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Abstract 
It has long been established in the literature that the set of pure strategy Nash equilibria of any binary 
game of strategic complements among a set N of players can be seen as a lattice on the set of all 
subsets of N under the partial order defined by the set inclusion relation (subset of).  If the game 
happens to be strict in the sense that players are never indifferent among outcomes, then the resulting 
lattice of equilibria satisfies a straightforward sparseness condition. In this paper, we show that, in 
fact, this class of games expresses all such lattices. In particular, we prove that any lattice under set 
inclusion on  the power set of N satisfying this  sparseness condition is the set of pure strategy Nash 
equilibria of some binary game of strategic complements with no indifference. This fact then suggests 
an interesting  way of studying some subclasses of games of strategic complements: By attempting to 
characterize the subcollections of lattices that each of these classes is able to express.  In the second 
part of the paper we study subclasses of binary games of strategic complements with no indifference, 
defined by restrictions that capture particular social influence structures: 1) simple games, 2) nested 
games, 3) hierarchical games 4) clan-like games, and 5) graphical games  of thresholds.  
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1 Introduction

A game theoretic model of social influence is a game in which one of the primitives is

some notion of the social structure defining the way in which the behaviors of the players

are intertwined. These models have a number of applications in economics and other social

sciences including understanding information diffusion, the adoption of new technologies, the

production of locally non-excludable goods, fads and fashion, and peer effects in a variety of

social environments such as schools, gangs and cults. It is also the case that, in some of these

applications, the agents just decide over two alternatives: whether to adopt an innovation

or not, which version of a product to buy or whether to join or not join a group. As an

example, consider the task of modeling the choice of which newspaper to read in a small

community. Suppose that the only data to inform the modeling exercise is the collection

of the different social circles to which a person belongs and an understanding of whether

each individual is a conventionalist or an agitator. While agitators tend to prefer the least

common option in their social circles, conventionalists always align themselves with the

majority. This example showcases three common distinguishing features of situations that

are apt to be described by discrete models of social influence: 1) the modeler has very good

data about the way in which behaviors among players are intertwined, but no solid grounds

for making precise statements about payoffs. 2) the choice spaces of the agents are strongly

discrete in the sense that acceptable continuous approximations are unlikely. 3) the data

specifies an underlying social structure governing the way in which choices are entangled and

many questions of interest involve understanding how behavior may change with variations

in this social structure. These characteristics have three major implications over the game

theoretic frameworks which are likely to be useful. First, best response correspondences are

a more immediate primitive for the models than individual payoff functions. Second, mixed

strategies and mixed strategy equilibria are of limited use to the extent that payoffs cannot

be credibly specified. This deems many of the standard game theoretic tools for studying

existence and analyzing the properties of equilibria inappropriate, as they often rely on the

continuity of best response correspondences. And finally, the formulation should facilitate

the analysis of the connections between the properties of the set of equilibria and social

structure.

This paper studies the properties of the set of pure strategy Nash equilibria of one of the

simplest classes of discrete games of social influence: complete information, simultaneous

move two action games of strategic complements with no indifference, under a variety of

assumptions on the underlying social structure that entangles the behaviors of the players.

A nice feature of this class of games is that the best response correspondence of a player can

readily be seen as an influence structure: a specification of the subsets of other players that
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induce him to take the higher action whenever they take it. Although most situations of

interest involving approximately complete information and choices between just two options

have a significant dynamic component, which is absent in our setting, our study is signif-

icant for the following reason: simple simultaneous move games along with the concept of

pure strategy Nash equilibria capture a basic necessary condition of equilibrium behavior

in dynamic settings that meet two conditions. The first is that agents can frequently and

repeatedly revise their choices, and the second is that the agents disregard their own influ-

ence over the social group.1 Under these conditions, the more refined models based upon the

complicating features of a specific motivating situation would select their predictions from

the set of equilibria of the simple games studied in this paper.

The paper makes two contributions. First, it characterizes the set of equilibria of strict bi-

nary games of strategic complements, and second, it provides some insights into the structure

of the sets of equilibria of games in some subclasses of interest. It has long been established

in the literature that the set of pure strategy Nash equilibria of any binary game of strate-

gic complements among N players can be seen as a lattice on the set of all subsets of N

under the partial order defined by the set inclusion relation (⊆) (see Topkis (1988) [8] for

an in-depth treatment of strategic complementarities). Moreover, if the game happens to

be strict, in the sense that players are never indifferent among outcomes, then the resulting

lattice of equilibria satisfies a straightforward sparseness condition. In the first part of the

paper, we show that, in fact, this class of games expresses all such lattices. In particular we

prove that any lattice under set inclusion on 2N satisfying this sparseness condition is the set

of equilibria of some binary game of strategic complements with no indifference. Secondly

we study the properties of the set of equilibria of the subclasses of games of strategic com-

plements that arise by considering additional restrictions on influence structures motivated

by features of some social environments in which binary games of strategic complements

might be applicable. Among these, we focus on influence structures corresponding to games

of strategic complements played by agents that live on graphs (graphical games of strategic

complements).

More generally, the paper contributes to the growing literature on graphical games of strate-

gic complements, which have had a wide array of applications in economics in the recent years

(see for example Jackson and Yariv (2007) [5], Galeotti et. al. (2010) [4], Calvo-Armengol

et. al. (2009) [1]) by contextualizing this class of games within the broader class of complete

information, simultaneous move two action games of strategic complements. One potential

advantage of the networks approach over the standard peer effects literature2 lies in the fact

1These two requirements are the defining characteristics of many situations in small communities in which

social pressures are important.
2 Manski (1993) [7] and Lee (2004) [3] provide instances of models relying on the standard “average
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that it allows us to capture the way in which global patterns of behavior are affected by the

local neighborhood structure. A most suitable concept of equilibrium for these settings does

not seem to exist. The “right” definition is often suggested by the particular features of the

application, for instance the depth of the agents’ rationality, the nuances of communication,

or the ability of groups of players to form coalitions. At least in part however, the choice

of equilibrium notion is also driven by mathematical considerations: i.e. existence, unique-

ness, tractability. Finally, one key consideration is whether the predictions stemming from a

given definition choice seem to correspond well to what is actually observed, or, at the very

least whether there is a good explanation for why they fail to do so. It turns out that, in

most cases, the set of pure strategy Nash equilibria is large and complex, and while finding

one equilibrium is easy, navigating the whole set is in general quite difficult: there are not

many straightforward structural relations between different equilibria. This multiplicity and

complexity, however, is often consistent with what one intuitively expects in many motivat-

ing real world situations, and, therefore, despite its intractability and lack of parsimony, it

may well be the adequate definition of equilibrium (or maybe precisely for those reasons).

Moreover, we can expect the sets of equilibria implied by other definitions to be subsets of

the set of Nash equilibria, since the latter, in some sense, captures the minimal requirements

that one would demand from any other notion. It is therefore useful to understand the

mathematical properties of the sets of pure strategy Nash equilibria.

The paper is divided into five sections. Section 2 introduces the definitions that are used

throughout. Section 3 characterizes the sets of equilibria of general complete information,

simultaneous move two action games of strategic complements with no indifference, to which

we refer throughout as increasing games of influence. The main result of this section provides

conditions on the structure of a lattice, which are necessary and sufficient for it to be the

set of equilibria of some game in our class. Using the groundwork laid out in Section 3,

Sections 4 and 5 study subclasses of increasing games of social influence that arise from

imposing restrictions on the best response behavior of the agents stemming from the social

structures that they reflect: 1) simple games in which each agent is influenced by supersets

of only one core group of other agents; 2) Nnested games in which each agent can only be

influenced by agents who are in turn influenced by other agents that influence him directly;

3) hierarchical games in which the agents can be embedded in a hierarchy that respects

the influence structure; 4) clan-like games, which are simple games with the additional

property that the influence is always mutual and therefore partitions the community; and 5)

graphical games of thresholds, games in which the way in which agents influence each other

can be represented by a network. Most of the analysis in these sections relies on the analytic

interactions” assumption whereby agents are partitioned into groups, within which every agent interacts

with every other agent.
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approach and insights of the literature of games of strategic complements in lattices (see

Topkis (1988) [8]). We build the analysis of each of the classes of games that we consider

around the question: What collections of lattices are expressible as the set of equilibria of

some game in the class? Section 6 concludes by studying the algorithmic complexity of

the problem of deciding whether a given lattice is the set of equilibria of some increasing

game of social influence. The analysis of this section is based upon (Echenique 2007 [2]),

which provides the most efficient algorithm available for finding all the equilibria of general

finite games of strategic complements. Kempe and Tardos (2003) [6] provide algorithms and

complexity bounds for the related problem of identifying targets of “infection” in order to

maximize influence.

2 General Games of Social Influence

A peer influence structure on a set of agents N = {1,2,3, ..., n} is a collection of functions

Ii ∶ 2N → {0,1}, one for each i ∈ N , satisfying the property that ∀i ∈ N , Ii(x) = Ii(x ∪ {i}).3
For a given set, x ∈ 2N , Ii(x) = 1 is interpreted as meaning that, when all agents j ∈ x set

aj = 1, then i strictly prefers to set ai = 1. Similarly, Ii(x) = 0 is interpreted as meaning

that, when all agents in j ∈ x set aj = 1, then i strictly prefers to set ai = 0. The idea behind

the only requirement in the definition of influence structure is to preclude self reference in

action: that is, an agent is influenced by what other agents do, but not by what he himself

does.4 For the purpose of making comparisons between influence structures, we rely on the

partial order ⪯ on the collection of all influence structures on N defined by letting I ′ ⪯ I if

I ′i(x) ≤ Ii(x) ∀x, i. Note that, if I and I ′ are influence structures, then so is I ∨ I ′ defined

by (I ∨ I ′)i(x) = max{Ii(x),I ′i(x)} and I ∧ I ′ defined by (I ∧ I ′)i(x) = min{Ii(x),I ′i(x)}.

In this way, the collection of influence structures in itself forms a lattice.

A game of social influence induced by a peer influence structure I is a simultaneous move

game ΓI = ⟨N,{{0,1}}ni=1,{Ri}⟩ in which each agent has strategies 0 and 1, and some strict

preferences on 2N induced5 by the influence structure I. This paper is only concerned with

strategic behavior relying on pure strategies, and, from this perspective, it suffices to specify

the ordinal properties of preferences; that is, we do not require utility functions. A pure

strategy Nash equilibrium of a game of influence is a strategy profile σ1 ×σ2×, ...,×σn, where

32N denotes the power set of N .
4Formally, influence structures are best response correspondences (functions) in games for n players with

two actions, in which players are never indifferent. The additional terminology that we introduce is useful

as the paper studies statements about “social structure restrictions” related to how individual players are

affected by other groups of players.
5The induced preferences for each agent are unique as orderings on 2N .
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σi ∈ {0,1} has the property that ∀i ∈ {j ∈ N ∶ σj = 1}, Ii({j ∈ N ∶ σj = 1}) = 1 and

∀i /∈ {j ∈ N ∶ σj = 1}, Ii({j ∈ N ∶ σj = 1}) = 0. Note that any strategy profile in a game of

social influence can be described succinctly by the set {i ∈ N ∶ σi = 1}. In this way, and for

convenience, throughout the paper we will be thinking of strategy profiles, and in particular

of Nash equilibria as subsets of N . We will denote the set of Nash equilibria of game ΓI as

NE(ΓI). An influence structure I is said to express a collection of subsets of N , C ⊆ 2N

if C = NE(ΓI). Similarly, we say that a collection C ⊆ 2N is expressible by a given family

of influence structures {I} if some structure I∗ in the family exists so that NE(ΓI∗) = C.
When talking about a collection of sets, we think of it as endowed with the partial order

induced by the weak set containment relation (⊆).

A nonempty collection of subsets of N , C ⊆ 2N is expressible by some influence structure if

and only if x ∈ C and i ∈ xÔ⇒ x ∖ {i} /∈ L. (1)

This condition immediately follows from the definition of social influence structure. If I is

an influence structure that expresses C, it must be the case that ∀x ∈ C, Ii(x) = 1 for all

i ∈ x and Ii(x) = 0 for all i /∈ x. If for some x ∈ C, it is the case that x ∖ {i} ∈ C for some

i ∈ x we would have Ii(x) = 1 and Ij(x ∖ {i}) = 1, which violates the definition of social

influence structure. Given any collection C satisfying the condition in (1) we can define I
that expresses it as follows: begin by letting Ii(x) = 0 ∀x and ∀i, and then for each x ∈ C and

i in x set Ii(x) = 1. If ∅ ∈ C, we are done; otherwise, let x be a minimal element of C, and

set Ii(x′) = 1 ∀i ∈ x and x′ ⊆ x. Given that C satisfies the condition in (1), this collection of

functions will be a well-defined influence structure. It is clear that there are many influence

structures which express a given collection of subsets of N , C ⊆ 2N . Note that, if ∅ /∈ C, then

the influence structure that we just constructed is minimal in the sense that there does not

exist I ′ expressing C, such that I ′ ≺ I.

The following is a list of properties which are useful to characterize different kinds of social

influence structures. We have chosen them because they reflect some features of various

applications rather than for their performance as axioms.6

(P1) Increasing, if ∀i ∈ N , x ⊆ x′ and Ii(x) = 1 ⇒ Ii(x′) = 1. The elements of the set

Bi =minimal{x ⊆ N ∶ Ii(x) = 1} are called the bases for action of i.

(P1-1) Simple, if for each i ∈ N , the collection Bi contains only one set, which we

denote bi.

(P1-11) Nested, if it is simple and has the property that j ∈ bi⇒ bj ⊆ bi.
6As can be seen, they are not independent. It would not be difficult to reconstruct these properties in

terms of an independent set of axioms.
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(P1-12) Clan-like, if it is simple and has the property that j ∈ bi⇒ i ∈ bj. This

is equivalent to saying that the collection {bi ∪ {i} ∶ i ∈ N} forms a

partition of N7.

(P1-2) Hierarchical, if the agents can be partitioned into a hierarchy

H = {H1,H2,H3, ...,Hm} such that if i belongs to levelHh(i) ∈ H then ∃b1i , b2i , ..., bri ⊆
⋃

k≥h(i)
Hk such that Ii(x) = 1⇒ bsi ⊆ x, s ∈ {1,2, ..., r}.

(P1-3) Admits a network representation, if, for each player i there exist weights {wij}nj=1,
wij ≥ 0, and a threshold ti ≥ 0 such that Ii(x) = 1 if, and only if, ∑

j∈x
wij ≥ ti.

3 Increasing Influence Structures

One very useful result that applies to our setting from the general theory of games of strate-

gic complements is the following:

If I is an increasing influence structure (P1), then NE(ΓI) forms a lattice (with respect to

the set containment (⊆) partial order). (2)

We present a proof of this statement, as it showcases an argument that frequently arises

when working within this class of games of influence.

Consider x,x′ ∈ NE(ΓI). Let x′∨x =min{y ∶ y ⊇ x∪x′} =. To see that this minimum exists,

suppose it does not. Then, it must be the case that the set {y ∶ y ⊇ x and y ⊇ x′} has at least

two minimal elements z and z′. Then some set w, x∪x′ ⊆ w ⊆ z ∩ z′ must be an equilibrium:

if i /∈ z∩z′ then either i /∈ z or i /∈ z′. Without loss of generality, suppose that i ∈ z. Then, as z

is an equilibrium, it must be the case that Ii(z) = 0 and because z′∩z ⊆ z and I is increasing,

we must also have Ii(z ∩ z′) = 0. On the other hand, if i ∈ x ∪ x′ then Ii(x ∪ x′) = 1, because

i belongs to either x or x′, I is increasing and both x and x′ are equilibria. So, starting at

z∩z′, we can iteratively remove the elements that prefer not to be active from the set. Due to

the fact that I is increasing, it will be the case that elements not belonging to the set prefer

not to be active at each iteration. And, at some point, before reaching x∪x′ or at x∪x′ , it

will also be the case that all elements in the set will prefer to be in the set. This set is the

equilibrium W that we were looking for, and as w ⊂ z and w ⊂ z′, its existence contradicts

the minimality of these two elements. We conclude that the set {y ∶ y ⊇ x and y ⊇ x′} only

has one minimal element; the minimum we were looking for. With an analogous argument

we can show the existence of the meet x ∧ x′ =max{y ∶ y ⊆ x ∩ x′}.

7Formally, bi and bi ∖{i} are always valid bases for {i}; bi ∪{i} is the same whichever convention is being

used.
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Given a lattice L, how can we know whether it is expressible by an increasing influence

structure? Providing necessary and sufficient conditions for expressibility is much harder

than in (1). It is not difficult to see what is needed in order to produce an influence structure

which expresses some superset L′ of L. Making sure that L′ ∖ L = ∅ takes some care, as by

trying to rule the extra equilibria from the game, one might destroy some wanted equilibria

or give rise to new ones. So, to begin with, it is not clear whether a simple characterization

is possible. As the following proposition shows, thanks to the lattice structure of the set we

can get rid of unwanted equilibria one by one using a simple rule.

Proposition 1 A lattice L ∈ 2N is expressible by an increasing influence structure I if and

only if:

(SC) Sparseness Condition i ∈ y ∈ L ⇒ ∀x ∈ L such that y ∖ {i} ⊆ x, we have i ∈ x.

Proof of Proposition 1: Necessity : Suppose condition (1) does not hold. That is, as-

sume that there exist x ∈ L and i ∈ N such that x ∈ L, i /∈ x and i ∈ y for some y ∈ L
such that y ∖ {i} ⊆ x . But then any peer influence structure inducing the game satisfies

Ii(y ∖ {i}) = Ii(y) = 1 and Ii(x) = 0, so I is not increasing.

Sufficiency : We begin by setting Ii(x) = 0 for all i and x ∈ 2N and modify them in the

following steps.

Induce all required equilibria:

S1) For each x ∈ L and i ∈ x, let Ii(x′) = 1 for x′ ⊇ x ∖ {i}.

Note that, in step S1), we construct an increasing peer influence structure, and, by virtue

of (SC), each x ∈ L is an equilibrium of the game that it induces. Specifically note that, by

construction, if i ∈ x ∈ L, then Ii(x) = 1. Moreover, if i /∈ x ∈ L, then Ii(x) = 0. To see this,

note that, to have Ii(x) = 1, it needs to be the case that y ∖ {i} ⊂ x for some y ∈ L such

that i ∈ y, but by (SC) this would imply i ∈ x, which, by assumption, is false. The issue is

that the game based upon the influence structure I, that we have so far, may have other

equilibria. To see this in a simple example consider the influence structure that results from

the application of S1) to the lattice satisfying (SC) depicted on the left in Figure 2, and

note that it actually expresses the lattice shown on the right.

As generally seems to be the case when attempting to construct games that express a given

set of equilibria, it is easy to guarantee that the members of the set are all equilibria of the
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   {1,2,3,4,5,6,7,8,9,10}

   {1,2,3,4,5,6,7,8}    {1,2,3,4,5,6,9,10}

         {1,2,3,4,5,6}

               {1,2}            {3,4}

 { }

   {1,2,3,4,5,6,7,8,9,10}

   {1,2,3,4,5,6,7,8}    {1,2,3,4,5,6,9,10}

         {1,2,3,4,5,6}

   {1,2,3,4}

               {1,2}            {3,4}

 { }

Figure 1: The figure on the right is the lattice expressed by the game induced by the influence

structure constructed by applying S1) on the lattice on the left.

game, but a lot harder to guarantee that those are the only equilibria. S2) removes the un-

wanted equilibria, and this can be done thanks to the fact that the set in question is a lattice.

So, let I0 denote the influence structure constructed in S1) and ΓI0 the game that it induces.

Remove all unwanted equilibria:

Suppose that we have a game ΓI such that every element x of L is an equilibrium of the

game. Let y /∈ L. Then either:

2a) ∃j ∈ y such that ∀x ∈ L such that x ⊂ y, we have that j /∈ x; or

2b) ∃j /∈ y such that j ∈ x ∀x ∈ L such that y ⊂ x.

To see that at least one of these must hold, suppose that 2a) fails, and for each j ∈ y, let

my ∈ L, mj ⊂ y and j ∈ mj. As L is a lattice, y /∈ L and ⋁
j∈y
mj ⊇ ⋃

j∈y
mj = y, we have that

⋁
j∈y
mj ⊃ y. Consider some w ∈ ⋁

j∈y
mj ∖ y, and suppose z ∈ L and y ⊂ z. Then, z ⊇ ⋁

j∈y
mj (by

definition of ⋁
j∈y
mj) and therefore w ∈ z as required by 2b).
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Having constructed I0 as above, we will show by induction that, for all t ≥ 0, given an

increasing influence structure I t, such that L ⊆ NE(ΓIt), if NE(ΓIt) ∩ Lc ≠ ∅, then we

can produce an increasing influence structure I t+1 such that L ⊆ NE(ΓIt+1) and such that

NE(ΓIt+1) ∩ Lc is a strict subset of NE(ΓIt) ∩ Lc.

The base case:

Suppose that L ⊆ NE(ΓI0), NE(ΓI0) ∩ Lc ≠ ∅ and pick x ∈ NE(ΓI0) ∩ Lc. Since it must be

the case that I0i (x) = 1 ∀i ∈ x, the condition in 2a) does not hold (by virtue of the way in

which I0 was constructed in S1)). So 2b) implies that, for each i ∈ x there exists yi ∈ L such

that i ∈ yi ⊂ x. Therefore, x = ⋃
i∈x
yi ⊂ ⋁

i∈x
yi, where ⋁

i∈x
yi is the join in L of the equilibria yi

(one for i ∈ x).8 So, for each y ∈ 2N and j ∈ N , let:

I1j (y) =
⎧⎪⎪⎨⎪⎪⎩

1 ∶ y ⊇ x and j ∈ (⋁
i∈x
yi) ∖ x

I0j (y) ∶ otherwise

We will now show that L ⊆ NE(ΓI1). The definition of I1 only makes adjustments to I0 on

sets y ⊇ x. So, if y ∈ L and y /⊇ x, then y ∈ NE(ΓI1) (as y ∈ NE(ΓI0)). So, consider some

y ∈ L, such that y ⊃ x. Any such y must contain ⋁
i∈x
yi, as any set containing x = ⋃

i∈x
yi, and

the only possible difference between I1 and I0 can be on components (I1j vs. I0j ) involving

elements in ⋁
i∈x
yi. As these elements also belong to y which is an equilibrium of ΓI0 , the

images I0j (y) were already 1 to begin with. So actually no change was really made to the

function in these sets.

We now show that NE(ΓI1) ∩ Lc ⊂ NE(ΓI0) ∩ Lc. By construction of I1, x /∈ NE(ΓI1),
and we will show that no other element y ∈ Lc that was not in NE(ΓI0) can now be part

of NE(ΓI1). As above, we only need to be concerned with sets y ⊃ x. If y ⊇ ⋁
i∈x
yi, then, as

seen above, I1 and I0 are identical, so the only possible occurrence of a a new equilibrium

in Γ(I1) must involve sets y, such that x ⊂ y, y /⊂ ⋁
i∈x
yi). Note, however, that any such set

must lack some element in j ∈ (⋁
i∈x
yi) ∖ x, and for such an element I1j (x) = 1, and therefore

y cannot be an equilibrium of ΓI1 .

The inductive step:

Now make the inductive hypothesis that this procedure can be consistently reproduced k > 1

times, on each occasion m < k taking the set NE(ΓIm−1)∩Lc to a strict subset NE(ΓIm)∩Lc.
IfNE(ΓIk)∩Lc = ∅, then we are done. Otherwise, suppose that there exists x ∈ NE(ΓIk)∩Lc.
It must be the case that Iki (x) = 1 ∀i ∈ x. However it is not immediate that condition 2a) does

8Note that the join in NE(ΓI0) is x, which must be different from the join in L, as by assumption x ∈ Lc.
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not hold (which was a key part of our argument in the base case), as it might be that for some

j ∈ x I0j (x) = 0, but that, at some iteration, m < k, there was an update from Im−1
j (x) = 0 to

Imj (x) = 1. So, suppose that this is the case. Denoting by xm the element of NE(ΓIm−1)∩Lc
removed in iteration m, it must have been that xm ⊂ x /⊂ ⋁

i∈xm
ymi and j ∈ ( ⋁

i∈xm
ymi ) ∖ xm. So

there must have been some l ∈ (( ⋁
i∈xm

ymi ) ∖ xm) ∖ x. But then Iml (x) = 1 and l /∈ x, which

means that x /∈ NE(ΓIm) ∩Lc, which, in turn, implies, by virtue of the inductive hypothesis

that x /∈ NE(ΓIk)∩Lc, a contradiction. So, we can conclude that ∀i ∈ x I0j (x) = 0. But this,

in turn, means that 2a) does not hold for x /∈ L. From this point on, we can proceed just as in

the base case to construct Ik+1 such that L ⊆ NE(ΓIk+1) and NE(ΓIk+1)∩Lc ⊂ NE(ΓIk)∩Lc.

So, now we are ready to state the last step in our construction:

S2) Let I0 be the increasing influence structure constructed in S1). If NE(ΓI0) ∩ Lc = ∅
then we are done. Otherwise, we use the algorithm depicted above to produce a sequence

of increasing influence structures {Im}Tm=1, where for each m < T L ⊂ NE(ΓIm) and

∅ ⊂ NE(ΓIm) ∩ Lc ⊂ NE(ΓIm−1) ∩ Lc; and for m = T , L = NE(ΓIm).

One nice property of increasing influence structures that also follows immediately from the

theory of games of strategic complements, is that if in structure I ′ every agent is at least as

willing to take action under any pattern of activity than under I, then the equilibria of ΓI′

are larger than the equilibria of I in the following sense.

If for all i and x, Ii(x) = 1 implies I ′i(x) = 1, then y ∈ NE(ΓI) implies ∃y′ ∈ NE(ΓI′) such

that y′ ⊃ y. (3)

As in the case of (2) above, the proof exhibits a way of reasoning that was extensively used

in the proof of Proposition 1 and which we will continue to use throughout this paper.

Proof: Consider some y ∈ NE(ΓI), then Ii(y) = 1 for all i ∈ y which by assumption implies

that I ′i(y) = 1 for all i ∈ y. This means that the only reason that it may be the case that y

does not belong to NE(ΓI′) is that, for some elements, j /∈ y we have that I ′i(y) = 1. Then,

let y0 = y and yi+1 = y ∪ {j /∈ y ∶ I ′i(y) = 1}. As the number of agents is finite and I ′ is

increasing for some i∗, we will have yi∗+1 = y∗. By construction, y∗ ⊇ y0 = y and y∗ is an

equilibrium of ΓI′ .
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4 Simple, Nested, Clan-like and Hierarchical Influence

Structures

Simple influence structures are useful to capture situations in which each agent i is influenced

by a single group of agents bi: that is, he prefers to be active if, and only if, every agent in bi is

active. The following definitions will help us to characterize these influence structures. Given

a set s ⊂ N , its completion, which we denote by ŝ, is the smallest superset of s containing all

the bases of its elements. That is:

ŝ =min{a ⊇ s ∶ a ⊇ bj,∀j ∈ a}

Notice that, given any increasing influence structure, we can characterize the mapping Ii in

terms of a finite number of bases for action Bi = {bi}mk=1 for each agent i ∈ N . And, given

a set s, we can therefore think of the collection of minimal supersets of s which contain at

least one base for each of its elements. In the case of simple influence structures, however,

there is always a unique minimal element, -this is the reason for which the above definition

makes sense. An agent i only finds it optimal to be active if all the agents in his base for

action bi are active, and each of these, in turn, requires all the agents in his base for action

to be active and so on. This means that any equilibrium to which an agent i belongs must

contain a base for action for each of its elements, and therefore the set of equilibria of the

game induced by an increasing influence structure I must be a subset of the set of equilibria

of the game induced by the influence structure generated by all the possible completions of

the bases of I.

Example 1 Completion of bases when the influence structure is not simple.

Consider the increasing influence structure on {1,2,3,4,5} in which agent 1 finds it optimal to

be active if either a superset of {2,3} or a superset of {4,5} are active. Assume also that each

of the sets {2,3,} and {4,5} makes activity optimal for its elements. Then {{1,2,3},{1,4,5}}
is the collection of supersets of {1} with the property that they contain bases for all its

elements. This collection does not have a minimum element. It is clear that this cannot

happen when the influence structure in question is simple. ◇
In the case of simple influence structures, we can take advantage of the fact that the base

for action of each element has a unique completion, and make a much stronger statement.

Lemma 1 Let Î be the influence structure, defined by the collection of completions {̂bi} of

the bases for action of some simple influence structure I, in which bi ≠ ∅ for each i ∈ N .

Then NE(ΓI) = NE(ΓÎ).

12
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               {4,5}

        {4,5,6,7}

Figure 2: The figure on the right represents the product of the lattices on the left.

Proof of Lemma 1: Suppose that x ∈ NE(ΓI) and consider some i ∈ x. Then bi ⊆ x

and bj ⊆ x for each j ∈ bi. This implies that b̂i ⊆ x and therefore Îi(x) = 1. Suppose that

i /∈ x, then bi /⊆ x. As b̂i ⊇ bi this implies that b̂i /⊆ x and Îi(x) = 0. We therefore have that

x ∈ NE(ΓÎ). Now suppose that x /∈ NE(ΓI). This can be the case for one of two reasons,

either (1) for some i ∈ x Ii(x) = 0 or (2) for some i /∈ x Ii(x) = 1. If (1) is the case, then it

must be that bi /⊂ x, which in turn implies b̂i /⊂ x and Îi(x) = 0. If (1) does not hold yet (2)

is the case, then we have that bi ⊆ x and bj ⊆ x for all j ∈ x (as the statement in (1) does not

hold for any j ∈ x). But, then b̂i ⊆ x by definition of completion and therefore Îi(x) = 1. So,

in both cases, we can conclude that x /∈ NE(ΓÎ).

This simple lemma is very powerful as it allows us to characterize the set of equilibria of

games induced by simple influence structures easily. Given an increasing influence structure

I and some set s let ↑I s denote the smallest set larger than s such that, conditional on

everyone in s being active, no agent not in s would prefer to be active. That is, ↑I s =
min{x ⊇ s ∶ i /∈ x ⇒ Ii(x) = 0}. Note that ↑I S is well-defined for any set s, given that we

are just focusing on increasing influence structures. When C is a collection of sets, then

↑I C = {↑I s ∶ s ∈ C}.

Given a collection of lattices S = {L1,L2, ...,Lk}, their product, denoted ⨉
L∈S
L, is the collection

of all possible unions of elements of S. That is:

⨉
L∈S
L = {x ∶ x =

k

⋃
j=i
yj where yj ∈ Lj}

Proposition 2 Let I be a simple influence structure, such that bi is nonempty for each

i ∈ N . Then, NE(ΓI) =↑ ( ⨉
L∈S
L) where S = {{∅, b̂i∪{i}} ∶ i ∈ N}. It does not matter whether

13



the operator ↑ is applied with respect to I or Î, so, for simplicity, we omit the subscript.

The following Lemma, regarding the completions of bases is very useful for the proof of

Proposition 2, as it allows us exploit Lemma 1 very profitably.

Lemma 2 Let I be a simple influence structure. Then its completion Î is nested. That is

j ∈ b̂i⇒ b̂j ⊆ b̂i.

Proof of Lemma 2: Suppose that j ∈ b̂i, then, by definition of completion, it must be the

case that bi ⊆ b̂j, which, in turn, implies that bk ⊆ bj for all k ∈ bi. As b̂i is the smallest set

with this property, we must have that b̂i ⊆ b̂k.

Proof of Proposition 2: Let Î be defined as in Lemma 1. By the Lemma, we just need

to show NE(ΓÎ) =↑ ( ⨉
L∈S
L). Suppose that x ∈ NE(ΓÎ) and i ∈ x. Then, it must be the

case that b̂i ∪ {i} ⊆ x. We therefore have that ⋃
i∈x

(̂bi ∪ {i}) ⊆ x and this, in turn, implies

↑ (⋃
i∈x

(̂bi ∪ {i})) ⊆ x, given that x is a Nash equilibrium of ΓI9 . We therefore have that

x =↑ (⋃
i∈x

(̂bi ∪ {i})) and therefore x ∈↑ ( ⨉
L∈S
L).

Now suppose that x ∈↑ ( ⨉
L∈S
L). Then, x =↑ (⋃

i∈x
(̂bi∪{i})) by virtue of the fact that by Lemma

2 if k ∈ b̂i then b̂k ⊆ b̂i. So, suppose that i ∈ x. Then, either i ∈ ⋃
j∈x

(̂bj ∪ {j}), in which case

we automatically have b̂i ⊆ x and Îi(x) = 1. Otherwise, i ∈ (↑ ⋃
j∈x

(̂bj ∪ {j}) ∖ (⋃
j∈x

(̂bj ∪ {j}))

and by definition of the ↑ operator, it must be the case that Îi(x) = 1. If, on the other

hand, i /∈ x, then it must be the case that Îi(x) = 0 by definition of ↑. We can conclude that

x ∈ NE(ΓÎ).

The key element in the proof of Proposition 2 is the fact that the completions of the bases

are nested as shown by Lemma 2. So a slightly more general version of the Proposition holds

for all nested influence structures, in which the relevant collection for the product lattice is

S = {{∅, b̂i∪{i}} ∶ i ∈ N}. Example 1 shows that the key property for Lemma 1 and therefore

for Proposition 2 is not that I is simple, but rather that unique completions of bases for

action of each i ∈ N can be defined. Given some increasing influence structure I the bases

for action of i can be defined as Bi = minimal{x ∶ Ii(x) = 1}, and, given some set s its set

of completions by C(s) = minimal{a ⊇ s ∶ a ⊇ bj for some bj ∈ Nj,∀j ∈ a}. We can then

easily generalize Lemma 1 and Proposition 2 to the class of influence structures with the

property that C(bi) is a singleton for each bi ∈ Bi and C(bi) = C(b′i) whenever bi, b′i ∈ Bi for

all elements i. These influence structures are essentially simple in the sense that, regarding

their sets of equilibria, they can be equivalently represented by simple influence structures.

9Note that we could be taking ↑ with respect to I or I ′, as I ′i(x) → Ii(x) for all i.
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The more general versions of the results above would be more cumbersome notationally, but

would not be any more enlightening.

Among simple influence structures, clan-like influence structures, in which the bases for

action partition the set of agents into equivalence classes have many applications, as they

represent well the ways in which families, closely-knit groups of friends, mafias or clans act.

As we see below, the set of equilibria of clan-like influence structures have a very simple

structure.

Proposition 3 If I is clan-like, then NE(ΓI) = ⨉
L∈B
L

where B = {{∅, bi ∪ {i}} ∶ i ∈ N}.

Proof of Proposition 3: Let x ∈ ⨉
L∈B
L, then by definition of clan-like influence structure

Ii(x) = 1 ∀i ∈ x. If i /∈ x then bi /⊂ x, as the sets bj ∪ {j} partition N , and therefore Ii(x) = 0.

So we have that x ∈ NE(ΓI). If x /∈ ⨉
L∈B
L, then x must be the union of some members of

the lattices in B and a non-empty set which has some, but not all, elements from bj ∪{j} for

some j. Then, any such element k of bj ∪{j} which it does contain would rather take action

0. That is Ik(x) = 0, so x /∈ NE(ΓI).

Besides clan-like structures, there are other simple influence structures which give rise to

games with sets of equilibria that are the product of chains such that their maximum elements

are disjoint. In what follows, we refer to these lattices as simple lattices. A simple influence

structure is sub-clan-like if its bases {∅} ∪ {b̂i ∪ {i} ∶ i ∈ N} form a collection of chains10

whose maximum elements partition N .

Proposition 4 NE(ΓI) is a simple lattice containing N when I is sub-clan-like. On the

other hand if L is a simple lattice containing N and satisfying condition (1), then there exists

a sub-clan-like influence structure I such that NE(ΓI) = L.

Proof of Proposition 4: Suppose that I is sub-clan-like. Let C be the collection of

maximal chains11 that can be formed using elements from {b̂i ∪ {i}} ∶ i ∈ N} ∪ {∅}. We will

show that NE(ΓI) = ⨉
C∈C

C. Suppose that x ∈ ⨉
C∈C

C. Then, by definition, x is the union of

some collection of sets {̂bk ∪ {k} ∶ k ∈ I ⊆ N}, therefore for all i ∈ x, b̂i ⊆ x, and, as a result,

Ii(x) = 1. Now suppose that i /∈ x and that Ii(x) = 1. Then, it must be the case that b̂i ⊆ x.

By the fact that I is sub-cyclic, for each k ∈ I either b̂i ∪ {i} ⊆ b̂k ∪ {k}, b̂k ∪ {k} ⊆ b̂i ∪ {i} or

(̂bi ∪ {i}) ∩ (̂bk ∪ {k}) = ∅. As i /∈ x, it cannot be the case that b̂i ∪ {i} ⊆ b̂k ∪ {k} for some

10A chain is a lattice with the property that x, y ∈ C → x ⊆ x or y ⊆ x.
11A chain C is maximal in a collection of chains C if C /⊂ C ′ for any C ′ ∈ C.
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k ∈ I, so I ′ ⊆ I must exist such that b̂k ∪ {k} ⊂ b̂i ∪ {i} for k ∈ I ′ and b̂i ⊆ ⋃
{k∈I′⊆I}

b̂k ∪ {k}. Due

to the fact that I is sub-clan-like, it must be the case that all the sets b̂k ∪ {k} for k ∈ I ′
belong to the same maximal chain (as, otherwise, the intersection of the maximum elements

of at least two such chains would have to be non-empty). But this implies b̂i = b̂k∗ ∪ {k∗} for

some k∗ ∈ I ′, but then (̂bi ∪ {i}) ∩ (̂bk∗ ∪ {k∗}) ≠ ∅ and therefore it must be the case that

b̂i ∪ {i} belongs to the same chain as b̂k∗ ∪ {k∗} and we therefore have i ∈ x, a contradiction.

It must therefore be the case that Ii(x) = 0.

Now suppose that L is a simple lattice containing N , then define I by letting Ii(x) = 1 if and

only if x ⊇minimal{y ∈ L ∶ i ∈ x}. Consider some x ∈ L, then, by construction, Ii(x) = 1 for

all i ∈ x. On the other hand, suppose that i /∈ x. If Ii(x) = 1, then it must be the case that

x ⊇minimal{y ∈ L ∶ i ∈ x} ∖ {i}. The fact that L is simple and that it satisfies condition (1)

however, implies that all sets containing {y ∈ L ∶ i ∈ x}∖{i} must contain (i), a contradiction,

so it must be the case that Ii(x) = 0, and we can conclude that L ⊆ NE(ΓI) By construction,

all the equilibria of ΓI are unions of sets of the form minimal{y ∈ L ∶ i ∈ x} so it is also the

case that NE(ΓI) ⊆ L. The fact that I is sub-clan-like follows from the fact that, as L is a

simple lattice, for each i, the set minimal{y ∈ L ∶ i ∈ x} is always the smallest element con-

taining i of the only chain to which it belongs in the collection of chains whose product is L.

4.1 Hierarchical Influence Structures

The sets of equilibria of hierarchical influence structures exhibit well a theme that arises

repeatedly across binary games of social influence: as the individual action spaces are so

simple, all the complexity of equilibria arises from the social structure, and more specifically

from indirect self reference in action.12 Given a hierarchical influence structure I on a

hierarchy H = {H1,H2, ...,Hm}, an active set of agents x ⊆ ⋃
k>r
Hk induces an increasing

influence structure Ir,x on the agents in Hr given by

Ir,xi (y) = 1 if and only if Ii(y ∪ x) = 1, where y ∈ Hr and i ∈Hr

Letting Im = I, we can compute the set NE(ΓI) by a kind of backward induction, beginning

by computing the Nash equilibria of the game restricted to the top level of the hierarchy

NE(ΓIm), taking advantage of the fact that the actions of agents in a given level of the

12This kind of indirect self reference implies a sort of irreducibility which is difficult to circumvent. The

next section explores how the difficulty in computing and understanding the structure of the sets of equilibria

in graphical games of strategic complements stems from the fact that they are often irreducible in the sense

that they cannot be broken apart into smaller games which can be solved more easily.
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hierarchy can only influence other agents at the same level or at lower levels:

Em = NE(ΓIm)
Er = {{x} ×NE(ΓIr(x)) ∶ x ∈ Er+1}

We can proceed in this way down to the base of the hierarchy, having NE(ΓI) = E1. The

original problem is reduced to coping with the influence structures induced at each level of

the hierarchy, by the higher levels.

5 Increasing Influence Structures that Admit a Net-

work Representation

For the most part throughout this section we will maintain the convention of thinking of a

strategy profile as the subset x ⊂ N of agents that are active. In some parts, however, it will be

convenient to rely on matrix notation to represent incentives, and binary vectors x⃗ ∈ {0,1}∣N ∣
to represent strategy profiles. To avoid confusion, we consistently denote strategy profiles

using the vector notation x⃗ when thinking of them as binary vectors.13 In this notation,

x⃗i = 1 if and only if agent i chooses to be active.

An influence structure I admits a network representation when, for each player, i there exist

weights {wij}nj=1, wij ≥ 0, and a threshold ti ≥ 0 such that Ii(x) = 1 if, and only if, ∑
j∈x
wij ≥ ti.

We can group all the individual weights in a matrix W and let
Ð→
t = (t1, t2, ..., ti, ..., tn)′ denote

the vector of thresholds. As W and t⃗ fully capture an influence structure, we will directly

denote it by (W, t⃗), instead of using I. The games induced by increasing structures that

admit network representation are well known in the literature as graphical games of strategic

complements or games of thresholds. Throughout this section, we refer to the game induced

by (W, t⃗) as a game of thresholds and denote it by Γ(W,t⃗). Given a lattice L, we say that it is

expressible by a game of thresholds if there exist some weights W and a vector of thresholds

t⃗ such that NE(Γ(W,t⃗)) = L.

Using this notation, we can represent the equilibrium condition using a system of inequalities.

A vector x⃗ ∈ {0,1}n is an equilibrium of game Γ(W,t⃗) if, and only if:

[Diag(−ti) +W ]Ð→x ≥ Ð→0 and [Diag(ti − 1)) +W ]Ð→x < Ð→t

The problem of finding all the equilibria of a graphical games of thresholds is therefore

a subclass of the problem of finding all solutions to systems of linear inequalities, since

13Formally in moving back and forth between the set notation and the vector notation, we have that

i ∈ x⇔ x⃗i = 1.
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disregarding for an instant the strictness of the second inequality, we can write the above

as14

⎛
⎝

Diag(−ti) +W
−Diag(ti − 1)) −W

⎞
⎠
Ð→x ≥

⎛
⎝

Ð→
0

−Ð→t
⎞
⎠

In general, the problem of finding all solutions to linear systems of inequalities is a very hard

one, but we can hope to make some general statements about it by exploiting the additional

structure of the matrices and vector involved stemming from the fact that they represent

graphical games of strategic complements. There are two features of games of thresholds

which make them very appealing: 1) their structure summarizes social interaction in a

variety of settings, and 2) they can be described very succinctly: their representations are

not more complex than those of simple games of social influence, but they have a much greater

expressive power. As seen in Example 2, there are some increasing influence structures that

do not admit network representations.

Example 2 An influence structure that does not admit a network representation.

Let I be an increasing influence structure on {1,2,3,4,5} such that I1(x) = 1, if, and only

if, x ⊇ {2,3} or x ⊇ {4,5}. This influence structure does not admit a network representation:

The reason is that I1({2,3}) = 1 implies that either w12 ≥ t1
2 or w13 ≥ t1

2 . Similarly, it must

be the case that either w14 ≥ 1
2 or w15 ≥ 1

2 . But this, in turn, implies that at least one of

I1({2,4}), I1({2,5}), I1({3,4}) or I1({3,5}) must also be 1. ◇

Example 2 shows that, in depicting agent 1’s social incentives using weights and a threshold,

if we want him to be triggered by groups of agents {2,3} and {4,5} then it must be the case

that he is also triggered by at least one other group of agents that is not a superset of either

of these. In general, this is the only kind of limitation that we encounter when constructing

network representations of influence structures: it is straightforward to assign the weights

and pick the threshold in order to have an agent prefer to be active when every element in a

specified collection of subsets of N is active. What can be difficult and sometimes impossible

is choosing them in order to ensure that these are the only triggers. That is, it is always

possible to construct a network approximation of an influence structure containing all the

triggers of an agent, but, in general, in any such approximation, agents will be strictly more

sensitive to social influence. As shown in statement (3) in Section 3, the equilibria induced

14The problem involving the strict inequality can be approached by solving the weaker version involving

the weak inequality and then testing one by one the individual solutions to determine the subset in which

the strict inequality holds.
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by these approximations will be weakly larger than those of the games induced by the orig-

inal structures.

We now turn to the question of which sub-collection of lattices expressible by increasing

influence structures are also expressible by games of thresholds. There are two different

kinds of problems that we may face in trying to express a given lattice. The first one is

that due to the approximation limitations seen in Example 2, we may gain some equilibria

which we cannot destroy without compromising the equilibria that we do want to include.

The other possibility is that none of the approximations expresses supersets of the lattice in

question. We do not have much to say regarding the question of expressibility in the general

class of influence structures admitting a network representation. In what follows, we provide

some result and intuition related to a few special cases.

5.1 A Few Special Cases

Given a graph W , a cycle is a subset of N , i0, i1, ..., ik, such th such that wi0i1 > 0,wi1i2 >
2, ...,wik−1ik > 0 and wiii0 > 0. The first result is very simple and puts forth an important idea,

which is that all the complexity of the lattice of equilibria is closely related to the existence

of cycles. A graph that has no cycles is called a tree. In general, the issue is the same as the

one highlighted in Section 4.1 in relation to hierarchical influence structures. It becomes a

lot more clear in the context of networks.

Claim 1 If W has no cycles, the game has a unique equilibrium.

Proof of Claim 1: If W has no cycles there must exist at least an agent i, such that wij = 0.

By virtue of (A2) all such agents have a single optimal action x∗i . In particular, x∗i = 0 if

ti > 0 and x∗i = 1 if ti = 0. We can therefore create a simpler and equivalent game Γ′
W ′,
Ð→
t
′ by

removing all such agents from the graph and adjusting the the thresholds of the remaining

agents. Formall, let H = {i ∈ N ∶ wij = 0 ∀j ∈ N}. Let W ′ = [wij]i=1,2,...,n;j=1,2,...,n where w′
ij =

wij if i /∈H and j /∈H and w′
ij = 0 otherwise. And for each j ∈ N , let t′j = tj − ∑

i∈H
1{ti = 0}wji.

As the resulting graph is also a tree, we can continue this process, each time removing a

positive number of agents and assigning them their optimal actions until we are left with a

single agent, and a complete assignment of the unique equilibrium actions Ð→x .

If we allow influence structures to be correspondences (letting agents be indifferent between

playing 0 or 1) games on trees will in general have multiple equilibria. The spirit of the

result nevertheless continues to hold: the set of equilibria can be found in its entirety by a

form of backward induction starting in the leaves.
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We now examine the problem of expressing L using games of thresholds on the complete

graph, that is, the graph in which the weights wij = w are the same for all pairs of agents

i ≠ j. This special case is of interest because it is equivalent to many models of peer

effects in the applied literature, in which each agent chooses his activity level in response to

some measure of mean activity level in the environment. In these models, the agents may

have different sensitivities to the environment (in our language, different thresholds) but the

environment is usually the same for everyone, which is analogous to all the weights being

equal.

Claim 2 If x and y are equilibria of a game of thresholds in the complete graph then either

x ⊆ y or y ⊆ x. That is, the set of equilibria must be a chain.

Proof of Claim 2:

Suppose that we have two equilibria x and y. Without loss of generality, assume that ∣x∣ ≤ ∣y∣
and let i ∈ x. Then, ti ≤ ∑

j∈x
wij = ∣x∣w and therefore ti ≤ ∣y∣w = ∑

j∈y
wij. So it must be the case

that i ∈ y.

The converse of the claim above is also true, any chain which satisfies the strictness condition

(1) of Section 2 is expressible by a game of thresholds on the complete graph.

Claim 3 If L is a chain with the property if x ∈ L then x ∖ {i} /∈ L ∀i ∈ x15 then it is

expressible by a game of thresholds on the complete graph.

Proof of Claim 3:

Let C = {x1, x2, ..., xm} be a chain satisfying the condition of the claim, and without loss of

generality suppose k′ < k implies xk ⊆ xk′ . Then, it must be true that ∣xk+1 − xk∣ > 1. So let,

ti = ∣x1∣−1
n , ∀i ∈ x1 and in general ti = ∣xk ∣−1

k , ∀i ∈ xk ∖ xk−1, for each k ≤ m. Finally, let ti = 1,

∀i /∈ xm. Let wij = 1
n ∀i ≠ j. By construction, the set of equilibria of this game of thresholds

is precisely C = {x1, x2, ..., xm}.

The simple structure of the lattices that are expressible by games of thresholds on the

complete network means that we are able to count the number of different (up to re-labeling

of the agents) possible sets of equilibria of these games. In enunciating this counting result,

we restrict attention to sets of equilibria which always include the complete set N .

Corollary 1 There are Fn−1 different chains, which can be expressed as equilibria of games

of thresholds on the complete network on the set N = {1,2, ..., n} that include the set N ; where

Fn−1 denotes the n − 1th Fibonacci number.

15Condition (1) of Section 2.
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Proof of Corollary 1: Since we are counting the number of different chains up to re-labeling

of the agents, two chains C1 and C2 are different if, and only if, one of them contains a set

different in size from all the sets contained in the other chain. So, in what follows, when

referring to a given set, we only speak of its size. We can partition the set of expressible

chains on ∣N ∣ players into two groups: (1) those that contain an element of size ∣N − 2∣ and

(2) those that do not contain an element of size ∣N −2∣. Each of the chains in (1) corresponds

to a unique chain expressible with ∣N − 2∣ elements. A bijection is given by f(c) = c ∖N .

On the other hand, each of the chains in (2) corresponds to a unique chain expressible with

∣N − 1∣ elements. A bijection is given by g(c) = c ∖N ∪N − 1. Therefore, if we denote the

number of expressible chains on ∣N ∣ players by cN , we have that cN = cN−1 + cN−2. Moreover,

c1 = 0 = F0, c2 = 1 = F1.

Claims 2 and 3 are not very helpful in the sense that it is easy to come up with examples

of threshold games with equilibria that are not nested. In general, network architectures

which have many components, or have a number of highly intra-connected islands, only

inter-connected by a few bridges will tend to have pairs of equilibria not comparable by

set inclusion. These claims, however, do show quite succinctly that threshold games are

interesting precisely due to the interplay between thresholds and network structure. No

matter how much freedom we have to play with the thresholds, we will never be able to

abstract away from the network structure. As seen in Example 3, allowing the network to

be weighted also adds expressive power to games of thresholds.

Example 3 The expressive power added by weights.

The lattice L shown in Figure 3 cannot be expressed by a game of thresholds on a network

in which all links have the same weight. To see this, suppose that there existed a a game

(W, t⃗), in which wij = 0 or wij = w and, such that NE(ΓW,t⃗) = L. We begin noting that

the agents in {1,2,3} need to be connected as otherwise one of them would need to have

threshold 0, but this cannot be the case since ∅ ∈ L. Whoever among 2 and 3 is linked

to 1 must have a threshold of at most 2w, and therefore cannot be linked to 4,5,6,7 since

otherwise at least one of {1,4,5} or {1,6,7} would not be an equilibrium. If j among 2 and

3 is not directly linked to 1, then j must have a threshold of at most w, and just as before it

cannot be linked to 4,5,6 or 7, since, as above, at least one of {1,4,5} or {1,6,7}, would not

be an equilibrium. We can therefore conclude that neither 2 nor 3 can be linked to 4,5,6 or

7. Therefore {1,4,5,6,7} has to be an equilibrium as well, This contradicts the existence of

an unweighted network W and a vector of weights t⃗ satisfying NE(ΓW,t⃗) = L. ◇
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{1,2,3,4,5,6,7}

{1,2,3,4,5} {1,2,3,6,7}

{1,4,5} {1,2,3} {1,6,7}

∅

Figure 3: A lattice L that can only be expressed by games of thresholds on graphs with

weighted links.

6 Finding All Equilibria and Deciding Expressibility

(Echenique 2007 [2]) sets forth the fastest known algorithm for computing all equilibria in

general finite games of strategic complements. In what follows, we present a version of

Echenique’s algorithm for our games taking advantage of the notation that has been intro-

duced in Sections 3 and 4. The main idea behind the algorithm is to traverse the space of of

the 2n subsets of N efficiently by taking advantage of the fact that the influence structure is

increasing.

1) Initialization: Let E0 = ∅, S0 = {(∅,∅)} and C0 = ∅.

We start with an empty set of equilibria E0 = ∅, a stack of sets (the seeds) to be inspected

S0 = {∅} just containing the empty set, and an empty stack of already-inspected elements

(Checked elements) C0 = ∅.

2) Create Et, St and Ct from Et−1, St−1 and Ct−1:

Select one (any) of the elements of (x, z) ∈ St−1 ∖Ct−1 (If the set is empty, go to 3).

a) If Ii(↑ (x ∪ z)) = 1 for all i ∈ z then:

Ct = Ct−1 ∪ {(y, z) ∶ such that y ⪯ x ⪯↑ (x ∪ z)}
St = St−1 ∪ {(↑ (x ∪ z),{j}) ∶ j /∈ x ∪ z}
Et = Et−1 ∪ {↑ (x ∪ z)}.

Go back to the beginning of Step 2).

b) If Ii(↑ (x ∪ z)) = 0 for some i ∈ z then:

Ct = Ct−1 ∪ {(y, z) ∶ such that y ⪯ x ⪯↑ (x ∪ z)}
St = St−1 ∪ {(x, z ∪ {j}) ∶ j /∈ x ∪ z}
Et = Et−1.

Go back to the beginning of Step 2).
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3) Let NE(ΓI) = Et∗ where t∗ represents the stopping time of the iterative procedure pre-

sented in 2).

The algorithm starts at the bottom of the lattice. At the beginning of each iteration set x

represents agents that want to be active given that everyone else in x is active. The set z

is a group of agents held artificially active by the algorithm, in order to be able to rely on

the influence structure in order to navigate the power set of N . The algorithm evaluates

the best response of the agents that do not belong to the set x ∪ z, looking for the smallest

superset ↑ (x∪z) with the property that no agents not belonging to it would rather be active.

Resolving whether ↑ (x∪ z) is an equilibrium just requires checking whether the agents in z

are willing to be active, as, by construction, we know that all other agents in the set —the

agents in x, and those that are added by the ↑ operator— are best responding. Note that

regardless of whether ↑ (x ∪ z) is an equilibrium or not, at that set, the algorithm cannot

take advantage of the fact that the influence structure is increasing to continue navigating

the power set of N . So, we must add new seeds to the stack St. While adding any immediate

successor of ↑ (x ∪ z) would suffice to re-start the process, in order to make sure that we

traverse the entire power set of N all the successors ought to be added. Note that the

stack Ct of already-inspected sets is only kept for efficiency, as the re-seeding process may

eventually lead to considering a given pair (x, z) in 2) more than once.

Provided that the ↑ can be applied efficiently, this algorithm is a huge improvement over

evaluating the best response function of each agent at each subset of N , which is the only

general algorithm for finding all pure strategy Nash equilibria of arbitrary discrete games.

The efficiency in the evaluation of the ↑ operator in turn, depends on the extent to which

we can efficiently evaluate the best response function of the agents. If this is the case, the

algorithm will terminate quickly to the extent that the gaps between the the sets x ∪ z and

↑ (x∪z) are large, and therefore traversing the space does not essentially rely on the reseeding

process. As the next example shows, the worst case performance can be exponential on n,

and, moreover, its halting time is unrelated to the size of the set of equilibria of the problem

at hand.

Example 4 Worst case performance.

Consider the increasing influence structure in which every agent in N finds it optimal to

remain inactive regardless of what the other agents do. Then, the algorithm evaluates the

best response function of every single agent at each of the 2n subsets of N : it is forced to

reseed after every single iteration.◇
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Example 4 shows that the worst case performance of the algorithm is exponential on n.

Formally, an instance of the problem of computing all the pure strategy Nash equilibria

of one of our games is a description of the influence structure. There are many classes of

increasing influence structures of interest whose representations are of polynomial size on n.

Consider, for example, the class in which each agent has, at most, k bases for action (k can

be any number). Then, provided that the description of each subset of N is of size O(p(n)),
where p(n) is some polynomial of n, the description of the whole problem is O(knp(n)),
so polynomial on n. Note that the class of influence structures in which each agent has,

at most, k bases includes important subclasses of the special cases studied in this paper:

for example, all simple structures, and all structures admitting a network representation in

which the number of neighbors of each agent is bounded. So Example 4 shows that, within

the class of problems whose description are of polynomial size on n, the worst case halting

time of the algorithm is exponential on n.

The problem of deciding whether a lattice L is expressible by an arbitrary influence structure

can be decided in polynomial time on the size of the lattice; by just applying (1), we just

need to verify that, for each x ∈ L, we have x ∖ {i} /∈ x. Similarly, the problem of deciding

whether a lattice L is expressible by some increasing influence structure can be decided in

polynomial time on the size of the lattice, by just applying (SC), provided in Proposition 1.

On the other hand the problem of deciding whether a lattice is expressed by a given arbitrary

influence structure16 takes exponential time based upon the best general algorithms available.

That is, the best algorithm available has worst case performance which is exponential on

the size of the description of the influence structure. This follows because verifying whether

a given lattice is precisely the set of equilibria of the game induced by a specific influence

structure is essentially not any easier than finding all the equilibria of the game. The issue is

that it requires that we test not only whether each element of the lattice is an equilibrium of

the game proposed, but also whether the game proposed has no other equilibria. In order to

substantially improve on this appalling performance in the more general problem of deciding

expressibility, we use proposition 1, which gives us a characterization of expressibility that

only depends on the elements of L, just as is the case with the problem of expressibility by

arbitrary influence structures.
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