
 

 

 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

DEPARTMENT OF ECONOMICS

EUI Working Papers 
 

ECO 2011/30 
DEPARTMENT OF ECONOMICS 

VECTOR AUTOREGRESSIVE MODELS 

Helmut Luetkepohl 





 

 

EUROPEAN UNIVERSITY INSTITUTE, FLORENCE 

DEPARTMENT OF ECONOMICS 

Vector Autoregressive Models 

HELMUT LUETKEPOHL 

EUI Working Paper ECO 2011/30 



 

 
 

 
This text may be downloaded for personal research purposes only. Any additional reproduction for 

other purposes, whether in hard copy or electronically, requires the consent of the author(s), editor(s). 
If cited or quoted, reference should be made to the full name of the author(s), editor(s), the title, the 

working paper or other series, the year, and the publisher. 
 
 

ISSN 1725-6704 
 

© 2011 Helmut Luetkepohl 

Printed in Italy 
European University Institute 

Badia Fiesolana 
I – 50014 San Domenico di Fiesole (FI) 

Italy 
www.eui.eu 

cadmus.eui.eu 



October 13, 2011

Vector Autoregressive Models

Helmut Lütkepohl1

European University Institute, Florence

Contents

1 Introduction 2

1.1 Structure of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Terminology, Notation and General Assumptions . . . . . . . . . . . . . . . 3

2 VAR Processes 5

2.1 The Reduced Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Structural Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Estimation of VAR Models 7

3.1 Classical Estimation of Reduced Form VARs . . . . . . . . . . . . . . . . . . 7
3.2 Bayesian Estimation of Reduced Form VARs . . . . . . . . . . . . . . . . . . 9
3.3 Estimation of Structural VARs . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Model Specification 10

5 Model Checking 11

5.1 Tests for Residual Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 Other Popular Tests for Model Adequacy . . . . . . . . . . . . . . . . . . . . 13

6 Forecasting 13

6.1 Forecasting Known VAR Processes . . . . . . . . . . . . . . . . . . . . . . . 14
6.2 Forecasting Estimated VAR Processes . . . . . . . . . . . . . . . . . . . . . . 15

7 Granger-Causality Analysis 15

8 Structural Analysis 16

8.1 Impulse Response Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
8.2 Forecast Error Variance Decompositions . . . . . . . . . . . . . . . . . . . . 18
8.3 Historical Decomposition of Time Series . . . . . . . . . . . . . . . . . . . . 19
8.4 Analysis of Forecast Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 20

9 Conclusions and Extensions 22

1Prepared for the Handbook of Research Methods and Applications on Empirical Macroeconomics. Helpful
comments by Lutz Kilian are gratefully acknowledged.



1 Introduction

Multivariate simultaneous equations models were used extensively for macroeconometric
analysis when Sims (1980) advocated vector autoregressive (VAR) models as alternatives. At
that time longer and more frequently observed macroeconomic time series called for models
which described the dynamic structure of the variables. VAR models lend themselves for this
purpose. They typically treat all variables as a priori endogenous. Thereby they account
for Sims’ critique that the exogeneity assumptions for some of the variables in simultaneous
equations models are ad hoc and often not backed by fully developed theories. Restrictions,
including exogeneity of some of the variables, may be imposed on VAR models based on
statistical procedures.

VAR models are natural tools for forecasting. Their setup is such that current values of a
set of variables are partly explained by past values of the variables involved. They can also be
used for economic analysis, however, because they describe the joint generation mechanism of
the variables involved. Structural VAR analysis attempts to investigate structural economic
hypotheses with the help of VAR models. Impulse response analysis, forecast error variance
decompositions, historical decompositions and the analysis of forecast scenarios are the tools
which have been proposed for disentangling the relations between the variables in a VAR
model.

Traditionally VAR models are designed for stationary variables without time trends.
Trending behavior can be captured by including deterministic polynomial terms. In the
1980s the discovery of the importance of stochastic trends in economic variables and the
development of the concept of cointegration by Granger (1981), Engle and Granger (1987),
Johansen (1995) and others have shown that stochastic trends can also be captured by
VAR models. If there are trends in some of the variables it may be desirable to separate
the long-run relations from the short-run dynamics of the generation process of a set of
variables. Vector error correction models offer a convenient framework for separating long-
run and short-run components of the data generation process (DGP). In the present chapter
levels VAR models are considered where cointegration relations are not modelled explicitly
although they may be present. Specific issues related to trending variables will be mentioned
occasionally throughout the chapter. The advantage of levels VAR models over vector error
correction models is that they can also be used when the cointegration structure is unknown.
Cointegration analysis and error correction models are discussed specifically in the next
chapter.

1.1 Structure of the Chapter

Typically a VAR analysis proceeds by first specifying and estimating a reduced form model
for the DGP and then checking its adequacy. Model deficiencies detected at the latter stage
are resolved by modifying the model. If the reduced form model passes the checking stage,
it may be used for forecasting, Granger-causality or structural analysis. The main steps of
this modelling approach are depicted in Figure 1. The basic VAR model will be introduced
in Section 2. Estimation and model specification issues are discussed in Sections 3 and 4,
respectively, and model checking is considered in Section 5. Sections 6, 7 and 8 address
forecasting, Granger-causality analysis and structural modelling including impulse response
analysis, forecast error variance decomposition, historical decomposition of time series and
analysis of forecast scenarios. Section 9 concludes and discusses extensions.
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Figure 1: VAR analysis.

A number of textbooks and review articles deal with VAR models. Examples of books
are Hamilton (1994), Johansen (1995), Hatanaka (1996), Lütkepohl and Krätzig (2004) and
in particular Lütkepohl (2005). More formal and more detailed treatments of some of the
issues discussed in the present chapter can be found in these references. The present chapter
draws heavily on Lütkepohl and Krätzig (2004), Lütkepohl (2005) and earlier survey articles
by Lütkepohl (2006b, 2009).

1.2 Terminology, Notation and General Assumptions

Given the importance of stochastic trends it is useful to have a special terminology in dealing
with them. A time series variable yt is called integrated of order d (I(d)) if stochastic trends
can be removed by differencing the variable d times and a stochastic trend still remains after
differencing only d−1 times. Defining the differencing operator ∆ such that ∆yt = yt−yt−1,
the variable yt is I(d) if ∆

dyt is stationary while ∆d−1yt still has a stochastic trend. A more
formal definition of an integrated variable or process can be found in Johansen (1995). In this
chapter all variables are assumed to be either I(0) (i.e., they do not have a stochastic trend)
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or I(1) (if there are stochastic trends) if not explicitly stated otherwise. A K-dimensional
vector of time series variables yt = (y1t, . . . , yKt)

′ is called I(d), in short, yt ∼ I(d), if at least
one of its components is I(d). Using this terminology, it is possible that some components
of yt may be I(0) individually if yt ∼ I(1). A set of I(d) variables is called cointegrated if a
linear combination exists which is of lower integration order. In that case the variables have
a common trend component.

The I(d) terminology refers only to the stochastic properties of the variables. There
can also be deterministic terms. For simplicity I assume that deterministic components will
usually be at most linear trends of the form E(yt) = µt = µ0 + µ1t. If µ1 = 0 there is just
a constant or intercept term in the process. To further simplify matters it is occasionally
assumed that there is no deterministic term so that µt = 0. Other deterministic terms which
are important in practice are seasonal dummies and other dummy variables. Including them
in VAR models is a straightforward extension which is not considered explicitly in this
chapter.

The following matrix notation is used. The transpose, inverse, trace, determinant and
rank of the matrix A are denoted by A′, A−1, tr(A), det(A) and rk(A), respectively. For
matrices A (n×m) and B (n× k), [A : B] or (A,B) denotes the (n× (m+ k)) matrix which
has A as its first m columns and B as the last k columns. For an (n×m) matrix A of full
column rank (n > m), an orthogonal complement is denoted by A⊥, that is, A

′
⊥A = 0 and

[A : A⊥] is a nonsingular square matrix. The zero matrix is the orthogonal complement of
a nonsingular square matrix and an identity matrix of suitable dimension is the orthogonal
complement of a zero matrix. The symbol vec denotes the column vectorization operator, ⊗
signifies the Kronecker product and In is an (n× n) identity matrix.

The sets of all integers, positive integers and complex numbers are denoted by Z, N and
C, respectively. The lag operator L shifts the time index backward by one period, that is,
for a time series variable or vector yt, Lyt = yt−1. Using this notation, the previously defined
differencing operator may be written as ∆ = 1−L. For a number x, |x| denotes the absolute
value or modulus. A sum is defined to be zero if the lower bound of the summation index
exceeds the upper bound.

The following conventions are used with respect to distributions and stochastic processes.
The symbol ‘∼ (µ,Σ)’ abbreviates ‘has a distribution with mean (vector) µ and (co)variance
(matrix) Σ’ and N (µ,Σ) denotes a (multivariate) normal distribution with mean (vector) µ

and (co)variance (matrix) Σ. Convergence in distribution is denoted as
d→ and plim stands

for the probability limit. Independently, identically distributed is abbreviated as iid. A
stochastic process ut with t ∈ Z or t ∈ N is called white noise if the ut’s are iid with mean
zero, E(ut) = 0 and positive definite covariance matrix Σu = E(utu

′
t).

The following abbreviations are used: DGP, VAR, SVAR and MA for data generation
process, vector autoregression, structural vector autoregression and moving average, respec-
tively; ML, OLS, GLS, LM, LR and MSE for maximum likelihood, ordinary least squares,
generalized least squares, Lagrange multiplier, likelihood ratio and mean squared error, re-
spectively. The natural logarithm is abbreviated as log.
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2 VAR Processes

2.1 The Reduced Form

Suppose the investigator is interested in a set of K related time series variables collected in
yt = (y1t, . . . , yKt)

′. Given the importance of distinguishing between stochastic and deter-
ministic components of the DGPs of economic variables, it is convenient to separate the two
components by assuming that

yt = µt + xt, (2.1)

where µt is the deterministic part and xt is a purely stochastic process with zero mean. The
deterministic term µt is at most a linear trend (µt = µ0+µ1t) and may also be zero (µt = 0)
or just a constant (µt = µ0) for simplicity. Deterministic trend terms have implausible
implications in the context of forecasting. Hence, they are not recommendable in applied
VAR analysis. The issue will be further discussed in Section 6.1. The purely stochastic part,
xt, may be I(1) and, hence, may include stochastic trends and cointegration relations. It
has mean zero and a VAR representation. The properties of the observable process yt are
determined by those of µt and xt. In particular, the order of integration and the cointegration
relations are determined by xt.

Suppose the stochastic part xt is a VAR process of order p (VAR(p)) of the form

xt = A1xt−1 + · · ·+ Apxt−p + ut, (2.2)

where the Ai (i = 1, . . . , p) are (K × K) parameter matrices and the error process ut =
(u1t, . . . , uKt)

′ is a K-dimensional zero mean white noise process with covariance matrix
E(utu

′
t) = Σu, that is, ut ∼ (0,Σu). Using the lag operator and defining the matrix polyno-

mial in the lag operator A(L) as A(L) = IK − A1L − · · · − ApL
p, the process (2.2) can be

equivalently written as

A(L)xt = ut. (2.3)

The VAR process (2.2)/(2.3) is stable if

detA(z) = det(IK − A1z − · · · − Apz
p) 6= 0 for z ∈ C, |z| ≤ 1. (2.4)

In other words, xt is stable if all roots of the determinantal polynomial are outside the
complex unit circle. In that case xt is I(0). Under usual assumptions a stable process
xt has time invariant means, variances and covariance structure and is, hence, stationary.
If, however, detA(z) = 0 for z = 1 (i.e., the process has a unit root) and all other roots
of the determinantal polynomial are outside the complex unit circle, then some or all of
the variables are integrated, the process is, hence, nonstationary and the variables may be
cointegrated. Recall that all variables are either I(0) or I(1) by default.

Also, recall that xt is the (typically unobserved) stochastic part whereas yt is the vector of
observed variables. Pre-multiplying (2.1) by A(L), that is, considering A(L)yt = A(L)µt+ut,
shows that yt inherits the VAR(p) representation from xt. In other words, if µt = µ0 + µ1t,
A(L)yt = ν0 + ν1t+ ut or

yt = ν0 + ν1t+ A1yt−1 + · · ·+ Apyt−p + ut, (2.5)
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where ν0 = (IK−
∑p

j=1Aj)µ0+(
∑p

j=1 jAj)µ1 and ν1 = (IK−
∑p

j=1Aj)µ1. Since all variables
appear in levels, this form is known as the levels form of the VAR process. Alternatively, some
or all variables may appear in first differences if the variables are I(1) and not cointegrated.

If the parameters νi, i = 0, 1, are unrestricted in (2.5), the variables may have quadratic
trends if yt ∼ I(1). Thus, the additive model setup (2.1) imposes restrictions on the deter-
ministic parameters in (2.5). Generally the additive setup makes it necessary to think about
the deterministic terms at the beginning of the analysis and allow for the appropriate poly-
nomial order. Sometimes trend-adjustments are performed prior to a VAR analysis. The
reason is that the stochastic part of the variables is often of main interest in econometric
analysis because it is viewed as describing the behavioral relations. In that case there may
be no deterministic term in the levels VAR form (2.5).

Using terminology from the simultaneous equations literature, the model (2.5) is in re-

duced form because all right-hand side variables are lagged or predetermined. The instanta-
neous relations between the variables are summarized in the residual covariance matrix. In
economic analysis it is often desirable to model the contemporaneous relations between the
variables directly. This may be done by setting up a structural form which is discussed next.

2.2 Structural Forms

In structural form models contemporaneous variables may appear as explanatory variables
in some equations. For example,

Ayt = ν∗0 + ν∗1t+ A∗1yt−1 + · · ·+ A∗pyt−p + vt, (2.6)

is a structural form. Here the (K×K) matrix A reflects the instantaneous relations, ν∗i = Aνi
(i = 0, 1) and A∗j = AAj (j = 1, . . . , p). The structural form error term vt = Aut is iid white
noise with covariance matrix Σv = AΣuA

′. The matrix A usually has ones on its main
diagonal so that the set of equations in (2.6) can be written such that each of the variables
appears on the left-hand side of one of the equations and may depend on contemporaneous
values of some or all of the other variables. Moreover, A is typically chosen such that Σv

is a diagonal matrix. Structural VAR models are discussed in more detail in Chapter 24 of
this volume (Kilian (2011)). Therefore they are only sketched briefly here. Other expository
treatments are Amisano and Giannini (1997), Watson (1994), Breitung, Brüggemann and
Lütkepohl (2004) and Lütkepohl (2005).

Multiplying (2.6) by any nonsingular matrix results in a representation of the form (2.6).
This shows that the parameters of the structural form (2.6) are not identified without fur-
ther restrictions. Imposing restrictions on A and Σv to identify the structural form is a
main focus of structural VAR (SVAR) analysis (see Chapter 24, Kilian (2011)). Often zero
restrictions are placed on A directly. In other words, some variables are not allowed to have
an instantaneous impact on some other variables. For example, A may be lower-triangular
if there is a recursive relation between the variables.

Alternatively, in SVAR analyses researchers sometimes think of specific shocks hitting
the system. A suitable structural model setup for that case is obtained by pre-multiplying
(2.6) by B = A

−1 and considering

yt = ν0 + ν1t+ A1yt−1 + · · ·+ Apyt−p + Bvt. (2.7)

This setup makes it easy to specify that a certain structural shock vit does not have an
instantaneous effect on one of the observed variables by restricting the corresponding element
of B = A

−1 to be zero. In other words, zero restrictions are placed on B = A
−1.
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Other popular identifying restrictions are placed on the accumulated long-run effects
of shocks. For example, if some variables represent rates of change of some underlying
quantity, one may postulate that a shock has no long-run effect on the level of a variable by
enforcing that the accumulated changes in the variable induced by the shock add to zero.
For instance, in a seminal article Blanchard and Quah (1989) consider a bivariate model
consisting of output growth rates (y1t) and an unemployment rate (y2t). They assume that
demand shocks have no long-run effects on output. In other words, the accumulated effects
of a demand shock on the output growth rates are assumed to be zero. Such restrictions are
effectively restrictions for A or/and B.

The SVAR models (2.6) and (2.7) are sometimes referred to as A- and B-models, re-
spectively (see Lütkepohl (2005)). They can also be combined to an AB-model of the form

Ayt = ν∗0 + ν∗1t+ A∗1yt−1 + · · ·+ A∗pyt−p + Bvt, (2.8)

which makes it easy to impose restrictions on the instantaneous effects of changes in observed
variables and unobserved shocks. On the other hand, it involves many more parameters in
A and B and, hence, requires more identifying restrictions. In the B- and AB-models, the
residuals are usually assumed to be standardized to have identity covariance matrix, that is,
Σv = IK . In that case the reduced form covariance matrix is Σu = BB

′ for the B-model and
Σu = A

−1
BB

′
A
−1′ for the AB-model.

As mentioned earlier, identifying the structural relations between the variables or identi-
fying the structural shocks is a main concern of SVAR analysis. Other types of information
and restrictions for identification than those mentioned previously have also been proposed.
For instance, sign restrictions, using information from higher-frequency data or heteroskedas-
ticity may be considered (see Chapter 24, Kilian (2011) for details).

Prior to a structural analysis, a reduced form model as a valid description of the DGP
is usually constructed. The stages of reduced form VAR model construction are discussed
in the following. Before model specification is considered, estimation of VAR models will be
discussed because estimation is typically needed at the specification stage.

3 Estimation of VAR Models

Reduced form VAR models can be estimated with standard methods. Classical least squares
and maximum likelihood (ML) methods are discussed in Section 3.1 and Bayesian estimation
is considered in Section 3.2. Estimation of structural models is treated in Section 3.3.

3.1 Classical Estimation of Reduced Form VARs

Consider the levels VAR(p) model (2.5) written in the more compact form

yt = [ν0, ν1, A1, . . . , Ap]Zt−1 + ut, (3.1)

where Zt−1 = (1, t, y′t−1, . . . , yt−p)
′. The deterministic terms may be adjusted accordingly if

there is just a constant in the model or no deterministic component at all. Given a sample of
size T , y1, . . . , yT , and p presample vectors, y−p+1, . . . , y0, the parameters can be estimated
efficiently by ordinary least squares (OLS) for each equation separately. The estimator is
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easily seen to be

[ν̂0, ν̂1, Â1, . . . , Âp] =

(

T
∑

t=1

ytZ
′
t−1

)(

T
∑

t=1

ZtZ
′
t−1

)−1

. (3.2)

This estimator is identical to the generalized least squares (GLS) estimator, if no restrictions
are imposed on the parameters. For a normally distributed (Gaussian) process yt, where
ut ∼ N (0,Σu), this estimator is also identical to the ML estimator, conditional on the
initial presample values. Thus, the estimator has the usual desirable asymptotic properties
of standard estimators. It is asymptotically normally distributed with smallest possible
asymptotic covariance matrix and the usual inference procedures are available if the process
is stable. In other words, in this case t-statistics can be used for testing individual coefficients
and for setting up confidence intervals. Moreover, F -tests can be used for testing statistical
hypotheses for sets of parameters. Of course, in the present framework these procedures are
only valid asymptotically and not in small samples.

If there are integrated variables so that yt ∼ I(1), the process is not stable and the
variables may be cointegrated. In that case the OLS/ML estimator can still be used and it
is still asymptotically normal under general conditions (see Park and Phillips (1988, 1989),
Sims, Stock and Watson (1990), Lütkepohl (2005, Chapter 7)). However, in that case the
covariance matrix of the asymptotic distribution is singular because some estimated parame-
ters or linear combinations of them converge with a faster rate than the usual

√
T rate when

the sample size goes to infinity. This result implies that t-, χ2- and F -tests for inference
regarding the VAR parameters may be invalid asymptotically (Toda and Phillips (1993)).
Although these properties require caution in doing inference for integrated processes, there
are many situations where standard inference still holds (see Toda and Yamamoto (1995),
Dolado and Lütkepohl (1996), Inoue and Kilian (2002a)). In particular, asymptotic infer-
ence on impulse responses as discussed in Section 8.1 remains valid if the order of the VAR
process is greater than one.

If restrictions are imposed on the parameters, OLS estimation may be inefficient. In that
case GLS estimation may be beneficial. Let α = vec[ν1, ν2, A1, . . . , Ap] and suppose that
there are linear restrictions for the parameters such as zero restrictions which exclude some
of the lagged variables from some of the equations. Linear restrictions can often be written
in the form

α = Rγ, (3.3)

where R is a suitable, known ((K2p + 2K) × M) restriction matrix with rank M which
typically consists of zeros and ones and γ is the (M × 1) vector of unrestricted parameters.
The GLS estimator for γ is then

γ̂ =

[

R′

(

T
∑

t=1

ZtZ
′
t−1 ⊗ Σ−1u

)

R

]−1

R′vec

(

Σ−1u

T
∑

t=1

ytZ
′
t−1

)

. (3.4)

The estimator γ̂ has standard asymptotic properties if yt ∼ I(0), that is, the GLS estimator
is consistent and asymptotically normally distributed and usual methods for inference are
valid asymptotically.

In practice, the white noise covariance matrix is usually unknown and has to be replaced
by an estimator based on an unrestricted estimation of the model. The resulting feasible GLS
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estimator, say ˆ̂γ, has the same asymptotic properties as the GLS estimator under general
conditions. The corresponding feasible GLS estimator of α, ˆ̂α = Rˆ̂γ, is also consistent and
asymptotically normal and allows for standard asymptotic inference. For Gaussian white
noise ut, ML estimation may be used alternatively. Its asymptotic properties are the same
as those of the GLS estimator under standard assumptions.

For I(1) processes a specific analysis of the integration and cointegration properties of the
left-hand and right-hand side variables of the individual equations is necessary to determine
the asymptotic properties of the estimators and the associated inference procedures.

3.2 Bayesian Estimation of Reduced Form VARs

Standard Bayesian methods for estimating linear regression models can be applied for esti-
mating the parameters of reduced form VAR models. They are not discussed here in detail
because they are considered elsewhere in this volume. In the VAR literature specific priors
have been used, however, which may be worth noting at this point. Assuming a normal
distribution for the residuals and, hence, for the observed yt together with a normal-Wishart
prior distribution for the VAR coefficients results in a normal-Wishard posterior distribution.
Such a setup is rather common in the SVAR literature (see Uhlig (2005, Appendix B)). The
so-called Minnesota prior is a specific example of a prior which has been used quite often
in practice (see Doan, Litterman and Sims (1984), Litterman (1986)). It shrinks the VAR
towards a random walk for each of the variables. Extensions and alternatives were proposed
by Kadiyala and Karlsson (1997), Villani (2005), Sims, Waggoner and Zha (2008), Giannone,
Lenza and Primiceri (2010) and others. Other, recent proposals include shrinking towards
some dynamic stochastic general equilibrium model (e.g., Ingram and Whiteman (1994) and
Del Negro and Schorfheide (2004)). A more detailed exposition of Bayesian methods in VAR
analysis may be found in Canova (2007, Chapters 9 - 11).

3.3 Estimation of Structural VARs

Properly identified structural form VAR models are also usually estimated by least squares,
ML or Bayesian methods. The specific estimation algorithm depends to some extent on
the type of restrictions used for identification. For example, if a just-identified A-model
is used with ones on the main diagonal and diagonal residual covariance matrix Σv, equa-
tionwise OLS can be used for estimation. For the B-model (2.7) without restrictions on
ν0, ν1, A1, . . . , Ap, the latter parameters can be concentrated out of the likelihood function
by replacing them with their OLS estimators, using Σu = BB

′ and estimating B by maxi-
mizing the concentrated Gaussian log-likelihood

l(B) = constant− T

2
log det(B)2 − T

2
tr(B′−1B−1Σ̂u), (3.5)

where Σ̂u = T−1
∑T

t=1 ûtû
′
t is the estimator of Σu based on the OLS residuals (cf. Breitung

et al. (2004)). If the actual distribution of yt (and, hence, of ut) is not normal, the resulting
estimators are quasi- or pseudo-ML estimators. They still allow for standard asymptotic
inference under general conditions.

In the AB-model the concentrated log-likelihood function in terms of A and B is

l(A,B) = constant +
T

2
log det(A)2 − T

2
log det(B)2 − T

2
tr(A′B′−1B−1AΣ̂u). (3.6)

9



Numerical methods can be used for optimizing the functions in (3.5) and (3.6) with respect
to the free parameters in B or A and B. The resulting estimators have the usual asymptotic
properties of ML estimators (see, e.g., Lütkepohl (2005, Chapter 9) for details). Hence,
asymptotic inference proceeds in the usual way. Alternatively, one may use Bayesian esti-
mation methods (see, e.g., Sims et al. (2008)). The estimates will be of importance in the
structural VAR analysis discussed in Section 8 and Chapter 24 (Kilian (2011)).

4 Model Specification

Model specification in the present context involves selecting the VAR order and possibly
imposing restrictions on the VAR parameters. Notably zero restrictions on the parameter
matrices may be desirable because the number of parameters in a VAR model increases with
the square of the VAR order. Lag order specification is considered next and some comments
on setting zero restrictions on the parameters are provided at the end of this section.

The VAR order is typically chosen by sequential testing procedures or model selection
criteria. Sequential testing proceeds by specifying a maximum reasonable lag order, say pmax,
and then testing the following sequence of null hypotheses: H0 : Apmax

= 0, H0 : Apmax−1 = 0,
etc.. The procedure stops when the null hypothesis is rejected for the first time. The order
is then chosen accordingly. For stationary processes the usual Wald or LR χ2 tests for
parameter restrictions can be used in this procedure. If there are I(1) variables these tests
are also asymptotically valid as long as the null hypothesis H0 : A1 = 0 is not tested.
Unfortunately, the small sample distributions of the tests may be quite different from their
asymptotic counterparts, in particular for systems with more than a couple of variables
(e.g., Lütkepohl (2005, Section 4.3.4)). Therefore it may be useful to consider small sample
adjustments, possibly based on bootstrap methods (e.g., Li and Maddala (1996), Berkowitz
and Kilian (2000)).

Alternatively, model selection criteria can be used. Some of them have the general form

C(m) = log det(Σ̂m) + cTϕ(m), (4.1)

where Σ̂m = T−1
∑T

t=1 ûtû
′
t is the OLS residual covariance matrix estimator for a reduced

form VAR model of order m, ϕ(m) is a function of the order m which penalizes large VAR
orders and cT is a sequence which may depend on the sample size and identifies the specific
criterion. Popular examples are Akaike’s information criterion (Akaike (1973, 1974)),

AIC(m) = log det(Σ̂m) +
2

T
mK2,

where cT = 2/T , the Hannan-Quinn criterion (Hannan and Quinn (1979), Quinn (1980)),

HQ(m) = log det(Σ̂m) +
2 log log T

T
mK2,

with cT = 2 log log T/T , and the Schwarz (or Rissanen) criterion (Schwarz (1978), Rissanen
(1978)),

SC(m) = log det(Σ̂m) +
log T

T
mK2,
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with cT = log T/T . In all these criteria ϕ(m) = mK2 is the number of VAR parameters in a
model with orderm. The VAR order is chosen such that the respective criterion is minimized
over the possible orders m = 0, . . . , pmax. Among these three criteria, AIC always suggests
the largest order, SC chooses the smallest order and HQ is in between (Lütkepohl (2005,
Chapters 4 and 8)). Of course, the criteria may all suggest the same lag order. The HQ and
SC criteria are both consistent, that is, under general conditions the order estimated with
these criteria converges in probability or almost surely to the true VAR order p if pmax is at
least as large as the true lag order. AIC tends to overestimate the order asymptotically with
a small probability. These results hold for both I(0) and I(1) processes (Paulsen (1984)).

The lag order obtained with sequential testing or model selection criteria depends to
some extent on the choice of pmax. Choosing a small pmax, an appropriate model may not
be in the set of possibilities and choosing a large pmax may result in a large value which is
spurious. At an early stage of the analysis, using a moderate value for pmax appears to be a
sensible strategy. An inadequate choice should be detected at the model checking stage (see
Section 5).

Once the model order is determined zero restrictions may be imposed on the VAR co-
efficient matrices to reduce the number of parameters. Standard testing procedures can be
used for that purpose. The number of possible restrictions may be very large, however, and
searching over all possibilities may result in excessive computations. Therefore a number
of shortcuts have been proposed in the related literature under the name of subset model
selection procedures (see Lütkepohl (2005, Section 5.2.8)).

If a model is selected by some testing or model selection procedure, that model is typically
treated as representing the true DGP in the subsequent statistical analysis. Recent research
is devoted to the problems and possible errors associated with such an approach (e.g., Leeb
and Pötscher (2005)). This literature points out that the actual distribution which does not
condition on the model selected by some statistical procedure may be quite different from
the conditional one. Suppose, for example, that the VAR order is selected by the AIC, say,
the order chosen by this criterion is p̂. Then a typical approach in practice is to treat a
VAR(p̂) model as the true DGP and perform all subsequent analysis under this assumption.
Such a conditional analysis can be misleading even if the true order coincides with p̂ because
the properties of the estimators for the VAR coefficients are affected by the post-model
selection step. Conditioning on p̂ ignores that this quatity is also a random variable based
on the same data as the estimators of the VAR parameters. Since no general procedures
exist for correcting the error resulting from this simplification, there is little to recommend
for improving applied work in this respect.

5 Model Checking

Procedures for checking whether the VAR model represents the DGP of the variables ade-
quately range from formal tests of the underlying assumptions to informal procedures such
as inspecting plots of residuals and autocorrelations. Since a reduced form is underlying
every structural form, model checking usually focusses on reduced form models. If a specific
reduced form model is not an adequate representation of the DGP, any structural form based
on it cannot represent the DGP well. Formal tests for residual autocorrelation, nonnormal-
ity and conditional heteroskedasticity for reduced form VARs are briefly summarized in the
following. For other procedures see, e.g., Lütkepohl (2004).
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5.1 Tests for Residual Autocorrelation

Portmanteau and Breusch-Godfrey-LM tests are standard tools for checking residual auto-
correlation in VAR models. The null hypothesis of the protmanteau test is that all residual
autocovariances are zero, that is, H0 : E(utu

′
t−i) = 0 (i = 1, 2, . . . ). The alternative is that

at least one autocovariance and, hence, one autocorrelation is nonzero. The test statistic
is based on the residual autocovariances, Ĉj = T−1

∑T

t=j+1 ûtû
′
t−j, where the ût’s are the

mean-adjusted estimated residuals. The portmanteau statistic is given by

Qh = T
h
∑

j=1

tr(Ĉ ′jĈ
−1
0 ĈjĈ

−1
0 ), (5.1)

or the modified version

Q∗h = T 2

h
∑

j=1

1

T − j
tr(Ĉ ′jĈ

−1
0 ĈjĈ

−1
0 )

may be used. The two statistics have the same asymptotic properties. For an unrestricted
stationary VAR(p) process their null distributions can be approximated by a χ2(K2(h− p))
distribution if T and h approach infinity such that h/T → 0. For VAR models with parame-
ter restrictions, the degrees of freedom of the approximate χ2 distribution are obtained as the
difference between the number of (non-instantaneous) autocovariances included in the statis-
tic (K2h) and the number of estimated VAR parameters (e.g., Ahn (1988), Hosking (1980,
1981a, 1981b), Li and McLeod (1981) or Lütkepohl (2005, Section 4.4)). Brüggemann,
Lütkepohl and Saikkonen (2006) show that this approximation is unsatisfactory for inte-
grated and cointegrated processes. For such processes the degrees of freedom also depend
on the cointegrating rank. Thus, portmanteau tests are not recommended for levels VAR
processes with unknown cointegrating rank.

The choice of h is crucial for the small sample properties of the test. If h is chosen too
small the χ2 approximation to the null distribution may be very poor while a large h reduces
the power of the test. Using a number of different h values is not uncommon in practice.

The portmanteau test should be applied primarily to test for autocorrelation of high
order. For low order autocorrelation the Breusch-Godfrey LM test is more suitable. It may
be viewed as a test for zero coefficient matrices in a VAR model for the residuals,

ut = B1ut−1 + · · ·+Bhut−h + et.

The quantity et denotes a white noise error term. Thus, a test of

H0 : B1 = · · · = Bh = 0 versus H1 : Bi 6= 0 for at least one i ∈ {1, . . . , h}

may be used for checking that ut is white noise. The precise form of the statistic can be
found, e.g., in Lütkepohl (2005, Section 4.4.4). It has an asymptotic χ2(hK2)-distribution
under the null hypothesis for both I(0) and I(1) systems (Brüggemann et al. (2006)). As a
consequence, the LM test is applicable for levels VAR processes with unknown cointegrating
rank.
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5.2 Other Popular Tests for Model Adequacy

Nonnormality tests are often used for model checking, although normality is not a necessary
condition for the validity of many of the statistical procedures related to VAR models.
However, nonnonormality of the residuals may indicate other model deficiencies such as
nonlinearities or structural change. Multivariate normality tests are often applied to the
residual vector of the VAR model and univariate versions are used to check normality of the
errors of the individual equations. The standard tests check whether the third and fourth
moments of the residuals are in line with a normal distribution, as proposed by Lomnicki
(1961) and Jarque and Bera (1987) for univariate models. For details see Lütkepohl (2005,
Section 4.5) and for small sample corrections see Kilian and Demiroglu (2000).

Conditional heteroskedasticity is often a concern for models based on data with monthly
or higher frequency. Therefore suitable univariate and multivariate tests are available to
check for such features in the residuals of VAR models. Again much of the analysis can be
done even if there is conditional heteroskedasticity. Notice that the VAR model represents
the conditional mean of the variables which is often of primary interest. Still, it may be
useful to check for conditional heteroskedasticity to better understand the properties of
the underlying data and to improve inference. Also, heteroskedastic residuals can indicate
structural changes. If conditional heteroskedasticity is found in the residuals, modelling them
by multivariate GARCH models or using heteroskedasticity robust inference procedures may
be useful to avoid distortions in the estimators of the conditional mean parameters. For
a proposal to robustify inference against conditional heteroskedasticity see Goncalves and
Kilian (2004).

There are a number of tests for structural stability which check whether there are changes
in the VAR parameters or the residual covariances throughout the sample period. Prominent
examples are so-called Chow tests. They consider the null hypothesis of time invariant
parameters throughout the sample period against the possibility of a change in the parameter
values in some period TB, say. One possible test version compares the likelihood maximum
of the constant parameter model to the one with different parameter values before and after
period TB. If the model is time invariant, the resulting LR statistic has an asymptotic χ2-
distribution under standard assumptions. See Lütkepohl (2005, Section 4.6) for details and
other tests for structural stability of VARs.

Stability tests are sometimes performed for a range of potential break points TB. Us-
ing the maximum of the test statistics, that is, rejecting stability if one of the test statistics
exceeds some critical value, the test is no longer asymptotically χ2 but has a different asymp-
totic distribution (see Andrews (1993), Andrews and Ploberger (1994) and Hansen (1997)).

If a reduced form VAR model has passed the adequacy tests, it can be used for forecasting
and structural analysis which are treated next.

6 Forecasting

Since reduced form VAR models represent the conditional mean of a stochastic process, they
lend themselves for forecasting. For simplicity forecasting with known VAR processes will
be discussed first and then extensions for estimated processes will be considered.
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6.1 Forecasting Known VAR Processes

If yt is generated by a VAR(p) process (2.5), the conditional expectation of yT+h given yt,
t ≤ T , is

yT+h|T = E(yT+h|yT , yT−1, . . . ) = ν0 + ν1(T + h) +A1yT+h−1|T + · · ·+ApyT+h−p|T , (6.1)

where yT+j|T = yT+j for j ≤ 0. If the white noise process ut is iid, yT+h|T is the optimal,
minimum mean squared error (MSE) h-step ahead forecast in period T . The forecasts can
easily be computed recursively for h = 1, 2, . . . . The forecast error associated with an h-step
forecast is

yT+h − yT+h|T = uT+h + Φ1uT+h−1 + · · ·+ Φh−1uT+1, (6.2)

where the Φi matrices may be obtained recursively as

Φi =
i
∑

j=1

Φi−jAj, i = 1, 2, . . . , (6.3)

with Φ0 = IK and Aj = 0 for j > p (e.g., Lütkepohl (2005, Chapter 2)). In other words, the
Φi are the coefficient matrices of the infinite order polynomial in the lag operator A(L)−1 =
∑∞

j=0 ΦjL
j. Obviously, the reduced form VAR residual ut is the forecast error for a 1-step

forecast in period t− 1. The forecasts are unbiased, that is, the errors have mean zero and
the forecast error covariance or MSE matrix is

Σy(h) = E[(yT+h − yT+h|T )(yT+h − yT+h|T )
′] =

h−1
∑

j=0

ΦjΣuΦ
′
j, (6.4)

that is, yT+h − yT+h|T ∼ (0,Σy(h)).
In fact, the conditional expectation in (6.1) is obtained whenever the conditional expec-

tation of uT+h is zero or in other words, if ut is a martingale difference sequence. Even if the
ut’s are just uncorrelated and do not have conditional mean zero, the forecasts obtained re-
cursively from (6.1) are still best linear forecasts but may do not be minimum MSE forecasts
in a larger class which includes nonlinear forecasts.

These results are valid even if the VAR process has I(1) components. However, if yt
is I(0) (stationary) the forecast MSEs are bounded as the horizon h goes to infinity. In
contrast, for I(1) processes the forecast MSE matrices are unbounded and, hence, forecast
uncertainty increases without bounds for increasing forecast horizon.

Notice the major difference between considering deterministic and stochastic trends in a
VAR model. The deterministic time trend in (6.1) does not add to the inaccuracy of the fore-
casts in this framework, where no estimation uncertainty is present, while stochastic trends
have a substantial impact on the forecast uncertainty. Many researchers find it implausible
that trending behavior is not reflected in the uncertainty of long-term forecasts. Therefore
deterministic trend components should be used with caution. In particular, higher order
polynomial trends or even linear trends should be avoided unless there are very good reasons
for them. Using them just to improve the fit of a VAR model can be counterproductive from
a forecasting point of view.

For Gaussian VAR processes yt with ut ∼ iid N (0,Σu), the forecast errors are also
multivariate normal, yT+h − yT+h|T ∼ N (0,Σy(h)), and forecast intervals can be set up in
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the usual way. For non-Gaussian processes yt with unknown distribution other methods for
setting up forecast intervals are called for, for instance, bootstrap methods may be considered
(see, e.g., Findley (1986), Masarotto (1990), Grigoletto (1998), Kabaila (1993), Kim (1999)
and Pascual, Romo and Ruiz (2004)).

6.2 Forecasting Estimated VAR Processes

If the DGP is unknown and, hence, the VAR model only approximates the true DGP, the
previously discussed forecasts will not be available. Let ŷT+h|T denote a forecast based on a
VAR model which is specified and estimated based on the available data. Then the forecast
error is

yT+h − ŷT+h|T = (yT+h − yT+h|T ) + (yT+h|T − ŷT+h|T ). (6.5)

If the true DGP is a VAR process, the first term on the right-hand side is
∑h−1

j=0 ΦjuT+h−j.
It includes residuals ut with t > T only, whereas the second term involves just yT , yT−1, . . . ,
if only variables up to time T have been used for model specification and estimation. Con-
sequently, the two terms are independent or at least uncorrelated so that the MSE matrix
has the form

Σŷ(h) = E[(yT+h − ŷT+h|T )(yT+h − ŷT+h|T )
′] = Σy(h) + MSE(yT+h|T − ŷT+h|T ). (6.6)

If the VAR model specified for yt properly represents the DGP, the last term on the right-
hand side approaches zero as the sample size gets large because the difference yT+h|T− ŷT+h|T
vanishes asymptotically in probability under standard assumptions. Thus, if the theoretical
model fully captures the DGP, specification and estimation uncertainty is not important
asymptotically. On the other hand, in finite samples the precision of the forecasts depends
on the precision of the estimators. Suitable correction factors for MSEs and forecast intervals
for stationary processes are given by Baillie (1979), Reinsel (1980), Samaranayake and Hasza
(1988) and Lütkepohl (2005, Chapter 3). A discussion of extensions with a number of further
references may be found in Lütkepohl (2009).

7 Granger-Causality Analysis

Because VAR models describe the joint generation process of a number of variables, they
can be used for investigating relations between the variables. A specific type of relation was
pointed out by Granger (1969) and is known as Granger-causality. Granger called a variable
y2t causal for a variable y1t if the information in past and present values of y2t is helpful
for improving the forecasts of y1t. This concept is especially easy to implement in a VAR
framework. Suppose that y1t and y2t are generated by a bivariate VAR(p) process,

(

y1t
y2t

)

=

p
∑

i=1

[

α11,i α12,i

α21,i α22,i

](

y1,t−i
y2,t−i

)

+ ut.

Then y2t is not Granger-causal for y1t if and only if α12,i = 0, i = 1, 2, . . . , p. In other words,
y2t is not Granger-causal for y1t if the former variable does not appear in the y1t equation of
the model. This result holds for both stationary and integrated processes.
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Because Granger-noncausality is characterized by zero restrictions on the levels VAR
representation of the DGP, testing for it becomes straightforward. Standard Wald χ2- or
F -tests can be applied. If yt contains integrated and possibly cointegrated variables these
tests may not have standard asymptotic properties, however (Toda and Phillips (1993)).
For the presently considered case, there is a simple way to fix the problem. In this case the
problem of getting a nonstandard asymptotic distribution for Wald tests for zero restrictions
can be resolved by adding an extra redundant lag to the VAR in estimating the parameters
of the process and testing the relevant null hypothesis on the matrices A1, . . . , Ap only (see
Toda and Yamamoto (1995) and Dolado and Lütkepohl (1996)). Since a VAR(p + 1) is an
appropriate model with Ap+1 = 0 if the true VAR order is p, the procedure is sound. It will
not be fully efficient, however, due to the redundant VAR lag.

If there are more than two variables the conditions for non-causality or causality be-
come more complicated even if the DGP is a VAR process (see, e.g., Lütkepohl (1993) and
Dufour and Renault (1998)). In practice, Granger-causality is therefore often investigated
for bivariate processes. It should be clear, however, that Granger-causality depends on the
information set considered. In other words, even if a variable is Granger-causal in a bivari-
ate model, it may not be Granger-causal in a larger model involving more variables. For
instance, there may be a variable driving both variables of a bivariate process. When that
variable is added to the model, a bivariate causal structure may disappear. In turn it is
also possible that a variable is non-causal for another one in a bivariate model and becomes
causal if the information set is extended to include other variables as well. There are also
a number of other limitations of the concept of Granger-causality which have stimulated an
extensive discussion of the concept and have promted alternative definitions. For further
discussion and references see Lütkepohl (2005, Section 2.3.1) and for extensions to testing
for Granger-causality in infinite order VAR processes see Lütkepohl and Poskitt (1996) and
Saikkonen and Lütkepohl (1996).

8 Structural Analysis

Traditionally the interaction between economic variables is studied by considering the effects
of changes in one variable on the other variables of interest. In VAR models changes in the
variables are induced by nonzero residuals, that is, by shocks which may have a structural
interpretation if identifying structural restrictions have been placed accordingly. Hence, to
study the relations between the variables the effects of nonzero residuals or shocks are traced
through the system. This kind of analysis is known as impulse response analysis. It will
be discussed in Section 8.1. Related tools are forecast error variance decompositions and
historical decompositions of time series of interest in terms of the contributions attributable
to the different structural shocks. Moreover, forecasts conditional on a specific path of a
variable or set of variables may be considered. These tools are discussed in Sections 8.2, 8.3
and 8.4, respectively.

8.1 Impulse Response Analysis

In the reduced form VAR model (2.5) impulses, innovations or shocks enter through the
residual vector ut = (u1t, . . . , uKt)

′. A nonzero component of ut corresponds to an equivalent
change in the associated left-hand side variable which in turn will induce further changes
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in the other variables of the system in the next periods. The marginal effect of a single
nonzero element in ut can be studied conveniently by inverting the VAR representation and
considering the corresponding moving average (MA) representation. Ignoring deterministic
terms because they are not important for impulse response analysis gives

yt = A(L)−1ut = Φ(L)ut =
∞
∑

j=0

Φjut−j, (8.1)

where Φ(L) =
∑∞

j=0 ΦjL
j = A(L)−1. The (K×K) coefficient matrices Φj are precisely those

given in (6.3). The marginal response of yn,t+j to a unit impulse umt is given by the (n,m)th
elements of the matrices Φj, viewed as a function of j. Hence, the elements of Φj represent
responses to ut innovations. Because the ut are just the 1-step forecast errors, these impulse
responses are sometimes called forecast error impulse responses (Lütkepohl (2005, Section
2.3.2)) and the corresponding MA representation is called Wold MA representation.

The existence of the representation (8.1) is ensured if the VAR process is stable and,
hence, yt consists of stationary (I(0)) variables. In that case Φj → 0 as j → ∞ and the
effect of an impulse is transitory. If yt has I(1) components, the Wold MA representation
(8.1) does not exist. However, for any finite j, Φj can be computed as in the stationary case,
using the formula (6.3). Thus, impulse responses can also be computed for I(1) processes.
For such processes the marginal effects of a single shock may lead to permanent changes in
some or all of the variables.

Because the residual covariance matrix Σu is generally not diagonal, the components of
ut may be contemporaneously correlated. Consequently, the ujt shocks are not likely to
occur in isolation in practice. Therefore tracing such shocks may not reflect what actually
happens in the system if a shock hits. In other words, forecast error shocks may not be the
right ones to consider if one is interested in understanding the interactions within the system
under consideration. Therefore researchers typically try to determine structural shocks and
trace their effects. A main task in structural VAR analysis is in fact the specification of the
shocks of interest.

If an identified structural form such as (2.8) is available, the corresponding residuals are
the structural shocks. For a stationary process their corresponding impulse responses can
again be obtained by inverting the VAR representation,

yt = (A− A∗1L− · · · − A∗pL
p)−1Bvt =

∞
∑

j=1

ΦjA
−1
Bvt−j =

∞
∑

j=1

Ψjvt−j, (8.2)

where the Ψj = ΦjA
−1
B contain the structural impulse responses. The latter formulas

can also be used for computing structural impulse responses for I(1) processes even if the
representation (8.2) does not exist.

Estimation of impulse responses is straightforward by substituting estimated reduced
form or structural form parameters in the formulas for computing them. Suppose the struc-
tural form VAR parameters are collected in the vector α and denote its estimator by α̂.
Moreover, let ψ be the vector of impulse response coefficients of interest. This vector is a
(nonlinear) function of α, ψ = ψ(α), which can be estimated as ψ̂ = ψ(α̂). Using the delta
method, it is easy to see that ψ̂ = ψ(α̂) is asymptotically normal if α̂ has this property.
More precisely,

√
T (α̂−α)

d→ N (0,Σα̂)
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implies

√
T (ψ̂ − ψ)

d→ N (0,Σψ̂), (8.3)

where

Σψ̂ =
∂ψ

∂α′
Σα̂

∂ψ′

∂α
,

provided the matrix of partial derivatives ∂ψ/∂α′ is such that none of the variances is zero
and, in particular, ∂ψ/∂α′ 6= 0. If ∂ψ/∂α′ does not have full row rank, the asymptotic
covariance matrix Σψ̂ is singular. This problem will arise at specific points in the parameter
space in the present situation because the function ψ(α) consists of sums of products of
elements of α. Also, Σα̂ is generally singular if yt is I(1) which in turn may imply singularity
of Σψ̂ even if ∂ψ/∂α′ has full row rank. In the present case, both problems may occur jointly.
A singular asymptotic covariance matrix may give rise to misleading inference for impulse
responses. For further discussion see Benkwitz, Lütkepohl and Neumann (2000).

Even in those parts of the parameter space where standard asymptotic theory works,
it is known that the actual small sample distributions of impulse responses may be quite
different from their asymptotic counterparts. In particular, the accuracy of the confidence
intervals tends to be low for large-dimensional VARs at longer horizons if the data are highly
persistent, that is, if the process has roots close to the unit circle (see Kilian and Chang
(2000)). Therefore attempts have been made to use local-to-unity asymptotics for improving
inference in this situation. Earlier attempts in this context are Stock (1991), Wright (2000),
Gospodinov (2004) and more recent articles using that approach are Pesavento and Rossi
(2006) and Mikusheva (2011).

In practice, bootstrap methods are often used in applied work to construct impulse
response confidence intervals (e.g., Kilian (1998), Benkwitz, Lütkepohl and Wolters (2001)).
Although they have the advantage that complicated analytical expressions of the asymptotic
variances are not needed, it is not clear that they lead to substantially improved inference.
In particular, they are also justified by asymptotic theory. In general the bootstrap does not
overcome the problems due to a singularity in the asymptotic distribution. Consequently
bootstrap confidence intervals may have a coverage which does not correspond to the nominal
level and may, hence, be unreliable (see Benkwitz et al. (2000)). Using subset VAR techniques
to impose as many zero restrictions on the parameters as possible and estimating only the
remaining nonzero parameters offers a possible solution to this problem.

Bayesian methods provide another possible solution (e.g. Sims and Zha (1999)). If an
a posteriori distribution is available for α̂, it can be used to simulate the distribution of
ψ̂ = ψ(α̂) using standard Bayesian simulation techniques. That distribution can then be
used for setting up confidence intervals or for inference on ψ. As Bayesian inference does not
rely on asymptotic arguments, the singularity problem is not relevant. This does not mean
that Bayesian estimation is necessarily more reliable. It requires extensive computations and
is based on distributional assumptions which may be questionable.

8.2 Forecast Error Variance Decompositions

As mentioned earlier, forecast error variance decompositions are another tool for investigating
the impacts of shocks in VAR models. In terms of the structural residuals the h-step forecast
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error (6.2) can be represented as

yT+h − yT+h|T = Ψ0vT+h +Ψ1vT+h−1 + · · ·+Ψh−1vT+1.

Using Σv = IK , the forecast error variance of the kth component of yT+h can be shown to
be

σ2
k(h) =

h−1
∑

j=0

(ψ2
k1,j + · · ·+ ψ2

kK,j) =
K
∑

j=1

(ψ2
kj,0 + · · ·+ ψ2

kj,h−1),

where ψnm,j denotes the (n,m)th element of Ψj. The quantity (ψ2
kj,0 + · · · + ψ2

kj,h−1) rep-
resents the contribution of the jth shock to the h-step forecast error variance of variable
k. In practice, the relative contributions (ψ2

kj,0 + · · · + ψ2
kj,h−1)/σ

2
k(h) are often reported

and interpreted for various variables and forecast horizons. A meaningful interpretation of
these quantities requires that the shocks considered in the decomposition are economically
meaningful.

The quantities of interest here can again be estimated easily by replacing unknown pa-
rameters by their estimators. Inference is complicated by the fact, however, that the relative
variance shares may be zero or one and, hence, may assume boundary values. In such cases
both classical asymptotic as well as bootstrap methods have problems.

8.3 Historical Decomposition of Time Series

Another way of looking at the contributions of the structural shocks to the observed series
is opened up by decomposing the series as proposed by Burbidge and Harrison (1985).
Neglecting deterministic terms and considering the structural MA representation (8.2), the
jth variable can be represented as

yjt =
∞
∑

i=0

(ψj1,iv1,t−i + · · ·+ ψjK,ivK,t−i),

where ψjk,i is the (j, k)th element of the structural MA matrix Ψi, as before. Thus,

y
(k)
jt =

∞
∑

i=0

ψjk,ivk,t−i

is the contribution of the kth structural shock to the jth variable yjt. Ideally one would like

to plot the y
(k)
jt for k = 1, . . . , K, throughout the sample period, that is, for t = 1, . . . , T ,

and interpret the relative contributions of the different structural shocks to the jth variable.
In practice, such a historical decomposition is, of course, not feasible because the struc-

tural shocks are not available. However, we can estimate the shocks associated with the
sample period and use an estimated historical decomposition by noting that by successive
substitution, the VAR process (2.5) can be written as

yt =
t−1
∑

i=0

Φiut−i + A
(t)
1 y0 + · · ·+ A(t)

p y−p+1

=
t−1
∑

i=0

Ψivt−i + A
(t)
1 y0 + · · ·+ A(t)

p y−p+1, (8.4)
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where the Φi and Ψi are the MA coefficient matrices defined earlier and the A
(t)
i are such

that [A
(t)
1 , . . . , A

(t)
p ] consists of the first K rows of the (pK × pK) matrix At, where

A =











A1 . . . Ap−1 Ap
IK 0 0

. . .
...

0 IK 0











(see Lütkepohl (2005, Sec. 2.1)). Hence, the A
(t)
i go to zero for stationary VARs when t

becomes large so that the contribution of the initial state becomes negligible for stationary
processes as t → ∞. On the other hand, for I(1) processes the contribution of the initial
values y0, . . . , y−p+1 will remain important. In any case, yjt may be decomposed as

y
(k)
jt =

t−1
∑

i=0

ψjk,ivk,t−i + α
(t)
j1 y0 + · · ·+ α

(t)
jp y−p+1,

where ψjk,i is the (j, k)th element of Ψi and α
(t)
ji is the jth row of A

(t)
i . The series y

(k)
jt

represents the contribution of the kth structural shock to the jth component series of yt,
given y0, . . . , y−p+1. In practice all unknown parameters have to be replaced by estimators.

The corresponding series ŷ
(k)
jt , k = 1, . . . , K, represent a historical decomposition of yjt. They

are typically plotted to assess the contributions of the structural shocks to the jth series.
Obviously, one may start the decomposition at any point in the sample and not necessarily
at t = 0. In fact, for t close to the starting point of the decomposition the initial values may
have a substantial impact even for stationary processes. So one may only want to consider
the decomposition for periods some distance away from the starting point.

8.4 Analysis of Forecast Scenarios

SVAR models have also been used for analyzing different forecast scenarios or conditional
forecasts given restrictions for the future values of some of the variables. For example, in
monetary policy analysis one may be interested in knowing the future development of the
system under consideration for a given path of the interest rate or if the interest rate remains
within a given range. Clearly, in a model where all variables are endogenous, fixing the future
values of one or more variables may be problematic and one has to evaluate carefully how
far the model can be stretched without being invalidated. In other words, SVAR models
cannot be expected to reflect the changes induced in the future paths of the variables for
arbitrary forecast scenarios (for applications see, e.g., Waggoner and Zha (1999), Baumeister
and Kilian (2011)).

For describing the approach, a SVAR representation similar to (8.4) is particularly suit-
able,

yT+h =
h−1
∑

i=0

ΨivT+h−i + A
(h)
1 yT + · · ·+ A(h)

p yT−p+1, h = 1, 2, . . . , (8.5)

where deterministic terms are again ignored for simplicity and all symbols are defined as
in (8.4). The standard reduced form forecast yT |T+h discussed in Section 6.1 is obtained
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from this expression by replacing all structural residuals in the first term on the right-hand
side by zero. A forecast scenario different from this baseline forecast may be obtained by
assigning other values to the structural shocks. For instance, a scenario where the jth
variable has future values y∗j,T+h for h = 1, . . . , H, amounts to choosing structural shocks
v∗T+h, h = 1, . . . , H, such that

h−1
∑

i=0

K
∑

k=1

ψjk,iv
∗
k,T+h−i = y∗j,T+h − α

(h)
j1 yT − · · · − α

(h)
jp yT−p+1 h = 1, . . . , H, (8.6)

for periods T + 1, . . . , T +H or, more generally in matrix notation,

RHv
∗
T,T+H = rH , (8.7)

where vT,T+H = (v′T+1, . . . , v
′
T+H)

′ is a (KH × 1) vector of stacked future structural shocks,
RH is a suitable (Q × KH) dimensional restriction matrix representing the left-hand side
relations in (8.6) with Q ≤ KH and rH is a (Q× 1) vector containing the right-hand side of
(8.6). The forecasts conditional on the v∗T+h shocks are then computed as

ycondT |T+h =
h−1
∑

i=0

Ψiv
∗
T+h−i + A

(h)
1 yT + · · ·+ A(h)

p yT−p+1, h = 1, . . . , H. (8.8)

For concreteness consider, for instance, the case of a B-model with lower-triangular initial
effects matrix B = Ψ0. In that case, if the path of the first variable is prespecified as y∗1,T+h,

h = 1, . . . , H, this amounts to choosing the first residual as v∗1,T+h = y∗1,T+h−α(1)
11 y

cond
T+h−1|T −

· · · − α
(1)
1p y

cond
T+h−p|T , h = 1, . . . , H. In general, the values for the v∗T+h’s will not be uniquely

determined by the restrictions. In that case Doan et al. (1984) suggest using

v∗T,T+H = R′H(RHR
′
H)
−1rH

which is the least squares solution obtained by minimizing
∑H

h=1 v
′
T+hvT+h = v′T,T+HvT,T+H

subject to the restrictions (8.7).
Obviously, the conditional forecast ycondT |T+h differs from the unconditional forecast yT |T+h

of Section 6.1 by the first term on the right-hand side of equation (8.8). Of course, other
forecast scenarios may be of interest. For example, one may not want to condition on a
particular path of a variable but on its values being in a given range. Such a scenario can
be investigated by using the above formulas for computing forecast ranges accordingly.

For practical purposes the unknown parameters have to be replaced by estimates, as
usual. Waggoner and Zha (1999) present a Bayesian method for taking into account the
related estimation uncertainty in that case.

A critical question in the context of evaluating forecast scenarios in the context of SVAR
models is whether such models are suitable for that purpose or whether they are stretched
too much by restricting the future developments of some variables. The problem here is
that all variables are regarded as endogenous and, hence, their values should be generated
endogenously by the model and not be forced upon them exogenously. Of course, there
could be cases where one or more of the variables are really exogenous and not affected
by feedback relations within the system under consideration. In such cases a conditional
analysis as described in the foregoing is plausible. In other cases the users should be cautious
in interpreting the results and carefully evaluate whether the model can be expected to be
informative about the questions of interest.
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9 Conclusions and Extensions

This chapter reviews VAR analysis. Specification, estimation, forecasting, causality and
structural analysis are discussed. Finite order VAR models are popular for economic analysis
because they are easy to use. There are several software products which can be used in
performing a VAR analysis (see, e.g., PcGive (Doornik and Hendry (1997)), EViews (EViews
(2000)) and JMulTi (Krätzig (2004)).

In many situations of practical interest the VAR models discussed in this chapter are
too limited, however. For example, the assumption that the VAR order is finite is rather
restrictive because theoretically omitted variables or linear transformations of the variables
may lead to infinite order VAR processes. Hence, it may be appealing to extend the model
class to infinite order VAR processes. Such an extension may be achieved by considering
VAR models with MA error terms or by studying the implications of fitting approximate
finite order VAR models to series which are generated by infinite order processes. This
issue is dealt with in Lewis and Reinsel (1985), Lütkepohl and Saikkonen (1997), Inoue and
Kilian (2002b) and Lütkepohl (2005, Part IV). An authoritative discussion of the theory of
VARMA models is also available in Hannan and Deistler (1988) and a recent survey of the
related literature is given by Lütkepohl (2006a).

As already mentioned in the introduction, if some variables are integrated and perhaps
cointegrated, vector error correction models are suitable tools for modelling the cointegration
relations in detail. Such models are presented in Chapter 9. A possible advantage of the
levels VAR models considered in the present chapter is that they are robust to cointegration
of unknown form. They can be used even if the number of cointegration relations is unknown
not to speak of the precise cointegration relations. Of course, statistical tools are available
for analyzing the number and type of cointegration relations. However, such pretesting
procedures have their limitations as well, in particular if some roots are only near unity, as
pointed out, for instance, by Elliott (1998).

Other possible extensions are the inclusion of nonlinear components (e.g., Granger (2001),
Teräsvirta, Tjøstheim and Granger (2010)) or allowing the VAR coefficients to be time-
varying (e.g., Primiceri (2005)). Moreover, seasonal macroeconomic data are now available
for many countries. Hence, accounting specifically for seasonal fluctuations may be nec-
essary (e.g., Ghysels and Osborn (2001)). Furthermore, heteroskedasticity or conditional
heteroskedasticity in the residuals of VAR models may be of importance in practice, in
particular, when higher frequency data are considered (see Lütkepohl (2005, Chapter 16)
for a textbook treatment and Bauwens, Laurent and Rombouts (2006) or Silvennoinen and
Teräsvirta (2009) for recent surveys). For some economic variables restricting the order of
integration to zero or one may be unrealistic. Extensions to higher order integration have
been considered by Boswijk (2000), Johansen (1997, 2006) and others.

References

Ahn, S. K. (1988). Distribution for residual autocovariances in multivariate autoregressive models
with structured parameterization, Biometrika 75: 590–593.

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle, in
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