit even
slower reactions to news of macoreconomic fundamentals than do those of professional forecasters.
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5 Multiple Learnable Equilibria

5.1 Rational Expectations Equilibria

It is possible now to recover the actual low of motion (ALM) as a function of exogenous

shocks only, parameterized by the weights of the forecasting rules used by the two types

of professional forecasters. Plugging (8) and (10) into (5), the ALM for inflation is

πt = α
′
zt−1 + βπet +

β∗

2

(
b (1 + c)

1− bc ηı,t−1 +
c(b+ 1)

1− bc η,t−1
)

+ ηt (11)

where β∗ ≡ β(1+γ)measures the final impact of professional forecasts of non-fundamental

fluctuations. Equation (11) features temporary equilibria of the model, that is, it describes

the course of actual inflation for given coeffi cients (a,b, c) of the forecasting rules (7)-(8).

The rational expectation equilibrium values of (a,b, c) imply instead that such forecasting

rules are optimal linear projections of available information, so that the professional fore-

casters’mistakes are orthogonal to available information collected in (6).6 Orthogonality

restrictions can be expressed in terms of the so called T-map (Ta, Tb, Tc) as

E[zt−1 (πt − Tazt−1)] = 0,

E[
(
E
t−1πt + ηı,t−1 − πet

) (
πt − πet − Tb

(
E
t−1πt + ηı,t−1 − πet

))
] = 0,

E[
(
Eı
t−1πt + η,t−1 − πet

) (
πt − πet − Tc

(
Eı
t−1πt + η,t−1 − πet

))
] = 0,

where (Ta, Tb, Tc) represent the optimal weights (in the mean square error sense) for a

given calibration (a,b, c) of the inflation process (11). In practice, we can obtain the

T-map by working out the orthogonal restrictions above to obtain the explicit form

Ta (a) = α+ βa,

Tb (b, c) =
β∗

2

(
b (1 + c) (1 + cρ) + c(1 + b) (c+ ρ)

1 + c2 + 2cρ

)
,

Tc (b, c) =
β∗

2

(
b (1 + c) (b+ ρ) + c(1 + b) (1 + bρ)

1 + b2 + 2bρ

)
,

where ρ ≡ corr[ηı,t, η,t] is the correlation among the simultaneous observational errors

of the professional forecasters. Notice that the T-map does not depend on the variance

of observational errors.
6When shocks are normally distributed, this restriction is enough to pin down the forecasting rule

that identifies the correct conditional distribution of the variable to be forecasted. Also note that the
forecast error of each uninformed producer is 1+ γ times that of the professional forecaster on the same
island plus a white noise component. Therefore, the former is also orthogonal to the available information
whenever the latter is.
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Definition 2 Rational expectation equilibria are a sequence of actual inflation rates, out-
put gaps and individual expectations as defined by (3)-(8)-(11) for a triple (â,b̂, ĉ) =

(Ta,Tb, Tc) that is a fix point of the T-map.

The following proposition states the existence of multiple determinate equilibria.

Proposition 3 The system has one or three rational expectation equilibria. The funda-

mental rational expectation equilibrium (FREE) with (â,b̂, ĉ) = ((1− β)−1α, 0, 0) always

exists. A high rational exuberance equilibrium (hREX) with (â,b̂, ĉ) = ((1− β)−1α, b+, c+),

and a low rational exuberance equilibrium (lREX) with (â,b̂, ĉ) = ((1− β)−1α, b−, c−),

where

b± = c± =
β∗ − (2− β∗) ρ± 2

√
(β∗ − 1) (1− ρ2)

2− β∗ (1 + ρ)
,

both exist provided β∗ > 1.

Proof. In the appendix.
The signal extraction problem entailed by the expectational signals is crucial to the

existence of REX. This occurs whenever |corr[sı,t, s,t]| 6= 1, that is the correlation between

the expectational signals is not perfect. In particular, notice that the correlation between

expectational signals is endogenous to the given weights b and c. At the REX values

b± = c± is

corr[sı,t, s,t] =
2b± +

(
1 + b2±

)
ρ

2ρb± + 1 + b2±
,

whose absolute value is one only at b± = c± = 1 obtained for β∗ = 1 or ρ = ±1. These

are the limit points at which heterogeneity of the information sets vanishes. In such a

case expectations are homogeneous and so the FREE is the only equilibrium. For all the

other cases in which b± = c± exist and are different from one - that is whenever β∗ > 1 -

two REX exist.

Figure 2 plots Tb for four different calibrations. Given the symmetric nature of the

problem, REX lie at the intersections of Tb with the bisector. Line a) is obtained for

β∗ = 0.8 and ρ = 0. In this case there is a unique intersection at the FREE values

b̂ = ĉ = 0. For β∗ greater than one, two rational exuberance equilibria (REX) emerge.

Ceteris paribus, increasing values of ρ widen the distance between the low and the high

REX values (contrast b) with c)). Finally, an extreme calibration such as that entailing

line d) gives rise to negative low REX values.

[ figure 2 about here ]

The intuition for the result is simple. A multiplicity of equilibria is due to the non-

linearity of the T-map originated by the endogeneity and heterogeneity of the expec-
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tational signals. These two features create externalities to the individual forecasting

problem and REX as coordination failures. In fact, both types of professional forecasters

could obtain a lower variance of their forecast errors if both coordinated on the FREE

values. But suppose type ı puts weight on his expectational signal. Now Eı
t−1πt reacts to

ηı,t−1, which therefore affects the course of inflation πt. Then s,t−1 is now partly infor-

mative of actual inflation fluctuations away from the estimated fundamental rate so that

type  wants to condition on it, coming in full circle. In other words, if type ı deviates

from the fundamental rate then this creates an incentive for type  to do the same. When

the expectational complementarity is strong enough (β∗ > 1) then this mechanism is

self-reinforcing and a multiplicity of determinate equilibria - consisting of two REX and

a FREE - exists; otherwise putting zero weight on the signals is the only equilibrium

forecasting rule.

5.2 Adaptive learning

This section explores the learnability of equilibria, and in particular the possibility of the

professional forecasters being stuck in a REX when they learn adaptively with a constant-

gain algorithm. The concept of learnability refers to the nature - stable or unstable - of the

learning dynamics around the equilibria. Consider that (â,b̂, ĉ) are recursively estimated

with constant stochastic gradient (CSG) according to

at = at−1 + g zt−1
(
πt − a′t−1zt−1

)
, (12a)

bt = bt−1 + g
(
E
t−1πt + ηı,t−1 − πet

)
(πt − Eı

t−1πt), (12b)

ct = ct−1 + g
(
Eı
t−1πt + η,t−1 − πet

)
(πt − E

t−1πt), (12c)

where g is a fixed gain, (πt − Eı
t−1πt) is the forecast error and

(
E
t−1πt + ηı,t−1 − πet

)
is

the noisy observed displacements of others’expectations from the estimated fundamental

rate. If both estimates bt and ct are close to zero, the professional forecasters discard

non-fundamental information and forecast the fundamental rate given by (12a). If this is

not the case, considering noisy observations actually improves the accuracy of forecasts

and the system can possibly converge on a learnable REX.

Definition 4 An equilibrium entailed by (â,b̂, ĉ) is locally learnable under a constant-gain

learning algorithm if and only if there exists a suffi ciently small gain g̃ and some neigh-

borhood =(â,b̂, ĉ) of (â,b̂, ĉ) such that for each initial condition (a0,b0, c0) ∈ =(â,b̂, ĉ) and

positive gain g ≤ g̃ the estimates converge almost surely in distribution to the equilibrium

values.
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The particular constant-gain algorithm (12) is similar to the recursive version of OLS

where the estimated correlation matrix is kept equal to the identity matrix and the gain

is fixed7. CSG converges to an ergodic distribution centred on a fixed point of the T-map

whenever recursive OLS asymptotically converges (to a point). CSG like any constant

gain learning rule, exhibits perpetual learning since more weight is given to more recent

data. This makes this class of algorithms particularly suitable for learning structural

changes. In this model, CSG has the advantage of showing convergence to the equilibria

and, at the same time, the possibility of endogenous and unpredictable shifts from the

FREE to a REX. Recursive OLS on the contrary converge at the cost of a huge stickiness

of the dynamics after relatively few repetitions.

To check learnability one needs to investigate the Jacobian of the T-map. If the

Jacobian of the T-map computed at the equilibrium values has all eigenvalues lying

inside the unit circle, the equilibrium is stable under learning (Marcet and Sargent, 1989;

Evans and Honkapohja, 2001). The Jacobian for the T-map takes the form

JT (a,b, c) =


β 0 0 0

0 β 0 0

0 0 dTb(b,c)
db

dTb(b,c)
dc

0 0 dTc(b,c)
db

dTc(b,c)
dc


where the explicit forms of the partial derivatives are recovered in the appendix.

Figure 3 shows a numerical analysis for the whole parameter range spanned by β∗

and ρ. Remember that a necessary condition for the learnability of equilibria is always

β < 1, given that β is the largest eigenvalue associated with the learning dynamics of the

fundamental component of actual inflation. This is assumed in the following discussion.

[ figure 3 about here]

The FREE is the only learnable equilibrium in the region β∗ < 1. In the white area a

learnable high REX arises besides the FREE. In this case the learning algorithm selects

between them. As ρ increases in modulus, FREE and hREX are both learnable for lower

values of β∗. Specifically, as ρ approaches unity for a suffi ciently high value of β∗ the low

REX becomes the unique learnable equilibrium. In contrast, as ρ decreases for suffi ciently

high value of β∗ the system presents no learnable equilibria.

7The CSG algorithm is derived as the optimal solution to the minimization of the forecast error
variance provided agents are "sensitive" to risk in a particular form. For details see Evans, Honkapohja
and Williams (2005). The CSG formula is obtained by setting the covariance matrix equal to the unitary
matrix in the recursive expression for the constant gain OLS. In order to obtain adjustments comparable
with constant gain OLS the gain has to be rescaled by the covariance matrix of the regressors.
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Necessary condition for arising and learnability of REX in this model is that γ >

β−1 − 1, that is, the private sector commits observational errors that positively covary

with the estimated departures of actual inflation from the fundamental rate. In that

respect, the transmission channel in the economy plays an essential role in that it provides

the degree of expectational complementarity needed for the emergence of REX.

Whenever learnable REX exist, the distances between the equilibria measured on the

bisector in figure 2 are indicative of the size of the basins of attraction. In particular,

at least in the range considered, the T-map behaves like a cubic yielding three dynamic

equilibria. As usual, the equilibrium in the middle is either unstable and works as the

threshold between two basins of attraction or it is the only stable equilibrium with a

basin of attraction lying between the other two. In the case of lines b) and c) in figure

2, the low REX divides the basins of attraction of the FREE and of the high REX. In

particular, as β∗ increases the latter enhances whereas the former shrinks.

Constant gain algorithms trigger continuous temporary escapes from the equilibrium

values. Such escapes can displace the system from one basin of attraction to another.

This can occur since only two (or a small number of) islands are considered so that

expectational shocks do not vanish in the aggregation and affect current inflation. In this

way regime switching in volatility can alternate despite unchanged monetary policy and

time-invariant distribution of exogenous shocks.

5.3 Aggregate volatility and monetary policy

From a qualitative point of view non-fundamental volatility generated by rational exu-

berance has the features of demand-side volatility. The model implies that as long as a

decrease in the overall variance is due to a shift from a REX to a FREE, output gaps and

hours should exhibit a sudden decrease in volatility whereas labor productivity should be

unaffected8. This effect is in sharp contrast with a pure good luck theory for which all

these variables should present an equal decrease in variation resulting from a weakening

of technological shocks.

[ figure 4 about here ]

Figure 4 plots excess volatility at the learnable REX measured in observational error

variance units. For β∗ values close to unity excess volatility triggered by the high REX is

huge but it initially decreases very soon and then slowly increases again as β∗ increases.

This turns out to be crucial in the evaluation of the monetary policy conduct. A more

aggressive monetary policy, that is a lower φ, lowers β and so β∗. For values of φ such

8Part of the evidence uncovered by Galì and Gambetti (2009) seems to confirm these predictions
relative to the "great moderation" puzzle.
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that β∗ < 1 rational exuberance cannot emerge. Nonetheless, when rational exuberance

is already in play, a gradual decrease in φ enhances volatility as β∗ approaches unity. In

other words, more focus on price stability is not locally optimal. Therefore, the monetary

authority must implement a drastic change of policy to avoid high-volatility periods,

whereas partial adjustments are harmful whenever rational exuberance is already in play.

6 Simulations

Examples of endogenous and unpredictable regime switching in volatility are provided

in this section. I choose calibrations to allow a simple comparison with the analytical

results. Without loss of generality, I set π∗ = 0 and ψt = 0 so that the fundamental

rate of inflation is equal to zero at all times. The exogenous shocks are all Gaussian

white noises with σ = 0.01 variance. As baseline setup I start by setting a quite flexible

monetary targeting policy with φ close to unity. I assume only a rather small fraction of

firms τ can adjust their prices instantaneously. The values of the benchmark calibration

are τ = 0.05; φ = 1; ζ = 6; θ = 20 so that β = 0.94. In all the figures the following

conventions hold. From top to bottom the three boxes in each figure respectively display

the series for: actual inflation, the forecast of the fundamental rate, and the evolution

of the weights on expectational signals. Whenever a multiplicity of equilibria exist, their

values are indicated by dotted lines in the last two boxes.

6.1 Two islands

Figure 5 displays the benchmark case of convergence in distribution to the FREE values

for ρ = γ = 0. The gain is settled at g = 0.01/σ. The factor σ has been included in the

gain so that the adjustments of both bt and ct are substantially equal to those obtained

with constant gain recursive least squares around the FREE for 0.01 (see footnote 7).

Notice how constant-gain learning generates continuous small displacements away from

the fundamental equilibrium values. Such displacements are temporary escapes and do

not substantially affect the variance of actual inflation displayed in the first box.

[ figure 5 about here ]

[ figure 6 about here ]

Figure 6 shows the occurrence of an endogenous structural change affecting the volatil-

ity of actual inflation in a persistent and substantial way. The calibration of figure 5 is

modified only by setting γ = 0.14, so that β∗ = 1.08. Therefore the learnable high REX
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arises for b̂ = ĉ = 1.78 as shown by figure 3 in correspondence with curve b). For about

1300, periods the dynamics of figures 5 and 6 are indistinguishable. Nevertheless, as esti-

mates approach the low REX values, the course of actual inflation changes dramatically

even if the economy is perturbed by the same series of exogenous shocks. In particular,

as estimates overcome the low REX values (this happens after about 2000 periods) the

dynamics enters in the basin of attraction of the high REX. The extra non-fundamental

volatility is about three times the FREE one. This change could be easily misidentified by

an external observer as a truly exogenous increase in non-fundamental volatility. Notice

also that expectational volatility affects the learning process of the estimated fundamental

rate contributing to the overall volatility.

[ figure 7 about here ]

Figure 7 displays an example of endogenous and unpredictable switches from the

FREE to high REX and vice versa. Several features contribute to the result. Firstly γ is

cut by half at 0.07 (which makes β∗ = 1.01 very close to unity), but ρ is now fixed at 0.4.

For this calibration the two basins of attraction have almost the same size. Moreover, I

choose a bigger gain, namely g = 0.02/σ to make the estimates more volatile and hence

jumps more likely. The next examples will show that similar dynamics can be generated

with a less extreme calibration by considering more than two islands.

6.2 More-than-two islands

The generalization of the model to cases with more than two islands is quite straightfor-

ward even if analytically a bit cumbersome. In this section I show two simulations with

four and eight symmetrical types of professional forecasters. The only modification is

that now the professional forecasters receive a signal about the average expectation of all

the others. Figures 8 and 9 make clear that similar qualitative results occur. Figure 8 is

generated with the same calibration and shock series as figure 6 but with a slightly bigger

gain (g = 0.0125/σ). The high volatility regime originates after 500 periods and a few

periods after time 2400 a suffi ciently more aggressive monetary policy makes the FREE

the unique equilibrium, and so globally stable. The extent of the excess non-fundamental

volatility turns out to be only slightly smaller with respect the previous exercises.

[ figure 8 about here ]

The two jumps in the inflation dynamics in figure 9 are both endogenous. They are

obtained with the same calibration as figure 8 but with a much smaller gain g = 0.005/σ

and a smaller correlation ρ = 0.2. As the number of islands increases the high REX
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values decrease. This relation is intuitive as in the limit one expects the standard case in

which REX collapse to the FREE.

[ figure 9 about here ]

All the same, the dynamics with more than two islands are much more sensitive to

changes in correlation among observational errors. In both the above examples a decrease

of 0.1 in ρ is enough to prevent the first endogenous unlucky jump. This comes from the

fact that decentralized coordination with more islands is in principle more demanding.

Nonetheless, increasing the number of islands also has the effect of shrinking both basins

of attraction and so jumps are more likely.

7 Conclusion

This study has identified a rational for reconciling the "good luck or good policy" expla-

nations of macro-volatility switches. The concept of rational exuberance equilibria was

introduced in a simple monetary model where agents have heterogeneous expectations

and, in particular, they are segmented into a few types according to the signals they

receive regarding other agents’expectations of inflation.

On the one hand, equilibria entailing non-fundamental volatility can occur when

agents put weight on the expectational signals as predictors of business fluctuations.

Moreover, when expectations are adaptively formed using constant-gain algorithms, self-

fulfilling rational exuberance can arise endogenously as the economy jumps from a fun-

damental equilibrium, where expectational signals are ignored, to a rational exuberance

equilibrium, where agents put weight on expectational signals.

On the other hand, a decrease in non-fundamental volatility can be (even if not

necessarily) the result of a drastic tightening of inflation-targeting policy that reduces

the impact of expectations in the economy and prevents a multiplicity of equilibria.

Nevertheless, timid "improvements" in monetary conduct are counter-productive when

exuberance is already in play. The discontinuity in the effect of monetary policy could

partly illuminate the diffi culties in the implementation of a gradual recovery towards

full stability and, on the contrary, the success of a big policy change such as that made

possible by the arrival of a new governor.

The paper has focused on the importance of uncertainty about others’expectations

as one of the possible sources of non-fundamental volatility. It has pointed out the role

of monetary policy in affecting the impact of expectations on the real economy beyond

fundamentals, and provided a new argument in favor of tight inflation-targeting.
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Appendix A

Households

An index j ∈ (0, 1) denotes a continuum of representative households and i ∈ (0, 1)

a continuum of different goods. Each household j consumes a basket of all the goods

produced in the economy, and supplies a type j labor input specific to the production of

the good i = j. Households type j solve

max
{Cj,t;Nj,t;Bj,t}

∞∑
t=0

βt

(
logCj,t −

N1+ζ
j,t

1 + ζ

)
,

subject to

PtCj,t + PtBj,t = PtWj,tNj,t +

∫
Πi,t di+ (1 + rt−1)Pt−1Bj,t−1,

where Bj,t is a bond stock, Wj,t is the real wage,
∫

Πi,t is profit deriving from equally

distributed ownership of firms9, rt is the rate of interest,

Cj,t ≡
(∫

C
θ−1
θ

j,i,t di

) θ
θ−1

and Pt ≡
(∫

P 1−θi,t di

) 1
1−θ

are CES indexes with Cj,i,t and Pi,t being respectively consumption by agent j of the good

type i, and the price of the good type i. No-ponzi conditions apply. Trade is frictionless.

The optimal supply of labor type j is determined by

Wj,t = N ζ
j,tCj,t, (13)

by combining first-order conditions on labor and consumption. The individual cost-

minimizing demand for good i by agent j, namely Cj,i,t, is given by Cj,i,t = (Pi,t/Pt)
−θ Cj,t,

where θ is the CES coeffi cient. The total demand function for good i is given by

Yi,t =

∫ (
Pi,t
Pt

)−θ
Cj,t dj = Yt

(
Pi,t
Pt

)−θ
. (14)

In equilibrium the market clears so that the total supply

Yt =

∫
Yi,t di =

∫ ∫
Cj,i,t dj di , (15)

9This assumption guarantees that wealth across agents is uniformly distributed irrespective of possibly
different ex-post profitability.
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is equal to the total demand across agents for all different goods. This is assumed to

be known by the firms, which independently decide their production as explained in the

following.

Firms

Each firm produces a differentiated good and sells it in a monopolistic competitive market.

Firms set their prices to maximize profits. The technology for the production of the good

i is given by the following

Yi,t = eψt−1Ni,t, (16)

where ψt is a withe noise stochastic disturbance with finite variance, and Ni,t is quantity

of labour type j = i hired. Firm i solves the problem max{Pi,t}Πi,t where Πi,t ≡ Pi,tYi,t−
Wi,tPtNi,t. Using (16) and clearing conditions, and then substituting for (13), one can

write the expression for the real marginal cost mci,t as

mci,t =
(
eψt−1

)−(ζ+1)
Y ζ
i,tCi,t.

Notice that Ci,t labels consumption by agent j = i, and not cumulative consumption

of good i. The seller’s desired mark-up is determined by the usual Lerner formula as

Pi,t = (θ/ (θ − 1))mci,tPt yielding the condition for optimal pricing,(
Pi,t
Pt

)1+θζ
=

θ

θ − 1

(
eψt−1

)−(ζ+1)
Y ζ
t Ci,t (17)

obtained after substituting for (14) followed by some trivial manipulations. Now, let

us consider a log-linear approximation of (17) around the deterministic steady state at

P i,t = P t = 1 written as

pi,t = pt + ωyyt + ωcci,t + z̃t−1,

where ωy = ζ/ (1 + θζ), ωc = 1/ (1 + θζ) and z̃t−1 = − ((ζ + 1) / (1 + θζ))ψt−1. Lower

case denotes log deviations from the steady state, that is xt ≡ logXt− logX. The latter

corresponds to (1) in the main text in the case of perfectly informed producers.
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Appendix B

Existence of REX

Equilibria are given by the system of equations:

â′ = α+ βâ′

b̂ =
(β∗/2) ĉ(ĉ+ ρ)

(1− (β∗/2) (1− ρ) )ĉ2+((2− β∗)ρ− β∗/2)ĉ+ (1− (β∗/2) )

ĉ =
(β∗/2) b̂(b̂+ ρ)

(1− (β∗/2) (1− ρ) )b̂
2
+((2− β∗)ρ− β∗/2)b̂+ (1− (β∗/2) )

remembering that bc 6= 1. It is easily proved by substitution that the fundamental rational

expectation solution is always a rest point of the T-map. Other equilibria values are in

correspondence with b̂ = ĉ and are obtained as solutions to

ĉ
(
ĉ2 ((1− β∗/2)− (β∗/2) ρ)− (β∗ − (2− β∗) ρ) ĉ+ (1− β∗/2)− (β∗/2) ρ

)
= 0

featuring respectively the high REX values (b+, c+) and the low REX values (b−, c−).

Computing the Jacobian of the T-map

The partial derivatives of the Jacobian of the T-map are given by

dTb(b, c)
db

=
β∗

2

(1 + c)(1 + cρ) + c(c+ ρ)

1 + c2+2cρ
,

dTb(b, c)
dc

=
β∗

2

2bc2ρ2+c2ρ− bc2+2bcρ+ 2c+ ρ+ b

(c2+2ρc+ 1)2
,

dTc(b, c)
db

=
β∗

2

2cb2ρ2+b2ρ− cb2+2bcρ+ 2b+ ρ+ c

(b2+2ρb+ 1)2
,

dTc(b, c)
dc

=
β∗

2

(1 + b)(1 + bρ) + b(b+ ρ)

1 + b2+2bρ
.

To analyze the learnability of equilibria we have to investigate the sign of the eigenval-

ues of the matrixK ≡ JT−I (where I is the identity matrix) evaluated at the equilibrium
values â and ĉ = b̂. The equilibrium values (â,b̂, ĉ) are learnable if and only if the matrix

K(â,b̂,ĉ) has all negative eigenvalues. The matrix K ≡ JT − I at the equilibrium values â

and ĉ = b̂ is written as
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K(â,b̂,ĉ) =


β − 1 0 0 0

0 β − 1 0 0

0 0
[
dTb(b,c)
db

]
(b̂,ĉ)
− 1

[
dTb(b,c)
dc

]
(b̂,ĉ)

0 0
[
dTc(b,c)
db

]
(b̂,ĉ)

[
dTc(b,c)
dc

]
(b̂,ĉ)
− 1

 , (19)

with[
dT b(b, c)

db

]
(b̂,ĉ)

− 1 =
((β∗/2) (1 + ρ)−1) b̂2 + ((β∗/2) (1 + 2ρ)−2ρ)) b̂+ (β∗/2)− 1

1 + b̂
2
+2b̂ρ

,

[
dT b(b, c)

dc

]
(b̂,ĉ)

=
β∗

2

(2ρ− 1)b̂3+3ρb̂
2
+3b̂+ ρ(

1 + b̂
2
+2b̂ρ

)2 ,

[
dT c(b, c)

dc

]
(b̂,ĉ)

=

[
dT b(b, c)

db

]
(b̂,ĉ)

and

[
dT c(b, c)

db

]
(b̂,ĉ)

=

[
dT b(b, c)

dc

]
(b̂,ĉ)

.
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Figure 1: Information flow in the economy.

­0.5 0 0.5 1 1.5 2 2.5
­0.5

lREX.d  (0.36)

FREE (0)

lREX.c (0.44)
lREX.b (0.56)

hREX.b (1.78)

hREX.c (2.25)

2.5

c

b

a) β*=0.8, ρ=0
b) β*=1.08, ρ=0
c) β*=1.08, ρ=0.3
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Figure 2: T-map representation for different calibrations. Equilibria lie at the intersec-
tions of the T-map with the bisector.
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Figure 3: Numerical learnability analysis in the whole parameter space.
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Figure 4: Numerical analysis of non-fundamental volatility. The picture shows the volatil-
ity of the aggregate expectation obtained for β∗ values for which learnable REX arise.
The variance of the observational errors is the unit of the measurement.
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Figure 5: Benchmark case (β = 0.94, γ = 0, ρ = 0).
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Figure 6: A case of bad luck (β = 0.94, γ = 0.14, ρ = 0): curve b) in figure 2.
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Figure 7: Alternance of bad and good luck (β = 0.94, γ = 0.07, ρ = 0.4).

0 500 1000 1500 2000 2500 3000
­1

0

1
πt

0 500 1000 1500 2000 2500 3000
­0.3

0

0.3
at

0 500 1000 1500 2000 2500 3000

0

0.54 (hREX)

1
weights

Figure 8: Good policy after bad luck with four islands (β = 0.94, γ = 0.14, ρ = 0.3). At
time 2400 a drastic change in monetary policy makes β falls around 0.5.
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Figure 9: Good luck after bad luck with eight islands (β = 0.94, γ = 0.14, ρ = 0.2).
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