
 

 
Department of Economics 

 
 
 
 
 
 
 

Single Equation Instrumental Variable Models 
- Identification under Discrete Variation - 

 
 
 
 
 
 

Konrad Smolinski 
 
 
 
 

 

 

 

Thesis submitted for assessment with a view to obtaining the degree of 

Doctor of Economics of the European University Institute 

 

 
 
 
 

Florence, January 2012 



EUROPEAN UNIVERSITY INSTITUTE 
Department of Economics 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Single Equation Instrumental Variable 
Models 

- Identification under Discrete Variation - 
 
 
 

Konrad Smolinski 
 
 
 
 
 

Thesis submitted for assessment with a view to obtaining the degree of  

Doctor of Economics of the European University Institute 

Examining Board: 
 
Professor Richard Spady, Johns Hopkins University (External Supervisor) 
Professor Helmut Lütkepohl, European University Institute 
Professor Stéphane Bonhomme, CEMFI 
Professor Richard Smith, University of Cambridge 
 

© 2012, Konrad Smolinski 
No part of this thesis may be copied, reproduced or 
transmitted without prior permission of the author 

Smolinski, Konrad (2012), Single Equation Instrumental Variable Models: Identification under Discrete Variation 
European University Institute

 
DOI: 10.2870/35896



Collaboration

I acknowledge that substatntial parts of this thesis result from an extensive and close colabo-

ration with prof. Andrew Chesher all through my visit at UCL & IFS, London in 2009-2011.

The influence of the intelectual circle around the Centre for Microdata Methods and Practices

is also present throughout these pages.

The second and the third chapters of the thesis follow from joint projects with prof.

Andrew Chesher and were published jointly in the CeMMAP Working Papers Series (CWP).

The second chapter was published under the title IV Models of Ordered Choice and

turned up as CWP37/09. Revised and slightly extended version of this paper was accepted

for publication in the Journal of Econometrics.

The third chapter appeared as CWP11/10 under the title Sharp identified sets for discrete

variable IV models.

The last chapter is an independent work developed in a parallel to ideas presented in the

CeMMAP Working Paper CWP06/11, An instrumental variable models of multiple discrete

choice, by Andrew Chesher, Adam Rosen and myself.

Smolinski, Konrad (2012), Single Equation Instrumental Variable Models: Identification under Discrete Variation 
European University Institute

 
DOI: 10.2870/35896



Acknowledgments

A doctoral thesis is much more than doing research and producing pages. It is a unique

journey through which the author emerges, bravely having navigated turbulent winds of

personal limitations throughout. If anything this is what I learned during my time at the

EUI in Florence and what I experienced in the following years at CeMMAP in London.

Along the way I have met remarkable people who added immensely to my understanding

and to my life. Without their support, encouragement and challenge but also their simple

presence and hearted openness, many ideas and insights in these pages would not have been

possible. To all of them I express my deepest and heartfelt gratitude. However, it is possible

to give particular mention to only some of them here. I owe an additional debt of gratitude

to:

Richard H. Spady, my supervisor at the EUI in Florence who showed me widely opened

doors of conteporary economic thoughts and challenged me in econometrics with courage and

patience.

Andrew D. Chesher, my tutor at CeMMAP in London who presented me to the world of

modern econometrics whom I wish to particularly acknowledge for encouragement, persistence

in scientific inquiry and collaboration with this work and co-authorship of pages to follow.

My fellows from the famous Santa Rosa Community in Florence, Frank Betz, Stephane

Tock and in particular my dearest friend Matej Avbelj, with whom I had the privilege to be

associated and whose growth and development served to illuminate my own.

Georg Duernecker and Andrzej Siodmok for their scientific ingenuity and intellectual

challenge, lasting support and courage to follow through and reach the end of this project.

Olga Milajewa, Malgorzata Renes and Aleksandra Wlodarczyk for inner strength, per-

sonal support, dedication and deep caring in the final year of work on the doctorate.

Mayssun El-Attair, Dominika Renes, Magdalena Silska, Rafal Silski and Agnieszka Sondej

for their faith and hospitality. I thank you all for your friendship.

Colleagues at the EUI, CeMMAP and UCL for wonderful times and inspiration, countless

discussions and endless debates.

Smolinski, Konrad (2012), Single Equation Instrumental Variable Models: Identification under Discrete Variation 
European University Institute

 
DOI: 10.2870/35896



Lastly, but by no means least, my deepest gratitude goes to all my dearest colleagues

and friends who empowered my imagination and wonder or enriched me otherwise on the

path towards the Doctorate. They had to bear with me at a time of possession by abstract

concepts with very little patience for anything but a simplicity and sharpness of the ideas to

follow. Above all, your encouragement, support and openness has made this venture possible.

I dedicate this thesis to my grandfather Wlodzimierz Ignatiuk.

Warsaw, January 13, 2012

Smolinski, Konrad (2012), Single Equation Instrumental Variable Models: Identification under Discrete Variation 
European University Institute

 
DOI: 10.2870/35896



Contents

1 Instead of Introduction 9

1.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Content of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 IV Models of Ordered Choice 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 An IV model for ordered outcomes . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Identified sets with discrete endogenous variables . . . . . . . . . . . . . . . . 18

2.3.1 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Geometry of the identified set . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.3 Characterisation of the identified set . . . . . . . . . . . . . . . . . . . 24

2.4 Discreteness and identified sets in a parametric ordered probit model . . . . . 26

2.4.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Calculation procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.3 Illustration A1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.4 Illustration A2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.5 Illustration B1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Sharp identified sets for discrete variable IV models 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 The single equation instrumental variable model . . . . . . . . . . . . 52

3.1.2 Relation to earlier work . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5

Smolinski, Konrad (2012), Single Equation Instrumental Variable Models: Identification under Discrete Variation 
European University Institute

 
DOI: 10.2870/35896



3.1.3 Plan of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 The identified set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Sharp set identification of the structural function . . . . . . . . . . . . . . . 60

3.3.1 Upper and lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.2 Construction of a joint distribution of U and X . . . . . . . . . . . . . 72

3.3.3 An alternative derivation of the set Et(z) . . . . . . . . . . . . . . . . . 76

3.3.4 Binary outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.5 Relationship to earlier results . . . . . . . . . . . . . . . . . . . . . . . 79

3.3.6 Alternative expressions for the bounds . . . . . . . . . . . . . . . . . . 81

3.4 Bounding inequalities for continuous endogenous variables . . . . . . . . . . . 84

3.5 Illustrative calculations, computation and estimation . . . . . . . . . . . . . . 89

3.5.1 Examples of bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.5.2 A Mathematica notebook . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.5.3 Computation and estimation . . . . . . . . . . . . . . . . . . . . . . . 92

3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 Core determining indexes for set identified models with discrete observ-

ables 105

4.1 Set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.1.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.1.2 Elemental level sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.1.3 Identified set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2 The Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2.1 Tightening bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2.2 Determinig the core . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.3.3 Concluding remarks on the algorithm . . . . . . . . . . . . . . . . . . . 121

4.4 Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Smolinski, Konrad (2012), Single Equation Instrumental Variable Models: Identification under Discrete Variation 
European University Institute

 
DOI: 10.2870/35896



4.4.1 Ordered Outcome IV Models . . . . . . . . . . . . . . . . . . . . . . . 123

4.4.2 The algorithm in action . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Smolinski, Konrad (2012), Single Equation Instrumental Variable Models: Identification under Discrete Variation 
European University Institute

 
DOI: 10.2870/35896



Smolinski, Konrad (2012), Single Equation Instrumental Variable Models: Identification under Discrete Variation 
European University Institute

 
DOI: 10.2870/35896



Chapter 1

Instead of Introduction

1.1 Preface

Over the last decade, substantial interest in theoretical econometrics and microeconometrics

has been directed towards nonparametric models. Much work has been devoted to the devel-

opment of novel identification and estimation technieques and in particular, to the identifying

power of econometric models under various types of restrictions. Notable attention has been

focused on the conditional independence restriction and instrumental variable methods for

both continuous and discrete data problems. This immense effort has led to tremendous

outcomes in terms of theoretical findings and most importantly, new empirical practices.

Nowadays, we face an apparent emphasis on minimal restrictions of nuisance parameters of

the model, with a focus on specific structural features at the same time. New models permit

the relaxation of implausible restrictions frequently superimposed unwillingly in empirical

analysis of plain old econometric models.

In this spirit, recent developments in microeconometrics have given rise to increasing

interest in partially identified models. In these models, for the credibility of claims, the

feature of interest is bounded to a set rather then constituting of a point in the space of

parameters or functions. This in turn has its own place in economic practice.

Among many appealing and commonly investigated economic circumstances, partial iden-

tification frequently arises in econometric inquiry when researchers are faced with discrete

data, omnipresent in survey studies. Examples consider a very general class of the limited

information discrete outcome models with endogeneity when very little is known about the

9
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genesis of the process generating endogenous variable.

This thesis contributes to the aforementioned line of research and seeks to address a

somewhat limited, but I believe important, range of issues in a great depth. These issues are

concerned with the specification of identified sets in so-called single equation models with

endogeneity. We achieve identification via instrumental variable restrictions and focus on

discrete outcomes as well as discrete endogenous variables.

Our focus on discrete, ordered outcome models complements the vast majority of re-

search on econometric design under continuous variation. The latter, even though theoret-

ically sound, often becomes practically infeasible. We believe that this study provides a

level of unity to the partial identification framework as a whole and makes steps forward in

understanding some aspects of single equation instrumental variable models under discrete

variation.
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1.2 Content of the Thesis

The thesis is organized as follows. Chapter I studies single equation instrumental variable

models of ordered choice in which explanatory variables may be endogenous. This chapter

provides results on the properties of the identified set for the case in which potentially en-

dogenous explanatory variables are discrete, with a sharpness result when the endogenous

variable is binary. The results are used as the basis for the calculations showing the rate of

shrinkage of the identified sets as the number of classes, in which the outcome is categorized,

increases.

Chapter II discusses general characterization of the identified sets of structural functions

when endogenous variables are discrete. Identified sets are unions of large numbers of convex

sets and may not be convex or even be connected. Each of the component sets is a projection

of a convex set, that resides in a much higher dimensional space, onto the space in which a

structural function resides. We develop a symbolic expression for this projection and give a

constructive demonstration that it is indeed the identified set. Also, we develop an expression

for a set of structural functions for the case in which endogenous variables are continuous

or mixed discrete-continuous and show that this set contains all structural functions in the

identified set in the non-discrete case.

In Chapter III we introduce core determining partitions, indexes and sets for the models

with discrete observables and continuous latent heterogeneity. Core determining indexes and

sets give rise to the finite number of the core determining inequalities, i.e. the collection

of the ultimate identification questions. We introduce an algorithm to deliver the core de-

termining indexes and illustrate the method for the ordered outcome instrumental variable

model studied in previous chapters.
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Chapter 2

IV Models of Ordered Choice

This paper studies single equation instrumental variable models of ordered choice in which

explanatory variables may be endogenous. The models are weakly restrictive, leaving unspec-

ified the mechanism that generates endogenous variables. These incomplete models are set,

not point, identifying for parametrically (e.g. ordered probit) or nonparametrically specified

structural functions. The paper gives results on the properties of the identified set for the

case in which potentially endogenous explanatory variables are discrete. The results are used

as the basis for calculations showing the rate of shrinkage of identified sets as the number of

classes in which the outcome is categorised increases.

2.1 Introduction

This paper studies single equation instrumental variables models for ordered outcomes in

which explanatory variables may be endogenous. These models arise in structural econometric

analysis of individuals’ choices amongst ordered alternatives, or of individuals’ attitudes

arranged on an ordinal scale and they arise in many other settings in which data are interval

censored continuous outcomes.

A common ploy when dealing with endogenous variation in a discrete response situation is

to presume that the discrete response is generated in a recursive, triangular system along with

the endogenous variable. Then, calling on some further restrictions, a control function method

is used as the basis for identification and estimation. See for example Smith and Blundell

13
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(1986), Rivers and Vuong (1988), Blundell and Powell (2003, 2004), Chesher (2003).1

Unfortunately this strategy does not generally work when endogenous variables are dis-

crete.2 And, as explained in Chesher(2009), the control function approach exploits strong

restrictions concerning the process generating the endogenous variables, restrictions which

may not be found plausible in many econometric settings. By contrast here we work with a

model which is far less restrictive in this regard, imposing conditions only on the structural

function generating the discrete response.

The model requires that a scalar ordered outcome Y , with M ≥ 2 points of support, is

determined by a structural function h(X,U) which is weakly monotone in scalar unobserved

U . The observed vector of explanatory variables, X, and U may not be independently

distributed. However the model requires that U be distributed independently of instruments,

Z. We call the model a Single Equation Instrumental Variable (SEIV) model. The SEIV

model places no restrictions at all on the process generating the endogenous variable, X, and

in this respect is incomplete.

Thinking about Manski’s (2003) “Law of Decreasing Credibility” encourages us to take this

approach. It allows one to see what is lost by relaxing the strong restrictions of the triangular

control function model. It turns out that what is lost is point identification because the SEIV

model is generally set not point identifying. Dropping the restrictions of the control function

model leads to ambiguity.

This paper focusses on models with discrete endogenous variables, having K points of

support, {x1, . . . , xK}, and explores the identified sets the SEIV model delivers. The main

results are now summarised.

Since the structural functions of a SEIV model are monotone in scalar U there is a

threshold crossing representation in which U is normalised marginally uniformly distributed

1The control function approach is used quite widely in applied econometric practice. STATA, Stata-
corp(2007) and LIMDEP, Greene (2007), are examples of widely used proprietary software suites armed with
commands to conduct control function estimation of models of binary responses.

2Chesher (2005) gives partial identification results for a control function model with discrete endogenous
variables.

Smolinski, Konrad (2012), Single Equation Instrumental Variable Models: Identification under Discrete Variation 
European University Institute

 
DOI: 10.2870/35896

14



on the unit interval.

h(X,U) ≡






1 , 0 ≤ U ≤ h1(X)

2 , h1(X) < U ≤ h2(X)
...

...
...

...
...

M , hM−1(X) < U ≤ 1

In the discrete endogenous variable case a nonparametrically specified structural function,

h, is characterised by N = K × (M − 1) parameters, denoted γ, which are the values of the

M − 1 threshold functions at the K values of X.

Let H0(Z) denote the set of values of γ identified by the SEIV model given F
0
Y X|Z , a

probability distribution for Y and X conditional on Z, when Z takes values in a set Z. Each

structural function is characterised by a point in the unit N -cube and H0(Z) is a subset of

that space.

The identified set delivered by a nonparametric SEIV model is shown to be a union of

convex sets each defined by a system of linear equalities and inequalities. The number of sets

involved can be enormous in what at first sight seem to be small scale problems. For example

when M = K = 5 there may be over 300 billion component sets. The result is generally not

a convex set unless instruments are strong. We give examples in which the identified set is

not convex and, indeed, not connected. Shape restrictions (e.g. monotonicity) or parametric

restrictions can bring substantial simplification.

A system of inequalities given in Chesher (2008) defines an outer set, C0(Z), within which

the SEIV model’s identified set lies. We develop expressions for these inequalities for the

M outcome, discrete endogenous variable case. We propose a second system of inequalities

defining a set of values of γ, D0(Z), and show that the identified set resides in the intersection

C̃0(Z) ≡ C0(Z) ∩D0(Z).

When the outcome Y is binary C0(Z) is a subset of D0(Z) and, as shown in Chesher

(2008), in that case C0(Z) is the identified set H0(Z). Here we show that when the endogenous

variable is binary C̃0(Z) is the identified set however many categories there are for Y .

Finally we examine the impact of response discreteness on the identified sets. The discrete

response model studied here is a non-additive error model and the results for such models

for continuous outcomes given in Chernozhukov and Hansen (2005) show that there can be
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point identification in SEIV models when observed responses are continuous. So it is to be

expected that as the number of categories observed rises there is reduction in ambiguity and

an approach to point identification.

We investigate this in the context of a model with parametrically specified structural

functions such as arise in ordered probit models. We find that in the cases considered identi-

fied sets for a parameter such as a coefficient in a linear index shrink at a rate approximately

equal to the inverse of the square of the number of classes in which the outcome is cate-

gorised. In the example, when Y is categorised into 10 or more classes, the SEIV model

delivers identified sets which are very small indeed.

The paper is organised as follows. Section 2.2 give a formal definition of the SEIV model

and defines its identified set of structural functions.

Section 2.3 develops the main results for nonparametrically specified structural func-

tions with discrete endogenous variables. In Section 2.3.1 a piecewise uniform system of

conditional distributions of U given X and Z is introduced and conditions under which a

structural function lies in the identified set are stated. The geometry of the identified set for

nonparametrically specified structural functions is discussed in Section 2.3.2 and systems of

inequalities obeyed by values of these functions that lie in the identified set are set out in

Section 2.3.3 Proofs of propositions are given in an Annex.

Section 2.4 illustrates the results using a parametrically specified model which, in the

absence of endogeneity, would be a conventional ordered probit model. This Section gives

results on the rate of shrinkage of identified sets as the number of categories of the discrete

outcome increases. Section 2.5 concludes.

2.2 An IV model for ordered outcomes

In the SEIV model a scalar ordered outcome Y is determined by observable X, which may

be a vector, and unobserved scalar U . Restriction 1 defines admissible structural functions.
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Restriction 1. Y is determined by a structural function as follows:

Y = h(X,U) ≡






1 , h0(X) ≤ U ≤ h1(X)

2 , h1(X) < U ≤ h2(X)
...

...
...

...
...

M , hM−1(X) < U ≤ hM (X)

with, for all x, h0(x) = 0 and hM (x) = 1 and for all x and m, hm(x) > hm−1(x). U is

normalised to have a marginal uniform distribution on [0, 1].

Specifying the values of Y to be the first M integers is an innocuous normalisation because

Y is an ordered outcome.

U and X are not required to be independently distributed so the model allows elements of

X to be endogenous. However U is required to be distributed independently of instrumental

variables, Z, as set out in Restriction 2.

Restriction 2. U and instrumental variables Z which take values in some set Z are inde-

pendently distributed in the sense that the conditional distribution function of U given Z = z

satisfies FU |Z(u|z) = u for all u ∈ [0, 1] and z ∈ Z.

Restriction 1 excludes the instrumental variables from the structural function. Neither

restriction imposes any conditions on the process generating X. Now consider the identifying

power of this model.

Let F
0
Y X|Z denote some distribution function of Y and X conditional on Z. Imagine a

situation in which data are informative about this distribution for values of Z that lie in a

set Z. If this distribution function is compatible with the SEIV model then there exists (i)

a structural function h
0 with threshold functions {h0m}Mm=1 and (ii) a distribution function

F
0
UX|Z , both admitted by the SEIV model and such that the following condition holds when

h = h
0 and FUX|Z = F

0
UX|Z .

F
0
Y X|Z(m,x|z) = FUX|Z(hm(x), x|z), for all: z ∈ Z, m and x. (2.1)

There may be more than one admissible structure (h, FUX|Z) satisfying (2.1) because

it may be possible to compensate for variations in the x-sensitivity of the threshold func-

Smolinski, Konrad (2012), Single Equation Instrumental Variable Models: Identification under Discrete Variation 
European University Institute

 
DOI: 10.2870/35896

17



tions {hm}Mm=1 by adjusting the u- and x-sensitivity of FUX|Z leaving the left hand side of

(2.1) unchanged while respecting the independence Restriction 2. So the model is partially

identifying.

For a distribution F
0
Y X|Z let S0(Z) denote the set of structures identified by the model

comprising Restrictions 1 and 2. This is the set of structures admitted by the SEIV model

and satisfying (2.1). The set of structural functions identified by the model, denoted H0(Z),

is the set of structural functions h which are elements of structures lying in the identified set.

H
0(Z) ≡ {h : ∃ admissible FUX|Z s.t. (h, FUX|Z) ∈ S

0(Z)}

The set H0(Z) is a projection of the set S0(Z).

This set is difficult to characterise and compute when X is continuously distributed be-

cause determining whether there exists a distribution function FUX|Z that can accommodate

a particular structural function may require searching across an infinite dimensional space of

functions.

However Chesher (2008) shows that when Y is binary the identified set is determined by

a system of inequalities in which the distribution function FUX|Z does not appear. One of

the contributions of this paper is a similar result for the case in which a scalar endogenous

explanatory variable X is binary and Y takes any number of values.

When X is discrete, say with K points of support, the distribution function FUX|Z can

be characterised by a finite number of parameters for each value of Z and the identified set

can be computed when M and K are not too large. The remainder of the paper studies the

case in which the explanatory variable, X, is discrete.

2.3 Identified sets with discrete endogenous variables

2.3.1 Identification

When X is discrete and K-valued with X ∈ {xi}
K
i=1, the threshold functions are characterised

by the parameters

γmi ≡ hm(xi), m ∈ {0, . . . ,M}, i ∈ {1, . . . ,K}
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of which N ≡ (M−1)K are free, that is not restricted to be zero or one. Define γi ≡ {γmi}
M
m=0

and γ ≡ {γi}
K
i=1 with , for all i ∈ {1, . . . ,K}, γ0i ≡ 0, γMi ≡ 1.

In the discrete X case an identified set of structural functions is a set of values of γ,

comprising a subset of the unit N -cube.

When determining whether a structural function characterised by a value of γ lies in the

identified set it is sufficient to search across distribution functions which, at each value z of

the instrumental variables are characterised by the following parameters.

βmij(z) ≡ FU |XZ (γmi|xj , z) , m ∈ {0, 1, . . . ,M}, (i, j) ∈ {1, . . . ,K}

Let β(z) denote the list of values βmij(z), m ∈ {1, . . . ,M}, (i, j) ∈ {1, . . . ,K} for some value

z. For all (i, j) ∈ {1, . . . ,K} define β0ij(z) ≡ 0 and βMij(z) ≡ 1. Let β(Z) denote the list of

values of β(z) generated as z varies across Z.

Values βmij(z) with i = j are relevant because observational equivalence requires that if

γ lies in the identified set then for each z ∈ Z, m and i the equality

FU |XZ (γmi|xi, z) = F
0
Y |XZ(m|xi, z) (2.2)

must hold. The conditional distribution F
0
X|Z is identified so (2.2) is effectively the observa-

tional equivalence condition (2.1).

The independence restriction together with the uniform distribution normalisation of the

marginal distribution of U requires that for each m, i and z the following condition holds:

E
0
X|Z=z[FU |XZ (γmi|X, z)] ≡

K�

j=1

FU |XZ (γmi|xj , z) Pr0[X = xj |Z = z] = γmi (2.3)

so values of βmij(z) with i �= j are also relevant. Here E
0
X|Z=z indicates expectation taken

with respect to the distribution F
0
X|Z with the conditioning variable Z taking the value z.

So, for each point xj in the support of X the values of the conditional distribution

functions, FU |XZ(u|xj , z), at each value of u ∈ γ are relevant when determining whether

γ is in the identified set. Other values of u are not relevant because they play no role in

the fulfillment of the observational equivalence condition (2.2) or the independence condition

(2.3).
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If γmi and γm�i� are adjacent3 values of the threshold parameters then the definition of

FU |XZ for any values, xj and z of the conditioning variables can be completed by connecting

FU |XZ(γmi|xj , z) and FU |XZ(γm�i� |xj , z) with straight line segments delivering histogram-like

piecewise uniform conditional distributions.4

Let Pr0 denote probabilities calculated using a particular distribution function F
0
Y X|Z .

Define conditional probabilities for X given Z:

δ
0
i (z) ≡ Pr0[X = xi|Z = z] i ∈ {1, . . . ,K}

and define δ
0(z) ≡ {δ0i (z)}

K
i=1. Let

δi(z) ≡ Pr[X = xi|Z = z] i ∈ {1, . . . ,K}

be conditional probabilities of X given Z

Define conditional probabilities and cumulative probabilities of the outcome:

α
0
mi(z) ≡ Pr0[Y = m|X = xi, Z = z], m ∈ {0, . . . ,M}, i ∈ {1, . . . ,K}

ᾱ
0
mi(z) ≡

m�

n=0

α
0
ni(z), m ∈ {0, . . . ,M}, i ∈ {1, . . . ,K}

with α
0
0i(z) ≡ 0 for all i and z, and lists of conditional probabilities as follows.

α
0
i (z) ≡ {α

0
mi(z)}

M
m=0 α

0(z) ≡
�
α
0
i (z)

�K

i=1

ᾱ
0
i (z) ≡ {ᾱ

0
mi(z)}

M
m=0 ᾱ

0(z) ≡
�
ᾱ
0
i (z)

�K

i=1

Consider a structure characterised by

1. γ: a list of values of threshold functions,

2. β(Z): a list of values of conditional distribution functions of U given X and Z obtained

as Z takes values in Z, and,
3If there is no γst ∈ γ such that γmi < γst < γm�i� then γmi and γm�i� are adjacent.
4Using straight line segments ensures that the independence condition:

E0
X|Z=z[FU|XZ (u|X, z)] = u

holds for all u ∈ (0, 1) and z ∈ Z.
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3. δ(Z): a list of values of conditional probabilities of X given Z = z, δ(z) = {δi(z)}Ki=1

where δi(z) ≡ Pr[X = xi|Z = z], obtained as z varies across Z.

Such a structure lies in the set identified by the SEIV model associated with probabilities

α
0(z) and δ

0(z) and a set of instrumental values Z if and only if the following three conditions

hold for all z ∈ Z.

I1. Observational equivalence. For m ∈ {1, . . . ,M} and i ∈ {1, . . . ,K}

βmii(z) = ᾱ
0
mi(z) δi(z) = δ

0
i (z)

I2. Independence. For m ∈ {1, . . . ,M} and i ∈ {1, . . . ,K}

K�

j=1

δ
0
j (z)βmij(z) = γmi.

I3. Proper conditional distributions. For (m,n) ∈ {1, . . . ,M} and (i, j, k) ∈ {1, . . . ,K}

if γmi ≤ γnj then βmik(z) ≤ βnjk(z).

2.3.2 Geometry of the identified set

When determining whether a particular value of γ lies in the identified set, the ordering of

the elements of γ is crucial in determining whether there exist distribution functions which

satisfy condition I3.

There are L ≡ (K(M − 1))!/((M − 1)!)K admissible orderings of the N elements of γ

which are not restricted to be zero or one.5 For example, when M = 3 and K = 2, there

are 6 of the possible 24 orderings that are admissible. The 18 inadmissible orderings have

γ11 > γ21 or γ12 > γ22 or both.

Let l index the admissible orderings of γ. For each l ∈ {1, . . . , L} define sets S0
l (z) and

H0
l (z) as follows.

S
0
l (z) ≡ {(γ,β(z), δ(z)) : γ is in order l and (γ,β(z), δ(z)) respects I1-I3}

5There are (K(M − 1))! permutations of the free elements of γ. Amongst these only 1 in each (M − 1)!
have a sequence γi in ascending order and there are K such sequences to be considered so only 1 in each
((M − 1)!)K have all these sequences in ascending order.
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Table 2.1: Number of admissible orderings of gamma with (upper) and without (lower)
monotonicity wth respect to X

Monotonicity with K
M respect to X 2 3 4 5

2 Yes 1 1 1 1
No 2 6 24 120

3 Yes 2 5 14 42
No 6 90 2, 520 113, 400

4 Yes 5 42 462 6006
No 20 1, 680 369, 600 168, 168, 000

5 Yes 14 462 24, 024 1, 662, 804
No 70 34, 650 6, 306, 300 305, 540, 235, 000

H
0
l (z) ≡

�
γ : γ is in order l and ∃ (β(z), δ(z)) s.t. (γ,β(z), δ(z)) ∈ S

0
l (z)

�

The set S0
l (z) is the set of structures admitted by the SEIV model that have γ in order l and

deliver the distribution F
0
Y X|Z for Z = z. The set H0

l (z) is the projection of this set onto the

component γ, that is onto the structural function.

Since for any ordering, l, conditions I1-I3 comprise a system of linear equalities and

inequalities, each set S0
l (z) is convex, or empty. It follows, from consideration of the Fourier-

Motzkin elimination algorithm6, that the set H0
l (z) is also defined by a system of linear

equalities and inequalities, so it is also convex or empty.

The identified set of values of γ in order l obtained as z takes all values in the set of

instrumental values Z, denoted H0
l (Z), is the following intersection of the sets H0

l (z):

H
0
l (Z) ≡

�

z∈Z
H

0
l (z)

which is convex or empty. The identified set of values of γ of all orders is the union of the

sets H0
l (Z), as follows.

H
0(Z) =

L�

l=1

H
0
l (Z)

Thus the identified set of values of γ, that is the identified set of structural functions, is a

union of convex sets but that union may not itself be convex.

If there is a value l such that Hl(Z) contains values of γ in which no pair of elements have

a common value and for more than one value of l there are sets Hl(Z) which are non-empty

6See Ziegler (2007).
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then the identified set is not connected.

This is so because each set Hl(Z) lies in one of the N ! orthoschemes7 of the unit N -cube

and the orthoschemes have intersections only at their faces where there is equality of two or

more elements of γ. In the example in Section 2.4 there are a number of cases in which the

identified set is disconnected.

When instruments are strong or there are highly informative additional restrictions (for

example parametric restrictions) the sets Hl(Z) may be empty for all but one value of l

and then the identified set is convex. Otherwise the identified set may be very irregular and

complex, composed of the union of a very large number of convex subsets of the identified

set. With M and K as low as 4 the value of L is 369, 600 and as M or K increase the value

of L quickly becomes astronomical.

Additional restrictions can bring some simplification. For example suppose the threshold

functions are restricted to be monotone in a scalar explanatory variable X, with a common

direction of dependence, say all non-decreasing.

The problem of finding the number of admissible orderings of γ under this restriction

can be recast as the problem of finding the number of ways of filling a (M − 1)×K matrix

with the integers {1, 2, . . . , (M −1)K} such that the array increases both across columns and

across rows. With K = 2 this is the Catalan number 1
M+1

�2(M−1)
(M−1)

�
and the restriction of

monotonicity with respect toX brings an (M − 1)-fold reduction in the number of admissible

orderings.

Table 2.1 shows the value of L for values of M and K up to 5 together with the number

of admissible orderings once monotonicity with respect to X is imposed.8 The monotonicity

restriction can bring large reductions in numbers of admissible orderings but when M or K

are at all large there remain huge numbers of admissible orderings of γ.

7The orthoschemes of the unit cube are the regions within which points obeying a particular weak ordering
of coordinate values lie. For example in a 3-cube within which lie (x, y, z) there are 6 orthoschemes defined
by the inequalities x ≤ y ≤ z, y ≤ x ≤ z, etc. See Coxeter (1973).

8The row and column ascending matrices encountered here are special cases of Young Tableaux. The
NumberOfTableaux command in the Combinatorica package (Pemmaraju and Skienka, 2003) of Mathematica
(Wolfram Research, Inc., 2008) was used to compute those entries in Table 2.1 in which montonicity with
respect to X is imposed.

Smolinski, Konrad (2012), Single Equation Instrumental Variable Models: Identification under Discrete Variation 
European University Institute

 
DOI: 10.2870/35896

23



2.3.3 Characterisation of the identified set

Chesher (2008) shows that all structural functions in the set identified by the SEIV model

associated with a conditional distribution function F
0
Y X|Z and a set of instrumental values Z

satisfy the following inequalities for all u ∈ (0, 1) and z ∈ Z.

Pr0[Y < h(X,u)|Z = z] < u ≤ Pr0[Y ≤ h(X,u)|Z = z]

In terms of threshold functions these inequalities are as follows.

M�

m=1

Pr0[(Y = m) ∧ (hm(x) < u)|Z = z] < u ≤

M�

m=1

Pr0[(Y = m) ∧ (hm−1(x) < u)|Z = z]

For the discrete endogenous variable case, there is the following representation.

K�

i=1

M−1�

m=1

δ
0
i (z)α

0
mi(z)1(γmi < u) < u ≤

K�

i=1

M�

m=1

δ
0
i (z)α

0
mi(z)1(γm−1,i < u) (2.4)

These inequalities have implications for γ as set out in the following Proposition which is

proved in the Annex.

Proposition 1. For any z, if the inequalities (2.4) hold for all u ∈ (0, 1) then for all l ∈

{1, . . . ,M} and s ∈ {1, . . . ,K} the following inequalities hold.

K�

i=1

M−1�

m=1

δ
0
i (z)α

0
mi(z)1(γmi ≤ γls) ≤ γls ≤

K�

i=1

M�

m=1

δ
0
i (z)α

0
mi(z)1(γm−1,i < γls) (2.5)

For any ordering l of γ let C0
l (z) denote the set of values of γ that satisfy the inequalities

(2.5) of Proposition 1. Since these inequalities define an intersection of halfspaces each set

C0
l (z) is convex or empty, as is its intersection

C
0
l (Z) =

�

z∈Z
C
0
l (z).

Define C0(Z) as the set of values of γ of any ordering that satisfy the inequalities of Proposi-

tion 1 for all z ∈ Z when calculations are done using a distribution F
0
Y X|Z . This is the union

Smolinski, Konrad (2012), Single Equation Instrumental Variable Models: Identification under Discrete Variation 
European University Institute

 
DOI: 10.2870/35896

24



of the sets C0
l (Z):

C
0(Z) =

L�

l=1

C
0
l (Z)

and, like the identified set, H0(Z), the set of values γ defined by the inequalities of Proposition

1, C0(Z), is a union of convex sets. It may not itself be convex nor need it be connected.

Chesher (2008, 2009) shows that, when Y is binary, C0(Z) is precisely the identified set,

H0(Z). When Y is not binary this may not be so.

This can be seen by considering Proposition 2, proved in the Annex. Proposition 2,

which follows directly from conditions I1-I3, places restrictions on values of γ that lie in the

identified set. It will be demonstrated in Section 2.4 that there can be values of γ which

satisfy the inequalities of Proposition 1 and fail to satisfy the inequalities of Proposition 2.

Proposition 2. If γ lies in the identified set associated with probabilities ᾱ
0(z) and δ

0(z)

for instrumental values, z, varying in Z, then for all (m,n) ∈ {1, . . . ,M} with n > m and

all i ∈ {1, . . . ,K} there are the following inequalities, (i) for each z ∈ Z:

γni − γmi ≥ δ
0
i (z)

�
ᾱ
0
ni(z)− ᾱ

0
mi(z)

�
(2.6)

and (ii):

γni − γmi ≥ max
z∈Z

�
δ
0
i (z)

�
ᾱ
0
ni(z)− ᾱ

0
mi(z)

��
. (2.7)

Let D0(Z) denote the set of values of γ that satisfy the system of inequalities (2.7) of

Proposition 2. Since D0(Z) is an intersection of halfspaces it is a convex set.

Values of γ that lie in the set identified by the SEIV model obey the inequalities of

Proposition 1 and Proposition 2 so the identified set lies in the intersection of the sets defined

by the inequalities of the two Propositions as stated in Proposition 3.

Proposition 3. The identified set, H0(Z), is a subset of C̃0(Z) ≡ C0(Z) ∩D0(Z).

Like C0(Z) the set C̃0(Z) is a union of convex sets as can be seen by expressing it as

follows.

C̃
0(Z) =

L�

l=1

�
C
0
l (Z) ∩D

0(Z)
�
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When Y is binary the inequalities (2.6) of Proposition 2 reduce to the following.

δ
0
i (z)α

0
1i(z) ≤ γ1i ≤ 1 + δ

0
i (z)(1− α

0
1i(z)) i ∈ {1, . . . ,K} (2.8)

The inequality (2.5) of Proposition 1 requires that

i�

j=1

δ
0
j (z)α

0
1j(z) ≤ γ1i ≤ 1 +

K�

j=i

δ
0
j (z)(1− α

0
1j(z)) i ∈ {1, . . . ,K} (2.9)

and it is clear that (2.8) is satisfied if (2.9) is satisfied. Therefore when Y is binary C0(Z) ⊆

D0(Z) so C̃0(Z) ≡ C0(Z) confirming the result of Chesher (2008) for the binary endogenous

variable case: for binary Y , C0(Z) is the identified set H0(Z).

If the explanatory variable, X, is binary then C̃0(Z) is the identified set, as stated in

Proposition 4, which is proved in the Annex.

Proposition 4. When X is binary H0(Z) = C̃0(Z) no matter how many points of support

Y has.

The inequalities defining C̃0(Z) of Proposition 4 involve probabilities about which data

is informative and the value γ that characterises a structural function. The values of the

elements of β(Z) that define the conditional distribution functions of U given X and Z do

not appear in these inequalities. So Proposition 4 points the way to fast computation of the

identified set. In Section 2.4 it provides the basis for computations that illustrate identified

sets in a parametrically restricted ordered probit model with a binary endogenous variable

and from M = 2 to M = 130 points of support for the ordered outcome Y .

2.4 Discreteness and identified sets in a parametric ordered

probit model

2.4.1 Models

We now investigate the nature of the identified sets delivered by a parametric ordered probit

model with a binary endogenous variable. In this model the structural function is paramet-
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rically specified, as follows.

Y =






1 , 0 ≤ U ≤ Φ(s−1(c1 − a0 − a1X))

2 , Φ(s−1(c1 − a0 − a1X)) < U ≤ Φ(s−1(c2 − a0 − a1X))
...

...
...

...
...

M , Φ(s−1(cM−1 − a0 − a1X)) < U ≤ 1

(2.10)

Here Φ denotes the standard normal distribution function, the constants c1, . . . , cM−1 are

threshold values defining cells within which a latent normal random variable is classified, and

a0, a1 and s are constant parameters. Throughout X is binary with support {−1,+1}, There

is the independence restriction: U ⊥ Z, U is normalised Unif(0, 1).

In one portfolio of illustrations (A) the model specifies the values of the threshold param-

eters c1, . . . , cM−1 as known, and s as known and normalised to one. This leaves just two

unknown parameters, a0 and a1, and it is easy to display the identified sets graphically. In

these illustrations M , the number of levels of the outcome, is varied from 2 to 130.

In another illustration (B) M is held fixed at 3 and the model specifies the thresholds,

c1 and c2, along with the slope coefficient, a1, as unknown parameters. In these illustrations

the values of a0 and s are normalised to respectively 0 and 1.

In all cases the instrumental variable takes equally spaced values in the interval [−1, 1].

There are a number of reasons for choosing this particular parametric model and set up

for this exercise.

1. Many researchers doing applied work will base their analysis on parametric models and

the ordered probit model is a leading case considered in practice.

2. When studying the impact of the discreteness of the outcome on identified sets it is

convenient to have objects like the parameters a0 and a1 which remain stable with a

common meaning as the discreteness of the outcome is varied.

3. The number of unknown objects in a fully nonparametric analysis is N = K(M−1) and

the identified set can be highly complex comprising the union of an enormous number

of sets associated with each possible ordering of the N values delivered by the structural

function - see Table 2.1. The parametric model severely restricts the number of feasible
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orderings and, as explained below, it is not necessary to search across many possible

orderings when determining the extent of the identified set.

2.4.2 Calculation procedures

The calculation of an identified set of parameter values for a particular distribution F
0
Y X|Z

and set of instrumental values Z proceeds as follows.

A fine grid of values of the parameters (e.g. a0 and a1 in the illustrations in set A) is

defined. A value, say (a∗0, a
∗
1) is selected from the grid and the value of γ, say γ

∗, determined

by (a∗0, a
∗
1) is calculated. Recall that γ is a list of values of the threshold functions defined

by a model at the points of support of the discrete endogenous variable.

With a value γ
∗ to hand the ordering of its elements, say l

∗, is determined and the

linear equalities and inequalities defining the convex set H0
l∗(Z) can be calculated. In all the

illustrations, because X is binary, H0
l∗(Z) = C̃0

l∗(Z). If γ∗ falls in this set then (a∗0, a
∗
1) is in

the identified set, otherwise it is not.

Passing across the grid the identified set is computed. Care is required because the set

may not be connected and sometimes component connected subsets of the identified set can be

small. To avoid missing component subsets, dense grids of values are used in the calculations

presented here.

2.4.3 Illustration A1

The probability distributions used in this illustration are generated by triangular Gaussian

structures with structural equations as follows.

Y
∗ = α1X +W

X
∗ = 0.5Z + V

Y =






1 , −∞ ≤ Y
∗ ≤ c1

2 , c1 < Y
∗ ≤ c2

...
...

...
...

...

M , cM−1 < Y
∗ ≤ +∞

X =






−1 , −∞ ≤ X
∗ ≤ 0

+1 , 0 < X
∗ ≤ +∞
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Table 2.2: Illustration A1: Threshold values
Number of Classes: M Threshold Values (ci) Shading in Figure 1

2 {0.0} red
4 {±0.1, 0.0} blue
6 {±0.3,±0.1, 0.0} red
8 {±0.7,±0.3,±0.1, 0.0} blue
10 {±1.1,±0.7,±0.3,±0.1, 0.0} red
12 {±1.5,±1.1,±0.7,±0.3,±0.1, 0.0} green
14 {±1.8,±1.5,±1.1,±0.7,±0.3,±0.1, 0.0} black

The value of α1 in this illustration is 1 and the distribution of (W,V ) is specified to be

Gaussian and independent of Z.




W

V



 |Z ∼ N2








0

0



 ,




1.0 0.5

0.5 1.0









These structures are closely related to a special case of the parametric Gaussian models of

discrete outcomes studied in Heckman (1978).

Expressed in terms of a random variable U which is uniformly distributed on the unit

interval the structural functions are as follows.

h(X,U) =






1 , 0 ≤ U ≤ Φ(c1 +X)

2 , Φ(c1 +X) < U ≤ Φ(c2 +X)
...

...
...

...
...

M , Φ(cM−1 +X) < U ≤ 1

There are 10 values in Z as follows.

Z = {±1.0,±0.777,±0.555,±0.333,±0.111}

In this illustration the number of classes in which Y is observed is increased from 2

through 14 with threshold values as set out in Table 2.2.

Identified sets for the two parameters, (a0, a1), are drawn in Figure 1. The sets are

rhombuses arranged with edges parallel to 45◦ and 225◦ lines. Identified sets are superimposed

one upon another.
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The largest rhombus drawn in Figure 1 is the identified set with M = 2. Because the

outcome is binary this is the set C0(Z).

The identified set with M = 4 is the rhombus comprising the lowest blue chevron and

what lies above it but excluding a narrow strip on the edge of the two upper boundaries. This

narrow strip (coloured dark blue) is the set C0(Z)∩D0(Z). Notice that this does not extend all

the way along the upper edges of the set because for the case M = 2, C̃0(Z) = C0(Z) ⊆ D0(Z).

The identified set with M = 6 (respectively 8) is the rhombus comprising the second

lowest red (respectively blue) chevron and all that lies above it apart from the narrow dark

blue shaded strip on the edge of the two upper boundaries.

The identified set with M = 10 is disconnected and comprises the two small red shaded

rhombuses in the upper part of the picture. The identified set when M = 12 is the small

green shaded rhombus in the centre of the picture and the identified set when M = 14 is

the tiny black shaded rhombus at the intersection of the horizontal and vertical dashed lines.

Further increases in numbers of classes deliver sets which are barely distinguishable from

points at the scale chosen for Figure 1.

As the number of classes rises the extent of the identified sets falls rapidly but the passage

towards point identification is complex and even when the sets are quite small they can be

disconnected.

2.4.4 Illustration A2

In this illustration the class of structures generating probability distributions is as in Illus-

tration A1 and, as there, α1 = 1. But there are now 5 values in Z as follows

Z = {±1.0,±0.5, 0.0}

and the number of classes is varied through the following sequence.

M ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 25, 50, 75}

Threshold values are chosen to “cover” the main probability mass of the distribution of Y

marginal with respect to X and Z. They are chosen as quantiles of a N(0, (2.4)2) distribution
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associated with equally spaced probabilities in [0, 1], e.g. {1/2} for M = 2, {1/3, 2/3} for

M = 3. The identified sets are drawn in Figure 2-5.

Figure 2 shows identified sets for M = 2 (red), M = 4 (blue) and M = 6 (green). Notice

that in the latter two cases the identified sets are disconnected comprising two rhombuses. On

the upper edges of the upper rhombus in the case M = 4 is a narrow dark blue strip marking

the intersection C0(Z) ∩ D0(Z) which does not lie in the identified set. This intersection is

empty in the other cases shown in this Figure and in Figures 3 - 5.

Figure 3 shows identified sets for M = 8 (red), M = 10 (blue) and M = 12 (green). The

identified set for M = 10 is disconnected. Notice that the scale is greatly expanded in this

Figure - the identified sets are rapidly decreasing in size as the number of classes observed

for Y increases. The outline unshaded rhombus in Figure 3 is the identified set for M = 6

copied across from Figure 2. Boxes formed by the dashed lines in Figure 2 show the region

focussed on in Figure 3.

Figure 4 shows identified sets for M = 14 (red), M = 16 (blue) and M = 18 (green).

Again the scale is greatly expanded relative to the previous Figure. The outline unshaded

rhombus is the identified set for M = 12 copied across from Figure 3.

Figure 5 shows identified sets for M = 25 (red), M = 50 (blue) and M = 75 (green). Yet

again the scale is greatly expanded relative to the previous Figure. The lower part of the

identified set for M = 18 is drawn in outline. All the identified sets are connected and of

very small extent. The situation is now very close to point identification. The identified set

at M = 100 is not distinguishable from a point at the chosen scale.

The two panes of Figure 6 plot logarithm (base e) of the lengths of identified intervals

for a0 and a1 against the logarithm of the number of classes in which Y is observed. Figure

7 plots the logarithm of he area of the identified set for a0 and a1 against the logarithm of

the number of classes. In each case the points are quite tightly scattered around a negatively

sloped linear relationships suggesting approach to point identification at a rate proportional

to a power of the number of classes9. OLS estimates indicate that the lengths of the sets for

a0 and a1 both fall at a rate proportional to M
−2.1 and that the area of the identified set for

a0 and a1 falls at a rate proportional to M
−3.6.

9Where sets are disconnected the lengths of the identified sets for individual parameters are the calculated
as the sum of the lengths of disjoint intervals and the area of the sets for a pair of parameters is calculated
as the sum of the areas of the connected component sets.
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The fine details of this approach and the geometry of the identified sets depends on fine

details of the specification of the structures generating the probability distributions such as

the precise spacing of the thresholds.

2.4.5 Illustration B1

The class of structures generating probability distributions is as in Illustration A1 and, as in

that illustration there are 10 values in Z, as follows.

Z = {±1,±0.777,±0.555,±0.333,±0.111}

In this illustration there are M = 3 classes throughout. The values of a0 and s are normalised

to respectively zero and one. The unknown parameters are the thresholds c1 and c2 and the

slope coefficient a1. This is the sort of set up one finds when modelling attitudinal data where

threshold values are unknown parameters of considerable interest.

In the structure generating the probability distributions the values of the thresholds are

as follows

(c1, c2) = (−0.667,+0.667)

and α1 = 1.

The identified set resides in a 3-dimensional square prism of infinite extent: R × (0, 1)2.

Figures 8, 9 and 10 show slices taken through this at a sequence of values of a1 showing at

each chosen value of a1 the associated identified set for (c1, c2). In all cases this is connected

and resides in the upper orthoscheme of the unit square because the restriction c2 > c1 has

been imposed.

In each case the rectangular regions (shaded red and green) indicate combinations of

(c1, c2) which at the chosen value of a1 lie in the set C0(Z). The green shaded regions indicate

combinations of (c1, c2) that at the chosen value of a1 are in the intersection C0(Z)∩D0(Z).

These combinations of (a1, c1, c2) do not lie in the identified set. The red shaded regions

indicate combinations of (c1, c2) that at the chosen value of a1 are in the intersection C̃0(Z) =

C0(Z) ∩D0(Z). These combinations of (a1, c1, c2) are in the identified set.

The extent of the regions in the c1 × c2 plane grows as a1 falls towards the value 1.0 and
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then shrinks as a1 falls further.

2.5 Concluding remarks

Single equation instrumental variable models for ordered discrete outcomes generally set iden-

tify structural functions or, if there are parametric restrictions, parameter values. Complete

models, for example the triangular control function model, can be point identifying, but in

applied econometric practice there may be no good reason to choose one point identifying

model over another.

For any particular distribution of observable variables the sets delivered by the SEIV

model give information about the variety of structural functions or parameter values that

would be delivered by one or another of the point identifying models which are restricted

versions of the SEIV model.

For the nonparametric case we have developed a system of equalities and inequalities

that bound the identified sets of structural functions delivered by a SEIV model in the case

when endogenous variables are discrete. We have shown that when either the outcome or

the endogenous variable is binary the inequalities sharply define the identified set. The

inequalities involve only probabilities about which data is informative and the identified sets

can be estimated and inferences drawn using the methods set out in Chernozhukov, Lee and

Rosen (2009). Some illustrative calculations for the binary outcome case are given in Chesher

(2009).

Calculations in a parametric model suggest that the degree of ambiguity attendant on

using the SEIV model reduces rapidly as the discreteness of the outcome is reduced. Research

to determine the extent to which this is true in less restricted settings is one of a number of

topics of current research.
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Annex: Proofs of Propositions

Proof of Proposition 1. Consider some arrangement of the elements of γ in which two

elements, γkr < γls are adjacent so that there is no element γqt ∈ γ satisfying γkr < γqt < γls.

Consider u ∈ (γkr, γls] and the right hand side of (2.4), reproduced here.

u ≤

K�

i=1

M�

m=1

δ
0
i (z)α

0
mi(z)1(γm−1,i < u)

This inequality must hold for all u in (γkr, γls] and so must hold at the supremum of the

interval which is its maximal value, γls, and so there is:

γls ≤

K�

i=1

M�

m=1

δ
0
i (z)α

0
mi(z)1(γm−1,i < γls)

which is the right hand side of (2.5).

Now consider some arrangement of the elements of γ in which two elements, γls < γpr

are adjacent so that there is no element γqt satisfying γls < γqt < γpr. Consider u ∈ (γls, γpr]

and the left hand side of (2.4), reproduced here.

K�

i=1

M−1�

m=1

δ
0
i (z)α

0
mi(z)1(γmi < u) < u

This inequality must hold for all u in (γls, γpr] and so must hold as in (2.4) with strong

inequalities at every value of u in the interval and so with weak inequalities at the infimum

of the interval which is γls, and so there is:

K�

i=1

M−1�

m=1

δ
0
i (z)α

0
mi(z)1(γmi ≤ γls) ≤ γls

which is the left hand side of (2.5). �
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Proof of Proposition 2. Since γ is in the identified set for each z ∈ Z there exists a

distribution function characterised by β(z) satisfying conditions I1-I3. Conditions I1 and I2

imply that:

γni = δ
0
i (z)ᾱ

0
ni(z) +

�

j �=i

δ
0
j (z)βnij(z)

γmi = δ
0
i ᾱ

0
mi(z) +

�

j �=i

δ
0
j (z)βmij(z)

and the result (i) follows on subtracting and noting that the properness condition I3 ensures

that for, each i and j, βnij(z) ≥ βmij(z) because n > m. The result (ii) follows directly on

intersecting the intervals obtained at each value z ∈ Z. �

Proof of Proposition 4. Consider candidate structural functions, that is, values of γm1

and γm2, m ∈ {1, . . . ,M − 1}. Define β(Z) so that conditions I1 and I2 are satisfied for all

z ∈ Z. There is only one way to do this: for each m, to satisfy Condition I1:

βm11(z) = ᾱ
0
m1(z) βm22(z) = ᾱ

0
m2(z) (2.11)

and to satisfy Condition I2:

δ
0
1(z)βm11(z) + δ

0
2(z)βm12(z) = γm1

δ
0
1(z)βm21(z) + δ

0
2(z)βm22(z) = γm2

and, on combining these results, for m ∈ {1, . . . ,M} there are the following expressions

βm12(z) =
γm1 − δ

0
1(z)ᾱ

0
m1(z)

δ
0
2(z)

βm21(z) =
γm2 − δ

0
2(z)ᾱ

0
m2(z)

δ
0
1(z)

(2.12)

It is now shown that for every γ ∈ C̃0(Z) the value of β(Z) defined by (2.11) and (2.12)

as z varies across Z satisfies the properness condition I3. It follows that C̃0(Z) ⊆ H0(Z) and

Proposition 3 states that H0(Z) ⊆ C̃0(Z), so it must be that H0(Z) = C̃0(Z) in this binary

endogenous variable case.

To proceed, consider the distribution function characterised by βmj1(z) for m ∈ {1, . . . ,M−

1} and j ∈ {1, 2} and any z ∈ Z. Here conditioning is on X = x1 and Z = z. The argument
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when conditioning is on X = x2 goes on similar lines and can be worked through by exchange

of indices in what follows.

Condition I3 is satisfied if for every adjacent pair of values γsi < γtj :

βsi1(z) ≤ βtj1(z)

and there are four possibilities to consider as follows.

A1 i = 1, j = 1. In this case t = s + 1 because γs1 < γt1 are adjacent. Properness

requires that βs11 ≤ βs+1,11 but (2.11) ensures that this holds because βs11 = ᾱ
0
s1(z) ≤

ᾱ
0
s+1,1(z) = βs+1,11.

A2 i = 1, j = 2. Properness requires that βs11 ≤ βt21 which, on using (2.11) and (2.12),

requires that:

ᾱ
0
s1(z) ≤

γt2 − δ
0
2(z)ᾱ

0
t2(z)

δ
0
1(z)

which is written as follows.

δ
0
1(z)ᾱ

0
s1(z) + δ

0
2(z)ᾱ

0
t2(z) ≤ γt2 (2.13)

If γ ∈ C0(z) then the inequality (2.5) holds and, on its left hand side, replacing γls by

γt2 there is:
K�

i=1

M−1�

m=1

δ
0
i (z)α

0
mi(z)1(γmi ≤ γt2) ≤ γt2 (2.14)

and since γs1 < γt2 and the values are adjacent the left hand side of (2.14) as follows:

δ
0
1(z)

s�

m=1

α
0
m1(z) + δ

0
2(z)

t�

m=1

α
0
m2(z) = δ

0
1(z)ᾱ

0
s1(z) + δ

0
2(z)ᾱ

0
t2(z)

and so (2.13) holds.

A3 i = 2, j = 1. Properness requires that βs21 ≤ βt11 which, on using (2.11) and (2.12),

requires that:
γs2 − δ

0
2(z)ᾱ

0
s2(z)

δ
0
1(z)

≤ ᾱ
0
t1(z)
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which is written as follows.

γs2 ≤ δ
0
1(z)ᾱ

0
t1(z) + δ

0
2(z)ᾱ

0
s2(z) (2.15)

If γ ∈ C0(z) then the inequality (2.5) holds and, on its right hand side, replacing γls by

γs2 there is:

γs2 ≤

K�

i=1

M�

m=1

δ
0
i (z)α

0
mi(z)1(γm−1,i < γs2) (2.16)

and since γs2 < γt1 and the values are adjacent the right hand side of (2.16) is as

follows:

δ
0
1(z)

t�

m=1

α
0
m1(z) + δ

0
2(z)

2�

m=1

α
0
m2(z) = δ

0
1(z)ᾱ

0
t1(z) + δ

0
2(z)ᾱ

0
s2(z)

and so (2.15) holds.

A4 i = 2, j = 2. It must be that t = s + 1 because γs2 < γt2 are adjacent. Properness

requires that βs21 ≤ βs+1,21 which, on using (2.12), requires that:

γs2 − δ
0
2(z)ᾱ

0
s2(z)

δ
0
1(z)

≤
γs+1,2 − δ

0
2(z)ᾱ

0
s+1,2(z)

δ
0
1(z)

which is written as follows.

δ
0
2(z)α

0
s+1,2(z) ≤ γs+1,2 − γs2 (2.17)

If γ ∈ D0(z) then the inequality (2.6) of Proposition 2 holds and replacing γni and γmi

by respectively γs+1,2 and γs2 gives the following:

γs+1,2 − γs2 ≥ δ
0
2(z)

�
ᾱ
0
s+1,2(z)− ᾱ

0
s2(z)

�
= δ

0
2(z)α

0
s+1,2(z)

and so (2.17) holds.

It has been shown that for any z ∈ Z and for all γ ∈ C̃0(z) = C0(z) ∩ D0(z) there are

conditional distribution functions characterised by β(z) defined as in (2.11) and (2.12) such

that conditions I1, I2 and I3 hold.
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Let β(Z) be the conditional distribution functions generated using the definitions (2.11)

and (2.12) as z varies within Z. Since C̃0(Z) =
�
z∈Z

C̃0(z), values γ ∈ C̃0(Z) lie in every set

C̃0(z) and so for each such value of γ there are conditional distribution functions in β(Z)

such that conditions I1, I2 and I3 are satisfied. It follows that C̃0(Z) ⊆ H0(Z) and since

H0(Z) ⊆ C̃0(Z), it follows that H0(Z) = C̃0(Z). �
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Figure 2.1: Illustration A1. Outer sets and identified sets in a binary endogenous variable
SEIV model with a parametric ordered probit structural function with threshold functions
of the form Φ(ci − a0 − a1x) as the number of categories of the outcome varies from 2 to 10.
The dark blue strip at the upper margin of the rhombuses is not part of the identified sets.
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Figure 2.2: Illustration A2. Outer sets and identified sets delivered by a binary endogenous
variable SEIV model with a parametric ordered probit structural function, intercept a0 and
slope a1. Number of categories of the otucome, M : 2(red), 4(blue) and 6(green). The dark
blue strip at the upper margin is not in the identified sets.
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Figure 2.3: Illustration A2. Identified sets delivered by a binary endogenous variable
SEIV model with a parametric ordered probit structural function, intercept a0 and slope a1.
Number of categories of the outcome, M : 8(red), 10(blue) and 12(green).
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Figure 2.4: Illustration A2. Identified sets delivered by a binary endogenous variable
SEIV model with a parametric ordered probit structural function, intercept a0 and slope a1.
Number of categories of the outcome, M :14(red), 16(blue) and 18(green).
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Figure 2.5: Illustration A2. Identified sets delivered by a binary endogenous variable
SEIV model with a parametric ordered probit structural function, intercept a0 and slope a1.
Number of categories of the outcome, M : 25(red), 50(blue) and 75(green).
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Figure 2.6: Illustration A2. Reduction of identified set as the number of outcome categories
increases: (upper pane) logarithm of length of the identified interval for a0 plotted against
logarithm of number of categories of the outcome, Y , (lower pane) logarithm of length of the
identified interval for a1 plotted against logarithm of number of categories of the outcome,
Y .
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Figure 2.7: Illustration A2. Reduction of identified set as the number of outcome categories
increases. Logarithm of area of the identified set plotted against logarithm of number of
categories of the outcome, Y .
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Figure 2.8: Illustration B1. Three class ordered probit model with unknown threshold
parameters c1 and c2 and slope coefficient a1. Cross-section of the identified set (red) and
outer set (red and green) for c1, c2 and a1 at selected values of a1.
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Figure 2.9: Illustration B1. Three class ordered probit model with unknown threshold
parameters c1 and c2 and slope coefficient a1. Cross-section of the identified set (red) and
outer set (red and green) for c1, c2 and a1 at selected values of a1.
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Figure 2.10: Illustration B1. Three class ordered probit model with unknown threshold
parameters c1 and c2 and slope coefficient a1. Cross-section of the identified set (red) and
outer set (red and green) for c1, c2 and a1 at selected values of a1.
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Chapter 3

Sharp identified sets for discrete

variable IV models

Instrumental variable models for discrete outcomes are set, not point, identifying. The paper

characterises identified sets of structural functions when endogenous variables are discrete.

Identified sets are unions of large numbers of convex sets and may not be convex nor even

connected. Each of the component sets is a projection of a convex set that resides in a much

higher dimensional space onto the space in which a structural function resides. The paper

develops a symbolic expression for this projection and gives a constructive demonstration that

it is indeed the identified set. We provide a Mathematica™ notebook which computes the set

symbolically. We derive properties of the set, suggest how the set can be used in practical

econometric analysis when outcomes and endogenous variables are discrete and propose a

method for estimating identified sets under parametric or shape restrictions. We develop

an expression for a set of structural functions for the case in which endogenous variables

are continuous or mixed discrete-continuous and show that this set contains all structural

functions in the identified set in the non-discrete case.

3.1 Introduction

This paper gives new results on the identifying power of single equation instrumental variable

(SEIV) models in which both the outcome of interest and potentially endogenous explana-

tory variables are discrete. These models generally set rather than point identify structural

49
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functions.1 The paper derives the sharp identified set for the general case in which there is

an M -valued outcome and there are endogenous variables with K points of support.

The discrete outcome, discrete endogenous variable case studied here arises frequently

in applied econometrics practice. Examples of settings in which the results of the paper are

useful include situations in which a binary or ordered probit, or a logit or a count data analysis

or some semiparametric or nonparametric alternative would be considered and explanatory

variables are endogenous. We study nonparametric models but, as we show, characterizations

of identified sets for nonparametric models are very useful in constructing identified sets in

parametric cases.

In the instrumental variable model studied here an M -valued outcome, Y , is determined

by a structural function characterised by M − 1 threshold functions of possibly endogenous

variables X. Instrumental variables, Z, are excluded from these threshold functions. The

instrumental variables and the stochastic term whose value relative to the threshold functions

determines the value of Y are independently distributed. When endogenous variables have

K points of support the structural function is characterised by N = K(M − 1) parameters:

the values of the M −1 threshold functions at the K values of X. A conventional parametric

model, for example an ordered probit model, places restrictions on these N objects.

The model studied here places no restrictions on the process generating values of the

potentially endogenous variables X. It is in this sense that it is a single equation model.

By contrast the commonly employed control function approach to identification employs

a more restrictive triangular model which places restrictions on the process generating the

potentially endogenous variables.2 That model generally fails to deliver point identification

when endogenous variables are discrete so the SEIV model is a leading contender for appli-

cation in practice.

The single equation approach taken in this paper has some other points to recommend

it. For example, structural simultaneous equations models for discrete endogenous variables

throw up coherency issues, first studied in Heckman (1978) and subsequently discussed in,

for example, Lewbel (2007). These can be neglected in a single equation analysis. Economic

models involving simultaneous determination of values of discrete outcomes can involve mul-

1See Chesher (2010).
2See for example Blundell and Powell (2003, 2004), Chesher (2003), Imbens and Newey (2009).
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tiple equilibria. See for example Tamer (2003). Taking a single equation approach one is free

to leave the equilibrium selection process unspecified.

After normalisation the structural function in the discrete-outcome, discrete-endogenous

variable case is characterised by a point in the unit N -cube. The set that is identified by

a single equation instrumental variable model is a subset of this space. We show that the

identified set is the union of many convex sets each of which is an intersection of linear half-

spaces. The faces of these component convex polytopes are arranged either parallel to or at

45◦ angles to faces of the N -cube. The identified set may not be convex or even connected.

The convex components of the identified sets are projections of high-dimensional sets

onto the space in which the structural function resides. Direct computation of these sets is

challenging. Calculation for small scale problems can be done using the method of Fourier-

Motzkin elimination. However for M or K larger than 4 the computations are prohibitively

time consuming because of the very large number of inequalities produced during the process

of projection. Almost all of these are redundant, but determining which are redundant is

computationally demanding. The key to solving this problem is to make use of the structure

placed on the problem by the SEIV model.

We consider probability distributions for Y and X conditional on Z = z for values of z

in some set of instrumental values Z. We develop a system of inequalities which must be

satisfied by the N values that characterise a structural function for all structural functions

that are elements of structures admitted by the SEIV model which generate these probability

distributions. The identified set of structural functions must be a subset of the set defined by

these inequalities. We show using a constructive proof that the set is precisely the identified

set.

Calculation of the convex components of an identified set using the expressions we present

here is very easy. The remaining, non-trivial, computational challenge is to deal with the

very large number of convex components that arises when M or K is large. This problem

disappears if sufficiently strong shape restrictions can be invoked. Parametric models are

useful in providing these. An alternative is to employ shape constrained sieve approximations.

We show how recently developed results on set estimation and inference when sets are

defined by intersection bounds can be used to operationalise the results given here.

Finally we extend the analysis to the case in which endogenous variables are continuous or
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mixed discrete-continuous and derive a set of structural functions within which all functions

in the identified set lie. We conjecture that this is the identified set. A constructive proof

remains to be completed.

The restrictions of the SEIV model are now set out and then the results given here are

set in the context of earlier work.

3.1.1 The single equation instrumental variable model

In the SEIV model a scalar discrete outcome, Y , is determined by a structural function h as

follows.

Y = h(X,U) (3.1)

Here U is a scalar unobservable continuously distributed random variable and X is a list of

explanatory variables. These explanatory variables may be endogenous in the sense that U

and X may not be independently distributed. The focus is on identification of the structural

function h.

In practice there may be variables appearing in h that are restricted to be exogenous (dis-

tributed independently of U) and the results of the paper are easily extended to accommodate

these but for simplicity we proceed with the structural function specified as in equation (3.1).

The structural function h is restricted to be monotone in U for all values of X. It is

normalized weakly increasing in what follows and the marginal distribution of U is normalized

uniform on the closed unit interval [0, 1]. The support of X is denoted by X .

The discrete outcome Y has M fixed points of support and without loss of generality

these are taken to be the integers 1, . . . ,M . Since h varies monotonically with U there is the

following threshold crossing representation of the structural function: for m ∈ {1, . . . ,M}:

h(x, u) = m if and only if hm−1(x) < u ≤ hm(x)

with h0(x) = 0 and hM (x) = 1 for all x ∈ X .

In this set-up a standard parametric probit model for Y ∈ {1, 2} would have threshold

functions as follows:

h0(x) = 0 h1(x) = Φ(α0 + α1x) h2(x) = 1
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where Φ(·) is the standard normal distribution function. A standard logit model would have

h1(x) = (1 + exp(α0 + α1x))−1.

In this paper, except in Section 3.4, we study the case in which X is discrete with a finite

number, K, of points of support: X = {x1, . . . , xK}. The objects whose identification is

considered are the values of the M − 1 threshold functions at the K values taken by X.

If the model restricted X to be exogenous then it would identify the threshold functions

at each point in the support of X because in that case Pr[Y ≤ m|X = x] = hm(x).

The SEIV model does not require X to be exogenous but admits instrumental variables,

one or many, discrete or continuous, arranged in a vector Z which takes values in a set Z.

The instrumental variables Z and U are independently distributed and Z is excluded from

the structural function.3 The model set identifies the structural function.

3.1.2 Relation to earlier work

The SEIV model studied here is an example of the sort of nonseparable model studied in

Chernozhukov and Hansen (2005), Blundell and Powell (2003, 2004), Chesher (2003) and

Imbens and Newey (2009).

All but the first of these papers study complete models which specify triangular equation

systems in which there are structural equations for endogenous explanatory variables as well

as for the outcome of interest. When endogenous variables are continuous these models can

point identify structural functions but when endogenous variables are discrete they may not.

Dealing with the discrete endogenous variable case, Chesher (2005) introduces an additional

restriction on the nature of the dependence amongst unobservables providing a set identifying

triangular model with discrete endogenous variables. Jun, Pinkse and Xu (2009) provide some

refinements. Point identification can be achieved under parametric restrictions such as those

used in Heckman (1978).

Discreteness of endogenous variables is not a problem for SEIV models, indeed it brings

simplifications - for example eliminating the “ill posed inverse problem” which arises when

endogenous variables are continuous. This is shown clearly in Das (2005) where additive

error nonparametric models with discrete endogenous variables and instrumental variable
3At no point in the development is Z required to be a random variable. It could for example be a variable

whose values are set by an experimenter. The key requirement is that the conditional distribution of U given
Z = z be invariant with respect to changes in z within the set Z.
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restrictions are considered. Because of the additive error restrictions this construction is not

well suited to modelling discrete outcomes which sit more comfortably in the nonseparable

error setting studied here.

Chernozhukov and Hansen (2005) study a nonadditive-error SEIV model like that con-

sidered here, focussing on the case in which the outcome is continuous. The identification

results of that paper are built around the following equality which, when Y is continuous,

holds for all τ ∈ (0, 1) and all z ∈ Z.

Pr[Y = h(X, τ)|Z = z] = τ (3.2)

Additional (completeness) conditions are provided under which the model point identifies the

structural function.

The condition (3.2) does not hold when Y is discrete. Instead, as shown in Chernozhukov

and Hansen (2001), there are the following inequalities which hold for all τ ∈ (0, 1) and

z ∈ Z.

Pr[Y < h(X, τ)|Z = z] < τ ≤ Pr[Y ≤ h(X, τ)|Z = z]

These imply that the inequalities:

max
z∈Z

Pr[Y < h(X, τ)|Z = z] < τ ≤ min
z∈Z

Pr[Y ≤ h(X, τ)|Z = z] (3.3)

hold for all τ ∈ (0, 1) as shown in Chesher (2007, 2010). The result is that the SEIV model

generally fails to point identify the structural function when the outcome Y is discrete.

However the model can be informative about the structural function as long as Z is not a

singleton.

To see this suppose that for some value m and two values in Z, z1 and z2, Pr[Y ≤

m|Z = z1] �= Pr[Y ≤ m|Z = z2]. The restrictions of the model imply that in this case hm(x)

is not constant for variations in x in admissible structures which generate the probability

distribution under consideration. This is so because if hm(x) were constant, equal say to h
∗
m,

then for all z ∈ Z, Pr[Y ≤ m|Z = z] = h
∗
m so any variation in Pr[Y ≤ m|Z = z] with z rules
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out the possibility that hm(x) is constant for variations in x.4 At least the set of structural

functions identified by the SEIV model excludes structures with constant threshold functions

if the outcome and the instruments are not independently distributed.

The set identifying power of the SEIV model when the outcome is discrete was first studied

in Chesher (2007). Let H(Z) denote the identified set of structural functions associated with

some probability distribution FY X|Z for Y and X given Z = z ∈ Z.5 Chesher (2007, 2010)

develops a set, denoted here by C(Z), based on the inequalities (3.3). It is shown that, when

Y is binary and X is continuous, H(Z) = C(Z) and C(Z) provides tight set identification.

In other cases it is an outer set in the sense that it can be that H(Z) ⊂ C(Z).

Chesher (2009) studies the binary outcome case, proving H(Z) = C(Z) when endogenous

variables are discrete, considering the impact of parametric restrictions and shape restrictions,

and giving some results on estimation under shape restrictions employing results on inference

using intersection bounds given in Chernozhukov, Lee and Rosen (2009).

In Chesher and Smolinski (2009) a refinement6 to C(Z), denoted D̃(Z), is developed.

This delivers the identified set when there is a single binary endogenous variable no matter

how many points of support the outcome Y has. The results are used in an investigation of

the nature of the reduction in extent of the identified set as the number of points of support

of Y increases in an endogenous parametric ordered probit example.

This paper studies the general finite M -outcome, K-point of support discrete endogenous

variable case and develops a further refinement7 to C(Z), denoted E(Z) and shows that E(Z)

is precisely the identified set, H(Z).

4There is the following.

Pr[Y ≤ m|Z = z] =
�

k

Pr[U ≤ h∗
m|X = xk, Z = z] Pr[X = xk|Z = z]

= Pr[U ≤ h∗
m|Z = z]

= h∗
m

Since the model excludes Z from the structural function h and requires U and Z to be independent the only
way in which Z can affect the distribution of Y is through its effect on X and then only if h is sensitive to
variations in X.

5It would be clearer to give a distinctive symbol to the probability distribution under consideration, e.g.
F 0
Y X|Z and label the various sets accordingly thus: H

0(Z), C
0(Z) and so forth. We do not do this here

because the notation quickly becomes cumbersome. However it is important to keep in mind that each of the
sets under discussion is associated with a particular probability distribution.

6By a refinement we mean that D̃(Z) ⊆ C(Z) with the possibility that D̃(Z) ⊂ C(Z)
7Here, by a refinement we mean that E(Z) ⊆ D̃(Z) ⊆ C(Z).
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3.1.3 Plan of the paper

Section 3.2 defines the set identified by the SEIV model and reviews its characteristics.

Section 3.3 develops the new set, E(Z), shows that it contains the identified set, and

then gives a constructive proof that E(Z) is the identified set. This is done by proposing an

algorithm for construction of a proper distribution for the unobservable U and endogenous

X conditional on values of instrumental variables which for any value of γ in E(Z) delivers

the probabilities used to construct the set while respecting the restriction that U and Z be

independently distributed.

Section 3.3.1 develops some properties of the identified set. Section 3.3.2 presents the

algorithm for constructing the distribution of U and X given Z which is used to demonstrate

that E(Z) is the identified set. Section 3.3.3 gives an alternative derivation of the set E(Z)

which is useful in linking the results of this paper with earlier results.

Section 3.3.4 sets out properties of the set E(Z) when the outcome is binary. Section

3.3.5 shows how the set E(Z) is related to the set defined in Chesher (2010). Section 3.3.6

gives alternative expressions for the inequalities defining the new set which help clarify its

relationship to the set defined by the inequalities (3.3).

Section 3.4 derives a set E
A(Z) which is shown to contain all structural functions in the

identified set for cases in which X is continuous or mixed discrete-continuous and is equal to

the set E(Z) when X is discrete.

Section 3.5 gives some illustrative calculations, describes a Mathematica notebook which

does symbolic calculation of the convex components of the identified set and discusses esti-

mation and inference.

Section 3.6 concludes.

3.2 The identified set

In this Section the set identified by the SEIV model is defined and notation is introduced.

We consider situations in which X, which may be a scalar or a vector, is discrete and

takes values in the set X = {xk}
K
k=1. In this case the structural function h is characterized
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by N ≡ K(M − 1) parameters as follows,

γmk ≡ hm(xk), m ∈ {1, . . . ,M − 1}, k ∈ {1, . . . ,K}

which are arranged in a vector γ, as follows.8

γ ≡ [γ11, . . . , γ1K , γ21, . . . , γ2K , . . . , γM−1,1, . . . , γM−1,K ]

Identification of the vector γ is studied in this paper. Each element of γ lies in the unit

interval so each value of γ is a point in the unit N -cube. The identified set is a subset of the

unit N -cube. There are the restrictions γlk < γmk for l < m and all k. Henceforth “for all k”

means for k ∈ {1, . . . ,K}.

Consider a particular probability distribution for Y and X given Z = z ∈ Z. The

identified set of values of γ associated with this distribution contains all and only values of γ

for which there exist admissible conditional probability distributions of U and X given Z = z

for all values of z in Z such that the resulting structures deliver the probability distribution

under consideration. Notation for that probability distribution is now introduced.

For values z ∈ Z, for m ∈ {1, . . . ,M} and k ∈ {1, . . . ,K}, there are the following point

probabilities:

ρmk(z) ≡ Pr[Y = m ∧X = xk|Z = z]

and cumulative probabilities:

ρ̄mk(z) ≡ Pr[Y ≤ m ∧X = xk|Z = z]

and probabilities marginal with respect to Y :

δk(z) ≡ Pr[X = xk|Z = z] = ρ̄Mk(z).

Data are informative about these probabilities.
8If Γ is a matrix with (m, k) element equal to γmk then γ ≡ vec(Γ�). Considering γr, the rth element of

γ, there are the following relationships.
r = (m− 1)K + k

k = r modulo K m = (r − k)/K + 1
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For all k define: γ0k = 0, γMk = 1, ρ0k(z) = ρ̄0k(z) = 0. In what follows “for all m”

means for m ∈ {0, . . . ,M}.

Associated with a particular value of γ and each value z ∈ Z, define a piecewise uniform

conditional distribution for U and X given Z, such that for all m, k and k
�:

η̄mkk�(z) ≡ Pr[U ≤ γmk ∧X = xk� |Z = z]

and let η̄(z) denote the complete list of (M + 1)K2 such terms.9

A list of values of (γ, η̄(z)) produced as z varies in Z characterizes a structure which is

admissible if it satisfies the following independence and properness conditions.

[1]. Independence. For all z ∈ Z and for all m and k the following equalities hold.10

K�

k�=1

η̄mkk�(z) = γmk (3.4)

[2]. Properness. For all z ∈ Z and for all j, k, l, m and k
�, η̄ljk�(z) ≤ η̄mkk�(z) if and

only if γlj ≤ γmk. For all z ∈ Z and for all k, k�, η̄0kk�(z) = 0. For all z ∈ Z and for all k�
�K

k=1 η̄Mkk�(z) = 1.

If in addition the following observational equivalence condition is satisfied then the struc-

ture generates the probability distribution under consideration.

[3]. Observational equivalence. For all z ∈ Z and for all m and k the following

equalities hold.

η̄mkk(z) = ρ̄mk(z) (3.5)

All and only structures that obey conditions [1], [2] and [3] are in the set of structures

identified by the model for the probabilities considered. Let S(Z) denote that set.

9Between each pair of adjacent knots, γmk, each conditional density function for Y given X and Z is
uniform. The construction is justified in Chesher (2009). The conditional density functions have a histogram-
like appearance.

10The left hand side is Pr[U ≤ γmk|Z = z] which the independence restriction requires to be free of z. The
value γmk on the right hand side arises because of the uniform distribution normalisation of the marginal
distribution of U . See Chesher (2010).
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The identified set of structural functions, H(Z), is the set of values of γ for which there

are values of η̄(z) for z ∈ Z such that the resulting structure is in the identified set, S(Z).

The identified set for γ, H(Z), is the projection of S(Z) onto the unit N -cube within which

all values of γ lie.

The geometry of these sets is considered in Chesher and Smolinski (2009). A brief account

is given here. Because of the properness condition [2] the order in which the elements of γ

lie is an important consideration.

There are

T ≡ (K(M − 1))!/ ((M − 1)!)K (3.6)

admissible arrangements of the elements of γ.11

In each arrangement, t ∈ {1, . . . , T}, the set of admissible observationally equivalent

structures defined by [1], [2] and [3], denoted by St(Z), is either empty or a convex polytope

because it is an intersection of bounded linear half spaces. The identified set of structures is

the union of the sets obtained under each admissible arrangement.

S(Z) =
T�

t=1

St(Z)

In each arrangement, t, the identified set of structural functions obtained by projecting

away η̄(z) for z ∈ Z, denoted Ht(Z), is also either empty or a convex polytope. The complete

identified set of structural functions is the union of these convex sets. The result may not

itself be convex, nor even connected.

H(Z) =
T�

t=1

Ht(Z)

Direct computation of an identified set of structural functions is difficult when M and K

are at all large. A head on attack would consider each admissible arrangement in turn and

11Arrangements in which there is a pair of indices m and m� with m > m� such that for some k, γmk ≤ γm�k

are inadmissible. The formula for T arises as follows. There are
�

N
M−1

�
ways of placing γ11, γ21, . . . , γM−1,1

in the N = (M − 1)K places available and only one order in which those values can lie. There are then�
N−(M−1)

M−1

�
ways of placing γ12, γ22, . . . , γM−1,2 in the remaining N − (M − 1) places. Continuing in this way

it is clear that there are
K�

k=1

�
N − (k − 1)(M − 1)

M − 1

�

admissible arrangements of γ which on simplification yields the formula (3.6) for T.
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use the method of Fourier-Motzkin elimination12 to project away the (M − 1)K2 elements in

η̄(z) for each z ∈ Z but this is computationally infeasible when M and K are large.

In the next Section we develop easy-to-compute sets which are shown to be precisely the

identified set of structural functions, H(Z).

3.3 Sharp set identification of the structural function

Conditions [1] - [3] place restrictions on values of (γ, η̄(z)) for z varying in Z. They define

the identified set of structures: S(Z).

In this Section we develop implications of these restrictions for admissible values of γ,

that is for values of γ that lie in the identified set of structural functions: H(Z). The result

is a list of inequalities that define a set denoted E(Z). We show that this is the identified set

H(Z).

The ordering of the elements of γ is important. The set E(Z) is a union of convex sets,

Et(Z), one associated with each admissible arrangement, t, of γ.

E(Z) =
T�

t=1

Et(Z)

Each set Et(Z) is defined as an intersection of linear half spaces.

We proceed to develop a definition of a set Et(Z) obtained under a particular arrangement,

t, of the elements of γ. First it is necessary to develop notation and functions for dealing

with arrangements.

Let γ[n] be the nth largest value in an arrangement. Recall there are N ≡ (M − 1)K

elements in γ. We adopt the notation used in the literature on order statistics to denote the

ordered values of γ:

γ[1] ≤ γ[2] · · · ≤ γ[N−1] ≤ γ[N ]

and we define γ[0] ≡ 0 and γ[N+1] ≡ 1.13

12See Zeigler (2007).
13A more precise notation would carry an identifier of the arrangement t under consideration and when

stating formal results we do employ such a notation, for example denoting the ordered elements of an ar-
rangement t by γt

[1], . . . , γ
t
[N ]. During the exposition, while it is clear that a particular arrangement is under

consideration, we simplify notation and do not make dependence on the arrangement under consideration
explicit.

Smolinski, Konrad (2012), Single Equation Instrumental Variable Models: Identification under Discrete Variation 
European University Institute

 
DOI: 10.2870/35896

60



Define functions m(n) and k(n) such that γm(n)k(n) = γ[n]. Define m(0) = 0. With M = 3

and K = 3, for which N = 6 and

γ = [γ11, γ12, γ13, γ21, γ22, γ23]

and for the arrangement

[γ11, γ12, γ21, γ13, γ23, γ22] (3.7)

the functions m(·) and k(·) are as shown below. We will work with this example throughout

this Section.
n m(n) k(n)

1 1 1

2 1 2

3 2 1

4 1 3

5 2 3

6 2 2

Figure 1 shows a configuration of threshold functions that is consonant with this arrange-

ment. In this case M = 3 so there are two threshold functions, h1(x) and h2(x).

Values of X are measured along the horizontal axis in Figure 1 and three points of support,

x1, x2 and x3 are marked. Values of threshold functions are measured along the vertical axis

which is the unit interval [0, 1]. This axis also measures values of the unobservable variable

U .

At any value of x, values of U falling on or below the lowest threshold function deliver

the value 1 for Y , values of U falling between the two threshold functions or on the highest

threshold function deliver the value 2 for Y and values of U falling above the highest threshold

deliver the value 3 for Y . Notice that the upper threshold function is not monotone in x

reflecting the inequality γ23 < γ22.

Now define an inverse function n(m, k) such that γmk = γ[n(m,k)] and note that n(m(n), k(n)) =

n. For all k define n(0, k) = 0.

For the arrangement (3.7) considered above the function n(·, ·) delivers values as shown
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below.
k = 1 k = 2 k = 3

m = 1 1 2 4

m = 2 3 6 5

The functions m(·), k(·) and n(·, ·) are specific to the particular arrangement under consider-

ation and we could make this dependence explicit by writing mt(·), kt(·) and nt(·, ·) but for

the most part this is not done in order to avoid excessively complex notation.

We use an abbreviated notation as follows: ρ̄[n] denotes ρ̄m(n)k(n), thus:

ρ̄[n] ≡ ρ̄m(n)k(n) = Pr[Y ≤ m(n) ∧X = xk(n)|Z = z]

and η̄[n]k� denotes η̄m(n)k(n)k� thus.

η̄[n]k� ≡ η̄m(n)k(n)k� = Pr[U ≤ γm(n)k(n) ∧X = xk� |Z = z]

There are associated non-cumulative probabilities as follows.14

ρ[n] = Pr[Y = m(n) ∧X = xk(n)|Z = z]

η[n]k� = Pr[U ∈ (γ[n−1], γ[n]] ∧X = xk� |Z = z]

It is important to understand that η̄[n]k� =
�n

j=1 η[j]k� but in general ρ̄[n] �=
�n

j=1 ρ[j] rather:

ρ̄[n] =

m(n)�

j=1

ρjk(n) =

m(n)�

j=1

ρ[n(j,k(n))].

All these probabilities depend on the instrumental value z under consideration but this de-

pendence is not made explicit in the notation for the moment. Define ρ[0] = ρ̄[0] = 0,

η[n]k = η̄[n]k = 0.

It is helpful to extend the definitions to cover probability masses associated with the Mth

14Here too we could make dependence on the arrangement under consideration explicit in the notation, e.g.
writing ρt[n] and ηt

[i]k, but do not do so until we come to formal statements of results.
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point of support of Y so for all k define

n(M,k) = N + k

and

m(N + k) = M

k(N + k) = k

which lead to

ρ[N+k] = Pr[Y = M ∧X = xk|Z = z]

with associated cumulative probabilities

ρ̄[N+k] = Pr[Y ≤ M ∧X = xk|Z = z] = Pr[X = xk|Z = z] = δk.

Table 3.1 exhibits the probability masses η[n]k for a general case with an M -valued out-

come and endogenous variables with K points of support and N = K(M − 1). All values are

non-negative, values in column k sum to δk and the sum of all K(N + 1) probability masses

in the table is 1. We will make extensive reference to tables like this in what follows.

We consider a particular value z ∈ Z and construct a set Et(z), defining Et(Z) as the

intersection of such sets for z varying in Z.

Et(Z) ≡
�

z∈Z
Et(z)

To avoid cumbersome notation we do not make the dependence of probabilities on the chosen

value z explicit in the notation for the moment.

Each set Et(z) is obtained by considering restrictions that Conditions [1] - [3] place on the

elements of γ when they are in arrangement t. The restrictions arise because for all values

of γ (see the final column of the Table) that lie in the identified set there exist values of the

probability masses η[n]k such that:

1. the sum of probability masses lying in rows 1 through n is equal to γ[n], equivalently,

Smolinski, Konrad (2012), Single Equation Instrumental Variable Models: Identification under Discrete Variation 
European University Institute

 
DOI: 10.2870/35896

63



Value of x Ordered
n x1 x2 · · · xK values of γ
0 0 0 · · · 0 γ[0]

1 η[1]1 η[1]2 · · · η[1]K γ[1]

2 η[2]1 η[2]2 · · · η[2]K γ[2]
...

...
...

...
...

n η[n]1 η[n]2 · · · η[n]K γ[n]
...

...
...

...
...

N η[N ]1 η[N ]2 · · · η[N ]K γ[N ]

N + 1 η[N+1]1 η[N+1]2 · · · η[N+1]K γ[N+1]

Table 3.1: Piece-wise uniform joint distribution of U and X conditional on a value of Z
arranged by ordered values of γ (rows) and points of support of the endogenous variable X
(columns).

the sum of probability masses in row n is equal to γ[n] − γ[n−1],

n�

i=1

K�

k=1

η[i]k = γ[n]

K�

k=1

η[i]k = γ[n] − γ[n−1] ≡ ∆γ[n]

2. all probability masses are non-negative,

3. probability masses sum over appropriate blocks of cells in the table to deliver the

observed probabilities ρ[1], . . . , ρ[n].

Table 3.2 exhibits the blocks of cells over which probability masses must be aggregated for

the arrangement shown in equation (3.7). Table 3.3 shows the values that must be achieved

when summing within blocks if the observational equivalence condition is to be satisfied. For

example in the arrangement considered there is m(4) = 1, k(4) = 3 and

ρ[4] = Pr[Y = 1 ∧X = x3|Z = z] =
4�

i=1

η[i]3 = Pr[U ≤ γ[4] ∧X = x3|Z = z]

must hold if the observational equivalence restriction is to be satisfied. Another example:

m(7) = 3, k(7) = 1 and so observational equivalence requires that the following equalities
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Value of x Differences of ordered Ascending list
n x1 x2 x3 values of γ of elements in γ

0 0
1 η[1]1 η[1]2 η[1]3 γ[1] − γ[0] γ11

2 η[2]1 η[2]2 η[2]3 γ[2] − γ[1] γ12

3 η[3]1 η[3]2 η[3]3 γ[3] − γ[2] γ21

4 η[4]1 η[4]2 η[4]3 γ[4] − γ[3] γ13

5 η[5]1 η[5]2 η[5]3 γ[5] − γ[4] γ23

6 η[6]1 η[6]2 η[6]3 γ[6] − γ[5] γ22

7 η[7]1 η[7]2 η[7]3 γ[7] − γ[6] 1

Table 3.2: Conditional mass function values arranged by ordered values of γ and values of
the conditioning variable X showing blocks of cells whose mass must be aggregated when
considering the observational equivalence condition.

Value of x Differences of ordered List of elements of γ
n x1 x2 x3 values of γ in ascending order
0 0
1 ρ[1] γ[1] − γ[0] γ11

2 ρ[2] γ[2] − γ[1] γ12

3 ρ[3] γ[3] − γ[2] γ21

4 ρ[4] γ[4] − γ[3] γ13

5 ρ[5] γ[5] − γ[4] γ23

6 ρ[6] γ[6] − γ[5] γ22

7 ρ[7] ρ[8] ρ[9] γ[7] − γ[6] 1

Table 3.3: Sums of probability masses in blocks of cells must aggregate to the indicated
probabilities if the observational equivalence condition is to be satisfied.

hold.

ρ[7] = Pr[Y = 3 ∧X = x1|Z = z] =
7�

i=4

η[i]1 = Pr[γ[3] < U ≤ γ[7] ∧X = x1|Z = z].

In general there are M blocks in each column of the table. In each row exactly one

block terminates. The block of cells in which the mass ρ[n] must lie is in the column of

the table associated with xk(n) and in the rows that end at n(m(n), k(n)) = n and start at

n(m(n)−1, k(n))+1. So the observational equivalence restriction requires that the conditions:

ρ[n] =
n�

i=n(m(n)−1,k(n))+1

η[i]k(n)

hold for n = 1, . . . , N +K.

A particular value of γ in arrangement t can only support an allocation of probability
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mass satisfying Conditions (1) - (3) if the elements γ[1], . . . , γ[N ] are spaced sufficiently far

apart to permit the allocation of probability mass in the required amounts in the blocks of

cells that arise in the arrangement. For example, in the arrangement (3.7), considering Table

3.3, γ[1] must be at least equal to ρ[1], γ[2] must be at least equal to ρ[1] + ρ[2] and so forth.

There are additional restrictions. For example γ[5] − γ[3] must be at least equal to ρ[5]

and γ[7] − γ[4] = 1 − γ[4] must be at least ρ[5] + ρ[8] + ρ[9]. We now develop a complete

characterisation of these inequalities which determine the spacing between elements of γ

under a particular arrangement such that the allocation of probability mass to blocks of cells

that is required to deliver observational equivalence is feasible.

To proceed we introduce the idea of the active indexes in a row. The active indexes in

row n are K distinct elements of the list {1, 2, . . . , N + K}. These are the indexes, i, of

probabilities ρ[i] to which cells in row n contribute. The active index for column k of row n

is defined as follows.

ank ≡ min {i : (n ≤ i ≤ N +K) ∧ (k(i) = k)}

The active index list for row n is defined thus: an ≡ {an1, . . . , anK}. Clearly amk ≤ ank for

all m ≤ n and k. For all k define a0k = 0. Each active index list an has n as a member and

it is always the smallest member.

For the arrangement given in (3.7) there are, on considering Table 3.3, the following active

index lists.

n an

0 {0, 0, 0}

1 {1, 2, 4}

2 {3, 2, 4}

3 {3, 6, 4}

4 {7, 6, 4}

5 {7, 6, 5}

6 {7, 6, 9}

7 {7, 8, 9}
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We now introduce the idea of last-discharged indexes for a row. The last discharged index

for column k in row n is the index, i, of the probability ρ[i] falling in column k whose block of

cells was most recently completed at row n. The last-discharged index for column k in row

n is defined for all k and n ∈ {1, . . . , N} as follows.

dnk ≡ max {i : (0 ≤ i ≤ n) ∧ (k(i) = k)}

For all k define d0k ≡ 0 and dN+1,k ≡ N + k. Clearly dmk ≤ dnk for all m ≤ n and k.

The row n last-discharged index list is defined as dn ≡ {dn1, . . . , dnK}. Each list dn has n

as a member and, except in row N + 1, it is the largest member. For the arrangement (3.7)

there are, on considering Table 3.3, the following last-discharged index lists.

n dn

0 {0, 0, 0}

1 {1, 0, 0}

2 {1, 2, 0}

3 {3, 2, 0}

4 {3, 2, 4}

5 {3, 2, 5}

6 {3, 6, 5}

7 {7, 8, 9}

For a pair of indexes, (r, s) ∈ {0, 1, . . . , N + 1} with r < s there is a minimal probability

mass required to fall between γ[r] and γ[s] if observational equivalence is to be achieved.

This minimal mass is calculated as follows. In a column, k, there is a probability mass

equal to ρ̄[dsk] required to lie below γ[s] because dsk is the discharged index associated with row

s and column k. From this must be removed any probability mass associated with the active

index in column k of row r, ark, and any probability mass associated with active indexes for

rows prior to r in column k (and so discharged by row r). This mass is given by ρ̄[ark]. This

can exceed ρ̄[dsk] so the minimal probability mass required to fall in the interval (γ[r], γ[s]]

associated with X = xk is max(0, ρ̄[dsk]− ρ̄[ark]) and the total (across all values of X) minimal

probability mass required to fall in the interval (γ[r], γ[s]] is
�K

k=1max(0, ρ̄[dsk] − ρ̄[ark]).
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By way of example consider the arrangement (3.7) used before and the cases considered

earlier.

1. γ[1] − γ[0]. The last-discharged indexes in row 1 are {1, 0, 0} and the active indexes in

row 0 are {0, 0, 0}. Only column 1 delivers a positive value and, noting that ρ[0] = 0

there is:

γ[1] − γ[0] = γ[1] ≥ ρ̄[1] = ρ[1].

2. γ[2] − γ[0]. The last-discharged indexes in row 2 are {1, 2, 0} and the active indexes in

row 0 are {0, 0, 0}. Columns 1 and 2 deliver a positive value and, there is:

γ[2] − γ[0] = γ[2] ≥ ρ̄[1] + ρ̄[2] = ρ[1] + ρ[2].

3. γ[5] − γ[3]. The last-discharged indexes in row 5 are {3, 2, 5} and the active indexes in

row 3 are {3, 6, 4}. Notice that d52 = 2 < a32 = 6 so column 2 produces no positive

contribution. Only column 3 delivers a positive value and there is:

γ[5] − γ[3] ≥ ρ̄[5] − ρ̄[4] = ρ[5].

4. γ[7] − γ[4]. The last-discharged indexes in row 7 are {7, 8, 9} and the active indexes in

row 4 are {7, 6, 4}. Columns 2 and 3 produce positive values and there is:

γ[7] − γ[4] = 1− γ[4] ≥
�
ρ̄[8] − ρ̄[6]

�
+

�
ρ̄[9] − ρ̄[4]

�
= ρ[8] + ρ[5] + ρ[9].

From the argument so far it follows that for every pair of indexes

(r, s) ∈ {0, 1, . . . , N + 1}

with r < s the following inequality must hold if the value of γ in the arrangement under

consideration is to allow the allocations of non-negative probability mass required to satisfy

the observational equivalence restriction.

γ[s] − γ[r] ≥

K�

k=1

max(0, ρ̄[dsk] − ρ̄[ark]) (3.8)
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This system of (N + 1)(N + 2)/2 inequalities defines a set of values of γ denoted by Et(z)

associated with arrangement t and instrumental value z.

All values of γ in Ht(z) must satisfy these inequalities, so Ht(z) ⊆ Et(z).

We can now give a formal statement regarding the convex components of the identified

set of structural functions. At this point we make explicit in the notation the dependence of

objects on the arrangement under consideration, t, and on the instrumental value, z.

Theorem 1: Consider an arrangement t of

γ ≡ [γ11, . . . , γ1K , γ21, . . . , γ2K , . . . , γM−1,1, . . . , γM−1,K ]

with ith largest element γ
t
[n] such that

0 ≡ γ
t
[0] ≤ γ

t
[1] ≤ · · · ≤ γ

t
[N ] ≤ γ

t
[N+1] ≡ 1

where N ≡ K(M − 1). The correspondence between elements of the ordered and unordered

lists is given by arrangement-specific functions mt(·), kt(·) and an inverse function nt(·, ·)

which are such that for n ∈ {1, . . . , N}, k ∈ {1, . . . ,K} and m ∈ {1, . . . ,M − 1}:

γ
t
[n] = γmt(n)kt(n)

γmk = γ
t
[nt(m,k)].

For all arrangements define mt(0) ≡ 0 and for all k: mt(N + k) ≡ M , kt(N + k) ≡

k, nt(M,k) ≡ N + k, nt(0, k) ≡ 0. For n ∈ {1, . . . , N +K} define:

ρ̄
t
[n](z) ≡ Pr[Y ≤ mt(n) ∧X = xkt(n)|Z = z]

with ρ̄
t
[0](z) ≡ 0. For all k and n ∈ {1, . . . , N} define

a
t
nk(z) ≡ min{i : (n ≤ i ≤ N + k) ∧ (kt(i) = k)}

d
t
nk(z) ≡ max{i : (0 ≤ i ≤ n) ∧ (kt(i) = k)}

and for all k define d0k ≡ 0 and dN+1,k ≡ N + k. Define a set of values of γ, Et(z),
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determined by the intersection of the following (N + 1)(N + 2)/2 linear half spaces:

γ
t
[s] − γ

t
[r] ≥

K�

k=1

max(0, ρ̄t[dsk(z)](z)− ρ̄
t
[ark(z)]

(z)) (3.9)

with (r, s) ∈ {0, 1, . . . , N + 1} and s > r.

Then:

1. The set Ht(z) is a subset of Et(z).

2. For every γ ∈ Et(z) there exists a distribution of U and X given Z = z which is

piecewise uniform for variations in U that:

(a) is proper,

(b) satisfies the independence condition: for all i ∈ {1, . . . , N}

i�

j=1

K�

k=1

η
t
[j]k(z) = γ

t
[i]

(c) delivers the probabilities ρ̄
t
[i](z) for all i ∈ {1, . . . , N} and so satisfies the observa-

tional equivalence property.

Result 1 of the Theorem has already been demonstrated to be true because we showed that

all γ ∈ Ht(z) satisfy the inequalities that define the polytope Et(z). It remains to show how to

construct the distribution referred to in Result 2. That is the subject of Section 3.3.2. First

two corollaries are stated and proved and simple upper and lower bounds on the elements of

γ are derived.

Corollary 1: For all t and z, Et(z) = Ht(z).

Proof: Result 1 of the Theorem states that Et(z) ⊆ Ht(z) and Result 2 implies that

Ht(z) ⊆ Et(z), from which it follows that Et(z) = Ht(z).

Corollary 2: The set of values of the structural function identified by the SEIV model

is as follows.

H(Z) =
T�

t=1

�
�

z∈Z
Et(z)

�
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Proof: This follows directly from Corollary 1 on noting the composition of the identified

set, H(Z).

H(Z) =
T�

t=1

�
�

z∈Z
Ht(z)

�

For a particular arrangement many of the inequalities defining a set Et(z) will be redun-

dant. The inequality given by setting s = N + 1 and r = 0 is always redundant15 so there

are at most (N +1)(N +2)/2−1 inequalities defining the polytope Et(z) and often far fewer.

This is investigated further in Section 3.5.

The identified set is determined by a large number of elementary inequalities which either

place upper or lower bounds on elements of γ or lower bounds on differences of pairs of

elements of γ. The convex polytope within which identified values of γ lie in any particular

arrangement is a facetted N -orthotope lying in the unit N -cube with all facets taken at angles

of 45◦ to the faces of the unit N -cube.

3.3.1 Upper and lower bounds

The inequalities (3.9) deliver simple upper and lower bounds on elements of γ specific to an

arrangement t and an instrumental value.

Suppressing dependence on the arrangement, t, and the instrumental value, z, and setting

r = 0 in (3.8) and noting that γ[0] = 0 and for all k, a0k = 0 and ρ̄[0] = 0, there is for all

s ∈ {1, . . . , N + 1} the lower bound:

γ[s] ≥

K�

k=1

ρ̄[dsk] (3.10)

which can be expressed in terms of non-cumulative probabilities as follows.

γ[s] ≥

s�

i=1

ρ[i].

Setting s = N + 1 in (3.8) and noting that γ[N+1] = 1 there is for all r ∈ {1, . . . , N + 1}:

1− γ[r] ≥

K�

k=1

�
δk − ρ̄[ark]

�

15In this case the inequality (3.8) is 1 ≥ 1.
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and so the following upper bound.

γ[r] ≤

K�

k=1

ρ̄[ark] (3.11)

These are the bounds given in Chesher (2007, 2010).

3.3.2 Construction of a joint distribution of U and X

We propose an algorithm for constructing a joint distribution for U and X given Z = z for any

value of γ that lies in a set Et(z) constructed using a sequence of probabilities ρ[1], . . . , ρ[N ].

We then prove Result 2 of Theorem 1 by showing that the distribution has the required

properties, namely that it is proper, that it satisfies observational equivalence, delivering

the probabilities ρ[1], . . . , ρ[N ] that determine Et(z), and that it satisfies the independence

restriction as expressed in (3.4).

While setting up notation and giving the details of the workings of the algorithm depen-

dence of objects such as ρ[n], γ]n], η[n]k, ank and dnk on the arrangement under consideration

and the instrumental value is suppressed in the notation.16 In what follows sums from a to

b,
�b

i=a(·)i, with b < a are by convention equal to zero.

We have introduced the active index lists an and we now make use of ordered active index

lists a
o
n ≡ {an[1], . . . , an[K]} where:

min{an1, . . . , anK} ≡ an[1] < an[2] < · · · < an[K] ≡ max{an1, . . . , anK}.

Note that for all n ∈ {1, . . . , N + 1}, an[1] = n. The ordered active index list for the

16Of course the IV restriction ensures that γ[n] does not vary with the instrumental value z.
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arrangement (3.7) is as follows.

n a
o
n

0 {0, 0, 0}

1 {1, 2, 4}

2 {2, 3, 4}

3 {3, 4, 6}

4 {4, 6, 7}

5 {5, 6, 7}

6 {6, 7, 9}

7 {7, 8, 9}

For i passing through the sequence: 1, 2, . . . , N + 1 and, at each value of i, for j passing

through the ascending sequence: 1, 2, . . . ,K the algorithm produces values η[i]k calculated

recursively as follows:

η(i, j) = min(G(i, j),max (0, R(i, j))). (3.12)

with component objects defined as follows.

η(i, j) ≡ η[i]k(ai[j])

G(i, j) ≡ ∆γ[i] −

j−1�

j�=1

η(i, j�)

R(i, j) ≡ ρ[ai[j]] −

i−1�

i�=n(m(ai[j])−1,k(ai[j]))+1

η[i�]k(ai[j])

It will shortly be shown that for every value of γ that lies in the set Et(z) this algorithm

fills the cells of a table with probability masses which are (i) non-negative while (ii) delivering

total masses within groups of cells that respect the observational equivalence restriction and

(iii) allocating a total mass of exactly ∆γ[i] in row i for each i ∈ {1, . . . , N + 1}.

In each row G(i, 1) has the value ∆γ[i] and for j ∈ {2, . . . ,K + 1} there is the following

recursion.

G(i, j) = G(i, j − 1)− η(i, j − 1) (3.13)
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Note that

G(i,K + 1) = ∆γ[i] −

K�

j=1

η(i, j) = ∆γ[i] −

K�

k=1

η[i]k

so when G(i,K + 1) = 0 for all i the algorithm delivers probabilities that satisfy the inde-

pendence restriction.

In each row i the first cell to be addressed is the one with the smallest active index in

that row. This is the cell that completes in row i the block of cells in column k(i) which

must contain probability mass ρ[i] if the observational equivalence condition is to be satisfied.

R(i, 1) is the mass to be allocated to that cell to bring the total to ρ[i]. The next cell to

be addressed is the one in the column k(ai[2]) corresponding to the next active index to be

discharged. Up to an amount R(i, 2) is allocated in this cell. This is the mass which, if

allocated to that cell, would bring the mass in the block of cells in which the cell appears up

to ρ[ai[2]]. The process proceeds with j incrementing until j = K with probability mass being

allocated to cells until all the mass ∆γ[i] has been allocated after which (as will be shown)

zero values appear in the cells of row i.

We now show that when γ lies in the set Et(z) the algorithm delivers probability masses

in each cell such that the observational equivalence condition is satisfied. Then we prove that

the independence and properness conditions are satisfied.

If γ lies in the set Et(z) then by construction there is sufficient probability mass available

between every pair of values γ[r] and γ[s] to permit the allocation of probability masses

ρ[1], . . . , ρ[N ] in their appropriate locations. The probability mass ρ[i] is equal to Pr[Y = m(i)∧

X = xk(i)|Z = z]. The cells in which this mass must be allocated lie in the column associated

with xk(i) and terminate in row i. They start in the row given by n(m(i)− 1, k(i)) + 1. The

observational equivalence condition is therefore: for all i ∈ {1, . . . , N}

i�

t=n(m(i)−1,k(i))+1

η[t]k(i) = ρ[i].

The proposed algorithm fill blocks of cells in index order, ρ[1] first, ρ[2] second and so on.

At each step of the process the algorithm allocates as much probability mass as possible to the

blocks of cells associated with probabilities ρ[i] which have the lowest values of i accessible at
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that point.17 The algorithm delivers the required allocations of probability mass for values of

γ that lie in Et(z) because such values have elements that are sufficiently separated to permit

the required allocation of probability masses.

It is shown in the Proposition below that whether or not the value of γ lies in Et(z) the

algorithm (i) allocates non-negative probability mass in every cell and (ii) never allocates

more than an amount ∆γ[i] in row i, for i ∈ {1, . . . , N}. When the value of γ lies in Et(z), a

total mass of 1 is allocated by the algorithm because the observational equivalence condition

is satisfied. Since, as shown below, an allocation exceeding ∆γ[i] cannot occur for any i and
�N+1

i=1 ∆γ[i] = 1, when the value of γ lies in Et(z) the algorithm must place a probability

mass exactly equal to ∆γ[i] in each row i ∈ {1, . . . , N}, thus satisfying the independence

condition. The properness conditions is satisfied because (i) all probability masses allocated

are non-negative and (ii) since the observational equivalence condition is satisfied a total

mass of 1 is allocated.

Here is the Proposition setting out some properties of the algorithm. These obtain whether

or not γ ∈ Et(z).

Proposition 1:

1. For all i and j:

(a) η(i, j) ≤ G(i, j),

(b) G(i, j) ≥ 0,

(c) η(i, j) ≥ 0,

(d) G(i, j) is a non-increasing function of j.

(e) If for some j, G(i, j) > η(i, j) then for all j� ≤ j, G(i, j�) > η(i, j�) and η(i, j�) =

max(0, R(i, j�)).

2. The algorithm allocates a probability mass of at most ∆γ[i] in row i, that is:

K�

k=1

η[i]k ≤ ∆γ[i].

17This occurs because the algorithm uses ordered active indexes.
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The proof is in Annex 1.

3.3.3 An alternative derivation of the set Et(z)

In order to relate the inequalities that define the set Et(z) to the inequalities given in Chesher

(2010) and Chesher and Smolinski (2009) it is useful to give an alternative derivation and

expression for the set Et(z).

Associated with the lists of active and last-discharged indexes there are arrays of cu-

mulative probabilities which are useful in the subsequent analysis. They also provide an

alternative characterisation of the set Et(z).

Consider the ith largest element γ[i]. If this lies in the identified set then for each i

∈ {1, . . . , N} there exist non-negative values of the cumulative probabilities η̄[i]k which sum

to γ[i] across k ∈ {1, . . . ,K}. The set Et(z) is derived by finding lower and upper bounds for

each term η̄[i]k in the sum, producing bounds on differences of elements of γ by combining

the bounds.

Each cumulative probability η̄[i]k is bounded below by the maximum of the terms ρ̄[j] that

appear in rows 1 through i of the column associated with xk. That bound is λik ≡ ρ̄[dik]

where dik is the last-discharged index in column k of row i.

Each term η̄[i]k is bounded above by the minimum of the terms ρ̄[j] that appear in rows

i through N + 1 of column k. That bound is πik ≡ ρ̄[aik] where aik is the active index in

column k of row i.

Combining results there are the following bounds for all i and k:

λik ≤ η̄[i]k ≤ πik (3.14)

and on summing and noting that for γ in the identified set the independence condition holds

so that γ[i] =
�K

k=1 η̄[i]k there are the following lower and upper bounds.

λi ≡

K�

k=1

λik ≤ γ[i] ≤

K�

k=1

πik ≡ πi (3.15)

Making explicit dependence on the arrangement under consideration, t, and the instru-

Smolinski, Konrad (2012), Single Equation Instrumental Variable Models: Identification under Discrete Variation 
European University Institute

 
DOI: 10.2870/35896

76



mental value, z, defining

λ
t
ik(z) ≡ ρ̄

t
[dtik(z)]

(z) π
t
ik(z) ≡ ρ̄[atik(z)]

(z)

λ
t
i(z) ≡

K�

k=1

λ
t
ik(z) π

t
i(z) ≡

K�

k=1

π
t
ik(z)

and intersecting the bounds (3.20) across z ∈ Z gives the following inequalities which hold

for each arrangement t and for all i ∈ {1, . . . , N}.

max
z∈Z

�
λ
t
i(z)

�
≤ γ[i] ≤ min

z∈Z

�
π
t
i(z)

�
(3.16)

The inequalities (3.14) can also be used to place bounds on differences, γ[s] − γ[r], as

follows. For all s and r in {0, . . . , N +1} and for all k there are bounds on η̄[s]k and on −η̄[r]k

as follows:

λsk ≤ η̄[s]k ≤ πsk

−πrk ≤ −η̄[r]k ≤ −λrk

and on adding there are the following bounds.

λsk − πrk ≤ η̄[s]k − η̄[r]k ≤ πsk − λrk (3.17)

Summing across k there are the following inequalities.

λs − πr =
K�

k=1

(λsk − πrk) ≤ γ[s] − γ[r] ≤

K�

k=1

(πsk − λrk) = πs − λr (3.18)

This is nothing more than a direct implication of (3.15) but the lower bound here can be

improved upon by exploiting the properness condition [2]. Thus, consider values s and r such

that s > r. If γ is in the identified set then for all s > r the inequality η̄[s]k − η̄[r]k ≥ 0 holds.

The lower bound in (3.17) can therefore be tightened as follows.

max(0,λsk − πrk) ≤ η̄[s]k − η̄[r]k ≤ πsk − λrk (3.19)
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Summing across k gives the following bounds which hold for all s > r ∈ {0, . . . , N + 1}.

K�

k=1

max(0,λsk − πrk) ≤ γ[s] − γ[r] ≤ πs − λr (3.20)

The set defined by these bounds is precisely the set Et(z).

Making explicit the dependence of the terms in these bounds on the arrangement under

consideration, t, and the instrumental value z, and intersecting the bounds (3.20) across

z ∈ Z gives the following inequalities which hold for each arrangement t and for all N + 1 ≥

s ≥ r ≥ 0.

φ
t
sr
(Z) ≡ max

z∈Z

�
K�

k=1

max(0,λt
sk(z)− π

t
rk(z))

�

≤ γ
t
[s] − γ

t
[r] ≤

min
z∈Z

�
π
t
s(z)− λ

t
r(z)

�
≡ φ̄

t
sr(Z) (3.21)

These bounds define Et(Z), the component of the identified set in which γ is in arrangement

t. The union of these sets,
�T

t=1 Et(Z), is the set E(Z), previously defined, which is equal to

the identified set H(Z).

3.3.4 Binary outcomes

When Y is binary there is just one threshold function and the parameters of interest are

γ11, γ12, . . . , γ1K . We now show that in this case the lower bound in (??) is zero when s > 0

so these bounds place no restrictions on γ additional to those defined by (3.16).

Without loss of generality we consider an arrangement t in which the elements of γ are

arranged in the order of the index k. The situation for a case in which K = 6 is as pictured

in Table 3.4. Notice that with the given arrangement of γ for every value of n, k(n) = n, so

the values ρ̄[n] lie on the diagonal in Table 3.4. Because Y is binary there is only one such

entry in each column.

We now show that for all indices s > r > 0 the terms λsk − πrk are zero or negative for

all k from which it follows that the lower bound in (??) is zero.

Consider some value k and the difference λsk − πrk with s ≥ r. Referring to Table 3.4 it
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Value of X Ordered
n x1 x2 x3 x4 x5 x6 values of γ γ k(n)

0 0 0 0 0 0 0 γ[0] 0
1 ρ̄[1] η[1]2 η[1]3 η[1]4 η[1]5 η[1]6 γ[1] γ11 1
2 η[2]1 ρ̄[2] η[2]3 η[2]4 η[2]5 η[2]6 γ[2] γ12 2
3 η[3]1 η[3]2 ρ̄[3] η[3]4 η[3]5 η[3]6 γ[3] γ13 3
4 η[4]1 η[4]2 η[4]3 ρ̄[4] η[4]5 η[4]6 γ[4] γ14 4
5 η[5]1 η[5]2 η[5]3 η[5]4 ρ̄[5] η[5]6 γ[5] γ15 5
6 η[6]1 η[6]2 η[6]3 η[6]4 η[6]5 ρ̄[6] γ[6] γ16 6
7 δ1 δ2 δ3 δ4 δ5 δ6 γ[7] 1

Table 3.4: Conditional distribution-mass function values for a binary outcome example with
observational equivalence restrictions imposed.

can be seen that values taken by λsk and πrk are as follows.

λsk =






0 , s < k

ρ̄[k] , s ≥ k

πrk =






ρ̄[k] , r ≤ k

δk , r > k

The resulting values of λsk − πrk are therefore as shown below.

Values of λsk − πrk

s < k s = k s > k

r < k −ρ̄[k] −ρ̄[k] 0

r = k ∗ 0 0

r > k ∗ ∗ ρ̄[k] − δk

All the values are zero or negative and the result is that the lower bounds φ
t
sr
(Z) are zero.

Therefore in the binary Y case the restrictions imposed by the bounds (??) for r �= 0 have

no force. It is shown in the next Section that the bounds obtained from (??) setting r = 0,

equivalently the bounds (3.16), are identical to the bounds given in Chesher (2009, 2010)

which are shown in those papers to define the identified set H(Z).

3.3.5 Relationship to earlier results

It is shown in Chesher (2010) that all structural functions h that lie in the set identified by

a SEIV model given a particular probability distribution FY X|Z with Z = z ∈ Z satisfy the
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following inequalities for all τ ∈ (0, 1).

max
z∈Z

Pr[Y < h(X, τ)|Z = z] < τ ≤ min
z∈Z

Pr[Y ≤ h(X, τ)|Z = z] (3.22)

Here probabilities are calculated using the distribution FY X|Z .

The inequalities generated by (3.22) as τ varies over (0, 1) define a set of structural

functions referred to as C(Z) in Chesher and Smolinski (2009). When X is discrete and

characterized by a vector γ as in the previous discussion the set C(Z) is a union of convex

sets, Ct(Z), one associated with each arrangement, t, of γ.

C(Z) =
T�

t=1

Ct(Z)

Each set Ct(Z) is an intersection of sets obtained as z varies within Z.

Ct(Z) =
�

z∈Z
Ct(z)

We now show that the bounds (3.22) are identical to those generated by (3.16) as n

varies over {1, . . . , N}. Chesher and Smolinski (2009) show that in the discrete endogenous

variable case considered here the bounds (3.22) hold for all τ ∈ (0, 1) if and only if the

following inequalities hold for all l ∈ {1, . . . ,M − 1} and s ∈ {1, . . . ,K}.

max
z∈Z

K�

k=1

M−1�

m=1

ρmk(z)1(γmk ≤ γls) ≤ γls ≤ min
z∈Z

K�

k=1

M�

m=1

ρmk(z)1(γm−1,k < γls)

Consider a particular arrangement of γ and its nth largest element, γ[n]. Substituting γ[n]

for γls above gives the following.

max
z∈Z

K�

k=1

M−1�

m=1

ρmk(z)1(γmk ≤ γ[n]) ≤ γ[n] ≤ min
z∈Z

K�

k=1

M�

m=1

ρmk(z)1(γm−1,k < γ[n]) (3.23)

Comparing this with (3.16) it can be concluded that the bounds are identical because both
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of the following equations are satisfied:

ρ̄[dnk](z) ≡ λnk(z) =
M−1�

m=1

ρmk(z)1(γmk ≤ γ[n]) (3.24)

ρ̄[ank](z) ≡ πnk(z) =
M�

m=1

ρmk(z)1(γm−1,k < γ[n]) (3.25)

and on the right hand side of (3.24) and (3.25) are the expressions summed over k to produce

the bounds in (3.23).

3.3.6 Alternative expressions for the bounds

The objects λnk(z) and πnk(z) can be expressed in terms of probabilities involving the struc-

tural function for n ∈ {1, . . . , N} as follows.

λnk(z) =






Pr[Y < h(xk, γ[n+1]) ∧X = xk|Z = z] , n ∈ {1, . . . , N}

Pr[Y ≤ h(xk, γ[n]) ∧X = xk|Z = z] , n = N + 1
(3.26)

πnk(z) = Pr[Y ≤ h(xk, γ[n]) ∧X = xk|Z = z] , n ∈ {1, . . . , N + 1} (3.27)

With these expressions in hand the bounds (3.16) can be written:

λn(Z) ≡ max
z∈Z

�
Pr[Y < h(X, γ[n+1])|Z = z]

�

≤ γ[n] ≤

min
z∈Z

�
Pr[Y ≤ h(X, γ[n])|Z = z]

�
≡ πn(Z) (3.28)

and the bounds (??) take the following form.

φ
t
sr
(Z) ≤ γ[s] − γ[r] ≤ φ̄

t
sr(Z) (3.29)
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φ
t
sr
(Z) = max

z∈Z
(
�

k

max{0,Pr[Y < h(xk, γ[s+1]) ∧X = xk)|Z = z]

− Pr[Y ≤ h(xk, γ[r]) ∧X = xk|Z = z]}) (3.30)

φ̄
t
sr(Z) = min

z∈Z

�
π
t
s(z)− λ

t
r(z)

�
(3.31)

These expressions are elucidated using the example considered earlier. Table 3.5 shows

the values of λnk and πnk in the arrangement used in the example. Dependence on the value

z is no longer made explicit in the notation.

Table 3.6 shows the value of the structural function h(x, u) for all the combinations of x

and u that arise in (3.26) and (3.27) in this example. For example the entry for n = 3 and

k = 2 under the heading πn2 is h(x2, γ[3]) = h(x2, γ21) = 2. The entries in this Table are

easily verified by referring to Figure 1.

Consider for example λ42. From (3.26) we have

λ42 = Pr[Y ≤ h(x2, γ[5]) ∧X = x2|Z = z]

and since γ[5] = γ23 there is, from Table 3.6, h(x2, γ23) = 2. Accordingly

λ42 = Pr[Y < 1 ∧X = x2|Z = z]

which is equal to ρ̄12 as shown in Table 3.5 in the entry for n = 4 and k = 2.

Consider for example π33. From (3.27) we have

π33 = Pr[Y ≤ h(x3, γ[3]) ∧X = x3|Z = z]

and since γ[3] = γ21 there is, from Table 3.6, h(x3, γ21) = 1. Accordingly

π33 = Pr[Y ≤ 1 ∧X = x3|Z = z]

which is equal to ρ̄13 as shown in Table 3.5 in the entry for n = 3 and k = 3.

3.4 Bounding inequalities for continuous endogenous variables
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k = 1 k = 2 k = 3
n γ(n) γ(n+1) λn1 πn1 λn2 πn2 λn3 πn3

0 0 γ11 0 ρ̄11 0 ρ̄12 0 ρ̄13

1 γ11 γ12 ρ̄11 ρ̄11 0 ρ̄12 0 ρ̄13

2 γ12 γ21 ρ̄11 ρ̄21 ρ̄12 ρ̄12 0 ρ̄13

3 γ21 γ13 ρ̄21 ρ̄21 ρ̄12 ρ̄22 0 ρ̄13

4 γ13 γ23 ρ̄21 ρ̄31 ρ̄12 ρ̄22 ρ̄13 ρ̄13

5 γ23 γ22 ρ̄21 ρ̄31 ρ̄12 ρ̄22 ρ̄23 ρ̄23

6 γ22 1 ρ̄21 ρ̄31 ρ̄22 ρ̄22 ρ̄23 ρ̄33

7 1 ρ̄31 ρ̄31 ρ̄32 ρ̄32 ρ̄33 ρ̄33

Table 3.5: Values of λnk and πnk in the arrangement used in the example.

k = 1 k = 2 k = 3
n γ(n) γ(n+1) A: λn1 B: πn1 A: λn2 B: πn2 A: λn3 B: πn3
0 0 γ11 1 1 1 1 1 1
1 γ11 γ12 2 1 1 1 1 1
2 γ12 γ21 2 2 2 1 1 1
3 γ21 γ13 3 2 2 2 1 1
4 γ13 γ23 3 3 2 2 2 1
5 γ23 γ22 3 3 2 2 3 2
6 γ22 1 3 3 3 2 3 3
7 1 3 3 3 3 3 3

Table 3.6: For the arrangement used in the example these are the values of A: h(xk, γ[n+1])
appearing in the definition of λnk and of B: h(xk, γ[n]) appearing in the definition of πnk.

Smolinski, Konrad (2012), Single Equation Instrumental Variable Models: Identification under Discrete Variation 
European University Institute

 
DOI: 10.2870/35896

83



So far the endogenous explanatory variable X has been required to be discrete. The argu-

ment used to develop the inequalities defining the identified set in that case can also be used

in the continuous X case to define inequalities which, when constructed using probability

distributions FY X|Z for z ∈ Z, must be satisfied by all structural functions in the observa-

tionally equivalent structures that generate that distribution. At this time we do not have a

proof of sharpness when M > 2 in the continuous case.18 The development given here also

applies in the discrete X case.

Consider probability distributions FY X|Z for z ∈ Z and an admissible structural function

h(·, ·). Consider values x ∈ X and z ∈ Z and consider restrictions on admissible distributions

FUX|Z which must hold if the structural function h and a distribution FUX|Z are to define a

structure which generates the probability distribution FY X|Z with Z = z.

We derive expressions for the minimal and maximal probability mass that FU |XZ with

X = x and Z = z can assign at or below a value u ∈ (0, 1] given the requirement that FU |XZ

and h must deliver the probability distribution FY |XZ with X = x and Z = z. Let these

minimal and maximal probability masses be denoted by respectively B(u, x, z) and B(u, x, z)

so that there is the following inequality.

B(u, x, z) ≤ FU |XZ(u|x, z) ≤ B(u, x, z) (3.32)

These bounds depend on h and on the probability distribution FY |XZ(y|x, z).

Integrating with respect to the conditional distribution of X given Z = z and, noting

that the independence restriction requires

ˆ
FU |XZ(u|x, z)dFX|Z(x|z) = u

holds for all u ∈ (0, 1] and z ∈ Z, delivers the following inequality which holds for all u ∈ (0, 1]

and z ∈ Z. ˆ
B(u, x, z)dFX|Z(x|z) ≤ u ≤

ˆ
B(u, x, z)dFX|Z(x|z) (3.33)

The inequality places restrictions on h and involves FY X|Z with Z = z.

Now consider two values of U , u1 and u2 with u1 > u2, and the maximal probability
18The set derived in this Section is shown to be the identified set in the binary Y continuous X case in

Chesher (2010).
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mass that an admissible distribution function FU |XZ with X = x and Z = z can assign to

the interval (u2, u1] given the requirement that FU |XZ and h must deliver the probability

distribution FY |XZ with X = x and Z = z. This is equal to the maximal mass that can lie

at or below u1 less the minimal mass that can lie below u2, as follows.

FU |XZ(u1|x, z)− FU |XZ(u2|x, z) ≤ B(u1, x, z)−B(u2, x, z) (3.34)

The expression on the right hand side here is always non-negative because

B(u1, x, z) ≥ B(u1, x, z) ≥ B(u2, x, z)

the second inequality following because u1 > u2. The inequality (3.34) does not improve on

the inequality (3.32) which delivers the inequality (3.34) on adding the two inequalities:

FU |XZ(u1|x, z) ≤ B(u1, x, z)

−FU |XZ(u2|x, z) ≤ −B(u2, x, z)

which come directly from (3.32).

Now consider two values of U , u1 and u2 with u1 > u2 and the minimal probability

mass that an admissible distribution function FU |XZ with X = x and Z = z can assign to

the interval (u2, u1] given the requirement that FUX|Z and h must deliver the probability

distribution FY |XZ with X = x and Z = z.

This is at least equal to the minimal mass required to lie at or below u1 minus the maximal

mass that can lie below u2, so there is the following inequality for all (u1, u2) ∈ (0, 1] with

u1 > u2 and for all z ∈ Z.

FU |XZ(u1|x, z)− FU |XZ(u2|x, z) ≥ B(u1, x, z)−B(u2, x, z)

This is a direct implication of the inequality (3.32). However the right hand side of this

inequality can be negative, and since u1 > u2, an admissible distribution must satisfy

FU |XZ(u1|x, z) ≥ FU |XZ(u2|x, z)
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and so the bound can be improved as follows.

FU |XZ(u1|x, z)− FU |XZ(u2|x, z) ≥ max(0, B(u1, x, z)−B(u2, x, z)) (3.35)

Integrating with respect to the conditional distribution of X given Z = z and exploiting the

independence restriction gives the following inequality which must hold for all (u1, u2) ∈ (0, 1]

with u1 > u2 and for all z ∈ Z.

u1 − u2 ≥

ˆ
max(0, B(u1, x, z)−B(u2, x, z))dFX|Z(x|z) (3.36)

The inequalities (3.33) and (3.36) depend only on the structural function h(·, ·) and the

distribution FY X|Z(y, x|z) at the value z under consideration. They must hold for all z ∈ Z

leading to the following intersection bounds.

max
z∈Z

ˆ
B(u, x, z)dFX|Z(x|z) ≤ u ≤ min

z∈Z

ˆ
B(u, x, z)dFX|Z(x|z) (3.37)

u1 − u2 ≥ max
z∈Z

ˆ
max(0, B(u1, x, z)−B(u2, x, z))dFX|Z(x|z) (3.38)

It remains to determine expressions for B(u, x, z) and B(u, x, z).

First consider the upper bound B(u, x, z) and consider values u ∈ (hm−1(x), hm(x)].

In this case Y = m, the distribution FU |XZ cannot allocate a probability mass larger than

Pr[Y ≤ m|X = x, Z = z] at or below the value u, and so there is the following.

B(u, x, z) = Pr[Y ≤ m|X = x, Z = z] = Pr[Y ≤ h(x, u)|X = x, Z = z] (3.39)

Now consider the lower bound. Suppose u ∈ (hm−1(x), hm(x)). In this case h(x, u) = m.

The distribution FU |XZ could allocate all the probability mass associated with Y = m to the

interval (u, hm(x)] so the probability mass required to fall at or below u is as follows.

B(u, x, z) = Pr[Y < m|X = x, Z = z] = Pr[Y < h(x, u)|X = x, Z = z]

If u = hm(x) then FU |XZ must allocate the probability mass associated with Y = m at or
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below u as well and the total probability mass required to fall at or below u is:

B(u, x, z) = Pr[Y ≤ m|X = x, Z = z] = Pr[Y ≤ h(x, u)|X = x, Z = z].

On considering all intervals in which u may lie, there is the following expression for the lower

bound.

B(u, x, z) = Pr[Y < h(x, u)|X = x, Z = z] +
M�

m=1

1[u = hm(x)] Pr[Y = m|X = x, Z = z]

(3.40)

Substituting for B(u, x, z) and B(u, x, z) in (3.37) gives the following inequalities, which

are satisfied by all structural functions in the identified set for all u ∈ (0, 1].

max
z∈Z

�
Pr[Y < h(X,u)|Z = z] +

M�

m=1

ˆ
1[u = hm(x)] Pr[Y = m|X = x, Z = z]dFX|Z(x|z)

�

≤ u ≤

min
z∈Z

Pr[Y ≤ h(X,u)|Z = z] (3.41)

The bounds for binary Y and discrete X given in Chesher (2009), which are shown there to

define the identified set, arise as a special case.

When X is continuous events {u1 = hm(X)} have measure zero so the second term on

the left hand side of (3.41) is vanishingly small and the inequalities are as follows.

max
z∈Z

Pr[Y < h(X,u)|Z = z] < u ≤ min
z∈Z

Pr[Y ≤ h(X,u)|Z = z]

These inequalities were shown to define the identified set for binary Y and continuous X in

Chesher (2010).

Substituting for B(u, x, z) and B(u, x, z) in (3.38) gives the following inequalities, which

are satisfied by all structural functions in the identified set for all (u1, u2) ∈ (0, 1] with
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u1 > u2.

u1 − u2 ≥ max
z∈Z

ˆ
max {0,Pr[Y < h(x, u1)|X = x, Z = z]

+
M�

m=1

1[u1 = hm(x)] Pr[Y = m|X = x, Z = z]

−Pr[Y ≤ h(x, u2)|X = x, Z = z]} dFX|Z(x|z) (3.42)

When X is continuously distributed the second term makes an infinitessimal contribution

and the inequality simplifies as follows.

u1 − u2 > max
z∈Z

ˆ
max {0,Pr[Y < h(x, u1)|X = x, Z = z]

−Pr[Y ≤ h(x, u2)|X = x, Z = z]} dFX|Z(x|z)

The bounds (3.41) and (3.42) are precisely those given in (3.28) - (3.31) for the discrete

X case. This is so because setting u = γ[n] in (3.39) and (3.40) for n ∈ {1, . . . , N} gives the

following expressions

B(γ[n], x, z) = Pr[Y ≤ h(x, γ[n])|X = x, Z = z]

B(γ[n], x, z) = Pr[Y < h(x, γ[n+1])|X = x, Z = z]

which on evaluating at x = xk and multiplying by Pr[X = xk|Z = z] lead to the expressions

for λnk(z) and πnk(z) given in equations (3.26) and (3.27) in Section 3.12.

The set of structural functions which satisfy the inequalities (3.41) for all u ∈ (0.1] and

the inequalities (3.42) for all (u1, u2) ∈ (0, 1] define a set of structural functions denoted by

EA(Z). We have shown that when X is discrete this is the set EA(Z) = E(Z) which has

been shown to equal the identified set, H(Z). The argument given in this Section shows that

when X is continuous (or mixed discrete-continuous) H(Z) ⊆ EA(Z). We conjecture that

EA(Z) is the identified set in the non-discrete X case as well.

3.5 Illustrative calculations, computation and estimation
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3.5.1 Examples of bounds

We enumerate the bounds for a case with M = 3 and K = 3 and the arrangement of γ shown

in equation (3.7) that has been considered throughout the paper.

Table 3.7 shows the values of lower bounds on γ[s] − γ[r] for s (columns) and r (rows)

varying in {1, . . . , 7}. For example the entry in the row for γ[1] and the column for γ[3] gives

the bound

γ[3] − γ[1] ≥ ρ[2]

that is

γ21 − γ11 ≥ ρ21

and note that this must hold for all z ∈ Z. As z varies ρ21 varies and making this dependence

explicit and dependence on the arrangement explicit too there is the bound

γ21 − γ11 ≥ max
z∈Z

ρ
t
21(z)

which contributes to the bounds defining Et(Z).

The model places no restrictions on some of the differences other than those arising

because of the ordering in the arrangement under consideration. An example is γ[4] − γ[2]

which is only required to be non-negative. Some of the restrictions that define a set Et(Z)

render others redundant. For example in Table 3.7 there is the restriction

γ[5] − γ[4] ≥ ρ[5] (3.43)

which when satisfied ensures that two other restrictions are satisfied as follows.

γ[5] − γ[3] ≥ ρ[5]

γ[5] − γ[2] ≥ ρ[5]

The restrictions γ[6] − γ[3] ≥ ρ[5] and γ[6] − γ[4] ≥ ρ[5] are also redundant, both being implied

by the restriction (3.43).

In the final column lies γ[7] which is equal to 1. The entries in this column give lower
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bounds on 1 − γ[r] where r varies from 1 to 6 down the rows of the Table. Subtracting

these entries from 1 (i.e. eliminating the leading unit terms and changing the signs of what

remains) delivers upper bounds on γ[r] for r ∈ {1, . . . , 6}.

Lower bounds on the γ[r]’s are simply, for each r ∈ {1, . . . , 6}

r�

r�=1

ρ[r�] ≤ γ[r]

as shown in Section 3.3.1.

Adding the negative of the upper bound for γ[r] to the lower bound for γ[s] delivers a lower

bound on γ[s] − γ[r] which we can compare with the bounds shown in Table 3.7. Doing this

we find that the lower bounds on γ[4]−γ[1], γ[5]−γ[1], γ[6]−γ[1] and γ[6]−γ[2] in Table 3.7 are

exactly the bounds obtained by comparing lower and upper bounds on individual elements

of γ.

The only inequality in Table 3.7 that survives these various eliminations is γ[5]−γ[4] ≥ ρ[5].

So for this arrangement the set Et(Z) is defined by this inequality and the lower and upper

bounds on the individual elements of γ and the inequalities that express the ordering of the

elements of γ in this arrangement.

In the M = 3, K = 3 example considered in detail in this paper there are 90 admissible

arrangements of γ of which 15 are fundamental in the sense that each of these 15 generates

3! = 6 arrangements by permuting the index identifying the three values of the conditioning

variable. Annex 2 shows the bounds on γ[s] − γ[r] just as in Table 3.7 for each of these 15

fundamental arrangements. In the sequence presented there the arrangement considered in

this Section is number 8.

Comparisons amongst the inequalities on differences of elements of γ and comparing those

inequalities with the implications of the lower and upper bounds on elements of γ leads to

elimination of large numbers of the entries in the tables that refer to differences γ[s] − γ[r]

for s and r in {1, . . . , 6}. In Arrangement 1 all such inequalities on differences disappear.

In Arrangement 2 only the inequality γ[5] − γ[3] ≥ ρ[5] remains. In Arrangement 3 only the

inequality γ[4] − γ[2] ≥ ρ[4] remains. In other cases there are more survivors. For example in
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γ11 γ12 γ21 γ13 γ23 γ22 1
γ[1] γ[2] γ[3] γ[4] γ[5] γ[6] γ[7]

γ11 γ[1] · 0 ρ[2] ρ[3] ρ[3] + ρ[5] ρ[3] + ρ[5] + ρ[6] 1− ρ[1] − ρ[2] − ρ[4]

γ12 γ[2] · · 0 0 ρ[5] ρ[5] + ρ[6] 1− ρ[1] − ρ[2] − ρ[3] − ρ[4]

γ21 γ[3] · · · 0 ρ[5] ρ[5] 1− ρ[1] − ρ[2] − ρ[3] − ρ[4] − ρ[6]

γ13 γ[4] · · · · ρ[5] ρ[5] 1− δ1 − ρ[2] − ρ[4] − ρ[6]

γ23 γ[5] · · · · · 0 1− δ1 − ρ[2] − ρ[4] − ρ[5] − ρ[6]

γ22 γ[6] · · · · · · 1− δ1 − δ3 − ρ[2] − ρ[6]

Table 3.7: Values of lower bounds on γ[s] − γ[r] for s (in columns) and r (in rows) for the
example arrangement.

Arrangement 11 the following three inequalities on differences of elements of γ survive.

γ[3] − γ[2] ≥ ρ[3]

γ[5] − γ[4] ≥ ρ[5]

γ[6] − γ[2] ≥ ρ[5] + ρ[6]

In the example considered here the number of discrete outcomes is M = 3 and the number of

points of support of the endogenous variables is K = 3. When M or K are larger there are

many more contributions to the definitions of sets Et(Z) coming from inequalities involving

differences of elements of γ.

3.5.2 A Mathematica notebook

This paper is accompanied by a Mathematica notebook which is viewable in the freeware

Math Player 7.19 The notebook does symbolic calculation of bounds as set out in Table

3.7. The user provides values for M , the number of discrete outcomes and K the number

of points of support of the endogenous variables. A stylised graphical display of the M −

1 threshold functions appears with the values associated with the K points of support of

an endogenous variable X highlighted. The user can manipulate these thereby generating

particular arrangements of γ. For each arrangement t selected, the notebook produces a table

like Table 3.7 showing in symbolic form the inequalities defining a set Et(z).

19The notebook can be downloaded from www.cemmap.ac.uk/wps/sisdvivm.nbp. Math Reader 7 is avail-
able at: http://www.wolfram.com/products/player/download.cgi .
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3.5.3 Computation and estimation

When M and K are both large computation of the set E(Z) is challenging because of the

large number of potential arrangements of γ, that is of the K values of the M − 1 threshold

functions, that may arise. For example when M = K = 4 there are 369, 600 admissible

arrangements rising to over 300 billion when M = K = 5. Shape restrictions are helpful in

reducing the scale of the problem.

In the binary outcome SEIV model a monotonicity restriction coupled with a single index

restriction, requiring that the threshold function is a monotone function of a scalar val-

ued function of endogenous and exogenous variables, brings great simplification as shown in

Chesher (2009). The use and benefit of restrictions on threshold functions such as monotonic-

ity, concavity, convexity and single-peakedness coupled with index restrictions is the subject

of current research.

Shape restrictions can also be introduced by employing constrained sieve approximations.

Parametric restrictions cut down the scale of the problem and provide a link to classical like-

lihood based analysis of discrete outcome data. This is illustrated in Chesher and Smolinski

(2009) where ordered probit structural functions are employed with a coefficient on a scalar

endogenous variable X that is common across threshold functions whose “intercept terms”

differ. This model embodies strong shape restrictions, requiring threshold functions to be

monotone in X and parallel after applying the inverse normal distribution function transfor-

mation.

As a prelude to consideration of methods for estimating identified sets in parametric or

otherwise shape constrained models, first consider a theoretical analysis in which one has to

hand probability distributions Pr[Y = m ∧ X = xk|Z = z] for each value z ∈ Z. Suppose

there is a parametric model or sieve approximating model for the structural function with

parameter vector Θ. For any value θ there is an associated value of γ denoted by γ(θ) which

is in some arrangement denoted by t(θ). The values of γ(θ) and t(θ) are easy to compute.

The value θ is in the identified set of parameter values, denoted by HΘ(Z), if and only if

γ(θ) ∈ Et(θ)(Z).
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Define the non-negative valued distance measure D(θ) as follows.

D(θ) ≡ min
w∈Et(θ)(Z)

�
(γ (θ)− w)� (γ(θ)− w)

�
(3.44)

This is the squared Euclidean distance from γ (θ) to the point in the set Et(θ)(Z) closest to

γ (θ) as the crow flies. The measure is zero if and only if γ(θ) ∈ Et(θ)(Z) and so zero if

and only if θ ∈ HΘ(Z). The value of D(θ) is easily found using a quadratic programming

algorithm and the expressions for the linear half spaces defining the sets Et(Z) that we have

given in this paper.20 The set of values of θ that minimise the function D(·) is the identified

set HΘ(Z).

H
Θ(Z) = {θ : θ = argmin

s
D(s)} = {θ : D(θ) = 0}.

In applied econometric work there will be estimates of the probability distributions,

Pr[Y = m ∧X = xk|Z = z] for z ∈ Z, and so estimates of the sets Et(Z). Let D̂(θ) be the

distance measure arising when Et(Z) in (3.44) is replaced by an estimate Êt(Z). The dis-

tance measure D̂(θ) has the properties required of Chernozhukov, Hong and Tamer’s (2007)

“econometric criterion function” Q(θ) and their methods can be employed to estimate, and

develop confidence regions for, the set HΘ(Z).

It will be prudent to use bias corrected estimates of the sets Et(Z). Bias arises because

the sets Et(Z) arise as intersections of sets Et(z) across values z ∈ Z. The issue is explained

in Chernozhukov, Lee and Rosen (2009) (CLR) where a solution is proposed. This is directly

applicable in the case that arises here.

Define ρ
t(z) ≡ {ρt[1](z), . . . , ρ

t
[N ](z)}. With γ[0] ≡ 0 and γ[N+1] ≡ 1 all the constraints

defining a set Et(Z) have the form

γ[s] − γ[r] ≥ max
z∈Z

�
αsr � ρt(z)

�
(3.45)

for certain pairs of indices s > r selected from {0, 1, . . . , N + 1}. Here αsr is a vector of

integers specific to the s− r comparison.

The proposal in CLR is to calculate an estimate of lt(αsr,Z) ≡ maxz∈Z
�
αsr � ρt(z)

�
by

20An L1 norm and a linear programming calculation could be employed instead.
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calculating the maximum over z ∈ Z of precision corrected estimates as follows.

l̂
t(αsr,Z) = max

z∈Ẑ

�
αsr � ρ̂t(z) + κσ

t(αsr, z)
�

Here σ
t(αsr, z) is the standard error of αsr � ρ̂t(z), Ẑ is a data dependent set of values of z

that converges in probability to a non-stochastic set which contains argmaxz∈Z
�
αsr � ρt(z)

�

and κ is an estimate of

median

�
inf
z∈Ẑ

αsr � ρt(z)− αsr � ρ̂t(z)
σt(αsr, z)

�

proposals for which are given in CLR.

The result is an asymptotically upward median unbiased estimate of the bound in (3.45).

Proceeding in this way gives bias corrected estimates of all bounds and thus bias corrected

estimated sets Êt(Z) which will be used in the calculation of the distance measure D̂(θ). An

example of inference using the CLR method in a binary outcome case is given in Chesher

(2009).

3.6 Concluding remarks

We have studied identification of a nonparametrically specified structural function for a dis-

crete outcome, focussing attention mainly on the discrete endogenous variable case. The

single equation instrumental variable (SEIV) model we have considered is attractive because

it places no restrictions on the process generating values of endogenous variables. Commonly

used control function alternatives based on triangular models do not deliver point identifi-

cation when, as here, endogenous variables are discrete unless there are strong parametric

restrictions.

The SEIV model set identifies the structural function. In the M outcome case the struc-

tural function is characterised by M −1 threshold functions. When endogenous variables are

discrete the identified set is a union of many convex sets. In principle there is one such set

associated with each admissible ordering of the K values taken by M − 1 threshold functions

as endogenous variables pass across their K points of support.

Smolinski, Konrad (2012), Single Equation Instrumental Variable Models: Identification under Discrete Variation 
European University Institute

 
DOI: 10.2870/35896

94



Each convex component of the identified set is the intersection of collections of linear half

spaces, each value of the instrumental variables generating one such collection. The number

and extent of the convex components of the identified set depends on the strength and support

of the instrumental variables. When these are good predictors of the values of endogenous

variables the identified set may comprise just a small number of convex components, perhaps

just one.

We have developed expressions for a set E(Z) which can be calculated for any probability

distribution of the outcome Y and endogenous variables X given instruments Z taking values

in a set Z. We have shown that when endogenous variables are discrete the set identified

by the SEIV model, H(Z), is equal to E(Z). We provide a Mathematica notebook which

conducts symbolic calculation of convex components of the identified set.

Unrestricted nonparametric estimation and inference pose challenging problems once M

or K are at all large. Parametric restrictions or shape restrictions reduce the scale of the

estimation problem. We have defined an easy-to-compute criterion function which can be

employed in estimation using the methods proposed in Chernozhukov, Hong and Tamer

(2007) with bias corrected estimates of bounds as proposed in Chernozhukov, Lee and Rosen

(2009).

A set of structural functions, E
A(Z), has been derived for the general case in which

endogenous variables are continuous, mixed discrete-continuous or discrete. When X is

discrete the set EA(Z) is the set E(Z) which is the identified set of structural functions when

endogenous variables are discrete. We have shown that in the non-discrete case all structural

functions in the identified set lie in the set EA(Z) and conjecture that in this case too it is

the identified set.

References

Blundell Richard W., and James L. Powell (2003): “Endogeneity in Nonparamet-

ric and Semiparametric Regression Models,” in Dewatripont, M., L.P. Hansen, and S.J.

Turnovsky, eds., Advances in Economics and Econometrics: Theory and Applications, Eighth

World Congress, Vol. II. Cambridge: Cambridge University Press.

Smolinski, Konrad (2012), Single Equation Instrumental Variable Models: Identification under Discrete Variation 
European University Institute

 
DOI: 10.2870/35896

95



Blundell, Richard W., and James .L. Powell (2004): “Endogeneity in Semiparametric

Binary Response Models,” Review of Economic Studies, 71, 655-679.

Chernozhukov, V., and C. Hansen (2001): “An IV Model of Quantile Treatment Effects,”

Working Paper 02-06, Department of Economics, MIT.

Chernozhukov, V., And C. Hansen (2005): “An IV Model of Quantile Treatment Ef-

fects,” Econometrica, 73, 245-261.

Chernozhukov, V., H. Hong and E. Tamer (2007): “Estimation and Confidence Regions

for Parameter Sets in Econometric Models,” Econometrica, 75, 1243-1284.

Chernozhukov, V., S. Lee, and A. Rosen (2009): “Intersection Bounds: Estimation

and Inference,” CeMMAP Working Paper 19/09.

Chesher, A. (2003): “Identification in Nonseparable Models,” Econometrica, 71, 1405-1441.

Chesher, A. (2005): “Nonparametric Identification under Discrete Variation,” Economet-

rica, 73, 1525-1550.

Chesher, A. (2007): “Endogeneity and Discrete Outcomes,” CeMMAP Working Paper

05/07.

Chesher, A. (2009): “Single Equation Endogenous Binary Response Models,” CeMMAP

Working Paper 23/09.

Chesher, A. (2010): “Instrumental Variable Models for Discrete Outcomes,” Econometrica,

78, 575-602.

Chesher, A., and K. Smolinski (2009): “IV Models of Ordered Choice,” CeMMAP Work-

ing Paper 37/09.

Das, M. (2005): "Instrumental Variables Estimators of Nonparametric Models with Discrete

Endogenous Regressors," Journal of Econometrics, 124, 335-361.

Heckman, J. (1978): “Dummy Endogenous Variables in a Simultaneous Equations System,"

Econometrica, 46, 931-959.

Imbens, G., and W. Newey (2009): “Identification and Estimation of Triangular Simulta-

neous Equations Models Without Additivity,” Econometrica, 77, 1481–1512.

Jun, S. J., J. Pinkse and H. Xu (2009): "Tighter Bounds in Triangular Systems,” unpub-

lished paper.

Lewbel, A. (2007). “Coherency And Completeness Of Structural Models Containing A

Dummy Endogenous Variable,” International Economic Review, 48, 1379-1392.

Smolinski, Konrad (2012), Single Equation Instrumental Variable Models: Identification under Discrete Variation 
European University Institute

 
DOI: 10.2870/35896

96



Tamer, E. (2003). “Incomplete Simultaneous Discrete Response Model with Multiple Equi-

libria,” Review of Economic Studies, 70, 147–165.

Ziegler, G., (2007): Lectures on Polytopes. (Updated seventh printing of the first edition).

New York: Springer Science.

Annex 1: Proof of Proposition 1

1. (a) This follows directly from (3.12) which states that for all i and j, η(i, j) is either

equal to G(i, j) or, equal to max(0, R(i, j)) if this is less than G(i, j).

(b) For any i and j, if G(i, j) ≥ 0 then η(i, j) ≥ 0 because (3.12) states that η(i, j)

is at least equal to G(i, j) or a non-negative quantity, namely max(0, R(i, j)).

The recursion (3.13) taken together with (a) and G(i, j) ≥ 0 =⇒ η(i, j) ≥ 0

implies that, for any i and j, if G(i, j − 1) ≥ 0 then G(i, j) ≥ 0. Since for all i,

G(i, 1) = ∆γ[i] ≥ 0, the result follows by induction letting j pass from 2 to K.

(c) As noted in the proof of (b), for all i and j, G(i, j) ≥ 0 =⇒ η(i, j) ≥ 0 and the

result follows because the result (b) states that for all i and j, indeed, G(i, j) ≥ 0.

(d) This follows directly from (3.13) and (a) and (c).

(e) If G(i, j) > η(i, j) then G(i, j) > 0 and since G(i, j) is a non-increasing function of

j, for all j� ≤ j, G(i, j�) > 0. Therefore, for all j� < j, from (3.13), G(i, j�) > η(i, j�)

which by assumption also holds for j
� = j. From (3.12), if G(i, j�) > η(i, j�) then

η(i, j�) = max(0, R(i, j�)).

2. Suppose that for some j ≤ K, G(i, j) ≤ max(0, R(i, j)). Then η(i, j) = G(i, j) and

from (3.13) G(i, j + 1) = 0 and by repeated application of (3.13), for all j
�
> j,

η(i, j�) = G(i, j�) = 0 and so

G(i,K + 1) = ∆γ[i] −

K�

k=1

η[i]k = 0.

Suppose that there is no j ≤ K such that G(i, j) ≤ max(0, R(i, j)). Then, considering

j = K,

G(i,K) > max(0, R(i,K))
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so

η(i,K) = max(0, R(i,K))

and so from (3.13)

G(i,K + 1) = ∆γ[i] −

K�

k=1

η[i]k = G(i,K)− η(i,K) > 0

and so
K�

k=1

η[i]k < ∆γ[i].

Annex 2

This Annex provides tables like Table 3.7 giving lower bounds on differences γ[s]−γ[r] for the

15 fundamental arrangements of γ in the M = 3, K = 3 case. In each case the final column

gives lower bounds on 1−γ[r] for r ∈ {1, . . . , 6}. Subtracting 1 from each of these expressions

and changing sign gives upper bounds on γ[r]. Lower bounds are simply γ[r] ≥
�r

r�=1 ρ[r�].
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γγ((5)) == γγ23

Figure 3.1: Examples of two threshold functions for the case M = 3 and K = 3 that are
consonant with the arrangement of elements of γ shown on the vertical axis. The outcome Y

takes the value 1 below the lowest threshold in the dark shaded region and the value 3 above
the highest threshold in the light shaded region. The vertical scale is the unit interval [0, 1].
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Chapter 4

Core determining indexes for set

identified models with discrete

observables

This paper introduces a constructive and practical algorithm for obtaining core determin-

ing indexes in a class of partially identified models. Core determining indexes give rise to

core determining sets and inequalities that are necessary and sufficient for the analysis of

identification.

We focus on designs with discrete observables and continuous latent heterogeneity. Ex-

amples comprise ordered outcome, multinomial choice or random coefficient instrumental

variable models. We elucidate the method with an elementary example where a binary

endogenous covariate drives a three valued outcome. In the illustration we examine a non-

parametric ordered outcome model with endogeneity. We invoke an instrumental variable

restriction for identification.

Introduction

We propose a practical method to establish a finite number of moment inequalities char-

acterizing the identified sets in the class of partially identified models when the observable

variables are discrete. The method comprises of a large class of complete models prevalent
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in econometric practice. Instrumental variable models with discrete covariates, like ordered

outcome, multinomial choice, binary panel data or random coefficients models, account for

particular instances.

Without lost of generality we ground our discussion on generalized instrumental variable

models. We demonstrate the method by focusing on structural models where the discrete

outcome variable, Y , is a function of a vector of discrete covariates, X, and a vector of

latent, continuously distributed U . These models are silent about the source of endogeneity,

functional relationship between X and Z. For identification we call the instrumental variable

restriction that which invokes stochastic independence between latent U and the instrument

Z.

Y = h(X,U) U ⊥ Z, U ∼ FU

Unobservable U follows the probability law FU . Chesher, Rosen, Smolinski (2011) demon-

strates that this class of models set, rather than point, identify structural functions h and

distributions of unobservables, FU .

The identified set, that is a set of structural functions and distributions of unobservables,

(h, FU ), obeys the following system of inequalities. For any subset S on the support of

unobservables, U ,

QS(h, FU ) :

ˆ
S
dFU ≥

�

y∈Y,x∈X
1(τy,x(h) ⊆ S)Pr0(Y = y,X = x|Z = z)

must hold for all z in the support of the instrument, Z. The left hand side denotes the

probability mass allocated to the set S computed with respect to the probability law FU .

The right hand side denotes a probability mass taken with respect to the distribution of the

data and aggregated over all level sets, τy,x(h), that are subsets of the proposed set S. A

detailed definition of level sets and discussion of this result are presented in the next section.

For now it is important to point out that this theoretical formulation may fall short

in practice. The inequality must hold for any subset S in the support of unobservables,

U , which in general is an uncomfortably vast space of sets and possibly infeasible to deal

with in applications. However, when there is discrete variation in observables it becomes

possible to characterize the identified set by a finite number of moment inequalities. This
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characterization constitutes the essence of the discussion coming up in this paper.

There have been a few attempts to address the question of determining a finite number of

moment inequalities characterizing the identified set in partially identified problems. Chesher,

Rosen, Smolinski (2011) is the closest to the attempt of this paper and demonstrates a

construction of a collection of a finite number of inequalities in the context of multinomial

choice instrumental variable models. Here we consider any model with discrete variation in

observables and a functional relationship between covariates and outcomes.

Galichon and Henry (2009) discusses incomplete models with discrete variation in unob-

servables. They propose to consider a power set of the support of unobservables to establish

core determining sets. Bersteanu, Molchanov and Molinari (2009, 2010) use techniques sim-

ilar to the results in Galichon and Henry (2009).

Our contribution to the existing literature is as follows. We extend previous results

to the general class of set identified discrete choice problems with discrete covariates but

potentially continuous latent heterogeneity. We provide a practical, computational method

for establishing a finite number of questions that are necessary and sufficient to address

identification.

In our analysis only a finite number of inequalities, say P indexed by p, characterize the

identified set, (h, FU ). They constitute a small subset of all inequalities presented above. For

all values of the instrument Z and all p the identified set is characterized as follows.

Qp(h, FU ) :

ˆ
u∈Cp(h)

dFU ≥

�

(m,k)∈Jp(h)

Pr0(Y = ym, X = xk|Z = z) (4.1)

In this paper we focus on Cp(h) and Jp(h), namely core determining sets and core deter-

mining indexes. They give rise to core determining inequalities, Qp(h, Fu), representing the

set of ultimate identification questions. Core determining indexes, Jp(h), gather indexes of

discrete data points corresponding to the core determining sets, CP (h), in a way that only

some subsets of U need to be examined. This significantly simplifies the practical implemen-

tation of the identification analysis. The model and data dictate both the number and the

form of Jp(h) and Cp(h) through sparsity of the data and shape restrictions imposed on the

structural function.

Having Jp(h) and Cp(h) reduces the enormous practical challenge hidden in the general
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characterization of the identified set. So much so that possibly an infinite number of in-

equalities melts away and we need to cope with a potentially large, but limited, number of

identification queries.

We propose a practically feasible and easy to implement algorithm for obtaining core

determining sets Cp(h) and core determining indexes Jp(h). We elucidate the method in

the context of the nonparametric identification problem studied previously by Chesher and

Smolinski (2009, 2010). The ordered outcome model with the instrumental variable restriction

serves as an example.

We proceed as follows. Section 1 lays out a generic setup for the partially identified

complete models represented by generalized instrumental variable structures. Section 2 dis-

cusses identification and develops core determining partitions, indexes and sets for a class of

models with discrete observables and continuous latent heterogeneity. Section 3 presents a

constructive algorithm to attain core determining sets. Sections 4 elucidates the results in

the context of ordered outcome instrumental variable models. Finally section 5 concludes.

4.1 Set up

In this section we briefly introduce the model and present identification results. We define

elemental level sets that constitute the basis of the model and identification. We present

inequalities characterizing the identified set and show their equivalent representation for the

discrete outcome models. We also define core determining partitions, indexes and sets.

4.1.1 The model

We illustrate identification problem in a class of instrumental variable models where unknown

function h of the observable, discrete X and a vector of latent, continuously distributed U

determines discrete, scalar outcome Y . We assume that latent U is distributed according to

some distribution function FU . In general this distribution remains unspecified. The model

follows.

Y = h(X,U) U ⊥ Z, U ∼ FU

Instrumental variable restriction, U ⊥ Z, excludes dependence between U and the instru-

mental variable, Z. It must hold for all values of Z in the support of the instrument. We
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restrict random vector Z to have discrete support denoted by Z. We denote supports of Y,X

and U by Y , X and U respectively. Sets of discrete values Y , X and Z have cardinality M ,

K and R. We define them as follows.

Y ≡ {ym}
M
m=1 X ≡ {xk}

K
k=1 Z ≡ {zr}

R
r=1 U ≡ RL

Data follows a probability law, Pr0, represented by the conditional distribution F
0
Y X|Z .

Our model falls into the class of generalized instrumental variable models (GIV) studied

by Chesher, Rosen, Smolinski (2011). GIV models incorporate models where Y and X can be

both continuous or discrete. GIV models also allow for the structural h to be a correspondence

and therefore incorporates a possibility of delivering incomplete designs. Chesher, Rosen,

Smolinski (2011) shows that these models are set, rather than point, identifying in general and

discusses identification of the structural h together with a distribution of the unobservables,

FU , that is a duple (h, FU ). They derive a set of moment inequalities characterizing the

identified sets in the class of GIV models. We build on these results.

4.1.2 Elemental level sets

Elemental level set represents a set of values of unobservable U such that for given value of

xk ∈ X , function h delivers the outcome ym ∈ Y as follows.

τm,k(h) = {u : ym = h(xk, u)} (4.2)

Elemental level sets establish a relationship between sets of values of latent heterogeneity

and observable outcomes conditional on the value of the covariate. Notice that in general

they need not be closed or connected. The structural function, h, determines their shape.

Elemental level sets pivot our formulation of identification and constitute the basis of coming

developments of the core determining indexes, sets and inequalities.

We define collections of elemental level sets.

τk(h) = {τm,k(h)}ym∈Y τm(h) = {τm,k(h)}xk∈X τ(h) = {τm,k(h)}ym∈Y,xk∈X

The list τk(h) assembles all elemental level sets corresponding to a particular value of the
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covariate, xk. Similarly, τm(h) collects elemental level sets for a given value of the outcome

ym. Finally, the list τ(h) gathers all elemental level sets in the model.

The essential observation follows. For every value of xk ∈ X pairwise exclusive sets arise

in a collection τk(h). This collection partitions the domain of unobservable U . This remark

underlines and supports a constructive development of the algorithm in the paper. We state

it formally in the following lemma.

Lemma. For every value of the covariate, xk ∈ X , elemental level sets τm,k(h) in the list

τk(h) partition the space of unobservables, U , according to the support of the outcome, Y.

Proof. Consider some xk in X . Consider elemental level sets τy,x(h) and τy�,x(h) of U that

correspond to outcomes ym and ym� , both in Y . Since h is a function then τm,k(h)∩τm�,k(h) =

∅ if and only if ym �= ym� .

4.1.3 Identified set

Chesher, Rosen, Smolinski (2011) shows that the model set identifies the structural function,

h, and the distribution of unobservables, FU . Following these results, let S be a collection

of all subsets of U . We characterize the identified set A as a set of structural functions and

distributions of unobservables, that is a set of duples (h, FU ), such that for any set S in S

the following inequalities must hold.

QS(h, FU ) :

ˆ
S
dFU ≥ max

zr∈Z

�

ym∈Y,xk∈X
1(τm,k(h) ⊆ S)Pr0(Y = ym, X = xk|Z = zr)

(4.3)

The left hand side denotes the probability mass allocated to the set S computed with respect

to the probability law FU . The right hand side denotes a probability mass, taken with respect

to the distribution of the data, F 0
Y X|Z , aggregated over all elemental level sets, τm,k(h), that

are subsets of the proposed set S. Inequalities must hold for all values zr in the support of

the instrument, Z.1

By specifying the distribution of U in the model we restrict the left hand side of the

inequality. Also by shaping the structural function, h, we form elemental level sets and
1Inequality (4.3) has its equivalent representation in the language of random sets theory. Let T (Y,X;h)

be a random set defined on the probability space over Y,X,Z and U as follows.

T (Y,X;h) ≡ {u : Y = h(X,u)}
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therefore interfere with the right hand side of the inequality.

4.2 The Core

We follow the results presented in Chesher, Rosen, Smolinski (2011), which shows that the

identified set in the multinomial choice model can be represented by a finite number of

inequalities.

4.2.1 Tightening bounds

Recall that S is a collection of all subsets in U . We introduce the following notation. For

any S ∈ S we define τ
S(h) to be a collection of all elemental level sets that are subsets of

S. Similarly, we define J S(h) as a collection of indexes of those elemental level sets that are

subsets of S.

τ
S(h) ≡ {τm,k(h) : such that τm,k(h) ⊂ S}

J
S(h) ≡ {(m, k) : such that τm,k(h) ⊂ S}

We define a choice function, µ, which transforms the collection of indexes into a set that is

a union of all elemental level sets indexed by the input collection.

µ(J S(h)) ≡




u :
�

(m,k)∈J S(h)

τm,k(h)






The probability distribution of random sets can be charactarized by containment functionals. The contain-
ment functional of the random set T (Y,X;h) for every value of z in the support of Z follows.

Pr0(T (Y,X;h) ⊆ S|Z = z) =
�

x∈X ,y∈Y

1(τyx(h) ⊆ S)Pr0(Y = y,X = x|Z = z)

This is precisely the right hand side of (4.3). Therefore the identified set A of admissible duples (h, FU )
can be characterized by the following set of inequalities.

∀S ∈ U :

ˆ
S

dFU ≥ max
z∈Z

Pr0(T (Y,X;h) ⊆ S|Z = z)

As before, the left hand side takes a mass allocated to some set S in a support of unobservables. This mass
is compared with a probability delivered by a containment functional of a random set T (Y,X;h) that is a
subset of some set S and maximized over all values of the instrument. Chesher, Rosen, Smolinski (2011)
or Bernstenau, Molchanov, Molinarii (2010) use the language of random set theory presented by Molchanov
(2005).
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Let CS(h) be a set delivered by the choice function applied to the collection of indexes

J S(h). Embodied within these definitions we characterize the identified set in the following

proposition.

Proposition 1. For any set S in S the following inequalities characterize the identifed

set of (h, FU ).

QCS(h)(h, FU ) :

ˆ
CS(h)

dFU ≥ max
zr∈Z

�

(m,k)∈J S(h)

Pr0(Y = ym, X = xk|Z = zr) (4.4)

Proof. We show that these inequalities are implied by the inequalities derived by Chesher,

Rosen, Smolinski (2011). Let S̃ be a subset of S that collects all sets satisfying the following

restriction.

S̃ : ∀S�,S��∈S̃ J
S�
(h) = J

S��
(h) (4.5)

All sets in S̃ generate the same indexes of the elemental levels sets. By applying the definition

of J S(h) and using the choice function, µ, on the right hand side of the characterization of

the identified set in (4.3), we get the right hand side of (4.4). The right hand side takes the

same value for any set S ∈ S̃. We denote this constant by ρ(S̃).

The inequality (4.3) holds for all S ∈ S̃ and in particular, it must hold for CS(h). By

construction, the set CS(h) is a subset of all sets S in S̃ and is the set with the smallest

volume in S̃. Since FU is a distribution function, it follows that the integral on the left hand

side is a monotone function of S, i.e. whenever S
� ⊆ S

�� then
´
S� dF ≤

´
S�� dF . Hence the

following holds.

∀S∈S̃ C
S(h) ⊆ S hence

ˆ
CS(h)

dF = min
S∈S̃

ˆ
S
dF ≥ ρ(S̃)

And it must hold for all subset S̃ of S with property (4.5).

Proposition 1 specifies inequalities that must hold for all subsets S ∈ S, which in general

is an uncomfortably vast space of sets and is possibly unfeasible to deal with in practice.

They may lead to an infinite number of inequalities characterizing the identified set, as in

(4.3).
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When observables are discrete then the power set T (h) of all elemental level sets τ(h)

has 2MK elements. Therefore, all S ∈ S deliver at most 2MK distinct collections J S(h) and

the same maximal number of distinct sets CS(h). However, the maximal number of distinct

J S(h) or CS(h) may often be much smaller then the size of the power set, T (h). This may

happen when some elemental level sets are subsets of others, which is induced by the shape

of the structural function and the support of unobservable heterogeneity.

A finite number of sets leads to a finite number of inequalities characterizing the identified

set. However, the number of inequalities may still be large because it is induced by the power

set of the number of all points of support of the observables in the model. Shrinkage can

occur when the set C
S(h) can be split into two disjoint sets, say C

S�
(h) and C

S��
(h). Then

the inequality defined by the set S can be induced from two inequalities defined by sets S
�

and S
��. The following corollary formalizes this observation.

Corollary 1. Inequality QCS(h)(h, FU ) is induced by inequalities QCS� (h)(h, FU ) and

QCS�� (h)(h, FU ) if following conditions hold.

(i) J
S(h) = J

S�
(h) ∪ J

S��
(h) and (ii) J

S�
(h) ∩ J

S��
(h) = ∅

Proof. Suppose conditions (i) and (ii) hold. They imply the same conditions on CS(h), CS�(h)

and CS��
(h). The integral on the left hand side of (4.4) is a linear operator. Therefore, it

can be split into a sum of two integrals over disjoint sets induced by S
�and S

��of everywhere

possitive measure FU . For every value of zr, the right hand side of (4.4) splits into two sums

over all elements in J S�
(h) and J S��

(h) respectively. Hence for every value of the instrument,

inequality (4.4) induces two inequalities for S
� and S

��.

S
� :

ˆ
CS� (h)

dFU ≥

�

(m,k)∈J S� (h)

Pr0(Y = ym, X = xk|Z = zr)

S
�� :

ˆ
CS�� (h)

dFU ≥

�

(m,k)∈J S�� (h)

Pr0(Y = ym, X = xk|Z = zr)

If they both hold for all zr ∈ Z then the inequality generated by S must hold by the property

of max operator and the fact that FU and Pr0 and non-negative everywhere.
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4.2.2 Determinig the core

We define the core determining partition of S. Let P be index set {1, ..., P}. A collection of

P subsets of S indexed by p, Sp, we call the core determining partitions of S if the following

conditions hold. For any subset Sp ∈ Sp(h) and any subset Sq ∈ Sq(h):

(a) J Sp(h) = J Sq(h) if and only if p = q,

(b) For any S ∈ Sp(h) Corollary 2 applies only to a set S itself and the empty set ∅.

Condition (a) states that all sets in the p
th element of the core determining partition, Sp(h),

generate the same collection of indexes. Condition (b) asserts that the inequality (4.4) pro-

duced by any subset S of the core determining partition Sp(h) cannot be derived from in-

equalities induced by two non-empty and distinct sets in Sp(h).

A list of indexes induced by the element of the core determining partitions, Sp(h), we

call core determining indexes, Jp(h). The set generated by the choice function on Jp(h) core

determining indexes we call the core determining set, Cp(h). For every p ∈ P element of the

core determining partition, Sp(h), is defined as follows.

∀S∈Sp(h) Jp(h) ≡ J
S(h) and Cp(h) ≡ C

S(h)

We formulate the characterization of the identified set.

Proposition 1. For every p in the index set, P, core determining indexes, Jp(h), and

sets, Cp(h), induce core determining inequalities Qp(h, FU ) as follows.

Qp(h, FU ) :

ˆ
Cp(h)

dFU ≥ max
zr∈Z

�

(m,k)∈Jp(h)

Pr0(Y = ym, X = xk|Z = zr) (4.6)

A collection of all P core determining inequalities, Q(h, FU ), characterizes the set of structural

functions and distribution of unobservables, the set of admissible duples (h, FU ). That is the

identified set A.

Proof. The identified set A is characterized by (4.4) that must hold for all S ∈ S. The

result follows directly by definition of core determining partitions and Corollary 2 applied to

Cp(h).
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This result comes obviously from the construction of the core determining indexes. The

core determining set is connected in the sense that it is impossible to partition it into two

non-empty subsets composed of distinct elemental level sets. However, the core determining

set can be a disconnected set because elemental level sets it contains need not be connected.

We derive the collection of core determining partitions of S that induce a finite collection

of subsets of S, which are necessary and sufficient for characterization of the identified set.

This collection of core determining sets together with a collection of corresponding core

determining indexes delivers a collection of the core determining inequalities, i.e. a set of

ultimate identification questions.

S(h) = {Sp(h)}Pp=1 J (h) = {Jp(h)}Pp=1

C(h) = {Cp(h)}Pp=1 Q(h, FU ) = {Qp(h, FU )}Pp=1

All collections have the same cardinality P . Cardinality depends on the complexity of

the problem driven by a structural function, h, dimensionally of latent heterogeneity U or

sparsity of the data. Apart from very specific designs we can not determine P analytically.

However, in what follows, we propose a numerical construction delivering collections J (h)

and C(h).

4.3 Algorithm

This section presents a constructive algorithm, which generates core determining indexes for

the single equation instrumental variable model when observables possess discrete supports.

The algorithm involves operations on subsets of the support of unobservables. In particular,

it requires predefined routines that perform elemental algebraic operations on sets, i.e. takes

unions, intersections or verifies if one set is a subset of the other. We assume that these

operations are available and can be incorporated as functions into the algorithm.

We begin by establishing notation. We outline the set up in fine detaill. We define

essential objects and functions and we briefly describe the evolution of the algorithm. Finally,

we discuss complexity and potential improvements of the construction proposed.
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4.3.1 Notation

At the outset, recall that the structural function, h, links a K valued covariate X and latent

vector U with the M valued outcome Y . The model delivers a list of elemental level sets,

τ(h), for the specified function h. There are P = M ×K distinct elemental level sets τm,k(h)

in that list. For every value xk we aggregate elemental level sets in rank lists, τk(h), of

length M that partition the support of unobservables. We organize the list of elemental level

sets, τ(h), as a collection of K consecutive rank lists. In what follows, we utilize this fact

in the information matrix to simplify the algorithm and enhance construction of the core

determining indexes.

Throughout, we use curly parentheses interchangeably in two ways. On the one hand

as a collection or list of elements. On the other, as a function that uniquely concatenates

elements from different lists. Therefore whenever applied, curly parenthesis stand for a list

of distinct components.

Depth and height. The algorithm evolves in two dimensions dependently, which we call

the step and height of the algorithm. Step appears outer with respect to height in a sense

that the number of height levels, represented by d, changes in every step of the algorithm,

indexed by q. We consider height to be superior with respect to step because climbing the

highest level terminates the algorithm. We express it in an alternating list of height level

paths, Dq. We define the height level paths after an introduction of an information matrix.

Level Sets Indicators and Development Sets. A pair (m, k) uniquely indexes every

elemental level set τm,k(h). The number m indicates the value of the outcome and k indicates

the value of the covariate. Given the structural function, h, there are L = M · K distinct

pairs of this type since there are L distinct elemental level sets in the model. In the initial

step of the algorithm, denoted by zero, all the (m, k) pairs compose the initial list of length

L of elemental level set indicators, J 0(h). The list delivers a corresponding initial list of

development sets, C0(h), i.e. a list equivalent to τ(h) at step zero. As the algorithm evolves,

the list of level set indicators, J q(h), gets updated and expands by one component in every

step q of the construction. At the same instant the list of development sets, Cq(h), evolves

accordingly. The choice function, µ, establishes correspondence between level set indicators

Smolinski, Konrad (2012), Single Equation Instrumental Variable Models: Identification under Discrete Variation 
European University Institute

 
DOI: 10.2870/35896

116



and development sets.

C
q(h) = {C

q
p(h)}

L+q
p=1 J

q(h) = {J
q
p (h)}

L+q
p=1 where C

q
p(h) = µ

�
J

L+q
p (h)

�

Inheritance Indexes and Link Function. We employ a list of inheritance indexes, N q,

to encode the content of the level set indicators, J q
p (h), with respect to the remaining elements

in the collection, J q(h), while the steps of the algorithm alter. We define the initial list of

inheritance indexes as follows.

N
0
≡ {{1}, ..., {P}} and N

q =
�
N

q
p

�P+q

p=1

Inheritance indexes turn out to be very useful in practice. They trace the evolution of the

development sets in Cq(h) obtained from level set indicators in J q(h) in all preceding steps

of the algorithm. This knowledge allows for the shortening of the height level path, Dq, at

almost every step of the procedure when the construction expands and a new set arises.

Further we introduce the link set function, λ, that is essential to our developments. It

is a four valued function that verifies the relationship between two test sets, S and S
�. The

definition of the link function follows and the table enumerates outcomes that the function

λ delivers.

∀S,S�∈S λ : (S, S�) → {∅,⊂,⊃,σ}

λ(S, S�) Relationship
∅ S ∩ S

� = ∅

⊂ S ⊂ S
�

⊃ S ⊃ S
�

σ S ∩ S
� �= ∅ and neither S ⊂ S

� nor S ⊃ S
�

Information Matrix. Finally we introduce a binary information matrix, Aq, which en-

codes the information content of the algorithm at every step q. The information matrix is a

square matrix in which the p
th row(column) has assigned the p

th development set from the

list of all development sets Cq(h). Therefore the size of the information matrix at step q of

Smolinski, Konrad (2012), Single Equation Instrumental Variable Models: Identification under Discrete Variation 
European University Institute

 
DOI: 10.2870/35896

117



the algorithm is Pq × Pq and corresponds to the number of elements in Cq(h)2. Entries in

the information matrix depict the knowledge, or lack of, concerning the relationship between

development sets in Cq(h). As long as the relationship between the n
th and the b

th develop-

ment sets in Cq(h) remains unknown, the (n, b) entry of the informatin matrix, Aq
n,b, stays at

value one. It gets updated to zero when the outcome of the function λ applied to C
q
n(h) and

C
q
b (h) is revealed.

Entries of the matrix Aq get updated from one (uncertainty) to zero (certainty) while

climbing up the hight levels, d, of the construction. In subsequent steps of the algorithm,

the information matrix Aq expands with new columns and rows that match the new items in

the augmented list of level sets indicators, J q(h). This process continues until uncertainty

encoded in the information matrix has been dispelled, i.e. is all entries has been set to zero.

The state of information matrix Aq governs both the height level, d, and step, q, of the

construction and determines when the algorithm terminates.

The rows and columns of the initial information matrix, A0, correspond to the elements

in the initial list of development sets, C0(h), that is complete list of L elemental level sets

collected in τ(h). As set out, this collection binds rank lists, τk(h), that incorporate prior

knowledge from the model. We recall that, by definition, rank lists comprise pairwise disjoint

sets partitioning space of unobservables for every value of the covariates, xk. Therefore, the

outcome of the link function λ applied to any two distinct elemental level sets within every

rank list τk(h) is known a priori and delivers an empty set, ∅. Blocks of zeros encode this

prior knowledge into the initial information matrix.

Let 1M be a square M × M matrix of ones and let 0M be a square M × M matrix of

zeros. We initialize information matrix, A0, as a square matrix with K ×K block elements

as follows.

A0
k,l =






1M if k < l

0M otherwise

The initial infirmation matrix is an upper triangular matrix composed of square blocks 1M .

Height Levels Path. Let Dq be a hight levels path that collects positions of all ones in

the information matrix Aq. Let A
q
n,b be a bit of information; the element of the information

2where Pq = L+ q.
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matrix Aq corresponding to the n
th row and the b

th column at the q
th step of the algorithm.

We define a height levels path, Dq, at the q
th step as follows.

D
q
≡ {(n, b) : for which A

q
n,b = 1}

The number of ones in the initial information matrix, A0, is equal to the sum of dimensions

of all its 1M blocks, that is D0 = MK ×M(K − 1)/2. That being so, there are D0 height

levels to climb in the first step of the algorithm or rather, D0 relations to be inquired from

the link function λ. The number of inquires evolves progressively in succeeding steps indexed

by q.

4.3.2 Construction

The algorithm has two major parts, (i) the initialization chunk and (ii) the learning loop. In

the former we initialize basic objects according to the structure of the model and definitions

outlined. In the latter, the algorithm finds core determining indexes by exploring the infor-

mation matrix and climbing up the height levels path. The Algorithm frame presents these

two parts schematically.

Initialization. For the specified model and proposed structural function, h, we begin by

setting up basic objects as defined above. These are the information matrix A0, the list of

level set indicators, J 0(h), inheritance indexes, N 0, and initial height levels path, D0. We

set out a list of development sets, C0(h), by applying the choice function µ, to a list of indexes

from J 0(h).

Henceforth, we ask for a predefined class of set objects with an empty and full sets

as special elements of the class. This class must represent sets in the domain U of latent

heterogeneity U . We also require predefined elemental methods conducting operations on

subsets of U . These are union and intersection. Lastly we define link function λ. Both step,

q, and height level, d, are initialized with zeros. The learning loop follows.

Learning Loop. In the learning part, the algorithm progressively updates step, q, until it

reaches the top of the height levels path, Dq. A loop command Until in the algorithm frame

expresses this process. The height index, d, controls the loop cycle and its value points on
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an active loop. In every round it increments by one, d ← d+1, until it reaches the top of the

height levels, Dq. The height index, d, indicates element on the height levels path Dq and

hence, it provides pointers n and b. These pointers indicate elements in the list of level sets

indicators, J q
n and J

q
b . We call them active level sets indicators3. Next the algorithm applies

the choice function, µ, to the active level sets indicators and finds related development sets,

C
q
n and C

q
b , called active development sets hereafter.

Active development sets evaluated with the link function λ deliver the link indicator L
q
d.

Depending on the value of this indicator one of four actions may happen.

If active development sets are mutually exclusive then link function returns an empty set,

with link indicator set to ∅. It means there is no common area in the active development sets

and the algorithm remains actionless on level set indicators.

When one of active development sets is a subset of the other then the link indicator, Lq
d,

takes one of two values, either ⊂ or ⊃. In both cases we consider the superset to be parental

with respect to the subset. Suppose that Cq
n is a subset of Cq

b , in which case C
q
b is parental for

C
q
n. Then level sets indicators, J q

n , of the subset development set, Cq
n, are incorporated into

the parental level set indicators, J q
b , i.e. they are merged together into an updated parental

active level sets indicator, J q
b ← {J

q
n ,J

q
b }.

Finally, if the link indicator, L
q
d, delivers a value σ then the active development sets

have a common area and can be possibly married. The algorithm concatenates active level

sets indicators into the temporal level sets indicator, Itmp ← {J
q
n ,J

q
b }, with the corre-

sponding temporal development set, Ctmp ← µ(Itmp). Inheritance indexes get updated

Ntmp ← {N
q
n ,N

q
b , n, b} tracing active level sets.

If the temporal development set, Ctmp, has its twin in the list of development sets, Cq(h),

say the p
th element, then the algorithm merges their corresponding level sets indexes J q+1

p ←

{J
q
p , Itmp} and N

q+1
p ← {N

q
p ,Ntmp}. However, if the temporal development set, Ctmp, does

not have a twin in the list of development sets Cq(h), then the link remains and the list of level

set indicators expands, J q+1 ← {J q
, Itmp}. This implies an expansion of the information

matrix Aq by additional row of zeros and column of ones with zeros at positions indicated by

inheritance indexes Ntmp. The algorithm defines new height levels path, Dq+1, related to the

3We drop dependence on the structural function, h, in the notation for the active level sets indicators, J q
n ,

and the active development sets, Cq
n.
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updated information matrix Aq+1. This way we move to the next step of the construction,

q ← q + 1, and start walking height levels path from the beginning again, d ← 0.

Algorithm 4.1 Development of the core determining indexes.

INITIALIZE:

Define information matrix A0, level sets indicators J 0 and inheritance indexes N 0.
Create height levels path D0 of length D0 from unit elements of the information matrix,
A0.
Set step q = 0 and height d = 0.

LEARN:

Until d < Dq proceed:

(1) Update d ← d+ 1

(2) Set indexes, n and b, corresponding to the d
th element of Dq.

(3) Evaluate L
q
d ← λ(µ(J q

n ), µ(J
q
b )) and Set A

q
n,b ← 0. Check IF:

L
q
d = ∅ then do nothing

L
q
d =⊂ then Update indexes, J q

b ← {J
q
n ,J

q
b }

L
q
d =⊃ then Update indexes, J q

n ← {J
q
n ,J

q
b }

L
q
d = σ then

Set Itmp ← {J
q
n ,J

q
b } and Ctmp ← c(Itmp) and Ntmp ← {N

q
n ,N

q
b , n, b}

If: Ctmp is equal to c(J q
p ), for any p, then Update indexes J

q
p ← Itmp

Else: do the following:
Update the list of indexes J q+1 ← {J q

, Itmp} and N q+1 ← {N q
,Ntmp}

Define matrix Aq+1 as Aq extended by a row of zeros and a column of
ones
Update the last column of Aq+1 with zeros at positions in Ntmp.
Create height levels path Dq+1 of length Dq+1 from unit elements of the
information matrix, Aq+1.
Set step q ← q + 1 and Set heigth d ← 0

4.3.3 Concluding remarks on the algorithm

The algorithm develops a list of core determining indexes, J (h). It is constructive in a sense

that it learns about the structure of the model progressively. It expands the initial list of

core determining indexes and always delivers the core in finite number of steps.

We find it very helpful to use the information matrix in the construction. It simplifies

the algorithm and sustains all the information necessary. Also inheritance indexes improve

the efficient use of information by the procedure. By tracing the history and the content of
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level sets indicators the algorithm avoids double checks.

The information matrix brings some limitations to the storage of the data and perhaps,

to search speed. We conjecture that by substituting the search over the information matrix

by some form of evolution trees or other, more sophisticated, search methods could enhance

speed of the procedure.

4.4 Illustration

Generalized instrumental variable models, to which this work refers, comprise of an immensely

rich class of set identified models. When dealing with discrete data, the identified sets can

be characterized by the inequalities (4.6). The algorithm presented in the paper delivers core

determining indexes and sets.

Identification of complicated models with high dimensional heterogeneity requires anal-

ysis of sets placed in high dimensional spaces. Numerical representation of any subsets in

these spaces leads to considerable practical twists. Therefore, dimensionality of the unob-

served heterogeneity and richness of functional space of the structural h and distribution

FU is of significant practical concern and can substantially influence the complexity of the

identification analysis.

However, to demonstrate methodological insights we find the ordered outcome instru-

mental variable model remarkably instructive. Its univariate nature of the error term brings

enormous simplification and clarity to the picture. At the same time, the model comprises

all the features of the method delivering core determining indexes, yet allows for simplicity

of demonstration.

This model has been studied by a number of authors. Chernozhukov and Hansen (2005)

provides identification results and propose estimation for the set up with continuous outcome.

Chesher (2010) shows that the model set identifies the structural function h and derives an

outer set that comprises the identified set. Chesher and Smolinski (2009) discusses inequalities

necessary for the characterization of the identified set when the outcome is discrete and the

explanatory variable is binary. Chesher and Smolinski (2010) characterizes the identified set

under discrete variation of the outcome and the explanatory covariates.

This section presents an illustrative model in the notation proposed in the previous sec-
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tion. We apply the algorithm and discuss its steps. We present core determining sets and

indexes.

4.4.1 Ordered Outcome IV Models

We consider a class of ordered outcome instrumental variable models. In this class, the

unknown function h of the observable X and univariate, latent variable U determines the

outcome variable Y as follows.

Y = h(X,U) U ⊥ Z U ∼ Unif [0, 1]

An instrumental variable restriction, U ⊥ Z, excludes dependence between unobserved het-

erogeneity, aggregated in U , and the instrumental variable, Z. It must hold for all values in

the support of the instrument, Z ∈ Z. We normalize the support of the latent variable to

a unit interval and restrict its distribution to uniform. The discrete outcome takes ordered

values indexed by integeres, m ∈ Y. The covariate X has K points of support indexed by k,

xk ∈ X .

Subsequently, we pursue elementary illustration where a binary X explains three valued

outcome Y with supports defined as follows.

Y ≡ {1, 2, 3} X ≡ {x1, x2}

The model imposes a weak monotonicity restriction on the structural h in its second argu-

ment, U . This restriction implies a threshold crossing representation. Let u take some value

in (0, 1] . Then for all m ∈ {1, 2, 3} and k ∈ {1, 2} the threshold crossing is written as

m = h(xk, u) if hm−1,k < u ≤ hm,k (4.7)

where the structural parameter hm,k is an abbreviation for the m
th threshold function eval-

uated at point xk, that is hm(xk). For convenience, we use fixed parameters h0,1, h0,2 and

h3,1, h3,2 to denote respectively the lower and upper limits of the support U .

There are four identifiable parameters in this model, two for each value of X. Weak

monotonicity imposes inequality restrictions on these parameters. There is one inequality on
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parameters h1,1, h2,1 corresponding to x1 and analogues inequality imposed on parameters

h1,2, h2,2 corresponding to x2.

{h1,1, h2,1, h1,2, h2,2} with h1,1 < h2,1 and h1,2 < h2,2 (4.8)

Elemental level sets

There are six elemental level sets. They divide the support of unobservables, a unit interval,

into three disjoint subintervals for x1 and x2 and deliver corresponding rank lists, τ1(h) and

τ2(h). Division into disjoint sets is a consequence of the weak monotonicity restriction in this

model. Elemental level sets follow.

τ1,1(h) = {u : u ∈ [h0,1, h1,1]} , τ1,2(h) = {u : u ∈ [h0,2, h1,2]}

τ2,1(h) = {u : u ∈ (h1,1, h2,1]} , τ2,2(h) = {u : u ∈ (h1,2, h2,2]}

τ3,1(h) = {u : u ∈ (h2,1, h3,1]} , τ3,2(h) = {u : u ∈ (h2,2, h3,2]}

The left and right columns list elemental level sets that correspond to rank lists τ1(h) and

τ2(h) respectively. Let u take some value in [0, 1]. Then threshold crossing representation in

a language of elemental level sets follows.

h(x1, u) =






1, if u ∈ τ1,1(h)

2, if u ∈ τ2,1(h)

3, if u ∈ τ3,1(h)

and h(x2, u) =






1, if u ∈ τ1,2(h)

2, if u ∈ τ2,2(h)

3, if u ∈ τ3,2(h)

The Identified Set

In the ordered outcome model, the distribution FU is restricted to be uniform on a unit

interval, [0, 1]. Any subset S of this interval is a set of values of u bounded by u1 from above

and u2 from below. Hence, the left hand side of inequalities in (4.3) simplifies to a difference

between the boundaries of the set S as follows.

∀u1,u2∈[0,1] let S = {u : u1 < u ≤ u2} then
ˆ
S
dFU = u1 − u2

When observables in the model demonstrate discrete variation then the identified set
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can be characterized by a list of finite number of core determining inequalities, as in (4.6),

driven by the core determining indexes and sets. In the ordered outcome IV model, the

core determining set, say Cp(h), translates to a subset of the unit interval bounded by the

values of structural parameters, say hn,l and hm,k. This fact together with restricted uniform

distribution of unobservables simplify the left hand side of the pth core determining inequality.

Eventually, it becomes a difference in the limiting values of the structural parameters.

Cp(h) = {u : hn,l ≤ u ≤ hm,k} then
ˆ
u∈Cp(h)

dFU = hm,k − hn,l

Notice that Cp(h) is a subset of S. The left hand side of any p
th core determining inequality is

straightforward to compute provided we know the corresponding core determining set, Cp(h).

Since every core determining set has its list of core determining indexes, the right hand side

of the core determining inequality computes easily.

Figure (4.1) depicts the intuition behind the characterization of the identified set in (4.3)

and (4.6) applied to the ordered outcome IV model. The left pane presents the red set

S bounded by values u1 and u2. This set contains two elemental level sets, τ2,1(h) and

τ2,2(h), marked as light blue, vertical stripes. On the right pane, we illustrate different set

S
�, painted in dark blue and bounded by u1 = h2,2 and u2 = h1,1, This set contains exactly

the same elemental level sets as set S, namely τ2,1(h) and τ2,2(h). Therefore S
� defines the

core determining set, Cp(h), corresponding to the core determining indexes ({2, 1}, {2, 2}).

The core determining indexes match both sets, S and Cp(h).
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Figure 4.1: Both west and east panes present the same structural function h for the model
with three valued outcome Y and a binary covariate X. Gray and blue vertical stripes display
elemental level sets, τm,k(h). Black bars, with blue dots for x1 and blue diamonds for x2,
denote the structural parameters, hm,k. West pane shows the red set, S = (u2, u1] covering
two elemental level sets, τ2,1(h) and τ2,2(h). East pane displays related core determining set
in blue, Cp(h) = (h1,1, h2,2].

The next section demonstrates the construction of the core determining indexes and sets

for the elementary example presented in Figure 4.1.

4.4.2 The algorithm in action

In the ordered outcome model with three outcomes and binary explanatory variable there

are six arrangements of the structural parameters out of which three are substantively dis-

tinct. The remaining three are symmetric with respect to change of the second index of the

structural parameter. We set them out as follows.

(a) h1,1 < h1,2 < h2,1 < h2,2

(b) h1,2 < h1,1 < h2,1 < h2,2

(c) h1,1 < h2,1 < h1,2 < h2,2

We illustrate development of the core determining indexes for the arrangement (a). The core

determining indexes and sets for arrangements (b) and (c) are graphed in the Appendix B.

Initialization part

The algorithm begins by initializing basic objects: a list of level sets indicators, inheritance

indexes and information matrix. There are six elemental level sets in the model and they
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compose the initial list of development sets, C0(h). Related is the initial list of level sets

indicators, J 0(h), consisting of (m, k) indexes corresponding to the initial list of development

sets.

J
0(h) ≡ {J

0
p (h)}

6
p=1 , J

0(h) = {(1, 1), (2, 1), (1, 2), (2, 2), (1, 3), (2, 3)}

C
0(h) ≡ {C

0
p(h)}

6
p=1 , C

0(h) = {τ1,1(h), τ2,1(h), τ3,1(h), τ1,2(h), τ2,2(h), τ3,2(h)}

Notice that the first three development sets, C
0
1 (h), C

0
2 (h) and C

0
3 (h), partition the unit

interval into mutually disjoint subsets. They form the rank list τ1(h). The same applies to

the rank list τ2(h), that contains the last three development sets, C0
4 (h), C0

5 (h) and C
0
6 (h).

The initial information matrix, A0, reflects this prior knowledge. It is initialized as a square

6 × 6 matrix that has six nonzero entries in the right-upper block of ones 13. Rows of this

block corresponds to the rank list τ1(h) and columns represent the rank list τ2(h).

The initial height levels path, D0, picks indexes of the nonzero entries of the initial

information matrix, A0. These are the following nine pairs representing height levels of the

algorithm in the initial step.

D
0
≡ {D

0
d}

9
d=1 , D

0 = {(1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5), (1, 6), (2, 6), (3, 6)}

The list of level sets indicators is composed of single element lists indexed by p. The

initial list of inheritance indexes reflects this fact. Every element of this list is a singleton as

follows.

N
0 = {(1), (2), (3), (4), (5), (6)}

Learning Loop

We present learning process in two complementary tables in Appendix A. Table 4.2 shows

outcomes of the link function λ when the algorithm climbs the height levels path Dq (rows)

for every steps q of the algorithm (columns). Table 4.3 presents progressive updates of the

list of level sets indicators, J q(h). Starting from the initial list, J 0(h), to the output list of

the core determining indexes, J (h). Updates in Table 4.3 in six steps of the construction

correspond to the values of the link indicator L
q
d, different from the empty set, ∅.
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Consider the first step of the construction, q = 1 and the first height level, d = 1. Height

level sets path, D1
1 indicates on sets (1, 4) for which the link function returns ⊂. It implies

that the elemental level set τ1,1(h) corresponding to the first development set, C0
1 , is a subset

of the elemental level set τ1,2(h) corresponding to the fourth development set, C0
4 . Therefore

the algorithm updates the fourth component on the list of level set indicators, J 0
4 (h), with

indexes corresponding to the first component of the list of level set indicators J 0
1 (h) as follows.

J
1
4 (h) ← {J

0
4 (h),J

0
1 (h)} = {(1, 1), (1, 2)}

C
1
4 (h) ← µ

�
J

1
4 (h)

�
= τ1,1(h) ∪ τ1,2(h)

Indexes of the first and the fourth components of the list of initial level sets indicators get

concatenated into a new list of level sets indicators, J 1
4 (h). Also the fourth development set

C
0
4 (h) gets updated as indicated in the second line.

The second and the third height levels, d = 2, 3, are silent about updates other then parts

in the information matrix A0. However, at the fourth height level the link function returns a

nonempty intersection, σ, between the second development set C0
2 (h) and the newly updated

fourth development set C
1
4 (h). This delivers new level sets indicator, J 1

7 (h), extending the

list of level sets indicators and moving the construction to the new step, q = 2. The seventh

components of the level sets indexes and development sets follow.

J
1
7 (h) ← {J

1
4 (h),J

0
2 (h)} = {(1, 1), (1, 2), (2, 2)}

C
1
7 (h) ← µ

�
J

1
7 (h)

�
= τ1,1(h) ∪ τ1,2(h) ∪ τ2,2(h)

The inheritance indexes updates N 1
7 ← {N 0

2 ,N
1
4 } = {1, 4, 2}. The new set leads to extension

of the information matrix by a row of zeros and a column of ones everywhere but positions

indicated by the inheritance indexes. Lastly, the new path of height levels is defined asD1,

with its first element (2, 5). The step index is updated to q = 2 and d counter is reset.

In the second, third and fourth steps of the algorithm nonempty intersections appear at
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the first, fourth and the second height levels respectively. New level sets indicators follow.

J
2
8 (h) =

�
J

1
2 (h),J

1
5 (h)

�
= {(2, 1), (2, 2)}

J
3
9 (h) =

�
J

2
3 (h),J

2
5 (h)

�
= {(3, 1), (2, 2)}

J
4
10(h) =

�
J

3
2 (h),J

3
9 (h)

�
= {(2, 1), (3, 1), (2, 2)}

Obviously the algorithm creates corresponding development sets, C2
8 (h), C3

9 (h) and C
4
10(h).

At the end of each of these steps, the information matrix extends by a row of zeros and

column of ones reset to zeros at positions indicated by inheritance indexes.

q = 2 and d = 1 : N 2
8 ≡

�
N

1
2 ,J

1
5 , 8

�
= {2, 5, 8}

q = 3 and d = 4 : N 3
9 ≡

�
N

2
3 ,N

2
5 , 9

�
= {3, 5, 9}

q = 4 and d = 2 : N 4
10 ≡

�
N

3
2 ,N

3
9 , 10

�
= {2, 3, 5, 9, 10}

The fifth step of the construction appears particularly interesting. The algorithm updates

three times at height levels d = 2, 4, 5 before expansion takes place at the sixth level, d = 6.

At the second level, the link indicator shows ⊃ for indexes (3, 6). It means that the third

development set is parental with respect to the sixth one. The level sets indicator J 5
3 (h) is

updated with the indexes in J 5
6 (h). Also inheritance indexes updates, N 5

3 ← {N 5
3 ,N

5
6 } =

{3, 6}. At the fourth and fifth height level, the link indicator returns the value ⊂ for indexes

(3, 9) and (3, 10), meaning that the level sets indicators J 5
9 (h) and J 5

10(h) get updated with

the indexes in J 5
3 (h). We emphasize that updates in steps four and five use level sets

indicators J 5
3 (h) updated at the second level.

The algorithm expands the information matrix at the sixth height level when the link

indicator L5
6 delivers σ for indexes (4, 8). It leads to an eleventh component of level sets indi-

cators J 5
11(h) composed of elements in J 4

4 (h) and J 4
8 (h). The process of updating inheritance
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indexes at step q = 5 results in the following.

q = 5 and d = 2 : N 5
3 ←

�
N

4
3 ,J

4
6

�
= {3, 6}

q = 5 and d = 4 : N 5
9 ←

�
N

5
3 ,N

4
9

�
= {3, 5, 6, 9}

q = 5 and d = 5 : N 5
10 ←

�
N

5
3 ,N

4
10

�
= {2, 3, 5, 6, 9, 10}

q = 5 and d = 6 : N 5
11 ≡

�
N

4
4 ,N

4
8 , 11

�
= {2, 4, 5, 8, 11}

In the seventh step, a new set of indicators, J 6
12(h), emerges at the first height level out

of J 5
3 (h) and J 5

11(h). The algorithm moves to the last step where the height levels path D7

has eighteen height levels. The algorithm explores them all with the link function delivering

all possible values of the link indicator L7
d. If the value is different from the empty set, ∅,

then new test development set, Ctmp(h), is compared with all existing development sets. If

such a set is already in the list of the development sets, C(h), then the algorithm updates

appropriate level sets indicators and inheritance indexes of the existing development set and

moves on. In this step all of the test development sets along the height level path have been

previously added to the collection of development sets.

At the very last step, the seventh, the algorithm reaches the eighteenth level on the height

levels path, D7, and terminates. It returns the final list of level sets indicators, J 7(h), which

is precisely the list of core determining indexes J (h).

Table 4.1 presents a list of core determining indexes, J (h), together with a list of corre-

sponding core determining sets, C(h).

The lists comprise eleven components. The first six core determining sets are equivalent to

the elemental level sets. However, the third and the fourth core determining sets, C3(h) and

C4(h) are composed of unions of two elemental level sets. In both cases one of the component

sets is a parental set, τ3,1(h) and τ1,2(h) respectively, corresponding to the elemental level set

at the initialization stage. These sets extend the trivial list of elemental levels delivering the

outer set of the identified set.

Rows seven through eleven describe non-trivial components that, together with rows one

through six, deliver core determining collection of sets. We skip the twelfth trivial set, the

whole interval [0, 1]. Its corresponding core determining inequality always holds.
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p Cp(h) content of Cp(h) Jp(h)

1 (0, h1,1) = τ1,1 {(1, 1)}
2 (h1,1, h2,1) = τ2,1 {(1, 1)}
3 (h2,1, h3,1) = τ3,1 ∪ τ3,2 {(3, 1), (3, 2)}
4 (0, h3,1) = τ1,1 ∪ τ1,2 {(1, 1), (1, 2)}
5 (h1,1, h2,2) = τ2,2 {(2, 2)}
6 (h2,2, 1) = τ3,2 {(3, 2)}

7 (0, h2,2) = τ1,1 ∪ τ2,1 ∪ τ1,2 {(1, 1), (2, 1), (1, 2)}
8 (h2,1, h2,2) = τ2,1 ∪ τ2,2 {(2, 1), (2, 2)}
9 (h2,2, 1) = τ2,2 ∪ τ3,1 ∪ τ3,2 {(2, 2), (3, 1), (3, 2)}
10 (0, h2,2) = τ1,1 ∪ τ1,2 ∪ τ1,2 ∪ τ2,2 {(1, 1), (1, 2), (2, 1), (2, 2)}
11 (h2,1, 1) = τ2,1 ∪ τ2,2 ∪ τ3,1 ∪ τ3,2 {(2, 1), (2, 2), (3, 1), (3, 2)}

Table 4.1: Core determining indexes, J (h), and corresponding core determining sets, C(h),
with their components, elemental level sets. We suppress h from notation of elemental level
sets. We write τm,k instead of τm,k(h).

4.5 Concluding remarks

We propose a practical method for obtaining core determining sets and core determining

indexes in the class of partially identified models when the observable variables are discrete.

They give rise to core determining inequalities, i.e. the set of ultimate identification questions.

We focus on the models where discrete outcome is a non-additive function of discrete

covariates and continuous, latent heterogeneity. This setup comprises a large class of complete

models prevalent in econometric practice of which instrumental variable models with discrete

covariates, like ordered outcome, multinomial choice, binary panel data model or random

coefficients, account for particular instances.

We elucidate our results in the context of ordered outcome model and demonstrate prac-

tical feasibility and usefulness of the approach proposed.
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Appendix A

q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7

d ↓ (n, b) Lq
n,b (n, b) Lq

n,b (n, b) Lq
n,b (n, b) Lq

n,b (n, b) Lq
n,b (n, b) Lq

n,b (n, b) Lq
n,b

1 (1, 4) ⊂ (2, 5) σ (1, 8) ∅ (1, 9) ∅ (1, 10) ∅ (3, 11) σ (4, 9) ∅

2 (1, 5) ∅ (2, 6) ∅ (2, 9) σ (3, 6) ⊃ (4, 10) ∅

3 (1, 6) ∅ (3, 4) ∅ (3, 7) ∅ (5, 7) σ

4 (2, 4) σ (3, 5) σ (3, 9) ⊂ (6, 7) ∅

5 (3, 10) ⊂ (6, 8) ∅

6 (4, 8) σ (6, 11) ∅

7 (7, 8) σ

8 (7, 9) σ

9 Notation (7, 10) σ

10 Lq
n,b ≡ µ(Cq

n, Cq
b ) (7, 11) σ

11 (7, 12) σ

12 (8, 9) σ

13 (8, 10) ⊂

14 (8, 12) σ

15 (9, 10) ⊂

16 (9, 11) σ

17 (9, 12) σ

18 (10, 11) σ

Table 4.2: This table illustrates seven steps of the algorithm with their corresponding height
levels paths for three (ordered) outcomes binary covariate instrumental variable model. The
analysis is conditional on the following arrangement of structural parameters, h1,1 < h1,2 <

h2,1 < h2,2. Columns describe seven steps of the construction. Rows relate to the height
levels of the algorithm. In each step q and for every height d we present link indicators L

q
d,

that are results of the link function λ evaluated on the n
th and b

th development sets, Cq
n and

C
q
b .
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Appendix B
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Figure 4.2: Case A: The model with three outcomes and binary explanatory variable. Struc-
tural parameters in in the arrangement (b) h1,1 < h1,2 < h2,1 < h2,2. Graphs present core
determining sets, Cp(h) in blue, and their corresponding elemental level sets.
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Figure 4.3: Case B: The model with three outcomes and binary explanatory variable. Struc-
tural parameters in in the arrangement (b) h1,2 < h1,1 < h1,2 < h2,2. Graphs present core
determining sets, Cp(h) in blue, and their corresponding elemental level sets.
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Figure 4.4: Case C: The model with three outcomes and binary explanatory variable. Struc-
tural parameters in in the arrangement (c) h1,1 < h2,1 < h1,2 < h2,2. Graphs present core
determining sets, Cp(h) in blue, and their corresponding elemental level sets.
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