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Abstract

Out-of-sample tests of forecast performance depend on how a given data set is split
into estimation and evaluation periods, yet no guidance exists on how to choose the
split point. Empirical forecast evaluation results can therefore be di cult to interpret,
particularly when several values of the split point might have been considered. When
the sample split is viewed as a choice variable, rather than being Þxed ex ante, we
show that very large size distortions can occur for conventional tests of predictive accu-
racy. Spurious rejections are most likely to occur with a short evaluation sample, while
conversely the power of forecast evaluation tests is strongest with long out-of-sample
periods. To deal with size distortions, we propose a test statistic that is robust to the
e!ect of considering multiple sample split points. Empirical applications to predictabil-
ity of stock returns and inßation demonstrate that out-of-sample forecast evaluation
results can critically depend on how the sample split is determined.

Keywords: Out-of-sample forecast evaluation; data mining; recursive estimation; predictability of

stock returns; inßation forecasting.

JEL ClassiÞcation: C12, C53, G17.

 Valuable comments were received from Frank Diebold, Jim Stock, and seminar participants at University
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1 Introduction

Statistical tests of a model’s forecast performance are commonly conducted by splitting a

given data set into an in-sample period, used for initial parameter estimation and model

selection, and an out-of-sample period, used to evaluate forecast performance. Empirical

evidence based on out-of-sample forecast performance is generally considered more trustwor-

thy than evidence based on in-sample performance which can be more sensitive to outliers

and data mining (White (2000b)). Out-of-sample forecasts also better reßect the informa-

tion available to the forecaster in “real time” (Diebold & Rudebusch (1991)). This has led

many researchers to regard out-of-sample performance as the “ultimate test of a forecasting

model” (Stock & Watson (2007, p. 571)).1

This paper focuses on a dimension of the forecast evaluation problem that has so far

received little attention. When presenting out-of-sample evidence, the sample split deÞn-

ing the beginning of the evaluation period is a choice variable, yet there are no broadly

accepted guidelines for how to select the sample split.2 Instead, researchers have adopted

a variety of practical approaches. One approach is to choose the initial estimation sample

to have a minimum length and use the remaining sample for forecast evaluation. For ex-

ample, Marcellino, Stock & Watson (2006) and Pesaran, Pick & Timmermann (2011) use

the Þrst 20 years of data, when available, to estimate forecasting models for a variety of

macroeconomic variables. Another common approach is to do the reverse and reserve a cer-

tain sample length, e.g., 10 or 20 years of observations, for the out-of-sample period (Inoue

& Kilian (2008)). Alternatively, researchers such as Welch & Goyal (2008) and Rapach,

Strauss & Zhou (2010) consider multiple out-of-sample periods and report the signiÞcance

of forecasting performance for each. Ultimately, however, these approaches all depend on

ad-hoc choices of the individual split points.

The absence of guidance on how to select the split point that separates the in-sample and

out-of-sample periods, raises several questions. First, a ‘data-mining’ issue arises because

multiple split points might have been considered and the reported values could be those

1 For excellent reviews of the forecast evaluation problem, see West (2006) and Clark & McCracken (2012).
2 See, e.g., Welch & Goyal (2008, p.1464), “It is not clear how to choose the periods over which a regression

model is estimated and subsequently evaluated.” Stock & Watson (2007, p. 571) recommend “Pick a date

near the end of the sample, estimate your forecasting model using data up to that date, then use that

estimated model to make a forecast.”
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that most favor a given model. Even if individual researchers consider only a single split

point, the community of researchers could collectively have examined a range of split points,

thereby inßuencing individual researchers’ choice.3 When compared to test statistics that

assume a single (predetermined) split point, results that are optimized in this manner can

lead to size distortions and may ameliorate the tendency of out-of-sample tests of predictive

accuracy to underreject (Inoue & Kilian (2004) and Clark & West (2007)). It is therefore

important to investigate how large such size distortions are, how they depend on the split

point—whether they are largest if the split point is at the beginning, middle or end of the

sample—and how they depend on the dimension of the prediction model under study.

A second question is related to how the choice of sample split trades o! the e!ect

of estimation error on forecast precision versus the power of the test as determined by the

number of observations in the out-of-sample period. Given the generally weak power of out-

of-sample forecast evaluation tests, it is important to choose the sample split to generate

the highest achievable power. This will help direct the power in a way that maximizes the

probability of correctly Þnding predictability. We Þnd that power is maximized if the sample

split falls relatively early in the sample so as to obtain the longest available out-of-sample

evaluation period.

A third issue is how one can construct a test that is robust to sample split mining.

To address this point, we propose a minimum  -value approach that accounts for search

across di!erent split points while allowing for heteroskedasticity across the distribution

of critical values associated with di!erent split points. The approach yields conservative

inference in the sense that it is robust to search across all possible sample split points, which

from an inferential perspective represents the ‘worst case’ scenario. Another possibility is

to construct a joint test for out-of-sample predictability at multiple split points, but this

leaves aside the issue of how best to determine these multiple split points.

The main contributions of our paper are the following. First, using a simple theoretical

setup, we show how predictive accuracy tests such as those proposed by McCracken (2007)

and Clark & McCracken (2001, 2005) are a!ected when researchers optimize or “mine” over

the sample split point. The rejection rate tends to be highest if the split point is chosen

at the beginning or end of the sample. We quantify the e!ect of such mining over the

3 Rules of thumb such as using the Þrst 10 or 20 years of data for estimation or forecast evaluation purposes

are clearly designed to reduce the arbitrariness of how the split point is selected.
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sample split on the probability of rejecting the null of no predictability. Rejection rates

are found to be far higher than the nominal critical levels. For example, tests of predictive

accuracy for a model with one additional parameter conducted at the nominal 5% level,

but conducted at all split points between 10% and 90% of the sample, reject 15% of the

time, i.e., three times as often as they should. Similar inßation in rejection rates are seen

at other critical levels, although they grow even larger as the dimension of the prediction

model increases (for a Þxed benchmark). Second, we extend the results in McCracken

(2007) and Clark & McCracken (2001, 2005) in many ways. We derive results under weaker

assumptions and provide simpler expressions for the limit distributions. The latter mimic

those found in asymptotic results for quasi maximum likelihood analysis. In particular, we

show that expressions involving stochastic integrals can be reduced to simple convolutions

of chi-squared random variables. This greatly simpliÞes calculation of critical values for

the test statistics. Third, we propose a test statistic that is robust to mining over the

sample split point. In situations where the “optimal” sample split is used, our test shows

that in order to achieve, say, a Þve percent rejection rate, test statistics corresponding to a

far smaller nominal critical level, such as one percent or less, should be used. Fourth, we

derive analytical results for the asymptotic power of the tests which add insight on existing

simulation-based results in the literature. We characterize power as a function of the split

point and show how this gets maximized if the split point is chosen to fall at the beginning

of the sample. Fourth and Þnally, we provide empirical illustrations for US stock returns

and inßation that illustrate the importance of accounting for sample split mining when

conducting inference about predictive performance.

Our analysis is related to a large literature on the e!ect of data mining arising from

search over model speciÞcations. When the best model is selected from a larger universe

of competing models, its predictive accuracy cannot be compared with conventional crit-

ical values. Rather, the e!ect of model speciÞcation search must be taken into account.

To this end, White (2000b) proposed a bootstrap reality check that facilitates calculation

of adjusted critical values for the single best model and Hansen (2005) proposed various

reÞnements to this approach; see also Politis & Romano (1995). This literature considers

mining across model speciÞcations, but takes the sample split point as given. Instead the

forecast model is kept constant in our analysis, and any mining is conÞned to the sample

split. This makes a material di!erence and introduces some unique aspects in our analysis.
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The temporal dependence in forecast performance measured across di!erent sample splits is

very di!erent from the cross-sectional dependencies observed in the forecasting performance

measured across di!erent model speciÞcations. While the evaluation samples are identical

in the bootstrap reality check literature, they are only partially overlapping when di!erent

sample splits are considered. Moreover, the recursive updating scheme for the parame-

ter estimates of the forecast model introduces a common source of heteroskedasticity and

persistence across di!erent sample splits.

In a paper written independently and concurrently with our work, Rossi & Inoue (2011)

study the e!ect of “mining” over the length of the estimation window in out-of-sample

forecast evaluations. While the topic of their paper is closely related to ours there are

important di!erences, which we discuss in details in Section 4.

The outline of the paper is as follows. Section 2 introduces the theory through linear

regression models, while the power of out-of-sample tests is addressed in Section 3. A

test that is robust to mining over the split point is proposed in Section 4, and Section 5

presents empirical applications to forecasts of U.S. stock returns and U.S. inßation. Section

6 concludes.

2 Theory

We focus on the common case where forecasts are produced by linear models estimated

through recursive least squares and forecast accuracy is evaluated using mean squared error

(MSE) loss. Other estimation schemes such as a rolling window or a Þxed window could

be considered and would embody slightly di!erent trade-o!s. However, in a stationary

environment, recursive estimation based on an expanding data window makes most e cient

use of the data.

Our analysis uses a regression setup that is Þrst illustrated through a simple example

which then is extended to more general regression models.

2.1 A Simple Illustrative Example

Consider the simple regression model that includes only a constant:

! = " + # $ # ! (0$ %2!)& (1)
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Suppose that " is estimated recursively by least squares, so that "̂ = 1
 

P 
"=1 !"& The

prediction of ! +1 given information at time ' is then given by

!̂ +1| = "̂ &

The least squares forecast is compared to a simple benchmark forecast

!̂#
 +1| = 0&

This can be interpreted as the regression-based forecast under the assumption that " = 0$

so that no regression parameters need to be estimated.

For purposes of out-of-sample forecast evaluation, the sample is divided into two parts.

A fraction, ( " (0$ 1)$ of the sample is reserved for initial parameter estimation while the

remaining fraction, 1#($ is used for evaluation. Thus, for a given sample size, )$ the initial

estimation period is ' = 1$ & & & $ )$ and the (out-of-sample) evaluation period is )$+1$ & & & $ )$

where )$ = b()c is the integer part of ()&

Forecasts are evaluated by means of their out-of-sample MSE-values measured relative

to those of the benchmark forecasts:

*%(() =
%X

 =% +1

(! # !̂#
 |  1)

2 # (! # !̂ |  1)
2& (2)

Given a consistent estimator of %2! such as %̂2! = [(1 # ())] 1
P%

 =% +1
(! # !̂ |  1)

2, under

the null hypothesis, +0 : " = 0$ it can be shown that

,%(() =
*%(()

%̂2!

&$ 2

Z 1

$

- 1.(-)d.(-)#
Z 1

$

- 2.(-)2d-$ (3)

where .(-) is a standard Brownian motion, see McCracken (2007). The right hand side of

(3) characterizes the limit distribution of the test statistic, and we denote the corresponding

CDF by /$'1(0). Later we will introduce similar distributions deduced from multivariate

Brownian motions, which explains the second subscript of /& For a given value of (, ,%(() can

be compared to the critical values tabulated in McCracken (2007, table 4). Alternatively,

the  -value can be computed directly by

 (() = 1# /$'1(')$ where ' = ,%(()&

Since ,%(()
&$ /$'1 and /$'1(') is continuous, it follows that the asymptotic distribution of

 (() is the uniform distribution on [0$ 1].
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One contribution of this paper is to show that the expression in (3) can be greatly

simpliÞed. As we shall see, the limit distribution in (3) is simply given by
%
1# ((121 #

122) + log ($ where 11 and 12 are independent standard normal random variables.

2.1.1 Mining over the Sample Split Point: Actual Type I Error Rate

Since the choice of ( is somewhat arbitrary, a researcher may have computed  -values for

several values of (. Such practices raise the danger of a subtle bias a!ecting predictive

accuracy tests which are only valid provided that ( is predetermined and not selected after

observing the data. In particular, it suggests treating the sample split point as a choice

variable which could depend on the observed data.

Suppose that the sample split point, )$, is used as a choice parameter, and the reported

 -value is in fact the smallest  -value obtained over a range of sample splits, such as

 min & min
$!$!$̄

 (()$ with 0 2 ( ' ( 2 (̄ 2 1&

Clearly this is no longer a valid  -value, because the basic requirement of a  -value, Pr( min '

3) ' 3$ does not hold for the smallest  -value which represents a “worst case” scenario.4

Note that we bound the range of admissible values of ( away from both zero and one. Ex-

cluding a proportion of the data at the beginning and end of the sample is common practice

and ensures that the distribution of the out-of-sample forecast errors is well behaved.

To illustrate this point, Figure 1 plots the limit distribution of  min as a function of

the nominal critical level, 3. The distribution is shown over its full support along with a

close-up of the lower range of the distribution that is relevant for testing at conventional

signiÞcance levels. The extent to which the CDF is above the 45 degree line reveals the

over-rejections arising from the search over possible split points. For example, the CDF of

 min is about 15% when evaluated at a 5% critical level, which tells us that there is a 15%

probability that the smallest  -value, min0(1!$!0(9{ (()}$ is less than 5%& The Þgure clearly

shows how sensitive out-of-sample predictive inference can be to mining over the sample

split point.

It turns out that this mining is most sensitive to sample splits occurring towards the

end of the sample. For example, we Þnd min0(8!$!0(9  (() ' 0&05 with a probability that

exceeds 10%. Even a relatively modest mining over split points towards the end of the

4 For simplicity, the notation suppresses the dependence of  min on ! and !̄.
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sample can result is substantial over-rejection. To see this, Figure 2 shows the location of

the smallest  -value, as deÞned by

½
(min :  ((min) = min

10%!$!90%
 (()

¾
&

The location of the smallest  -value, (min$ is a random variable with support on the interval

[0&1$ 0&9]. The histograms in Figure 2 reveal that under the null hypothesis the smallest  -

value is more likely to be located late in the sample (i.e., between 80% and 90% of the data).

The three other panels of Figure 2 show the location of (min under the local alternatives,

" = 4 )!"
%
$ with  = 2!  = 3! and  = 4" As the value of  approaches zero, the histogram

under the local alternative approaches that of the null hypothesis. For more distant local

alternatives such as  = 5! it is very unlikely that the smallest #-value is found late in the

sample.

These Þndings suggest, Þrst, that conventional tests of predictive accuracy that assume

a Þxed and pre-determined value of $ can substantially over-reject the null of no predictive

improvement over the benchmark when in fact $ is chosen to maximize predictive perfor-

mance. Second, spurious rejection of the null hypothesis is most likely to be found with a

sample split that leaves a relatively small proportion of the sample for out-of-sample eval-

uation. Conversely, true rejections of a false null hypothesis are more likely to produce a

small #-value if the sample split occurs relatively early in the sample.

These are important considerations. It is quite common to use a short evaluation sample.

However, our analysis suggests that short forecast evaluation samples are associated with a

higher chance of spurious rejection.

2.2 General Case

Next, consider the general case in which the benchmark model has % regressors, &1  R!!

whereas the alternative forecast model is based on a larger regression with %+ ' regressors,

& = (& 0
1 !&

0
2 )
0  R!+", which nests the benchmark model.5 Forecasts could be computed

multiple steps ahead. Letting ( ! 1 denote the forecast horizon, the benchmark model’s

regression-based forecast is now given by

)̂#
 +$| = *̃

0
1% &1 ! (4)

5 West (1996) considers the non-nested case.
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with

*̃1% =

Ã
 X

&=1

&1%& $&
0
1%& $

! 1  X

&=1

&1%& $)&!

while the alternative forecast is

)̂ +$| = *̂
0
1% &1 + *̂

0
2% &2 ! (5)

where *̂ = (*̂
0
1% ! *̂

0
2% )

0 is the least squares estimator from regressing )& on (& 0
1%& $!&

0
2%& $)

0!

for + = 1! " " " ! ,. For simplicity, we suppress the horizon subscript, (, on the least squares

estimators.

The test statistic takes the same form as in our earlier example,

-'($) =

P'
 =' +1

() " )̂#
 |  $)

2 " () " )̂ |  $)
2

.̂2(
! (6)

but its asymptotic distribution is now given from a convolution of ' independent random

variables, 2
R 1
) / 10(/)d0(/)"

R 1
) / 20(/)2d/! as we make precise below in Theorem 1.

The asymptotic distribution is derived under assumptions that enable us to utilize the

results for near-epoch dependent (NED) processes established by De Jong & Davidson

(2000). We also formulate mixing assumptions (similar to those made in Clark & McCracken

(2005)) that enable us to utilize results in Hansen (1992). The results in Hansen (1992)

are more general than those established in De Jong & Davidson (2000) in ways that are

relevant for our analysis of the split-mining robust test in Section 4.

In the assumptions below we consider the process, 1 = () !&
0
  $)

0! and let V be some

auxiliary process that deÞnes the Þltration F  +*
  * = .(V  *! " " " !V +*)"

Assumption 1 The matrix,  ++ = E(1 1
0
 )! is positive deÞnite and does not depend on ,!

and var[2 1,2
Pb-'c

 =1 vech(1 1
0
 " ++)] exists for all /  [0! 1]"

The Þrst part of the assumption ensures that the population predictive regression coef-

Þcients do not depend on , while the second part, in conjunction with Assumption 2 stated

below, ensures that we can establish the desired limit results.

Assumption 2 For some 3 4 2, (i) k1 k2. is bounded uniformly in ,; (ii)
°°1 "5(1 |F

 +*
  * )

°°
4
#

6 7(8)! where 7(8) = 9(2 1,2 /) for some : 4 0 and 6 is a uniformly bounded sequence

of constants; (iii) V is either ;-mixing of size "3<(3"2)! or =-mixing of size "3<(2(3"1))"

9



Assumption 2 establishes 1 as an >4-NED process of size "1
2 on V ! where the latter

sets limits on the “memory” of 1 " The advantage of formulating our assumptions in terms

of NED processes is that the dependence properties carries over to higher moments of

the process. SpeciÞcally, vech(1 1
0
 ) will be >2-NED of size "1

2 on V ! and key stochastic

integrals that show up in our limit results are derived from the properties of vech(1 1
0
 )"

It is convenient to express the block structure of  ++ in the following ways

 ++ =

µ
 00 •
 10  11

¶
with  11 =

µ
 11 •
 21  22

¶
!

where the blocks in  11 refer to &1 and &2 ! respectively. Similarly, deÞne the “error”

term from the large model

? = ) " 01 
 1
11&  $!

and the auxiliary variable

@ = &2 " 21  111 &1 !

so that @ is constructed to be the part of &2 that is orthogonal to &1 "

Further, deÞne the population objects, .2( =  00 "  01 
 1
11 10 and  22 =  22 "

 21 
 1
11  12. It follows that .2( 4 0 and that  22 is positive deÞnite, because  ++ is positive

deÞnite. Finally, deÞne

A'(/) :=
1
$
2

b-'cX

 =1

@  $? ! (7)

which is a CADLAG on the unit interval that maps into R". The space of such functions is

denoted D"
[0%1]. Two important matrices in our asymptotic analysis are

! := plim
'!"

1

2

'X

&% =1

@& $?&? @
0
  $ and  = .2( 22!

where the former is the long-run variance of {@  $? }" From Assumption 1 it follows that

both ! and  are well deÞned and positive deÞnite.

We shall make use of the following mixing assumption:

Assumption 2’ For some 3 4 * 4 2, B = @  $? is an ;-mixing sequence with mixing

coe cients of size 3*<(3 " *) and sup E|B
.
 | C D C%.

We then have the following theorem:

Theorem 1 Given Assumptions 1 and 2, or Assumptions 1 and 2’, we have

A'(/)&A (/) = !
1,20(/)!
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where 0(/) is a standard '-dimensional Brownian motion.

This result shows that a functional central limit theorem applies to that part of the

score from the “large” prediction model that di erentiates it from the nested benchmark

model. The result is needed for hypothesis tests that rely on the relative accuracy of the

two models.

The next assumption is a mild additional requirement that is easy to verify if the pre-

diction errors are unpredictable in the sense that E(? +3 |? ! @ ! ?  1! @  1! " " ") = 0 for E ! ("

Assumption 3 cov(@  $? ! @& $?&) = 0 for |+" ,| ! ("

This assumption requires a mild form of unpredictability of the (-step-ahead forecast

errors. Without it there would be an asymptotic bias term in the limit distribution given

below.

We can now present the limit distribution of the test statistic -'($) for the general case.

Theorem 2 Suppose Assumptions 1, 2 and 3 or 1, 2’ and 3 hold and .̂2(
4' .2(" Under the

null hypothesis, F0 : *2 = 0! we have

-'($)
5'

"X

3=1

G3

 
2

Z 1

 

  1!!( )d!!( ) 

Z 1

 

  2!!( )
2d 

¸
"

where #1" $ $ $ " #" are the eigenvalues of   1!, and !!( )" % = 1" $$$" &, are independent stan-

dard Brownian motion processes.

The limit distribution of the test statistic in Theorem 2 can also be expressed as

2

Z 1

 

  1!0( )"d!( ) 

Z 1

 

  2!0( )"!( )d " (8)

where " = diag(#1" $ $ $ " #"), and we denote the CDF of this distribution by ' # $ The

standard Brownian motion, !" that appears in Theorem 2 and equation (8) characterizes

the limit distribution. This Brownian motion need not be identical to that used in Theorem

1. In fact, one is a simple orthonormal rotation of the other; see the proof for details.

The expression for the limit distribution in Theorem 2 involves two types of random

variables. The Þrst term is the stochastic integral,
R 1
 
  1!0( )"d!( )" that arises from

the recursive estimation scheme. The second term,  
R 1
 
  2!0( )"!( )d " is a non-positive

random variable that characterizes the prediction loss induced by the estimation error, which
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arises from the additional parameters in the larger model. Stated somewhat informally,

prediction errors map into d!( ) and parameter estimation errors map into !( )$ In the

recursive estimation scheme, prediction errors inßuence parameter estimates in subsequent

predictions.

Our expression for the asymptotic distribution in Theorem 2 is simpler than that de-

rived in Clark & McCracken (2005). For instance, our expression simpliÞes the nuisance

parameters to a diagonal matrix, "" as opposed to a full &× & matrix. Moreover, it is quite

intuitive that the “weights”, #1" $ $ $ " #"" that appear in the diagonal matrix, ", are given as

eigenvalues of   1!, because the two matrices play a similar role to that of the two types

of information matrices that can be computed in quasi maximum likelihood analysis, see

White (1994).

#1,..., #"" can be consistently estimated as the eigenvalues of  ̂ 1!̂" where

 ̂ = (̂2$
1

)

%X

&=1

*̂& '*̂
0
& ', !̂ =

X

(

+( (
) 
)#̂($

Here +(·) is a kernel function, e.g., the Parzen kernel, ,% is a bandwidth parameter, and

#̂! =
1

)

%X

&=1

*̂& '*̂
0
& ' ! -̂&-̂& ! "

with *̂& = .2& 
P&

*=1.2*.
0
1*(
P&

*=1.1*.
0
1*)
 1.1& and -̂& = /& 0̂

0
& '.& '$ In the absence of

autocorrelation in *& '-&, one can use the estimate !̂ = 1
%

P%
&=1 *̂& 1*̂

0
& 1-̂

2
& . This situation

may apply when 1 = 1. In the homoskedastic case, (2$ = 2[-2& |*& '] = 2[-2& ], " = 3"×""

we can simplify the notation ' # to ' #". This is consistent with the notation used in our

simpliÞed (univariate and homoskedastic) example. The homoskedastic result is well known

in the literature, see McCracken (2007).

2.3 SimpliÞcation of Stochastic Integrals

Generating critical values for the distribution of 2
R 1
 
  1!d!  

R 1
 
  2!2d has so far

proven computationally burdensome because it involves both a discretization of the un-

derlying Brownian motion and drawing a large number of simulations. McCracken (2007)

presents a table with critical values based on a 5,000-point discretization of the Brownian

motion and 10,000 repetitions. This design makes the Þrst decimal point in the critical

values somewhat accurate. The analytical result in the next Theorem provide a major

simpliÞcation of the asymptotic distribution.
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Theorem 3 Let !( ) be a standard Brownian motion and 4 ! (0" 1)$ Then

2

Z 1

 

  1!( )d!( ) 

Z 1

 

  2!( )2d = !2(1) 4 1!2(4) + log 4$ (9)

The derivation of Theorem 3 can be illustrated using Ito calculus. Consider '& =

1
&
!2&  log 5" for 5 6 0 so that

7'&87!& =
2
&
!&" 72'&8(7!&)

2 = 2
&
" and 7'&875 =  

¡
1
&2
!2& +

1
&

¢
$

Then by Ito calculus we have

d'& =
h
+,!
+&

+ 1
2

+2,!
(+-!)2

i
d5+ +,!

+-!
d!& =  

1
&2
!2& d5+

2
&
!&d!&"

so that
Z 1

 

2
&
!&d!&  

Z 1

 

1
&2
!2& d5 =

Z 1

 

d'& = '1  ' = !21  !2 84+ log 4$

A more detailed proof of Theorem 3 is provided in the Appendix.

Theorem 3 establishes that the limit distribution is given as a very simple transformation

of two random variables. Apart from the constant, log 4" the distribution is simply the

di erence between two (dependent) 921-distributed random variables, as we next show:

Corollary 1 Let *1 and *2 be independently distributed, *( " :(0" 1)" ; = 1" 2$ Then the

distribution in Theorem 3 is given by

p
1 4(*21  *22) + log 4$

Because the distribution is expressed in terms of two independent 92-distributed random

variables, in the homoskedastic case where #1 = · · · = #" = 1 it is possible to obtain

relatively simple closed form expressions for the distribution in Theorem (2):

Corollary 2 The density of
P"

!=1

h
2
R 1
 
  1!!( )d!!( ) 

R 1
 
  2!!( )

2d 
i

is given by

<1(=) =
1

2.
!
1  K0(

|/ log  |
2
!
1  )"

for & = 1, where K0(=) =
R"
0

cos(/&)!
1+&2

d5 is the modiÞed Bessel function of the second kind.

For  = 2 we have

!2(") =
1

4
 
1! exp

³
 
|!!2 log  |
2
 
1! 

´
#

which is the noncentral Laplace distribution.
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The densities for  = 3# 4# 5# $ $ $ can be obtained based on those stated in Corollary 2.

When  = 2, we obtain an analytical expression for the CDF from the Laplace distrib-

ution:

% "2(") =

 
!

"

1
2 exp

³
!#2!log   

1! 

´
" & log '

1 1
2 exp

³
!!#2+log   

1! 

´
" ! log '

$

The associated critical values are therefore given from the quantile function

%!1 "2 (() =

½
2[log '+

"
1 ' log(2()] ( & 0$5#

2[log ' 
"
1 ' log(2(1 ())] ( ! 0$5$

In the present context we reject the null for large values of the test statistic, so for ) # 0$5

the critical value, *$2 , is found by setting ( = 1 )$ Hence,

*$2 = 2[log ' 
p
1 ' log(2))]# ) # 0$5$

These results greatly simplify calculation of critical values for the limiting distribution of

the test statistics. We next make use of them to illustrate the rejection rates induced by

mining over the sample split.

Table 1 compares the exact critical values to those provided by McCracken (2007) for

di erent values of ' between 0.33 and 0.90 or, equivalently for + = ,-. between 0.1 and

2, using the notation in McCracken. To save space, we only show results for  = 2 and

consider three levels of ), namely ) = 0$90# 0$95 and 0$99. The two sets of critical values

are generally close and practical inference is unlikely to be overturned by the di erences.

However, our approach makes it far more convenient to compute critical values outside the

cases tabulated by McCracken, particularly in cases where  is large.

2.4 Rejection Rates Induced by Mining over the Sample Split

When the sample is divided so that a predetermined fraction, ', is reserved for initial

estimation of model parameters, and the remaining fraction, 1 ', is left for out-of-sample

evaluation, we obtain the /%(')-statistic in (6). This statistic can be used to test the null

hypothesis, 02 = 0, by simply comparing it to the critical values from % " $ For instance, if

*$(') is the 1 ) quantile of % " # i.e., *$(') = %!1 " (1 )), it follows that

lim
%"#

Pr(/%(') 1 *$(')) = )$

Suppose instead that the out-of-sample test statistic, / , is computed over a range of split

points, ' # ' # '̄, in order to Þnd a split point where the alternative is most favored by
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the data. This corresponds to mining over the sample split, and the inference problem

becomes similar to the situation where one tests for structural change with an unknown

change point, see, e.g., Andrews (1993).

To explore the importance of such mining over the sample split for the actual rejection

rates, we compute how often the test based on the asymptotic critical values in McCracken

(2007) would reject the null of no predictability.

Table 2 presents the actual rejection rates based on the asymptotic critical values in Mc-

Cracken (2007) for ) = 0$01# 0$05# 0$10# 0$20, using  = 1# $$$# 5 additional predictor variables

in the alternative model. These numbers are computed as the proportion of paths, 2 $ ['# '̄]

with ' = 1  '̄ = 0$1# for which at least one rejection of the null occurs at the nominal

) level. The computations are based on 3 = 10# 000 simulations (simulated paths) and a

discretization of the underlying Brownian motion, 4(2) % 1 
%

Pb&%c
'=1 5'# with 6 = 10# 000

and 5' & iid3(0# 1)$

The results are very strong. The inßation in the rejection rate from 5% to 15% reported

earlier with one additional regressor ( = 1) increases to nearly 22% as  rises from one

to Þve. Similar results hold no matter which critical level the test is conducted at. For

example, at the ) = 1% nominal level, mining over the sample split point leads to rejection

rates between 3.7% and 5.5%, both far larger than the nominal critical level. When the test

is conducted at the ) = 10% nominal level, the test that mines over split points actually

rejects between 25% and 38% of the time for values of  between one and Þve, while for

) = 20%, rejection rates above 60% are observed for the larger models.

2.5 A  -Invariant Asymptotically Pivotal Test Statistic

The limit distribution of /%(') motivates the simple transformation,

7%(') =
/%(')  log '

"
1 '

# (10)

which deÞnes a test statistic that has a '-invariant limit distribution in the homoskedastic

case.

Corollary 3 Suppose that the assumptions of Theorem 2 hold and that  = 8$ Then the

limit distribution of 7%(') in (10) is given by

91  92#
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where 91# 92 are independent :2-distributed with  degrees of freedom.

Note that the limit distribution of 7% does not depend on any nuisance parameters so

that 7%(') is asymptotically pivotal. The fact that the limit distribution does not depend

on ' in this case is convenient. Unlike in the case with /%(')# it is not necessary to tabulate

critical values for di erent values of '$ However, the homoskedasticity required for  = 8

is unrealistic in most empirical applications. The dependence on ' could still be removed

asymptotically using the deÞnition 7%(') = (/%(') tr{!̂!1"̂} log ')-
"
1 '# but the limit

distribution would still depend on ;1# $ $ $ # ;(. Consequently, in most practical situations the

e ort required to make a test based on   (!) would be identical to that using a test based

on " (!).

3 Power of the Test

The scope for size distortions in conventional tests of predictive accuracy is only one issue

that arises when considering the sample split for forecast evaluation purposes, with the

power of the test also mattering. Earlier we found that the risk of spuriously rejecting the

null due to sample split mining is highest when the sample split occurs towards the end of

the sample. This section shows that, in contrast, the power of the predictive accuracy test

is highest when the sample split occurs early in the sample.

SpeciÞcally, under a local alternative hypothesis we have the following result:

Theorem 4 Suppose that Assumptions 1-3 hold, and consider the local alternative # !2 =

" 
 
$0% where $  R# with $0 $$$ = &!2% ' Then

" (!)
&! (2(1" !) + 2

(

&%
$0!1'2)0 [*(1)"*(!)]

+

#X

(=1

+(
£
*2( (1)" !!1*2( (!) + log !

¤
%

where the matrix ) and " = diag(+1% ' ' ' % +#) are obtained from )0") = !
1'2
 
!1
!
1'2'

This Theorem establishes the analytical theory that underlies the simulation results

presented in Clark & McCracken (2001, tables 4 and 5).

For a given sample size and a particular alternative of interest, e.g., # !2 = ,, the theorem

yields an asymptotic approximation to the Þnite sample distribution. To this end, simply

set $ = 1
),, where -

2 = &2%,
0
 $$, and ( = -

#
.% so that $0 $$$ = &!2% and , = " 

 
$'

16



Insight about the power of the test and its dependence on ! can be gained by considering

the asymptotically pivotal quantity   (!) = (" (!)" / log !)0
#
1" ! in the homoskedastic

case " = 1. In this case its limit distribution does not depend on ! under the null hypothesis,

nor does it depend on any other nuisance parameters. Under the alternative hypothesis,

the non-centrality parameter associated with   (!), which is key for the power of the test,

is given by (2
#
1" !' Thus, the non-centrality parameter is strictly decreasing in !% which

strongly suggests that the power is decreasing in !' However the power of the test is is also

inßuenced by a random term as is evident from Theorem 4. In the univariate case this term

is proportional to (2 where 2 = (*(1)"*(!))0
#
1" ! $ 3(0% 1). While its distribution is

!-invariant, it is not independent of the Brownian motion that deÞnes the null distribution,

so its impact on the power of the test is not entirely clear.

3.1 Local Power in the Illustrative Example

In our illustrative example from Section 2.1, $0 $$$ = &!2% with  $$ = 1 implies that $ = &%,

so a local alternative takes the form

# =
(
#
.
&%%

and the limit distribution is given by

" (!)
&! *2(1)" !!1*2(!) + log !+ (2(1" !) + 2( [*(1)"*(!)] '

How the power depends on the split point can be illustrated by the distribution of the

4-value, deÞned by 4(!) = 1 " 5*!1(" (!))% under the local alternative. Figure 3 presents

the power of the test as a function of ! for four local alternatives, ( = 1% ( = 2% ( = 3%

and ( = 4 based on a test conducted at the nominal 5%-level. The power is decreasing in

! which makes it di!cult to justify using a late sample split with this test.

Empirical studies tend to use a relatively large estimation period, i.e., a large !. This is

precisely the range where one is most likely to Þnd spurious rejections of the null hypothesis.

In fact, the power of the " (!) test provides a strong argument for adopting a smaller (initial)

estimation sample, i.e., a small value of !.
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4 A Split-Mining Robust Test

The results in Table 2 demonstrate that mining over the start of the out-of-sample period

can substantially raise the rejection rate when its e ects are ignored. A question that

naturally arises from this Þnding is how to design a suitable test that is robust to sample

split mining in the sense that it will correctly reject at the stipulated rate even if such

mining took place.

To address this, suppose we want to guard ourselves against mining over the range

!  [!% !̄]. One possibility is to consider the maximum value of " (!) across a range of

split points. However, max*"[*!*̄] " (!) is ill-suited for this purpose, because the marginal

distribution of " (!) varies a great deal with !% both in terms of scale and location. The

implication is that critical values for max-" (!) will be disproportionately inßuenced by

certain ranges for !, and distribute power unevenly over di erent values of ! in an arbitrary

manner.

These observations suggest redeÞning the test statistic so as to make its limit distribution

less sensitive to !' For instance, we could consider   (!) = (" (!)" / log !)0
#
1" ! whose

limit distribution is invariant to ! in the homoskedastic case as shown in Corollary 3, but

unfortunately not in the heteroskedastic case. Instead we pursue a method, well known in

the literature on multiple testing, that combines individual 4-values.

SpeciÞcally, we Þrst map the test statistics for each of the sample split points into

nominal 4-values, 4(!) = 1" 5*! (" (!)). Next, the smallest 4-value is computed:

4min = min
*"[*!*̄]

4(!)'

Because each of the 4-values, 4(!)% is asymptotically uniformly distributed on the unit inter-

val, the resulting test statistic is constructed from test statistics with similar properties, see,

e.g., Westfall & Young (1993). The limit distribution of 4min will clearly not be uniformly

distributed and so cannot be interpreted as a valid 4-value, but should instead be viewed

as a test statistic, whose distribution we seek. To this end, let * denote a /-dimensional

standard Brownian motion and for 6  (0% 1) deÞne

7(6) = *(1)0"*(1)" 6!1*(6)0"*(6) + log 6'

To establish the asymptotic properties of 4min we will need a stronger convergence result

than that used earlier to derive the distribution of " (!) for a Þxed value of !. SpeciÞcally,
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we need that

" (6)% 7(6)% on D[*!*̄]' (11)

The stronger result holds under mixing assumptions, see Hansen (1992), but has not been

established under near-epoch assumptions. It is worth noting that the near-epoch conditions

are the weakest set of assumptions needed for the functional central limit theorem and the

(point-wise) convergence to the stochastic integral, see De Jong & Davidson (2000), so it

may be redundant to state (11) as an additional assumption in the near-epoch setting.

Theorem 5 Given Assumptions 1-3 and (11), or Assumptions 1, 2’ and 3, 4min converges

in distribution, and the cdf of the limit distribution is given by

5 (8) = Pr{ sup
*!#+#*̄

[7(6)" (,(6)] & 0}% 8  [0% 1]%

where 7(6) is given above and

(,(6) = 5!1+! (1" 8)'

Using this result, we can numerically compute the 4-value adjusted for sample split

mining by sorting the 4min-values for a large number of sample paths and choosing the

8-quantile of this (ranked) distribution.

Table 3 shows how nominal 4-values map into 4-values adjusted for any split-mining.

For example, suppose a critical level of 8 = 5% is desired and that / = 1. Then the smallest

4-value computed using the McCracken (2007) test statistic for all possible split points

!  [0% 1% 0'9] should fall below 1.3% for the out-of-sample evidence to be signiÞcant at the

5% level. This drops further to 1.1% when / = 2 and to a value below 0.1% (the smallest 4-

value considered in our calculations) for values of / & 3. Similarly, with a nominal rejection

level of 10%, the smallest 4-value (computed across all admissible sample splits) would have

to fall below 2.9% when / = 1 and below 2% when / = 5. Clearly, mining over the sample

split brings the adjusted critical values much further out in the tail of the distribution.

The robust test that we propose is related to the literature on multiple hypotheses

testing. Each sample split results in a hypothesis test, with the special circumstance that it

is the same hypothesis that gets tested at every sample split. The proposed test procedure

seeks to control the familywise error rate. Combining 4-values, rather than test statistics

with distinct limit distributions, creates a degree of balance across hypothesis tests.
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In a related paper, Rossi & Inoue (2011) consider methods for out-of-sample forecast

evaluation that are robust to data snooping over the length of the estimation window and

accounts for parameter instability. The Þrst version of their paper was written concurrently

and independently of the results in the present paper. The analysis in the Þrst version of

their paper mainly focused on the case with a rolling estimation window. However, in the

latest version of their paper they also consider encompassing tests for the comparison of

nested models. Under the recursive estimation scheme, the fraction of the sample used for

the (initial) window length is identical to the choice of sample split, !% which is the focus

of our paper. Despite the similarities in this special case, their approach is substantially

di erent from ours.

First, their theoretical setup is based on high-level assumptions that must be veriÞed for

the problem at hand (see Rossi & Inoue (2011, appendix A) for a wide range of situations).

These assumptions enable Rossi & Inoue (2011) to cover a lot of ground with the same

framework, at the expense of shedding little light on the exact properties of the limit

distribution, such as its intricate dependence on !' In contrast, we cover less ground but

o er detailed analytical results for the limit distribution. Our results cast important light

on issues such as where the smallest 4-value is most likely to be found under the null and

alternative hypothesis. Second, Rossi and Inoue provide Þnite-sample simulation results

to illustrate the power of their test, whereas we have analytical power results. Third, they

construct robust test procedures using an approach where a range of test statistics (based on

di erent window sizes) are combined by either taking the supremum or the average. Instead,

we combine statistics whose location and scale is insensitive to !, which makes them better

suited for comparison. In the homoskedastic case, the test statistic   (!) is well suited for

this purpose, because its limit distribution does not depend on !. An alternative, and our

preferred approach, is to combine the individual 4-values, which allows for the case with

heteroskedasticity. SpeciÞcally, we propose a minimum 4-value test which makes the test

statistics corresponding to di erent sample splits more comparable. The empirical Þndings

in Rossi & Inoue (2011) are consistent with ours, however, and conÞrm that data snooping

over the choice of estimation window can lead to signiÞcant size distortions.

20



5 Empirical Examples

This section provides empirical illustrations of the methods and results discussed previously.

We consider two forecasting questions that have attracted considerable empirical interest in

economics and Þnance, namely whether stock returns are predictable and whether inßation

forecasts can be improved by using broad summary measures of the state of the economy

in the form of common factors.

5.1 Predictability of U.S. stock returns

It is a long-standing issue whether returns on a broad U.S. stock market portfolio can

be predicted using simple regression models, see, e.g., Keim & Stambaugh (1986), Camp-

bell & Shiller (1988), Fama & French (1988), and Campbell & Yogo (2006). While these

studies were concerned with in-sample predictability, papers such as Pesaran & Timmer-

mann (1995), Campbell & Thompson (2008), Welch & Goyal (2008), Johannes, Korteweg

& Polson (2009), and Rapach et al. (2010) study return predictability in an out-of-sample

context. For example, in their analysis of return predictability covering the period 1947-

2005, Rapach et al. (2010) use three di erent out-of-sample periods, namely 1965-2005,

1976-2005, and 2000-2005. This corresponds to using the last 70%, 50% and 10% of the

sample, respectively, for out-of-sample forecast evaluation.

Welch & Goyal (2008) Þnd that so-called prevailing mean forecasts generated by a

constant equity premium model

9 +1 =  1 + ! +1"

lead to lower out-of-sample MSE-values than univariate forecasts from a range of prediction

models of the form

# +1 =  1 +  2$ + ! +1%

We focus on models where $ is the default spread, measured as the di erence between

the yield on BAA-rated corporate bonds versus that on AAA-rated corporate bonds or the

dividend yield, measured as dividends paid over the preceding 12-month period divided by

the current stock price. Our data consist of monthly observations on stock returns on the

S&P500 index and the corresponding default spread over the period 1926:01 2010:12, a

total of 1020 observations. Setting & = 1  &̄ = 0%1, our initial estimation sample uses
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102 observations and so the beginning of the various forecast evaluation periods runs from

1934:07 through 2002:05. The end point of the out-of-sample period is always 2010:12.

The top left window in Figure 4 shows how the '!(&)-statistic evolves over the forecast

evaluation period.6 The minimum value obtained for '!(&) is  6.77, while its maximum

is 2.01. Due to the partial overlap in both estimation and forecast evaluation windows,

the test statistic evolves relatively smoothly and is quite persistent, although the e ect of

occasional return outliers is also clear from the plot.

The ((&)-values associated with the '!(&) statistics computed for di erent values of &

are plotted in the bottom left window of Figure 4. There is little evidence of return pre-

dictability when the out-of-sample period begins after the mid-seventies. However, once the

forecast evaluation period is expanded backwards to include the early seventies, evidence

of predictability grows stronger. This is consistent with the Þnding by Pesaran & Tim-

mermann (1995) and Welch & Goyal (2008) that return predictability was particularly high

after the Þrst oil shock in the seventies. For out-of-sample start dates running from the early

Þfties to the early seventies, (-values below 5-10% are consistently found. In contrast, had

the start date for the out-of-sample period been chosen either before or after this period,

then forecast evaluation tests, conducted at conventional critical levels, would have failed

to reject the null of no return predictability.

Such sensitivity of the empirical results to the choice of & highlights the need to have

a test that is robust to how the start of the out-of-sample period is determined. In fact,

the smallest (-value, selected across the entire out-of-sample period & ! [0%1" 0%9] is 0.034.

Table 3 suggests that this corresponds to a split-mining adjusted (-value that exceeds 10%.

Hence, the evidence of time-varying return predictability from the default spread is not

statistically signiÞcant at conventional levels. We therefore cannot conclude that the lagged

default spread model generates more precise out-of-sample forecasts of stock returns than a

constant equity premium model, at least not in a way that is robust to how the beginning

of the out-of-sample period is chosen.

We next consider a return forecasting model that uses the lagged dividend yield as the

predictor variable. Using the same sample as above, for this model the maximum value of

'!(&), plotted in the top right window in Figure 4, is 3.57 while the smallest (-value falls

6We use a Newey-West HAC estimator with four lags to estimate the variance of the residuals from the

forecast model,  ̂2 .
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below 0.001 which, according to Table 3, means that out-of-sample predictability from this

model is robust to mining over the sample split. Interestingly, for this model, predictability

is strongest when & lies either at the beginning or at the end of the sample, with the (-value

reaching a value of 0.01 when the evaluation sample starts in the mid-thirties, then reaching

even lower levels when the split point occurs in the late 1990s or subsequently.

5.2 Inßation Forecasts

Simple autoregressive prediction models have been found to perform well for many macro-

economic variables capturing wages, prices and inßation (Marcellino et al. (2006) and Pe-

saran et al. (2011)). However, as illustrated by the many studies using factor-augmented

vector autoregressions and other factor-based forecasting models, it is also of interest to see

whether the information contained in common factors, extracted from large-dimensional

data, can help improve forecasting performance.

To address this issue, we consider out-of-sample predictability of U.S. inßation measured

by the monthly log Þrst-di erence in the consumer price index (CPI) captured by the

CPIAUSCL series. Our benchmark is a simple autoregressive speciÞcation with two lags:

# +1 =  0 +
2X

"=1

 #"# +1 " + !#$ +1" (12)

where # +1 = log()*+ +1,)*+) is the monthly growth rate in the consumer price index.

The alternative forecasting model adds four common factors to the AR(2) speciÞcation

in (12):7

# +1 =  0 +
2X

"=1

 #"# +1 " +
4X

"=1

 %"-̂" + !#$ +1% (13)

Here -̂" is the .-th principal component (factor) extracted from a set of 131 economic

variables. Data on these 131 variables is taken from Ludvigson & Ng (2009) and run from

1960 through 2007. We extract factors recursively from this data, initially using the Þrst ten

years of the data so the Þrst point of factor construction is 1969:12. Setting & = 1 &̄ = 0%1,

the start of the out-of-sample evaluation period runs from mid-1973 through early 2004.

The top left window in Figure 5 shows the '!(&)-statistic for di erent values of &. This

rises throughout most of the sample from -23 to a terminal value just above zero. The

7The empirical results are not sensitive to the number of autoregressive lags in the benchmark model or

to the number of factors included in the extended model.
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associated ((&)-values are shown in the bottom left window of Figure 5. These start close

to one but drop signiÞcantly after the change in the Federal Reserve monetary policy in

1979. Between 1980 and 1982, the ((&) plot declines sharply to values below 0.10, before

oscillating for much of the rest of the sample, with an overall minimum (-value of 0.023.

Hence, in this example a researcher starting the forecast evaluation period after 1979 and

ignoring mining over the sample split might well conclude that the additional information

from the four factors helped improve on the autoregressive model’s forecasting performance.

Unless the researcher had reasons, ex ante, for considering only speciÞc values of &, this

conclusion could be misleading since the split-mining adjusted test statistic is not signiÞcant.

In fact, the global minimum (-value of 0.018 is not signiÞcant at the 5% level when compared

against the split-mining adjusted (-values in Table 3.

Given the signiÞcant changes in monetary policy from 1979-1982, a structural break in

the data generating process is a natural concern when interpreting these results. To address

this issue, we therefore undertake an analysis that discards data prior to 1983. The results

from this analysis are shown in the right windows of Figure 5. For this sample the minimum

(-value occurs early in the sample and is 0.035. This is insigniÞcant at the 10% critical level

when compared against the adjusted (-values in Table 3.

6 Conclusion

Choice of the sample split used to divide data into in-sample estimation and out-of-sample

evaluation periods a ects out-of-sample forecast evaluation tests in fundamental ways, yet

has received little attention in the forecasting literature. As a consequence, this choice

variable is often selected without regard to the properties of the predictive accuracy test or

the possible size distortions that result when the sample split is chosen to most favor the

forecast model under consideration.

When multiple split points are considered and, in particular, when researchers individually

or collectively may have mined over the sample split point, forecast evaluation tests can

be grossly over-sized, leading to spurious evidence of predictability. In fact, the nominal

rejection rates can be grossly inßated as a result of such mining over the split point, and the

danger of spurious rejection induced by search over the split point tends to be associated

with short evaluation windows, corresponding to starting the out-of-sample period late in
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the sample. Conversely, power is highest when the forecast evaluation window begins early,

corresponding to a long out-of-sample period.
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Appendix of Proofs

A.1 Derivations related to the simple example in Section 2.1

Suppose that  = /0&,
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1. Then, from (1)-(2), we have
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Now deÞne
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A.2 Proof of Theorem 1

By Assumption 1 it follows that E(   !! ) = 0 and that  is well deÞned. Under the
mixing assumptions (Assumptions 1 and 2’) the result follows from Wooldridge & White
(1988, corollary 4.2), see also Hansen (1992).

Under the near-epoch dependence assumptions (Assumptions 1 and 2), we can adapt
results in De Jong & Davidson (2000) to our framework. These assumptions are the weakest
known; see also White (2000a, theorems 7.30 and 7.45) who adapt their results to a setting
with global covariance stationary mixing processes.

DeÞne U = vech(" "
0
  !"") and consider ## = $0U %

!
& for some arbitrary vector

$' so that $0"$ = 1' where " = var[& 1$2
P#

 =1 vech(" "
0
  !"")], which is well deÞned

under Assumption 1. We verify the conditions in De Jong & Davidson (2000, Assumption
1) for ## ( Their assumption has four parts, (a)-(d). Since # is )4-NED of size  12 on V ,
it follows that ## is )2-NED of the same size on V where we can set *# = * %

!
&( This

proves the Þrst part of (c) and part (a) follows directly from E(U ) = 0 and $0"$ = 1( Part
(b) follows with +# = & 1$2 and the last part of (c) follows because *# %+# = * is assumed
to be uniformly bounded. The last condition, part (d), is trivial when +# = & 1$2(

As a corollary to De Jong & Davidson (2000, Theorem 4.1) we have that W#(,) =

& 1$2
Pb%#c

 =1 U " W(,)' where W(,) is a Brownian motion with covariance matrix "(
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From this it also follows that
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which we will use in the proofs below. Moreover, De Jong & Davidson (2000, Theorem 4.1)
establishes the joint convergence
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DeÞne the matrices

) = (0)×1' !21! 111 ' /)×)) and 0 = (1' ! 1**!*+)(

Then it is easy to verify that )!""0
0 = 0 and
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0
 0

0 = )(" "
0
  !"")0
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so that the convergence results involving {   !! } follow from those for " "
0
  !""( Thus

we only need to express the asymptotic bias term and the variance of the Brownian motion.

Let 1# =    !! %
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Theorem 1 now follows as a special case of the following theorem:
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Proof. From De Jong & Davidson (2000, Theorem 4.1) it follows that
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By Assumption 3 it follows that E1#(1
0
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and the result follows.
For 5-step-ahead forecasts, we expect non-zero autocorrelations up to order 5 1( These

autocorrelations do not, however, a ect the asymptotic distribution due to the construction
of the empirical stochastic integral,
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A.3 Proof of Theorem 2

The proof of Theorem 2 follows from the proof of Theorem 4 by imposing the null hypothesis,
i.e., by setting + = 0.

A.4 Proof of Theorem 3

Theorem 3 can be proved using the following simple result:

Lemma A.1 If 6 = 6  1 + ! ' then 26  1! = 62  62  1  !2 (

Proof.
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Rearranging the terms, we get the result.
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Throughout we assume that 8& is an integer to simplify notation. From Lemma A.1 we
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A.5 Proof of Corollary 1

Proof. Let 1 = /(1) /(-)"
1 -

and " = /(-)"
- so that 7(1) =
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8" , and note that 1

and " are independent standard Gaussian random variables.
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A.6 Proof of Corollary 2
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For 4 5 0 the density is 2!"
!( "

2)
!23%$2
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0 (2(2 4))"$2!1 3!#d2% and by taking advantage

of the symmetry about zero, we obtain the expression
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When , = 1 this simpliÞes to 61(4) =
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2&B0(
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2 ) where B'(7) denotes the modiÞed Bessel

function of the second kind. For , = 2 we have the simpler expression 62(7) =
1
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! | |

2 which
is the Laplace distribution with scale parameter 2#

A.7 Proof of Theorem 4

To prove Theorem 4, we Þrst establish two lemmas.
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Proof. For the benchmark forecast in (4) we have
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Next, consider the loss di erential, which from equations (4) to (5) is given by
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The result now follows by multiplying out.
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The Þnal term in this expression is0%(,
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This proves (A.8) and (A.9). Finally, the absolute value of the last two terms, (A.10) and
(A.11), are bounded by
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which completes the proof.
From the decomposition in Lemma A.2 and the limit results in Lemma A.3 we are now
ready to derive the asymptotic properties of 5!(") and 8!(")- From Lemmas A.2 and A.3
it follows that

8!(") =
5!(")

9̂2/

' #2(1! ")0
0
 ##0
12$

+ 22
12$
$0!1*2 [3(1)!3(")]

+2

Z 1

"
' 13(')0!1*2  1!1*2d3(')

!
Z 1

"
' 23(')0!1*2  1!1*23(')d'(

where we have used the fact that  = 92/ && so that   1&& :9
2
/ =  

 1- Now decompose
!
1*2
 
 1
!
1*2 = ;0";, where " = diag(<1( - - - ( < ) is a diagonal matrix with eigenvalues

of !1*2  1!1*2 that coincide with the eigenvalues of !  1( and ;0; = =- It follows that
3̃(') = ;3(') is a standard (>-dimensional) Brownian motion when 3(') is. Hence,

8!(") =
5!(")

9̂2/

' #2(1! ")0
0
 ##0
12$

+ 22
12$
$0!1*2;0

h
3̃(1)! 3̃(")

i

+2

Z 1

"
' 13̃(')0"d3̃(')!

Z 1

"
' 23̃(')0"3̃(')d'(

from which Theorem 4 follows. ¤

A.8 Proof of Theorem 5

Proof. It follows from the deÞnition of  (!) that the path of critical values, " (!) is
continuous in ! because #!" ($) is continuous in (!% $) on [&% &̄]×R. So " (!)  D[#"#̄]' Hence,
by the continuous mapping theorem and (8) (which is implied by the mixing assumptions,
and assumed under the near-epoch assumptions), the smallest (-value over the range of
split points, [&% &̄]% converges in distribution and the CDF of the limit distribution is given
by

Pr{([#"#̄] ! )} = Pr{ (!) " " (!) for some !  [&% &̄]}

= Pr{ sup
# ! #̄

[ (!)# " (!)] " 0}'
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McCracken Critical values versus exact critical values

* 0.1 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

& 0.909 0.833 0.714 0.625 0.556 0.500 0.455 0.417 0.385 0.357 0.333

) = 0.99 1.996 2.691 3.426 3.907 4.129 4.200 4.362 4.304 4.309 4.278 4.250

2.168 2.830 3.509 3.851 4.040 4.146 4.202 4.225 4.227 4.214 4.191

) = 0.95 1.184 1.453 1.733 1.891 1.820 1.802 1.819 1.752 1.734 1.692 1.706

1.198 1.515 1.789 1.880 1.895 1.870 1.824 1.766 1.702 1.633 1.563

) = 0.90 0.794 0.912 1.029 1.077 1.008 0.880 0.785 0.697 0.666 0.587 0.506

0.780 0.949 1.048 1.031 0.970 0.890 0.800 0.708 0.614 0.522 0.431

Table 1: This table compares the critical values in McCracken (2007), which uses Monte

Carlo simulation to evaluate stochastic integrals, to the exact critical values obtained from

the CDF of the non-central Laplace distribution. For each critical value ()) the Þrst row

shows the McCracken critical values, while the second line shows the exact critical values.

All calculations assume q = 2 additional predictor variables.
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Type I error rate induced by split point mining

Nominal level

+ ) = 0'20 ) = 0'10 ) = 0'05 ) = 0'01

1 0.4475 0.2582 0.1482 0.0373

2 0.5252 0.3118 0.1723 0.0448

3 0.5701 0.3382 0.1979 0.0546

4 0.6032 0.3611 0.211 0.0528

5 0.6157 0.3795 0.2195 0.0549

Table 2: This table shows the actual rejection rate for di erent nominal critical levels,

()) and di erent values of the dimension (+) by which the alternative model exceeds the

benchmark. Simulations are conducted under the null model with & = 1# &̄ = 0'1' and use

a discretization with , = 10% 000 and - = 10% 000 simulations.

Split-adjusted Critical values for the minimum (-value

critical values:

+ ) = 20% ) = 10% ) = 5% ) = 1%

1 0.073 0.029 0.013 0.001

2 0.059 0.024 0.011 0.001

3 0.05 0.021 0.001 0.001

4 0.046 0.02 0.001 0.001

5 0.044 0.02 0.001 0.001

Table 3: This table shows the split-mining adjusted critical values at which the minimum

(-value, ([#"#̄], is signiÞcant when & = 1 # &̄ = 0'1' The critical values for the minimum

(-value are given for + = 1% ' ' ' % 5 and four signiÞcance levels, ) = 0'20% 0'10, 0'05, and 0'01

and use a discretization with , = 10% 000 and - = 10% 000 simulated series.
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Figure 1: Plot of the CDF for the minimum (-value ((min) as a function of the nomi-

nal critical level ()) with one predictor added to the benchmark model (univariate and

homoskedastic case).
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Figure 2: Histograms of the location of the smallest (-value ((min) under the null hypothesis

(" = 0) and three local alternatives. Under the null hypothesis, the smallest (-value,

min# $ #̄ ($% is most likely to be located towards the end of the sample, while under the

alternative (" . 0) the smallest (-value is more likely to be located early in the sample if "

is large or late in the sample if " is small.
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Figure 3: Power of the test under four local alternatives, " = 1% " = 2% " = 3% and " = 4 as

a function of the sample split point, &, assuming that + = 1%  = 1% and / = 1'
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Figure 4: Values of the 0%(&) statistic and ((&)-values for di erent choices of the sample

split point, &. Values are based on the U.S. stock return prediction model that uses the

default spread (left windows) or the dividend yield (right windows) as a predictor variable.
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Figure 5: Values of the 0%(&) statistic and ((&)-values for di erent choices of the sample

split point, &. The plots are based on the U.S. inßation prediction model that uses four

common factors as additional predictor variables on top of two autoregressive lags.
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