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Abstract

Estimation of the linear quadratic model, the workhorse of the inventory literature,
traditionally takes inventories and sales to be first-difference stationary series, and
the ratio of the two to be stationary. However, these assumptions do not match the
properties of the data for the last two decades in the US and the UK. We offer a
model that allows for the non-stationary characteristics of the data, using polynomial
cointegration. We show that the closed-form solution has other recent models as
special cases. The resulting model performs well and shows good forecasting
properties.
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1. Introduction

The linear-quadratic (L-Q) model, developed by Holt et al. (1960) and Lovell (1961),

has been the workhorse of the literature on inventories and stock adjustment (see

Blinder and Maccini, 1991, West, 1995, and Ramey and West, 1999). The approach

has given rise to the ‘production smoothing’ class of inventory models, in which

inventories act as a buffer between demand and supply. From this approach it is

possible to derive a relationship between a firm’s stocks and sales, and the

relationship can be estimated using time series methods (see inter alia Kashyap and

Wilcox, 1993, West, 1995, and Ramey and West, 1999). A common feature in models

of the sales-inventories relationship, characterized by Kashyap and Wilcox (1993),

Rosanna (1995, 1998) and Hamilton (2002), is the requirement that inventories and

sales be stationary in first differences. This implies that the series for inventories and

sales should each have a single unit root,  and a linear combination (i.e. a

cointegrating relationship), for which the the ratio of inventories to sales is a special

case, should be a stationary series. The dynamic adjustment process could then be

written as a straightforward error-correction process in first differenced variables and

the cointegrating linear combination. Rosanna (1995, 1998) verifies that a sufficient

condition for cointegration between sales and inventories is the assumption that cost

shocks are stationary.

A recent paper by Hamilton (2002) notes that the traditional formulation of the

L-Q model  implies cointegration between inventories and sales. But the traditional

interpretation also has some unappealing characteristics, since marginal production

and inventory management costs tend to infinity while profits tend to minus infinity

under standard assumptions about the driving variables. Hamilton’s solution is to

consider productivity shocks as an I(1) process and re-configure the system to allow

cointegration between sales and productivity shocks, which preserves an identical

dynamic structure to the original model. This solution is ingenious since maximum

likelihood estimation would result in a value of the likelihood function numerically

identical to the original model, the only difference being the interpretation given to

the coefficients of the cointegrating relationship i.e. the mapping to the structural

parameters of the model.

Both the traditional model and Hamilton’s reconfiguration require that a linear

combination of inventories-to-sales be stationary. However, examination of the data
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in Figures 1 and 2 illustrates that during the last two decades there has been a

pronounced downward trend in the ratio of inventories to sales in both the US and the

UK4. This gives rise to the possibility that the linear combination based on the ratio is

not stationary, as the majority of empirical papers assume, but is an integrated series.

It is well known that allowance for this form of ‘non-stationarity’ cannot be made by

the straightforward incorporation of deterministic time polynomials (see, e.g.

Phillips 1986, 1987a, 1987b). Nor is there evidence of a cointegrating relationship for

other linear combinations of inventories and sales, over the sample period from the

early 1980s to the present5. Rather the combination of inventories and sales appears to

be an I(1) series for any linear combination.

This has two important consequences. First, it explains why forecasting of the

inventories component of GDP based on detrended or first differenced data has been

poor. Albertson and Aylen (2003 forthcoming) document the relatively poor

performance of simple error correction models offered by Cuthbertson and Gasparo

(1993) and Bank of England (2000) versus alternatives on UK data. Historically,

stockbuilding has been a good leading indicator of GDP growth on an annual basis,

but allowing for the decline in the ratio over the 1980s and 1990s has proven to be

one of the most difficult components in the forecast. The recent performance of the

detrended stocks model shows particularly poor performance against simple

alternatives.

Second, the downward trend in the inventories-to-sales ratio undermines the

case for a simple reduction in the order of integration through an CI(1,0) error

correction system. Inspection of the properties of the data suggest that the series for

sales and inventories are in fact I(2) series, and the linear combination is

nonstationary since it is I(1)6.  This implies that a more generalized approach to the

dynamic model is required in which we allow for cointegrating systems of the CI(2,1)

variety. In this respect, this paper draws on earlier work by Dolado et al. (1991) where
                                                       
4 We can offer two potential explanations for this phenomenon, since improvements to stock
management processes such as computerized stock control and just-in-time delivery, and the relative
decline in the manufacturing sector as a share of GDP (a major contributor to total stockholding ), may
have reduced inventories (See Cuthbertson and Gasparo (1993), Sensier, (1997), and Mizen (2003), for
further analysis).
5 This is referred to as (H -  θS) in the terminology of Ramey and West (1999), where H denotes
inventories, S denotes sales and θ is a parameter to be estimated.
6 Earlier investigations of cumulated series by Engle and Yoo (1991), Granger and Lee (1989)
and the recent interest in multicointegration (Engsted and Haldrup (1999a), Engsted and
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integrated variables are introduced to L-Q models in general form. There are

similarities with the applications of the generalized approach of Dolado et al. (1991)

to labor and money demand equations arising from a L-Q model, reported in Engsted

and Haldrup (1994, 1997, 1999b). As far as we are aware, no application has been

made to inventories, where the issue is pertinent to the current debate.

In this paper we consider a simple generalization of the cointegrating system

offered by Hamilton (2002) – which is itself a representation of the model of Ramey

and West (1999) – that can allow for more sophisticated dynamics involving

polynomial cointegration (Dolado et al., (1991), Engsted and Haldrup (1999a), and

Engsted and Johansen, (1999))7. In this case we do not require the variables to be I(1),

nor the ratio to be stationary. In fact, the variables should have I(2) properties, and the

error-correction system will exhibit cointegration between the levels and the

differences of the series. We provide a closed-form solution for the dynamic vector

error correction model under polynomial cointegration, with Hamilton (2002) as a

special case. We illustrate our model using data for the US and the UK, and have

some success in modeling the decline in the inventories-to-sales ratio in recent years.

Finally we show that such a model is successful in forecasting inventory growth.

We start in the next section by generalizing the interpretation of cointegration

in the L-Q model to allow for polynomial cointegration. Section 3 explains how the

polynomial approach is implemented.  Section 4 reports two illustrative examples

using US and UK data and offers some forecasts. Section 5 concludes the paper.

2. A Generalisation of the Cointegration Interpretation

A. Hamilton’s I(1) Model

Following Ramey and West (1999), the model used by Hamilton (2002) to illustrate

the interpretation of cointegration in the L-Q setting is the decision problem for the

representative firm:
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Johansen (1999)) show that I(2) properties are common in stock-flow models such as inventory-sales
relationships.
7 Since we use a generalized model the I(1) case in Hamilton (2002) is a special case of our
approach.
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where Pt is the price of the good, St is unit sales, Ct is the cost of production and Qt the

level of production. Ht is the level of inventories, and the change in inventories is

equal to the difference between production and sales by an identity. Uct is a shock to

marginal production, and ρ is the discount rate8. Sales follow a random walk with

drift, sttt vaSS ++= − 51 , and the first order condition in this case (setting a0 = 0 for

simplicity) is

(2)  [ ] 0)()( 5334251 =−−−+++∆−−−∆ + aaSaaHaaSHvSHE ttttctttt ρρ

And the resulting error correction system when productivity shocks are stationary (i.e.

Uct = vct ) is
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where λ1 is the real root of the difference equation and
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When productivity shocks are non-stationary (i.e. Uct = St + vct) then the system can be

written in an almost identical format as

(4) stctttt vv
a
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but the coefficients are now defined as:
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Hamilton’s recommendation is that the structural interpretation of the coefficients in

the cointegrating vector should follow the second model to avoid the implausible

scenario of profits falling to minus infinity.

The model that is explored by Hamilton is ingenious, and proposes a useful re-

interpretation of cointegration in the standard L-Q model. However, it makes some

simplifications in order to allow the key point of the paper to be illustrated more

                                                       
8 This is representative of the L-Q model reported in Ramey and West (1999).
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clearly. For example, the seemingly innocuous simplification of setting the coefficient

a0 to zero, ensures that the dynamic model is simplified, but it also has important

drawbacks. First, if adjustment of production were costless (as it would be if a0 = 0)

then the reason for a firm to hold inventories is considerably undermined. An

unexpected shock to demand could be met by costlessly adjusting production, and in

this case the cost of producing the extra output would simply be the marginal cost of

the producing the extra output (which is not the same as the cost of a change in

output), defined by the second term in the cost function (1) as a1. If the marginal cost

of the extra production amounted to less than the cost of holding inventories (which is

positive in the third term of the cost function) then inventories would be eliminated in

favor of a direct response to demand shocks from production. Second, the restriction

would also imply, if inventories were eliminated, that the firm set marginal revenue

(prices) equal to marginal costs. Third, Ramey and West (1999) note that, although a

model in which a0 = 0 is useful for illustrative purposes (Hamilton’s main reason for

using the restriction), it is ‘not a good [assumption] empirically’ p889.  Recent data

suggests that manufacturing firms hold between 20 and 30 weeks of output in the

form of  inventories, hence we suspect that restricting a0 = 0 is an inappropriate

restriction. We therefore investigate the implications of allowing a0  ?   0 within this

framework.

B. Generalizing Hamilton’s Approach to I(2)

Suppose that a0  ?   0. The cost function (1) can be solved to generate an Euler

equation and a dynamic vector error correction representation as before. The Euler

equation now becomes
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A feature that differs between our representation and that of Hamilton is that a term in

∆St appears in the second and third terms of (5). This is because we specify the

driving process for St as a driftlesss I(2) process, sttt vSS +∆=∆ − 1 , which can also be

written as stt vaSLL +=−− 51 )1)(1( θ where a 5 = 0 and θ 1 = 1. This assumption is an

integral part of the polynomial cointegration approach that the generalization of the



7

cost function allows, but recovery of Hamilton’s original specification can be

achieved if we set a0 = 0, a 5 ? 0  and θ 1 = 0; therefore Hamilton’s version is a special

case of our model.

We can then define
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and the polynomial cointegrating relationship is

(6) tttt SSHw ∆+++≡ 210 γγγ

We can then make use of this equation to define

it
j

it
j

it
j
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j SSwH +

+
+++ ∆−∆−∆=∆ 1

21 γγ     for i, j = 0, 1, 2, ...

Substituting out terms in it
j H +∆  , and making use of the property that terms in

0)( ==∆ ++ istit
j

t vESE for i, j =1, 2,... we can then write the Euler equation as:
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This can be solved in the same way as Hamilton’s problem using the methods for

second-order difference equations in Sargent (1987, p 201) since the equation is

identical to Hamilton’s except that it includes the terms in the first bracket. Thus:

(8) 
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Since { } ))1)(1((1 1
21
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1

2 LLaaLLa a −−+−=+− −−++ ρρρρ ρ
ρρ we can factorize the

above expression to give:
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where z = (1-ρ-1L)(1-L).

If we take )1)(1()( 21
2

0
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0

1 zzzz a
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a
a λλρ −−=−− where 0< λ1 <1 and λ2 >1, for (λ1 + λ2) =

- a1/a0 and λ1 λ2 = - ρa1a2/a0, the  solution to equation (9) is:
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−
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where ∑−= ∞
= +0

1
1 )(

2
i it

i
t ψλη

λ
. This has a natural polynomial cointegration

interpretation since (10) can be rewritten as:

(11) ttt wLw ηλρλ +−−−=∆ −
−−

11
11

1 ]1)1([)1(

and replacing the identities in wt derived from (6) we obtain

(12)  tttttt SLSSHLH ηθγγγθ +∆+∆+++=∆ −−− )())(( 11211010

where ]1)1([)1()( 1
11

10 −−−= −− LL λρλθ  and )]1([)( 211 LL −+−= γγθ . Here the first

term on the RHS is the polynominal cointegrating relationship between levels and

differences of the stocks and sales variables. The requirement for stability of the

dynamic system is that θ0(L) < 0, which is also a condition that ensures that a

polynomial cointegrating relationship exists. In the next section we demonstrate how

a polynomial cointegrating relationship can be implemented in practice. The

following section will then use inventories and sales data for the US and UK to

illustrate the point.

3. Implementing a polynomial cointegration approach

In our two empirical examples there is the possibility that the I(2) variables to

cointegrate directly to a stationary variable, however, it is more likely that polynomial

cointegrating occurs9. That is, the variables may form a linear combination that is

integrated of order one, and this may then form a further cointegrating relationship

with the first differences, which are also I(1), since the original variables are I(2) in

log-levels. This linear combination would then be an I(0) variable and therefore the

I(2) variables would be polynomially cointegrated.

Consider a kth-order vector autoregression of the core variables, tx , of

dimension 1×n :

(13) ttit
k

i itt Dxxx εµ ++Φ+∆Γ+Π=∆ −
−

=− ∑ 1

11

where βα ′=Π , µ is a constant term that may be unrestricted and tD  is a vector of

trends and dummy variables10. Equation (13) may be re-written:

                                                       
9 This terminology was established by Yoo (1986), Johansen (1992, 1995b), Gregoir and
Laroque (1993, 1994), and Juselius (1998).
10 The trend and dummy variables may or may not enter the cointegrating space depending on
the restrictions imposed during estimation of the system.
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(14) ttttit
k

i it Dxxxx εµ ++Φ+∆Γ−Π+∆Ψ=∆ −−−
−

=∑ 11
22

1
2

where 2,...1,
1

1
−=Γ−=Ψ ∑ −

+= ki
k

ij ji , βα ′=Π  and ∑ −

= Γ−=Γ 1

1

k

i iI . The variable εt  is

a n-dimensional vector of errors assumed to be Gaussian with mean vector 0 and

variance matrix Σ .  The parameters ( )ΣΦΓΠΨ ,,,,, µi  are assumed to be variation

free.

For a system to be I(2) requires not only that the long-run matrix βα ′=Π  is

of reduced rank but that ⊥⊥ Γ′ βα , is also of reduced rank s (where the ⊥  notation

refers to the orthogonal complement). ⊥⊥ Γ′ βα  is therefore expressible as

ηξβα ′=Γ′ ⊥⊥  where ξ  and η  are matrices of order ( ) srn ×−  with rns −< . The

I(2) system then can be decomposed into I(0), I(1) and I(2) directions with dimensions

r , s  and srn −−  respectively.  Moreover, the r  cointegrating relationships are

further decomposable into 0r  directly cointegrating relationships where the levels of

the I(2) variables cointegrate directly to an I(0) variable and 1r  polynomially

cointegrating relationships where the levels cointegrate with the differences of the

levels to give an I(0) variable.  Thus:

)0(~0 Ixtβ′  where 0β  is 0rn×  with rank 0r ;

)0(~1 Ixx tt ∆′+′ κβ  where 1β  and κ are 1rn × ;

rrr =+ 10 .

It is possible of course for either 0r , 1r  or both to be zero.  In general the number of

polynomially cointegrating relationships equals the number of I(2) common trends in

the system such that 10 rrr +=  and 21 ssrnr ≡−−= .  If 2s  equals zero, or

equivalently srn =− , the I(2) system collapses to the I(1) case.

4. Two Illustrative Examples

A. Data11

To illustrate our point we use quarterly inventory and sales data for the United States

and the United Kingdom. For the United States, the measure of inventories is the

                                                       
11 The data used in this paper are freely available from us on request.
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private inventories (billions of dollars, seasonally adjusted quarterly totals) taken from

the BEA database. The series is in logarithms and is deflated to real terms using the

inventories deflator (1996=100).  We denote the logarithm of real inventories as ht
US.

Private Domestic Final Sales (billions of dollars, seasonally adjusted quarterly totals)

are obtained from the same source. Final sales of domestic business equals final sales

of domestic product less gross product of households and institutions and of general

government, and it includes a small amount of final sales by farm and by government

enterprises. These data are deflated using the CPI-U for all urban consumers and this

variable in logarithms is denoted st
US.   The time span for all the series for the US is

1982:q1 – 2002:q2.

The United Kingdom data, for the time span 1981:q2 to 2001:q2 are

constructed by cumulating the flows (seasonally adjusted at constant 1995 prices) on

the 1995 real stock figure. The data are provided by the ONS and Bank of England.

The proxy for private sales is based on whole economy gross domestic product

(seasonally adjusted at constant 1995 prices) less the change in real inventories

(corresponding to the identity in equation 1). Again we take logarithms and refer to

inventories and sales as ht
UK and st

UK respectively.

These definitions were the basis for a comparison of inventories-to-sales ratios

for the US and the UK published in the May 2002 Inflation Report (Bank of England,

2002), and they were reproduced in the introduction to this paper as Figures 1 and 2

for the sample 1982 q1– 2001q2.  We refer to the inventories-to-sales ratio for the US

and the UK as Rt
US and Rt

UK , respectively. The pronounced downward trend in both

Rt
US and Rt

UK after 1980 suggests that the ratio is not a stationary variable, but rather it

appears to be integrated of order one. When we investigate the properties of the data

for both US and UK we can confirm that the series for sales and inventories are

stationary only after differencing twice (i.e. they are I(2)), and the ratio is stationary in

first differences, hence it is I(1)12.

B. Estimating a Polynomially Cointegrating System

The results, taken from the estimates of an I(2) system, are described for the

US and UK data.   There are several ways of specifying the system to allow for a

constant, dummies and a trend. The system is estimated without any restrictions

                                                       
12 The unit root tests are available from the authors on request.
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except for the exclusion of quadratic trends, and is reported for both the US and the

UK with and without a trend in the cointegrating space. Estimation is undertaken with

four lags for the US and five lags for the UK. A single significant impulse dummy is

inserted in the UK systems in 1998q4 (to obtain better diagnostics) while none is

needed in the US systems.

Table 1 shows that r = 1, s = 0, and 1=−− srn  is the chosen cell for both the

US and UK cases when we compare the joint trace test statistics against the computed

critical values for the 95% quantile taken from Paruolo (1996) and Rahbek et al.

(1999).  Since the number of I(2) trends in the model equals the number of

polynomially cointegrating relationships, the arithmetic implies that the only

cointegrating relationship detected above must be of the polynomially cointegrating

variety. There is no I(1) common trend ( )0=s  and one I(2) common trend

( )1=−− srn , suggesting that there ought to be two unit roots in the companion

matrix.  The five largest roots in modulus of the characteristic polynomial are 1.0000,

0.9066, 0.7927, and 0.7927  for the US (with the last two being complex conjugates)

and 1.0000, 0.9196, 0.9196, 0.7703, 0.7546 for the UK. While the third root for the

UK is also close to unity, we proceed under the maintained assumption of one

cointegrating vector and one I(2) trend.

An important difference between the two models is that the US system

marginally supports a trend in the cointegrating space, although when we report the

results for the US systems with and without a trend in the cointegrating space in Table

2 we do not find that the properties of the system are dramatically altered. The test

statistic is  2χ (1)  =  3.86, p-value = 0.05. This observation suggests that dealing with

the downward trend in the inventories-to-sales ratio by including a deterministic trend

process in the model will not restore stationarity.13

The results of the I(2) system estimation deliver a normalized cointegrating

vector 1β′ and the polynomial component based on the parameter estimates, κ′, with

the following representations:

US: US
t

US
t

US
t shsh ∆−∆−= 337.3 967.2333.1US

t

UK: UK
t

UK
t

UK
t shsh ∆+∆+= 1.963  924.0   471.0UK

t

where the superscript distinguishes the US from the UK results.



12

Estimation of the I(2) system shows that the I(1) direction of the data is given by the

vectors ( )a−≡′ ,11β , thus the vector ( )a/1,13 ≡′β  provides the I(2) direction.  These

vectors are orthogonal to each other and, the first lies in the space orthogonal to 3β′.

A basis for this space is given by the matrix 




−

=
a

H
1

.  Thus 





∆′
′

t

t

xb
xH

, where a  is

any 2 × 1 vector that satisfies the restriction that 03 ≠′βb , provides the

transformation to I(1) which keeps all the cointegrating and polynomially

cointegrating information.  Hence if we take b  to be ( )′1,0 , then the bivariate system

given by the I(1) representation 





∆
−

t

tt

s
sah

 is a valid full reduction. We define

),( ′= ttt shx  in this notation.

To investigate the properties of the system in an I(1)  format we re-estimate

the model and report the findings in Table 3. There is a single cointegrating

relationship reported for the ratio of inventories-to-sales using both US and UK data,

which is confirmed in the first four roots in modulus of the companion matrix being

given by 1.0000, 0.6931, 0.1975, 0.1975 (US) and  1.0000, 0.9114, 0.9114, 0.8193

(UK). The error correction terms are calculated from the cointegrating matrix β′ in

this system and are given by
US
t

US
t

US
t

US
t stshECM ∆++−≡ 486.4)003.0333.1(

and
UK
t

UK
t

UK
t

UK
t sshECM ∆+−≡ 318.4)471.0( .

We can reject the null that the  coefficient on sales should be restricted to one,

but the linear combination of the I(2) variables is polynomially cointegrated with the

change in sales. The coefficient on the change in sales is a similar magnitude in both

the UK and the US cases. Economically, this relationship represents a stable long-run

relation between the log-levels of stocks and sales that has a positive response to sales

growth.

Table 4 reports the results from estimating the inventories and sales equations

in a system, using the dynamic error correction mechanisms given above.  The system

can be specified rather easily for the US, although with long lags of the second-
                                                                                                                                                              
13 For the UK the trend can be tested out of the cointegrating space.  The results for the UK are



13

difference variables in the equation for inventories.  For the UK, the autocorrelation

structure of the data requires the incorporation of either (I) the inclusion of spike

dummies at the quarters indicated in the table or (II) long lags of the second-

differenced variables. The results of estimating the models (under the two alternative

strategies) are reported as Model (I) and Model (II) respectively in Table 4.  The

choice between the two could be based either on forecasting performance or a

preference for models without structural shift dummies.  The forecasting performance

of all three models are discussed below.

Excluding the insignificant variables in Table 4 on a 5 per cent t-criterion the

final form of the inventories and sales equations in the system can be represented

(with the length of the maximal lag for each variable (for either country) indicated in

each case) as:

(15) ( ) tti itii ititt Dhssshh 11
8

1
2

2
7

1
2

112111
2 εφττθθαµ +′+∆+∆+∆++−=∆ ∑∑ = −= −−

(16) ( ) tti itii ititt Dhssshs 22
4

1
2

4
7

1
2

312122
2 εφττθθαµ +′+∆+∆+∆++−=∆ ∑∑ = −= −−

The estimated system as represented by (15) and (16) describes an economy where

disequilibrium from the long-run relationship is corrected by changes in sales over a

horizon not longer than two years (eight quarters).  The system is specified as a

parsimonious vector error correction model, with the polynomial error correction term

playing a significant role in both equations. The equations are well specified and have

satisfactory diagnostics for both US and UK data.14

C. Forecasting

We have noted above the fact that simple error correction models of the kind offered

by Cuthbertson and Gasparo (1993) and the Bank of England (2000), which do not

allow for dynamic or polynomial cointegration, do not perform well for the UK in

many forecasting exercises.  We hypothesize that this is caused by an inadequate

                                                                                                                                                              
therefore presented without a trend included.
14 For the sake of concision Table 4 reports only the systems diagnostics.  Individual-equation
diagnostics which are also available from the authors on request indicate proper specification in all
cases.
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parameterization of the equilibrium relation or, in other words, by a mis-specification

of the adjustment process.15  In this section we verify the gains in forecasting

obtainable from our more general form of modeling, and reject the possibility that

restrictions that would result in a simple error correction model are valid on

forecasting grounds.

In order to conduct the forecasting exercise and comparison, our model for the UK

is estimated recursively, starting with a base sample of 1982:1 – 1995:4. At each

recursion, the estimated coefficients are used to compute the forecast from our model

for time l-periods ahead, where l is four or eight (i.e. up to 1996:4 in this particular

example for l=4).  This is repeated (augmenting the sample by one sample point at

each stage and re-estimating the model, to derive a sequence of 4-step or 8-step ahead

forecasts) from which the root mean squared forecast error (RMSE) is calculated by

comparison of the forecast with the actual numbers for these series.  The exercise is

repeated for the US.

Table 5 provides the results for the US, while Table 6 gives the corresponding

results for the UK in the two versions of the models.  Figures 3 and 4 provide the

same information graphically.  The root mean-squared error of the forecasts for l = 4

for both the US and both UK models is within one standard deviation of the change in

inventories while it is about one and a half standard deviations for l=8 for the US and

UK Model II.  The root mean squared error for UK Model I  for l=8 is again within

one standard deviation of the change in inventories.

Turning points are successfully picked up, emphasizing the usefulness of this

methodology in modeling the dynamics, and the method appears to be relatively

robust to the presence of structural breaks which are likely to be very important within

this time period.  There is some evidence of the need for an intercept correction in the

US-forecast series which would bring the forecasts back on track and reduce the root

mean squared error even further. The success of our forecasting model offers further

evidence in favor of a polynomially cointegrated approach to modeling inventories

and sales.
                                                       
15 We were unable to replicate the dynamic features of the equation reported for the inventories-
sales relationship in Bank of England (2000).  Although the long-run relationship (despite our view that
this is misspecified) could be recovered by means of a Engle-Granger static regression, we were not
able to estimate the short run relationship. The principal reason for this is the fact that the real time
data, which we have tried our best to acquire, has been retrospectively revised and combines vintages
of data which are unknown and unavailable to us. Therefore we cannot expect to replicate the results
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5. Conclusions

We have argued the case in this paper for a much richer modelling framework for

stocks and sales.  We offer a theoretical model that allows for the non-stationary

characteristics of the data, using polynomial cointegration., and we show that the

closed-form solution has other recent models as special cases. The resulting I(2) model

performs well when put to the test on UK and US data relating to inventories and sales

and forecasts better than the existing models.

Our empirical modelling strategy is derived directly from theoretical

considerations.  Indeed the possibility of casting the problem within an I(2) framework

arises directly from the solution to the optimisation problem and estimating the

polynomially cointegrating relationship may be seen as the empirical analogue of the

theoretical solution.  Viewed in this light, our work offers well-specified dynamic

models in accord with the time series properties of the data, and better forecasts result.

Our approach fits in with existing theoretical interpretations presented not only here

but also in the general formulation reported by Dolado et al. (1991).  It also marks the

way forward for modelling inventory-sales relations extending Ramey and West’s and

Hamilton’s excellent contributions in this area.

                                                                                                                                                              
on the same data span. Taking the short run equation as given, however, we find that the forecasting
performance of the Bank of England equation is very weak  in comparison with our own equations.
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Figures 1 and 2

1985 1990 1995 2000

2

2.5

3

1985 1990 1995 2000

1.775

1.8

1.825

1.85

1.875

US inventories-sales ratio 1982q1-
2002q2

UK inventories-sales ratio 1982q1-
2001q2



20

Figure 3: Forecasting the change in inventories for the US
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Figure 4a: Forecasting change in inventories for the UK -Model I
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Figure 4b: Forecasting change in inventories for the UK -Model II
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Table 1: Polynomial Cointegration in an I(2) System

(a) US results
 (i) with trend

rn − r Q(r)

2 1 64.15 35.40 27.46

1 2 15.02 8.30

srn −− 2 1 0

(ii) without trend
rn − r Q(r)

2 1 53.15 24.40 16.47

1 2 5.99 1.16

srn −− 2 1 0

(b) UK results

(ii) without trend
rn − r Q(r)

2 1 48.72 25.04 18.55

1 2 12.22 1.80

srn −− 2 1 0

Notes: Statistics are computed with 4 lags (US) and 5 lags (UK). The estimation sample is
1983q1 – 2002q2 (78 observations, 69 deegrees of freedom) for the US and 1982q3 to
2001q2 (76 observations, 64 degrees of freedom) for the UK. Critical values (95%) for the
Joint Trace Test S(s, r) are (with trend) from Rahbek et al. (1999), reported in roman, and
(without trend) from Paruolo (1996), reported in italics.

rn − r
2 1 47.60

36.12
34.40
22.60

25.40
15.34

1 2 19.90
12.93

12.50
3.84

srn −− 2 1 0
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Table 2: System Diagnostics for the Polynomial Cointegration Models

(a) United States
Tests for Serial Correlation

Ljung-Box (19) 2χ (62) =  47.985, p-value = 0.90

LM(1) 2χ  (4)  =  5.411, p-value = 0.25

LM(4) 2χ (4)  =  2.729, p-value = 0.60

Test for Normality:

Doornik-Hansen Test 2χ (4) = 6.129, p-value = 0.19

(b) United Kingdom
Tests for Serial Correlation
Ljung-Box (23) 2χ (195) =  78.315, p-value = 0.04

LM(1) 2χ  (4)  =  1.403, p-value = 0.84

LM(4) 2χ (4)  =  3.695, p-value = 0.45

Test for Normality:

Doornik-Hansen Test 2χ (4) = 7.638, p-value = 0.11
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Table 3: Cointegration in an I(1) System

US Results

Null
rHO :

Eigenvalues Estimated L-Max
Statistic

Estimated Trace
Statistic Q(r)

p – r

0 0.3287 31.88 33.86 2

1 0.0244 1.98 1.98 1

β ht
US-ast

US ∆st
US

(normalised

coefficients)

1.000 -4.486

α ∆( ht
US -ast

US) ∆2st
US

Coefficients -0.184 0.104
t-values -6.191 5.877

UK Results

Null
rHO :

Eigenvalues Estimated L-Max
Statistic

Estimated Trace
Statistic Q(r)

p – r

0 0.2845 25.88 29.38 2

1 0.0488 3.49 3.49 1

β ht
UK-ast

UK ∆st
UK

(normalised

coefficients)

1.000 -4.318

α ∆ ( ht
UK -ast

UK) ∆2st
UK

Coefficients -0.105 -0.014
t-values -4.649 -0.728

Notes: Statistics are computed with 4 lags (US) and 5 lags (UK).  The estimation sample is
1983q1 – 2002q2 (78 observations, 69 deegrees of freedom) for the US and 1982q3 to
2001q2 (76 observations, 64 degrees of freedom) for the UK.
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Table 4: The Dynamic System

US results UK results (Model I) UK Results (Model II)
∆2ht

US ∆2st
US ∆2ht

UK ∆2st
UK ∆2ht

UK ∆2st
UK

∆2ht-1 -0.288
(0.103)

0.195
(0.111)

-0.557
(0.081)

-0.156
(0.058)

-0.572
(0.112)

-0.161
(0.081)

∆2ht-2 -0.210
(0.106)

-0.358
(0.090)

-0.378
(0.127)

-0.091
(0.082)

∆2ht-3 -0.252
(0.109)

-0.430
(0.086)

- -0.346
(0.115)

∆2ht-4 -0.277
(0.101)

-

∆2ht-5 -0.339
(0.097)

-0.177
(0.068)

-0.203
(0.098)

∆2ht-8 -0.173
(0.085)

∆2st-1 -0.472
(0.118)

0.503
(0.111)

-0.412
(0.091)

0.588
(0.161)

-0.349
(0.122)

∆2st-2 0.416
(0.096)

-0.286
(0.092)

-0.371
(0.097)

0.282
(0.177)

-0.352
(0.117)

∆2st-3 0.303
(0.124)

0.445
(0.100)

-0.264
(0.087)

0.740
(0.184)

-0.158
(0.107)

∆2st-4 0.365
(0.129)

- -0.191
(0.082)

0.373
(0.179)

∆2st-5 0.232
(0.134)

0.279
(0.160)

∆2st-6 0.341
(0.129)

0.207
(0.133)

0.163
(0.091)

∆2st-7 0.265
(0.102)

0.074
(0.089)

ECMt-1 -0.064
(0.016)

0.112
(0.021)

-0.049
(0.022)

-0.071
(0.017)

-0.056
(0.029)

-0.066
(0.022)

D831 0.015
(0.003)

D842 -0.015
(0.004)

D851 0.011
(0.004)

D873 0.012
(0.004)

D884 0.017
(0.004)

D894 -0.017
(0.005)

D903 -0.011
(0.005)

D952 -0.011
(0.004)

D962 -0.015
(0.005)

-0.003
(0.004)

Constant 0.053
(0.013)

-0.093
(0.017)

0.088
(0.041)

0.125
(0.030)

0.100
(0.051)

0.117
(0.040)

Standard errors in parentheses
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System Diagnostics

US ∆2ht
US ∆2st

US

AR(1-5) F(5,56)  =  2.228 F(5,56)  =  1.443
                  [0.06]                   [0.22]

ARCH(1-4) F(4, 62)  = 0.817 F(4, 62)  = 0.539
                 [0.52]                   [0.71]

Jarque-Bera Normality (2) 2χ (2)  =   0.047 2χ  (2)  =   2.537
                 [0.98]                   [0.28]

Heteroskedasticity test F(34, 35)= 0.807 F(34, 35)= 0.770
                 [0.73]                   [0.77]

UK (MODEL I) ∆2ht
UK ∆2st

UK

AR(1-5) F(5,50)  =  1.903 F(5,50)  =  2.369
                  [0.11]                   [0.05]

ARCH(1-4) F(4, 55)  = 0.501 F(4, 55)  = 0.190
                 [0.73]                   [0.94]

Jarque-Bera Normality (2) 2χ (2)  =   1.581 2χ  (2)  =   0.707
                 [0.45]                   [0.70]

Heteroskedasticity test F(31, 31)=1.14 F(31, 31)= 0.768
                 [0.36]                   [0.77]

UK (MODEL II) ∆2ht
UK ∆2st

UK

AR(1-5) F(5,58)  =  2.331 F(5,50)  =  2.364
                  [0.05]                   [0.05]

ARCH(1-4) F(4, 60)  = 1.254 F(4, 60)  = 2.608
                 [0.298]                   [0.04]

Jarque-Bera Normality (2) 2χ (2)  =   2.818 2χ  (2)  =   0.329
                 [0.24]                   [0.85]

Heteroskedasticity test F(31, 31)=0.686 F(31, 31)= 1.459
                 [0.85]                   [0.136]

p-values are in square parentheses



27

Table 5: Forecast performance of Banerjee and Mizen model
(as reported in Table 4) for US

l=4 l=8
US
th∆ US

tĥ∆ error
US
tĥ∆ error

1996-1 0.0011 0.0141 -0.0130
1996-2 0.0062 0.0114 -0.0052
1996-3 0.0104 0.0167 -0.0063
1996-4 0.0066 0.0117 -0.0051
1997-1 0.0098 0.0097 0.0000 0.0136 -0.0038
1997-2 0.0173 0.0158 0.0015 0.0092 0.0081
1997-3 0.0100 0.0078 0.0022 0.0077 0.0023
1997-4 0.0127 0.0120 0.0008 0.0092 0.0035
1998-1 0.0212 0.0114 0.0098 0.0019 0.0193
1998-2 0.0078 0.0106 -0.0028 0.0040 0.0037
1998-3 0.0131 0.0150 -0.0019 0.0020 0.0112
1998-4 0.0145 0.0125 0.0020 0.0010 0.0135
1999-1 0.0144 0.0177 -0.0034 0.0057 0.0086
1999-2 0.0054 0.0125 -0.0071 0.0101 -0.0046
1999-3 0.0084 0.0146 -0.0062 0.0105 -0.0021
1999-4 0.0159 0.0187 -0.0028 0.0094 0.0065
2000-1 0.0077 0.0161 -0.0084 0.0148 -0.0071
2000-2 0.0156 0.0154 0.0002 0.0123 0.0033
2000-3 0.0105 0.0152 -0.0047 0.0107 -0.0002
2000-4 0.0099 0.0107 -0.0008 0.0105 -0.0006
2001-1 -0.0045 0.0065 -0.0110 0.0085 -0.0130
2001-2 -0.0096 0.0132 -0.0228 0.0067 -0.0163
2001-3 -0.0105 0.0032 -0.0137 0.0041 -0.0146
2001-4 -0.0167 0.0021 -0.0188 0.0087 -0.0253
2002-1 -0.0050 0.0048 -0.0098 0.0176 -0.0226
2002-2 0.0009 -0.0002 0.0011 0.0185 -0.0176
2002-3 0.0002 -0.0051 0.0053 0.0105 -0.0103
RMSE 0.0084 0.0118
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Table 6a: Forecast performance of Banerjee and Mizen Model I
(as reported in Table 4) for UK

l=4 l=8
UK
th∆ UKĥ∆ Error

UKĥ∆ error
1997-2 0.006255 0.00411 0.005274
1997-3 0.003109 0.004935 0.002394
1997-4 0.008599 0.002075 -0.00195
1998-1 0.004125 0.005425 -0.00163
1998-2 0.009964 0.004056 -0.00099 0.004268 -0.0012
1998-3 0.009151 0.003528 0.007298 0.003873 0.006953
1998-4 0.003869 0.005027 0.001228 0.00026 0.005995
1999-1 -0.00171 0.003212 -0.0001 0.004562 -0.00145
1999-2 -0.00385 0.006871 0.001728 0.003828 0.004771
1999-3 0.002094 0.007145 -0.00302 0.002943 0.001182
1999-4 -0.00086 0.004137 0.005827 0.003289 0.006675
2000-1 0.00404 0.000447 0.008704 0.001151 0.008
2000-2 0.000448 -0.00163 0.005504 0.0051 -0.00123
2000-3 0.000183 -0.00048 -0.00123 0.006324 -0.00804
2000-4 0.003846 -0.00237 -0.00149 0.00419 -0.00804
2001-1 0.002424 0.002473 -0.00038 0.002818 -0.00072
2001-2 -0.00095 0.0016 -0.00246 -0.00046 -0.0004
RMSE 0.0039 0.0052
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Table 6b: Forecast performance of Banerjee and Mizen Model II
(as reported in Table 4) for UK

l=4 l=8
UK
th∆ UKĥ∆ Error

UKĥ∆ error
1997-2 0.006255 0.003916 0.005468
1997-3 0.003109 0.004779 0.00255
1997-4 0.008599 0.001499 -0.00137
1998-1 0.004125 0.006939 -0.00315
1998-2 0.009964 0.004532 -0.00147 0.019551 -0.01649
1998-3 0.009151 0.003822 0.007004 -0.0008 0.011624
1998-4 0.003869 0.003872 0.002383 0.010234 -0.00398
1999-1 -0.00171 0.000958 0.002151 0.004234 -0.00112
1999-2 -0.00385 0.006105 0.002493 0.006624 0.001974
1999-3 0.002094 0.004655 -0.00053 0.006357 -0.00223
1999-4 -0.00086 0.002047 0.007917 -0.00776 0.017729
2000-1 0.00404 -0.00235 0.011503 -0.00249 0.011645
2000-2 0.000448 -0.00351 0.007376 -0.00437 0.008237
2000-3 0.000183 0.00048 -0.00219 0.003975 -0.00569
2000-4 0.003846 0.000465 -0.00432 0.003545 -0.0074
2001-1 0.002424 0.002878 -0.00078 0.003553 -0.00146
2001-2 -0.00095 0.001796 -0.00266 0.008641 -0.0095
RMSE 0.0048 0.0093


