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Abstract 

We investigate the dynamics of a cobweb model with heterogeneous
beliefs, generalising the example of Brock and Hommes (1997). We
examine situations where the agents form expectations by using either
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 Stability and Cycles in a Cobweb Model 

with Heterogeneous Expectations

1. Introduction 

As first developed in the cobweb model of Brock and Hommes (1997),

expectation formation arising from rational choice between various

costly forecasts may generate equilibrium instability. Brock and

Hommes (1997) presented a systematic dynamical analysis based on the

new concept of Adaptively Rational Equilibrium Dynamics (ARED).

The present paper further develops this approach and aims at

characterising such instability. We show that when the steady state is

unstable, supercritical Flip bifurcation as well as Neimark-Sacker

bifurcation1 can occur under specific conditions. The resulting cycles

can be attracting for a set of parameters. 

Over the past decade, a growing number of papers have dealt with the

role of heterogeneous expectations in generating instability (Chiarella

and He, 1998, 2001; Franke and Neseman, 1999; Goeree and Hommes,

2000; Hommes, 1991). While economic implications of these studies are

                                                
1 Both types of primary bifurcation were also present in a cobweb model with
homogeneous and adaptive expectations (Hommes, 1998).
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obvious for some specific markets,2 most papers, including ours, are

based on the simple cobweb model since it appears to be a useful tool.

The framework as well as the economic meaning of this paper are close

to those of Brock and Hommes3 (1997). 

Let us first consider the framework. Expectation formation is modeled

as an economic decision. Indeed, producers choose a predictor between

two expectation functions. The predictor’s performance is defined as the

net realized profits in the most recent period less the cost associated with

the predictor. Depending on this performance, each producer may at

every period switch from a predictor to another. For producers as a

whole, this switching process, which is perfectly endogenous, may occur

at various levels of intensity.

Let us now turn to the economic meaning of this class of models (Brock

and Hommes, 1997; Branch, 2002). Under the previous assumptions on

the expectation formation and the ARED concept, the instability of the

steady state is generated by a simple but powerful economic mechanism

which could be intuitively described as follows.4

                                                
2 See for instance Frankel and Froot (1990) for concerns related to the Foreign
Exchange Market.
3 See also Brock and Hommes (1995).
4 A basic but necessary assumption used in the literature on this topic is the local
instability of the steady state when all agents use the less sophisticated predictor. For
that purpose, the slope of the supply function must be larger than the absolute value of
the slope of the demand function.



4

On the one hand, when the price is close to its steady-state value, very

few agents use the most sophisticated predictor since its cost exceeds the

benefits of its forecast. Therefore, the distance between the current price

and its steady-state value grows large over time.

On the other hand, while its cost is significant, the sophisticated

predictor provides a better net return when the current price is far from

its steady-state value. Thus, the distance between both prices gets

smaller over time. 

Consequently, price oscillations are endogenously generated in the

steady-state neighbourhood. 

Our main contribution is to show that the mechanism described above

may lead to the possibility of cycles through primary bifurcations. Their

existence is directly linked to our definition of the expectation functions.

While Brock and Hommes (1997) assume that costly rational

expectations are competing with costless naïve expectations, we replace

the latter by costless adaptive expectations. More precisely, we assume

that adaptive expectations are a weighted average of the last two prices.

Such an assumption5 which is crucial for our results, seems to be more

                                                
5 This assumption is present in Hommes (1998) who studies the homogeneous cobweb
model. A similar formulation is also used in the cobweb model of Chiarella and He
(1998).
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appropriate than those used previously, for instance by Brock and

Hommes (1997) or by Branch (2002).

Indeed, it should be noted that our costless predictor is not too

unsophisticated. Our predictor is a reasonable forecasting strategy for

boundedly rational agents.6 According to proponents of Bounded

Rationality Theory, such as Simon (1957) or Baumol and Quandt

(1964), our assumption may be justified as follows. First, it is often

believed that the agents can loose or forget information quickly. We can

then imagine that beyond two periods they don’t keep the information

about prices. Second, one could also think that agents could also believe

that the prices observed more than two periods ago will have no impact

(or so little) impact on future prices that it is not necessary to take

account of that information. Third, one could conjecture that the extra-

cost in keeping and taking that information into account would exceed

the extra benefit to be obtained. Therefore, it would be “economically

rational” not to take these earlier prices into account in the prediction

function. Fourth, as suggested by Simon (1957), this strategy may

simply be connected to the limited capacity of individuals to store and

process information.

                                                
6 The reference to bounded rationality is quite common in the literature on
heterogeneous expectations. See for instance Hommes (2000).
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It should also be mentioned that it seems to be intuitive that the more

sophisticated a predictor is, the more costly it is. In his theorem 8,

Branch (2002, p. 77) considers a model similar to ours, i.e. a model with

rational versus adaptive expectations. Although the adaptive

expectations he refers to are a weighted average (with exponentially

declining weights) of all past prices, he assumes that their cost is nil.

However, costless adaptive expectations seem to be more realistic when

they are based on a finite number of price observations, as we assume.7

Given the existing literature derived from Brock and Hommes (1997),

our model allows us to derive two new results.

First, the model of Brock and Hommes (1997) becomes a special case of

our model. Indeed, the naïve expectations they consider correspond to

our adaptive expectations when all weight is put on the more recent

price. As we consider an expectation function with two lags, the

dimension of the dynamical system of our model increases from 2 to 3.

Due to this change, we are able to demonstrate the existence of a new

type of primary bifurcation, namely a primary Neimark-Sacker

bifurcation.8

                                                
7 In our case, they are based on the two most recent prices.
8 See Proposition 3. For a mathematical exposition of bifurcations, we refer to
Kuznetsov (2000).
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Second, Branch (2002, pp. 77-78) studies a model close to ours where

agents choose between a costly predictor and a costless adaptive

predictor defined as a weighted average of all past prices. One of his

main conclusions (Theorem 8, p. 77) stated that the stability conditions

of the steady state are broader when adaptive expectations put “enough”

weight on the past. Our conclusion is more cautious. First, the stability

zone is wider when the agents base their adaptive expectations on both

past prices with more weight on the most recent price. Second, the

instability of the steady state may lead to stable cycles. On the one hand,

these cycles may appear when the agents put “enough” weight on the

current price (cycles occurring through a Flip bifurcation). On the other

hand, stable cycles can also occur when the agents put “reduced” weight

on the most recent price (cycles occurring through the Neimark-Sacker

bifurcation). 

The paper is organized as follows. The cobweb model and its dynamics

under rational versus adaptive expectations are presented in Section 2.

The stability conditions of the steady state and of periodic equilibria are

stated in Section 3. Section 4 concludes.

2. The Cobweb Model with Rational vs Adaptive Expectations 
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We are going to present an extension of the model of Brock and

Hommes (1997) that focuses on the case of rational versus naïve

expectations. The only two changes to their framework are the

following. On the one hand, we consider the introduction of an adaptive

expectation function with two lags rather than naïve expectations. On

the other hand, the analysis is based on the relative number of agents

using rational expectations compared to the number of agents using

adaptive expectations, denoted by 1n . Although the second change is

just a matter of presentation, the first change, through small, leads to

significant differences in results. To make the results comparable with

these of Brock and Hommes (1997), we follow closely their setup. More

recently, Branch (2002) considers a more generalised setting. Indeed, he

examines in detail the stability properties of the cobweb model when

agents can choose between three predictors: the perfect-foresight

predictor, the naïve predictor and adaptive beliefs. We will discuss our

results with respect to his in the next section.

In the Brock and Hommes (1997) framework, supply decisions are made

by choosing the output that maximises expected profits subject to the

one-period production lag. That is, 

� �� �qcqpe
tq

�

�1max            
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where � �qc  is the cost function which is increasing in q. 

Price expectations, e
tp 1� , are formed by choosing a predictor from a set

of expectation functions. Given this heterogeneity in expectation

formation, market supply is a weighted sum of the supply decisions of

the heterogeneous agents. The weights are simply the proportion of

agents using a specific predictor. That is, each agent chooses

� �Kj H,,H,HH �21�  where each predictor depends upon a vector of

past prices � �01 p,,p,pP ttt �

�

�
� . The fractions of agents using a given

predictor, � �� �1, H,
�tttj Ppn

�

 depend on the current price and on the vectors

of previous predictors:

� � � � � � � �� �112111 ����
� tKttt PH,,PH,PHP

�

�

���

H . 

Therefore, market equilibrium is given by the equation:

� � � �
�

�

�

�
�

�

�

�
�
�

�
�
�
�

�

�
�

�

�

�
�

�

�

�
�
�

�
�
�
�

�
�

�

�

�

�

�

K

j
tjttt,jt PHSP,pnpD

1
11 H

where � �.D  is the demand function and � �.S  is the supply function.

To keep the model analytically tractable, we assume linear demand and

supply. Therefore let � � tt pBFpD ��  be the demand and

� �� � � �PHbPHS jj

��

� , with 
�

�RbBF ,, .
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Without loss of generalisation to the stability properties, we set F equal

to zero. Market equilibrium when � �21 H,HH j �  is determined by the

condition

� � � �� � � �� �ttttt PHSnPHSnpD
��

2,21,11 ��
�

                                            (1)

where the two predictor functions are defined as

11 �

�

��
�
�

�
�
�
�

�
tt pPH  with cost 0�C ,                                               (2)

� � 12 1
�

�

�	��
�
�

�
�
�
�

�
ttt ppPH ��  with 10 �� �  and no cost.          (3)

Each period, after observing the new price and assessing the accuracy of

their forecasts, producers update their prediction of next period’s price.

The evolution of the proportion of agents using a particular predictor is

given by 

� � � �1
1

11 �

�

�� �� t,j
K

j
t,jt,j UExpUExpn �� .                            (4)

1�t,jU  is a measure of the welfare associated with a certain predictor.

The variable � parameterises preferences over profits. The larger the �,

the more likely a producer will switch to an expectation with slightly

higher returns. Brock and Hommes call this the “intensity of choice”

parameter. Assume that the measure of the welfare is equal to realised

net profits in the last period, then we get 
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�
�

�

�

�
�

�

�

�
�
�

�
�
�
�

�
�

�

�� ttjt,j P,pU H11 �

where � �� � � �� �� � jtjtjtttj CPHScPHSpP,p ���
�
�

�

�

�
�

�

�

�
�
�

�
�
�
�

�
�

�

�

��

11 H� . 

jC  is the fixed cost associated with jH . The cost of production is a

simple quadratic cost function � � � �bqqc 22
� . The profit functions for

producers using each predictor are respectively:

� � Cpbpp ttt ��
���

2
1111 2

,�                                                                       (5)

� � � �� � � �� �� �111112 121
2

,,
�����

������ tttttttt pppppbppp �����         (6) 

Then plugging these into (4) leads to the law of motion for the two

predictors:

1
2

111 2
Exp

��� �
�

�
�
�

�
�
�

	


�

�
� ttt, ZCpbn �                                                    (7)

� �� � � �� �� � 111112 121
2

Exp
����� ��

�
��

�
�����	 ttttttt, Zpppppbn �����  (8)

where � ���
�

��

2

1j
11 Exp t,jtZ ��  and 11211 ��

�� t,t, nn . 

The cobweb model with rational and adaptive expectations is a system

(S) of non-linear difference equations that governs the law of motion of

price (9) and the law of motion of the proportion of agents using the

rational expectation predictor (10):
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� �t,ttt n,p,pp 111 ��
� �                                                                (9)

� �t,ttt, n,p,pn 1111 ��
��                                                            (10)

where 

� � � � � �� �1111 1
��

��� ttt,t,tt ppnAn,p,p ��� , 

� � � � � �t,t,t, nbBnbnA 111 1 ��� , and

� �
� �� � � �� �� � �

�

�
�
�

�

�
�
	



�
�

��

�

�

�

CnAppb
npp

ttt

ttt

211
2

Exp1

1,,
2

,1
2

1

,11

���

�

Since (9) and (10) are respectively a second-order difference equation

and a first-order difference equation, the system (S) can be rewritten as a

system of three first-order difference equations (S’): 

tt ph �
�1               (11)

� �t,ttt n,p,hp 11 ��
�

              (12)

� �t,ttt, n,p,hn 111 ��
�

              (13)

The stability or the instability of the steady state issued from the system

(S’) formed by the equations (11), (12), and (13) can be directly

investigated by looking at the Jacobian matrix of (S’) taken at the steady

state. These stability properties will be studied in the following section.

3. Stability and Cycles
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A simple computation shows that the system (S’) has a unique steady

state � � � �� �� �Cn,,E �� Exp1100 1 ��� . To ease the presentation, let us

assume that 0�C  or 1�C . When 0�C , the agents have free access

to the sophisticated predictor. 

Remark: � �� � 01 ��� ��nA (The proof is left to the reader.)

Proposition 1

Assume9 that the slopes of the supply and the demand satisfy 1�Bb .

When the information costs are nil, the steady state is

� �� �21,0,0 1 �� �nE  and is always asymptotically stable. 

The proof is left to the reader.

Proposition 2 (Possibility of a primary Flip bifurcation)

Assume that the slopes of the supply and the demand satisfy 1�Bb .

Assume that 132 ���  and the information cost is 1. In the cobweb

model with rational versus adaptive expectations, there is a unique

steady state defined by � �� ��1,0,0 nE � , where � � � ��� Expn �� 111 .

Further the steady state has the following properties:

                                                
9 This assumption is equivalent to assuming that the steady state is unstable if all
agents use the less sophisticated predictor, namely adaptive expectations.
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i) There exists a critical value 1�  such that for 10 �� �� , the

equilibrium is asymptotically stable while for 1�� � , this equilibrium is

unstable with eigenvalues 0,

� �� � � �� � � �� � � �� �
2

142
111

2,1

������
�

���
�

nAnAnA
 with 11 ���  and

01 2 ��� � . At the critical value, � �
� �
�

�
�

b
Bbbn

2
2

11
��

� .

ii) When the steady state is unstable, the system can undergo a Flip

bifurcation. This bifurcation is supercritical, i.e.a stable cycle appears.

Proposition 3 (Possibility of a primary Neimark-Sacker bifurcation)

Assume that the slopes of the supply and the demand satisfy 1�Bb .

Assume that 210 ���  and 3221 ���  and the information cost is 1.

In the cobweb model with rational versus adaptive expectations, there is

a unique steady state defined by � �� ��1,0,0 nE � , where

� � � ��� Expn �� 111 . Further the steady state has the following

properties:

i) There exists a critical value 2�  such that for 20 �� �� , the

equilibrium is asymptotically stable while for 2�� � , this equilibrium

is unstable with eigenvalues 0,
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� �� � � �� � � �� � � �� �
2

142
111

2,1

������
�

���
�

nAnAinA
. At the critical

value, � �
�

�
�

bb
bBbn

�

��
�

221 .

ii) When the steady state is unstable, the system can undergo a Neimark-

Sacker bifurcation. This bifurcation is supercritical when

� � � �32,59299.0203817.0,0 ��� .

Propositions 2 and 3 are illustrated by the Figures 1 to 4. 

Figure 1

Figure 1 shows how the stability of the steady state depends on the

parameters values. It plots three curves in the � �� �� ��� 1, nA  plane. We

choose � �� ��1nA  for the vertical axis for two reasons. On the one hand,

this coefficient allows us to distinguish the two areas where the

eigenvalues 1�  and 2�  are either real or complex. On the other hand, it

is the coefficient in the law of motion of the prices. Three curves are

drawn in this figure, � �� � � � 2
1 14 ��� ���nA - the ‘eigen curve’,

� �� � � �1211 ��� ��nA  - the ‘flip curve’, and � �� � � ��� ��� 111nA  - the

‘NS curve’. 
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Above the eigen curve, the eigenvalues 1�  and 2� are complex and

conjugate, below that curve they are distinct and real. 

On the flip curve, the real eigenvalue 1�  is equal to –1. Above that

curve, 1�  is greater than –1, but remains negative. As 2�  is always

negative but greater –1 and the third eigenvalue is zero, the steady state

is always asymptotically stable. The lighter shaded area in Figure 1 is

the set of parameters values �  and � �� ��1nA  for which the steady state is

asymptotically stable. The flip curve by itself represents the possibility

of Flip bifurcation as a primary bifurcation. 

On the NS curve, the complex eigenvalues have modulii equal to 1.

Above that curve, the modulii of 1�  and 2�  are always less than 1. As

the third eigenvalue is zero, the steady state is always asymptotically

stable. The darker shaded area in Figure 1 is the set of parameters values

�  and � �� ��1nA  for which the steady state is asymptotically stable.

Below the curve, the modulii of 1� and 2�  are greater than 1, the steady

state is then always unstable. The NS curve by itself represents the

possibility of Neimark-Sacker bifurcation as a primary bifurcation. The

flip curve and the NS curve intersect when 32�� . 

Thanks to this figure, we note that as �  increases, the values of

� �� ��1nA  are getting smaller, i.e. the steady state is more likely to be

unstable (as already pointed out by Brock and Hommes (1997)). The
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possibility of bifurcation rests on specific values between ���and �� Note

that the values of � �� ��1nA  lies between 0 and –3, i.e. for “relatively

small” values of � . These results follow those of Hommes (1998) when

he studies the cobweb model with linear backward-looking expectations

with two lags. 

Figure 2

Figure 2 illustrates Propositions 2 and 3. It plots the flip and NS curves

in the � ��� , -plane for specific values of the parameters of the demand

and the supply, 1�B  and 5�b . The dotted curve represents the

possibility of Flip bifurcation. The plain curve represents the possibility

of Neimark-Sacker bifurcation. The two curves intersect when 32�� .

The double-lined area shows the stability zone of the steady state. The

stability zone occurs for small values of the intensity of choice. This

area is “shrinking” for low values of the intensity of choice and

“extreme” values of � . The area is larger when there is a sufficiently

mix of the current price and the past price for specific values of � . In

other words, adaptive expectations are less destabilising for the market

than naïve expectations.
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Figure 3

Figure 3 illustrates Proposition 2(ii). It shows a stable cycle of period

two for specific values of the parameters in the � �� �tpt, -plane. This is an

expected result. We simply extend Theorem 3.1 of Brock and Hommes

(1997) to the case of adaptive expectations. As the bifurcation parameter

increases, the instability of the steady state first leads to a stable cycle of

period two. This result is analytically proven in the appendix.

Figure 4

Figure 4 illustrates Proposition 3(ii). We can see a limit cycle for

specific values of the parameters in the � � � �� �tp,tp 1� -plane. Although

this result was showed by Hommes (1998) in the cobweb model with

homogenous adaptive expectations, it is new in the cobweb model with

heterogeneous expectations. In the appendix, we prove analytically that

a primary Neimark-Sacker bifurcation can occur for specific values of

the parameters. This bifurcation is supercritical when �  is around 0.6 or

when �  takes values between 0 and 0.20. 

4. Concluding Comments 
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Our paper shows how relevant the adaption parameter is in the

dynamical study of the steady state. Associated with a set of parameters

(that notably includes the slopes of supply and demand, the intensity of

choice between predictors, the cost and the features of each predictor),

we establish the conditions for stability and instability of the steady

state. It demonstrates how cycles arise in the cobweb model with

heterogeneous beliefs. 

It shows how expectations may, by themselves and when their formation

is modeled as an economic decision, be sufficient to generate

endogenous fluctuations.

Future research could investigate in a more systematic way how the

features of the predictors and their associated costs could generate stable

periodic equilibria consistent with heterogeneous expectations.
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Appendix

Proof of Propositions 2i and 3i

We just need to study the stability properties of the steady state

� � � �� ��� Exp11,0,0 1 ��� nE . The steady state is asymptotically

stable when all the absolute values of the real eigenvalues or all the

modulii of the complex eigenvalues of the Jacobian matrix at E are less

than 1 (Azariadis, 1993)). 

The Jacobian Matrix at E:

� �� �� � � �� �� �
�
�
�

�

�

�
�
�

�

�

��

000
01
010

11 ���� nAnAJ
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In what follows, we will denote � ��1n  by 1n , keeping in mind that the

relative weight of agents using rational expectations depends on the

intensity of choice � .

If � � � � 0142
1 ��� ��nA , then there are three eigenvalues: 0 and

� � � � � � � �� �
2

142
111

2,1

���
�

����
�

nAnAinA
 

Study of the modulus

� �
� � � � � �� �� � � � � �1

2
11

2
1

2,1 114
4
1

2
nAnAnAnA

���
�

� ��������
�

�
�
�

	
�

12,1 ��  � � � � ����� 111nA

Note that � � � � 21411 ��� �����  when 320 ��� .

If � � � � 0142
1 ��� ��nA  �  � � � � 2

1 14 �����nA , then there are three

eigenvalues 0 and 
� � � � � � � �� �

2
142

111
2,1

���
�

��

�

nAnAnA �
. 

Study of 1�

11 ���  �  
� � � � � � � �� �

1
2

142
111

��

��� ��� nAnAnA
 

�  � � � � � � � �� ���� ���� 142 2
111 nAnAnA
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If � � 021 ���nA  �  � � �21 ��nA , the above inequality is always true

and then 11 ���  whatever � .

Let us now assume that � � �21 ��nA  and let us find the conditions for

which 01 1 ��� � . We have:

� � � � � � � �� ���� ������ 142 2
111 nAnAnA

�  � � � �1211 ��� �nA  if 21��

Note that � � �� 2121 ����  when 32�� .

�  � � � �� � 01223 ���� ���  if 32�� .

So we have shown that when � � � � � � 2
1 141212 ���� �������� nA

and 32�� , then 01 1 ��� � .

Study of 2�

It is easy to check that 01 2 ��� � .

Q.E.D.

Proof of Propositions 2ii and 3ii  (we follow Kuznetsov (2000))

Our system (S’) is three-dimensional and needs to be rewritten so that

the steady state is at the origin.

tt ph �
�1

� �tttt nphp ,11 ,,��
�
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� �tttt nphn ,11,1 ,,��
�

Let us denote 1,1 nnm tt �� . Then the system (S’) becomes the following

system (S1):

tt ph �
�1              (A.1)

� �11 ,, nmphp tttt ��
�

�  (A.2)

� � � �tttftttt mphnnmphm ,,,, 11 �� ����
�

  (A.3)

The steady state is then � �000 ,, .

Let us denote (S1) as a discrete –time dynamical system: 

� �xfx �                                                                               (A.4)

We can write this system as: 

� �xFxJx~ �� , 3Rx� ,                                                       (A.5)

where J is the Jacobian matrix of (A.4) at the steady state and

� � �
�
��

�
��

2xOxF  is a smooth function. Let us represent its Taylor

expansion in the form

� � � � � � ,xOx,x,xCx,xBxF �
�
��

�
����

4
6
1

2
1

where � �y,xB  and � �z,y,xC  are multilinear functions. 

Let us first consider the Flip case (Proposition 2ii). In that case,

� � � �1211 ��� �nA  and � �1,32�� .
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The Jacobian matrix J of (A.4) at the steady state is:

� � � � � �
�
�
�

�

�

�
�
�

�

�

�����

000
012121
010

����J

There are three eigenvalues: 0, -1 and � � � �121 �� �� . The

corresponding critical eigenspace is one dimensional and spanned by an

eigenvector 3Rq�  such that qqJ �� , where � �02121 ,,qT
�� .

Let 3Rs �  be the adjoint eigenvector, that is, ssJ T
�� , where TJ  is

the transposed matrix of J. Normalise s with respect to q such that

1�q,s , where � �0121
32
2 ,,sT

��

�

� ��

�

. 

The bilinear function � �yxB , , defined for two vectors � �Txxxx 321 ,,�

and � �Tyyyy 321 ,,�  3R�  can be partitioned into three elements:

� �
�
�
�

�

�

�
�
�

�

�

���

����

2
2,2

22
2,1

11
2,1

21
1,1

1

3
3,2

23
3,1

12
3,2

31
3,1

3

0
,

yBxyBxyBxyBx
yBxyBxyBxyBxyxB

mmmm

pppp

where � � � �1
3,1 1 nABp ��� � , � �1

3,2 nABp ��� , � � ��
21,1 1��mB ,

� ���� �� 12,1
mB , and � � ��

22,2
�mB , 

with � � � �� � � �� �22
1 Exp11Exp ���� ��� nAb  and

� �
� � ��

�

�
��
�

�

��
	


1
1

1
12

2
nbB

bnA
�

� .
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We left to the reader to show that none of the elements of � �zyxC ,,  is

relevant for us. 

Following Kuznetsov, the map (A.5) can be transformed to the normal

form:

� � � �430 ����� O~
���� ,

where

� � � � � � � �� � � �
� �

� �fnAq,qBIdJ,qB,sq,q,qC,s �
�

�
�����

�

�
�

�
�

32
21

4
1

2
1

6
10

4
1

 

We denote by Id the Identity matrix. 

Thus, the critical normal form coefficient � �0� , that determines the

nondegeneracy of the Flip bifurcation and allows us to predict the

direction of bifurcation of the two-period cycle, is always positive when

32�� . Therefore, the Flip bifurcation is nondegenerate and always

supercritical. 

Let us now consider the Neimark-Sacker case (Proposition 3ii). In that

case, � � � ����� 111nA  and 210 ���  and 3221 ��� .

The Jacobian matrix J of (A.4) at the steady state is:
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� �
�
�
�

�

�

�
�
�

�

�

����

000
011
010

��J

There are three eigenvalues: 0 and

� �

� �� �

� �
� � � ���

�

��

�

�
� ImRe

12
322

122,1 ii ��

�

��
�

�

�� . J has a simple

pair of eigenvalues on the unit circle 021
�

�
i

, e��  with ��� �� 02

and 320 �� � . Let 3Cq�  be a complex eigenvector corresponding to

1� : 

qeqJ i 0�
� , qeqJ i 0��

� , 

� � � �� �01 ,ImiRe,qT
�� ��  and � � � �� �01 ,ImiRe,q T

�� �� . Introduce also

the adjoint eigenvector 3Cs�  having the properties

sesJ iT 0��

�  and sesJ iT 0�
� ,

and satisfying the normalisation 

1�q,s , 

where i
i

iqsq,s ��
�

3

1
 is the standard product in 3C ,

� �
� � � �� �0,1,ImRe

Im2
1

��
�

i
i

s T
��� . 
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Following Kuznetsov, we know that in the absence of strong resonances,

i.e.:

,eik 10
�

�  for 4,3,2,1�k

the map (A.5) can be transformed into 

� �� � � �420 01 uOzzez~ i
��� �

� ,                      

with � � � �0Re0 �� � , that determines the direction of the bifurcation of a

closed invariant curve. This real number can be computed by the

following invariant formula:

� � � � � � � �� � � � � �� �
�
�
�

�
�
�

��
	


�
� ���

�
�� qqBJIdeqBsqqBJIdqBsqqqCse ii ,,,,,,2,,,Re

2
10

121 00 ��
�

Therefore,

� � � � � �� � � �� �� � � �� �� � � �� �� �
�
�

�
�

�

�
�

�
�

�

�
�
�

	




�
�
�

�


�

������
2

33
2
10

222
2222

1
��

��������
ImLImLLLImRenARe

where � �� �121 2
���� ���L

The coefficient � �0�  is always negative when

� � � �32,59299.0203817.0,0 ��� . Therefore, the Neimark-Sacker

bifurcation is nondegenerate and supercritical on these intervals. 
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Let us now see what happens when 320 �� � . Recall the findings of

the corollary. When 50.��  (and � � 2��fnA ), the stationary equilibrium

undergoes a strong resonance 1:3 as 32�� � , see Kuznetsov (2000) p.

397. 

Finally, when 32�� , the two curves of the Neimark-Sacker

bifurcation and of the Flip bifurcation intersect. The steady state has a

double –1 eigenvalue, a codim-2 bifurcation occurs (See Frouzakis et

al., 1991, p. 85). 

Q.E.D.



31

Figure 1
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Figure 3

Stable cycle of period 2 in prices � �05600560 .,.�  and 11458301 .n �

� = 0.8, ��= 2.05476, C = 1, B = 0.5, b = 1.2
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Figure 4
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