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A Monte Carlo exercise demonstrates the different size distortions that two

of the most commonly used panel unit root tests have when the sections of the

panel are affected by correlated errors, when they are cointegrated, or both. For

a specific form of sectional correlation, the limiting distribution is derived and

asymptotic normality of the test statistic is established. To determine the nature

of contemporaneous cross-sectional correlation in real data, covariance matrix

estimation techniques are discussed and an appropriate bootstrap method for the

estimation of standard errors is suggested. In an application to a panel of real

exchange rates it is found that both aforementioned dependencies are present,

and therefore the results of panel unit root tests – if applied at all – should be

interpreted accordingly.
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1. Introduction

Panel unit root tests are becoming a standard tool in the analysis of mostly macroeconomic

panels. Two procedures, the Levin, Lin and Chu (2002)1 and the Im, Pesaran and Shin (1997)

test for unit roots are among the most popular. The tests have been applied to a range of

macroeconomic problems,e.g. to the question whether real exchange rates are random walk

processes or not (e.g. O’Connell (1998), Papell(1997)) or to investigate the mean reversion

properties of the current account (Wu, 2000). Evans and Karras(1996) use panel unit root

tests to analyze the convergence of regions in the US using a modifiedLevin et al.(2002) test

procedure, whileStrauss(2000) addresses the question of permanent components in regional

GDP using these panel unit root tests.

However, relatively little is known about the size and power properties of these tests when

any of the distributional assumptions underlying their construction is violated. The asymp-

totic distribution of both test statistics relies on the independence of the sections of the panel.

This assumption might often be violated in real data, especially in a macroeconomic con-

text. Given their widespread use, it is important to know more about the reliability of the

test results. The impact of such dependence on the performance of the tests is studied in

this paper. Two different forms of sectional dependence are considered. In the short run

(Section3.1), positive cross-sectional dependence of the error terms is analyzed. It is found

that in the case ofcommon shocks, eliminating common time effects is remedy enough to

restore the size properties reasonably well. In fact, the test statistic does converge to a stan-

dard normal distribution. In this respect this paper contrasts the finding ofO’Connell(1998),

who attests severe size distortions to theLevin et al.(2002) test in the presence of common

contemporaneous correlation. When the contemporaneous correlation takes different forms,

however, severe size distortions do occur. Long-run sectional dependence might be present if

the series of the panel are cointegrated (Section3.2). In this case, the series are nonstationary

but share a common stochastic trend. Early work on the study of this effect on panel unit

root tests has been done byCrowder(1997) in a simple cointegration framework. The effect

cointegration has on unit root test is analytically studied inLyhagen(2000). However, data

generating process considered in this paper resembles more the one considered inBanerjee

et al.(2000). In line with the results of these studies, it is found that the tests are oversized

as a consequence of cointegration, as long as the errors are kept independent. In Section3.3

cointegration is combined with sectional correlation,i.e. long and short run dependence are

brought together. This seems natural as there is no prior reason to believe that these phenom-

1A previous version of this test was known asLevin and Lin(1993). See alsoLevin and Lin(1992).
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ena should be mutually exclusive. The result is surprising. Considered separately, long and

short run dependencies tend to yield oversized test results. If brought together, under some

parameter configurations the size distortions go in the opposite direction: the over–rejection

of the null hypothesis of a unit root vanishes and the tests become undersized. As a result,

without further knowledge about the data generating process, panel unit root tests in presence

of sectional dependence are inconclusive.

The application in Section4 contributes to the purchasing power parity debate by address-

ing the question of mean reversion in a panel of real exchange rates. A panel of 18 exchange

rates is first analyzed by estimating the contemporaneous covariance matrix of the error terms

and corresponding standard errors. Different ways of estimating covariance matrices in the

presence of heteroscedasticity and serial correlation are discussed and a bootstrap algorithm

developed byPolitis and Romano(1994) is suggested as a way of obtaining standard errors

for these estimates. To know whether long-run sectional dependence is present in the data, a

cointegration analysis followingJohansen(1995) on a subset of exchange rates is conducted.

Together with the simulation results obtained earlier, the existence of both dependencies in

the data puts a big caveat on the use of panel unit root tests in this context in particular, and

on cross-sectionally dependent data in general.

2. Panel Unit Root Tests

The test developed byLevin et al.(2002) (henceforth LLC) can be seen as a natural extension

of the Dickey and Fuller(1981) test for a unit root to a set of time series. It builds on the

method previously suggested byQuah(1990) andBreitung and Meyer(1991). In the light of

the criticism byPesaran and Smith(1995) of the use of pooled regressions of the LLC type,

Im et al. (1997) (henceforth IPS) allow for heterogeneity of the series under the alternative

and do not make use of traditional panel estimation techniques. They propose instead a

group-mean Lagrange multiplier test and a group meant–test based on the individual ADF

test statistics. The asymptotic properties for both tests are derived by assuming a diagonal

path limit. The behaviour of the cross-section dimension (N ) and the time dimension (T ) are

functionally tied,i.e. (T (N), N → ∞). For LLC, as both go to infinity,T increases faster

thanN , such thatN/T → 0, whereas IPS only require
√

N/T → 0.
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This section presents the framework for the analysis of panel unit root tests. As in the uni-

variate case, three forms of deterministics are considered starting from the following data

generating process (DGP) that yields nonstationary series if the autoregressive coefficientρi

is equal to one:

∆xit = (ρi − 1)xit−1 + µi + βi · t + εit.

The indexi indicates the section of the panel (i = 1, ..., N ) and the time indext ranges from

1 toT . The constant of each section is denoted byµi andβi · t represents a time trend in the

data. The assumptions on the error termεit are discussed further below. Table1 summarizes

thea priori restrictions and the hypothesis to be tested in each of the three models. The most

general specification, modelm = 3 in the classification of LLC, is designed to discriminate

between a set of I(1) processes with drift under the null and a set of trendstationary processes

under the alternative. In model 2, the trend parameter is restricted to zeroa priori. It is

Table 1: Different models and hypothesis

model a priori Null-hypothesis and alternative

m= 3 H
(3)
0 : ρi = 1 ∀ i (⇒ µi 6= 0, βi = 0)

H
(3)
1 :| ρi |< 1 ∀ i (⇒ βi 6= 0)

m= 2 βi = 0 H
(2)
0 : ρi = 1 ∀ i (⇒ µi = 0)

H
(2)
1 :| ρi |< 0 ∀ i (⇒ µi 6= 0)

m= 1 βi = 0 H
(1)
0 : ρi = 0 ∀ i

µi = 0 H
(1)
1 :| ρi |< 0 ∀ i

used to discriminate between a set of I(1) processes without drift under the null and allows

stationary processes with an expected value different from zero under the alternative. This

model will be used throughout the Monte Carlo study. In the simplest model, under the null

hypothesis of a unit root,xit is a set of I(1) processes without drift, while under the alternative

it is a set of stationary processes all with an expected value of zero.

2.1. Levin, Lin and Chu (2002)

The LLC test is implemented in four steps.

Step 1: Elimination of time specific effects.The cross-section average att is subtracted

from the data,i.e. xit = x̃it − 1
N

ΣN
i=1x̃it, which is equivalent to the introduction of time

specific dummy variables. This step will play a crucial role in the simulation exercise in

Section3.
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Step 2: Computation of ADF-statistics and normalized residuals. The choice of the

lags Li to be included should be based on a common information criterion (e.g. Akaike

or Schwartz) and doneafter the elimination of time specific effects. Instead of the usual

equation:

∆xit = δixit−1 +

Li∑
j=1

θij∆xit−j + µi + βit + εit,

the coefficient of interest,δi, is estimated by partitioning the regression using the Frisch–

Waugh theorem to obtain residuals from each step:

∆xit =

Li∑
j=1

θ
(1)
ij ∆xit−j + µ

(1)
i + β

(1)
i t + eit ⇒ êit

xit−1 =

Li∑
j=1

θ
(2)
ij ∆xit−j + µ

(2)
i + β

(2)
i t + vit−1 ⇒ v̂it−1.

The regression of the residuals gives an estimator forδi:

êit = δiv̂it−1 + εit. (1)

In order to control for heterogeneity in the variances of the series, the residuals are normalized

by the standard errorσei of regression (1), estimated by:

σ̂2
ei =

1

T − Li − 1

T∑
t=Li+2

(
êit − δ̂iv̂it−1

)2

,

and the normalization is done as follows:

ẽit =
êit

σ̂ei

and ṽit−1 =
v̂it−1

σ̂ei

.

Step 3: Computation of the long-run variance. For each series the long-run variance is

computed using the first differences:

σ̂2
xi =

1

T − 1

T∑
t=2

∆x2
it + 2

K∑
τ=1

wKτ

( 1

T − 1

T∑
t=2+τ

∆xit∆xit−τ

)
. (2)

The choice of covariance weights ensures positive estimates of the long-run variances. LLC

suggest the Bartlett weights,wKτ = 1−τ/(K+1). The estimate is consistent if the truncation

parameterK grows exponentially at a rate less thanT , LLC suggestK = 3.21T 1/3. The ratio

of the estimated long-run variation and the standard deviation is computed, which under the
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null approaches one. For the adjustment, the average of this ratio across sections is also

needed:2

ŝi =
σ̂xi

σ̂ei

and ŜN =
1

N

N∑
i=1

ŝi.

Step 4: Computation of the test statistic.Under the null hypothesis the normalized resid-

uals ẽit are independent of the normalized lagged residualsṽit−1. This is estimated using

OLS:

ẽit = δṽit−1 + ε̃it. (3)

Under the null hypothesis and in model 1, the regressiont–statistictδ is asymptotically nor-

mal, but has to be adjusted in models 2 and 3, so that, in general:

t∗δ =
tδ −N T̃ ŜN σ̂−2

ε SE(δ̂) µ∗
mT̃

σ∗
mT̃

H
(m)
0∼ N(0, 1),

where SE(δ̂) is the standard error of̂δ, σ̂ε is the standard error of the regression (3), µ∗
mT̃

andσ∗
mT̃

are necessary adjustments for the mean and the standard deviation. These vary

according tom, the model chosen and̃T , the average number of observations per section in

the panel adjusting for lagged differences,T̃ = T − 1
N

ΣN
i=1Li (see Table 2 in LLC).

The asymptotic properties are derived inLevin and Lin(1993, Section 4).3 In model specifi-

cations 2 and 3 the estimatorδ̂ has a downward bias, which is due to the dynamic specification

of the panel, especially for smallT andN (Nickell, 1981). This makes the mean adjustments

necessary. Furthermore, under the null, the variance of the estimatorδ̂ falls at the rate 1
NT 2 ,

reflecting super–consistency. AsN grows large, the variance of̂δ gets smaller and smaller,

which makes the variance adjustment necessary. If not adjusted, mean and variance bias

would force thet–value to negative infinity in models 2 and 3. Under the alternative,xit is

already stationary, so∆xit has asymptotically zero variation at zero frequency, meaning that

each standard deviation ratiosi as well as the average ratiôSN becomes small. In this case

the mean adjustment does not influence thet–value adjustment, so that the adjusted value

diverges to negative infinity. This shows the advantage of using an estimate of the long-run

variance to discriminate between stationary and nonstationary processes.

2In the case of a trend the steps above should be implemented after demeaning the differenced series.
3See also page26 in the Appendix for a detailed treatment of the asymptotic properties in the casem = 1.
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2.2. Im, Pesaran and Shin (1997)

The IPS test extends the LLC framework by allowing for a mixture of stationary and nonsta-

tionary series under the alternative hypothesis. The test is defined for models 2 and 3, and

the alternative is modified to:

H
(IPS)
1 = ρi < 0, ∀ i = 1, 2, ...N1, ρi = 0, ∀ i = N1 + 1, ..., N.

IPS suggest a group mean lagrange multiplier (LM) test and a group meant–test based on

the individual ADFt–values. In simulations done by the authors thet–test outperforms the

LM test slightly. According to the ADF lag order chosen in each section and the lengthT ,

adjustments are necessary to the mean and variance. The test statistics becomes:

Ψt̄ =

√
N
{

t̄N,T − 1
N

∑N
i=1 E[ti,T (Li, 0) | ρi = 0]

}
√

1
N

∑N
i=1 V ar[ti,T (Li, 0) | ρi = 0]

H
(IPS)
0∼ N(0, 1).

The adjustmentsE[...] and V ar[...] are tabulated in the paper. The expressiont̄N,T =
1
N

∑N
i=1 ti,T (Li, θi) is the mean of the actual ADF test statistics. IPS also suggest the in-

clusion of time specific effects in the regression or, alternatively, the demeaning of the panel

at eacht. Note, however, that in contrast to LLC, the IPS–test uses an average oft–statistics

and not a single estimatedt-value from the pooled series.

3. The effect of cross-sectional dependence

The model considered in this paper is designed to discriminate between a set of I(1) series

without drift and a set of AR(ρ) series with expectation different from zero. In terms of

standard macroeconomic time series, this configuration refers to, for example, interest rates,

exchange rates and possibly price indices. The DGP takes the following form:(
∆xt

∆yt

)
= AB′

(
xt−1

yt−1

)
+ µ + εt. (4)

Both xt andyt are (N × 1) vectors,µ andεt are (2N × 1) vectors. The vector of interest

is alwaysxt. Theyt are used to simulate potentially shared stochastic trends if desired. The

matricesA andB determine the long-run relation between the variables and will be defined

according to the set of experiments. For example, if

A = α

(
−I 0

0 −I

)
, B′ =

(
I 0

0 I

)
andµ = 0,
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andα = 0, thenxt will be a set of independent I(1) variables without drift. The short run

correlation is modeled through the error structure:

εt ∼ N(0, σ2Ω) andΩ =

(
Σ 0

0 I

)
.

Note that contemporaneous correlation only affects the vectorxt, not yt. The innovation

variance is chosen to beσ2 = 1 throughout the paper. In general, the correlation matrixΣ

takes the following form:4

E[εtεt] = Σ
N×N

=


1

ω21 1

ω31 ω32 1

...

1

 , (5)

where the correlations are| ωij |< 1.

3.1. Cross-sectional Correlation

The first set of experiments is designed to measure the impact of cross-sectional correlation.

The absence of error correlation (ωij = 0, ∀i, j) produces the desired size properties, see

Table A.1 in the Appendix. Once a common, positive sectional correlation is introduced

(ωij = 0.7, ∀i, j), the tests appears to be slightly oversized (Table2), especially for small

N . This contrasts sharply the findings ofO’Connell (1998) who finds size distortions of

as much as 50 % for the 5 % size. Such distortions can be reproduced if step one of the

LLC test, i.e. the elimination of common time effects, is not carried out. The results for

different values ofω are presented in Tables3 and4 for the LLC and IPS test respectively.

The power of the LLC test and the IPS test was analyzed for the two alternativesρ = .9 and

ρ = .95, whereρ = 1 − α. This exercise was repeated for varying covariance structures,

ω = {0, 0.7, 0.8, 0.9}, N = 25, T = {60, 100}, andµ = 1. The results of this analysis are

reported in Table3 for the LLC test and in Table4 for the IPS test. They show that once

common time effects are eliminated, the power of the tests is not severely affected by cross-

sectional correlation. More interestingly, the distortions in power and size are independent of

the degree of cross-sectional dependence. The natural question that arises is why demeaning,

or, equivalently, the inclusion of time dummies, seems to be such an effective instrument if

errors are correlated in the way studied here. The expected value of the outer product of the

4Considering only the firstN elements ofεt.
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Table 2: Size properties with common shocks, eliminating common time effects

ω = 0.7 LLC IPS
nominal size 10%

N = 5 N = 10 N = 20 N = 5 N = 10 N = 20
T = 25 .128 .115 .111 .116 .100 .104
T = 50 .127 .112 .106 .117 .108 .102

T = 100 .115 .110 .106 .110 .108 .101
nominal size 5%

N = 5 N = 10 N = 20 N = 5 N = 10 N = 20
T = 25 .065 .052 .059 .064 .052 .058
T = 50 .067 .054 .049 .068 .053 .050

T = 100 .060 .056 .055 .054 .058 .055
nominal size 1%

N = 5 N = 10 N = 20 N = 5 N = 10 N = 20
T = 25 .014 .009 .013 .016 .010 .015
T = 50 .015 .011 .011 .016 .012 .013

T = 100 .011 .012 .014 .014 .015 .011
Note: Based on 4,000 replications. The values reported are the percentage of
rejections using the indicated nominal level. Ideally, real and nominal size should
be equal.

error terms is (considering the relevant firstN elements)E[εtε
′
t] = Σ. The elimination of

time effects can be rewritten as:

(εt − ε̄t)(εt − ε̄t)
′ =
[(

I− ll′

N

)
εt

][(
I− ll′

N

)
εt

]′
wherel = (1, ..., 1)

Qεt(Qεt)
′ = Qεtε

′
tQ

′ = QΣQ′.

whereQ is:

Q
N×N

=

 1− 1
N

− 1
N

... − 1
N

1− 1
N

... − 1
N

...

1− 1
N

 =
1

N

 N − 1 −1 ... −1

N − 1 ... −1
...

N − 1

 .

If Σ takes the form where all off–diagonal elements are equal toω, the above expression

further simplifies to:

QΣQ′ =
1− ω

N

 N − 1 −1 ... −1

N − 1 ... −1
...

N − 1

 =

= (1− ω)
N − 1

N

 1 −1
N−1

... −1
N−1

1 ... −1
N−1

...
1

 =
N→∞

(1− ω)I. (6)
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Table 3: Size and power properties of LLC for varyingω andρ

N = 25 nom. size power
ρ = .9 ρ = .95

ω = 0 10% 5% 1% 10% 5% 1% 10% 5% 1%
T = 60 .09 .04 .005 .99 .98 .85 .56 .38 .13

T = 100 .01 .04 .002 1 1 1 .83 .68 .31
ω = 0.7 10% 5% 1% 10% 5% 1% 10% 5% 1%
T = 60 .10 .04 .005 .99 .98 .84 .54 .37 .12

T = 100 .11 .04 .009 1 1 .99 .79 .64 .29
ω = 0.8 10% 5% 1% 10% 5% 1% 10% 5% 1%
T = 60 .10 .04 .005 .98 .96 .80 .54 .36 .10

T = 100 .11 .05 .011 1 1 1 .80 .60 .24
ω = 0.9 10% 5% 1% 10% 5% 1% 10% 5% 1%
T = 60 .10 .04 .005 .99 .97 .82 .54 .36 .12

T = 100 .11 .04 .008 1 1 1 .79 .64 .28
Note: Based on 2,000 replications. One minus the power is the probability that
the test fails to reject the null if it is false for a given significance level.

After demeaning, the degree of cross-sectional correlation (the value ofω) leaves the rela-

tion of the off–diagonal to the diagonal elements unchanged, but it is this relation which

determines the degree to which independence is violated. It is therefore not surprising that

the LLC and IPS test do not show significant differences in power and size for varyingω.

Moreover, for reasonable largeN , the off–diagonal entries are small,e.g. with N = 20 the

remaining ’effective’ correlation is -0.05. For largeN this approaches zero, just as it is in

the absence of any cross correlation. In fact, as shown in AppendixA.1, the test statistic

approaches a standard normal distribution.

This argument is limited, however, to the special form ofΣ where allωij = ω. Because

this might not always be the case, the correlation matrix is now chosen to be a band matrix,

where the correlation coefficient decreases with the distance from the main diagonal. The

idea behind this specification is that there might be some natural ordering of the sections,

reflectinge.g. the geographical distribution of units in a spatial model. Errors are more

correlated the closer two sections are:

E[εtεt] = Σ
N×N

=


1 ω1 ω2 ω3 ... ωN−1

1 ω1 ω2 ... ωN−2

1 ω1 ... ωN−3

1 ...

... ω1

1

 . (7)
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Table 4: Size and power properties of IPS for varyingω andρ

N = 25 nom. size power
ρ = .9 ρ = .95

ω = 0 10% 5% 1% 10% 5% 1% 10% 5% 1%
T = 60 .11 .05 .013 1 1 .99 .86 .76 .46

T = 100 .11 .05 .010 1 1 1 1 .99 .95
ω = 0.7 10% 5% 1% 10% 5% 1% 10% 5% 1%
T = 60 .12 .07 .010 1 1 .99 .87 .77 .47

T = 100 .12 .05 .008 1 1 1 1 .99 .93
ω = 0.8 10% 5% 1% 10% 5% 1% 10% 5% 1%
T = 60 .12 .07 010 1 1 .99 .89 .78 .47

T = 100 .12 .05 .006 1 1 1 1 .99 .93
ω = 0.9 10% 5% 1% 10% 5% 1% 10% 5% 1%
T = 60 .12 .07 .010 1 1 .99 .87 .77 .46

T = 100 .11 .05 .009 1 1 1 1 .99 .94
Note: See Table3.

Table5 reports the effect of this disturbance has on the performance of the LLC test, given

ω = 0.7 and varyingN andT . It shows that the test performs quite poorly. IncreasingN

seem to worsen the results.

Table 5: Size properties of LLC with errors as in (7)

nom. size 10% nom. size 5% nom. size 1%
ωi = 0.7i N = 10 N = 25 N = 10 N = 25 N = 10 N = 25

T = 20 .227 .235 .156 .170 .066 .080
T = 60 .249 .250 .170 .180 .064 .078

T = 100 .258 .252 .177 .180 .068 .084
Note: based on 10,000 replications.

Short run correlation of this type does affect the size properties, no matter if common

time effects are eliminated or not. In the case of common effects, the distortions are far less

worrisome than previously claimed.

3.2. Cross-Sectional Cointegration

There are several parameters that influence the specific form of cointegration that one can

observe in a vector of time series. One aspect is the number of cointegrating vectors (CIVs)

in a system, or, complementarily, the number of stochastic trends driving it. Another set of

parameters are the values of the loading matrix. In the extreme case, all variables are just
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linear combinations of one stochastic trend, and the ’long-run’ equilibrium is realized almost

immediately after a shock. The performance of the tests might depend on how strongly the

variables are tied to the long-run relation. In a set of experiments not reported here, where

cointegration takes that form, both the LLC and the IPS test were very badly oversized. Since

in that setup a common stochastic trend is a time specific effect common to all series, step one

of LLC just eliminates it and transforms all series into stationary processes. Lower values

of the loading matrixA may seem more realistic and loosen the tightness of the long-run

relation. Here the DGP takes the following form:

A = 0.1

(
−I 0

0 −I

)
andB =

(
I −I

0 C

)
the cointegrating matrixC is:

C =


1 −1 0 0 ... 0
0 1 −1 0 ... 0

0 0 1 −1 ... 0

...
0 0 0 0 ... 0

0 0 0 0 ... 0


The number of zero rows (b) determines the number of common trends driving the system.

There areN − b cointegrating relationships. The following number of cointegrating vectors

were considered:N − 1, N/2 andN/4, in case of a fraction the integer part of it is chosen.

Table 6: Size properties with cointegration,b = N − 1

LLC IPS
b = N − 1 nominal size 10%

N = 5 N = 10 N = 20 N = 5 N = 10 N = 20
T = 25 .167 .157 .158 .164 .150 .164
T = 50 .192 .167 .173 .261 .255 .274

T = 100 .249 .227 .203 .520 .479 .449
nominal size 5%

N = 5 N = 10 N = 20 N = 5 N = 10 N = 20
T = 25 .094 .078 .088 .096 .086 .096
T = 50 .105 .081 .088 .153 .147 .174

T = 100 .139 .132 .117 .383 .378 .356
nominal size 1%

N = 5 N = 10 N = 20 N = 5 N = 10 N = 20
T = 25 .024 .019 .024 .030 .024 .026
T = 50 .024 .017 .017 .044 .044 .055

T = 100 .031 .029 .034 .159 .182 .198
Note: Based on 4,000 replications.
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Table6 reports the results forCIV = N − 1. The tests are oversized and the problem

increases inT . Together with TablesA.2 andA.3 in the Appendix, where results for other

values ofCIV are presented, it becomes clear that the tests perform worse the moreCIV s

are present.

An analytical treatment of the asymptotic behavior of the LLC test statistics for the cases

considered in the simulation exercise would give insights into the origins of the size distor-

tions. The interested reader is referred toLyhagen(2000), who provides an analytical argu-

ment for the special case in which there areN−1 cointegrating relations and an instantaneous

adjustment to the equilibrium takes place (α = 1). He derives the limiting distributions for

the t–statistic. The variety of parameters that can determine the cointegration among the

sections (number of CIVs,α) makes a general analytical treatment of this bias rather compli-

cated. Furthermore, the additional insight of an analytical treatment is limited as a potential

correction of the size distortion would have to account for all possible cases.

3.3. Cross-Sectional Correlation and Cointegration

The two previous sections indicated that both kinds of dependencies have oversizing effects

and therefore yield to an over–rejection of the null-hypothesis. Neither econometric nor eco-

nomic theory gives any reason to believe that the two dependencies are mutually exclusive.

In this sections the two are brought together. The cointegration is chosen to be as in the above

section, and, in addition, the errors are correlated in the way specified in Section3.1.

The results reported in Table7 are surprising. The distribution of the test statistic is shifted

to the right. The bias increases withT and yields a considerable distortion in the opposite

direction. This of course causes the power of the test to come close to unity.

In theory, corrections to the test statistics are possible. The variety of cases (N , T , number

of CIVs, α), however, limits the practicability of such an approach. Hence, in practice, a

careful assessment of the dependencies present in the data is necessary before applying any

unit root test.
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Table 7: Size properties with cointegration and correlation

CIV = N/2 LLC IPS
ω = 0.7 nominal size 10%

N = 5 N = 10 N = 20 N = 5 N = 10 N = 20
T = 25 .092 .055 .029 .065 .036 .015
T = 50 .094 .058 .029 .054 .035 .007

T = 100 .111 .064 .025 .061 .024 .004
nominal size 5%

N = 5 N = 10 N = 20 N = 5 N = 10 N = 20
T = 25 .049 .030 .012 .038 .019 .007
T = 50 .055 .033 .014 .030 .010 .004

T = 100 .067 .039 .012 .035 .010 .002
nominal size 1%

N = 5 N = 10 N = 20 N = 5 N = 10 N = 20
T = 25 .011 .007 .002 .011 .003 .001
T = 50 .018 .001 .003 .007 .001 .001

T = 100 .032 .013 .002 .011 .004 .000
Note: Based on 4,000 replications.

4. Should panel unit root tests be applied to real exchange
rates?

With the growth of the panel unit root methodology, the debate over the validity of the pur-

chasing power parity (PPP) has experienced a revival. While previous research could hardly

find any empirical evidence for PPP, one could expect more insight from the application of

panel methods.5 In a non technical way, PPP means that once different currencies are con-

trolled for, the same basket of goods should cost the same amount of money no matter in

which country it is purchased. The existence of permanent deviations from such an equilib-

rium seems implausible as it would allow arbitrage gains, which in turn would push the real

exchange rate back to the equilibrium. Although nobody believes in arbitrage possibilities

with fast food, a popular application of PPP is the Economist’s Big Mac index. Assuming

PPP holds, actual exchange rates are expressed as the deviation from the McParity, hint-

ing on the current under– or overvaluation of currencies.6 Although many arguments have

been put forward in the theoretical literature why PPP might fail, PPP is still a very popular

concept and something many economists like to believe in. However, one cannot reject the

impression that much of the debate centres on the applied methods.

5For a survey of empirical results before the panel era, seee.g.Froot and Rogoff(1995).
6The fall of the Euro after its introduction was predictable if one had believed in Burgernomics. For more on the issue, see

Economist(2001, April 21st).



4. Should panel unit root tests be applied to real exchange rates? 14

4.1. PPP - revisited

If PPP holds, in the long-run the real exchange rate between two countries is stable and devia-

tions from equilibrium are not permanent. LetEit denote the nominal exchange rage between

countryi and abase country at timet. Then, multiplying a basket of goods (normalized to

one) with the ratio of the prices in countryi, Pit, and in the country of the base currency,

P base
t , defines the real exchange rateQit:

Qit =
1

Eit

Pit

P base
t

or, taking logs:

qit = pit − pbase
t − eit. (8)

Since prices and exchange rates are recognized to be nonstationary time series, a natural way

of looking at the problem is to ask if there is a linear combination of the series which renders

a stationary real exchange rate,i.e. if the prices and the exchange rate are cointegrated.

A distinction is made between the strong and weak form of PPP. The weak form allows

for coefficients different from (1, -1) on the price indices. The weak form of PPP has its

economic justification in the presence of measurement errors, which would persist in the

long-run, or varying effects of productivity shocks which may cause the cointegrating coef-

ficients to differ from unity. The weak form of PPP has been tested in an error correction

approach,e.g.by Cheung and Lai(1993) or Corbae and Ouliaris(1991). Edison et al.(1997)

andKouretas(1997) apply aJohansen(1995) procedure, the latter to investigate PPP of the

Canadian dollar and five other currencies.

The strong form of PPP, restricts the coefficients to (1, -1)a priori and tests the resulting

real exchange rate for a unit root. Only this test is of interest in the panel unit root frame-

work. The PPP hypothesis translates into the stationarity of the real exchange rateqit: Only

if this series is mean reverting and does not accumulate shocks permanently, can PPP hold.

Interestingly, the majority of the studies apply tests that have a unit root as a null hypothesis

and literallyaccept stationarity if nonstationarity is rejected, which clearly is a loose inter-

pretation of the unit root rejection.Kouretas(1997) andKuo and Mikkola(1999) are two

studies which test both stationarity and nonstationarity in a panel framework. In a univariate

framework,Engel(2000) points out that even if one rejects the unit root and fails to reject

stationarity there is a possibility of a unit root in the series. This might be caused by a size

distortion in the unit roots tests and the low power of the stationarity tests.

Several issues make PPP an interesting application from the perspective of panel unit root

tests. The increased power when taking into account a set of time series allows for a more
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precise statement on the stationarity of the series. While single country analyses often reject

PPP because a unit root is found in the real exchange rate, this might be due to the low

power of single equation unit root tests with an autoregressive coefficient close to unity.

Therefore, the panel approach might give more insights. However, there are drawbacks on

the use of panel methods. Interestingly, some authors find differing results according to the

base currency chosen.Papell(1997) rejects the unit root when the Deutschmark is chosen

as a base currency, but has mixed results when the panel is US$ based. Note that the series

to be tested for a unit root formed following equation (8) exhibit cross-sectional correlation

by construction, as they are expressed with respect to one base currency. Hence, shocks that

affect this exchange rate are directly reflected in the entire panel. This means that the degree

of cross-sectional correlation depends on the base currency chosen. However, Tables3 and4

in Section3.1show that the actual value of the cross-sectional correlation does not influence

the performance of the test. It is more plausible that the choice of the base currency affects

the degree to which the data is contaminated with cointegration.

There is, of course, a debate on what long-run means in this context. While some authors

argue that PPP should hold regardless to the exchange rate regime, and consequently apply

the tests to long series from, say 1949-1996 (Kuo and Mikkola, 1999), or even over 100 years

(Engel, 2000), most of the studies rely on the time period of the current float,i.e. from 1973

onwards.

All studies mentioned above, includingPedroni(1999), do not consider the possibility

of cross-sectional cointegration.Banerjee et al.(2001) confirm the result of the previous

cointegration analysis that if cross-sectional cointegration is not taken into account when the

real exchange rate is computed, severe distortions may arise. Although one should be aware

of the possibility of cross-sectional cointegrating relations and the serious distortions this

causes, one has to recognize that large dimensional systems cannot be estimated without an

a priori restriction. To illustrate this argument, a full Johansen estimation of the weak form

of PPP would yield a system ofN countries, each with 3 variables, so that an unrestricted

estimation of the cointegration matrixΠ would not be feasible with some 100 observations.

As mentioned earlier, the study byO’Connell (1998) examines PPP in the presence of

short run dependencies in the form of cross-sectional correlations. Moreover, the size and

power of the LLC test are explicitly analyzed. O’Connell comes to the conclusion that the

performance of the LLC test in the presence of cross-sectional correlation is very poor and

suggests a new GLS type estimator. The impact of the O’Connell critique was considerable

and has to some extent discredited the LLC test. There are some things worthwhile noticing.

Apparently O’Connell does not use the adjustedt–value when he evaluates his simulations
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results. Not adjusting thet–values means that the finite sample adjustments are not made.

Also, common time effects are not eliminated in his simulation exercise. This becomes

clear as the distortion in size he reports can only be reproduced if one does not perform this

elimination. The poor power properties that are attested to the LLC test are not related to the

cross-sectional correlation (see Table3). It should be pointed out that with a specification of

ρ = 0.96 even univariate unit root tests have poor power results (Schwert, 1989). Thus the

poor power properties are not panel specific. The proposed GLS estimate may seem more

appealing than the removal of common time effects. However, this procedure involves the

estimation of a covariance matrix and relies on the consistency and accuracy of this point

estimate.

4.2. Shortrun dependence

The main finding of the simulation exercise above is that it is essential to know more about

the covariance structure of the data before applying unit roots tests. This poses some method-

ological problems because estimators have to deal with possible heteroscedasticity and serial

correlation in the data. Robust estimators are needed. In addition, once a point estimate of

a covariance matrix is obtained, it is necessary to conduct some inference on the parame-

ters in order to asses the significance of the correlations. Parametric (Den Haan and Levin,

1996) and nonparametric (Newey and West, 1987) methods for robust estimations of covari-

ance matrices are discussed in AppendixA.2. In addition, a bootstrap algorithm (Politis and

Romano, 1994) is suggested to test for significance of the estimated correlations. The data

used are a panel of real exchange rates for 18 OECD countries, using the US$ as the base

currency.7 To be consistent with the covariance estimators that operate under stationarity, the

first difference of the real exchange rates form the basis for the following analysis. This is

consistent while working under the null hypothesis of a unit root. The parametric (Table9)

and the nonparametric (TableA.6 in the Appendix) estimation yield similar results for the

covariance matrix and show clear signs of significant positive correlation.8

One can argue that the parametric estimate is superior because it explicitly considers

prewhitening which is the main drawback of the nonparametric estimator used. On the other

hand the differenced exchange rates do not, in general, have very high order autoregressive

7The data used is from the IMF data sets, namely the International Financial Statistics and covers quarterly nominal spot
exchange rates and CPI, for the period 1973:1 to 1997:3 for 18 OECD countries. A plot of the data can be found in the
Appendix.

8The estimates presented are not sensitive to the choice of parameters (information criterion, lag lengths, truncationK̄).
Although the two estimates are not identical, their results are very similar, and the deviations from each other are in a
plausible range (see,e.g.[Section 6]Den Haan and Levin(1997)).
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Table 8: Testing different covariance structures for 16 currencies

p = 0.25
ω Q p-val

0.5 295.82 1.00
0.6 85.75 0.01
0.7 2.06 0.00
0.8 44.76 0.00
0.9 213.84 1.00

Note: Q is χ2
120 distributed.

components,9 so the impact of serial correlation on the nonparametric estimator might be

limited.

More than the nonparametric estimate, the parametric estimates detect negative correlation

of the Canadian Dollar with most other currencies in the point estimates. However, the

standard errors indicate that it is not significant. Recalling that all variables are constructed

the following way: x1t = GBP
US$

,x2t = ATS
US$

and that from the 18 countries chosen most

are European, it is not surprising that Canada seems to react in a different way to shocks –

if affected at all. The same is true for Korea. The Japanese Yen, on the other hand, does

exhibit similar reactions to the European currencies. In the parametric case, the standard

errors are in a plausible range of 0.02 to 0.2, whereas in the nonparametric case, the standard

errors become very small, especially if the estimated correlation is close to unity. Overall,

the parametric estimation seems more plausible.

Having in mind the results from the simulation and the asymptotic considerations of Sec-

tion 3, it is desirable to have a homogeneous dataset in terms of error correlation. Therefore,

the two countries with a different error correlation (Canada and Korea) were dropped from

the sample yielding a panel with almost equally correlated errors. The tests on different struc-

tures of the the covariance matrix of the remaining 16 countries reported in Table8 indicate

that a common correlation coefficient in the order of .6 to .8 cannot be rejected, with 0.7

yielding an exceptionally low test statistic.

9The average lag length is 2.7, with a range from zero to 7 in one case.
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Table 10: Trace test for cointegration in a subsample of 9 exchange rates

H0: rank=p −T
∑

log(1− λ̂i) 95%
p = 0 234.5** 192.9
p ≤ 1 183.3** 156.0
p ≤ 2 136.7** 124.2
p ≤ 3 97.49* 94.2
p ≤ 4 65.67 68.5

Note: ** indicates that the hypothesis is rejected
at least at the 95%-level.

4.3. Long-run dependence

A full assessment of the long-run dependency in the real exchange rate data is not possible

using a maximum likelihood approach due to the few numbers of observations in relation

to the entire system. AVAR(p) specification of the process that satisfies minimal residual

properties would require a lag order higher thanp = 2, which is the highest feasible in

the system of 16 exchange rates. Estimation might be achievable by imposing furthera

priori restrictions on the parameter matrices, but theory does not give any further guidance.

However, the interesting question whether there is cointegration or not can positively be

answered in subsystems of the 16 exchange rates. For the sake of presentation, here the

result of a subsample of 9 exchange rates is presented.10 A cointegration analysis following

Johansen(1995) suggests that the data are cointegrated. The trace test detects at least three

cointegrating relations in this subsample of the data (see Table10). This exercise could be

repeated with varying subsamples yielding similar results.

4.4. Results

The individual lags that were included in the different sections were determined after the

removal of common time effects. This lag structure differs from the optimal lag structure

if each of the series would be tested individually before demeaning. However, because the

absence of serial correlation is essential for the LLC and IPS test this should be carried out

after the demeaning. A series of tests was used to analyze the residuals of each series for

their white noise properties. Table11 reports the results and the main white noise indicators.

Further, thet–values of the included lags were considered which had to be significant at least

for the highest lag considered. Normality is not rejected for all residual series.

10A VAR (3) was fitted allowing for seasonal dummies and a constant. All Box Pierce statistics testing for the absence
of serial autocorrelation up to 11 lags cannot be rejected, the same is true for ARCH(4) effects. Absence of vector
autocorrelation is rejected at the5%–level, vector normality is not rejected.
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Table 11: ADF - lags selection
US$ based

lags AR(4) BP lags AR(4) BP
DE 3 .59 .99 FN 4 .25 .58
UK 1 .90 .34 GR 5 .87 .71
AT 1 .57 .87 ES 1 .78 .60
BE 3 .77 .24 AU 3 .96 .84
DK 2 .44 .45 IT 2 .80 .85
FR 1 .74 .83 CH 1 .54 .85
NL 3 .47 .90 NW 3 .87 .12
JP 5 .41 .60 SW 2 .84 .85

Note: In all cases the null hypothesis is absence of the respec-
tive disturbance. The reported values are thep values at which
this hypothesis can be rejected. AR(4) stands for a test on au-
tocorrelation to the 4th order, BP is the Breush Pagan test for
heteroscedasticity.

Table 12: Test results

p–values adj. power (5 %)
test coefficient N(0,1) simulated ρ = .9 ρ = .95

b = 15 b = 8
LLC t∗ -1.911 0.028 0.014 0.020 0.94 0.38
IPSΨt̄ -2.856 0.002 0.001 0.002 0.99 0.73

Note: Simulated values based on 4,000 replications.

Both dependencies are present in the data. The simulation exercise has shown that in this

case it is not possible to make predictions about the direction of a potential size bias. New

critical values can be computed simulating panels of exchange rates, and thereby following

as close as possible the presumed DGP. Therefore, a panel of 16 variables with 15 (and 8)

cointegrating relations and an error correlation structure using the point estimate of Table

9 was simulated and the test statistic was computed. Under the alternative, variables with

an autoregressive coefficient ofρ = {.9, .95} and the same error structure were simulated.

Table12reports the results of the LLC and the IPS test, the percentiles of the normal and the

simulated distribution. In addition, Figure1 shows kernel densities of the estimatedt–values,

the standard normal distribution, the actual test value and theρ = 0.9 alternative.
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Figure 1: LLC test results.

One has to keep in mind, however, that this test result is sensitive to the assumed structure

of the data, in particular the presence of both long and short run dependence. While the

short run correlation with all errors sharing the same correlation coefficient does not appear

to influence the test result, the presence of cointegration is much more worrisome. If one

is willing to assume that the values obtained via the simulation reflect the true properties of

the DGP, the null of nonstationarity of the real exchange rates can be rejected at a very low

p–value, hence providing some argument for the validity of PPP.

5. Conclusion

The simulation exercise has shown that two of the most popular panel unit root tests are

sensitive to dependencies among sections of the panel. Analyzed separately, both short run

dependence in the form of correlated errors and long-run dependence in the form of cointe-

gration lead to a significant oversizing of the test. However, if put together, the effect goes

into the opposite direction. The determination of the actual presence of dependencies is

therefore necessary in order to interpret the test results. The estimation of and the inference

on contemporaneous correlation is crucial, although not easy to perform.
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The application to a set of real exchange rates has shown that both dependencies are present

in the data. Hence, the test results are likely to be biased. In order account for these depen-

dencies, simulated critical values were used which origin from a data generating process that

resembles the actual data. The null hypothesis of a unit root can be rejected providing some

empirical evidence for the validity of he purchasing power parity. However, in the light of

the simulation results obtained earlier, the reliability of the test results are questionable. This

exemplifies the the problems with the use of panel unit root tests on sectional dependent data

in general.
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A. Appendix

A.1. Asymptotic normality of LLC with common shocks

Absence of shocks

Consider a model without constant and no additional lagged differences, along the lines ofLevin et al.
(2002). Following the notation from Section2.1, in this case, for largeN andT , no adjustments are
necessary andt∗δ = tδ. The least squares estimator ofδ proposed by LLC under the null hypothesis
is:11

δ̂ =
∑N

i=1

∑T
t=1 εitxit−1∑N

i=1

∑T
t=1 x2

it−1

Define

ξ1iT =
1

σ2T

T∑
t=1

εitxit−1 andξ2iT =
1

σ2T 2

T∑
t=1

x2
it−1

and, using an estimator for the standard deviation12 σ, the correspondingt–value is:

tδ =
1√
N

∑N
i=1 ξ1iT(

σ̂
σ

)[
1
N

∑N
i=1 ξ2iT

]1/2
.

Sectional correlation is a violation concerning theN . Taking the easiest form of multi index asymp-
totics, namely sequential limits (Phillips and Moon, 1999) first the limiting distributions whenT goes
to infinity is, for N fixed:13

lim
T→∞

ξ1iT = ξ1i with E[ξ1i] = 0 andV ar[ξ1i] =
1
2

lim
T→∞

ξ2iT = ξ2i with E[ξ2i] =
1
2

andV ar[ξ2i] =
1
3

(A.1)

one obtains

tδ =
1√
N

∑N
i=1 ξ1i(

σ̂
σ

)[
1
N

∑N
i=1 ξ2i

]1/2
. (A.2)

If the errors were uncorrelated andσ̂ a consistent estimator ofσ, averaging over the sections of the
panel would give the known result thattδ ⇒ N(0, 1). The convergence in probability of the denomi-
nator of (A.2) is established by the following application of a law of large numbers (Billingsley, 1986,
p. 290):

11See Section2.1.
12For example:

σ̂ =

∑N
i=1

∑T
t=1 xitxit−1∑N

i=1

∑T
t=1 x2

it−1

.

13These results are due toPhillips and Durlauf(1986), cf. Levin and Lin(1992, p. 14).
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Theorem A.1 Suppose that for each time-series dimensionT , the variablesZiT are independent
and identically distributed across individualsi, with meanµT and variance0 < σ2

T < ∞, and that

µ = limT→∞ µT . If limT→∞
σ2

T

NT
= 0. Then 1

NT

∑NT

i=1 ZiT
p→ µ.

The inner expression of the denominator has expectation 1/2 and for alli the expectations of the
variance are finite. Hence, the denominator converges to

√
0.5. The convergence in distribution of

the numerator is established by applying the following central limit theorem (Billingsley, 1986, p.
368):

Theorem A.2 Suppose that for each time-series dimensionT , the variablesZiT are independent
and identically distributed across individualsi, with meanµT and variance0 < σ2

T < ∞, and that
µ = limT→∞ µT , andσ2 = limT→∞ σ2

T . Then 1√
NT

∑NT

i=1(ZiT − µT ) ⇒ N(0, σ2).

For eachi, the numerator has expectation 0 and finite variance 1/2. Hence, it converges in distribution
to N(0, 0.5). Using the results obtained in (A.1) and applying both theorems, (A.2) converges to
N(0, 1).14

Common shocks

In the case of sectional correlation, however, the crucial assumption used in both theorems about the
independence of the random variables is violated and their application fails. The numerator of (A.2)
no longer converges toN(0, 0.5). To be more precise, assume the easiest case in which the correlation
among sections takes the following form:15

E[ξ1iξ1j ] 6= 0 andCov[ξ1iξ1j ] = ω̃1 for i 6= j

To see which central limit theorem can be applied, it is necessary to check the properties of
ξ1 ≡ limN→∞

1√
N

∑N
i=1 ξ1i:

E[ξ1] = E[
1√
N

N∑
i=1

ξ1i] = 0 and

V ar[ξ1] = V ar[
1√
N

N∑
i=1

ξ1i] =
1
N

( N∑
i=1

V ar(ξ1i) + 2
N−1∑
i=1

N∑
j=i+1

Cov(ξ1i, ξ1j)
)

=
1
N

(N

2
+ N(N − 1)ω̃1

)
=

1
2

+ ω̃1(N − 1)

The variance of the numerator increases withN . Central limit theorems for dependent random vari-
ables require a finite variance to establish convergence (see,e.g.Billingsley (1986, p. 376) andWhite
(2001, p. 122)). Hence, no convergence result can be stated for this general form of dependence.

However, the analysis of the elimination of common time effects above (see page8) has shown
that theeffective disturbance to the correlation matrixafter removing common time effects is itself a
function ofN . More specifically, using the result from equation (6) thatω̃1 = (1− ω̃1)(N−1

N
−1

N−1) =
ω̃1−1

N one can rewrite the above after removing common time effects as:

V ar[ξ1] =
1
2

+
ω̃1 − 1

N
.

14For the variance, notice thatV ar(N(0,0.5)√
0.5

) = 0.5
0.5

= 1.
15Note that ifV ar(εit) = 1 the covariances equal the correlation coefficients.
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As N goes to infinity the variance converges to the same value as in the case without sectional
correlation. Using a central limit theorem which does not require independence (White, 2001, p.
125):

Theorem A.3 Suppose that for each time series dimensionT , ZiT is a stationary process with mean
µT and variance0 < σ2

T < ∞, and thatV ar( 1√
NT

∑NT

i=1 ZiT )
p→ σ2

N where0 < σ2
N < ∞. Then

1√
NT

∑NT

i=1(ZiT ) ⇒ N(0, σ2
N ).

Since each section has a finite variance and the variance of the average over all sections converges to
1/2, the numerator converges toN(0, 0.5). For the denominator write:

E[ξ2iξ2j ] 6= 0 andCov[ξ2iξ2j ] = ω̃2 for i 6= j.

Again, checking the properties ofξ2 ≡ limN→∞
1
N

∑N
i=1 ξ2i it is easily seen that:

E[ξ2] =
1
2

as before and

V ar[ξ2] = V ar[
1
N

N∑
i=1

ξ2i] =
1

N2

( N∑
i=1

V ar(ξ2i) + 2
N−1∑
i=1

N∑
j=i+1

Cov(ξ1i, ξ1j)
)

=
1

N2

(N

3
+ N(N − 1)ω̃2

)
=

1
3N

+ ω̃2
N − 1

N
.

The variance of the denominator decreases withN . FollowingWhite(2001, p. 44), the following law
of large numbers is applicable to weakly dependent data:

Theorem A.4 SupposeZi is a stationary ergodic scalar sequence withE[Zi] = µ < ∞. Then
Zi

a.s.→ µ.

Almost sure convergence (a.s.) implies convergence in probability (Davidson(1994)). Hence, the de-
nominator converges in probability to

√
(0.5) regardless to the dependence in the data. Summarizing,

with common sectional correlation and after removing common time effects, (A.2) will converge in
distribution toN(0, 1) as it is the case without sectional correlation. This is in line with the simulation
results obtained earlier, that the problem of oversizing diminishes withN andT .

Other shocks

In the case where the covariance matrix takes the form of a band matrix (see page9) if common time
effects were not eliminated, the variance of the numerator, in terms of the expressions above, would
again not converge for largeN as it becomesV ar(ξ1) = 1/2 +

∑N−1
a=1 aωN−a. If common time

effects are eliminated, the structure of the correlation matrix becomes even less homogeneous and no
convergence is achieved. The resulting matrix is a straightforward but rather unpleasant combination
of N ’s andω’s. Here is a numerical example:

if Σ =


1
.7 1
.49 .7 1
.34 .49 .7 1

 thenQΣQ′ =


1

.46 1
−.81 −.42 1
−.79 −.81 .46 1

 .

Hence, the elimination of common time effects in this case does not provide any remedy for the
test. The test statistic will not converge to a N(0,1)
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A.2. Estimation of and Inference on (Co-)Variances

Much attention has been devoted to so called heteroscedasticity and autocorrelation consistent (HAC)
or robust estimators of covariances from to stationary series. Under nonstationarity, covariances are
not constant over time and methods designed for stationary series can no longer be used. In this
case one can either use the differences of the series to compute the covariances or the residuals from
regression on the lagged variable.Schwert(1989) finds that, in the univariate case, the difference
based approach has a smaller bias in finite samples. Therefore, and in order to proceed consistently
under the null of non-stationarity, the following lines apply to the first differences of an I(1) process
without drift.

Analogous to the univariate problem of variance estimation, the aim is to get a consistent estimate
of the covariance matrix at zero frequency.16 To estimate the spectrum of an unknown DGP correctly,
all T autocovariances have to be estimated, which is not feasible withT observations. The class of
parametric estimators imposes a certain structure on the data and constructs estimators that would be
implied by the model, while nonparametric procedures use a weighted average of autocovariances.

Parametric estimators

The parametric estimator VARHAC (vector autoregressive heteroscedasticity and autocorrelation
consistent) was developed byDen Haan and Levin(1996) and fits a vector autoregressive (VAR )
model to the series under consideration using an information criterion to determine the optimal lag
length. To the residuals of thatVAR a standard covariance estimator is applied.

More specifically, for each sectioni of theN -dimensional stationary of the processxt, an autore-
gressive process is fitted using a lag order suggested by either the Akaike (AIC) or the Schwarz’
Bayesian (BIC) information criterion, and given a maximum lag order. The optimal lag order may
differ across sections. The coefficients are collected in a matrixÂk(N×N) for each lagk, taking zero
values for sectioni if k exceeds the maximum lag order of that section. For the highest lag lengthK̄

chosen, aVAR is fitted and the residualŝet are used to compute the innovation matrix:

Σ̂V ARHAC
T =

1
T

T∑
t=K̄

êtê′t.

The the spectral density estimator is then given by:

ŜV ARHAC
T = [I −

K̄∑
k=1

Âk]−1Σ̂V ARHAC [I −
K̄∑

k=1

Âk]−1. (A.3)

Den Haan and Levin(1996) analyze the performance of this estimator compared to some nonpara-
metric alternatives and find better finite sample properties. According to their results, the individual
choice of lag lengths for each section makes this procedure superior to nonparametric estimates, in
which one weighting function is applied to all sections.

Nonparametric estimators

In the nonparametric case two concepts are introduced to handle the problem of estimating the co-
variances: windowing and weighting. The most frequently used kernels in the time series literature

16For the following, seeDen Haan and Levin(1997).
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are the Bartlett kernel and the Parzen kernel. For the Bartlett kernel, the weights assigned to the
autocovariances decline from 1 (the sample variance) to 0 (when the truncation is reached). This
kernel ensures a positive estimation of the long-run variance – or, in the multivariate case – a positive
definite estimate of the covariance matrix (Newey and West, 1987). Since the theoretical guidance
in the choice of the truncation is quite unsatisfactory, it might be useful in empirical applications to
conduct robustness checks in terms of varying kernels and truncation parameters. Starting point for
the estimation of the covariance matrix in the presence of serial correlation is:

S(m) = Γ̂0 +
K∑

τ=1

wKτ (Γ̂τ + Γ̂′τ ), (A.4)

wherewKτ is a kernel,K a truncation parameter, and

Γ̂τ =
1
T

T∑
t=τ+1

(xt − x̄)(xt−τ − x̄)′.

Refinements to this estimator are possible. Kernel based estimations of the long-run variance matrix
in the presence of serial correlation were found to give quite poor results. The major source of bias
is that kernels, which ensure a positive definite spectral density matrix place weights less then unity
on autocovariances other then at lags zero.Andrews and Monahan(1992) therefore suggest a kernel
based prewhitening of the series and observe an improvement using this technique. In an expression
similar to equation (A.3) the covariance matrix is placed between the inverse of the prewhitening
coefficients.Newey and West(1994) propose an automated bandwidth selection procedure for the
estimator in (A.4).

A.3. Bootstrap methods for dependent data

Inference on covariance matrix estimators is rarely done. But the estimation results itself are mean-
ingless if they remain unrelated to some standard errors. In both the parametric and nonparametric
case, bootstrap methods may be used to make inference on the estimates.

There is little known about the properties of bootstrap algorithms when the underlying process
contains a unit root. But even if the root of the process comes close to unity,Bose(1988) shows
that bootstrap approximations deteriorate. However, bootstrapping results will remain valid if the
bootstraps are applied to the differenced data. Hence, the following applies to the first differences of
a non-stationary process.

For time dependent data, however, the algorithms have to be extended because random resampling
would not account for the time dependency of the data, which, as it is the case for the covariance
matrix, is a crucial part of the estimator.17 For time dependent processes, resampling in the frequency
domain is suggestede.g. by Franke and Haerdle(1992) for the univariate case. This method is
designed for making inference about the entire spectrum. In this context the only estimate of interest
is the variation of the covariance matrix at zero frequency, and therefore these methods do not seem
appropriate. In the time series domain the following methods are suggested. The so called model-
based resampling requires reasonable good knowledge of the true model. In short, the assumed DGP
is applied to the series, innovations are computed and then used to resample a series again assuming
the same DGP. Among the methods that do not require knowledge of the DGP is the so called block

17Seee.g.Davison and Hinkley(1997).
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resampling. The basic idea here is to divide the data intob blocks of equal lengthl. The new
resampled series is a randomly order of blocks. Typically, those estimates will be biased, because
the resampled series are more independent than the original one, since whenever a block changes,
artificial independence is introduced. Furthermore, this break causes the artificial series to exhibit
nonstationarity properties, because distribution parameters become time dependent.18

The stationary bootstrap

The stationary bootstrap suggested byPolitis and Romano(1994) is a sophistication of the afore-
mentioned methods. Moreover, this bootstrap is unbiased and does not produce nonstationarity in
the above sense. Another advantage of this method is that its validity for the covariance estimation
of a multivariate process was shown, which is precisely what is needed in this context (Politis and
Romano, 1994, Theorem 4). The algorithm is as follows:

• Let xt be aN -dimensional vector of time series fromt = 1, ..., T .

• Definebt,l = {xt,xt+1, ...xt+l−1} as a block ofl subsequent observations in the sample, start-
ing at somet. If the end of the sample is reached before the end of the block (i.e. t + l > T ),
the block is filled up with observations of the beginning of the sample (xN = x0, xN+1 = x1

...).

• The lengthl of the blocks is determined randomly, where the lengths follow a geometrical
distribution with some fixed parameterp ε [0, 1]. The probability of a block lengthm is Pr{l =
m} = (1− p)(m−1)p for m = 1, 2, ... . Denote those random numbers byLi.

• Once the lag length is determined, the beginning of the block is determined by a random vari-
ableIi which is discretely uniformly distributed on[1, T ].

• The pseudo time seriesx∗t = {x∗1...x∗T } is generated by the random sequence of blocks
BI1,L1 , BI2,L2 ..., where the end is trimmed atT . The resampling is doneB times.

• Let the true vector of parameters of interest beθ. In the same way as the distribution ofx can
be approximated by the large number of pseudo seriesx∗, the distribution of̂θ conditional on
x can be approximated by the distribution ofθ̂

∗
(x∗).

• Applying this procedure to the inference on a covariance matrix,θ is a vector containing the
correlations between theN units of the the vectorxt. If one restricts attention to the triangle
below the diagonal, this amounts to(1

2(N − 1)N) = d elements. Denote bŷθ(x) a consistent
(parametric or nonparametric) estimator of the covariance matrix. After computing the covari-
ances for each resampledx∗, one can estimate the asymptotic variance of the estimator by:19

V̂[θ̂] =
1
B

B∑
b=1

[θ̂
∗
(b)− θ̂][θ̂

∗
(b)− θ̂]′. (A.5)

The diagonal elements of̂V contain the variances of each element of the estimator, hence the
root of the diagonal contains the standard error to be placed around the point estimatesθ̂.

18For methods on how to overcome this and other problems, seeHall et al.(1995).
19SeeGreene(2000, p. 174).
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• Assuming that the bootstrapped values follow a normal distribution, then a simple test for
θ̂ = θ1 is:

Q = (θ̂ − θ1)′Ṽ−1(θ̂ − θ1) (A.6)

whereṼ is an estimate of the covariance matrix of the form:

Ṽ[θ̂] =
1
B

B∑
b=1

[θ̂
∗
(b)][θ̂

∗
(b)]′

ThenQ will be approximatelyχ2
d distributed, whered is the dimension ofθ.20

A.4. Additional tables

Table A.1: Size properties when all assumptions are fulfilled

ω = .0 LLC IPS
nominal size 10%

N = 5 N = 10 N = 20 N = 5 N = 10 N = 20
T = 25 .136 .120 .118 .120 .114 .109
T = 50 .122 .101 .101 .114 .100 .104

T = 100 .118 .100 .100 .101 .101 .098
nominal size 5%

N = 5 N = 10 N = 20 N = 5 N = 10 N = 20
T = 25 .073 .058 .058 .069 .059 .059
T = 50 .062 .053 .047 .064 .052 .054

T = 100 .058 .056 .049 .058 .057 .048
nominal size 1%

N = 5 N = 10 N = 20 N = 5 N = 10 N = 20
T = 25 .015 .011 .010 .018 .012 .012
T = 50 .013 .011 .009 .015 .013 .009

T = 100 .013 .010 .009 .013 .012 .009

Note: Based on 4,000 replications.

20See alsoDen Haan and Levin(1997, p. 299).
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Table A.2: Size properties with cointegration

LLC IPS
CIV = N/2 nominal size 10%

N = 5 N = 10 N = 20 N = 5 N = 10 N = 20
T = 25 .155 .146 .147 .150 .142 .142
T = 50 .169 .151 .145 .179 .185 .194

T = 100 .178 .160 .149 .267 .291 .301
nominal size 5%

N = 5 N = 10 N = 20 N = 5 N = 10 N = 20
T = 25 .081 .080 .077 .081 .083 .080
T = 50 .086 .077 .072 .099 .103 .116

T = 100 .010 .088 .078 .167 .188 .202
nominal size 1%

N = 5 N = 10 N = 20 N = 5 N = 10 N = 20
T = 25 .017 .014 .016 .020 .017 .022
T = 50 .020 .014 .013 .031 .027 .024

T = 100 .026 .022 .014 .052 .064 .072

Note: based on 4,000 replications.

Table A.3: Size properties with cointegration,b = N/4

LLC IPS
b = N/4 nominal size 10%

N = 5 N = 10 N = 20 N = 5 N = 10 N = 20
T = 25 .144 .137 .135 .126 .132 .139
T = 50 .147 .132 .130 .152 .143 .142

T = 100 .164 .146 .142 .184 .184 .186
nominal size 5%

N = 5 N = 10 N = 20 N = 5 N = 10 N = 20
T = 25 .074 .072 .073 .069 .077 .074
T = 50 .074 .070 .072 .085 .078 .077

T = 100 .070 .082 .074 .108 .109 .112
nominal size 1%

N = 5 N = 10 N = 20 N = 5 N = 10 N = 20
T = 25 .016 .014 .014 .019 .021 .017
T = 50 .014 .016 .017 .021 .016 .019

T = 100 .021 .017 .019 .029 .026 .024

Note: Based on 4,000 replications.
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Table A.4: Size properties with cointegration and correlation forb = N − 1

LLC IPS
b = N − 1 nominal size 10%

ω = 0.7 N = 5 N = 10 N = 20 N = 5 N = 10 N = 20
T = 25 .092 .056 .023 .079 .045 .022
T = 50 .084 .045 .020 .086 .032 .013

T = 100 .052 .038 .013 .122 .062 .019
nominal size 5%

N = 5 N = 10 N = 20 N = 5 N = 10 N = 20
T = 25 .045 .027 .017 .042 .021 .011
T = 50 .042 .019 .007 .043 .013 .005

T = 100 .025 .018 .007 .064 .031 .008
nominal size 1%

N = 5 N = 10 N = 20 N = 5 N = 10 N = 20
T = 25 .010 .007 .003 .011 .006 .002
T = 50 .011 .004 .001 .010 .003 .001

T = 100 .008 .005 .001 .018 .007 .001

Note: Based on 4,000 replications.

Table A.5: Size properties with cointegration and correlation forb = N/4

LLC IPS
b = N/4 nominal size 10%
ω = 0.7 N = 5 N = 10 N = 20 N = 5 N = 10 N = 20
T = 25 .080 .054 .026 .059 .033 .013
T = 50 .091 .068 .029 .046 .021 .005

T = 100 .118 .068 .039 .048 .016 .005
nominal size 5%

N = 5 N = 10 N = 20 N = 5 N = 10 N = 20
T = 25 .043 .029 .012 .034 .017 .005
T = 50 .054 .041 .014 .023 .011 .003

T = 100 .081 .042 .025 .028 .010 .001
nominal size 1%

N = 5 N = 10 N = 20 N = 5 N = 10 N = 20
T = 25 .013 .007 .002 .008 .003 .001
T = 50 .017 .012 .004 .005 .002 .001

T = 100 .030 .018 .009 .008 .003 .000

Note: Based on 4,000 replications.
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Figure A.1: PPP data with US$ as base currency
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