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Abstract

This thesis adds to the recent quantitative literature that considers variations in

uncertainty as impulses driving the business cycle. In chapter one a flexible partial

equilibrium model that features heterogeneous firms, uncertainty shocks and various

forms of capital adjustment costs is built in order to reassess whether temporarily

higher uncertainty can cause recessions. It is then shown that while uncertainty

shocks to demand can cause the bust, rebound and overshoot dynamics reminiscent

of recessions, uncertainty shocks to total factor productivity are likely to lead to

considerable and prolonged booms in economic activity. The reason for this result

is that while the expectational effect of uncertainty shocks is negative and similar

in magnitude for both types of uncertainty shocks, the positive distributional effect

is an order of magnitude larger for total factor productivity than for demand.

Chapter two then derives and implements an identification strategy for uncer-

tainty shocks within a Structural Vector Autoregression framework that is consis-

tent with the way these shocks are commonly modeled in the literature. For the

US it is shown that such model consistent uncertainty shocks lead to considerable

booms in investment and employment and only explain a small fraction of the vari-

ation in the cross-sectional sales variance. Once uncertainty shocks are identified

as the shocks that only affect dispersion upon impact, they cause a moderate drop,

rebound and overshoot of investment and a large increase in the cross-sectional dis-

persion of revenues. The results suggest that the standard timing assumption that

the expectational effect of uncertainty shocks leads the distributional effect seems

questionable.

Finally, chapter three analyses endogenous variations in uncertainty and their

effect on aggregate dynamics that result from imperfect information in the presence

of occasional regime shifts. In a tentative model parameterization to the German

manufacturing industry during the Financial Crisis it is shown that after a temporary

regime shift imperfect information leads endogenously to higher forecast standard

errors compared to full information, as well as higher cross-sectional dispersion of

mean forecasts and forecast standard errors. It is then shown that these endogenous

variations in uncertainty can lead to considerable downward amplification and some

propagation of aggregate investment and revenues during a temporary downward

regime shift.
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Overview of Thesis Chapters

The idea that variations in uncertainty are a cause of business cycle fluctuations

has received renewed attention in recent years. This is partly based on the fact

that many proxies for uncertainty such as stock market volatility, disagreement

between professional forecasters, and the cross-sectional dispersion of productivity,

stock returns, revenue growth and price changes all go up during recessions.1 Based

on these findings, shocks to uncertainty are commonly modeled as changes in the

variance of idiosyncratic and aggregate shocks that hit agents within the quantitative

macroeconomic literature .2 This way of modeling uncertainty shocks implies that

on the one hand expectations about the future get more uncertain and on the other

hand the cross-sectional dispersion of fundamentals across agents increases after a

positive uncertainty shock. The first channel is labeled the expectational effect,

while the latter channel is labeled the distributional effect of uncertainty shocks.

This thesis builds upon and adds to this line of research through three self-contained

chapters.

Chapter one readdresses the question of whether temporarily higher uncertainty

can lead to recessions. In particular, it is studied whether the dynamics induced by

uncertainty shocks differ depending on whether they apply to demand conditions or

to TFP. To answer the research question a partial equilibrium model that features

heterogeneous firms, uncertainty shocks and various forms of capital adjustment

costs is built and simulated. In line with the existing literature uncertainty shocks

are modeled as changes in the idiosyncratic shock variance faced by firms. The

central finding of the chapter is that while uncertainty shocks to demand cause the

bust, rebound and overshoot dynamics reminiscent of recessions, uncertainty shocks

1See for example Bloom (2009), Dovern et al. (2009), Bloom et al. (2010), Kehrig (2011),

Bachmann and Bayer (2011), and Berger and Vavra (2010).
2This way of modeling uncertainty shocks has been applied in models with labor and/or capital

adjustment costs by Bloom (2009), Bloom et al. (2010), and Bachmann and Bayer (2011), in

models with financial frictions by Dorofeenko et al. (2008), Gilchrist et al. (2010), Chugh (2011)

and Arellano et al. (2011), in a search and matching model by Schaal (2012), and in a pricing

model with adjustment costs by Vavra (2012).

1
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to TFP are likely to lead to large and persistent booms.

The mechanism behind this finding is as follows: While the expectational effect

is negative in the presence of non-convex adjustment costs, it’s magnitude does not

change much between uncertainty shocks to demand and TFP. In contrast to this,

the distributional effect is positive and an order of magnitude larger for uncertainty

shocks to TFP than for uncertainty shocks to demand. The intuition is that for

TFP shocks the revenue function is likely to have increasing returns to scale while

for demand shocks the returns to scale can be constant at best. Hence, for TFP

shocks higher ex-post cross-sectional dispersion is a time of opportunity which more

than compensates for the negative expectational effect of uncertainty shocks, causing

a prolonged boom in aggregates. For uncertainty shocks to demand the negative

expectational effect dominates the distributional effect causing the recession like

dynamics emphasized by Bloom (2009).

Chapter two proposes an empirical identification strategy for uncertainty shocks

that is consistent with the recent vintage of quantitative models that consider vari-

ations in uncertainty as impulses driving aggregate fluctuations. The identification

strategy has two parts. First, the cross-sectional variance of firm-level sales is used

as a proxy for uncertainty. Second, because the expectational effect of uncertainty

shocks is commonly assumed to lead the distributional effect, an uncertainty shock

is identified as the shock that affects investment upon impact but not the cross-

sectional variance of revenues within a Structural Vector Autoregression (SVAR)

framework. This strategy for identifying uncertainty shocks is then applied to US

data.

The main result from the baseline SVAR estimation is that such model consistent

uncertainty shocks lead to considerable booms in investment and employment that

last for around two years. Moreover, while the uncertainty shock explains most of

the forecast error in investment and employment it only explains a small part of the

forecast error in the cross-sectional variance of firm-level sales. Both of these results

are contrary to the dynamics that are induced by these uncertainty shocks in the

recent vintage of quantitative macro models. Once uncertainty shocks are identified

as the shocks that only affect dispersion upon impact, the results change somewhat.

An uncertainty shock in that case leads to a moderate drop, rebound and overshoot

of investment and a large increase in the cross-sectional dispersion of revenues. The

results suggest that the way uncertainty shocks are modeled in the quantitative

literature needs to be reconsidered. In particular, the standard timing assumption

that the expectational effect of uncertainty shocks leads the distributional effect

seems questionable given the empirical results in this chapter.

Finally, chapter three studies endogenous variations in uncertainty and aggregate

2
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fluctuations that result from imperfect information and learning in an environment

where regime changes in the mean happen occasionally. The idea behind this set-up

is that whenever unprecedented regime shifts occur, agents become more uncertain

about the true data generating process (DGP) and therefore mix different con-

ditional distributions when forming expectations about the future. The German

manufacturing industry actually experienced such an unprecedented regime shift

during the Financial Crisis in mid 2008. Output collapsed by 25 % within just six

months and expectations fell much more than can be explained by fundamentals.

With this empirical background in mind a partial equilibrium heterogeneous firm

model that features capital adjustment costs, a markov-switching driving process

and imperfect information about the underlying regime is parameterized to German

manufacturing data and simulated.

There are two main findings that come out of the exercises. First, after a regime

shift imperfect information leads endogenously to temporarily higher uncertainty

about the underlying regime. On average this leads to lower mean forecasts and

higher forecast standard errors compared to full information. Moreover, during the

regime shift the dispersion in beliefs increases considerably, which causes the cross-

sectional dispersion of mean forecasts and forecast standard errors to increase in

turn. This mechanism could be interesting in order to explain why survey responses

by firms and professional forecasters get more dispersed during downturns. Sec-

ond, these endogenous variations in uncertainty can lead to considerable downward

amplification and some propagation of aggregate investment and revenues during a

temporary downward regime shift. This is true for all types of adjustment costs,

but some degree of quadratic costs are needed to match the empirical volatility of

investment.

3
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Chapter 1

Does Higher Uncertainty Cause

Recessions?

Abstract

This chapter readdresses the question of whether temporarily higher uncertainty

can lead to recessions. In particular, it is studied whether the dynamics induced

by uncertainty shocks differ depending on whether they apply to demand condi-

tions or to TFP. To answer the research question a partial equilibrium model that

features heterogeneous firms, uncertainty shocks and various forms of capital ad-

justment costs is built and simulated. The central finding of the chapter is that

while uncertainty shocks to demand cause the bust, rebound and overshoot dynam-

ics reminiscent of recessions, uncertainty shocks to TFP are likely to lead to large

and persistent booms. This result can be easily understood when considering that

uncertainty shocks in the model have an expectational effect as well as a distribu-

tional effect. While the expectational effect is negative in the presence of non-convex

adjustment costs, it’s magnitude does not change much between uncertainty shocks

to demand and TFP. In contrast to this, the distributional effect is positive and an

order of magnitude larger for uncertainty shocks to TFP than for uncertainty shocks

to demand. The intuition is that for TFP shocks the revenue function is likely to

have increasing returns to scale while for demand shocks the returns to scale can be

constant at best. Hence, for TFP shocks higher ex-post cross-sectional dispersion

is a time of opportunity which more than compensates for the negative expecta-

tional effect of uncertainty shocks, causing a prolonged boom in aggregates. For

uncertainty shocks to demand the negative expectational effect dominates the dis-

tributional effect causing the recession like dynamics emphasized by Bloom (2009).

4
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1.1 Introduction

Ever since the outbreak of the financial crises in 2008, the use of the word uncertainty

in relation to macroeconomic events has become increasingly popular among policy

makers and the media. Statements such as ’uncertainty affects behaviour, which

feeds the crisis’1 by Olivier Blanchard and headlines such as ’Economic uncertainty

drags US retail sales’2 illustrate the widely shared view that heightened uncertainty

is at least partly responsible for low economic activity. The idea that uncertainty

is an important factor for driving aggregate economic outcomes also has a long

tradition in economics, dating back at least to Knight (1971) and Keynes (1936).

However, even though the role of uncertainty has been a major research area in the

investment literature ever since the seminal paper by Bernanke (1983), the modern

quantitative business cycle literature has generally abstracted from variations in

uncertainty as impulses driving aggregate fluctuations.3

Since the publication of a recent paper by Bloom (2009), the academic interest

in considering variations in uncertainty as impulses driving the business cycle has

been revived again.4 In a partial equilibrium heterogeneous firm model that fea-

tures various forms of labor and capital adjustment costs, he shows quantitatively

that a temporary increase in uncertainty first leads to a drop and then a subsequent

rebound and overshoot of output and employment. In the paper variations in uncer-

tainty are modeled as changes in the variance of idiosyncratic and aggregate shocks

that hit the firms. This approach of modeling variations in uncertainty has since

then been applied in general equilibrium models with adjustment costs by Bloom

et al. (2010) and Bachmann and Bayer (2011). While the former paper confirms

that the drop, rebound and overshoot dynamics are robust to general equilibrium

considerations the latter paper argues that uncertainty shocks are unlikely to be a

major quantitative source of business cycle fluctuations. One potential reason for

these discrepancies in findings is that Bloom (2009) implicitly considers uncertainty

shocks to demand, while Bachmann and Bayer (2011) consider uncertainty shocks

to total factor productivity (TFP).

With this background in mind, the current chapter readdresses the question of

whether temporarily higher uncertainty can lead to recessions. In particular, it is

studied whether the dynamics induced by uncertainty shocks differ depending on

1Quote from guest article by Olivier Blanchard in the Economist on January 29, 2009.
2Article headline in the Financial Times on June 2, 2011.
3Other papers that consider the effect of uncertainty on investment include Hartman (1972),

Abel (1983), Caballero (1991), Dixit and Pindyck (1994), Leahy and Whited (1996) and Guiso and

Parigi (1999) among others.
4A discussion of the related literature can be found towards the end of the introduction.
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whether they apply to demand conditions or to TFP. To answer the research question

a partial equilibrium model that features heterogeneous firms, uncertainty shocks

and various forms of capital adjustment costs is built and simulated. In line with

the existing literature, uncertainty shocks are modeled as changes in the variance of

idiosyncratic profitability shocks. The main difference in the model set-up compared

to the literature is that the specification of the revenue function allows to separately

analyze the quantitative implications of uncertainty shocks to demand and TFP.

The central finding of the chapter is that while uncertainty shocks to demand

cause the bust, rebound and overshoot dynamics reminiscent of recessions, uncer-

tainty shocks to TFP are likely to lead to large and persistent booms. The difference

in these dynamic effects of uncertainty shocks is caused by different degrees of re-

turns to scale in the revenue function that are implied by demand and TFP shocks.

This result can be easily understood when considering that uncertainty shocks in

the model have an expectational effect as well as a distributional effect: On the

one hand, expectations about the future get more uncertain and on the other hand

the cross-sectional dispersion of profitability across firms increases after a positive

uncertainty shock.

While the expectational effect is negative in the presence of non-convex adjust-

ment costs, it’s magnitude does not change much between uncertainty shocks to

demand and TFP. In contrast to this, the distributional effect is positive and is an

order of magnitude larger for uncertainty shocks to TFP than for uncertainty shocks

to demand. The intuition is that for TFP shocks the revenue function is likely to

have increasing returns to scale while for demand shocks the returns to scale can be

constant at best. Hence, for TFP shocks higher ex-post cross-sectional dispersion

is a time of opportunity which more than compensates for the negative expecta-

tional effect of uncertainty shocks, causing a prolonged boom in aggregates. For

uncertainty shocks to demand the negative expectational effect dominates the dis-

tributional effect causing the recession like dynamics emphasized by Bloom (2009).

A secondary contribution of the chapter is that it is shown that uncertainty

shocks have first moment implications for the distribution of profitability whenever

the driving process is specified as an AR(1) process in logs, which is a common

assumption in the literature. The reason for this is that an increase in the variance of

a log-normal variable actually translates into an increase in the mean of the variable

in levels. Adjusting for this positive first moment effect of uncertainty shocks is not

easy as long as the persistence parameter of the AR(1) process is not equal to zero

or one. This fact needs to be taken into account when building quantitative models

that include uncertainty shocks.

There are various strands of literature that are related to this chapter. Most

6
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relevant is the recent quantitative literature on the impact of uncertainty shocks

that was started by Bloom (2009). Other papers that consider uncertainty shocks

in models with capital adjustment costs are Bloom et al. (2007), Bloom et al. (2010)

and Bachmann and Bayer (2011). Moreover, there are various recent papers on

the interaction of time-varying uncertainty with financial frictions as for example

Dorofeenko et al. (2008), Gilchrist et al. (2010), Chugh (2011) and Arellano et al.

(2011). The quantitative literature that was started by Bloom (2009) builds itself

on an extensive literature that considers the effect of uncertainty on investment.

Important contributions in this line of research include Hartman (1972), Abel (1983),

Bernanke (1983), Caballero (1991) and Dixit and Pindyck (1994). Finally, this

chapter builds on many papers that study the effects of capital adjustment costs

such as Hayashi (1982), Abel and Eberly (1994), Abel and Eberly (1996), Caballero

and Engel (1999) and Cooper and Haltiwanger (2006) among others.

The rest of the chapter proceeds along the following lines. In the next section the

model set-up is presented and some necessary concepts for the analysis of uncertainty

shocks are formalized. In section three analytic results are derived for the model

without any capital adjustment costs. This case helps to understand the underlying

dynamics in the model and in addition serves as a benchmark to which we can

compare the results for models that incorporate various forms of capital adjustment

costs. Section four then moves on to analyze various models with capital adjustment

costs making use of numerical simulations. Finally, section five provides a brief

conclusion of the chapter. All derivations of the analytical results are contained in

the Appendix.

1.2 A Firm Model with Adjustment Costs and

Uncertainty Shocks

In this section a partial equilibrium model with heterogeneous firms is presented.5

As in Abel and Eberly (1994) and Cooper and Haltiwanger (2006) the firms are

assumed to face a rich set of convex and non-convex adjustment costs to investment,

as well as partial investment irreversibilities. Furthermore, in line with the recent

uncertainty shocks literature that was started by the paper of Bloom (2009), the

model features variations in uncertainty over time, which are modeled as changes

in the variance of idiosyncratic profitability shocks faced by each firm.6 Labor

5Throughout the chapter the terms firm and plant are used interchangeably, as it is assumed

that each firm just operates one plant.
6See the introduction for a complete list of papers that model uncertainty shocks in this way.

7
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adjustment costs are disregarded to keep the model as simple as possible, while

allowing for an analysis of the interaction between variations in uncertainty and

aggregate investment, employment and output.7 The main difference in the model

set-up compared to the existing literature is that the specification of the revenue

function allows to separately analyze the effect of uncertainty shocks to demand

(Demand shifter) and supply (TFP).8

This set-up is mainly motivated by the fact that the existing literature has made

varying implicit assumptions about the underlying structural nature of the uncer-

tainty shocks. This might be a possible reason for why Bloom (2009) finds a con-

siderable negative impact of uncertainty shocks, while Bachmann and Bayer (2011)

find that uncertainty shocks do not alter business cycle properties a lot. The former

paper implicitly assumes uncertainty shocks to demand, while the latter assumes

that they are uncertainty shocks to TFP.9 As will be shown below, the common

way that uncertainty shocks are modeled implies that on the one hand expectations

about the future get more uncertain upon impact and on the other hand the cross-

sectional dispersion of profitability across firms increases after a positive uncertainty

shock. The former channel will be labeled as the expectational effect and the latter

as the distributional effect.10 In the remainder of the chapter it will be shown that

the magnitude of the distributional effect depends to a large extent on the structural

nature of the uncertainty shock. Uncertainty shocks to TFP have a much higher

positive distributional effect than uncertainty shocks to demand. In contrast, the

expectational effect is negative and similar in magnitude for both types of uncer-

tainty shocks in the presence of non-convex adjustment costs. Uncertainty shocks

to demand therefore lead to the bust, rebound and overshoot dynamics stressed in

the literature, while uncertainty shocks to supply lead to considerable booms.

7This approach can be justified on the grounds that Bloom et al. (2010) show that uncertainty

shocks lead to a drop and rebound in output even when the model only features capital adjustment

costs. Moreover, Bloom (2009) shows that disregarding labor adjustment costs affects the fit of his

model by an order of magnitude less compared to disregarding capital adjustment costs.
8In the literature it is common to work with a reduced form shock to either revenues or profits

that could be due to demand, supply (TFP) or wage movements. The flexible way the revenue

function is specified in this chapter allows to study these effects separately.
9As will be argued below, the admissible returns to scale of the revenue function are to a large

extent determined by the type of structural shock we look at. Hence, by making assumptions

about the returns to scale of the revenue or profit function, we implicitly say something about the

underlying shock that is assumed.
10Bloom (2009) refers to these two channels as the uncertainty and the volatility effect. As both

are induced by the uncertainty shock it is deemed that the distinction between an expectational

effect and a distributional effect seems clearer.
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1.2.1 Production, Demand and the Revenue Function

There is a continuum of risk neutral firms indexed by i ∈ [0, 1] who maximize the

present discounted value of expected profit streams. Risk neutrality is assumed to

isolate the effect of time-varying uncertainty that arises through the presence of

non-convex adjustment costs which induce real options effects. Firms are assumed

to face a constant or decreasing returns to scale (RTS) production function and

a constant elasticity demand function.11 Moreover, it is assumed that firms differ

in their productivity and potentially in the demand that they face. Under these

assumptions a revenue function with the following properties can be derived as

shown in Appendix B:12

S(Ai,t, Ki,t, Li,t) = Aci,tK
a
i,tL

b
i,t (1.1)

In the above equation, Aci,t = B
1/ε
i,t Ã

(ε−1)/ε
i,t is a reduced form shock that is com-

prised of TFP shocks (Ã) and shocks to the demand shifter of the constant elasticity

demand function (Bi,t). In addition, K and L represent the capital stock and la-

bor input, while the exponents a, b, and c determine the curvature and RTS of the

revenue function. In particular, it is always the case that both a, b ∈ (0, 1) and in

addition a + b < 1. Hence, the revenue function always displays decreasing RTS in

(K,L) space. This is due to either the assumption of decreasing RTS in the produc-

tion function and/or some degree of market power. However, the exact values of a

and b will be determined by the specific assumptions about the demand elasticity ε

and RTS of the production function.13

Moreover, the value of the exponent on the profitability shock c will depend

on whether we look at demand or TFP shocks. In particular, for demand shocks

c = 1/ε ∈ (0, 1) and in the case of supply shocks c = (ε−1)/ε ∈ (0, 1). Furthermore,

the revenue function can only have constant or decreasing RTS in (A,K,L) space for

demand shocks14 while the revenue function can have either of decreasing, constant

or increasing RTS for TFP shocks.15 However, a moderate elasticity of demand

11The production function takes the following form Y (Ãi,t,Ki,t, Li,t) = Ãi,tK
ν
i,tL

ω
i,t while the

demand function takes the form qi,t = Bi,tp
−ε
i,t .

12The derivation of this revenue function is closely related to the one in Bloom (2009) with the

difference that in his model he assumes c = 1− a− b, while the specification in this chapter allows

for flexible values of c. This will be of importance in the analysis further below.
13This connection becomes clear when looking at the formulas for those exponents: a = ν ε−1

ε

and b = ω ε−1
ε .

14This is easy to see by noting that in this case a+ b+ c = [1+ (ν + ω)(ε− 1)]/ε ≤ 1 due to the

fact that ν + ω ∈ (0, 1].
15Here we have that a + b + c = [ε − 1 + (ν + ω)(ε − 1)]/ε ≤ 2(ε − 1)/ε. Hence, whenever the

demand elasticity is below two, there will be decreasing returns to scale in (A,K,L) space, while
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will usually imply increasing returns to scale in (A,K,L) space and a value of c

that is close to but below one. The RTS of the revenue function will be especially

important in determining how the distributional effect of uncertainty shocks impacts

on aggregate investment, employment and revenues, which will be shown in section

1.3.1.

At this point it is worth to relate the specification of the revenue function in

equation (1.1) to other papers on investment under uncertainty. For example Bloom

(2009) works with a specification of c = 1−a−b. Given his assumptions of constant

returns to scale in production and some degree of market power, this implies that

his shocks to A are demand shocks. In contrast, Bloom et al. (2010) and Bachmann

and Bayer (2011) use a model with perfect competition so that the revenue function

is equal to the assumed decreasing returns to scale production function. Their

specification would therefore be equivalent to setting c = 1 and interpreting A as

TFP shocks. Finally, Cooper and Haltiwanger (2006) and Caballero and Engel

(1999) work with a reduced form profit function that would imply a value of c =

1 − b if the current economic structure was assumed.16 These seemingly minor

assumptions will turn out the be important determinants for the distributional effect

of uncertainty shocks. Table 1.1 summarizes the values of c that are commonly used

in the investment literature along with some other common modeling assumptions

that will be used further below.

Table 1.1: Common modeling assumptions in the investment literature

Paper Exponent on A Z ·Ψ Form of process

Cooper and Haltiwanger (2006) c = 1− b Yes AR(1) in logs

Bloom (2009) c = 1− a− b Yes Geometric RW

Bloom et al. (2010) c = 1 Yes AR(1) in logs

Bachmann and Bayer (2011) c = 1 Yes AR(1) in logs

Khan and Thomas (2008) c = 1 Yes Markov chain

Thomas (2002) c = 1 Only Z AR(1) in logs

Caballero and Engel (1999) c = 1− b Only Z Geometric RW

for a demand elasticity greater than two, we can have any of the three cases of decreasing, constant

or increasing returns to scale depending on the assumption made about ν + ω. As it is usually

assumed that the returns to scale in the production function are not too low, a moderate demand

elasticity will usually imply increasing returns to scale in the revenue function in (A,K,L) space.
16Their profitability shocks combine demand, TFP and factor price shocks. However, their

assumptions about the exponents of the profit function imply c = 1 − b within the set-up of this

chapter.
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1.2.2 The Static Labor Input Decision and Profits

Throughout this chapter it is assumed that labor input can be freely adjusted within

each period and becomes immediately available for production.17 In contrast to

that, new capital is assumed to take one period to be ready for use in production, so

that the capital stock is taken as fixed in the current period by the firm. With these

assumptions, the labor input decision of the firm becomes static and is determined by

the maximization of gross profits given the capital stock and the shock to revenues.

Taking the first-order condition and solving for Li,t gives us the following function

for the optimal labor input decision:

L(wt, Ai,t, Ki,t) = κtA
c

1−b

i,t K
a

1−b

i,t (1.2)

where κt = b
1

1−bw
− 1

1−b

t is a parameter that depends on the wage. Moreover,

plugging the labor policy function into the revenue function and into the equation

for gross profits yields the following reduced form revenue and profit functions:

R(wt, Ai,t, Ki,t) = χtA
c

1−b

i,t K
a

1−b

i,t (1.3)

Π(wt, Ai,t, Ki,t) = φtA
c

1−b

i,t K
a

1−b

i,t (1.4)

where χt = b
b

1−bw
− b

1−b

t and φt = (1 − b)b
b

1−bw
− b

1−b

t are again parameters that

depend on the wage. Note that equations (1.2), (1.3) and (1.4) all have the same

functional form in (A,K) space. Due to the assumptions of either decreasing returns

to scale in production or some degree of market power, which both imply that

0 < a+ b < 1, all three functions will be concave in K. Concavity or convexity in A

and whether we have increasing, constant or decreasing returns to scale in (A,K)

space will however depend crucially on the value of c, i.e. on the choice of whether

we consider demand or supply shocks.

Relating to the discussion above, the assumption of c = 1−a−b in Bloom (2009)

implies concavity in A and constant returns to scale in (A,K). In contrast, if we

set c = 1 as in Bloom et al. (2010) and Bachmann and Bayer (2011), the functions

will be convex in A and have increasing returns to scale in (A,K). Finally, for

c = 1 − b as in Cooper and Haltiwanger (2006) and Caballero and Engel (1999),

the functions will be linear in A and have increasing returns to scale in (A,K)

space. How these different assumptions determine the effect of uncertainty shocks is

shown analytically in section 1.3 for the case without capital adjustment costs and

numerically in section 1.4 for the case with capital adjustment costs.

17This is a common assumption in most of the investment literature. See for example Hayashi

(1982), Abel and Eberly (1994), Bertola and Caballero (1994), Abel and Eberly (1996), Caballero

and Engel (1999), Cooper and Haltiwanger (2006) or Bloom et al. (2007) among others.
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For the rest of the chapter it is assumed that the wage rate does not vary over

time. This is mainly done to keep the model as tractable as possible. Variations

in wages could however be easily implemented via making them a function of the

aggregate profitability shock and/or the uncertainty shock. With the assumption

of a constant wage the variables κt, χt and φt become constants, which allows us

to drop the wage rate from the state space of the firm. As the shock to revenues is

now the only stochastic variable left in the model and it directly affects profits, it

will from now on be labeled as a profitability shock.

1.2.3 The Stochastic Process for Profitability

As is standard in the investment literature with heterogeneous firms, the profitabil-

ity of each firm (Ai,t) is assumed to be the product of an aggregate (Zt) and an

idiosyncratic (Ψi,t) component.18 Furthermore, both the aggregate and idiosyn-

cratic components are assumed to follow persistent AR(1) processes in logs, which

is consistent with US micro data as shown by Cooper and Haltiwanger (2006). Fi-

nally, in line with the models by Bloom (2009), Bloom et al. (2010), Bachmann

and Bayer (2011), Arellano et al. (2011), Gilchrist et al. (2010) and Vavra (2012)

uncertainty shocks are incorporated into the model through changes in the variance

of idiosyncratic shocks.19 Given these assumptions the profitability process can be

described by the following equations:

Ai,t = ZtΨi,t (1.5)

zt = μz + ρzzt−1 + ηt (1.6)

ψi,t = μψ + ρψψi,t−1 + υi,t (1.7)

Here, a lower case letter refers to the logarithm of the variable and ηt ∼ N (μη, σ
2
η)

and υi,t ∼ N (μυ,t−1, σ
2
υ,t−1) are i.i.d. innovations to aggregate and idiosyncratic prof-

itability. Note that the idiosyncratic profitability process is specified as a markov-

switching process, where it is assumed that the standard deviation of idiosyncratic

shocks follows a two-point markov chain with support συ,t ∈ {σLυ , σHυ } and transition

probabilities Pr(συ,t+1 = σjυ|συ,t = σiυ) = πij between the high and low uncertainty

18See table 1.1 for a summary of common modeling assumptions in the investment literature.
19In principle, we could also assume that the variance of aggregate shocks changes over time.

However, as Bloom et al. (2010) argue, this would mainly affect conditional heteroskedasticity of

aggregate variables. As the main motivation of the Uncertainty Shocks literature is that cross-

sectional measures of spread at the micro level vary over time, it seems sufficient to incorporate

firm level uncertainty shocks. Hence, to simplify the model, the variance of shocks to the aggregate

component is assumed to be constant.
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state. Embedded in the above specification is the standard timing assumption that

the variance of idiosyncratic shocks is known one period in advance with certainty.20

This implies that agents always know the true variance of shocks applicable in the

next period and hence all the variations in uncertainty perceived by firms are rational

in the sense that they are related to more volatility in the shocks to fundamentals.

Finally, this standard timing assumption for information implies that the expecta-

tional effect of uncertainty shocks leads the distributional effect by one period. I.e.

firms’ expectations about the future get more uncertain on impact of the uncertainty

shock, but the distributional effect only starts with a one period delay once firms

start drawing shocks from a more dispersed distribution. Note also that the mean of

idiosyncratic profitability shocks is allowed to vary along side the variance of shocks.

As is shown in Appendix C this is done in order to correct for the positive effect

on mean expectations that an increase in the shock variance causes given that the

process is specified in logs.

1.2.4 Specification of Capital Adjustment Costs

The firm’s capital stock is fixed within each period, as it is assumed to take one

period for new capital to be installed and ready for production. Moreover, capital

is assumed to depreciate at the rate δ per period, so that the law of motion for

the capital stock is given by the following equation, where I denotes the level of

investment:

Ki,t+1 = Ki,t(1− δ) + Ii,t (1.8)

In line with the papers by Cooper and Haltiwanger (2006) and Bloom (2009)

it is assumed that the firm faces convex and non-convex costs of adjusting the

capital stock, as well as partial investment irreversibilities.21 Both, adjustment

costs and partial irreversibilities bring interesting real options effects to the capital

accumulation process and in particular will determine how the expectational effect of

uncertainty shocks impacts on investment decisions. The adjustment cost function

and the price of capital can be represented by the following equations:

C(Ai,t, Ki,t, Ii,t) =
γ

2
(Ii,t/Ki,t)

2Ki,t+(1−λ)Π(Ai,t, Ki,t)1{Ii,t �=0}+FKi,t1{Ii,t �=0} (1.9)

p(Ii,t) =

{
ps , if Ii,t < 0

pb , if Ii,t > 0
(1.10)

20See all of the papers on uncertainty shocks mentioned above.
21Both papers find that all these forms of capital adjustment frictions are needed to match the

micro data on investment behavior by plants/firms.
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The convex adjustment costs are assumed to be quadratic while the non-convex

adjustment costs can be a fraction of current profits (1 − λ) or a fraction of the

capital stock (F ).22 Finally, ps denotes the selling price of capital and pb the buying

price and it is assumed that ps < pb so that there are partial irreversibilities for

investment.

1.2.5 The Bellman Equation of the Firm

As mentioned above, firms are assumed to be risk neutral in order to isolate the

effects of uncertainty shocks that are due to adjustment frictions. Moreover, it is

assumed that the discount rate, i.e. the interest rate, with which the firms discount

their expected future profit streams is constant over time. In reality of course, the

interest rate varies over time and should in particular be related to the business

cycle. Incorporating such interest rate changes are again easily implemented as

functions of the aggregate and uncertainty shock. However, to isolate the pure

effects of uncertainty shocks it was decided to abstract from factor price changes.

Given the objects defined in the previous subsections, the dynamic decision problem

for each firm of maximizing the present discounted value of expected profits can

be summarized by the following Bellman Equation. To save on notation the firm

subscript i for each variable is omitted and primes denote next period variables:23

V (A,K, συ) = max
I

Π(A,K)− C(A,K, I)− p(I)I + βEA′,σ′
υ |A,συ [V (A′, K ′, σ′

υ)]

(1.11)

Here, β is the period discount factor, Π(A,K) is the reduced form profit func-

tion, C(A,K, I) captures investment adjustment costs, p(I) is the effective price of

newly installed or retired capital, and next period capital is given by the law of

motion in equation (1.8). The solution to this Bellman Equation will yield a policy

function for investment or alternatively next period capital of the form I(A,K, συ)

and K ′(A,K, συ).

221{Ii,t �=0} is an indicator function that takes a value of 1 whenever investment is nonzero, and

a value of 0 otherwise.
23In the Bellman Equation below total profitability is used as the state variable to save on

notation. It should be kept in mind however that in order to solve the model, information on both

the aggregate and idiosyncratic profitability is needed. Whenever total profitability is used as the

state variable in this chapter it should therefore be interpreted as information on both components

of total profitability.
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1.2.6 Dynamic Aggregation of the Firm Distribution

The Bellman Equation (1.11) implies that the relevant state vector for each firm

consists of aggregate profitability, idiosyncratic profitability, the capital stock and

the uncertainty shock. In order to determine the relevant state vector that deter-

mines the behavior of aggregate variables at each point in time, first note that firms

in our model differ in two respects from each other, namely idiosyncratic profitabil-

ity and capital. The aggregates in our economy will therefore be characterized by

a joint distribution of the form Gt(Ψi,t, Ki,t) in every period. Let the associated

density be denoted by gt. The density gt is indexed by t to make it explicit that

it will change over time due to uncertainty shocks. In addition to this density,

the aggregate profitability shock and the current variance regime will determine

how aggregate variables behave. Following this logic, the aggregate of a generic

endogenous variable X can be expressed as a function of the following state vector

St = [gt(Ψi,t, Ki,t), Zt, συ,t]:

E[Xi,t|St] = X̄t(St) =

∫∫
gt(Ψi,t, Ki,t)Xi,t(Ψi,t, Ki,t, Zt, συ,t)dΨdK (1.12)

Moreover, with this definition of the aggregate state vector we can concisely

represent the evolution of the density gt over time. First note that gt will depend on

the joint density of idiosyncratic profitability and capital at time t−1. Moreover, as

capital in the next period is a function of aggregate profitability and the uncertainty

shock, Zt−1 and συ,t−1 will also affect gt. Finally, the distribution of idiosyncratic

profitability in the current period depends on last period’s distribution and the

uncertainty shock. But this simply amounts to saying that the joint density of

idiosyncratic profitability and capital at time t depends on the aggregate state vector

at time t− 1. We can therefore express gt as a conditional distribution of St−1:

gt(Ψi,t, Ki,t) = g(Ψi,t, Ki,t|St−1) (1.13)

1.2.7 Formal Definition of Expectational and Distributional

Effects

In general, there are two different channels through which uncertainty shocks can

affect aggregate investment and other endogenous variables in the model. On the

one hand, the level of uncertainty can influence the investment behavior of each

individual firm through it’s effect on the expected dispersion of future profitability.

For example, in the presence of fixed costs higher uncertainty will lead to more

inaction due to real options effects. On the other hand, changes in the level of
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uncertainty can affect aggregate investment through their effect on the dispersion of

idiosyncratic profitability across firms. For example, given the timing assumption

implicit in equation (1.7) a positive uncertainty shock will increase the cross-sectional

dispersion of idiosyncratic profitability in the subsequent period. This change in

the dispersion of profitability across firms can in turn affect aggregate investment

whenever investment policy functions are not linear in idiosyncratic profitability.

Similar to the terminology used by Bloom (2009), the former channel will be

referred to as the expectational effect, while the latter channel will be referred to as

the distributional effect of uncertainty shocks.24 Hence, the expectational effect will

be related to changes in the standard deviation of the forecast distributions of firms,

while the distributional effect will be related to changes in the cross-sectional dis-

persion of idiosyncratic profitability. The overall influence of an uncertainty shock

on endogenous aggregate variables will therefore be determined by the sum of both

effects. Given the timing assumption that firms know the realization of the variance

regime one period in advance, the expectational effect will lead the distributional ef-

fect by one period. I.e. when a positive uncertainty shock occurs, firms’ expectations

change upon impact, but the cross-sectional dispersion of idiosyncratic profitability

does not change until the next period, when firms start drawing shocks from a more

dispersed distribution.

In order to formally define expectational and distributional effects, it is useful to

rewrite the joint density gt as the product of a marginal and a conditional density:

g(Ψi,t, Ki,t|St−1) = f(Ψi,t|St−1) · h(Ki,t|Ψi,t, St−1). Using this in equation (1.12) we

can rewrite the expression for a generic aggregate variable as follows:

X̄t =

∫∫
f(Ψi,t|ft−1, συ,t−1)·h(Ki,t|Ψi,t, gt−1, Zt−1, συ,t−1)·Xi,t(Ψi,t, Ki,t, Zt, συ,t)dΨdK

(1.14)

Note that use has been made of the fact that the distribution of idiosyncratic

profitability at time t will only depend on last period’s distribution and variance

regime and not on the whole state vector St−1. Taking this formulation for aggregate

variables as a basis, the dynamics due to the expectational and distributional effect

can be respectively defined as follows:

X̄E
t =

∫∫
f(Ψi,t|ft−1, σ

L
υ )·h(Ki,t|Ψi,t, gt−1, Zt−1, συ,t−1)·Xi,t(Ψi,t, Ki,t, Zt, συ,t)dΨdK

(1.15)

X̄D
t =

∫∫
f(Ψi,t|ft−1, συ,t−1) ·h(Ki,t|Ψi,t, gt−1, Zt−1, σ

L
υ ) ·Xi,t(Ψi,t, Ki,t, Zt, σ

L
υ )dΨdK

(1.16)

24The respective labels used by Bloom (2009) are uncertainty and volatility effect.
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1.3 Analytical Results in the Absence of Adjust-

ment Costs

In order to get some intuition on how the model described in the previous section

behaves, it is useful to first consider the case without adjustment costs and irre-

versibilities. For that case it is possible to derive analytic expressions for the capital

policy function and the dynamics of aggregate variables. The insights gained from

this exercise can then be used as a benchmark to which we can compare the sim-

ulation results of models with capital adjustment frictions. Particular focus is put

on the analysis of the expectational and distributional effects of uncertainty shocks

and how they depend on whether we consider them to demand or TFP.

1.3.1 The Capital Policy Function

In the absence of capital adjustment costs and irreversibilities, the firm’s decision

problem allows for an analytical solution. Taking the first-order condition of the

Bellman Equation in (1.11) and combining it with the envelope condition yields the

following optimal capital policy function:25

K ′(A, συ) = ϕE
[
A′ c

1−b | A, συ
] 1−b

1−a−b
(1.17)

where ϕ = [(aβφ)/([1 − b][p − pβ(1 − δ)])]
1−b

1−a−b . From this expression we can

already see that even without adjustment costs there can be expectational and

distributional effects of uncertainty shocks on capital accumulation. For instance,

whenever c is greater (smaller) than 1− b, the resulting convexity (concavity) of the

profit function in A implies that more dispersion in future profitability shocks will

increase (decrease) the desired capital stock of a single firm. Hence, the expectational

effect of uncertainty shocks will be positive whenever c > 1 − b, which is a direct

implication of Jensen’s inequality. The curvature of the profit function with respect

to profitability is in turn determined by the returns to scale of the revenue function

(1.1) in (A,L) space. To be precise, whenever c is greater (smaller) than 1 − b

there are increasing (decreasing) returns to scale in (A,L) space, the profit function

is therefore convex (concave) in A and hence the expectational effect is positive

(negative). Note that this result holds even though it was assumed that there are

no adjustment costs.

This potentially positive effect of higher uncertainty has been first shown by

25A detailed derivation of this policy function and subsequent results can be found in Appendix

D.
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Hartman (1972) and Abel (1983), who found that under the assumptions of constant

returns to scale, perfect competition and an increasing adjustment cost function,

more uncertainty in the price leads to higher investment due to the convexity of

the profit function in the price.26 In order to determine the distributional effect of

uncertainty shocks without adjustment costs for the current model it is useful to

derive an analytic expression for the expectation in equation (1.17):27

K ′(Z,Ψ, συ) = ϕ

(
eμzeμψeμηe

σ2
η
2

c
1−b

) c
1−a−b

(ZρzΨρψ)
c

1−a−b e
σ2
υ
2

c2−c(1−b)
(1−b)(1−a−b) (1.18)

With this capital policy in hand it is instructive to analyze how the assumptions

about the parameter c determine the sign and magnitude of the distributional effect

of uncertainty shocks. As can be easily seen from the policy function, the distri-

butional effect is positive (negative) whenever c is greater (smaller) than 1− a− b,

which is due to the resulting convexity (concavity) of the policy function in idiosyn-

cratic profitability and therefore more cross-sectional dispersion in profitability will

increase the aggregate capital stock.28 This in turn simply means that the distri-

butional effect is positive (negative) whenever the revenue function (1.1) displays

increasing (decreasing) returns to scale in (A,K,L) space. The intuition behind this

result is that whenever there are increasing RTS in the revenue function, ex-post

higher cross-sectional dispersion in the fixed factor, i.e. profitability, is a time of

opportunity for firms to invest. Firms that receive large negative shocks reduce

investment proportionately less than by how much firms that receive large positive

shocks increase investment.

1.3.2 Expectational and Distributional Effects for Demand

and TFP

With the previous general considerations in mind, we can analyze expectational and

distributional effects of uncertainty shocks for the three cases of c ∈ {1, 1−b, 1−a−b}
26In their framework adjustment costs are needed to make the size of the firm determinate, which

is not needed in our case due to the assumption of decreasing returns to scale. The case of c = 1

in the model above is qualitatively the same as their model.
27For the derivation it is assumed that the mean of idiosyncratic innovations changes at the

same time as the variance. In particular it is assumed that μυ,t−1 = −σ2
υ,t−1/2, which ensures

that the one period ahead expected value is not affected by the increase in the innovation variance.

This adjustment will be called a Jensen correction in the rest of the chapter, as the increase in the

expected mean due to a higher variance is due to Jensen’s inequality. See Appendix C for details.
28With the stochastic process for profitability assumed in this chapter, the persistence parameter

ρψ also affects the sign of the volatility effect. As it is common to assume highly persistent or

even random walk processes for idiosyncratic profitability, the effect of the persistence parameter

is ignored in this discussion.
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commonly used in the literature. First, recall that increasing RTS in the revenue

function are only possible for TFP shocks and not for demand shocks.29 For example,

when we consider a calibration where the production function has constant RTS

with exponents of 1/3 and 2/3 on capital and labor, and the demand elasticity is

set equal to four, then a = 0.25, b = 0.5, and c = 0.25 = 1−a− b for demand shocks

while c = 0.75 = 1 − a for supply shocks. I.e. there are constant RTS when we

consider demand and there are increasing RTS when we consider supply. In fact the

specification by Bloom (2009) is exactly the one just described for demand shocks.

For this case the desired capital stock is now decreasing in the variance of shocks, so

there is a negative expectational effect. Moreover, the distributional effect is slightly

negative because the desired capital stock is concave in profitability. This is due to

the fact that c/(1 − a − b) = 1 and ρψ is smaller than one. Hence, for a random

walk process, the distributional effect would be zero.

If we have instead that c = 1−b, as implicitly assumed in Cooper and Haltiwanger

(2006), then a higher variance of shocks has no effect on the desired capital stock of

each firm holding everything else equal.30 In other words, the expectational effect is

zero. However, as long as the AR(1) persistence parameter is sufficiently high there

is a positive distributional effect. This can be seen by noting that the desired capital

stock is convex in idiosyncratic profitability because c/(1−a−b) > 1. This convexity

implies that more dispersion in idiosyncratic profitability across firms increases the

aggregate capital stock.

Now consider the case of c = 1, as in Bachmann and Bayer (2011) and Bloom

et al. (2010), which corresponds to perfect competition, decreasing RTS in the pro-

duction function and TFP shocks. In this case, a larger variance of shocks increases

the desired capital stock of each firm, i.e. the expectational effect is positive. In

addition, the desired capital stock is convex in profitability, so the distributional

effect is also positive. The implications of these three cases of c for expectational

and distributional effects of uncertainty shocks are summarized in table 1.2.

29Recall from section 1.2.1 that for constant RTS in the production function and a low elasticity

of demand of only two, the revenue function for TFP shocks already has constant RTS and the

RTS are increasing in the value of the demand elasticity.
30Cooper and Haltiwanger (2006) use a profit function with an exponent of one on profitability

which corresponds to c = 1− b in my framework. Hence, there are increasing RTS in the revenue

function and shocks are therefore interpreted as TFP shocks, although in an environment with

some degree of market power.
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Table 1.2: Distributional and expectational effects without adjustment costs

c = 1 - a - b c = 1 - b c = 1

Distributional Effect c
1−a−b = 1 c

1−a−b > 1 c
1−a−b > 1

Expectational Effect c2−c(1−b)
(1−b)(1−a−b) < 0 c2−c(1−b)

(1−b)(1−a−b) = 0 c2−c(1−b)
(1−b)(1−a−b) > 0

It has therefore been shown that even in the absence of capital adjustment costs,

aggregate investment can be influenced in different ways by variations in uncer-

tainty. We can broadly distinguish between an expectational and a distributional

effect. The former has to do with the fact that an uncertainty shock affects the

expected dispersion in future profitability, while the latter has to do with the fact

that uncertainty shocks affect the dispersion in actual profitability with a one pe-

riod delay. For the Cooper and Haltiwanger (2006) and the Bachmann and Bayer

(2011) specifications of c, which can be both interpreted as TFP shocks, higher un-

certainty should lead to more investment because of a positive distributional effect

and a non-negative expectational effect, while in the Bloom (2009) specification the

uncertainty shocks to demand will reduce aggregate investment as the expectational

effect is negative and the distributional effect is zero.

1.3.3 The Dynamics of the Profitability Distribution

Before moving to the simulation of various models, it is useful to better understand

the dynamics of the profitability distribution that are induced by uncertainty shocks.

It has been mentioned above that the mean of idiosyncratic profitability shocks needs

to be adjusted at the same time as the variance, in order for uncertainty shocks to

correspond to mean preserving spreads.31 As will be shown below, it is however

not easy to avoid any type of mean effects of changes in the shock variance for a

log-normal process. Given the AR(1) process in logs assumed in equation (1.7),

the distribution of idiosyncratic profitability across firms will be log-normal. It can

easily be shown that the dynamics of the mean and variance of log idiosyncratic

31In other words we are interested in pure second moment shocks without any first moment

implications. The fact that the expected value of a log-normally distributed variable increases in

the variance of shocks is shown in Appendix C.
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profitability are governed by the following equations:32

E[ψi,t] =
μψ + μLυ
1− ρψ

+
∞∑
j=1

ρj−1
ψ Δμυ,t−j (1.19)

V [ψi,t] =
(σLυ )

2

1− ρ2ψ
+

∞∑
j=1

ρ
2(j−1)
ψ Δσ2

υ,t−j (1.20)

Here, the variable Δμυ,t = μυ,t − μLυ captures the difference between the mean

of idiosyncratic shocks under the current regime and the low regime. Analogous to

this the variable Δσ2
υ,t = σ2

υ,t− (σLυ )
2 captures the difference between the variance of

idiosyncratic shocks under the current regime and the low regime. It is obvious from

the equations that the mean and variance of log idiosyncratic profitability are given

by the sum of the value that would prevail under the low uncertainty regime and the

accumulated effect due to occasional switches to the high uncertainty regime. In the

end we are however interested in the evolution of the distribution of idiosyncratic

profitability in levels and not in logs. Given that log idiosyncratic profitability is

normally distributed, it is easy to establish a mapping from the moments in logs to

the moments in levels:

E[Ψi,t] = eE[ψi,t]+V [ψi,t]/2 (1.21)

V [Ψi,t] = e2E[ψi,t]+2V [ψi,t] − e2E[ψi,t]+V [ψi,t] (1.22)

If we now consider the case where the mean of shocks does not change over time,

it is easy to see that the mean and variance of idiosyncratic profitability in levels

will go up after an uncertainty shock. For this case an uncertainty shock also leads

to an increase in the expected value of profitability for each firm, as is shown in

Appendix C. In order to keep the one-period-ahead expected value of profitability

unaffected by switches in the variance we can set μυ,t = −σ2
υ,t/2, which is equivalent

to saying that Δμυ,t = −Δσ2
υ,t/2. But even with this so-called Jensen correction, the

cross-sectional mean of idiosyncratic profitability will not stay constant over time

whenever 0 < ρψ < 1.

To understand this, note that the mean of idiosyncratic profitability only stays

constant if the log mean changes in exactly an off-setting way to the log variance in all

periods. But from equations (1.19) and (1.20) we can immediately see that whenever

0 < ρψ < 1, the two moments do not change in offsetting ways in all periods after

an uncertainty shock. To be precise, in the first period after an uncertainty shock

the increase in the log variance is exactly offset by the fall in the log mean. In

subsequent periods however, the log variance reverts quicker to the initial level than

32See Appendix E for a detailed derivation of these moments.
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the log mean due to the presence of ρ2ψ. Therefore, the cross-sectional mean in levels

decreases compared to the low uncertainty value after a positive uncertainty shock.

The dynamics of the cross-sectional mean and standard deviation for the two cases

just described are illustrated in the top left panels of figures 1.1 and 1.2 for an

uncertainty shock that hits in period zero and lasts for five periods. This shows that

unless we work with a random-walk, it is hard to model mean-preserving spreads

for driving processes in logs.

1.3.4 Simulation Results for various Parameterizations

The three different models with c ∈ {1, 1− b, 1− a− b} are simulated in this section

in order to illustrate quantitatively how the different assumptions about the RTS

of the revenue function and hence about the nature of the underlying structural

shocks affect aggregate investment, employment and revenues. The case of c = 1

used by Bachmann and Bayer (2011) is labeled as a pure TFP shock, while the

case of c = 1 − b used by Cooper and Haltiwanger (2006) is labeled as a TFP

shock with market power, and the case of c = 1 − a − b used by Bloom (2009) is

labeled as a demand shock. Moreover, because it matters whether we apply a Jensen

correction or not to the idiosyncratic profitability process, both cases are examined.

The parameter values used for the simulation exercise are summarized in table 1.3

and discussed further below in section 1.4.1.

To study the effect of an uncertainty shock quantitatively the following simula-

tion exercise is performed. Aggregate shocks are turned off and uncertainty is set

to the low regime for the infinite past. In period zero an uncertainty shock hits

the system that almost doubles the idiosyncratic shock variance. This uncertainty

shock lasts for five consecutive periods and uncertainty is low again for all subse-

quent periods.33 Figure 1.1 compares the responses of aggregate variables for the

case without a Jensen correction, while figure 1.2 displays the responses for the case

with a Jensen correction.

It is obvious from the figures that the higher the value of c, the higher the posi-

tive response of the variables to the uncertainty shock. This has to do with the fact

that both the expectational and the distributional effects of uncertainty shocks are

increasing in c, i.e. in the RTS of the revenue function. Furthermore, it can be seen

that uncertainty shocks to TFP lead to considerable booms in investment, employ-

ment and revenues, while uncertainty shocks to demand lead to falls in aggregates

only for the case where a Jensen correction is applied to the driving process. Quanti-

33The probability of an uncertainty shock lasting for five consecutive periods is slightly above

50 % for the parameterization used.
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Figure 1.1: The impact of uncertainty shocks in the model without ACs (no Jensen

correction)

Figure 1.2: The impact of uncertainty shocks in the model without ACs (with Jensen

correction)
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tatively, the burst in aggregate investment after an uncertainty shocks to pure TFP

is around 250 % to 400 %, while it is 50 % to 100 % for uncertainty shocks to TFP

with market power, and ± 10 % for shocks to demand.

In summary, we can say that higher uncertainty is a rather positive phenomenon

when the uncertainty is to TFP, while uncertainty shocks to demand can have neg-

ative aggregate implications. The positive aggregate effects of uncertainty shocks

to TFP are not only due to the convexity of profits in TFP which causes a positive

expectational effect as pointed out by Hartman (1972) and Abel (1983). In addition,

increasing returns to scale in (A,K,L) space for TFP shocks induce a positive dis-

tributional effect. For demand shocks, the RTS of the revenue function are always

lower or equal to one and hence the distributional effect will never be positive for

demand shocks when there are no adjustment costs present.

Now that it is understood how uncertainty shocks to demand and TFP affect

aggregate variables in the model without adjustment costs we can move on to con-

sider how the dynamics of aggregate variables in response to uncertainty shocks are

affected by the presence of capital adjustment frictions. Due to real-options effects

in the presence of non-convex adjustment costs, the expectational effect of uncer-

tainty shocks will be altered considerably, while the distributional effect will also be

somewhat affected by the presence of a discrete choice for investment.

1.4 Simulation Results for the General Model

Because it is no longer possible to derive closed form expressions for the capital

policy function in the presence of capital adjustment costs, numerical methods are

employed for the analysis.34 For this purpose the same three versions of c as above

are solved for three different adjustment cost parameterizations that have been esti-

mated in the literature. The next subsection provides a discussion of the parameter

values that are used to calibrate the model. This is followed by an analysis of how

adjustment costs change the investment policy functions of firms in the presence of

time-varying uncertainty. Finally, the aggregate dynamics induced by uncertainty

shocks are analyzed. Particular focus is again put on disentangling expectational

and distributional effects of uncertainty shocks.

34See Appendix F for more information on the algorithm and the accuracy of the approximation.
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1.4.1 Discussion of Parameters

There are two dimensions in which the parameters are changed between the different

models that are solved and simulated: adjustment costs and the RTS of the revenue

function in (A,K,L) space via c. A summary of all the other parameters that are

not varied across the simulations can be found in table 1.3. Virtually all of these

parameter values are taken from the paper by Bloom et al. (2010), who calibrate

a general equilibrium business cycle model with capital adjustment costs, labor

adjustment costs and uncertainty shocks. The reason for this choice of parameters

is to stay as close as possible to the existing uncertainty shocks literature. In the

remainder of the chapter all models will feature a Jensen correction in the mean

of idiosyncratic shocks in order to allow for the biggest possible negative effect of

uncertainty shocks.

The model frequency is one quarter and the depreciation rate is set to 2.6 %

per period. Regarding the revenue function, it is assumed that there are decreasing

returns to scale in (K,L) space, with the exponent on capital set to 0.25 and the

exponent on labor set to 0.5.35 Both the aggregate and idiosyncratic profitability

processes are assumed to be highly persistent with AR(1) coefficients of around 0.96.

The low standard deviation of idiosyncratic profitability shocks is set to 6.7 % and

this standard deviation almost doubles in the high uncertainty state. Moreover, both

uncertainty regimes are fairly persistent, with the probability of staying in the low

uncertainty state being 95 % and the probability of staying in the high uncertainty

state being 88.5 %. There are two parameters that are set slightly different from

Bloom et al. (2010): The standard deviation of aggregate shocks is set to 1.5 %

and the discount rate is set to 0.99.36 Finally, two arbitrary normalizations are

performed through setting the wage rate and the buying price of capital equal to

one.

35As mentioned above these exponents would correspond to a constant RTS production function

with exponents of 1/3 and 2/3, and a demand elasticity of four. Moreover, this implies a curvature

of the profit function in capital of 0.5, which is similar to the value estimated by Cooper and

Haltiwanger (2006).
36In the paper by Bloom et al. (2010) the aggregate profitability process is also subject to

uncertainty shocks with a low standard deviation of 0.81 % and a high standard deviation of 3.49

%, while the discount rate is set to 0.996. As the high uncertainty state is less likely to occur than

the low one, a constant standard deviation of 1.5 % was chosen, while the chosen discount rate

of 0.99 speeds up the convergence of the value function, while it should not materially affect the

results.

25

Lang, Jan Hannes (2012), Uncertainty, Expectations, and the Business Cycle 
European University Institute

 
DOI: 10.2870/60758



Table 1.3: Common parameters across the simulations

Par Value Description Source

β 0.99 Discount factor Own choice

δ 0.026 Depreciation rate Bloom et al. (2010)

w 1 Wage rate Normalization

a 0.25 Exponent on capital Bloom et al. (2010)

b 0.50 Exponent on labor Bloom et al. (2010)

pb 1 Buying price of capital Normalization

μz 0 Intercept of aggregate profit. Bloom et al. (2010)

ρz 0.9627 AR(1) parameter of aggregate profit. Bloom et al. (2010)

ση 0.015 Std of innovations of aggregate profit. Own choice

μψ 0 Intercept of idiosyncratic profit. Bloom et al. (2010)

ρψ 0.9627 AR(1) parameter of idiosyncratic profit. Bloom et al. (2010)

σLυ 0.0671 Low Std of innovations of idio. profit. Bloom et al. (2010)

σHυ 1.93 · σLυ High Std of innovations of idio. profit. Bloom et al. (2010)

πLL 0.953 Probability of staying in low Std regime Bloom et al. (2010)

πHH 0.885 Probability of staying in high Std regime Bloom et al. (2010)

The three different adjustment cost specifications that are simulated are taken

from the papers by Cooper and Haltiwanger (2006) and Bloom (2009) as these pa-

pers jointly estimate the rich set of capital adjustment costs and irreversibilities

that is featured in the model at hand. The estimated adjustment cost specification

of Cooper and Haltiwanger (2006), which is labeled ”C&H” in table 1.4, features

considerable fixed costs of 20 % of profits, moderate resale losses of 1.9 % and

small quadratic adjustment costs of 0.153. The adjustment cost specification la-

beled ”Bloom” in table 1.4 refers to the estimates of Bloom (2009) from a model

that features capital and labor adjustment costs, while the adjustment cost specifi-

cation labeled ”Bloom 2” refers to the estimates that he obtains from a model with

only capital adjustment costs. Both adjustment cost specifications feature large

capital resale losses of around 40 % and moderate fixed costs of 1.5 % and 1.1 %

of profits. The main difference between these two adjustment cost specifications is

that the former does not feature quadratic adjustment costs while the latter features

moderate quadratic adjustment costs of 0.996.37 Finally, the three different values of

the curvature parameter on profitability of c ∈ {1, 1− b, 1−a− b} are chosen due to

their prevalence in the uncertainty shocks and capital adjustment cost literature.38

37A discussion of the adjustment cost estimates of Cooper and Haltiwanger (2006) and of Bloom

(2009) can be found in Appendix G.
38See table 1.1 for a selective overview of assumptions that are routinely made in these two
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Table 1.4: Parameters that are varied across the simulations

Adjustment Costs

Parameter C&H Bloom Bloom 2 Description

ps 0.981 0.661 0.573 Selling price of capital

F 0.000 0.000 0.000 Investment fixed costs

λ 0.796 0.985 0.989 % of profits kept

γ 0.153 0.000 0.996 Quadratic adjustment cost

Curvature on Profitability

Parameter Demand TFP m.p. TFP Description

c 1− a− b 1− b 1 Exponent on profitability

1.4.2 Characterizing the Solution of the Model

In order to understand how capital adjustment frictions change the expectational

and distributional effects of uncertainty shocks, it is useful to first study the invest-

ment policy functions for the models. To this end, figure 1.3 plots investment as a

function of the current capital stock for a given level of profitability under the low

and high uncertainty regimes. The main feature that stands out is that a higher

level of uncertainty leads to a larger investment inaction region for all three adjust-

ment cost specifications, independent of whether we look at uncertainty shocks to

demand or to TFP. This increased investment inaction in the presence of higher

uncertainty is due to real-options effects that result from the presence of fixed costs

and/or partial irreversibilities, which was first stressed in the seminal contribution

by Bernanke (1983) and is a central feature of the models by Bloom (2009), Bloom

et al. (2010) and Bachmann and Bayer (2011). Hence, the expectational effect of

uncertainty shocks will be negative for all the specifications of the parameter c and

the various adjustment cost specifications.

In order to better understand the mechanism driving the distributional effect

of uncertainty shocks figure 1.4 plots optimal investment for the Bloom adjustment

cost specification as a function of idiosyncratic profitability.39 The important aspect

to pay attention to is that the value of c affects the shape of the investment policy

function outside of the inaction regions. In particular, in line with what was derived

for the case without adjustment costs, the investment policies are convex for pure

literatures.
39The main finding that the value of c shapes the curvature of the policy function outside of the

inaction region carries over to the C&H and Bloom 2 adjustment cost specifications.
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Figure 1.3: Investment policy functions under high and low uncertainty

Notes: The policy functions for the adjustment cost specification ”Bloom 2” are not shown here

as they are qualitatively similar to the ones of the ”C&H” specification. The specific policy func-

tions plotted are for an average sized aggregate profitability shock and an above average level of

idiosyncratic profitability. The main feature that the investment inaction region is larger for the

high uncertainty state carries over to other levels of profitability.
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Figure 1.4: The volatility effect for the adjustment cost specification of Bloom (2009)

Notes: The specific policy functions plotted are for a medium sized capital stock and an average

sized aggregate profitability shock. The distributions in the lower right panel correspond to the type

of simulation performed in section 1.3.4 and 1.4.3.

TFP shocks and TFP shocks with market power and slightly concave for demand

shocks outside of the inaction region. This implies that outside of the inaction

regions the distributional effect is positive for c = 1 and c = 1 − b and slightly

negative for c = 1 − a − b. However, another important aspect to note is that due

to the inaction regions, investment policies are locally convex for all three cases of

c. This local convexity implies that even for c = 1−a− b the volatility effect will be

positive as emphasized by Bloom (2009). Finally, the lower right panel of figure 1.4

plots the density of idiosyncratic profitability just before an uncertainty shock and

after five consecutive periods of high uncertainty, which highlights the increase in

dispersion of profitability that causes the distributional effect of uncertainty shocks.

1.4.3 The Effect of Uncertainty on Investment, Employ-

ment and Revenues

Now that the investment policy functions and the dynamics of idiosyncratic prof-

itability have been analyzed, we can move on to study the impulse responses of

aggregate variables to an uncertainty shock for the various models under consider-
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ation. In order to obtain the impulse responses, a similar simulation exercise as in

section 1.3.4 is performed for each of the models: Aggregate shocks are shut off and

the distribution of idiosyncratic profitability is set to the unconditional asymptotic

distribution under the low variance regime. In period zero an uncertainty shock is

simulated to hit the economy lasting for five consecutive periods.40 Such a sequence

of five consecutive periods of high uncertainty has a probability of slightly more than

50 % for the uncertainty process at hand. For all subsequent periods uncertainty

is set to the low regime again. This simulation exercise is performed for a panel of

10,000 firms and repeated 100 times. The results are then averaged across the 100

simulations for each of the model specifications.

The associated impulse responses of aggregate investment and revenues for each

of the model specifications can be found in figure 1.5.41 Because the dynamics of ag-

gregate revenues depend on the joint dynamics of profitability and the capital stock

it is useful to start with the analysis of how an uncertainty shock affects investment

in the various models. The first aspect to note is that the impulse responses for the

C&H and Bloom adjustment cost specifications are qualitatively very similar for all

three values of c. In particular, no matter whether we look at uncertainty shocks

to demand or supply, there is a large negative expectational effect on investment,

which is evident from the considerable investment drops in period zero.42 Moreover,

for all cases under consideration there is a subsequent rebound and overshoot in

investment from period one onwards, which is due to a positive distributional effect

that more than compensates for the negative expectational effect. Finally, there is

a large spike in aggregate investment in period five due to the fading out of the neg-

ative expectational effect and the continued presence of the positive distributional

effect.

Even though the qualitative behavior of aggregate investment is similar for un-

certainty shocks to demand and TFP, the rebound and overshoot is much larger

in the case of pure TFP shocks compared to demand shocks. This shows that the

distributional effect of uncertainty shocks is increasing in the value of c, i.e. in the

returns to scale of the revenue function, as was pointed out in the previous subsec-

40The first 120 periods of the simulation are dropped to avoid initialization issues with the

distribution of capital across firms.
41Recall from section 1.2.2 that profits, revenues and labor input all have the same functional

form in (A,K) space and only differ by a constant shift parameter. Therefore, the dynamics of

these three variables expressed in percentage deviations from their initial value will be identical.

Hence, only the dynamics of aggregate revenues are shown. Note that the dynamics reported here

are for gross revenues, i.e. adjustment costs are not subtracted from revenues.
42Remember that period zero is the first period of the uncertainty shock so that only the expec-

tational effect is present but not yet the distributional effect.
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tion. Finally, it is worth to look at the magnitudes of the investment changes that

are induced by the uncertainty shock. The initial investment drops in period zero

are mostly between 50 and 75 %, while the investment overshoots in period five are

in the range of 140 to 440 %. These investment changes are very large, showing

that variations in uncertainty can be of importance in models with fixed costs and

irreversibilities.

The investment dynamics for the Bloom 2 adjustment cost specification are some-

what different to the ones described in the previous paragraph, due to the presence

of higher quadratic adjustment costs. These quadratic adjustment costs make large

adjustments of the capital stock undesirable which is evident from the fact that the

drops and overshoots of investment are much smaller than for the other two adjust-

ment cost specifications. In period zero, aggregate investment drops by around 20

to 30 % which indicates a negative expectational effect of the uncertainty shock.

The overshoot of investment in subsequent periods is in the range of 10 to 90 % and

again increasing in the value of c.

For the impulse responses of aggregate revenues it is more useful to group the

analysis by the type of uncertainty shock rather than by the adjustment cost speci-

fication. Starting with the case of pure TFP shocks, it is straightforward to see from

figure 1.5 that none of the adjustment cost models leads to a drop in aggregate rev-

enues after an uncertainty shock. Aggregate revenues actually experience a consider-

able boom of around 12 to 24 % by the end of period six depending on the adjustment

cost specification. In order to better understand what is driving this result it is use-

ful to recall that the revenue function is given by R(Ai,t, Ki,t) = χA
c/(1−b)
i,t K

a/(1−b)
i,t .

When we consider pure TFP shocks, i.e. when c = 1, more dispersion in A will

increase aggregate revenues due to convexity. In period one this direct positive ef-

fect of more dispersion dominates or at least offsets the negative effect on aggregate

revenues due to a lower capital stock that is induced through the investment drop in

period zero. In subsequent periods this direct positive distributional effect increases

in strength due to the widening dispersion in TFP as the uncertainty shock persists.

In addition, the positive distributional effect causes aggregate capital to increase

which reinforces the rise in aggregate revenues even further. Thus, even though

uncertainty shocks cause a one period drop in aggregate investment for pure TFP

shocks, they lead to considerable booms in aggregate revenues, profits and labor.43

Moving on to the case of TFP shocks in the presence of market power, we can see

that an uncertainty shock leads to an initial drop in aggregate revenues of 0.5 to 1 %

depending on the presence of moderate quadratic adjustment costs or not. Revenues

43Recall that for pure TFP shocks the revenue function is equivalent to the production function

so that output also experiences a boom.
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Figure 1.5: The impact of an uncertainty shock with adjustment costs

Notes: All the simulation results except for the lower two panels are for models where a Jensen

correction is applied to the mean of the idiosyncratic profitability process. Aggregate labor demand

and profits display the same dynamics as aggregate revenues and are therefore not shown separately.

All values are specified in percentage deviations from the initial level.
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then rebound quickly and reach their intial level after around four quarters. The

subsequent overshoot is much larger than the initial drop, reaching between 1.5

and 6 % from quarter six onwards, when uncertainty about the future is low again

and dispersion in profitability is at its maximum. For the case at hand recall that

c = 1− b which implies that revenues are linear in profitability and more dispersion

should not have any effect on aggregates. Hence, the dynamics of aggregate revenues

discussed are mainly driven by the dynamics of the aggregate capital stock which

initially drops and subsequently rebounds and overshoots considerably. Note also

that the case at hand can be seen as a maximum possible drop for TFP shocks with

market power because under the assumptions of constant RTS in production with

capital and labor shares of 1/3 and 2/3 and a demand elasticity of only three, the

implied value of c is already higher than 1− b.

Finally, for the case of uncertainty shocks to demand, i.e. when c = 1− a− b, a

prolonged drop in aggregate revenues of around 1 to 1.5 % is induced that lasts for

five consecutive quarters until uncertainty is low again. For the C&H and the Bloom

adjustment cost specifications revenues subsequently overshoot the initial level by

a similar magnitude and then gradually reverst back. In contrast, for the Bloom 2

adjustment cost specification the rebound is much lower so that aggregate revenues

are still around 0.7 % below the initial level 15 quarters after the uncertainty shock

hit the system. This is due to the fact that the mean of idiosyncratic profitability

drops by around 0.75 % after the uncertainty shock and stays there for an extended

period of time, as was shown in the top left panel of figure 1.2.44 For completeness,

the lowest two panels in figure 1.5 plot the impact of an uncertainty shock to demand

when no Jensen correction is applied to the mean of idiosyncratic profitability. Due

to the fact that in this case average profitability now increases after an uncertainty

shock, the drops in aggregate revenues are lower and of shorter duration, while the

overshoots are much larger and more persistent.

In summary, it has been shown that while uncertainty shocks to demand cause

the type of drop, rebound and overshoot dynamics as emphasized in Bloom (2009),

uncertainty shocks to TFP lead to considerable and prolonged booms. The reason

for this is that the revenue function is likely to have increasing RTS in (A,K,L)

space when we consider TFP shocks. This in turn leads to the fact that higher

ex-post cross-sectional dispersion of TFP is a time of opportunity. In other words,

the distributional effect of uncertainty shocks is highly positive.

44This is also the reason for the undershooting of aggregate revenues for the C&H and Bloom

specifications towards the final quarters of the simulation.
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1.4.4 Analyzing Expectational and Distributional Effects

In order to further analyze the factors driving the results presented above, it is

useful to consider the magnitudes of the expectational and distributional effects

of uncertainty shocks for each of the models. To this end, two similar simulation

exercises as in the previous subsection are performed. The difference is that once

only the expectations of firms are affected by the uncertainty shock but not the actual

distribution of profitability, while the other time expectations are not affected by the

uncertainty shock but the distribution of profitability across firms changes. The first

simulation exercise identifies the expectational effect given in equation (1.15) while

the second simulation identifies the distributional effect given in equation (1.16).

Before moving to the results it is useful to visualize the driving forces at work

in each of the simulations. The top two panels of figure 1.6 show how expectations

of firms and the dispersion of idiosyncratic profitability behave in the case of the

two simulations. From the upper left panel it can be seen that in the simulation of

expectational effects firms start to expect higher dispersion in future profitability

shocks when the uncertainty shock hits in period zero. In contrast, firms always

expect low dispersion in the simulation of distributional effects. In the upper right

panel of the figure the corresponding dynamics of the standard deviation of id-

iosyncratic profitability are displayed. While the dispersion of profitability does not

change in the simulation of expectational effects, dispersion increases from period

one to five and gradually falls back in the simulation of distributional effects. The

standard simulations of an uncertainty shock from the previous subsection would

feature the dynamics of expectations from the simulation of expectational effects

and the dynamics of dispersion from the simulation of distributional effects.

The remaining panels in figure 1.6 display the expectational and distributional

effects of aggregate revenues for each of the models under consideration. The main

feature to note is that while the value of c only has minor quantitative implications

for the expectational effect of uncertainty shocks, the magnitude of the distributional

effect changes considerably between uncertainty shocks to demand and TFP. To be

precise, the distributional effect is an order of magnitude higher for pure TFP shocks

than for demand shocks.

Quantitatively, the expectational effect is negative for all models under consid-

eration and the maximum drops in aggregate revenues are between 0.5 and 4.5 %.

Moreover, the difference in the maximum drop of aggregate revenues between de-

mand and TFP shocks is only around 1 %, indicating that the expectational effect

does not change much with the value of c. In contrast, the magnitude of the positive

distributional effect is 12 to 26 % for pure TFP shocks, while it is - 0.5 to 3 % for
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Figure 1.6: The expectational and distributional effect for aggregate revenues

Notes: All the simulation results are for models where a Jensen correction is applied to the mean

of the idiosyncratic profitability process. The values are specified in percentage deviations from the

initial level.
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demand shocks. Thus, the main driver behind the results found in the previous sub-

section is that the distributional effect of uncertainty shocks substantially increases

with the RTS in the revenue function.

1.5 Conclusion

This chapter has readdressed the question of whether temporarily higher uncertainty

can cause recessions. To answer the research question a partial equilibrium model

with heterogeneous firms, various forms of capital adjustment costs and time-varying

uncertainty was built and simulated. The main difference compared to the existing

literature was that the model set-up allowed for the separate analysis of uncertainty

shocks to demand and TFP.

The main finding coming out of the analysis is that while uncertainty shocks to

demand lead to the drop, rebound and overshoot dynamics reminiscent of recessions,

uncertainty shocks to TFP are likely to lead to considerable and prolonged booms.

The main reason for these differing dynamics is that the positive distributional effect

of uncertainty shocks is much larger for TFP than for demand. The intuition for

this is that the revenue function is likely to have increasing RTS for TFP shocks

while for demand shocks the RTS can be constant at best. Therefore, more ex-post

cross-sectional dispersion in TFP is a time of opportunity for firms.

In the case of uncertainty shocks to TFP this positive distributional effect more

than compensates for the negative expectational effect of uncertainty shocks that

arises from real-options effects in the presence of non-convex adjustment costs, thus

leading to large and persistent economic booms. In contrast, for uncertainty shocks

to demand the negative expectational effect dominates until the point where uncer-

tainty turns low again but cross-sectional dispersion is still large. Hence, uncertainty

shocks to demand lead to business cycle like dynamics that feature a drop, rebound

and overshoot as emphasized by Bloom (2009).

The results in this chapter where derived under the assumptions of risk-neutral

firms and constant factor prices in order to isolate the effects of uncertainty shocks

that work through the presence of capital adjustment costs. Even though the papers

by Bloom et al. (2010) and Bachmann and Bayer (2011) consider general equilibrium

effects, such as a stochastic discount factor and varying wages, it is not clear how

these factors move after an uncertainty shock and affect the response due to the

presence of adjustment costs. In future research it is therefore necessary to determine

the empirical responses of factor prices to uncertainty shocks and how these factor

prices respond in general equilibrium models with uncertainty shocks.
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Appendix A: The Demand Function

Let demand for the product of firm i at time t be given by the following constant

elasticity demand function:

qi,t = Bi,t · p−εi,t (1.23)

Here q denotes output, p is the price, B is a potentially time-varying demand shifter,

and −ε is the constant price elasticity of demand. From now on firm and time

subscripts will be omitted unless deemed necessary. To see that the price elasticity

is given by −ε, recall that the price elasticity of demand is defined as:

Eqp =
dq

q

/
dp

p
=
dq

dp

p

q
(1.24)

Now, taking the derivative of equation (1.23) with respect to the price yields:

dq

dp
= −εBp−ε−1 = −εq

p
(1.25)

Plugging this into the definition of the elasticity given in equation (1.24) yields:

Eqp = −εq
p

p

q
= −ε (1.26)

This constant elasticity demand function implies the following inverse demand func-

tion:

pi,t = B
1
ε
i,t · q−

1
ε

i,t (1.27)

From this inverse demand function it is easy to see that as ε → ∞, we approach

the case of perfect competition as the price becomes completely unresponsive to

the level of output supplied by the firm. In contrast, as ε → 0, the price responds

heavily to small changes in output. Thus, the higher the elasticity of demand ε, the

lower the degree of market power. For this type of demand function it is important

to notice that the profit maximization problem of a firm is only well defined if ε > 1.

To see this, define revenues as R = pq. Remembering the fact that the price is a

function of output, the change in revenues with respect to output is given by:

dR

dq
=
dp

dq
q + p (1.28)

Differentiating equation (1.27) with respect to ouput yields:

dp

dq
= −1

ε

p

q
(1.29)

Using this in equation (1.28) gives us:

dR

dq
= −1

ε

p

q
q + p = p

(
1− 1

ε

)
= B

1
ε q−

1
ε

(
1− 1

ε

)
(1.30)
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Clearly, whenever 0 < ε < 1 total revenues will be globally decreasing in output.

Assuming that costs are increasing in output, this implies that the firm would like

to produce as little as possible in order to maximize profits. Therefore, we require

that ε > 1 for the problem of the firm to be well defined and nondegenerate.
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Appendix B: Derivation of the Revenue Function

In the following a detailed derivation of the revenue function is provided in order to

motivate the differences in functional forms that are implied by demand and supply

shocks. It is assumed that firms differ in their productivity and potentially in the

demand that they face. Let the production function of firm i at time t be given by:

Y (Ãi,t, Ki,t, Li,t) = Ãi,tK
ν
i,tL

ω
i,t (1.31)

where Ã is total factor productivity, K is the capital stock, L is labor input,

and ν and ω are parameters that satisfy ν, ω ∈ (0, 1) and ν + ω ∈ (0, 1]. This

specification allows for both constant and decreasing returns to scale. For example,

whenever ν+ω = 1 we have constant returns to scale and the production function is

given by the familiar Cobb-Douglas form. Demand for the output of firm i is given

by the following constant elasticity demand function:

qi,t = Bi,tp
−ε
i,t (1.32)

Here q denotes output demanded, p is the price, B is a potentially time-varying

demand shifter, and −ε is the constant price elasticity of demand. It is required

that ε > 1 for the problem of the firm to be well defined.45 Given this production

and demand function, total revenue of each firm can be expressed as:

S̃(Bi,t, Ãi,t, Ki,t, Li,t) = pi,tYi,t = B
1
ε
i,tY

− 1
ε

i,t Yi,t = B
1
ε
i,tY (Ãi,t, Ki,t, Li,t)

ε−1
ε (1.33)

Now let us define the parameters a = ν ε−1
ε

and b = ω ε−1
ε
. Moreover, we can

combine the effects of total factor productivity and demand into one auxiliary vari-

able. This is achieved by defining a shock to revenues as Aci,t = B
1/ε
i,t Ã

(ε−1)/ε
i,t . With

these transformations we can represent the revenue function of the firm as:46

S(Ai,t, Ki,t, Li,t) = Aci,tK
a
i,tL

b
i,t (1.34)

45See Appendix A for a discussion of the properties of this kind of demand function.
46The derivation of this revenue function is closely related to the one in Bloom (2009) with the

difference that in his model he assumes c = 1− a− b, while the specification in this chapter allows

for flexible values of c.
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Appendix C: Expectations with Log-Normal Prof-

itability

To isolate the effects of time-varying uncertainty, we want an increase in uncertainty

to correspond to a mean preserving spread of the relevant variable in question.

Therefore, as uncertainty is equivalent to the variance of shocks in our model, we

want that a change in the variance of shocks has no effect on the expected value of

profitability. If the AR(1) process for idiosyncratic profitability is specified in levels,

a change in the variance of shocks naturally corresponds to a mean preserving spread.

However, if the AR(1) process is specified in logs, then a change in the variance of

shocks will also have an effect on the expected value of the variable in levels. In

other words, when we specify the AR(1) process for idiosyncratic profitability in

logs, a change in the variance of shocks does not correspond to a mean preserving

spread. To see this analytically, take the AR(1) process in logs for idiosyncratic

profitability from equation (1.7) and transform it into levels:

ψi,t = μψ + ρψψi,t−1 + υi,t (1.35)

⇔ eψi,t = e(μψ+ρψψi,t−1+υi,t) (1.36)

⇔ Ψi,t = eμψΨ
ρψ
i,t−1e

υi,t (1.37)

If we now take the expectation of the variable in levels and apply the fact that

for a normally distributed variable, υi,t ∼ N (μυ,t−1, σ
2
υ,t−1), we have E[e−aυi,t ] =

e−aμυ,t−1+a2σ2
υ,t−1/2 we get the following result:

E[Ψi,t] = eμψΨ
ρψ
i,t−1E[e

υi,t ] (1.38)

⇔ E[Ψi,t] = eμψΨ
ρψ
i,t−1e

μυ,t−1+σ2
υ,t−1/2 (1.39)

It is obvious from this expression that the expected value of idiosyncratic profitability

in levels is increasing in the variance of shocks unless the mean of the shocks changes

in an offsetting manner with the variance. A natural way to avoid that the expected

value of profitability rises in response to an increase in the shock variance is therefore

to specify the mean of the shocks as μυ,t−1 = −σ2
υ,t−1/2. This adjustment is labeled

as a Jensen correction throughout the chapter, as the increase in the expected value

in levels is a result of Jensen’s Inequality.

40

Lang, Jan Hannes (2012), Uncertainty, Expectations, and the Business Cycle 
European University Institute

 
DOI: 10.2870/60758



Appendix D: The Capital Policy Function without

Adjustment Costs

In the absence of capital adjustment costs and irreversibilities, the firm’s decision

problem can be represented by the following Bellman Equation which is a special

case of equation (1.11):

V (A,K, συ) = max
K′

Π(A,K)−p(K ′−K(1−δ))+βEA′,σ′
υ |A,συ [V (A′, K ′, σ′

υ)] (1.40)

Assuming that V (A,K, συ) is differentiable, the first-order condition with respect

to next period capital is:

p = βEA′,σ′
υ |A,συ [VK′(A′, K ′, σ′

υ)] (1.41)

By the envelope condition we have that the marginal value of capital is given by:

VK(A,K, συ) = ΠK(A,K) + (1− δ)p (1.42)

Taking this condition forward one period and using it in the first-order condition

yields:

p = βEA′,σ′
υ |A,συ [ΠK′(A′, K ′) + (1− δ)p] (1.43)

This equation states that an optimal capital choice equates the marginal cost of

investment, which is given by p, to the discounted expected marginal gain, which

is given by marginal profits plus the market value of the depreciated increment of

investment. Using the specific functional forms assumed in the chapter, we can

rewrite this as:

p = βEA′|A,συ

[
φ

a

1− b
A′ c

1−bK ′ a
1−b

−1 + (1− δ)p

]
(1.44)

Solving for K ′, we arrive at the following explicit capital policy function:

K ′(A, συ) = ϕE
[
A′ c

1−b | A, συ
] 1−b

1−a−b
(1.45)

where ϕ = [(aβφ)/([1−b][p−pβ(1−δ)])] 1−b
1−a−b is a constant parameter. Given the

stochastic processes assumed for profitability we can derive an analytical expression

for the expectation in equation (1.45). First, given the multiplicative specification of

profitability and the AR(1) structure in logs we can derive the following expression:

K ′ = ϕE
[
(Z ′Ψ′)

c
1−b | Z,Ψ, συ

] 1−b
1−a−b

(1.46)

⇔ K ′ = ϕE
[
(eμzeη

′
Zρz · eμψeυ′Ψρψ)

c
1−b | συ

] 1−b
1−a−b

(1.47)

⇔ K ′ = ϕ(eμzZρzeμψΨρψ)
c

1−a−bE
[
(eη

′
eυ

′
)

c
1−b | συ

] 1−b
1−a−b

(1.48)
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Making use of the fact that aggregate and idiosyncratic profitability shocks are

independent of each other, we can separate the two terms within the expectations

operator:

K ′ = ϕ(eμzZρzeμψΨρψ)
c

1−a−bE
[
eη

′ c
1−b

] 1−b
1−a−b

E
[
eυ

′ c
1−b | συ

] 1−b
1−a−b

(1.49)

Furthermore, we can use the fact that for a normally distributed variable, ε ∼
N (μ, σ2), we have E[e−aε] = e−aμ+a

2σ2/2:

K ′ = ϕ(eμzZρzeμψΨρψ)
c

1−a−b

[
eμη

c
1−b

+
σ2
η
2 (

c
1−b)

2

eμυ
c

1−b
+

σ2
υ
2 (

c
1−b)

2
] 1−b

1−a−b

(1.50)

⇔ K ′ = ϕ

(
eμzZρzeμψΨρψeμηe

σ2
η
2

c
1−b eμυe

σ2
υ
2

c
1−b

) c
1−a−b

(1.51)

From this explicit capital policy function for the case without adjustment fric-

tions we can learn some useful insights. First, unless the mean of idiosyncratic

shocks is changing at the same time as the variance, the desired capital stock will be

increasing in the variance of idiosyncratic shocks, independent of the value of c. This

is simply a result of the fact that the expected value of profitability is increasing in

the variance of idiosyncratic shocks given the assumed AR(1) process in logs.47 We

can adjust for this effect by letting μυ,t−1 = −σ2
υ,t−1/2, so that the expected value

of profitability does not change with the variance of shocks. With this structure

equation (1.51) can be rewritten as:

K ′ = ϕ

(
eμzZρzeμψΨρψeμηe

σ2
η
2

c
1−b

) c
1−a−b

e
σ2
υ
2

c2−c(1−b)
(1−b)(1−a−b) (1.52)

47A derivation of this result can be found in Appendix C.
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Appendix E: Dynamics of the Profitability Distri-

bution

The distribution of idiosyncratic profitability across firms is log-normal, given the

AR(1) process in logs assumed in equation (1.7). Applying the expectations and

variance operator to this equation, the dynamics of the cross-sectional mean and

variance of idiosyncratic profitability in logs can be expressed as follows:

E[ψi,t] = E[μψ + ρψψi,t−1 + υi,t] (1.53)

⇔ E[ψi,t] = μψ + ρψE[ψi,t−1] + E[υi,t] (1.54)

⇔ E[ψi,t] = μψ + ρψE[ψi,t−1] + μυ,t−1 (1.55)

V [ψi,t] = V [μψ + ρψψi,t−1 + υi,t] (1.56)

⇔ V [ψi,t] = ρ2ψV [ψi,t−1] + V [υi,t] (1.57)

⇔ V [ψi,t] = ρ2ψV [ψi,t−1] + σ2
υ,t−1 (1.58)

If we assume that the mean and variance of idiosyncratic shocks have been in

the low state for the infinite past up to and including period t, these two moments

become:

E[ψi,t] =
μψ + μLυ
1− ρψ

(1.59)

V [ψi,t] =
(σLυ )

2

1− ρ2ψ
(1.60)

Now let us define the variable Δμυ,t = μυ,t − μLυ , which captures the difference

between the mean of idiosyncratic shocks under the current regime and the low

regime. Analogous to this let us define the variable Δσ2
υ,t = σ2

υ,t − (σLυ )
2. Starting

the evolution of the mean of log idiosyncratic profitability from the value in equation

(1.59) we can express the dynamics as follows:

E[ψi,t+1] =
μψ + μLυ
1− ρψ

+Δμυ,t (1.61)

E[ψi,t+2] =
μψ + μLυ
1− ρψ

+Δμυ,t+1 + ρψΔμυ,t (1.62)

E[ψi,t+3] =
μψ + μLυ
1− ρψ

+Δμυ,t+2 + ρψΔμυ,t+1 + ρ2ψΔμυ,t (1.63)

...

Similarly, starting from the variance in equation (1.60), the evolution of the
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variance of log idiosyncratic profitability can be expressed as:

V [ψi,t+1] =
(σLυ )

2

1− ρ2ψ
+Δσ2

υ,t (1.64)

V [ψi,t+2] =
(σLυ )

2

1− ρ2ψ
+Δσ2

υ,t+1 + ρ2ψΔσ
2
υ,t (1.65)

V [ψi,t+3] =
(σLυ )

2

1− ρ2ψ
+Δσ2

υ,t+2 + ρ2ψΔσ
2
υ,t+1 + ρ4ψΔσ

2
υ,t (1.66)

...

From these recursions, it is easy to see that we can express the mean and variance

of log idiosyncratic profitability as the sum of the value that would prevail under

the low regime and the accumulated effect due to occasional switches to the high

regime:

E[ψi,t] =
μψ + μLυ
1− ρψ

+
∞∑
j=1

ρj−1
ψ Δμυ,t−j (1.67)

V [ψi,t] =
(σLυ )

2

1− ρ2ψ
+

∞∑
j=1

ρ
2(j−1)
ψ Δσ2

υ,t−j (1.68)

In the end however, we are interested in the evolution of the distribution of

idiosyncratic profitability in levels. Given that log idiosyncratic profitability is nor-

mally distributed, the mean and variance of idiosyncratic profitability in levels can

be derived along the following steps:

E[Ψi,t] = E[elog(Ψi,t)] = E[eψi,t ] (1.69)

⇔ E[Ψi,t] = eE[ψi,t]+V [ψi,t]/2 (1.70)

V [Ψi,t] = E[(Ψi,t − E[Ψi,t])
2] (1.71)

⇔ V [Ψi,t] = E[Ψ2
i,t]− 2E[Ψi,t]

2 + E[Ψi,t]
2 (1.72)

⇔ V [Ψi,t] = E[Ψ2
i,t]− E[Ψi,t]

2 (1.73)

⇔ V [Ψi,t] = E[e2log(Ψi,t)]− E[elog(Ψi,t)]2 (1.74)

⇔ V [Ψi,t] = e2E[ψi,t]+2V [ψi,t] − (eE[ψi,t]+V [ψi,t]/2)2 (1.75)

⇔ V [Ψi,t] = e2E[ψi,t]+2V [ψi,t] − e2E[ψi,t]+V [ψi,t] (1.76)
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Appendix F: Numerical Solution Technique and

Accuracy

The model described in section 1.2 does not have a closed-form solution once we

allow for the various forms of adjustment costs and partial irreversibilities. In the

remaining parts of the chapter, the model is therefore solved numerically by dis-

crete value function iteration in order to study the properties of investment policy

functions and the models’ implications for the effect of uncertainty shocks. For this

procedure to be feasible, the profitability process needs to be approximated by a

discrete markov chain. This approximation is done using the method proposed by

Tauchen (1986), adapted to a markov-switching process. The grids for the value

function iteration are chosen with 21 idiosyncratic profitability points, 10 aggregate

profitability points, 2 uncertainty states, and between 350 and 1000 capital grid

points depending on the model.48 At this point it is useful to asses the accuracy

of the numerical approximation that is employed. For this purpose two exercises

are performed. First, the dynamics of the discretized process for idiosyncratic prof-

itability are compared to the true dynamics of the AR(1) process in logs. Second,

the dynamics of the approximated model without adjustment costs are compared to

the analytical results derived above.

As mentioned above the profitability process is approximated by a discrete

markov chain with 21 grid points. The question is of course whether this discretized

process resembles the original AR(1) process in logs in important dimensions. To

answer this question, the dynamics of the cross-sectional mean and standard devi-

ation after an uncertainty shock are compared between the discretized process for

idiosyncratic profitability and it’s analytical counterpart. To this end a sample of

250,000 units is simulated for 25 periods. The initial distribution of units is set to

the unconditional distribution under the low uncertainty regime. It is then assumed

that in period zero an uncertainty shock hits the system lasting for 5 periods. For

all subsequent periods uncertainty is set to the low regime again. Figure 1.7 displays

the results of this exercise for the cases with and without a Jensen correction applied

to the mean of shocks.

Regarding the accuracy of the discretized process for idiosyncratic profitabil-

ity it can be observed that the dynamics of the mean and standard deviation are

replicated fairly accurately in both cases. The standard deviation of idiosyncratic

profitability increases considerably for five consecutive periods, and then falls back

gradually as uncertainty becomes low again. The decrease in the mean with the

48It was checked that the results are not sensitive to an increase in the number of grid points.
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Figure 1.7: Moments of the idiosyncratic profitability distribution

Figure 1.8: Accuracy of the approximation method without adjustment costs
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Jensen correction and the increase in the mean without the Jensen correction are

also captured fairly accurately by the discretized process. However, both the mean

and standard deviation are consistently higher than for the true process. In the case

of the mean this difference is approximately 1 %, while for the standard deviation

this difference is around 14 %. Nevertheless, the accuracy of the approximated prof-

itability process is deemed sufficient as it replicates the dynamics of the first two

moments after an uncertainty shock fairly well.

We can therefore turn to the accuracy of the aggregate dynamics produced by

a discretized model without any adjustment costs. For this model we can use the

analytical results developed in section 1.3 as a benchmark to compare to. The

parameters are set to the values discussed in section 1.4.1 and shown in table 1.3.

In addition, all adjustment costs are switched off and c is set to 1 − a − b. Similar

to the previous simulation exercise, a panel of 1,000,000 units is simulated for 25

periods. In period zero an uncertainty shock occurs for five consecutive periods and

uncertainty is assumed to be low for all other periods before and after.

Figure 1.8 shows the results of this simulation. Looking at the means of idiosyn-

cratic profitability, the capital stock, investment and revenues, profits and labor

we see that an uncertainty shock leads to a prolonged drop in all variables. It is

straightforward to see that the dynamics produced by the numerical approximation

closely resemble the dynamics that are obtained from the analytical formulas or a

simulation of the analytical model. The deviations that do occur are partly due

to sampling and otherwise deemed sufficiently small. We can therefore safely move

on to analyze the simulation results for more complicated models with adjustment

costs.
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Appendix G: Existing Adjustment Cost Estimates

There are two main papers that estimate a rich set of capital adjustment costs for

models similar to the one in section 1.2. In the following their results and differences

are briefly outlined.

Cooper and Haltiwanger (2006) estimate capital adjustment costs using simu-

lated method of moments (SMM), disregarding labor adjustment costs. They use

annual data for around 7,000 large continuing manufacturing plants between 1972

and 1988 from the Longitudinal Research Database (LRD) and attempt to match

the following four moments with their model: the fraction of investment bursts, the

fraction of investment falls, the investment autocorrelation, and the correlation of

investment with profitability.49 Their model is specified at an annual frequency so

there is no time aggregation and they estimate the profitability process and rev-

enue function together with the adjustment costs. Their estimated adjustment cost

parameters can be found in table 1.4. One caveat of their estimation is that even

though they report that the inaction rate in the data is 8.1 %, they do not try to

match this moment and a model with their estimated parameter values actually

leads to an inaction rate of over 80 %.

Bloom (2009) jointly estimates capital and labor adjustment costs using SMM.

The data he uses is a panel of 2,548 publicly traded U.S. firms from Compustat

spanning the years 1981 to 2000. The firms are large (at least 500 employees and

$10m sales) and span all sectors of the economy. The model he uses is specified

at a monthly frequency and at the plant level so that there is aggregation across

time as well as across units in order to correspond to the data which is annual

and at the firm level. The moments that he attempts to match with the model

are the dynamic auto- and cross-correlations as well as the standard deviation and

skewness of investment rates, employment growth rates and sales growth rates. The

author does not estimate the revenue function and only estimates the variance of

the profitability process.50 The estimated adjustment cost parameters can also be

found in table 1.4.

To summarize the existing estimates, Cooper and Haltiwanger (2006) find con-

siderable fixed costs of investment and only small irreversibilities and convex ad-

justment costs, while Bloom (2009) finds large irreversibilities and small convex and

non-convex adjustment costs. These differences in the estimates can be due to the

49Investment here always refers to the investment rate relative to the capital stock. Bursts and

spikes are defined as investment rates exceeding plus or minus 20 %.
50The profitability process is assumed to follow a geometric random walk, and the variance is

assumed to be the same for the plant, firm, and aggregate component.
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following reasons:

• Data: manufacturing vs. all industries, plant vs. firm, 72-88 vs. 81-00

• Model: annual vs. monthly, specification of driving process different51

• Moments: different moments they try to match

51Cooper and Haltiwanger (2006) estimate an AR(1) process in logs, while Bloom (2009) assumes

a random walk in levels.
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Chapter 2

The Role of Uncertainty Shocks in

US Business Cycles

Abstract

This chapter proposes an empirical identification strategy for uncertainty shocks

that is consistent with the recent vintage of quantitative models that consider vari-

ations in uncertainty as impulses driving aggregate fluctuations. The identification

strategy has two parts. First, the cross-sectional variance of firm-level sales is used

as a proxy for uncertainty. Second, identifying restrictions are imposed within a

Structural Vector Autoregression (SVAR) framework that are consistent with the

theoretical models. This strategy for identifying uncertainty shocks is then applied

to US data. The main result from the baseline SVAR estimation is that such model

consistent uncertainty shocks lead to considerable booms in investment and employ-

ment that last for around two years. Moreover, while the uncertainty shock explains

most of the forecast error in investment and employment it only explains a small

part of the forecast error in the cross-sectional variance of firm-level sales. Both of

these results are contrary to the dynamics that are induced by these uncertainty

shocks in the recent vintage of quantitative macro models like Bloom (2009). Once

uncertainty shocks are identified as the shocks that only affect dispersion upon im-

pact, the results change somewhat. An uncertainty shock in that case leads to a

moderate drop, rebound and overshoot of investment and a large increase in the

cross-sectional dispersion of revenues. The results suggest that the way uncertainty

shocks are modeled in the quantitative literature needs to be reconsidered. In par-

ticular, the standard timing assumption that the expectational effect of uncertainty

shocks leads the distributional effect seems questionable given the empirical results

in this chapter.
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2.1 Introduction

Heightened uncertainty is often cited as a contributing factor to the recent economic

slump in the US. The basic intuition is that higher uncertainty since the outbreak

of the Financial Crisis has lead firms to be more cautious in their investment and

hiring decisions causing a decrease in aggregate investment and employment. With

this background in mind it has become increasingly popular in the recent structural

macroeconomic literature to consider variations in uncertainty as a driver for ag-

gregate fluctuations. Such uncertainty shocks are usually modeled as a change in

the innovation variance of the driving process in structural models with heteroge-

neous firms. For example Bloom (2009), Bloom et al. (2010) and Bachmann and

Bayer (2011) use these types of uncertainty shocks in heterogeneous firm models

that feature various forms of capital and labor adjustment costs. In these models,

an uncertainty shock leads to a drop, rebound and overshoot in output, investment

and employment due to real options effects. Moreover, Gilchrist et al. (2010), Arel-

lano et al. (2011) and Chugh (2011) use this way of modeling uncertainty shocks in

firm level models that feature financial frictions.1

At the same time, there has emerged an empirical literature that tries to identify

the impact of uncertainty shocks from the data using Structural Vector Autoregres-

sive Models (SVARs). Within these SVARs various proxies for uncertainty such as

stock market volatility, disagreement between professional forecasters, dispersion in

business survey responses and a media-based uncertainty index have been used (See

Bloom (2009), Popescu and Smets (2010), Bachmann et al. (2010) and Alexopoulos

and Cohen (2009) respectively). However, none of these uncertainty proxies has a di-

rect counterpart within the recent structural macro models that feature uncertainty

shocks.

In contrast to this, an observable implication of the way that uncertainty shocks

are modeled in the quantitative literature is that an increase in uncertainty, i.e. in

the variance of shocks, leads to an increase in dispersion of firm-level performance

measures such as revenues. This is the distributional effect of uncertainty shocks.

Moreover, there is an expectational effect of uncertainty shocks that results from

the fact that a higher shock variance leads each firm to be more uncertain about

its future profitability. Given the common timing assumption that firms know the

realization of the variance regime one period in advance, the expectational effect

of uncertainty shocks will lead the distributional effect by one period. Hence, it

1Some other papers that employ this way of modeling uncertainty shocks are for example Schaal

(2012) in the context of a search and matching model and Vavra (2012) in a pricing framework

with adjustment costs.
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seems natural to use the cross-sectional variance of firm-level revenues as a proxy

for uncertainty and impose the identifying restriction that upon impact uncertainty

shocks affect variables that immediately respond to expectations but they do not

affect the sales variance.

Given the above discussion, the goal of this chapter is to study the role of un-

certainty shocks in US business cycles within a SVAR framework, when uncertainty

shocks are identified through a model consistent identification strategy. A model

consistent identification strategy is defined as one that would identify the effect of

uncertainty shocks when applied to simulated data from a structural model. Once

the model consistent identification restrictions have been imposed on the VAR, the

focus of the analysis is on impulse response functions and forecast error variance

decompositions (FEVD). In particular, the questions addressed by this chapter are:

1. How does aggregate investment and employment respond to an uncertainty

shock?

2. How much of the variation in investment and employment is due to uncertainty

shocks?

The results from the baseline SVAR estimation show that such model consistent

uncertainty shocks lead to considerable booms in investment and employment that

last for around two years. Moreover, while the uncertainty shock explains most of

the forecast error in investment and employment it only explains a small part of the

forecast error in the cross-sectional variance of firm-level sales. Both of these results

are contrary to the dynamics that are induced by these uncertainty shocks in the

recent vintage of quantitative macro models. Various alternative SVAR specifica-

tions show that these results are qualitatively robust as long as the main identifying

assumption for uncertainty shocks is imposed. However, once uncertainty shocks are

identified as the shocks that only affect dispersion upon impact but not investment,

the results change somewhat. An uncertainty shock in that case leads to a moder-

ate drop, rebound and overshoot of investment of 0.5 % and a large increase in the

cross-sectional dispersion of revenues. This suggests that the way uncertainty shocks

are modeled in the quantitative literature needs to be reconsidered. In particular,

the standard timing assumption that the expectational effect of uncertainty shocks

leads the distributional effect seems questionable given the empirical results in this

chapter.

As mentioned in the motivation, there are a couple of recent empirical papers

that try to identify the impact of uncertainty shocks within a SVAR framework.

For example, Bloom (2009) uses a monthly VAR framework with detrended US

52

Lang, Jan Hannes (2012), Uncertainty, Expectations, and the Business Cycle 
European University Institute

 
DOI: 10.2870/60758



data where uncertainty is proxied by a stock market volatility indicator to study the

impulse responses of industrial production and employment to uncertainty shocks.

He finds that an uncertainty shock leads to a drop of around 1 % and 0.5 % in

production and employment after around three months. Both variables rebound

to their initial levels again after around 7 months and subsequently overshoot their

initial levels by around 1 % and 0.5 % respectively for many months before reverting

back.

Another related paper is Popescu and Smets (2010) which uses a SVAR frame-

work to study the role of uncertainty shocks in German Business Cycles since the

beginning of the 1990’s. As a proxy for uncertainty they use measures of dispersion

in opinions among macroeconomic forecasters. They find that uncertainty shocks

lead to small temporary declines in industrial production (A drop of around 0.25 %

over six months) and a more prolongued increase in unemployment (An increase of

around 0.4 % over 15 months). However, using forecast error variance decomposi-

tions they also show that the overall contribution to output fluctuations is limited

(slightly above 3 % of the variation in industrial production at the four year horizon).

A further paper in this line of research is Bachmann et al. (2010), who study

the effect of uncertainty on manufacturing output in a SVAR framework for the US

and Germany. Their uncertainty measures are constructed as the cross-sectional

standard deviation of business survey responses about expected activity. In bivari-

ate SVARs they find that innovations to their uncertainty measures are associated

with slowly-building reductions in industrial production that reach a maximum of

around - 1 % after two years, with no tendency to revert even after five years.

When they identify an uncertainty shock as having no long-run effects, the impulse

responses become statistically insignificant. They conjecture that recessions increase

uncertainty rather than the other way around.

Finally, Alexopoulos and Cohen (2009) investigate empirically the role of un-

certainty shocks in US business cycles. As their uncertainty measures they use the

stock market volatility indicator proposed by Bloom (2009) and an indicator based

on the number of New York Times articles on uncertainty or economic activity. In

various SVAR specifications they find that innovations to uncertainty lead to drops

and rebounds in industrial production, employment, productivity, consumption and

investment that last around one to two years. Forecast error variance decomposi-

tions show that uncertainty shocks can account for 10 to 25 % of the variation in

these variables.

Compared to these existing papers I use the cross-sectional standard deviation

of firm-level revenues as my proxy for uncertainty, because time-variation in this

measure is a direct implication of the way that uncertainty shocks are commonly
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modeled in the literature. Moreover, the identifying restrictions that are imposed

within the SVAR framework are derived from a simple structural model and are

not ad-hoc assumptions. In combination, these two features allow us to assess the

empirical importance of the type of uncertainty shocks proposed in the literature.

The rest of the chapter is structured as follows. In section 2 the SVAR mod-

eling framework is described. In section 3 a simple structural model that features

uncertainty shocks is presented in order to test whether the proposed identification

strategy is able to uncover uncertainty shocks from simulated data. In section 4

the data used for the estimation is presented and some initial statistical analysis is

performed. Section 5 then presents the main results for the baseline SVAR speci-

fication. This is followed by some robustness tests with respect to the inclusion of

additional variables in the SVAR and alternative identification strategies. Finally,

section 7 provides a brief conclusion.

2.2 Overview of the Structural VAR Framework

This section gives a brief overview of the SVAR framework that is used in the rest

of the chapter in order to identify the effect of model consistent uncertainty shocks

from data for the US.

2.2.1 The General Reduced Form VAR Representation

The general framework for the analysis in this chapter is the VAR(p) model which

is given by the following equation:

yt = ν + A1yt−1 + ...+ Apyt−p + ut (2.1)

In the above system of equations yt = (y1t, ..., yKt)
′ is a random vector of size

(K x 1), the Ai’s are fixed coefficient matrices of size (K x K), ν = (ν1, ..., νK)
′ is a

vector of intercepts of size (K x 1) and finally ut = (u1t, ..., uKt)
′ is a K-dimensional

white noise process with E(ut) = 0, E(utu
′
t) = Σu and E(utu

′
s) = 0 for s �= t.2

One of the issues with the model in equation (2.1) is that the components of ut

are reduced form shocks and will normally be instantaneously correlated. There-

fore, no structural interpretation can be associated to them without imposing some

additional assumptions regarding the structure of the data generating process.

2See Lütkepohl (2005) for an in depth discussion of VARs.
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2.2.2 Going from Reduced Form to Structural Representa-

tion

In order to recover the effects of structural innovations from the reduced form model

given in equation (2.1) we need to specify a structural model of the form3:

Ayt = Aν + A∗
1yt−1 + ...+ A∗

pyt−p + Bεt (2.2)

Here, εt ∼ (0, IK) is now a vector of structural shocks and A and B are (K x

K) matrices that specify the contemporaneous influences between the endogenous

variables and the impact of the structural shocks on each of the endogenous vari-

ables. Moreover, the fixed coefficient matrices are defined by A∗
i = AAi. Given this

structural model, the reduced form innovation vector in equation (2.1) is given by a

linear combination of the structural shocks of the form ut = A−1Bεt. By imposing

suitable restrictions on the elements of the matrices A and B it is then possible to

recover the influences of the structural innovations from the estimated reduced form

VAR. The strategy followed in the rest of the chapter in order to identify the im-

pact of uncertainty shocks is to set A = IK and impose restrictions on the matrix B

that are consistent with the implications of a simple structural model that features

uncertainty shocks.

2.3 Model Consistent Identification of Uncertainty

Shocks

In this section a simple structural model that features uncertainty shocks is presented

in order to derive model consistent identifying restrictions for uncertainty shocks

within a SVAR. These identifying restrictions are then tested on simulated data from

the model in order to examine whether the proposed strategy to uncover uncertainty

shocks would work if the real world was generated by the model. Thus, this section

serves as a motivation for the kind of identifying restrictions that are applied to

real world data in section 2.5 in order to study the role of uncertainty shocks in US

business cycles.

2.3.1 A Simple Structural Model with Uncertainty Shocks

The model that is presented in this section is closely based on the partial equilibrium

model in Lang (2012) with heterogeneous firms, uncertainty shocks and no labor

3See Lütkepohl (2005) chapter 9 for a detailed discussion of this structural model.
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and capital adjustment costs. The main difference in the current set-up is that the

stochastic process for uncertainty is assumed to follow a continuous AR(1) process

rather than a discrete Markov chain. There is a continuum of heterogeneous risk

neutral firms indexed by i ∈ [0, 1] that maximize the present discounted value of

expected profit streams, where profits in period t are given by:

Π(Ai,t, Ki,t) = φπA
c

1−b

i,t K
a

1−b

i,t (2.3)

In the above equation, φπ is a constant parameter, Ki,t is the capital stock and

Ai,t is a reduced form profitability shock that summarizes the effects of demand

conditions and total factor productivity on profits. In addition, c/(1 − b) > 0 and

a/(1− b) ∈ (0, 1) are constant parameters that determine the curvature of the profit

function.4 Such a profit function can be derived under the assumption of a decreasing

returns to scale (DRS) revenue function in capital and labor, a constant wage and

freely adjustable labor that becomes immediately available for production.5 Given

this set-up it is easy to show that the optimal labor input and the resulting revenues

have the same functional form in (A,K) space as profits and only differ by a constant:

L(Ai,t, Ki,t) = φlA
c

1−b

i,t K
a

1−b

i,t (2.4)

R(Ai,t, Ki,t) = φrA
c

1−b

i,t K
a

1−b

i,t (2.5)

As is standard in the uncertainty shocks and investment literature, the prof-

itability of each firm is assumed to be the product of an aggregate (Zt) and an

idiosyncratic (Ψi,t) component.6 Furthermore, both the aggregate and idiosyncratic

components are assumed to follow persistent AR(1) processes in logs. The dynamics

of profitability can therefore be represented by the following set of equations:

Ai,t = ZtΨi,t (2.6)

zt = μz + ρzzt−1 + ηt (2.7)

ψi,t = μψ + ρψψi,t−1 + υi,t (2.8)

Here, a lower case letter refers to the logarithm of the variable and ηt ∼ N (μη, σ
2
η)

and υi,t ∼ N (μυ,t−1, σ
2
υ,t−1). In line with the papers by Bloom (2009), Bloom et al.

(2010) and Bachmann and Bayer (2011), uncertainty shocks are incorporated into

4Here, a, b and c are the exponents on capital, labor and profitability in the revenue function.
5A DRS revenue function in capital and labor can be either due to DRS in the production

function and/or some degree of market power. See Lang (2012) for a detailed derivation of this

profit function.
6See for example Cooper and Haltiwanger (2006), Khan and Thomas (2008), Bloom (2009),

Bloom et al. (2010) or Bachmann and Bayer (2011).
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the model through changes in the variance of innovations to idiosyncratic profitabil-

ity, which is implicit in the fact that σ2
υ,t−1 is indexed by time.7 Moreover, embedded

in the above specification is the standard timing assumption that the variance of id-

iosyncratic shocks is known one period in advance, which ensures that agents always

know the true variance of shocks applicable in the next period. Hence, all varia-

tions in uncertainty in the model are related to fundamentals and not to imperfect

information about the true state of the driving process. This way of modeling un-

certainty shocks is standard in the literature and is followed in this chapter as the

goal is to derive identifying restrictions for uncertainty shocks that are consistent

with the recent vintage of structural models.

At this point it is useful to note that there are two channels through which

uncertainty shocks affect aggregates in the model. On the one hand, there is an ex-

pectational effect that results from the fact that a higher shock variance leads each

firm to be more uncertain about its future profitability. On the other hand, there

is a distributional effect that results from the fact that once firms start drawing

innovations from a higher variance distribution, the cross-sectional dispersion of id-

iosyncratic profitability increases. Given the standard timing assumption that firms

know the realization of the variance regime one period in advance, the expectational

effect will lead the distributional effect by one period. I.e. when an uncertainty

shock occurs, firms’ expectations change upon impact, but the cross-sectional dis-

persion of idiosyncratic profitability does not change until the next period, when

firms start drawing innovations from a more dispersed distribution. This property

will be exploited further below in order to derive model consistent identification

restrictions of uncertainty shocks.

Given that the process for idiosyncratic profitability is specified in logs, an in-

crease in the variance of innovations will lead to an increase in one period ahead

expectations of idiosyncratic profitability in levels. To adjust for this effect, the

mean of idiosyncratic innovations is assumed to adjust in an offsetting way, which

is achieved by setting μυ,t = −σ2
υ,t/2.

8 For analytical tractability within a VAR

framework, the variance of idiosyncratic profitability shocks is assumed to follow an

7In the above mentioned papers the variance of aggregate profitability shocks is also assumed

to vary over time. For simplicity this type of uncertainty shock is omitted in the current chapter.

However, this should not be an issue, for as long as the timing assumption for both types of

uncertainty shocks is the same, the identifying assumptions derived below are still valid.
8See Lang (2012) for a detailed discussion of this result.
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AR(1) process of the form:9

σ2
υ,t = μσ + ρσσ

2
υ,t−1 + εi,t (2.9)

In this equation εt ∼ N (0, σ2
ε) are the innovations to the idiosyncratic shock

variance. Given a constant price of capital p, a constant discount factor β and the

standard law of motion for capital Kt+1 = It + (1 − δ)Kt, the decision problem

of each firm can be represented by the following Bellman Equation. To save on

notation the firm subscript i for each variable is omitted and primes denote next

period variables:10

V (A,K, συ) = max
K′

Π(A,K)−p[K ′−K(1−δ)]+βEA′,σ′
υ |A,συ [V (A′, K ′, σ′

υ)] (2.10)

Taking the first-order and envelope conditions and using the functional forms

assumed above, it is easy to derive the following policy function that characterizes

the optimal capital accumulation decision:

Ki,t+1 = ξ

(
Zρz
t Ψ

ρψ
i,t e

μυ,t+
σ2
υ,t
2

c
1−b

) c
1−a−b

(2.11)

Here, ξ = ϕ(eμz+μψ+μη+c
σ2
η

2(1−b) )
c

1−a−b and ϕ = [(aβφπ)/([1−b][p−pβ(1−δ)])]
1−b

1−a−b

are constants that depend on the structural parameters of the model. It is easy to

see that each firm’s capital stock is a function of aggregate profitability, idiosyncratic

profitability and the level of uncertainty.11 In particular, the effect of uncertainty

on capital accumulation by each firm is captured by the presence of μυ,t +
σ2
υ,t

2
c

1−b
in the capital policy function. With this policy function in hand we are now able to

characterize the dynamics of aggregates in the model.

9In principle, this specification allows for negative values of the variance. However, this problem

can be mitigated by setting μσ sufficiently high so that the probability of negative values of the

variance is close to zero. In the parameterization of the model in section 2.3.3 the parameter

values are chosen such that the unconditional mean of the variance process is 0.3 and its standard

deviation is 0.05, so that the probability of negative variance values is virtually zero given the

assumption of a normal distribution.
10In the Bellman Equation below total profitability is used as the state variable to save on

notation. It should be kept in mind however that in order to solve the model, information on both

the aggregate and idiosyncratic profitability is needed. Whenever total profitability is used as the

state variable in this chapter it should therefore be interpreted as information on both components

of total profitability.
11The fact that uncertainty can have an effect on capital accumulation even without capital

adjustment costs is due to the fact of either concavity or convexity of the profit function in prof-

itability.
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2.3.2 Deriving Model Consistent Identifying Assumptions

If we want to identify the effect of uncertainty shocks from real world data, it is

necessary to devise an identification strategy that only relies on observables. Natural

candidates for observable variables that come out of the model presented above are

aggregate investment, aggregate employment and the cross-sectional variance of firm

level revenues. The dynamics of these variables can be easily obtained by applying

the expectations and variance operators to equations (2.4), (2.5), (2.11) and the law

of motion for capital:

E[Ki,t] = ξZ
ρz

c
1−a−b

t−1 E
[
Ψ
ρψ

c
1−a−b

i,t−1

]
e(μυ,t−1+

σ2
υ,t−1
2

c
1−b

) c
1−a−b (2.12)

E[Ii,t] = E[Ki,t+1]− (1− δ)E[Ki,t] (2.13)

E[Li,t] = φlZ
c

1−b

t E
[
Ψ

c
1−b

i,t K
a

1−b

i,t

]
(2.14)

V [Ri,t] = φ2
rZ

2c
1−b

t V
[
Ψ

c
1−b

i,t K
a

1−b

i,t

]
(2.15)

From this system of equations it is easy to see that the aggregate profitability

shock affects aggregate employment, aggregate investment and the variance of rev-

enues all contemporaneously through Zt. In contrast, an uncertainty shock only

affects aggregate investment contemporaneously, while aggregate employment and

the variance of profits are not affected in the current period. This is easy to see

by noting that aggregate employment and the variance of profits at time t depend

on the joint distribution of idiosyncratic profitability and capital in period t. This

joint distribution is however not affected by the uncertainty shock in period t, but

only by past uncertainty shocks. This is a result of the standard timing assumption

that the variance of idiosyncratic profitability shocks is known one period in ad-

vance. Hence the expectational effect of uncertainty shocks already materializes in

period t and affects investment, while the distributional effect of uncertainty shocks

only materializes in the following period, affecting the variance of profits with a one

period delay.

From this discussion, it should be clear that the shocks to aggregate investment

in a reduced form VAR are a linear combination of aggregate profitability shocks

and uncertainty shocks, while contemporaneous shocks to aggregate employment

and the variance of profits in a reduced form VAR are simply aggregate profitability

shocks. Hence, we should be able to identify uncertainty shocks in a SVAR like

equation (2.2) by imposing these restrictions on the matrix B and assuming that

the matrix A is the identity matrix.

At this stage it is useful to point out that these identifying assumptions also

hold in more complex model set-ups. For example, the identifying assumptions hold
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under various forms of labor and capital adjustment costs, as long as there is a time

to build assumption for the respective factor of production as for example in Bloom

(2009).12 In such a set-up, uncertainty will affect hiring and investment but not

the variance of current revenues due to the time to build assumption. Moreover,

allowing the discount factor β to vary with uncertainty does not alter the validity

of the identification strategy. However, the identification strategy will break down,

whenever labor is immediately available and either the current wage is affected

by uncertainty due to general equilibrium effects, or there are non-convex labor

adjustment costs. This should not be of major concern though because wages are

usually quite sticky at the quarterly frequency and the hiring and firing process also

takes some time in most countries.

2.3.3 Test of Identifying Assumptions with Simulated Data

Now that we have derived identifying assumptions for uncertainty shocks that are

consistent with recent structural models, it is instructive to test whether the pro-

posed identification strategy actually works if it is applied to simulated data from

the model. To this end, a trivariate SVAR with yt = (V [Ri,t], E[Iit ], E[Lit ])
′ is esti-

mated on simulated data and the resulting impulse responses are compared to the

true impulse responses from the model.

In order to uncover the impact of uncertainty shocks from the estimated reduced

form VAR, the proposed identifying restrictions from above are applied. With these

restrictions, uncertainty shocks are identified as the structural innovations to the

investment equation when the following identifying restrictions are imposed on the

B-matrix in the VAR specification:

B =

⎡
⎢⎣
b11 0 0

b21 b22 0

b31 b32 b33

⎤
⎥⎦ (2.16)

To produce a sample of simulated data from the model, it is necessary to assign

numerical values to the structural parameters of the model. Table 2.3 in Appendix

A summarizes the parameter values that were chosen in order to generate a synthetic

data set from the model consisting of 100,000 observations. The SVAR specification

described above is estimated on this simulated sample using a specification with 15

lags. The resulting estimates of the impulse responses to an uncertainty shock are

displayed in figure 2.1 along with the true impulse responses from the model.

12To be precise, this claim holds for any adjustment cost specification that does not directly

affect measured revenues.
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Figure 2.1: Estimated and true impulse responses from a trivariate SVAR

(a) Uncertainty shock → Investment (b) Uncertainty shock → Dispersion

(c) Uncertainty shock → Employment (d) Aggregate shock → Investment

(e) Aggregate shock → Dispersion (f) Aggregate shock → Employment

61

Lang, Jan Hannes (2012), Uncertainty, Expectations, and the Business Cycle 
European University Institute

 
DOI: 10.2870/60758



As can be seen from the figure, the estimated impulse responses to an uncertainty

shock qualitatively and quantitatively resemble the true impulse responses. For

completeness, the estimated impulse responses to an aggregate profitability shock

are also displayed in the figure. The results here are analogous to the ones for

uncertainty shocks in that the estimated impulse responses quantitatively resemble

the true impulse responses. These results show that if the true data generating

process was given by the simple model with uncertainty shocks and aggregate shocks

described above, then the proposed identification strategy would be able to identify

the effects of both types of shocks. The baseline model that is estimated in section

2.5 is therefore going to be a trivariate SVAR including the cross-sectional variance

of firm-level sales, aggregate investment and aggregate employment.

2.4 Data and Preliminary Statistical Analysis

Now that the model consistent identifying assumptions for uncertainty shocks have

been derived and tested, a brief discussion of the uncertainty measure and the sta-

tistical properties of the US data to which this identification strategy is applied are

provided. Details of the data sources can be found in Appendix B.

2.4.1 Discussion of the Uncertainty Measure

The uncertainty proxy used in this chapter is given by the quarterly cross-sectional

variance of firm-level real sales which is calculated from Compustat data for the time

period 1961 Q1 to 2010 Q3.13 The reason for using the sales variance as a proxy

for uncertainty is based on the fact that the way uncertainty shocks are modeled

in the literature implies that this measure should vary over time. Given that sales

at the firm level are only measured and published at low frequencies, a quarterly

dispersion measure is the best we can hope for. Moreover, because sales at the

quarterly frequency contain a seasonal component, the cross-sectional sales variance

needs to be seasonally adjusted by using the Census X-12-ARIMA method.

In order to compute the cross-sectional sales variance it is necessary to decide on

how to treat entering and exiting firms. The baseline variance measure that is used

in section 2.5 is constructed by restricting the sample to firms that have at least

150 quarters of observations. This basically eliminates variations in the variance

that are due to cyclical variations in entry and exit. As is shown in Appendix C,

13Real sales are calculated by deflating nominal sales by a chain-type price index for GDP with

2005 = 100.
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Table 2.1: Business cycle properties of main variables

Variable SD AR(1) Corr-lag Corr Corr-lead

GDP 0.016 0.85 0.32 0.46 0.43

Investment 0.052 0.90 0.36 0.45 0.43

Employment 0.013 0.93 0.45 0.49 0.43

FFR 1.591 0.83 0.44 0.45 0.38

Wage 0.006 0.91 0.19 0.12 0.00

SP 500 0.101 0.82 0.11 0.29 0.38

VXO 0.216 0.59 0.10 -0.04 -0.16

Variance 0.100 0.64 0.64 1.00 0.64

IQR 0.073 0.78 0.50 0.62 0.55

Note: SD refers to the standard deviation and AR(1) to the autocorrelation of the respec-

tive variable. Corr refers to the contemporaneous correlation of the respective variable

with the cross-sectional variance of firm level sales, while Corr-lag and Corr-lead refer to

the correlation when the respective variable lags or leads the sales variance by one period.

the cyclical dynamics of the cross-sectional sales variance based on different sample

selections are similar to this baseline measure but contain more noise. Moreover,

robustness tests in section 2.6 show that the main results are not sensitive to the

sample selection.

2.4.2 Business Cycle Properties of the Main Variables

As the focus of this chapter is on the role of uncertainty shocks in US business cycles,

all of the variables are logged and detrended using the HP-filter with λ = 1600,

which is the common smoothing parameter used for quarterly data. Therefore, all

time series used in the rest of the chapter have the interpretation of percentage

deviations from trend. Figure 2.2 displays the cyclical components of all the main

variables along with the dates identified as recessions by the NBER. In addition,

table 2.1 summarizes the business cycle properties of the main variables such as the

autocorrelation, the standard deviation and the correlation with the cross-sectional

variance of sales.

The first aspect that stands out is that the cross-sectional variance of firm-level

sales is quite volatile with a standard deviation of 10 % over the business cycle.

In comparison, the standard deviation of the main macro variables like investment,

GDP and employment is much lower with 5.2 %, 1.6 % and 1.3 % respectively. The

second aspect that is apparent is that the variance of firm-level sales is less persistent

than all of the main macro variables. It’s AR(1) coefficient of 0.64 compares to
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Figure 2.2: Cyclical components of main variables

(a) Real GDP (b) Variance of Sales

(c) Real Investment (d) Non-Farm Employment

(e) Federal Funds Rate (f) Hourly Wage

(g) S&P 500 (h) Stock Market Volatility
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coefficients in the range of 0.82 to 0.93 for the S&P 500, the federal funds rate,

wages, GDP, investment and employment.

Looking at figure 2.2 panel (b) it is apparent that the variance of firm-level sales

was extraordinarily high at the beginning of the Great Recession in 2008, but has

since fallen considerably again. In general, the variance of firm-level sales seems

to be high during or at the beginning of recessions. In terms of co-movement with

aggregate variables such as GDP, investment, employment and the federal funds rate,

the cross-sectional sales variance displays a positive contemporaneous correlation of

around 0.45. Moreover, the cross-sectional sales variance appears to be coincident

with these variables.

2.5 The Effect of Uncertainty on Investment and

Employment

In this section the baseline specification of the SVAR that includes the cross-sectional

variance of firm-level sales, aggregate investment and aggregate employment is esti-

mated. The resulting impulse responses and forecast error variance decompositions

to an uncertainty shock are then analyzed.

2.5.1 The Baseline SVAR Specification

As argued in section 2.3 a trivariate SVAR that includes the cross-sectional variance

of firm level sales, aggregate investment and aggregate employment is able to recover

the effect of model consistent uncertainty shocks with the assumption that the B-

matrix in equation (2.2) is lower triangular. This identification strategy reflects the

fact that an uncertainty shock only affects aggregate investment upon impact, while

an aggregate profitability shock affects aggregate investment, aggregate employment

and the cross-sectional variance of sales. The aggregate profitability shock is there-

fore identified as the structural shock to the variance equation, while the uncertainty

shock is identified as the structural shock to the investment equation. The shock to

the employment equation does not have a structural interpretation given the model

written down in section 2.3. This trivariate SVAR specification is estimated on the

cyclical components of the three variables for the US using data from 1962 Q2 up to

2010 Q3. The SVAR is specified with 2 lags, as this is suggested by all the various

information criteria.
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2.5.2 Impulse Responses to an Uncertainty Shock

The central result of this chapter can be found in figure 2.3 which displays the

estimated impulse responses to an uncertainty shock and an aggregate shock for

the baseline trivariate SVAR specification. The most striking feature about these

estimated impulse responses is that the identified uncertainty shock actually leads

to considerable booms in aggregate investment and employment of about 2 % and

0.4 % respectively that last approximately two years.14 After this period the two

aggregates undershoot their initial levels by around 1 % and 0.2 % and settle down

again after around 5 years. In addition, the cross-sectional variance of sales increases

moderately after the uncertainty shock by around 1.5 % and slightly undershoots

its initial level after around two years.

In contrast, the identified aggregate shock leads to much smaller and shorter

lived increases in aggregate investment and employment. The respective increases

are 0.5 % and 0.1 %, which is about a quarter of the magnitudes induced by the

identified uncertainty shock and they only last for four quarters. After that point

aggregate investment and employment start to undershoot their initial levels by

around the same magnitudes as the initial increases. Both aggregates settle down

again after roughly five years. On the other hand, the identified aggregate shock

leads to a large increase in the cross-sectional variance of sales of almost 8 % upon

impact. This increase is fairly short lived so that the initial level is reached again

after only five quarters.

To summarize, while the identified uncertainty shocks leads to considerable

booms in investment and employment and moderate increases in the sales variance,

the identified aggregate shock leads to small increases in the respective aggregates

and a large burst in the sales variance. Both of these results are not in line with the

dynamics that are induced by uncertainty shocks in the structural models like Bloom

(2009). First, in these models uncertainty shocks lead to drop-rebound-overshoot

dynamics in aggregates. Moreover, the uncertainty shock should be responsible for

most of the variation in the cross-sectional sales variance.

2.5.3 Forecast Error Variance Decompositions

To further explore the role of the identified uncertainty and aggregate shocks in shap-

ing aggregate dynamics, table 2.2 summarizes the associated forecast error variance

decomposition. As can be seen, the uncertainty shock explains most of the fore-

cast error of aggregate investment and employment, while it only explains a small

14These impulse responses are for an uncertainty shock of size one standard deviation.
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Figure 2.3: Estimated impulse responses from the baseline model

(a) Uncertainty shock → Investment (b) Uncertainty shock → Employment

(c) Uncertainty shock → Variance (d) Aggregate shock → Investment

(e) Aggregate shock → Employment (f) Aggregate shock → Variance

Notes: The impulse responses are for a shock size of one standard deviation. The gray lines indicate

the 95 % confidence intervals constructed by using the asymptotic standard errors.
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fraction of the variation in the cross-sectional variance of firm-level sales. In con-

trast, the aggregate profitability shock explains most of the forecast error of the

cross-sectional variance of firm-level sales, and not much of aggregate investment

and employment. These findings hold for all time horizons between one and five

years.

2.6 Robustness Tests

In this section some robustness tests for the estimated effects of model consistent

uncertainty shocks are performed. In particular, the robustness of the estimated

impulse responses with respect to the dimension of the SVAR, the use of alternative

uncertainty measures and different identifying assumptions is explored.

2.6.1 Varying the Dimension of the SVAR

Because the omission of relevant variables from the SVAR can bias the estimated

response to structural shocks, a bivariate SVAR with the cross-sectional variance of

firm-level sales and aggregate investment as well as a multivariate SVAR including

the S&P 500, the federal funds rate and the wage in addition to the baseline variables

are estimated. The identifying assumption for uncertainty shocks is the same as for

the baseline estimation, i.e. an uncertainty shock affects investment upon impact

but not the sales variance. For the multivariate SVAR, the uncertainty shock is also

allowed to affect the federal funds rate and the wage rate contemporaneously. The

S&P 500 is placed second in the VAR after the sales variance in order to control for

news shocks that affect the stock market.

The results of this exercise can be found in figure 2.4. As can be seen the

dynamics of investment and the cross-sectional variance of sales are qualitatively

similar to the baseline results. In particular, the identified uncertainty shock still

leads to a considerable boom in investment and a moderate increase in the sales

variance. The main quantitative difference to the baseline specification is that for

the multivariate model, the uncertainty shocks leads to slightly lower responses in

investment and the sales variance.

2.6.2 Using Alternative Uncertainty Measures

Another source that could affect the estimated impulse responses to an uncertainty

shock is the sample selection of firms when constructing the cross-sectional variance
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Table 2.2: Forecast Error Variance Decomposition in the baseline SVAR

Horizon Investment Employment Dispersion

Uncertainty shock

1 0.95 0.35 0.00

4 0.94 0.58 0.07

8 0.89 0.67 0.10

12 0.79 0.64 0.10

16 0.78 0.62 0.11

20 0.77 0.63 0.11

Aggregate shock

1 0.05 0.09 1.00

4 0.04 0.04 0.92

8 0.07 0.05 0.88

12 0.07 0.08 0.87

16 0.07 0.07 0.86

20 0.07 0.08 0.86

Employment shock

1 0.00 0.56 0.00

4 0.02 0.38 0.01

8 0.04 0.28 0.02

12 0.14 0.28 0.02

16 0.16 0.30 0.03

20 0.16 0.30 0.03
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Figure 2.4: Robustness to the dimension of the VAR

(a) Uncertainty → Investment (b) Uncertainty → Variance

Figure 2.5: Robustness to sample selection of firms

(a) Uncertainty → Investment (b) Uncertainty → Variance

of firm-level sales. In order to explore this, figure 2.5 compares the estimated impulse

responses to an uncertainty shock when the sales variance is constructed from a

sample of firms with more than 100 quarterly observations (medium sample) and

more than 60 quarters of observations (low sample).15 It is evident that variations in

the sample of firms do not affect the estimated impulse responses much. Moreover,

it was tested whether using the interquartile range (IQR) instead of the variance of

firm-level sales as the uncertainty measure changes the results. However, as figure

2.6 shows the dynamics induced by the identified uncertainty shock do not change

qualitatively when using this alternative uncertainty measure.

15Recall that the baseline sales variance is constructed using data on all firms with more than

150 quarters of observations.
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Figure 2.6: Robustness to using the IQR instead of the variance

(a) Uncertainty → Investment (b) Uncertainty → Dispersion

Figure 2.7: Robustness to the ordering of investment in the VAR

(a) Uncertainty → Investment (b) Uncertainty → Variance

2.6.3 Alternative Identifying Assumptions

Because the ordering of variables within the SVAR will affect the estimated impulse

responses, a trivariate and multivariate SVAR where investment is placed last in the

system are also estimated for robustness purposes. The uncertainty shock is still

identified as the structural shock to the investment equation, which corresponds to

an identifying assumption that an uncertainty shock only affects investment upon

impact but none of the other variables. The results of this exercise can be found in

figure 2.7. Again, the dynamics induced by an uncertainty shock are qualitatively

similar as in the baseline SVAR.

As the estimated impulse responses to model consistent uncertainty shocks are
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Figure 2.8: Robustness to the identifying assumptions for uncertainty shocks

(a) Uncertainty → Investment (b) Uncertainty → Variance

not in line with the notion that higher uncertainty leads to recessions, an alterna-

tive identification strategy for uncertainty shocks appears interesting to explore. In

particular, it seems questionable whether in reality firms already know the applica-

ble innovation variance one period in advance, as is implied by the way uncertainty

shocks are commonly modeled. A more realistic assumption is probably that firms

need to observe realizations of more dispersed shocks to realize that they are in a

state of heightened uncertainty. Therefore, an identification strategy where uncer-

tainty shocks are identified as shocks that only affect the cross-sectional variance

of firm-level sales but none of the other variables is explored. The corresponding

results are displayed in figure 2.8.

The figure shows that this type of uncertainty shock actually leads to a fall of

aggregate investment that reaches a maximum after 5 quarters. Moreover, aggre-

gate investment rebounds to the initial level after around two and a half years and

reaches a maximum overshoot after around three and a half years. This type of

drop-rebound-overshoot behavior is more in line with standard intuition and the

effect of uncertainty shocks in the paper by Bloom (2009). Furthermore, this type

of uncertainty shock actually leads to a large increase of the cross-sectional sales

variance of around 7 % upon impact. One important fact to note though is that the

maximum drop of aggregate investment is only around - 0.5 % for a one standard

deviation uncertainty shock. Given that the business cycle component of aggregate

investment has a standard deviation of 5 %, this type of uncertainty shock does not

explain much of the variation in investment.
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2.7 Conclusion

This chapter has proposed an empirical identification strategy for uncertainty shocks

that is consistent with the way these types of shocks are modeled in the recent

quantitative macro literature. The proposed identification strategy has two parts.

First, the cross-sectional variance of firm-level sales is used as a proxy for uncertainty.

Second, consistent with the theoretical literature, uncertainty shocks are identified

in a SVAR framework as the shocks that affect investment upon impact but do

not affect the cross-sectional variance of firm-level sales contemporaneously. This

identifying restriction is a direct result of the standard timing assumption in the

theoretical models that the applicable variance of innovations is known one period in

advance. Thus, an uncertainty shock affects expectations and therefore investment

upon impact but does not change the distribution of idiosyncratic profitability across

firms until the next period.

This identification strategy was then applied to US data in order to study the role

of model consistent uncertainty shocks in US business cycles. The main result from

the baseline SVAR estimation is that these uncertainty shocks lead to considerable

booms in investment and employment that last for around two years. Moreover,

while the uncertainty shock explains most of the forecast error in investment and

employment it only explains a small part of the forecast error in the cross-sectional

variance of firm-level sales. Both of these results are contrary to the dynamics that

are induced by these uncertainty shocks in the recent vintage of quantitative macro

models. In addition, these dynamics do not correspond to the conventional wisdom

that higher uncertainty leads to a slump in investment, employment and aggregate

activity.

Various robustness tests have shown that these results do not change qualitatively

when including additional variables in the SVAR or assuming that the uncertainty

shock only affects investment upon impact but none of the other variables. However,

imposing the identifying assumption that an uncertainty shock only affects the cross-

sectional variance of firm-level sales upon impact but none of the other variables

changes the dynamics considerably. When an uncertainty shock is identified in

this way, higher uncertainty actually leads to a drop, rebound and overshoot of

investment and a large increase in the firm-level sales variance. Nevertheless, the

drop in investment is quantitatively small reaching a maximum of around - 0.5 %

after 5 quarters for a one standard deviation uncertainty shock. Given that the

business cycle component of investment has a standard deviation of 5 %, this type

of uncertainty shock does not explain much of the variation in aggregate investment.

The above results suggest that the way uncertainty shocks are modeled in the

73

Lang, Jan Hannes (2012), Uncertainty, Expectations, and the Business Cycle 
European University Institute

 
DOI: 10.2870/60758



quantitative macro literature needs to be reconsidered. In particular, the standard

timing assumption that the expectational effect of uncertainty shocks leads the dis-

tributional effect seems questionable given the empirical results in this chapter. The

impulse responses derived from the alternative identification strategy suggests that

a timing assumption where firms need to observe realizations from a more dispersed

distribution before they realize that they are in a state of heightened uncertainty

could be promising.
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Appendix A: Supplementary Tables

Table 2.3: Parameter values used to simulate data from the model

Parameter Value Description

β 0.99 Discount factor

δ 0.026 Depreciation rate

w 1 Wage rate

a 0.25 Exponent on capital

b 0.50 Exponent on labor

c 1− a− b Exponent on profitability

p 1 Price of capital

μz 0 Intercept of aggregate profit.

ρz 0.9627 AR(1) parameter of aggregate profit.

ση 0.015 Std of innovations of aggregate profit.

μη 0 Mean of aggregate innovations

μψ 0 Intercept of idiosyncratic profit.

ρψ 0.9627 AR(1) parameter of idiosyncratic profit.

ρσ 0.7 AR(1) parameter of idiosyncratic innovation variance

μσ 0.09 Intercept of idiosyncratic innovation variance

σε 0.0357 Std of innovations to idiosyncratic shock variance

75

Lang, Jan Hannes (2012), Uncertainty, Expectations, and the Business Cycle 
European University Institute

 
DOI: 10.2870/60758



Appendix B: Description of the Data Sources

Macro Variables: All the macro variables were downloaded from Datastream.

The frequency of observation is quarterly and where available the series cover the

time period 1950 Q1 to 2011 Q2. Moreover, all series are seasonally adjusted. The

real series are chain-type quantity indices where the base year is 2005 = 100. The

series of interest are real GDP, real investment, non-farm employment, the federal

funds rate and the hourly wage of private industry production workers.

NBER Recession Index: The official NBER business cycle dates were down-

loaded from the NBER website. Based on these dates an index was created that

takes a value of one to indicate a quarter in recession and it takes a value of zero

to indicate a quarter in expansion. Note that both peak and trough quarters are

counted as part of a recession.

S&P 500 Stock Market Index: The series was downloaded from the FRED

Database of the St. Louis Fed. The series is at a quarterly frequency and spans the

time 1957Q1 to 2011Q2. The quarterly data was constructed as the average of daily

data within the quarter.

Stock Market Volatility: The stock market volatility index is taken from the

paper by Bloom et al. (2010), which can be downloaded from the homepage of Nick

Bloom. This index is a combination of actual stock returns volatility of the S&P

500 index (for time periods before 1986) and the CBOE VXO volatility index for

the S&P 100 (for time periods after 1986).16

Firm Level Sales: The sales figures at the firm level are taken from Compustat

and span the time period 1961 Q1 to 2010 Q3. The nominal sales figures are then

deflated by the price index for GDP to arrive at real sales figures, from which cross-

sectional measures of dispersion are computed.

16The exact description of the stock market volatility series in Bloom et al. (2010) is: ”CBOE

VXO index of % implied volatility, on a hypothetical at the money S&P 100 option 30 days to

expiration, from 1986 to 2009. Pre 1986 the VXO index is unavailable, so actual monthly returns

volatilities calculated as the monthly standard-deviation of the daily S&P 500 index normalized to

the same mean and variance as the VXO index when they overlap (1986-2006). Actual and VXO

are correlated at 0.874 over this period. The market was closed for 4 days after 9/11, with implied

volatility levels for these 4 days interpolated using the European VX1 index, generating an average

volatility of 58.2 for 9/11 until 9/14 inclusive.”
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Appendix C: Different Measures of Cross-Sectional

Dispersion

All the dispersion measures discussed below refer to the cyclical component when

logging the series and detrending it using the HP-filter with λ = 1, 600. The disper-

sion measures are computed for various firm samples in Compustat. The different

samples are defined as follows: High sample - Only uses data for firms with more

than 150 quarters of observations; Medium sample - Only uses data for firms with

more than 100 quarters of observations; Low sample - Only uses data for firms with

more than 60 quarters of observations; Full sample - All available firm observations

are used in each time period.

From figure 2.9 it is apparent that the cross-sectional standard deviation of real

and nominal sales are almost the same. For consistency with the macro series the

dispersion in real sales will therefore be used. From figure 2.10 it is evident that the

cross-sectional standard deviation of real sales has a seasonal component. Therefore,

the original dispersion series is seasonally adjusted using the Census X12-Arima

method before detrending.

From figure 2.11 it can be seen that the seasonally adjusted standard deviation

of real sales is somewhat affected by how we restrict the sample of firms. It appears

that the less we restrict the sample, the more volatile is the dispersion measure.

However, the basic dynamics of the cross-sectional standard deviation are similar

across the different sample selections. The main difference is that between the mid

1980’s and mid 1990’s the standard deviation for the larger samples is very volatile.

It therefore seems appropriate to use the sample that only considers firms with more

than 150 quarters of observations.

Figure 2.12 shows the cyclical properties of other measures of spread such as

the variance, the interquartile range and the coefficient of variation. Logically, the

variance has the same properties as the standard deviation just scaled. The in-

terquartile range has similar dynamics, but seems to contain more noise than the

standard deviation. The coefficient of variation is less volatile and seems to have

somewhat different dynamics.

Figures 2.13 and 2.14 compare the interquartile range and the coefficient of

variation for different sample sizes. We can see that the interquartile range gets

more volatile as we increase the number of firms in the sample and at the same time

the noise gets reduced. The coefficient of variation gets more noisy and volatile as

we increase the sample size, similar to what was found for the standard deviation.

Given the considerations above, the baseline dispersion measure that is used in
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Figure 2.9: Comparison of the standard deviation between real and nominal sales

(a) High sample (b) Medium sample

(c) Low sample (d) Full sample

the SVAR estimation is the cyclical component of the seasonally adjusted cross-

sectional variance of real sales for the high sample.
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Figure 2.10: Comparison of the seasonally adjusted and unadjusted standard devi-

ation

(a) High sample (b) Medium sample

(c) Low sample (d) Full sample
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Figure 2.11: Comparison of the standard deviation depending on the sample

(a) High sample (b) Medium sample

(c) Low sample (d) Full sample
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Figure 2.12: Comparison of different measures of spread

(a) Standard deviation (b) Variance

(c) Interquartile range (d) Coefficient of variation
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Figure 2.13: Comparison of the interquartile range depending on the sample

(a) High sample (b) Medium sample

(c) Low sample (d) Full sample
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Figure 2.14: Comparison of the coefficient of variation depending on the sample

(a) High sample (b) Medium sample

(c) Low sample (d) Full sample
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Chapter 3

Endogenous Variations in

Uncertainty and Aggregate

Investment in German

Manufacturing

Abstract

This chapter studies endogenous variations in uncertainty and aggregate fluctuations

that result from imperfect information and learning in an environment where regime

changes in the mean happen occasionally. The idea behind this set-up is that when-

ever unprecedented regime shifts occur, agents become more uncertain about the

true data generating process (DGP) and therefore mix different conditional distri-

butions when forming expectations about the future. The German manufacturing

industry actually experienced such an unprecedented regime shift during the Fi-

nancial Crisis in mid 2008. Output collapsed by 25 % within just six months and

expectations fell much more than can be explained by fundamentals. With this

empirical background in mind a partial equilibrium heterogeneous firm model that

features capital adjustment costs, a markov-switching driving process and imperfect

information about the underlying regime is parameterized to German manufactur-

ing data and simulated. There are two main findings that come out of the exercises.

First, after a regime shift imperfect information leads endogenously to temporarily

higher uncertainty about the underlying regime. On average this leads to lower

mean forecasts and higher forecast standard errors compared to full information.

Moreover, during the regime shift the dispersion in beliefs increases considerably,

which causes the cross-sectional dispersion of mean forecasts and forecast standard
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errors to increase in turn. This mechanism could be interesting in order to ex-

plain why survey responses by firms and professional forecasters get more dispersed

during downturns. Second, these endogenous variations in uncertainty can lead to

considerable downward amplification and some propagation of aggregate investment

and revenues during a temporary downward regime shift. This is true for all types

of adjustment costs, but some degree of quadratic costs are needed to match the

empirical volatility of investment.
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3.1 Introduction

The topic of time-varying uncertainty and aggregate fluctuations has become in-

creasingly popular since the outbreak of the Financial Crisis in 2008. This is partly

due to the fact that various measures of uncertainty like stock market volatility, firm

level dispersion of revenues, profitability and price changes, forecaster disagreement

and dispersion in firm level survey responses all go up during recessions1. The way

that uncertainty shocks are usually modeled in the quantitative macro literature is

via changes in the innovation variance of the driving process. In that sense they are

an exogenous shock much like an aggregate productivity shock. There are various

recent papers that explore this type of uncertainty in settings with capital and labor

adjustment costs, financial frictions and costly price adjustment2. Most papers find

a significant impact of uncertainty, although varying some of the assumptions such

as the returns to scale of the revenue function or general equilibrium considerations

do affect the results somewhat.

In reality uncertainty is usually elevated after major negative first moment shocks

as shown in Bloom (2009) and reproduced in figure 3.1. For example, Oil crises, 9/11

and the recent Financial Crisis were all associated with high uncertainty as mea-

sured through stock market volatility. Moreover, the VDAX stock market volatility

index for Germany increased to unprecedented levels after the outbreak of the Fi-

nancial Crisis. It therefore seems reasonable to consider the possibility that major

first moment shocks cause uncertainty to increase endogenously rather than simply

assuming that there is a correlation between the aggregate shock and the uncer-

tainty shock3. The underlying idea is that whenever large first moment shocks of

unprecedented character hit the economy agents become more uncertain about the

underlying data generating process (DGP). This uncertainty about the true under-

lying regime of the economy should in turn affect forecast distributions and dynamic

decisions such as investment and hiring.

For example, when we look at the Financial Crisis in Germany the majority of

the output collapse materialized in the manufacturing industry which experienced

an unprecedented collapse of 25 % within just a few months between late 2008 and

early 2009. This temporary regime shift is clearly visible in figure 3.1 panel (c),

which plots the cyclical component of aggregate manufacturing revenues against

1See Bloom (2009), Bloom et al. (2010), Bachmann and Bayer (2011), Kehrig (2011), Berger

and Vavra (2010), Dovern et al. (2009) and Bachmann et al. (2010) respectively.
2See Bloom et al. (2007), Bloom (2009), Bloom et al. (2010), Bachmann and Bayer (2011),

Lang (2012), Arellano et al. (2011), Gilchrist et al. (2010), Chugh (2011), Dorofeenko et al. (2008)

and Vavra (2012).
3This is for example done in Bloom (2009) and Bachmann and Bayer (2011)
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Figure 3.1: Stock market volatility for the U.S. and Germany

(a) VXO stock market volatility (b) VDAX stock market volatility

(c) Regime shift probabilties (d) IFO Expectations (balance)

Notes: Panel (a) is a copy of figure 1 from Bloom (2009) for the U.S. The VDAX is the stock

market volatility index for Germany. The gray shaded areas in panel (b) indicate the time period

since 2008m1. The Manufacturing revenues in panel (c) are in volume terms and refer to the

cyclical component of the HP-filtered data when the standard smoothing parameter of 129,600 for

monthly data is applied. Moreover, the smoothed probabilities in panel (c) are obtained from the

estimated markov-switching model that is presented in section 3.2.2. Finally, panel (d) plots the

IFO expectations balance for the German manufacturing sector. Source: Bloom (2009), German

Federal Statistical Office, Datastream, Own calculations.
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the estimated probabilities of the Financial Crisis regime. The cause for the large

output drop was the collapse in demand from the export and investment side of

GDP, which are overrepresented in manufacturing.4 Given such a sudden and large

collapse in demand it seems reasonable to assume that there was some uncertainty

regarding the depth and/or persistence of the Financial Crisis. Ex-post expectations

actually turned out to fall by more than would have been warranted by developments

in fundamentals during normal times, which is shown in section 3.25. This could

potentially indicate that firms were uncertain about the persistence of the regime

shift and attached some probability that the Financial Crisis might last longer than

it did in retrospect.6

With this empirical background in mind, this chapter addresses the following

research questions. First, it is analyzed how imperfect information and Bayesian

Learning affect the dynamics of expectations and uncertainty when the driving pro-

cess is markov-switching and agents do not observe the underlying regime directly.

Second, it is analyzed how these belief dynamics interact with capital adjustment

costs in shaping the response of aggregate investment during a temporary large neg-

ative regime shift, as seen in German manufacturing during the Crisis. In order

to answer these questions, a partial equilibrium, heterogeneous firm model is built

that features various forms of capital adjustment costs, a markov-switching driv-

ing process, and imperfect information about the underlying regime of the process.

Beliefs about the current regime are assumed to be updated by Bayesian Learning.

Various indicative model parameterizations for the German manufacturing industry

are then explored through simulations of a large negative temporary regime shift.7

There are two main findings in this chapter. First, imperfect information and

Bayesian Learning lead endogenously to temporarily higher uncertainty in the sense

that agents attach non-negligible probabilities to all of the possible regimes. I.e.

there is more uncertainty regrading the underlying regime after a temporary regime

shift. This higher endogenous uncertainty in turn affects the forecast densities used

by firms considerably. In particular, on average the mean forecast and the forecast

4See section 3.2 for details.
5Panel (d) in figure 3.1 plots this expectations index for the manufacturing industry in Germany.

As can be seen, expectations fell dramatically during the Financial Crisis but rebounded fairly

quickly.
6Manufacturing revenues started their rebounded already after a few months of large drops

indicating a short lived regime shift of around two quartes.
7A full fledged calibration or estimation using Simulated Method of Moments (SMM) is at this

point not feasible due to the considerable computing power needed to solve and simulate the model

with learning and time constraints of this thesis. In future research it is planned to use plant and

firm level data for the German manufacturing industry in order to estimate adjustment costs along

side the role of imperfect information and learning in shaping aggregate investment dynamics.
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standard error are amplified downwards and upwards respectively. The increase in

the forecast standard error is mainly due to imperfect information and the resulting

mixing of forecast densities under the different regimes and not due to a higher

variance of shocks, which is assumed to stay constant throughout. Therefore, a

temporary regime shift from a high mean regime to a low mean regime causes

the forecast standard error to increase endogenously in the presence of learning.

Moreover, during the regime shift the dispersion in beliefs increases considerably, as

every firm gets in effect an idiosyncratic signal about the underlying regime shift in

the form of idiosyncratic profitability. The increase in belief dispersion across firms

in turn causes the cross-sectional dispersion of mean forecasts and forecast standard

errors to increase. This mechanism could be interesting in order to explain why

survey responses by firms and professional forecasters get more dispersed during

downturns (See Bachmann et al. (2010) and Bloom (2009), Bloom et al. (2010),

Dovern et al. (2009) respectively).

Second, these endogenous variations in uncertainty can lead to considerable

downward amplification of aggregate investment and revenues during a temporary

downward regime shift. This is true for all types of adjustment costs. However,

in order to match the empirical volatility of aggregate investment some degree of

quadratic adjustment costs is necessary. For such a parameterization with moderate

fixed and quadratic adjustment costs and considerable irreversibilities aggregate in-

vestment drops more than twice as much under Bayesian Learning compared to full

information. In addition, the persistence of the investment drop gets increased. This

shows that endogenous variations in uncertainty that are due to imperfect informa-

tion can have interesting amplification and propagation implications for aggregate

investment and therefore also for revenues.

This chapter builds on various strands of literature. Most related is the literature

on investment under time-varying uncertainty which was started in its modern form

by the seminal paper of Bernanke (1983).8 Interest in this topic has been revived

again since the outbreak of the Financial Crisis and the publication of Bloom (2009).

Compared to the recent quantitative literature on time-varying uncertainty which is

based on exogenous shocks to the innovation variance, the current chapter considers

variations in uncertainty as an endogenous response to regime shifts in the presence

of imperfect information. The idea that information can play a role for aggregate

fluctuations was already present in the early papers by Lucas (1972) and Kydland

and Prescott (1982) and has recently been revived by Edge et al. (2007), Veld-

kamp (2005), Van Nieuwerburgh and Veldkamp (2006), Cogley and Sargent (2008),

8Other major references in this field include Abel (1983), Romer (1990), Caballero (1991),

Demers (1991), Dixit and Pindyck (1994) and Hassler (1996).
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Lorenzoni (2009), Collard et al. (2009), Boz and Mendoza (2010), Bachmann and

Moscarini (2011) and Moore and Schaller (2002). However, to my knowledge none of

these papers have explored first as well as second moment implications of imperfect

information. Moreover, the fact that I consider learning within a markov-switching

model implies that there are occasional bursts of uncertainty rather than a per-

manent amplification of uncertainty that results from a recurring signal extraction

problem with constant parameters. Finally, the chapter builds on the large literature

on capital adjustment costs such as Hayashi (1982), Abel and Eberly (1994), Bertola

and Caballero (1994), Abel and Eberly (1996), Caballero and Engel (1999), Thomas

(2002), Veracierto (2002), Cooper and Haltiwanger (2006) and Khan and Thomas

(2008). One of the findings of this chapter is that in order to match the aggregate

investment volatility, some degree of quadratic adjustment costs is needed.

The remainder of the chapter is structured as follows. In the next section the

empirical background for this chapter is provided though an analysis of the develop-

ments in the German manufacturing industry with a focus on the recent Financial

Crisis. Section three then outlines the structural model of investment that is used as

the analytical framework in this chapter. This is followed by an analysis of how im-

perfect information and learning induce endogenous variations in uncertainty in the

presence of regime shifts. Building on these results, section five analyses the effects

of endogenous variations in uncertainty on aggregate investment in an indicative pa-

rameterization of the model to the German manufacturing industry. Finally, section

six offers a brief conclusion.

3.2 The German Manufacturing Industry and the

Financial Crisis

The goal of this section is to give an overview of the developments in the Ger-

man manufacturing industry with a particular focus on the Financial Crisis that

started in 2008. This section therefore provides the motivating facts for analyzing

a structural model of investment that features regime shifts and potentially imper-

fect information in the rest of the chapter. First, a brief overview of the general

macroeconomic background is given, followed by evidence that the collapse in man-

ufacturing activity was of unprecedented magnitude and can therefore be modeled

as a regime shift. This is followed by some evidence that expectations fell more

than usual during the worst months of the Financial Crisis. Finally, the response of

aggregate investment after the Financial Crisis is analyzed.
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Figure 3.2: Developments in real GDP and it’s components since 2008

(a) Real GDP (b) Real consumption

(c) Real government expenditure (d) Real investment

(e) Real exports (f) Real imports

Source: German Federal Statistical Office
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Figure 3.3: Developments in real value added by sector since 2008

(a) (b)

(c) (d)

Source: German Federal Statistical Office

Figure 3.4: Contributions to the fall in nominal GDP and value added

(a) Nominal GDP (b) Nominal value added

Source: German Federal Statistical Office
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3.2.1 General Macroeconomic Background

The German economy was hit extremely hard by the global Financial Crisis that

started in 2008. Real GDP contracted by 6.8 % between it’s cyclical peak in the first

quarter of 2008 and it’s cyclical trough in the first quarter of 2009. Furthermore, it

took until the second quarter of 2011 for real GDP to reach it’s previous peak again

and at the end of 2011 real GDP was only 0.5 % above the level four years earlier.

Figure 3.2 illustrates this development along with the dynamics of the main demand

components of GDP. A detailed description of the data sources used throughout the

chapter can be found in the Appendix.

On the demand side, the large drop in real GDP was caused by huge declines

in investment and in exports, which fell by a maximum of 22.3 % and 17.3 %

respectively. While real investment in the fourth quarter of 2011 was still 3.9 %

below it’s previous peak, real exports surpassed that peak in the first quarter of 2011

and were 5.3 % higher at the end of 2011. In contrast to this, private consumption

and government expenditure did not contribute at all to the fall in real GDP. Private

consumption did not change much between 2008 and 2010 and subsequently rose by

2.3 % until the end of 2011. Finally, government expenditure rose steadily since the

outbreak of the Financial Crisis and was 8.2 % higher at the end of 2011 than in

2008.9

Naturally, the developments in aggregate demand components during the Crisis

are reflected in the dynamics of industry value added (VA). As figure 3.3 shows,

manufacturing was by far the hardest hit sector of the German economy, contracting

by more than one fourth in the year after 2008q1. This large drop is not surprising

given that the manufacturing industry produces many of Germany’s exports and

investment goods. Moreover, at the end of 2011 real VA was still almost 10 % below

it’s pre-crisis level. Other industries that were negatively affected by the crisis were

trade and transport, constrcution and business services. However, their relative

declines were much smaller and only ranged from around 7 % to 12 % at their peak.

In contrast, the rest of the industries in Germany experienced considerable growth

since the outbreak of the crisis.10

In summary, we can therefore say that on the demand side most of the action

during the financial crisis in Germany happened in exports and aggregate invest-

ment, while on the supply side manufacturing witnessed by far the greatest decline.

Figure 3.4 illustrates that the absolute changes in nominal investment and man-

9The dynamics of nominal GDP are not shown here but they are qualitatively the same.
10Again, the dynamics of nominal VA are similar to those of real VA but are not shown here.

The only major difference is in the dynamics of agriculture and finance and insurance, but both

industries only account for a very small share of total VA.
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ufacturing VA indeed go a long way in accounting quantitatively for the drops in

aggregate GDP and VA. To be precise, in the second quarter of 2009 the absolute

drops in investment and manufacturing VA were 89 % and 75 % of the drops in the

respective aggregates.

3.2.2 Evidence of a Regime Shift during the Financial Crisis

The depth and speed of the decline in the German manufacturing industry during

the Financial Crisis was of unprecedented character. Between the cyclical peak in

January 2008 and the cyclical trough in April 2009 the volume of aggregate revenues

in the manufacturing industry declined by 25 %. The majority of this decline of 22

% took place within just six months between August 2008 and February 2009. Since

April 2009 aggregate revenues have been on a slow but steady rebound, but were

still 6 % below the previous peak in March 2012. This abrupt collapse in revenues is

clearly visible in figure 3.5 which plots the development of revenues in the German

manufacturing sector since 1991. It is also evident that this drop in activity was

much larger than any previous downturn no matter whether we look at revenues in

levels, month-on-month growth rates, year-on-year growth rates or at the cyclical

component.11

Table 3.1: Parameter values of the estimated markov-switching model

Parameter Estimated Value Description

μ1 0.001 (0.23) Intercept in regime 1

μ2 -0.056 (0.00) Intercept in regime 2

ρ1 0.908 (0.00) AR(1) parameter in regime 1

ρ2 0.725 (0.00) AR(1) parameter in regime 2

σ1 0.014 (0.00) Std of innovations in regime 1

σ2 0.026 (0.12) Std of innovations in regime 2

ω11 0.995 (0.00) Transition probability 1 to 1

ω12 0.005 (0.33) Transition probability 1 to 2

ω21 0.195 (0.33) Transition probability 2 to 1

ω22 0.805 (0.08) Transition probability 2 to 2

Notes: Values in parenthesis refer to the p-value of the respective parameter. The model was

estimated on HP-filtered data of the volume of revenues, where the standard smoothing pa-

rameter of 129,600 for monthly data was used.

11This extraordinarily large and quick drop is also evident in the value of reveneus, revenues

abroad, domestic revenues, output, orders, productivity and producer prices which can be seen

from figures 3.16 in the Appendix.
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Figure 3.5: Volume of revenues in German manufacturing since 1991

(a) Level (b) m-on-m growth

(c) y-on-y growth (d) Cyclical component

Notes: The y-on-y growth rate refers to the growth rate in each month with respect to the same

month in the previous year. The cyclical component was constructed with the HP-filter using the

standard smoothing parameter of 129,600 for monthly data. The dashed lines in panels (b), (c) and

(d) represent the sample mean and two standard deviation bands calculated over the entire sample

from 1991m1 to 2012m3. The gray shaded areas indicate the time period since 2008m1. Source:

German Federal Statistical Office, Own calculations.
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In order to formally investigate the presence of a regime shift in the German man-

ufacturing industry during the Financial Crisis a markov-switching AR(1)-model is

estimated for the period 1991m1 to 2012m3. As aggregate revenues contain a unit

root and because the model in section 3.3 is specified with a stationary driving

process, the model is estimated on HP-filtered data, where the standard smoothing

parameter of 129,600 for monthly data is used.12 The model is specified so as to

have two possible regimes and all the parameters are allowed to switch between the

regimes. The results of this estimation can be found in table 3.1.13

As can be seen the estimation results show that there is one highly persistent

regime with a zero intercept and a moderate variance, and a transitory regime

with a significantly negative intercept and a higher variance. The transitory regime

with the negative intercept can be interpreted as the Financial Crisis which can be

seen from figure 3.6 panel (a) which plots the smoothed probabilities of the second

regime. The probability of this regime jumps up to almost one in late 2008 and

early 2009 when the large drops in manufacturing activity materialized in Germany.

Hence, the formal estimation of a markov-switching model confirms the qualitative

evidence presented above that the manufacturing industry in Germany experienced

an unprecedented fall in revenues during the Financial Crisis.

3.2.3 The Response of Expectations during the Financial

Crisis

One of the questions that immediately comes to mind when looking at the regime

shift in manufacturing during the Financial Crisis is how it affected firms’ expecta-

tions regarding future demand and revenues. Given that such a large and sudden

drop in revenues had never happened before it seems reasonable to assume that there

was some uncertainty regarding the depth and persistence of this regime shift. In

retrospect it is fairly safe to say that the regime shift during the Financial Crisis was

a temporary phenomenon, which is confirmed by the estimated markov-switching

model in the previous subsection. However, it is at least conceivable that in real-

time firms did not know this for sure. In principle, the more persistent the regime

shift was perceived to be, the lower expectations about the future should have been.

Luckily, the IFO Institute publishes an index of expectations about the business

12All three versions of the augmented Dickey-Fuller test with a drift term, a trend term and

without any additional term do not reject the null hypothesis of a unit root at the 5 % level of

significance.
13The estimation was performed in MATLAB with the MS-Regress toolbox provided by Perlin

(2012).
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Figure 3.6: Evidence of a regime shift and the response of expectations

(a) Regime shift probabilties (b) IFO Expectations (balance)

Notes: The gray shaded regime shift probabilities in panel (a) are the smoothed probabilities from

the estimated markov-switching process. The gray shaded area in panel (b) indicates the time period

since 2008m1. Source: German Federal Statistical Office, Datastream, Own calculations.

development in the next six months for the German manufacturing industry. This

index is based on the balance of firms responding that they expect business to im-

prove minus the balance of firms that expect business to contract. As can be seen

from figure 3.6 panel (b), this expectations index witnessed an unprecedented drop

during the Financial Crisis, which is not surprising given the collapse in manufactur-

ing revenues. In order to explore whether expectations dropped by more than usual

during the Financial Crisis, the IFO expectations index was regressed on various

fundamental variables and a dummy variable that takes a value of one during the

worst crisis months.

The results of this exercise can be found in table 3.2. The estimated model

for expectations has a fairly high R2 of 0.958 and diagnostic tests show no indi-

cation of autocorrelation, heteroskedasticity, non-normality or non-linearity. As is

evident expectations in the manufacturing industry were significantly lower during

the Financial Crisis than what would have been the case if the historical relationship

between fundamentals and expectations had prevailed. This is a possible indication

that firms were expecting the regime shift to be quite persistent in the initial months

of the Financial Crisis.

97

Lang, Jan Hannes (2012), Uncertainty, Expectations, and the Business Cycle 
European University Institute

 
DOI: 10.2870/60758



Table 3.2: Results of regressing expectations on fundamentals

Variable Estimated Coefficient Description

Intercept 2.069 (0.001) Constant term

IFOt−1 0.994 (0.000) First lag of IFO expectations

IFOt−4 -0.182 (0.000) Fourth lag of IFO expectations

g orderst 0.270 (0.000) y-on-y growth rate of orders

g revenuest -0.296 (0.001) y-on-y growth rate of revenues

vdaxt -0.060 (0.010) DAX stock volatility index

crisist -5.905 (0.000) Dummy for worst crisis months

Notes: The model was estimated on monthly data for the time period 1994m5 - 2011m12. The esti-

mated model has an R2 value of 0.958. Lags one and four of the IFO expectations variable are needed

in order to avoid autocorrelation of the error term. Lags two and three are both insignificant and were

therefore omitted. Other diagnostic tests showed no indication of heteroskedasticity, non-normality or

non-linearity. The dummy variable for the Financial Crisis takes a value of one for the period 2008m7 to

2008m12. Values in parenthesis refer to the p-value of the respective coefficient. Data sources: Datas-

tream, German Federal Statistical Office.

3.2.4 The Behavior of Aggregate Investment

Finally, it is instructive to look at how investment in the manufacturing industry has

behaved during the Financial Crisis. Unfortunately quarterly investment data is only

available for the economy as a whole. However, yearly investment data is available

from 1995 to 2010 for 26 manufacturing sub-industries. Based on this data aggregate

time series were constructed for total investment and machinery investment which

makes up the major part of total investment in the manufacturing industry. As can

be seen from figure 3.7 total investment in the manufacturing industry dropped by

22 % between 2008 and 2009. Moreover, total investment hardly recovered in 2010

and was still 21 % below its previous peak in 2008. The dynamics for machinery

investment are very similar with a drop of 23 % between 2008 and 2009.

If we compare the yearly investment data in the manufacturing industry to the

quarterly data for the total economy in figure 3.2 it is evident that the huge drop in

2009 is similar in magnitude. However, manufacturing investment remained subdued

in 2010 whereas aggregate investment rebounded somewhat. In general, the speed

and magnitude of the investment drop in the manufacturing industry during the

Financial Crisis was unprecedented. In the majority of cases the year to year changes

in investment were well below 10 %, with the exception of the investment bust after

the stock market collapse between 2001 and 2002 and the investment boom in 2007

which saw investment changes of 13 % and 15 % respectively.
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Figure 3.7: Aggregate investment in the manufacturing industry since 1995

(a) Total Investment (b) Machinery Investment

Notes: The time series were constructed from aggregate data of plant level investment activity for

26 manufacturing sub-industries. The source data has a break in 2008 due to a change in industry

classifications. Figures after 2008 are therefore rescaled so as to provide a continuous series at the

break point in 2008. Data sources: German Federal Statistical Office, Own calculations.

3.3 Outline of the Basic Model

In this section I present a partial equilibrium heterogeneous firm model of investment

similar to Cooper and Haltiwanger (2006) and Bloom (2009). The firm faces convex,

and non-convex adjustment costs to investment, as well as partial investment irre-

versibilities. Compared to the model of Bloom (2009), labor adjustment costs are

disregarded which makes the labor input decision static and allows us to disregard

it in the analysis. This is mainly done to keep the model simple and focus on the

core mechanism at work. Such a model specification seems like a natural starting

point as Bloom (2009) has shown that disregarding investment adjustment costs

significantly biases the model, while disregarding labor adjustment costs has only

second order effects. The main difference of my model compared to the literature

on uncertainty shocks is that I make different assumptions about the profitability

process that firms face and regarding the information agents have when they make

their investment decisions.14 To be more precise, profitability is assumed to follow

a markov switching process with a switching mean and a constant variance of the

innovations. Moreover, firms are assumed not to observe the current regime of the

markov switching process directly. They simply observe the current realization of

14Profitability in this chapter is conceptually equivalent to what Bloom (2009) refers to as

business conditions. This difference in labeling is due to the fact that Bloom (2009) works with a

revenue function that takes the employment decision as an input whereas in this chapter the firm

faces a reduced form profit function, where the optimal decision of employment has already been

incorporated.
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profitability and need to form beliefs about the underlying regime of the markov

switching model.

This model set-up is motivated by the type of developments that were witnessed

in the German manufacturing industry during the Financial Crisis. The basic under-

lying idea of this specification is that variations in uncertainty are mainly driven by

variations in perceived uncertainty rather than by variations in the actual variance

of the driving process as is done in the existing uncertainty shocks literature. Per-

ceived uncertainty in this model will be elevated whenever agents are not sure which

regime has produced the realization of profitability, so that they mix the different

conditional densities of the regimes when making forecasts of future profitability.

In the following subsections, I will first lay out the details of the firm’s decision

problem, and then describe the profitability process and the updating of beliefs in

more detail. Finally, the Bellman Equation of the firm will be presented, which is

used for the value function iteration in later sections in order to solve the model.

3.3.1 Specification of the Firm’s Profit Function

There is a continuum of risk neutral firms indexed by i ∈ [0, 1] who maximize

the present discounted value of expected profit streams. In each period, the only

dynamic decision that the firm faces is to decide on the capital stock for the next

period. Labor can be adjusted freely in every period so that it is not part of the

dynamic optimization problem. The only source of uncertainty that firms face is

the profitability of capital in the future. The profit function takes the following

functional form:

Π(Ai,t, Ki,t) = φπA
c

1−b

i,t K
a

1−b

i,t (3.1)

In the above equation, φπ = (1−b)b[b/(1−b)]w[−b/(1−b)] is a constant parameter, Ki,t

is the capital stock and Ai,t is a reduced form profitability shock that summarizes the

effects of demand conditions and total factor productivity on profits. In addition,

c/(1 − b) > 0 and a/(1 − b) ∈ (0, 1) are constant parameters that determine the

curvature of the profit function.15 Such a profit function can be derived under the

assumption of a decreasing returns to scale (DRS) revenue function in capital and

labor, a constant wage (w) and freely adjustable labor that becomes immediately

available for production.16 Given this set-up it is easy to show that the optimal labor

input and the resulting revenues have the same functional form in (A,K) space as

15Here, a, b and c are the exponents on capital, labor and profitability in the revenue function.
16A DRS revenue function in capital and labor can be either due to DRS in the production

function and/or some degree of market power. See Lang (2012) for a detailed derivation of this

profit function.
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profits and only differ by a constant:17

L(Ai,t, Ki,t) = φlA
c

1−b

i,t K
a

1−b

i,t (3.2)

R(Ai,t, Ki,t) = φrA
c

1−b

i,t K
a

1−b

i,t (3.3)

3.3.2 Specification of Capital Adjustment Costs

The firm’s capital stock is fixed within each period, as it is assumed to take one

period for new capital to be installed and ready for production. Moreover, capital

is assumed to depreciate at the rate δ per period, so that the law of motion for

the capital stock is given by the following equation, where I denotes the level of

investment:

Ki,t+1 = Ki,t(1− δ) + Ii,t (3.4)

In line with the papers by Cooper and Haltiwanger (2006) and Bloom (2009)

it is assumed that the firm faces convex and non-convex costs of adjusting the

capital stock, as well as partial investment irreversibilities.18 Both, adjustment

costs and partial irreversibilities bring interesting non-linear dynamics to the capital

accumulation process and in particular will determine how variations in uncertainty

affect investment decisions. The adjustment cost function and the price of capital

are represented by the following equations:

C(Ai,t, Ki,t, Ii,t) =
γ

2
(Ii,t/Ki,t)

2Ki,t + (1− λ)Π(Ai,t, Ki,t)1{Ii,t �=0} (3.5)

p(Ii,t) =

{
ps , if Ii,t < 0

pb , if Ii,t > 0
(3.6)

The convex adjustment costs are assumed to be quadratic while the non-convex

adjustment costs are specified as a fraction of current profits (1 − λ).19 Finally, ps

denotes the selling price of capital and pb the buying price and it is assumed that

ps < pb so that there are partial irreversibilities for investment.

17The constants are given by φl = b[1/(1−b)]w[−1/(1−b)] and φr = b[b/(1−b)]w[−b/(1−b)] respectively.
18Both papers find that all these forms of capital adjustment frictions are needed to match the

micro data on investment behavior by plants/firms.
191{Ii,t �=0} is an indicator function that take a value of 1 whenever investment is nonzero, and a

value of 0 otherwise.
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3.3.3 The Profitability Process

The profitability of each firm i is assumed to follow an AR(1) markov-switching

process in logs with an aggregate and an idiosyncratic component:

Ai,t = ZtΨi,t (3.7)

zt = μz + ρzzt−1 + σηηt (3.8)

ψi,t = μψ,st + ρψ,stψi,t−1 + συ,stυi,t (3.9)

Here, a lower case letter refers to the logarithm of the variable. Moreover,

st ∈ S = {1, ..., n} denotes the current regime of the idiosyncratic profitability

process, n is the total number of regimes, and ηt ∼ N (0, 1) and υi,t ∼ N (0, 1).

The dynamic evolution of the regimes is assumed to follow a markov process with

transition matrix Ω with generic element Pr(st+1 = j|st = k) = ωkj. The markov-

switching process is specified in a general way so that in principle all parameters

could switch between the different regimes. However, in the applied sections further

below a parameterization is used that features only a switch in the mean of the

process from a high state to a low state. Compared to the existing literature20 I

therefore do not include any exogenous variations in uncertainty via the variance of

shocks. There are hence no changes in the cross-sectional dispersion of profitability

across firms as is normally the case for uncertainty shocks. This channel is usually

referred to as the volatility effect that materializes as a higher shock variance leads

to more dispersed fundamentals. However, there will be an effect on forecast den-

sities of firms during regime shifts due to the fact that it is assumed that firms do

not observe the underlying regime of the markov-switching process directly. This

imperfect information induces learning dynamics that cause endogenous variations

in uncertainty and expectations.

3.3.4 Bayesian Updating of Beliefs

Agents in the model are assumed to know the true data generating process (DGP)

given in equations (3.7) - (3.9) including all it’s parameter values. However, it is

also assumed that agents do not directly observe the true underlying regime that

has produced the current realization of idiosyncratic profitability. Therefore, in

every period they need to form beliefs about the underlying regime, after they

have observed the realization of profitability. Knowing the current regime of the

idiosyncratic profitability process matters for the decision of the firm because the

20See for example Bloom (2009), Bloom et al. (2010), Bachmann and Bayer (2011), Arellano et

al. (2011), Gilchrist et al. (2010) or Vavra (2012).
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forecast density for next period’s profitability will depend on it. In this chapter it is

assumed that firms update their beliefs about the current regime of the idiosyncratic

profitability process using Bayes’ Law.

In order to work out an analytical representation for this updating process, it is

useful to first define a couple of objects. Let Bi,t(j) be the subjective probability at

date t that firm i assigns to being in regime st = j after observing the realization of

current idiosyncratic profitability ψi,t. The associated probability mass function at

time t over all possible regimes is denoted by Bi,t. By definition of probabilities, we

have that
∑n

j=1 Bi,t(j) = 1 and Bi,t(j) ≥ 0. In the language of Bayesian updating,

Bi,t(j) is the posterior belief of firm i about being in regime j after observing the

signal ψi,t. Using Bayes’ Law this can be expressed as:

Bi,t(j) = Pr(st = j|ψi,t, ψi,t−1,Bi,t−1) =
f(ψi,t|ψi,t−1, st = j)Pr(st = j|Bi,t−1)

f(ψi,t|ψi,t−1,Bi,t−1)
(3.10)

In the equation above, f(·) denotes the density or likelihood of idiosyncratic

profitability, while Pr(·) denotes the probability of a particular regime. Given the

transition matrix Ω for the regimes and a prior belief vector Bi,t−1, the probability

of moving to a particular regime j is simply given by the sum of all the transition

probabilities that lead to this state, weighted by their respective subjective prior

probability:

Pr(st = j|Bi,t−1) =
n∑
k=1

Bi,t−1(k)ωkj (3.11)

Moreover, given the process for idiosyncratic profitability defined in equation

(3.9), the likelihood of current profitability conditional on regime j prevailing is

given by:

λi,t|j = f(ψi,t|ψi,t−1, st = j) =
1√

2πσ2
υ,j

exp

[
−(ψi,t − μψ,j − ρψ,jψi,t−1)

2

2σ2
υ,j

]
(3.12)

Finally, the likelihood of current profitability conditional on the subjective prior

beliefs about the underlying regime can be expressed as the sum of the conditional

likelihoods under each regime j weighted by the respective subjective probability of

moving to that regime. This implies that the perceived likelihood of idiosyncratic

profitability in period t, given information up to and including period t− 1, can be

expressed as:

λi,t = f(ψi,t|ψi,t−1,Bi,t−1) =
n∑
j=1

n∑
k=1

Bi,t−1(k)ωkjλi,t|j (3.13)
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With these objects in hand, it is easy to rewrite the Bayesian updating process

defined in equation (3.10) as:

Bi,t(j) =
∑n

k=1 Bi,t−1(k)ωkjλi,t|j
λi,t

(3.14)

This updating equation simply states that the posterior belief about regime st =

j, after observing current idiosyncratic profitability ψi,t, is equal to the likelihood of

observing ψi,t conditional on regime j multiplied by the prior subjective probability

of moving to that regime divided by the unconditional likelihood of observing ψi,t.
21

Moreover, equation (3.13) at lead one is used by firms to construct the forecast

density for idiosyncratic profitability in the next period. At this point it is useful to

note that Bi,t = h(ψi,t, ψi,t−1,Bi,t−1), i.e. the posterior beliefs about the underlying

regime are a function of past and present idiosyncratic profitability and last period’s

beliefs.

3.3.5 The Bellman Equation of the Firm

In order to isolate the effects of uncertainty due to imperfect information from the

effects due to changes in valuations of profit streams, firms are assumed to be risk

neutral and discount future profits with a constant discount factor β. In principle

it would be desirable to incorporate stochastic changes in the wage and the interest

rate in order to account for general equilibrium effects of large first moment shocks.

Due to computational constraints this has not been incorporated into the model yet,

but is planned to be included in future research. Given the objects defined in the

previous subsections, the dynamic decision problem of each firm can therefore be

summarized by the following Bellman Equation, where the firm subscript i for each

variable is omitted to save on notation, and primes denote next period variables:

V (A,K,B) = max
I

Π(A,K)−C(A,K, I)−p(I)I+βEA′,B′|A,B [V (A′, K ′,B′)] (3.15)

Π(A,K) is the reduced form profit function, C(A,K, I) captures investment

adjustment costs, and p(I) is the effective price of newly installed or retired capital.

B is a vector of size n that summarizes the distribution of beliefs about which

regime has produced the current realization of profitability. Finally, conditional

expectations are formed according to equation (3.13) at lead one.

21Unconditional on the current regime, but conditional on prior beliefs and idiosyncratic prof-

itability.
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3.3.6 Aggregate Dynamics

The cross-section of firms in the model is characterized by a time-varying density

gt(Ψi,t, Ki,t,Bi,t) across idiosyncratic profitability, capital and beliefs.22 In addition,

the aggregate profitability shock determines the aggregate dynamics of the model.

We can therefore define an aggregate state vector St = [gt(Ψi,t, Ki,t,Bi,t), Zt]. The

aggregate of a generic variable Xi,t can therefore be expressed as:

E[Xi,t|St] =
∫∫∫

gt(Ψi,t, Ki,t,Bi,t)Xi,t(Zt,Ψi,t, Ki,t,Bi,t)dΨdKdB (3.16)

3.4 The Effect of Learning on Uncertainty and

Expectations

Now that the structural framework for the analysis has been outlined, it is in-

structive to understand how imperfect information and Bayesian learning influence

uncertainty and expectations. To this end it is first necessary to define the exact

meaning of uncertainty within the context of the model. Moreover, it is necessary to

understand the factors that influence the dynamics of beliefs about the underlying

regime of the markov-switching process and how these beliefs affect expectations.

3.4.1 Definition of Uncertainty within the Model

Before moving to the analysis of the effect of learning on uncertainty and expecta-

tions, it is necessary to define what is meant by uncertainty within the context of the

model. In the existing uncertainty shocks literature, uncertainty is usually defined

as the variance of shocks hitting the system.23 This concept of uncertainty is there-

fore equivalent to the volatility of fundamental shocks and there are generally two

channels through which variations in uncertainty affect outcomes. On the one hand,

higher volatility leads to more dispersion in the realizations of shocks across agents.

On the other hand, higher volatility leads to more dispersed forecast densities when

agents form expectations about the future.

In contrast to this concept, uncertainty within the current chapter is defined as

confusion about the true underlying regime of the markov-switching process. Hence,

uncertainty in the model stems from incomplete information and is not necessarily

22Note that the dimensionality of the belief vector varies with the number of possible regimes. In

general, we require the belief vector to be of dimension n−1 to summarize all available information.
23See for example Bloom (2009), Bloom et al. (2010), Bachmann and Bayer (2011), Arellano et

al. (2011), Gilchrist et al. (2010) or Vavra (2012).
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related to more volatility of the fundamental shocks. Whenever there is uncertainty

regarding the true underlying regime, agents will mix the conditional forecast den-

sities under each regime according to their perceived probabilities. Depending on

the parameter values of the markov-switching process in each of the regimes, this

mixing of conditional densities can have implications for both first and second mo-

ments of the forecast density used by agents. In contrast, in the existing literature

uncertainty shocks only have second moment implications for forecast densities as

they are equivalent to mean preserving spreads.

3.4.2 Analytical Results for The Dynamics of Expectations

Because beliefs about the underlying regime of the markov-switching process play

such a paramount role in determining the forecast densities used by agents, it is

necessary to understand which factors influence their dynamics. By the mechan-

ics of Bayesian learning, for a given prior belief vector Bi,t−1 the posterior beliefs

will depend on the overlap of the conditional densities under each regime and on

the transition probabilities between the regimes. When the overlap of conditional

densities is large, it is hard to distinguish which regime produced the current ob-

servation and agents will often be confused about the true underlying regime. On

the other hand, when the overlap of conditional densities is low, agents will know

most of the time in which regime they are. In addition, the transition probabilities

determine the relative frequencies with which the different regimes occur. Hence,

lower posterior probabilities are put on regimes that are less likely. In order to see

how the dynamics of beliefs affect the forecast densities used by agents, it is use-

ful to derive an expression for the expectation of an arbitrary function m(·) of the
logarithm of next period idiosyncratic profitability:

E [m(ψi,t+1)|ψi,t,Bi,t] =
n∑
j=1

n∑
k=1

Bi,t(k)ωkjE [m(μψ,j + ρψ,jψi,t + συ,jυi,t+1)] (3.17)

As can be seen, the expectation is simply a weighted average of the expectation

under each regime, where the weights are the subjective probabilities of each regime

to occur. Hence, uncertainty about the underlying regime will influence the moments

of the forecast density whenever the densities under some of the regimes differ. In

most cases there will be a trade-off between the magnitude and persistence of the

influence of learning on forecast densities. When the overlap of the densities under

the different regimes is low, learning dynamics will normally be of short duration

but the impact on forecast densities will be considerable due to the large difference

in conditional densities. In contrast, when the overlap of the conditional densities

is large, learning dynamics will be persistent but have a limited impact on forecast

106

Lang, Jan Hannes (2012), Uncertainty, Expectations, and the Business Cycle 
European University Institute

 
DOI: 10.2870/60758



densities. However, this need not always be the case. The impact of learning on

forecast densities can still be large even if two regimes have a perfect overlap of

densities. This will be the case when there exists at least one other regime with a

different DGP and the transition probabilities to this other regime differ considerably

between the regimes with the same DGP. This set-up will actually be employed

further below when an indicative parameterization for the German manufacturing

industry during the Financial Crisis is explored.

Given the general expression for expectations in equation (3.17) it is easy to

derive formulas for the mean and the variance of the forecast density of idiosyncratic

profitability in levels:

E [Ψi,t+1|Ψi,t,Bi,t] =
n∑
j=1

n∑
k=1

Bi,t(k)ωkj
[
Ψ
ρψ,j

i,t e
μψ,j+

σ2
υ,j
2

]
(3.18)

V [Ψi,t+1|Ψi,t,Bi,t] =
n∑
j=1

n∑
k=1

Bi,t(k)ωkj
[
Ψ

2ρψ,j

i,t e2μψ,j+2συ,j
]

−
[

n∑
j=1

n∑
k=1

Bi,t(k)ωkj
[
Ψ
ρψ,j

i,t e
μψ,j+

σ2
υ,j
2

]]2
(3.19)

3.4.3 Simulating A Regime Shift and Learning Dynamics

The specification of the markov-switching process has been very general so far, al-

lowing an arbitrary number of regimes and potential switches in all the possible

parameters. Given this general set-up the introduction of imperfect information

and Bayesian learning can have very different effects depending on the parameters

of the markov-switching process and the type of regime shift. Imperfect information

could mute, amplify or propagate aggregate dynamics compared to full information.

As the goal of this chapter is to explore the potential role of learning in the Ger-

man manufacturing industry during the Financial Crisis, a parameterization that is

broadly in line with the observed developments is explored in the following.

The main features of the chosen specification are that there are three possible

regimes and the only parameter that switches between the regimes is the intercept

term. The first regime is very persistent and features a high mean. The other

two regimes have exactly the same DGP with a low mean, but one of the regimes

is transitory while the other regime is highly persistent. This is reflected in the

transition probabilities back to the high mean regime. This set-up is motivated by

the fact that the German manufacturing industry was in a normal (high) state from

the beginning of the 1990’s until the middle of 2008 and in late 2008 and early 2009

there was a fairly temporary regime shift to a crisis (low) state. The introduction
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of a third crisis regime that is highly persistent is motivated by the fact that the

drop in manufacturing activity was unprecedented and it is conceivable that at the

time firms were therefore highly uncertain about the persistence of the collapse in

demand. The fact that only the intercept term is chosen to switch is done in order to

isolate the type of uncertainty due to imperfect information from the standard way

of modeling uncertainty shocks through changes in the innovation variance. The

specific parameter values that were chosen can be found in table 3.3.24

Table 3.3: Parameter values for the simulation of the markov-switching process

Parameter Value Description

μψ,1 0.00 Intercept of idiosyncratic profit.

μψ,2/3 -0.13 Intercept of idiosyncratic profit.

ρψ,1/2/3 0.95 AR(1) parameter of idiosyncratic profit.

συ,1/2/3 0.05 Std of idiosyncratic innovations

ω11 0.97 Transition probability high - high

ω12 0.015 Transition probability high - low transitory

ω13 0.015 Transition probability high - low persistent

ω21 0.93 Transition probability low transitory - high

ω22 0.07 Transition probability low transitory - low transitory

ω33 0.97 Transition probability low persistent - low persistent

ω31 0.03 Transition probability low persistent - high

In order to study the dynamics of beliefs and expectations for this process, the

following simulation exercise is performed: After a long sequence of high regimes

there is a one time switch to the low transitory state for two periods, after which

the process switches back to the high regime. Such a sequence of regimes is roughly

consistent with the regime shift that took place in the German manufacturing in-

dustry during the Financial Crisis that lasted for approximately six months (i.e.

two quarters). This sequence of regimes is simulated for a panel of 50,000 firms in

order to generate cross-sectional distributions of idiosyncratic profitability, beliefs

and forecast densities.

The top left panel in figure 3.8 displays the underlying regime switch from the

first state to the second state in period one that lasts for two periods. The remaining

panels show the average response of beliefs for the simulated cross-section of firms

in response to this regime shift. Before the regime shift takes place, firms put a very

high probability of 0.98 on being in the high mean state which is the true underlying

24See section 3.5.1 for a discussion of the chosen parameter values.
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Figure 3.8: The dynamics of beliefs after a transitory regime shift

regime. In the two periods of the regime shift the average probability of still being

in the high regime drops to 0.49 and 0.25 and subsequently quickly converges back

to the initial level as the high regime prevails again. At the same time, the beliefs

about regimes two and three jump up from around 0.01 to 0.22 and 0.29 respectively

when the regime shift takes place. In the second period of the regime shift, firms

put a much higher probability on being in the low persistent state of 0.66 compared

to a probability of being in the low transitory state of 0.09. This is simply due

to the fact that a second period of low realizations is much more likely under the

persistent regime. Once the underlying state switches back to the high regime, both

beliefs quickly converge back to their initial levels. In that sense, firms get more

pessimistic about the future the longer the transitory regime shift remains.

The main question of interest is how these variations in uncertainty affect the

expectations of firms compared to the case of perfect information where the true

underlying regime is observed. The answer to this can be found in figure 3.9. While

the dynamics of the distribution of profitability across firms is exactly the same

for perfect information and Bayesian learning, the dynamics of mean forecasts and

forecast standard deviations differ considerably. In particular, on average mean

forecasts drop by much more and forecast standard deviations increase by much

more under learning compared to perfect information. The mechanism behind this

is that in the case of learning, firms attach some weight on being in the low persistent
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Figure 3.9: The dynamics of the profitability distribution and forecast densities

regime, even though they are in the low transitory regime. This results in a higher

probability being attached to still being in the low regime in the next period, which

causes mean forecasts to be lower and forecast standard deviations to be higher.

One additional aspect to note is that even though the average forecast standard

deviation is affected by the regime shift, the cross-sectional dispersion of profitability

stays constant throughout.25 However, even though the dispersion of profitability

across firms stays constant over time, there is more cross-sectional dispersion of

expectations during the regime shift in the case of imperfect information, which can

be seen from figure 3.10. In particular, the cross-sectional standard deviation of

mean forecasts and forecast standard errors increases considerably for the case of

learning while they are unaffected when there is perfect information.

The mechanism behind this is that beliefs become more dispersed across firms

during the regime shift, which translates into more cross-sectional dispersion in the

forecast densities used by firms. Before the regime shift takes place all firms are

fairly certain about being in the high mean regime. However, when the regime shift

occurs the idiosyncratic shocks in effect act like heterogeneous signals about the

underlying regime and cause beliefs and expectations to become more dispersed. Of

course, if firms could observe the mean of the cross-sectional distribution of prof-

25The very small variations in the cross-sectional standard deviation of idiosyncratic profitability

are solely due to sampling.
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Figure 3.10: The dynamics of cross-sectional dispersion in beliefs and forecasts

itability this heterogeneity in beliefs would disappear. However, in reality aggregate

variables are published with a time lag and are hence not immediately observable.

As a first approximation it therefore seems reasonable to assume that firms only

observe their own realization of profitability.26 This increase in cross-sectional dis-

persion of expectations for the case with Bayesian learning could be an interesting

mechanism to explain why survey responses by firms and professional forecasters get

more dispersed during downturns (See Bachmann et al. (2010) and Bloom (2009),

Bloom et al. (2010), Dovern et al. (2009) respectively).

3.5 The Effect of Time-Varying Uncertainty on

Investment

Now that the dynamic implications of Bayesian learning for uncertainty and ex-

pectations have been explored, it is possible to move on to the analysis of how

26In principle it would be possible to condition beliefs on past aggregate variables. Nevertheless,

this would still result in dispersion of beliefs to increase directly after a regime shift and simply

reduce the persistence of the increase in the dispersion of beliefs. In order to keep the model

as simple as possible, it is therefore assumed that firms only observe their own realization of

profitability.
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this type of time-varying uncertainty affects aggregate investment. As a full-fledged

estimation or calibration of the model with German manufacturing data is not fea-

sible at this stage due to time constraints, a number of different illustrative model

parameterizations are explored in this section.

3.5.1 Parameterization and Outline of the Simulation

Throughout the various simulations the parameter values in table 3.3 are used for

the markov-switching process of idiosyncratic profitability. Moreover, all other pa-

rameters except for the adjustment costs are kept constant across the different sim-

ulations, the values of which can be found in table 3.4. Even though the parameters

are not calibrated, they are chosen to take on ’reasonable’ values for a model of

the German manufacturing industry at a quarterly frequency. Hence, the discount

rate is set to 0.99 and the depreciation rate to 0.025. The revenue function is cho-

sen to have constant returns to scale in (A,K,L) space which is consistent with

the assumption of a Cobb-Douglas production function and some degree of market

power.27 The exponents on capital and labor are chosen to be 0.25 and 0.50, which

is equivalent to saying that the production function has exponents of 1/3 and 2/3

on capital and labor and the demand elasticity is equal to 4.28 This also implies that

the profit function has an exponent of 0.5 on capital.29 Moreover, with this set-up

the profitability shocks have the interpretation of demand shocks30, which seems

appropriate for studying the German manufacturing industry during the Financial

Crisis.

The aggregate shock is chosen to have an AR(1) parameter of 0.77 and the stan-

dard deviation of shocks is set to 1.94 %. Finally, the idiosyncratic markov-switching

process is parameterized with one high and two low regimes. The persistence param-

eter is set to 0.95 and the standard deviation of shocks to 5 % in all three regimes.

The only parameter that switches between the regimes is the intercept which takes

a value of 0 in the high state and a value of -0.13 in the two low states. Recall at this

stage that the regime shift in German manufacturing lasted for about two quarters

and revenues fell by 25 %. This specification of the markov-switching process will

therefore lead to a similarly sized drop in the mean of the profitability distribution

for a two period regime shift from the high to the low transitory regime, as can be

27This specification is in line with Bloom (2009) which is the leading recent paper on uncertainty

shocks and investment.
28These assumptions are in line with Bloom (2009) and Bloom et al. (2010).
29For comparison, Cooper and Haltiwanger (2006) estimate a value of 0.592 for the US manu-

facturing industry.
30See Lang (2012) for an exposition of this result.
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seen in the top left panel of figure 3.9. Finally, the high regime is chosen to persist

with a probability of 0.97 as is the low peristent regime. The low transitory regime

is chosen to persist with only a 0.07 probability and switch back to the high regime

with a 0.93 probability.

Table 3.4: Common parameter values across the various model simulations

Parameter Value Description

β 0.99 Discount factor

δ 0.025 Depreciation rate

a 0.25 Exponent on capital

b 0.50 Exponent on labor

c 1− a− b Exponent on profitability

w 1 Wage rate

pb 1 Price of capital

μz 0 Intercept of aggregate profit.

ρz 0.77 AR(1) parameter of aggregate profit.

ση 0.0194 Std of innovations to aggregate profit.

The simulation exercise for the various models closely follows the one performed

in section 3.4.3 for the markov-switching process. Starting from a long sequence of

high regimes there is a one time switch to the low transitory regime that lasts for

two quarters after which the high regime prevails again. Throughout the exercise

aggregate shocks are turned off and set to the unconditional mean of the AR(1)

process. This sequence of shocks is simulated for a panel of 1,000 firms and repeated

100 times. The reported results are then averaged over the 100 simulation runs.

The dynamics of the cross-section of beliefs, forecast densities and idiosyncratic

profitability are therefore the same as discussed above and will not be presented

again in this section.

3.5.2 The Case without Adjustment Costs

For the case where there are no capital adjustment costs, the model presented in

section 3.3 allows for an analytical solution. Taking the first-order and envelope

conditions of the Equation (3.15) and solving for next period’s capital stock yields

the following capital policy function:

K ′(Zt,Ψi,t,Bi,t) = ϕE
[
(Zt+1Ψi,t+1)

c
1−b | Zt,Ψi,t,Bi,t

] 1−b
1−a−b

(3.20)
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In the above policy function ϕ = [(aβφπ)/([1 − b][p − pβ(1 − δ)])]
1−b

1−a−b is a

constant that depends on the structural parameters of the model. As is common for

a model without adjustment costs, the current capital stock does not influence the

optimal choice of next period’s capital stock. The only factor that determines the

optimal accumulation of capital is the expectation of future profitability. However,

this expectation is now influenced by the current beliefs about the underlying regime

of the markov-switching process. Applying the formula derived in equation (3.17)

it is easy to rewrite the capital policy function as:

K ′(Zt,Ψi,t,Bi,t) =

(
n∑
j=1

n∑
k=1

Bi,t(k)ωkj
[
Ψ
ρψ,j

c
1−b

i,t eμψ,j
c

1−b
+

σ2
υ,j
2 ( c

1−b)
2
]) 1−b

1−a−b

ϕ

(
eμzZρz

t e
σ2
η
2

c
1−b

) c
1−a−b

(3.21)

With this policy function in hand, it is easy to simulate the model for a panel

of firms and construct aggregates for investment and revenues.31 The results of this

can be found in figure 3.11. There are three main results that stand out. First,

Bayesian learning and the endogenous variations in uncertainty associated with it

amplify the temporary regime shift compared to the case of perfect information. In

particular, the investment drop in the two periods of the regime shift is considerably

larger under learning due to the fact that on average firms put a considerable weight

on being in the low persistent regime. This in turn leads to a lower capital stock

in subsequent periods and causes a larger drop in aggregate revenues compared to

perfect information. Quantitatively, the maximum additional drops in investment

and revenues caused by the endogenous uncertainty are around 125 % and 2.8 %.

This leads us to the second main result. For both models with perfect information

and learning the investment response is orders of magnitude larger than what is

observed in the data. Compared to the initial level under the high regime, aggregate

investment falls by 480 % and 580 % respectively in the first period of the regime

change. I.e. disinvestment takes place on a huge scale, which is definately not

consistent with what we saw in the data as was shown above. This investment

response is not surprising though, given the large drop in average profitability that

is induced by the regime change and the fact that capital can be sold at no loss.

Hence, as is common for models without capital adjustment costs, investment is

much too volatile and in particular negative values of aggregate investment occur

which does not fit the data. Hence, this shows that some form of capital adjustment

costs are needed to match the data no matter whether a model with or without

31The dynamics of aggregate profits and labor are equivalent to the ones for revenues in the

model at hand.
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Figure 3.11: The dynamics of aggregates for the case without adjustment costs

learning is considered.

Finally, the third result is that the drop and rebound in revenues associated with

the regime change is quantitatively roughly consistent with developments in the Ger-

man manufacturing industry during the Financial Crisis. In particular, aggregate

revenues drop by a maximum of 24.4 % and 21.6 % with and without learning three

quarters into the crisis. Subsequently reveneus start to rebound in both cases but

are still 11.6 % below the previous peak four years after the start of the crisis.

Both the drop and the rebound are approximately in line with the dynamics in the

German manufacturing industry which are displayed in figure 3.3.

3.5.3 Various Models with Adjustment Costs

The simulation results for the model without adjustment costs show that some form

of capital adjustment cost is needed in order to match aggregate investment data

in the German manufacturing industry during the Financial Crisis. Unfortunately

an analytical solution to the model no longer exists once we incorporate various

forms of adjustment frictions. It is therefore necessary to solve the model using

numerical methods in order to study the role of endogenous variations in uncertainty

for aggregate investment and revenues. The solution method employed to solve the

model was discrete value function iteration with simplicial interpolation. Details of
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the numerical algorithm can be found in the Appendix.

Table 3.5: Adjustment cost parameters for the various model simulations

Model ps λ γ Description

quad-2 1.0 1.0 2 Only quadratic ACs

quad-6 1.0 1.0 6 Only quadratic ACs

fix-70 1.0 0.7 0 Only fixed ACs

fix-95 1.0 0.95 0 Only fixed ACs

irr-70 0.7 1.0 0 Only partial irreversibilities

irr-95 0.95 1.0 0 Only partial irreversibilities

all-1 0.7 0.95 6 All forms of ACs

all-2 0.9 0.99 6 All forms of ACs

In order to study how adjustment costs change the response of aggregate in-

vestment to a regime shift with endogenous variations in uncertainty a number of

different illustrative model parameterizations are solved and simulated. The dif-

ferent combinations of adjustment cost parameters for each of the models can be

found in table 3.5. Due to the fact that various degrees of convex and non-convex

adjustment costs have been estimated in the literature, each of the three adjust-

ment cost mechanisms is solved once for a moderate and once for a high value.32

The associated investment impulse responses to a temporary regime shift with and

without Bayesian learning can be found in figure 3.12.

The first thing to note is that the introduction of investment adjustment costs,

independent of the specific form, makes the response of aggregate investment to the

regime shift much more persistent compared to the case without any adjustment

costs. No matter whether we look at the case of Bayesian learning or perfect in-

formation, aggregate investment stays below the pre-crisis level for many quarters

after the initial shock. However, the magnitude and persistence of the fall in aggre-

gate investment differs considerably between the various model parameterizations.

Moreover, the degree to which the investment responses differ between perfect in-

formation and Bayesian learning depends to a large extent on the parameter values

used.

As can be seen from the top two panels in figure 3.12 learning plays a major

role in shaping the investment response when only quadratic adjustment costs are

32Cooper and Haltiwanger (2006) for example estimate high fixed costs, low quadratic adjustment

costs and low irreversibilities. Bloom (2009) in contrast estimates high irreversibilities, and low

fixed and quadratic adjustment costs. Moreover, Hayashi (1982) estimates a fairly high quadratic

adjustment cost.
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Figure 3.12: The dynamics of aggregate investment with adjustment costs

117

Lang, Jan Hannes (2012), Uncertainty, Expectations, and the Business Cycle 
European University Institute

 
DOI: 10.2870/60758



present. In particular, learning amplifies the investment drop considerably in the

first three periods after the regime shift, because firms are on average uncertain

about the underlying regime and attach considerable weight on being in the low

persistent one. Hence, they are more pessimistic about the future and invest less.

The qualitative response of aggregate investment is more or less the same for a

moderate and a high value of quadratic adjustment costs. Quantitatively though a

higher value necessarily mutes the investment response as it is more costly to make

large adjustments to the capital stock. With γ = 2 aggregate investment under

learning drops by a maximum of over 150 % while with γ = 6 the maximum drop

is only around 80 %.

Moving on the the case of partial irreversibilities only, it is apparent that the

effect of imperfect information depends to a large extent on the magnitude of the

irreversibility. For large irreversibilities the investment responses under perfect infor-

mation and learning are very similar with only a slight amplification under learning

in the first period of the regime shift. The intuition for this surprising result is that

even under perfect information, aggregate investment activity virtually stalls when

the regime shift takes place. In addition, due to the presence of large irreversibilities

aggregate investment does not cross into the negative territory under learning, even

though firms are much more pessimistic about future prospects. For a lower value

of partial irreversibilities aggregate investment still drops to almost zero during the

regime shift under perfect information, but this time it collapses to a maximum of

minus 250 % of the initial investment level under learning. The reason is that with

the lower irreversibility more firms now hit their lower investment triggers, i.e. they

sell capital.

For the case of fixed costs only, the results are very similar to the case of partial

irreversibilities only. For large fixed costs learning does not make a big difference

for aggregate investment due to the virtual collapse even under perfect information.

However, with moderate fixed costs learning amplifies the investment drop consid-

erably as more firms hit their disinvestment triggers due to the more pessimistic

beliefs and a smaller inaction region caused by the lower fixed cost.

Finally, when all three forms of adjustment frictions are incorporated, learning

only plays a major role for the investment response whenever the fixed adjustment

costs are not too high.33 Even when the fixed cost is only 5 % of profits, the invest-

ment responses under learning and perfect information are very similar, dropping

to almost zero after the regime shift. This fact is not due to the considerable ir-

33Of course this statement only applies to the type of parameterizations considered here. In

particular, for another markov-switching process results could be different if aggregate investment

would not fall down to zero under full information.
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reversibilities of a 30 % resale loss in this parameterization, as the same version

of the model without fixed costs produces a considerable difference in investment

responses.34 Once the fixed cost is quite low, there is again a considerable downward

amplification of the investment reponse under imperfect information.35 Moreover,

the qualitative dynamics are mainly governed by the quadratic adjustment cost pa-

rameter, while the level of the partial irreversibilities seems to play only a minor

role and the fixed cost simply shifts down the aggregate investment responses.

For completeness, figure 3.13 also plots the dynamics of aggregate revenues for

the models where learning plays the biggest role in shaping the response of aggregate

investment. By definition, the difference between aggregate revenues under learning

and perfect information are solely due to differences in the accumulation of capi-

tal. Therefore, the downward amplification of aggregate revenues is greatest where

the downward amplification of investment is greatest. Naturally, the amplification

is much smaller for revenues than for investment, ranging from 1 % to 2 %. One

exception is the case with only moderate fixed costs of 5 % of profits. For that case

the maximum downward amplification of revenues due to learning is around 5 %,

which comes from the large incvestment drop of more than 400 % after the regime

shift. Quantitatively, the two period regime shift causes drops in aggregate revenues

of around 12 % to 18 % depending on the parameterization and informational as-

sumptions. This is still considerably smaller than the drop of around 25 % witnessed

during the Financial Crisis in the German manufacturing industry.

In order to assess which of the adjustment cost parameterizations is most appro-

priate for the German manufacturing industry, it is useful to examine the overall

volatility of aggregate investment and aggregate revenues as well as some of the

micro investment moments when the models are simulated with aggregate shocks

only and regime shifts are shut off. As can be seen from table 3.6 some degree of

quadratic adjustment costs are necessary, otherwise aggregate investment is way to

volatile compared to the data. Moreover, it is hard to match both the inaction rate

and the rate of investment bursts at the same time. Interestingly these failures of

structural models of investment have not been sufficiently discussed in the litera-

ture. In particular, only including non-convex adjustment costs induces too much

investment volatility in the aggregate. As the two leading papers on the estimation

of capital adjustment costs by Cooper and Haltiwanger (2006) and Bloom (2009)

find only small quadratic adjustment costs when trying to match micro investment

moments, this indicates that both micro and macro moments need to be considered

34This second version of the model is not shown here, but investment under full information only

falls by a maximum of around 30 % and under learning by a maximum of around 80 %.
35For values of λ between 0.97 and 0.99 and γ = 6 learning plays a major role.
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Figure 3.13: The dynamics of aggregate revenues with adjustment costs

when taking these models to the data.

Table 3.6: Volatility and investment moments for the various model simulations

Model Inact Burst Pos Neg CV-I CV-R

Data 0.114 0.127 0.736 0.023 0.055 0.043

quad-2 0.061 0.000 0.939 0.000 0.036 0.018

quad-6 0.010 0.000 0.990 0.000 0.005 0.017

fix-70 0.966 0.035 0.000 0.000 0.374 0.025

fix-95 0.937 0.063 0.000 0.000 0.375 0.024

irr-70 0.424 0.000 0.576 0.000 0.337 0.024

irr-95 0.457 0.000 0.543 0.000 0.341 0.025

all-1 0.500 0.000 0.499 0.000 0.115 0.019

all-2 0.018 0.000 0.982 0.000 0.006 0.017

Notes: All the micro investment moments refer to the investment rate. Inact refers to the inaction

rate defined as ± 1 %, Burst refers to investment bursts of more than 20 %, Pos refers to positive in-

vestment between 1 % and 20 % and Neg refers to investment rates of below - 1 %. CV-I and CV-R

represent the coefficient of variation for aggregate time series of investment and revenues. In the data

the standard deviation of the cyclical components is taken so that both measures can be interpreted

as percentage deviations from the mean. The micro investment moments are for the German manu-

facturing industry and are taken from the data appendix of the paper by Bachmann and Bayer (2011).
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3.6 Conclusion

Ever since the outbreak of the Financial Crisis in 2008 uncertainty has received

renewed interest in the quantitative macro literature as a shock that drives aggre-

gate fluctuations. However, these variations in uncertainty are usually modeled as

changes in the shock variance of fundamentals and in that sense they are exogenous

and similar in spirit to first-moment productivity shocks. In contrast, this chapter

has studied endogenous variations in uncertainty and aggregate fluctuations that

result from imperfect information and learning in an environment where regime

changes in the mean happen occasionally. The idea behind this set-up is that when-

ever unprecedented regime shifts occur, agents become more uncertain about the

true data generating process (DGP) and therefore mix different conditional distri-

butions when forming expectations about the future. In fact, the German manufac-

turing industry during the Crisis was shown to fit such a set-up quite well. Since

1991 manufacturing experienced considerable growth, but in middle 2008 output

collapsed by 25 % within six months. This regime shift was unprecedented and

expectations fell much more than can be explained by fundamentals.

With this empirical background in mind a partial equilibrium heterogeneous firm

model that features capital adjustment costs, a markov-switching driving process

and imperfect information about the underlying regime was built and simulated.

There are two main findings that come out of the exercises. First, imperfect infor-

mation leads endogenously to temporarily higher uncertainty about the underlying

regime after a regime shift. On average this leads to lower mean forecasts and higher

forecast standard errors compared to full information. Moreover, during the regime

shift the dispersion in beliefs increases considerably, as every firm gets in effect an

idiosyncratic signal about the underlying regime shift. The increase in belief dis-

persion across firms in turn causes the cross-sectional dispersion of mean forecasts

and forecast standard errors to increase. This mechanism could be interesting in

order to explain why survey responses by firms and professional forecasters get more

dispersed during downturns36.

Second, these endogenous variations in uncertainty can lead to considerable

downward amplification of aggregate investment and revenues during a temporary

downward regime shift. This is true for all types of adjustment costs. However,

in order to match the empirical volatility of aggregate investment some degree of

quadratic adjustment costs is necessary. For such a parameterization with moderate

fixed and quadratic adjustment costs and considerable irreversibilities aggregate in-

36See Bachmann et al. (2010) and Bloom (2009), Bloom et al. (2010), Dovern et al. (2009)

respectively.

121

Lang, Jan Hannes (2012), Uncertainty, Expectations, and the Business Cycle 
European University Institute

 
DOI: 10.2870/60758



vestment drops more than twice as much under Bayesian Learning compared to full

information. In addition, the persistence of the investment drop gets increased. This

shows that endogenous variations in uncertainty that are due to imperfect informa-

tion can have interesting amplification and propagation implications for aggregates.

Due to computational and time constraints a full fledged calibration or estimation

of the model using SMM was not performed. However, in future research it is

planned to estimate adjustment costs along side the role of imperfect information

and learning with German firm and plant level manufacturing data.

122

Lang, Jan Hannes (2012), Uncertainty, Expectations, and the Business Cycle 
European University Institute

 
DOI: 10.2870/60758



Appendix A: The Dynamics of Aggregate Invest-

ment Components

Because aggregate investment fell so much during the Financial Crisis in Germany,

it is useful to consider it’s dynamics in greater detail. In order to put the drop

in aggregate investment in 2008 and 2009 into a broader picture, figure 3.14 panel

(a) plots aggregate investment since the beginning of the 1990’s. As can be seen,

aggregate investment experienced a similarly large drop after the stock market col-

lapse at the beginning of the 2000’s although spread out over a longer time period.

Moreover, investment increased fairly rapidly by more than 20 % between 2005 and

the beginning of the financial crisis. Overall, aggregate investment went through

three large swings since the middle of the 1990’s.

When relating nominal investment to GDP though, as done in panel (b) of

figure 3.14, it becomes evident that the investment share has been on a steady

decline since the beginning of the 1990’s until 2005 from almost 24 % to around 17

%. Since then the investment share has fluctuated around 18 %. The slump and

rebound in investment during the financial crisis also manifested itself in a decline

and subsequent rise again in the investment share.

As mentioned above, the fall in real investment during the financial crisis was

22.3 % and had not yet regained it’s pre-recession level at the end of 2011. Figure

3.15 panel (a) shows that this fall in real investment was mainly due to a steep fall of

24.5 % in equipment investment, while investment in structures fell by slightly less

than 9 %. Other investment actually increased by 17.3 % between 2008 and 2011.

Panel (b) shows that similar dynamics hold for nominal investment figures. Finally,

panels (c) and (d) show that the subcomponents of investment in equipment and

structures display roughly similar dynamics as the aggregates.
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Figure 3.15: Developments in aggregate investment and it’s components since 2008

(a) Real investment (b) Nominal investment

(c) Real investment in equipment (d) Real investment in structures

Source: German Federal Statistical Office

Figure 3.14: Developments in aggregate investment since 1991

(a) Real investment (b) Investment share in GDP

Source: German Federal Statistical Office
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Appendix B: Supplementary Figures
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Figure 3.16: Developments in the manufacturing industry since 1991

(a) Revenues (Volume) (b) Revenues (Value)

(c) Revenues Abroad (Volume) (d) Revenues Domestic (Volume)

(e) Output (f) Orders (Volume)

(g) Productivity (h) PPI industrial production ex energy

Source: German Federal Statistical Office, Datastream
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Figure 3.17: Developments of survey indices in the manufacturing industry

(a) IFO Index (balance) (b) IFO Situation (balance)

(c) IFO Expectations (balance) (d) IFO Demand (balance)

(e) IFO Trade (balance) (f) IFO Production (balance)

(g) IFO Orders (balance) (h) IFO Prices (balance)

Source: Datastream
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Figure 3.18: Developments of investment in the manufacturing industry

(a) Total Investment (Firms) (b) Total Investment (Plants)

(c) Machinery Investment (Firms) (d) Machinery Investment (Plants)

(e) Structures Investment (Firms) (f) Structures Investment (Plants)

(g) Total Revenues (Firms) (h) Total Revenues (Plants)

Source: German Federal Statistical Office, Own calculations
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Appendix C: Description of Data Sources

The data being used in this chapter was obtained from three different sources: The

GENESIS database of the German Federal Statistical Office, the online database of

the Deutsche Bundesbank, and Thomson Reuters Datastream. Most of the series

are at a monthly or quarterly frequency and span the time period from 1991 to

2012. Where applicable, the time series are seasonally adjusted with the X-12-

ARIMA method of the US Census, unless explicitly stated otherwise. The source

and frequency for each of the series are listed below.

German Federal Statistical Office:

• National income and product accounts (quarterly)

• Value added by industry (quarterly)

• Employment, hours and wages by industry (quarterly)

• Productivity and unit labor costs by industry (quarterly, NSA)

• Components of aggregate investment (quarterly)

• Population, employment, unemployment and self-employed (quarterly)

• Disposable income of households and components (quarterly)

• Incoming orders by manufacturing sub-industry (monthly)

• Establishments, employment, hours, wages and revenues by manufacturing

sub-industry (monthly, NSA)

• Firms, plants, revenues, employment and investment by manufacturing sub-

industry (yearly)

Deutsche Bundesbank:

• Stock prices, exchange rates, prices (monthly, NSA)

• Central bank policy interest rates (monthly, NSA)

• Money market interest rates for different maturities (monthly, NSA)

• Government debt interest rates for different maturities (monthly, NSA)

• Interest rates on debt of residents (monthly, NSA)
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• Monetary aggregates (monthly)

• Lending to enterprises, households and government (monthly)

Thomson Reuters Datastream:

• IFO index by sector (monthly)

• IFO business situation index by sector (monthly)

• IFO expectations index by sector (monthly)

• Industrial production (monthly)

• Current and capital account (monthly, NSA)

• Imports, exports, trade balance and terms of trade (monthly)

• Unemployment and vacancies (monthly)

• Consumer confidence and productivity (monthly)

• Wages and insolvencies (monthly, NSA)

• VDAX volatility index (monthly)
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Appendix D: Outline of the Numerical Solution

Technique

As the model with adjustment costs has no analytical solution, it was solved via

discrete value function iteration. To this end a grid for each of the state variables

needed to be created. The points on the capital grid were chosen in increments

of the depreciation rate δ so that the inaction option for investment always lies

on the grid. Moreover, the aggregate and idiosyncratic profitability processes were

discretized using the method proposed by Tauchen (1986) which was adapted to the

case of a markov-switching process in the latter case. Finally, the belief grid was

chosen to be equidistant between zero and one.

Starting from an initial value function guess the Bellman Equation then needs to

be iterated until the value function has converged. One of the problems associated

with the model at hand is that the posterior beliefs that are produced by Bayesian

updating for a given combination of prior beliefs, and current and future idiosyn-

cratic profitability do not usually lie on the discrete belief grid. Therefore, when

taking expectations of the value function next period in the maximization step of the

Bellman Equation it is necessary to use interpolation in the belief dimension(s). For

a markov-switching process with just two regimes this is straightforward. However,

once there are more than two regimes a further complication arises.

With just one regime, it is sufficient to include one belief dimension in the state

vector of the value function that can take on any value between zero and one. Linear

interpolation is then straightforward. However, with three regimes already two belief

dimensions need to be included in the state vector. What makes this and higher-

dimensional cases tricky is that not all belief combinations between zero and one

are admissible, due to the fact that beliefs always need to sum to one and cannot

be negative. I.e. only the simplex of two belief states is well defined. Therefore,

multidimensional linear interpolation is no longer feasible.

A different interpolation method that can be applied for such a state space is

simplicial linear interpolation. With this method, the state space is divided into

triangles of points via a delaunay triangulation which are then used to produce

a truly linear interpolation using three points. This method is described in more

detail in Brumm and Grill (2010) in the context of a general equilibrium model.

Even though this makes the interpolation feasible, it has some costs in terms of

speed. Once the interpolation needs to be performed in more than two dimensions

and for large numbers of grid points the interpolation stage can quickly become a

bottleneck.
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In addition to the two-dimensional simplicial interpolation that is necessary to

solve the model, a three-dimensional simplicial interpolation in belief and capital

space is needed when simulating the model. The reason for this is that in the

simulation beliefs do not lie on the grid and therefore the future choice of capital

needs to be interpolated. This interpolation usually leads to a capital stock that in

turn also does not lie on the capital grid. Hence, the next capital choice needs to be

found by interpolating in three dimensions. This makes the simulation of the model

with learning quite slow.

The models with learning that are presented in section 3.5 were solved with 30

grid points for idiosyncratic profitability, 7 grid points for aggregate profitability, 5

grid points for each of the belief states and a capital grid with 188 points. It took

between four and eight hours to solve such a model and the simulation of a regime

shift took again a similar amount of time. For comparison, the same model without

learning took around ten to twenty minutes to solve!
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