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Abstract

At a competitive equilibrium of an incomplete-markets economy agents’ marginal
valuations for the tradable assets are equalized ex-ante. We characterize the
finest partition of the state space conditional on which this equality holds for
any economy. This leads naturally to a necessary and sufficient condition on
information that would lead to retrade, if such information were to become
publicly available after the initial round of trade.

Journal of Economic Literature Classification Numbers: D52, D80.

Keywords: Competitive Equilibrium, Incomplete Markets, Information, Re-
trading.
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1 Introduction

Consider a two-period single-good economy with incomplete asset markets. It is well-
understood that competitive equilibria in this setting are constrained efficient in the
sense that a Pareto improvement cannot be achieved by reallocating the existing
assets (Diamond (1967)), while being generically Pareto inefficient (see, for example,
Magill and Quinzii (1996)). In other words, at a competitive equilibrium, agents’
marginal valuations for the tradable assets are equal when evaluated ex-ante, but are
typically not equal conditional on the true state of the world, for every realization
of the uncertainty.

In this paper, we provide a characterization of the events conditional on which
marginal valuations for assets are equalized in equilibrium. We define an insurable

event to be a subset of states Ŝ with the property that, at a competitive equilibrium,
agents’ marginal valuations for assets are equal conditional on Ŝ for any economy,
but generically not equal conditional on a strict subset of Ŝ. Thus the set of in-
surable events is the finest partition of the state space conditional on which agents’
asset valuations are equal in equilibrium for a generic economy. An insurable event
is a generalization of the notion of an insurable state, i.e. a state for which the cor-
responding Arrow security can be replicated with the existing assets. We describe
later the precise sense in which a claim that pays off only in an insurable event can
be replicated.

The notion of an insurable event is closely tied to the kinds of information that
would induce agents to rebalance their portfolios, if such information were to be-
come publicly available after the initial round of trade. Retrading occurs after the
arrival of information if and only if it generates disagreement among agents regard-
ing the marginal value of assets. We show that information that affects only the
relative probabilities of insurable events does not lead to retrade, while retrade does
generically occur if the information alters the relative probabilities of states within
an insurable event. For a generic economy, therefore, the latter condition is both
necessary and sufficient for the information to lead to retrade.

While there is a substantial literature on trading in financial markets in response
to news, little has been said on the characteristics of news that induces agents to
retrade. A class of no-trade results can be traced back to Milgrom and Stokey (1982)
who show that the arrival of information does not lead to retrade if the initial allo-
cation is Pareto efficient. This leaves open the question of retrading in a competitive
economy with incomplete markets. In this setting, Blume et al. (2006) provide suf-
ficient conditions on a public signal such that retrade occurs for a generic economy.
We generalize their result (in Theorem 4.3) by providing a weaker sufficient condi-
tion, for a broader class of public signals (including signals that induce a partition
of the state space), and for an arbitrary asset structure.

The paper is organized as follows. We describe the economy in the next section.
In Section 3, we introduce the notion of an insurable event and analyze its properties.
Then, in Section 4, we consider a public signal observed by agents after the initial
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round of trade, and characterize the set of signals that lead to retrade.

2 The Economy

There are two periods, 0 and 1, and a single physical consumption good. The econ-
omy is populated by H ≥ 2 agents, with typical agent h ∈ H (here, and elsewhere,
we use the same symbol for a set and its cardinality). Uncertainty, which is resolved
at date 1, is described by S states of the world. The probability of state s is πs

(πs > 0 for all s, and
∑

s πs = 1).
Agent h ∈ H has endowments ωh

0 > 0 in period 0 and ωh ∈ R
S
++ in period

1, and time-separable expected utility preferences with von Neumann-Morgenstern
utility functions uh

0 : R++ → R for period 0 consumption and uh : R++ → R

for period 1 consumption. We assume that uh is twice continuously differentiable,
uh′ > 0, uh′′ < 0, and limc→0 u

h′(c) =∞; the same assumptions apply to uh
0 .

Asset markets, in which J ≥ 2 securities are traded, open at date 0. At date 1
assets pay off. Asset payoffs are given by the S×J matrix R, whose (s, j)’th element
is rjs, the payoff of asset j in state s. We denote the j’th column of R by rj and the
s’th row of R by r⊤s (by default all vectors are column vectors, unless transposed).
Thus rj is the vector of payoffs of asset j, and rs is the vector of asset payoffs in
state s. We assume that rs 6= 0 for all s ∈ S, and R has full column rank J . Markets
are complete if J = S, and incomplete if J < S.

We parametrize economies by agents’ date 1 endowments ω := {ωh}h∈H ∈ Ω :=
R

SH
++. Let p ∈ R

J be the vector of asset prices (date 0 consumption serves as the
numeraire), and yh ∈ R

J the portfolio of agent h. The consumption of agent h is
then given by ch0 := ωh

0 − p · yh at date 0, and chs := ωh
s + rs · y

h in state s at date 1.
Let y := {yh}h∈H . A competitive equilibrium is defined as follows:

Definition 2.1 Given an economy ω ∈ Ω, a competitive equilibrium consists of a

portfolio allocation y, and prices p, satisfying the following two conditions:

(a) Agent optimization: ∀h ∈ H, yh solves

max
yh∈RJ

(

uh
0

[

ωh
0 − p · yh

]

+
∑

s∈S

πs u
h
[

ωh
s + rs · y

h
]

)

. (1)

(b) Market clearing:
∑

h∈H

yh = 0. (2)

Notation. In our analysis we use the following shorthand notation for matrices.
Given an index set N with typical element n, and a collection {zn}n∈N of vectors or
matrices, we denote by diagn∈N [zn] the (block) diagonal matrix with typical entry zn,
where n varies across all elements of N . In similar fashion, we write [. . . zn . . .n∈N ] to
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denote the row block with typical element zn, and analogously for column blocks. We
drop reference to the index set if it is obvious from the context: for example diagh∈H
is shortened to diagh, and [. . . zs . . .s∈S] to [. . . zs . . .s]. We use the same symbol 0 for
the zero scalar and the zero matrix; in the latter case we occasionally indicate the
dimension in order to clarify the argument. A “∗” stands for any term whose value
is immaterial to the analysis.

3 Insurable Events and Risk-Sharing

We formalize the notion of an insurable event as follows. Consider a partition of S
given by {S1, . . . , SK}. For each k ∈ K := {1, . . . , K}, let Lk be the subspace of RJ

spanned by the vectors {rs}s∈Sk
. We say that the subspaces L1, . . . , LK are linearly

independent if
∑

k∈K ℓk = 0, ℓk ∈ Lk, implies ℓk = 0 for all k. Henceforth, we choose
the partition for which L1, . . . , LK are linearly independent, and K is maximal1 (it
is easy to check that there is a unique such partition). We denote this partition by
S(R) and call Sk ∈ S(R) an insurable event.

We will show below (Theorems 3.1 and 3.2) that an insurable event as defined
above is a subset of S satisfying the two properties stated in the Introduction, namely
that (a) conditional on this event, agents’ asset valuations are equal in equilibrium,
and (b) conditional on a strict subset of this event, agents’ asset valuations are not
equal at any equilibrium, for a generic (i.e. open and dense)2 subset of endowments.
Thus, for a generic subset of endowments, S(R) is the finest partition of S conditional
on which asset valuations are equalized across agents in equilibrium.

We denote the dimension of Lk by Jk. Thus we have
∑

k∈K Jk = J . Without
loss of generality we can order the states in S so that the first S1 states correspond
to the event S1, the following S2 states correspond to the event S2, and so on.
The following lemma shows that the partition S(R) is invariant to changes in asset
payoffs that do not affect the column span of R. Moreover, R is column-equivalent
to a block-diagonal matrix, with each block corresponding to an insurable event Sk:

Lemma 3.1 Suppose the asset payoff matrices R and R′ are column-equivalent.

Then S(R) = S(R′). Furthermore, R is column-equivalent to diagk∈K [Rk], where

Rk is an Sk × Jk matrix with rank(Rk) = Jk.

The proof is in the Appendix. We say that an insurable event Sk is trivial if it is
a singleton, and nontrivial otherwise. A trivial insurable event consists of a single
insurable state, while a nontrivial insurable event consists of two or more states,
none of which is insurable. Note that a nontrivial insurable event exists if and only

1The same partition is employed by Geanakoplos and Mas-Colell (1989) (Section III) in order
to characterize the degree of indeterminacy of equilibria with nominal assets.

2More precisely, given a subset E of Euclidean space, endowed with the relative Euclidean
topology, we say that E′ ⊂ E is a generic subset of E if it is open and dense in E.
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if markets are incomplete. Moreover, an insurable event Sk is nontrivial if and only
if Sk > Jk.

3

Lemma 3.1 implies in particular that, for each insurable event, a portfolio can be
found that pays off only in that event. Unless an insurable event is trivial, however,
not every payoff in that event can be replicated with the existing assets.

Example 1. Suppose there are four states of the world: S = {s1, s2, s3, s4}. Consider
a nontraded cashflow that pays

d =









1
2
3
4









.

There are two traded assets, a debt claim on d with face value 2, and a residual
equity claim. Thus the asset payoff matrix is

R =









1 0
2 0
2 1
2 2









.

It is easy to verify there is only one insurable event, i.e. S(R) = {S}. ‖

Example 2. Consider the asset structure in Example 1. Suppose that, in addition to
risky debt and levered equity, a riskfree asset is also available. Thus the asset payoff
matrix is

R =









1 0 1
2 0 1
2 1 1
2 2 1









,

which is column-equivalent to








1 0 0
0 1 0
0 1 1
0 1 2









.

Therefore the set of insurable events is S(R) = {S1, S2}, where S1 is a trivial in-
surable event consisting of the single insurable state s1, and S2 = {s2, s3, s4} is a
nontrivial insurable event. ‖

An assumption commonly employed in the incomplete-markets literature is that
the asset payoff matrix R is in general position, meaning that every J ×J submatrix

3If Sk = Jk, the fact that rank(Rk) = Jk implies that Rk is column-equivalent to the identity
matrix, so that Sk is not an insurable event unless it is trivial.
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of R is nonsingular. If R is in general position, and markets are incomplete, there
is only one insurable event.4 The argument is as follows. Suppose Sk is a nontrivial
insurable event. Since, by the general position of R, any collection of J ′ rows of R,
with J ′ ≤ J , is linearly independent, we must have Sk > J . But this implies that
dim(Lk) = J . Hence there is no insurable event other than Sk. The converse is not
true, however: the asset payoff matrix in Example 1 is not in general position; yet
there is only one insurable event.

Henceforth, we assume that R takes the block-diagonal form diagk[Rk]. Due to
Lemma 3.1, this assumption is without loss of generality.

We now characterize risk-sharing at a competitive equilibrium in term of insurable
events. The first-order conditions for the utility-maximization program (1),

∑

s∈S

πs u
h′
[

ωh
s + rs · y

h
]

rs − uh
0

′[
ωh
0 − p · yh

]

p = 0, ∀h ∈ H, (3)

imply that

∑

s∈S πs u
h′
[

ωh
s + rs · y

h
]

rs

uh
0
′[
ωh
0 − p · yh

] =

∑

s∈S πs u
ĥ
′[
ωĥ
s + rs · y

ĥ
]

rs

uĥ
0

′[
ωĥ
0 − p · yĥ

]

, ∀h, ĥ ∈ H. (4)

Thus asset valuations (by which we mean the marginal rates of substitution between
assets and period 0 consumption) are equalized across agents when evaluated ex-
ante, i.e. at the time of trading. This is just the standard result that competitive
equilibria are constrained Pareto efficient. In order to economize on notation, we let

µhĥ(y, p) :=
uh
0
′[
ωh
0 − p · yh

]

uĥ
0

′[
ωĥ
0 − p · yĥ

]

,

and use the shorthand uh
s

′
:= uh′

[

ωh
s + rs · y

h
]

and uh
s

′′
:= uh′′

[

ωh
s + rs · y

h
]

. Then
(4) can be written as

∑

s∈S

πs

(

uh
s

′
− µhĥ uĥ

s

′)

rs = 0, ∀h, ĥ ∈ H. (5)

Since the subspaces L1, . . . , LK are linearly independent, the following result is im-
mediate:

Theorem 3.1 At any equilibrium (y, p) of ω ∈ Ω,

∑

s∈Sk

πs

(

uh
s

′
− µhĥ uĥ

s

′)

rs = 0, ∀h, ĥ ∈ H; Sk ∈ S(R).

4It is also worth noting that if R is in general position, so is any R′ that is column-equivalent
to R.
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In other words, at a competitive equilibrium, asset valuations are equalized across
agents not only unconditionally, but also conditional on any insurable event (and
hence also conditional on a union of insurable events). Specializing to an insurable
state, we have the standard result:

Corollary 3.1 If s is an insurable state, then at any equilibrium (y, p) of ω ∈ Ω,

uh
s

′
− µhĥ uĥ

s

′
= 0, for all h, ĥ ∈ H.

For a generic subset of endowments, the converse of Theorem 3.1 is true as well,
so that we can strengthen the result as follows:

Theorem 3.2 There is a generic subset Ω̂ of Ω, such that at any equilibrium (y, p)
of ω ∈ Ω̂,

∑

s∈Ŝ

πs

(

uh
s

′
− µhĥ uĥ

s

′)

rs = 0, ∀h, ĥ ∈ H, (6)

if and only if Ŝ is a union of insurable events.

Thus, for a generic subset of endowments, the set of insurable events S(R) is the finest
partition of S conditional on which agents’ asset valuations are equal in equilibrium.

The proof of Theorem 3.2 uses the transversality theorem. Since we also exploit
transversality in the proofs of Theorems 4.1 and 4.2 in the next section, it is useful to
summarize the argument here. Consider a function Ψ : Rn × E → R

m, where E is an
open subset of Euclidean space and m > n. For e ∈ E , let Ψe be the function Ψ(·, e).
The argument involves identifying such a function Ψ, such that the desired result
can be formulated as Ψ−1e (0) = ∅, for every e in a generic subset of E . We show that
the Jacobian Dx,eΨ has full row rank at all zeros (x, e) of Ψ, i.e. Ψ is transverse to

zero. By the transversality theorem, there is then a dense subset Ê of E such that,
for each e ∈ Ê , Ψe : Rn → R

m is transverse to zero. It follows that Ψ−1e (0) = ∅.
In other words, the equation system Ψe(x) = 0 has no solution since the number of
(locally) independent equations m exceeds the number of unknowns n. A standard
argument (see, for example, Citanna et al. (1998)) establishes that the set Ê is open,
and hence a generic subset of E .

Proof of Theorem 3.2:

We begin by characterizing a competitive equilibrium as a solution to a system of
(locally) independent equations. Let g(y) = 0 and f(y, p, ω) = 0 denote the equation
systems (2) and (3) respectively. The tuple (y, p) is a competitive equilibrium for
economy ω if and only if it satisfies

F (y, p, ω) :=

(

f(y, p, ω)
g(y)

)

= 0, (7)

which consists of JH + J equations, equal to the number of unknowns (y, p). The
Jacobian of F can be written as follows:
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Dy,p,ωF =

(

Dy,pf Dωf
Dy,pg 0

)

,

with
Dωf = diagh

[

. . . πs u
h
s

′′
rs . . .s

]

and
Dy,pg = (. . . IJ . . .h 0),

where IJ is the J × J identity matrix. The matrix Dωf has full row rank since R
has full column rank. Clearly, Dy,pg has full row rank as well.

We now proceed with the proof of the theorem. If Ŝ is a union of insurable events,
the result follows from Theorem 3.1. To prove the converse, suppose Ŝ is not a union
of insurable events. Then there is a nontrivial insurable event, which we can take to
be S1 without loss of generality, such that Ŝ contains some but not all elements of S1.
Hence we can write S1 as the union of two nonempty and disjoint sets, Ŝ1 := S1 ∩ Ŝ
and Š1 := S1\Ŝ1. We reorder the set S1 so that the states in Ŝ1 appear before the
states in Š1.

Recall that R1 is the first diagonal block of R corresponding to the insurable
event S1. Let

R̂∗1 :=

(

R̂1

∣

∣ R̂1
—————–
0

∣

∣ Ř1

)

,

where R̂1 consists of the rows of R1 corresponding to the states in Ŝ1, while Ř1

consists of the remaining rows of R1, i.e. those corresponding to the states in Š1.
Deleting the rows of R̂∗1 corresponding to the redundant rows of R̂1 and of Ř1, we
are left with a matrix whose diagonal blocks have full row rank. It follows that
rank(R̂∗1) ≥ rank(R̂1) + rank(Ř1). Since S1 is an insurable event, the row spaces
of R̂1 and Ř1 have a nontrivial intersection, implying that rank(R̂1) + rank(Ř1) >
rank(R1) = J1. It follows that rank(R̂

∗
1) > J1.

Let r̂j := [. . . rjs . . .s∈Ŝ1
01×Š1

]⊤, a vector in R
S1 . Since rank(R̂∗1) > J1, we can

pick j ∈ J1 such that r̂j lies outside the column span of R1. We fix such a value of j
for the remainder of the proof. Due to the block-diagonal structure of R, the vector
[r̂j 01×(S−S1)]

⊤ = [. . . rjs . . .s∈Ŝ1
01×(S−Ŝ1)

]⊤ lies outside the column span of R. In
other words, the matrix

A :=

(

. . . rjs . . .s∈Ŝ1
01×(S−Ŝ1)

————————————
. . . rs . . .s∈S

)

(8)

has full row rank J + 1.
It suffices to establish the theorem for the first two agents, h1 and h2. We will

show that, for ω in a generic subset of Ω, there is no solution to the equation system

Ψ1(y, p, ω) :=

(

F (y, p, ω)
∑

s∈Ŝ πs

(

uh1

s

′
− µh1h2 uh2

s

′)
rjs

)

= 0.
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Since j ∈ J1, r
j
s = 0 for all s /∈ S1, so that the sum over Ŝ in this equation system

can be restricted to Ŝ1. Hence, the Jacobian Dy,p,ωΨ1, evaluated at a zero (y, p, ω)
of Ψ1, is









∗
∣

∣ diagh
[

. . . πs u
h
s

′′
rs . . .s

]

—————————————————————–
Dy,pg

∣

∣ 0
—————————————————————–
∗

∣

∣

[

. . . πs u
h1

s

′′
rjs . . .s∈Ŝ1

01×(S−Ŝ1)

]

∗









.

The Jacobian is row-equivalent to














∗
∣

∣ . . . πs u
h1

s

′′
rjs . . .s∈Ŝ1

01×(S−Ŝ1)

∣

∣ ∗
———————————————————————————————–
∗

∣

∣ . . . πs u
h1

s

′′
rs . . .s

∣

∣ 0
———————————————————————————————–
∗

∣

∣ 0
∣

∣ diagh 6=h1

[

. . . πs u
h
s

′′
rs . . .s

]

———————————————————————————————–
Dy,pg

∣

∣ 0
∣

∣ 0















,

which in turn is column-equivalent to






∗
∣

∣ ∗
∣

∣ A
———————————————————
∗

∣

∣ diagh 6=h1

[

. . . πs u
h
s

′′
rs . . .s

] ∣

∣ 0
———————————————————
Dy,pg

∣

∣ 0
∣

∣ 0







,

where A is defined by (8). This matrix has full row rank since each of the diagonal
blocks has that property. Therefore, so does the Jacobian Dy,p,ωΨ1, at every zero of
Ψ1. Thus Ψ1 is transverse to zero, and Ψ−11ω (0) = ∅ for all ω in a generic subset of
Ω. ✷

The following result is an immediate consequence of Theorem 3.2:

Corollary 3.2 At any equilibrium (y, p) of ω ∈ Ω̂, uh
s

′
−µhĥ uĥ

s

′
= 0, for all h, ĥ ∈ H,

if and only if s is an insurable state.

This result can be established directly for a generic subset of endowments using
standard arguments.

4 Information and Retrading

We wish to describe the kinds of (unanticipated) information that will induce agents
to retrade. We assume that the information takes the form of a public signal corre-
lated with the state of the world s that agents observe after trading at date 0, but
before consumption takes place,5 and before the uncertainty regarding endowments

5The assumption that information arrives before date 0 consumption is essentially just an an-
alytical convenience. In our setup retrade occurs when the marginal rates of substitution between
assets and date 0 consumption are not equal for a pair of agents. If information arrives after date 0
consumption, we can replace this by the equivalent condition that the marginal rate of substitution
between a pair of assets is not equal for a pair of agents.
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and asset payoffs is resolved. We consider the class of public signals that take finitely
many values. Accordingly, we fix a finite set of possible “signal realizations” Σ, #Σ ≥
2, with a typical element of Σ denoted by σ. A public signal can then be described
by a probability measure on S×Σ, i.e. by the probabilities π := {πsσ}s∈S,σ∈Σ ∈ R

SΣ
+ ,

where πsσ denotes Prob(s, σ). Let πs := Prob(s) =
∑

σ πsσ, πσ := Prob(σ) =
∑

s πsσ,
and πs|σ := Prob(s|σ) = πsσ/πσ.

Since a public signal is completely described by the associated vector π, we refer
to π itself as a public signal. Formally, a public signal lies in the set

Π :=
{

π ∈ R
SΣ
+

∣

∣ πs = πs, ∀s ∈ S; πσ > 0, ∀σ ∈ Σ
}

.

In other words, any public signal in Π is consistent with the uncertainty over fun-
damentals given by {πs}s∈S. The condition on the marginal distribution over Σ is
without loss of generality. This specification admits a range of possible signals. It
includes those that have full support, with {s ∈ S | πs|σ > 0} = S, for all σ. It also
includes signals for which the support {s ∈ S | πs|σ > 0} is a strict subset of S for
some signal realizations. A special case of the latter is one where the signal induces
a partition of S.6

In the remainder of this section, we characterize the set of public signals that
lead to retrade. Given an equilibrium (y, p), there is no retrade at π if and only if
the equality of asset valuations which holds in equilibrium (condition (5)) also holds
at π, i.e.

∑

s∈S

πs|σ

(

uh
s

′
− µhĥ uĥ

s

′)

rs = 0, ∀h, ĥ ∈ H; σ ∈ Σ.

As in Theorem 3.1, we can exploit the linear independence of the subspaces L1, . . . , LK

to refine this no-retrade condition:

Lemma 4.1 Given an equilibrium (y, p), there is no retrade at π if and only if

∑

s∈Sk

πs|σ

(

uh
s

′
− µhĥ uĥ

s

′)

rs = 0, ∀h, ĥ ∈ H; Sk ∈ S(R); σ ∈ Σ. (9)

It is clear from (9) that a public signal that affects only the relative likelihood
of insurable events does not generate retrade. Agents’ asset valuations remain equal
after the arrival of such a signal. For example, a public signal that induces a partition
of S that contains S(R), or is equal to S(R), does not generate any retrade since it
leaves the conditional distribution over Sk unchanged for every k. More generally, if
π leads to retrade, it must belong to the following set:

Π̂ :=
{

π ∈ Π
∣

∣ ∃ σ ∈ Σ, Sk ∈ S(R) s.t. {πs|σ}s∈Sk
6= α{πs}s∈Sk

, ∀α ≥ 0
}

.

This is the set of public signals π for which {πs|σ}s∈Sk
is not proportional to {πs}s∈Sk

for some σ and some insurable event Sk. Of course, Sk must be nontrivial for this to

6We provide an example of such a signal in Example 3 at the end of this section.

11



be the case. Thus Π̂ is empty if markets are complete. On the other hand, if markets
are incomplete, Π̂ is a generic subset of Π.7

Moreover, if markets are incomplete, for the generic subset of endowments Ω̂

for which Theorem 3.2 (and hence Corollary 3.2) holds, uh
s

′
− µhĥ uĥ

s

′
6= 0 for every

state s in a nontrivial insurable event Sk. While the no-retrade condition (9) is
not necessarily violated for every π ∈ Π̂ and ω ∈ Ω̂, we show that an appropriate
perturbation of either π or ω ensures that it is violated. More precisely, Theorem
4.1 establishes that, for every π ∈ Π̂, retrade occurs for ω in a generic subset of
Ω̂ (and hence of Ω).8 Analogously, Theorem 4.2 shows that, for every ω ∈ Ω̂,
retrade occurs for π in a generic subset of Π̂ (and hence of Π). Finally, Theorem 4.3
strengthens Theorem 4.2 by showing that retrade occurs for every public signal that
is “sufficiently rich,” in a sense that we shall make precise.

We say that an economy ω admits a π-retrade if at every equilibrium of this
economy the public signal π leads to retrade for at least one value of σ.

Theorem 4.1 Suppose markets are incomplete. Then, for any π ∈ Π̂, there is a

generic subset Ω̌(π) of Ω̂ such that every economy ω ∈ Ω̌(π) admits a π-retrade.

Proof:

Consider a π in Π̂, and fix a σ and a nontrivial insurable event, which we can take to
be S1 without loss of generality, such that {πs|σ}s∈S1

is not proportional to {πs}s∈S1
.

Let
R∗1 :=

(

diags∈S1
[πs|σ]R1 diags∈S1

[πs]R1

)

.

We claim that rank(R∗1) > J1. If πs|σ > 0 for all s ∈ S1, this is immediate from the
following result, which can be deduced from Lemma 5 of Geanakoplos and Mas-Colell
(1989):

Fact 1 Let Rk be the diagonal block of R corresponding to a nontrivial insurable

event Sk ∈ S(R). Consider nonzero scalars θs, θ
′
s, s ∈ Sk, such that {θs}s∈Sk

is not

proportional to {θ′s}s∈Sk
. Then, diags∈Sk

[θs]Rk and diags∈Sk
[θ′s]Rk do not have the

same column span.

Suppose, on the other hand, that πs|σ = 0 for some s ∈ S1. Let S̊1 be the set of states

in S1 for which πs|σ = 0, and let R̊1 be the S̊1×J1 submatrix of R1 corresponding to

these states. Similarly, let S̆1 be the remaining states in S1, and R̆1 the submatrix
of R1 corresponding to these states. Then R∗1 is row-equivalent to

(

diags∈S̆1
[πs|σ] R̆1

∣

∣ diags∈S̆1
[πs] R̆1

————————————————–
0

∣

∣ diags∈S̊1
[πs] R̊1

)

.

7Notice that since Π is not an open subset of R
SΣ, a generic subset of Π is open in Π but

not necessarily open in R
SΣ (an open subset of Π is the intersection of Π with an open subset of

R
SΣ; see footnote 2). In particular, a generic subset of Π may include public signals that induce a

partition of S and hence lie on the boundary of Π.
8A special case of this result, when R is in general position (so that there is only one insurable

event), can be found in Gottardi and Rahi (2011).
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By the argument used in the proof of Theorem 3.2 to establish the rank condition
for R̂∗1, we see that rank(R∗1) > J1. It follows that the rank of

R∗ :=
(

diags∈S[πs|σ]R diags∈S[πs]R
)

is strictly greater than J . Therefore, we can pick j such that diags∈S[πs|σ] r
j lies

outside the column span of diags∈S[πs]R, and hence the matrix

B :=

(

. . . πs|σ r
j
s . . .s∈S

. . . πs rs . . .s∈S

)

(10)

has full row rank J + 1. We fix such a value of j for the remainder of the proof.
Recall that the equations describing an equilibrium are given by F (y, p, ω) = 0

(equation (7)). We will show that, for a generic subset of Ω, there is no solution to
the equation system

Ψ2(y, p, ω; π) :=

(

F (y, p, ω)
∑

s∈S πs|σ

(

uh1

s

′
− µh1h2uh2

s

′)
rjs

)

= 0,

i.e. the no-retrade condition (9) is violated for the first two agents, h1 and h2. The
Jacobian of Ψ2 is

Dy,p,ωΨ2 =









∗
∣

∣ diagh
[

. . . πs u
h
s

′′
rs . . .s

]

————————————————
Dy,pg

∣

∣ 0
————————————————
∗

∣

∣

[

. . . πs|σ u
h1

s

′′
rjs . . .s

]

∗









.

The Jacobian is row-equivalent to













∗
∣

∣ . . . πs|σ u
h1

s

′′
rjs . . .s

∣

∣ ∗
——————————————————————————
∗

∣

∣ . . . πs u
h1

s

′′
rs . . .s

∣

∣ 0
——————————————————————————
∗

∣

∣ 0
∣

∣ diagh 6=h1

[

. . . πs u
h
s

′′
rs . . .s

]

——————————————————————————
Dy,pg

∣

∣ 0
∣

∣ 0













,

which in turn is column-equivalent to







∗
∣

∣ ∗
∣

∣ B
————————————————————
∗

∣

∣ diagh 6=h1

[

. . . πs|σ u
h
s

′′
rs . . .s

] ∣

∣ 0
————————————————————
Dy,pg

∣

∣ 0
∣

∣ 0







,

where B is defined by (10). This matrix has full row rank since each of the diagonal
blocks has that property. Therefore, so does the Jacobian Dy,p,ωΨ2, at every zero of
Ψ2. Thus Ψ2 is transverse to zero, and Ψ−12ω (0) = ∅, for every ω in a generic sub-
set of Ω. This generic subset depends on π, which is a parameter of Ψ2. Moreover,
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by taking the intersection of this set with Ω̂, we obtain the generic subset Ω̌(π).9 ✷

Theorem 4.1 shows that for π to lead to retrade it is not only necessary that
it belong to Π̂ but, for a generic subset of endowments, sufficient as well. Next we
present our second retrading result which involves perturbing probabilities.

Theorem 4.2 Suppose markets are incomplete. Then, every economy ω ∈ Ω̂ admits

a π-retrade for every π ∈ Π̂1(ω), a generic subset of Π̂.

Proof:

Fix a pair of agents h and ĥ, a nontrivial insurable event Sk, and a signal realization
σ. It suffices to show that the no-retrade condition (9) is violated for these given
values. Let ŝ be a state in Sk, and let j ∈ J be an asset which has a nonzero payoff
in ŝ, i.e. rjŝ 6= 0 (our assumption that rs 6= 0 for all s ensures that there is such an
asset).

Consider an economy ω ∈ Ω̂. We will show that, for πŝσ in a generic subset of
the interval (0, πŝ), at every equilibrium (y, p), there is no solution to the equation
system

Ψ3(y, p, πŝσ;ω) :=

(

F (y, p;ω)
∑

s∈Sk
πsσ

(

uh
s

′
− µhĥ uĥ

s

′)
rjs

)

= 0,

and thus the no-retrade condition (9) is violated. For any choice of πŝσ ∈ (0, πŝ), we
can always choose {πŝσ′}σ′ 6=σ, so that

∑

σ πŝσ = πŝ. Moreover, if πŝσ is in a generic
subset of (0, πŝ), a corresponding π is in a generic subset of Π. Clearly π must also
lie in Π̂, and hence belongs to a generic subset of Π̂.

The Jacobian of Ψ3, evaluated at a zero (y, p, πŝσ) of Ψ3, is

Dy,p,πŝσ
Ψ3 =

(

Dy,pF
∣

∣ 0
————————————–
∗

∣

∣

(

uh
ŝ

′
− µhĥ uĥ

ŝ

′)
rjŝ

)

.

(11)

Since ŝ is not an an insurable state, uh
ŝ

′
− µhĥ uĥ

ŝ

′
6= 0, by Corollary 3.2. Also, we

have chosen asset j for which rjŝ is nonzero. Hence the lower right block of (11) is

a nonzero scalar. Moreover, for ω ∈ Ω̂, we see from the proof of Theorem 3.2 that
Dy,pΨ1 has full rank, and therefore so does Dy,pF , at all zeros of F .

Therefore, the Jacobian Dy,p,πŝσ
Ψ3 has full row rank, at every zero of Ψ3. Thus

Ψ3 is transverse to zero, and Ψ−13πŝσ
(0) = ∅, for every πŝσ in a generic subset of (0, πŝ).

This generic subset depends on ω, which is a parameter of Ψ3. ✷

In Theorem 4.1, the no-retrade condition (9) is violated by fixing a π in Π̂ and
perturbing endowments. The generic set Ω̌(π) therefore depends on π. In Theorem

9We choose to state Theorem 4.1 for a generic set of endowments that is a subset of Ω̂, even
though this is not required by our argument, in order to facilitate comparison with our other results.
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4.2, on the other hand, a violation of the no-retrade condition is achieved by fixing
an ω in Ω̂ and perturbing π. The generic set Π̂1(ω) therefore depends upon ω. In our
final result we consider economies in Ω̂, as in Theorem 4.2, and identify a subset of
Π̂ of “sufficiently rich” public signals, which does not depend on the economy under
consideration, such that retrade occurs for every π in this set. A signal is “sufficiently
rich” if it changes the relative probabilities of states in some nontrivial insurable event
Sk not just for one value of σ (as is the case for π ∈ Π̂), but independently for a
number of values of σ that exceeds the degree of market incompleteness, Sk − Jk, in
the event Sk. More precisely, we establish the result for the following set of public
signals:

Π̂2 :=
{

π ∈ Π
∣

∣ ∃Sk ∈ S(R) s.t. rank(Λπ,Sk
) > Sk − Jk > 0

}

,

where

Λπ,Sk
:=







...
. . . πs|σ . . .s∈Sk

...σ







.

(12)

Clearly Π̂2 is a generic subset of Π̂.10

Theorem 4.3 Suppose markets are incomplete. Then, every economy ω ∈ Ω̂ admits

a π-retrade, for every π ∈ Π̂2.

Proof:

Consider an economy ω ∈ Ω̂, an equilibrium (y, p), a nontrivial insurable event Sk,
and a π ∈ Π̂ satisfying rank(Λπ,Sk

) > Sk − Jk. Suppose there is no retrade at π.

Then, the no-retrade condition (9) holds for an arbitrary pair of agents h and ĥ:

∑

s∈Sk

πs|σ

(

uh
s

′
− µhĥ uĥ

s

′)

rs = 0, ∀σ ∈ Σ,

which can be rewritten as follows:

Λπ,Sk
diags∈Sk

[(

uh
s

′
− µhĥ uĥ

s

′)]

Rk = 0. (13)

By Corollary 3.2, uh
s

′
− µhĥ uĥ

s

′
6= 0, for all s ∈ Sk. Therefore, the rank of Dk :=

diags∈Sk

[(

uh
s

′
− µhĥ uĥ

s

′)]
Rk is Jk. Let Dk be the column space of Dk. Equation (13)

implies that the rows of Λπ,Sk
lie in D⊥k , the orthogonal complement of Dk in R

Sk . It
follows that rank(Λπ,Sk

) ≤ dim(D⊥k ) = Sk − Jk, a contradiction. ✷

The theorem generalizes Theorem 5 of Blume et al. (2006). They impose a
stronger full rank condition on the public signal; in our notation, their assumption

10The rank condition in the definition of Π̂2 allows for the possibility that {πs|σ}s∈Sk
is propor-

tional to {πs}s∈Sk
for some values of σ.

15



is that rank(Λπ,S1
. . .Λπ,SK

) = S, or that the matrix (12) defined over S rather than
Sk has full column rank. Moreover, they only consider public signals that have full
support, and hence do not include those that induce a partition of S. They also
assume that there is an insurable state, and that for each state there is at least one
asset whose payoff is positive in that state.

While in Theorems 4.1 and 4.2 it sufficed to consider a public signal for only two
values of σ, for example an appropriate choice of {πs|σ1

}s∈Sk
for which there is retrade

conditional on σ1, and a corresponding choice of {πs|σ2
}s∈Sk

, πσ1
and πσ2

in order to
ensure that πsσ1

+ πsσ2
= πs for all s ∈ Sk, Theorem 4.3 requires an independent

change in information across at least Sk − Jk values of σ.
The sets Π̂1(ω) and Π̂2, i.e. the generic subsets of Π̂ identified by Theorems 4.2

and 4.3 for which retrade occurs, are not nested in general.

Example 3. Suppose there are three equally likely states, i.e. S = {s1, s2, s3} and
πs = 1/3 for all s, and the asset payoff matrix is given by

R =





1 0
1 0
0 1





.

Then the set of insurable events is S(R) = {S1, S2}, where S1 = {s1, s2} is a non-
trivial insurable event and S2 consists of the single insurable state s3. Suppose
Σ = {σ1, σ2}. Consider a public signal that induces the partition {S1, S2}, i.e. the
conditional probabilities over the three states are given by (1/2, 1/2, 0) for one value
of σ and (0, 0, 1) for the other. This signal is not in Π̂ and therefore does not gen-
erate any retrade. On the other hand, consider a signal that induces the partition
{{s1}, {s2, s3}}, e.g. with the conditional probabilities given by (1, 0, 0) for σ1 and
(0, 1/2, 1/2) for σ2. This signal does lie in Π̂. Moreover,

Λπ,S1
=

(

1 0
0 1

2

)

,

which has rank equal to 2, greater than S1−J1 = 1. By Theorem 4.3, there is retrade
for every economy in Ω̂. Of course, it is not necessary that the public signal induce
a partition of S in order to generate retrade. ‖
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A Appendix

Proof of Lemma 3.1:

The matrices R and R′ are column-equivalent if and only if R′ = RX, for some J×J
nonsingular matrix X. Let S(R) = {S1, . . . , SK} be the set of insurable events for R,
and let R̄k be the Sk × J submatrix of R consisting of the rows of R corresponding
to the states in Sk. Similarly, let R̄′k be the Sk× J submatrix of R′ corresponding to
Sk. Consider a vector a ∈ R

S, and let ak ∈ R
Sk be the elements of a corresponding

to Sk. We have a⊤R′ = a⊤RX and a⊤k R̄
′
k = a⊤k R̄kX.

Now suppose a⊤R′ = 0. Then a⊤R =
∑

k∈K a⊤k R̄k = 0. Since the subspaces {Lk}
are linearly independent, we must have a⊤k R̄k = 0, for all k. It follows that a⊤k R̄

′
k = 0,

for all k, and hence the subspaces {L′k} are linearly independent. Moreover, since
{Lk} is a maximal set of linearly independent subspaces, so is {L′k}. This establishes
that S(R) = S(R′).

We now show that there exists a J × J nonsingular matrix X such that RX
has the block-diagonal structure in the statement of the theorem. Let Mk be the
Jk-dimensional subspace of RJ that is the orthogonal complement of the subspace
generated by {Lk̂}k̂ 6=k. We claim that the subspaces {Mk} are linearly independent.
Indeed, consider mk ∈Mk such at

∑

k mk = 0. Then, ℓk ·
∑

k mk = 0, for all ℓk ∈ Lk.

But ℓk ·mk̂ = 0, for all k̂ 6= k. Therefore, ℓk ·
∑

k mk = ℓk ·mk = 0, for all ℓk ∈ Lk,
i.e. mk is orthogonal to Lk. By the definition of Mk, mk is orthogonal to Lk̂, for all

k̂ 6= k. Consequently, mk is orthogonal to R
J , implying that it is zero. The same

argument applies for all values of k.
Let Xk be a J × Jk matrix whose columns are a basis of Mk. Thus every column

of Xk is orthogonal to every row of R that does not correspond to the states in Sk.
Therefore, R̄k̂Xk = 0, for all k̂ 6= k. Let X := (X1 . . . XK). Then RX = diagk[Rk],
where Rk := R̄kXk, an Sk × Jk matrix. Since the subspaces {Mk} are linearly in-
dependent, X is nonsingular. This proves that R is column-equivalent to diagk[Rk].
Moreover, rank(Rk) = rank(R̄k) = Jk. ✷
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