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Introduction

This thesis was written out of the desire to gain a deeper understanding of com­

petition in imperfect markets, in particular oligopolies. Firms have many possible 

strategies at their disposal that may effect present and future payoffs, and the struc­

ture of their markets. In the first two chapters we study R&D and innovation, 

that have received an ever increasing amount o f interest, for a variety of market 

frameworks, including Cournot and Bertrand oligopoly, and repeated patent races. 

Here firms compete by innovating; we study how they do it, and in which direction 

competition will evolve.

Still, many questions remain unanswered even in now classic static models of 

oligopoly, as the Cournot oligopoly, which he have used as a building block in the 

first two chapters. In chapter 3, we set out to examine the equally classical questions 

of existence and uniqueness of equilibrium, and the reaction of the market to the 

entry o f new firms. Our analysis is innovative since it deals with heterogeneous 

goods and makes use of a very new set o f methods.

R&D races
There are at least two reasons for studying R&D-races: First, because they help 

understand how firms compete, and second, because now they are bong used as 

building blocks in macroeconomic models of endogenous growth. Firms have a large 

range o f strategic variables available, o f which to include all but a few quickly renders 

modelling infeasible. Most models o f innovation, like patent races or step-by-step 

R&D-races, pay attention to only one strategic variable: research effort. While some
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important insights can be won, for example about the incentives of market leaders 

to innovate, or about persistence o f leadership in markets, this restriction certainly 

neglects other important aspects o f firms’ strategies.

Our research examines a second important strategic dimension of R&D: the 

targets. Certainly firms will decide whether they want to make small improvements 

(and maybe many of them), or go for the big innovation that will give them a lasting 

advantage over their competitors. The type of targets that firms adopt may be very 

different depending on whether a firm is a market leader or is trailing behind.

In chapter 1 we will discuss a very general framework for R&D-races which 

allows for explicit choice of research effort and innovation targets. This research is 

motivated by chapter 2, a note on step-by-step innovation races, which therefore we 

will introduce first.

In the note in chapter 2, we analyze a standard step-by-step innovation model 

(of Aghion, Harris and Vickers 1997), where firms by assumption cannot leapfrog 

each other, and where innovation targets are fixed. We show that these assumptions 

do constrain equilibrium strategies, in the sense that if we introduce the possibility 

o f leapfrogging then firms would make use o f it in most circumstances. This result 

means that even though this model is a very useful building block for macroeconomic 

models, it must be changed to allow for more complex behaviour if it is to be used 

as a microeconomic model of competition.

We show that the unique symmetric equilibrium in the step-by-step race that 

is commonly examined is unstable for certain values o f the exogenous parameters, 

and that at the same time asymmetric equilibria arise. If this happens then the 

predictive power o f these symmetric equilibria is diminished, because the market 

will have a tendency to evolve away from the symmetric equilibria and towards the 

asymmetric ones. This is particularly interesting since in the unique symmetric 

equilibrium economic growth is higher when competition in the product market 

is intense; we show that in the accompanying asymmetric equilibria, which occur 

precisely when product market competition is high, economic growth may be lower
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than in the unique equilibrium under less intense product market competition, in 

some sense reversing the previous results.

Our general model of R&D-races is set out in chapter 1. It incorporates many 

special cases, among them competition in process innovations, in products or prod­

uct qualities, and repeated patent races. We assume a basic trade-off between the 

size o f an innovation target and the ease to reach it: The more ambitious a target, 

the more difficult it is to reach it. Since research targets can have strategically 

quite different functions as defending a leading position, or gaining an advantage, 

or catching up with the competition, there is no reason why in all these situations 

firms should even have similar targets, or always the same targets as it is assumed 

in the step-by-step models. We prove that it is possible that all firms will have the 

same fixed innovation targets in equilibrium, but also show that this case is very 

exceptional. That is, in general firms have different innovation targets depending 

on the state o f competition. W e show that for industry leaders it is optimal to 

approximately move in steps, while followers adopt either one of two equilibrium 

strategies: Either they also move in steps (but of generally different size), or they 

try to make one big jump. Which of these two possibilities occurs depends on an 

intriguingly simple condition, which determines whether innovation is ’difficult’ or 

’easy’ . Lastly, we show that persistence of leadership does not depend on how fol­

lowers optimally catch up, but rather on the well-known replacement and efficiency 

effects that determine whether the incumbent has more incentives to innovate than 

the follower.

Our results therefore show that it is important to look at innovation targets as 

a decision variable to obtain a fuller understanding o f how firms compete.

Cournot Oligopoly
The Cournot model is one o f the most widely accepted oligopoly models, and is 

increasingly used to analyze markets under product differentiation. For applied work 

it is desirable to make use of as few and as weak a priori restrictions as possible, 

and our framework is general in two senses: We allow for nonlinear demand and
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cost functions, and for heterogeneous goods.

We set out to analyze the questions of existence o f equilibria, uniqueness, and 

comparative statics with identical firms, but where products may differ from each 

other. There are relatively few general results on existence of equilibrium or com­

parative statics for heterogenous goods, and they either apply to special classes of 

demand functions (Spence 1976), or to cases where firms react to an increase in 

competitors’ output by either raising or decreasing their own output (reaction func­

tions are either increasing (Vives 1990) or decreasing (Kukushkin 1994 and Corchon 

1994, 1996)).

For our analysis we employ a new set of tools, lattice theory and monotone 

comparative statics, which allow to isolate the economic assumptions that drive the 

results, without relying on non-essential assumptions as differentiability, stability', or 

convexity. In particular, we assume that goods are substitutes (homogeneous goods 

are a special case), and identify a weak additional condition on the firms’ demand 

and cost functions that guarantees that Cournot equilibrium exists:

Condition A: Each firm reacts to an increase in competitors9 output in such a 

way that its market price does not rise.

This condition is not related to whether goods are strategic substitutes or com­

plements, therefore reaction functions may be increasing or decreasing or both. Con­

dition A  means the following: If firm i ’s competitors raise their outputs, and firm 

i does not react by changing its output, then its market price will decrease anyway 

because goods are substitutes. If firm i increases its output, market price decreases 

even further. But when firm i restricts it output, raising its price, condition A  says 

that firm i will not restrict its quantity so much that market price is higher than 

before. In particular, condition A rules out strongly increasing returns to scale in 

production, which might cause higher prices because producing less raises average 

costs, leading to a further cut in production.

We show that under condition A  and some standard regularity conditions pure 

symmetric Cournot equilibria exist. Asymmetric equilibria can be ruled out if we
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add an additional natural assumption:

Condition B: Each firm’s price reacts stronger to changes in its own output than 

in competitors’ outputs.

This means that in its own market firm i has more control over its market price 

than other firms. It can be shown that this condition can be derived from utility 

maximization by a representative consumer. The possibility of multiple symmetric 

equilibria can only be ruled out under much stronger assumptions involving quasi­

concavity of payoffs (see Kolstad and Mathiesen 1987 for homogeneous goods).

In the second half of chapter 3, we present results on the effects of entry of 

new competitors. The inherited intuition, acquired under homogeneous goods and 

convex production cost, says that prices will decrease and total output will rise, 

while individual outputs will decrease. It has been stressed recently that prices 

may go up, and total quantity go down, if there are significant increasing returns 

to scale in production, even with homogeneous goods (Amir and Lambson 1998). 

It is also well-known that equilibrium prices and quantities move in the ’wrong’ 

direction in unstable equilibria. However, if we assume in addition to condition 

A that competitors’ outputs can be aggregated, we reinstate the typical scenario. 

Here aggregation may mean that outputs are simply added up, although we treat 

this more generally.

However, we exhibit a counter-example that shows that if aggregation o f com­

petitors’ outputs is not possible, then equilibrium prices may go up after entry even 

if there are no increasing returns to scale (we assume costless production) and the 

equilibrium is stable. This remarkable result is entirely due to the effect o f non- 

aggregation.

Total quantity and price do not necessarily move in lockstep, since market prices 

may depend on each individual quantity instead of their sum. If we evoke condi­

tion B, then total equilibrium output goes up with entry while equilibrium price 

goes down. The change in individual production quantities is characterized as with
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homogeneous goods: they fall (rise) if goods are strategic substitutes (complements).

In the light of these results it becomes clear that in the previous literature for 

homogeneous goods quite often too many conditions were imposed at the same time. 

For example, sometimes it is assumed that goods are strategic substitutes, that prof­

its are concave in own output, and that costs are convex. O f these conditions, the 

first one yields the conclusions that equilibrium exists if goods can be aggregated 

(Kukushkin 1994), and that individual quantities decrease after entry; the second 

one yields existence of equilibrium; the third one, being sufficient for condition A to 

hold with homogeneous goods, yields existence o f symmetric equilibria (McManus 

1964), and equilibrium prices decreasing (total quantity increasing) in the number 

o f firms if goods are homogeneous. Equally, it is a strong assumption that reactions 

functions are either increasing or decreasing. If an oligppoly model with only a sub­

set o f these comparative statics properties is needed, one also only needs a subset o f 

the different conditions that have been imposed on demand and costs in the past. 

Knowing the exact consequences o f each single condition, and not imposing unnec­

essary assumptions, is very useful since it helps to alleviate the trade-off between 

very specific assumptions and the general applicability of the results of a model.





Chapter 1

Dynamic R&;D competition with 

endogenous targets

1.1 Introduction

It is now common knowledge in economics that ’competition’ in the marketplace is a 

dynamic phenomenon. Firms seek their advantage through continuous adjustments 

in prices, quality, cost, variety, and organization. These changes are often supported 

by technological progress in form o f product and process innovations. Indeed, a large 

percentage o f economic growth has been attributed to technological improvements, 

and Schumpeter’s idea of a ’process o f creative destruction’ has recently been revived, 

and has entered explicitly into endogenous growth theory, see e.g. Aghion and 

Howitt (1992), Amable (1996), Aghion and Howitt (1998).

A  plethora of models has been developed in the last two decades to analyse the 

mechanics o f dynamic competition. One strand is the literature on patent races, 

where two firms compete to make a randomly occurring innovation first, after which 

the race ends. These models focus on the optimal path o f expenditure or research 

effort, while the innovation target, winning the patent, is exogenous and fixed. Clas­

sical references are Loury (1979), Lee and W ilde (1980), Reinganum (1981), Rein-
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ganum (1985), and surveys are contained in Reinganum (1989), Tirole (1988, ch. 

10), and Martin (1993 ). Nevertheless, these models are not concerned with repeated 

strategic interaction between competitors, and are therefore essentially static.

A set of related models studies truly dynamic competition: Firms do not win in 

one step, but need many to do so (e.g. Harris and Vickers 1987), or competition 

may go on forever, as in Budd, Harris and Vickers (1993, BHV), and Aghion, Harris 

and Vickers (1997, AHV). In these models the different behaviors of firms that are 

close (neck-to-neck) or far apart (leader and follower) are studied, but again only in 

relation to research efforts, while firms’ innovation targets are steps of fixed size in 

a fixed order (Harris and Vickers 1987, or AHV) or the state of competition moves 

continuously (BHV). AHV show that the intensity o f competition is highest when 

firms are neck-to-neck, and that leaders compete harder than followers. BHV show 

that the state o f competition moves into the direction o f highest joint payoff, leading 

either to persistence or frequent change of leadership.

r

The research quoted above concentrates on the optimal allocation of research ef­

forts while not allowing firms to choose where they want to go, for example: leapfrog 

the leader, or catch up slowly; gain a large lead, or stay just a little ahead of the 

follower. Some recent work has focussed on the selection of innovation targets: 

Cabral (1997) considers the optimal choice of variance and covariance o f motion 

while expected progress is held constant. He gives sufficient conditions that leaders 

choose safe strategies, and followers risky ones, but also shows that the opposite 

may happen. Leapfrogging has been the focus of some recent literature on R&D 

under vertical product differentiation (Rosenkranz 1996 and, applied to intemar 

tional trade, Motta, Thisse and Cabrales 1997), where in two period-models firms 

or countries reposition themselves after an intervening shock (change in technology 

or opening o f global markets), obtaining conditions for persistence of leadership, 

or leapfrogging. These two models analyse the change from one static (interpreted 

as long-run) equilibrium to another, and are therefore not concerned with ongoing 

competition with action and counter-action, in particular not mutual leapfrogging.

13
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The empirical literature on R&D has largely concentrated on the aggregated 

aspects of innovation, or on verifying various Schumpeterian hypotheses. Compar­

atively little work has been done studying general patterns of competition between 

sets o f firms, apart from case studies. One set of these, Scherer (1992, ch. 3), 

shows the various instruments o f competition: Improvements in quality (razors, 

tires, photographic film), learning curve effects (airliners), production cost (calcu­

lators), patents and standards (T V ’s and VCR’s). Some firms were able to defend 

their leadership by increasing R&D efforts, such as Gillette (razors), Eastman Ko­

dak (films), General Electric (diagnostic imaging), others ceded their markets to 

competitors, as for TV ’s, VCR’s, and fax machines. Some firms were able to persist 

but with substantially reduced market shares, as calculator and tire manufacturers, 

and Boeing (airliners).

In our research we concentrate on the optimal repeated choice of innovation tar­

gets, and its interplay with the issues raised in previous work: optimal allocation 

of research efforts, occurrence o f leapfrogging, optimal catching up by followers, 

optimal defence o f leadership, and persistence of leadership. We let firms choose 

both research efforts and targets. The fact that firms’ strategies are two- instead 

of one-dimensional significantly enriches the firms’ choice set, and leads to a more 

interesting mix o f strategies. The state of competition may be anything that differ­

entiates firms, as differences in productive efficiency, product quality, or accumulated 

knowledge towards obtaining a patent et cetera. Each firm determines where it will 

try to move this state o f competition, with a larger move less likely to achieve than 

a small one, and how much it wants to spend to do so.

Letting firms choose their innovation targets necessitates an enlargement o f the 

state space to a continuum, therefore essentially transforming the model into a dif­

ferential game with stochastic jumps. Literature on this type of games is scarce, 

with some notable exceptions such as Wemerfelt (1988), where existence o f Nash 

equilibrium is studied, or Malliaris and Brock (1982), where the resulting individual 

dynamic programming problems are discussed. In general, models o f this type can­
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not be solved analytically. We have been able to characterize the optimal strategies 

asymptotically, and completely in some cases, and have solved the resulting games 

numerically.

Our results are as follows: In a first step, we characterize the equilibrium firm 

value, and the optimal innovation targets and efforts, using asymptotic expansions 

for large discounting. This analysis draws heavily on the techniques developed in 

Budd, Harris and Vickers (1993).

Secondly, we show that optimal innovation targets are the more ambitious the 

further a firm is ahead, i.e. no firm will try to reach a better state o f competition 

than if it were further ahead. Also, we characterize the class of ow profit functions 

that give rise to optimal innovation targets that are steps o f constant size. This 

result is of interest on its own insofar as it shows when the step-wise structure o f 

races like Harris and Vickers (1987) and AHV, which is imposed by assumption, 

may arise endogenously in equilibrium.

Thirdly, we analyse the optimal strategies o f firms that are very far ahead, or 

behind, respectively. In equilibrium, the leader will move on in a step-by-step fashion 

(e.g. "reduce unit costs by 20%M), while the follower will adopt one of two different 

equilibrium strategies: Either it tries to catch up in a step-by-step fashion, or it 

attempts to match a multiple o f the leader’s level o f progress (e.g. "reduce unit 

costs to 120% of the leader’s unit cost” ).

Which of these strategies is chosen depends on a simple asymptotic condition 

relating the probability (more precisely, hazard rate) o f making the innovation to 

ow profits: If after making an innovation ow profits increase at a rate sufficiently 

high compared to the innovation hazard rate, that is, if their elasticity with respect 

to the state o f competition is higher than the elasticity of the hazard rate with 

respect to the innovation target, then a follower will use the matching strategy.

Leapfrogging will occur when firms are sufficiently close, but whether a matching 

strategy involves leapfrogging depends on the hazard rate and ow profits (and 

value) for firms that are close. Therefore there are cases where firms that are behind

15



will always attempt to leapfrog, while in others they will first try to catch up and 

then leapfrog making smaller steps.

The fourth and last focus o f our analysis is the relation between the optimal 

innovation targets and the phenomenon of persistence o f leadership. We find that 

leadership may be persistent (or not) no matter whether followers will try to catch up 

in a step-by-step or matching fashion. Rather, persistence will depend on the well- 

known relationship between the replacement and efficiency effects, which determine 

the relative levels of research effort expended by leaders and followers.

The rest o f the paper is structured as follows: Section 1.2 states the model for- 

mally, introduces the firms’ problem, and discusses the equilibrium concept. Section 

1.3 provides a description o f equilibrium firm value and strategies under large dis­

counting. Section 1.4 contains general results on global and asymptotic properties 

of the optimal innovation targets. Section 1.5 contains some closed-form and nu­

meric equilibrium solutions. Section 1.6 concludes, and indicates some directions for 

future research.

1.2 The Model

We consider a duopoly of two firms that are competing over time. These firms differ 

in the level o f technical progress or knowledge achieved, and both firms conduct 

R&D to improve their competitiveness. Both firms have access to the same R&D 

technology.

Time is continuous, and profits are discounted at rate r > 0. At each point in 

time, both firms sell their output in the market, creating ow profits 7r (£*). We 

assume that 7T : R++ —► R+ is nonincreasing and depends only on the state of 

competition Si €  R++ (for the other firm, Sj — 1 /¿¿), which is the technology gap 

between follower and leader, where firm i is leading if < 1. Three examples of 

possible definitions o f the state o f competition and ow profits are the following:

• Productive efficiency: Si — Ci/cj (ratio o f unit production costs). W ith unit-
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elasticity demand (Quantity =  1 /price), for quantity' competition the result­

ing Cournot equilibrium yields ow profits of ir (5) =  1 /(1  -h <5)2, and for price 

competition Bertrand ow profits are n (S) =  ma {0 ,1 — ¿}. These are the 

two cases treated in Aghion, Harris and Vickers (1997).

• Product quality: <5, =  e p (uj — U*), where ut is firm i ’s quality level. Let there 

be a mass S of consumers with utility JJ — uk — pkj k € {¿, j } ,  each buying one 

unit per period, and where pk is the price of the good chosen. If firms have 

constant marginal costs of production c and, given product quality, compete 

in prices, ow profits are

7r (6*) =  ma {(iq  — uf) 5 ,0 } =  ma { —S log Si7 0} .

• Repeated patent race: <5, =  kj/kit where fc, is firm i ’s accumulated knowledge. 

If a firm makes an innovation that leaves it sufficiently ahead of the other 

firm, 6i <  S <  1, then it receives a patent on its technology and consequently 

monopoly profits 7Tm in the product market, otherwise profits are zero:

7T(^) =
7Tm

0
i f  Si < 6  

i f  Si > 6

Over time, both firms aim to innovate, choosing as innovation target to move the 

state o f competition to A* € (0,£j], and A j G (0,6;], respectively, and expend 

research efforts Zj > 0 to reach these targets. These are attained randomly and 

independently over time and between firms, at Poisson hazard rates determined by 

the R&D-efforts and the sizes o f the targets. By exerting a research effort z,, firm i 

in state S{ reaches the innovation target A< with Poisson hazard rate z^(A<, <$»)* Let 

D<p =  {(<5i ,<52) € K++|6i <  S2}. The function ip : D<p —* R+ is assumed to have the 

following properties: It is continuously differentiable, increasing in its first argument 

and decreasing in its second. In other words, the more ambitious the target, the 

longer is the expected time to reach it.1 We will mostly assume that ip is of the

l For a model using a similar idea see Aghion and Howitt (1992).



form ip (A ,*,6*) =  A?/<5J\ 77, fj, > 0. For [i =  77 this functional form incorporates the 

assumption that the probability o f achieving an innovation only depends on one’s 

own progress, and not on the state o f competition. Research is costly, with ow 

cost c ( ;)  at each point in time for the research effort level z >  0, where c (.) is 

an increasing, convex, and differentiable function with c (0) =  d (0) =  0. We will 

mostly assume that c (z) =  z2 3 ¡2.

We will characterize subgame-perfect equilibria in feedback or Markov strategies 

(A  i (• ),* ( .)) (also called Markov-perfect equilibria, see Maskin and Tirole (1997)), 

i.e. strategies that at each point in time only depend on the state o f competition, 

taking into account that at later stages play is optimal given the state of competition. 

The space o f Markov strategies is a natural choice in this model, since occurrences 

of innovations, following a memoryless Poisson process, are not history-dependent.23
Formally, a strategy for player i is a pair (A*, rt) o f functions A , : R++ —► R++ 

and zx : R++ —► R+, such that if the state of competition is 6t, then player i selects 

the innovation target A* (<5*) and exerts research effort z, (<5<). A Markov-perfect 

equilibrium is a pair of strategies (A*, zf) and (A j, Zj) that are best responses to 

each other.

Each firm i maximizes its value V* (¿<), subject to the law of motion o f the state 

of competition (j ^  i):

Vi («*) ma E [ ƒ (»  (si) ~  c fo ) )  elJt=Q
( 1.1)

s.t. dSi =  (A ; -  S() dgi +  (1/Aj -  6,) dqh (1.2)

where qt and qj follow independent Poisson processes with hazard rates Ziip(Aiy$i) 

and Zjip(Aj, 6j), respectively. Note that 1/A j is the new state for firm i if firm j  

makes an innovation. Taking expectations as in appendix 1 A .1 , or directly invoking

2 A lso, equilibria in Markov strategies are subgame perfect equilibria in the space o f  all closed- 

loop strategies.
3 Our research concentrates on characterizing equilibrium behavior o f firms if a symmetric equi­

librium exists, and we do not treat the questions o f existence or uniqueness. In fact, it may well 

be possible that multiple equilibria exist as in BHV, at least for small discounting.
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the techniques of stochastic dynamic programming with Poisson processes (see e.g. fii
* . * i i ■

Malliaris and Brock 1982), leads to the following Hamilton-Jacobi-Bellman equation i ?; j
i ' <

characterizing the value function Vi (.) o f firm i, given strategy” (A j, Zj) of firm j :  j'jf

i) -  c (r*) +  Ziip (A<, ¿¿) [V; (Ai

- z M ^ i n v m - V i W b i ) ] } .

rVi (£*) =  ma { 7T (<5 ) -  Vi (Si)]

(1.3)

u-

sjii:f

Interpreting this condition is straightforward: The value ow rVx (<5,), at the opti­

mum, is equal to ow profits 7r (<5,) minus costs o f research c (z*), plus the expected 

gains from achieving a cost-reducing innovation z^ (A < ,£ j) [V ( A i )  — V  (¿¡J], minus 

the expected losses caused by innovations that the other firm may make, Zj$ (A j,

Interior optimal strategies are characterized by the first-order conditions (assum­

ing that the value function is differentiable at the relevant points)

=  0 (1.4)

=  d {zi). . (1-5)

Condition (1.4) determines the optimal innovation size such that a marginal increase 

in expected value due to a higher target is exactly offset by the marginally lower 

probability o f reaching it. The second-order condition

&  { * ( * , * )  y ( A , ) - v - ( i , ) ] }  s o
i

must also be satisfied. Condition (1.5) states that marginal effort cost should be 

equal to its marginal return, which is the expected increase in firm value after an 

innovation. Because of the convexity of c (.) the second-order condition is satisfied.

Generally, this model cannot be solved analytically, as is usual for differential 

games. Nevertheless, we have been able to identify several classes of closed-form 

solutions which will be discussed later in sections 1.4 and 1.5. In section 1.5 we will 

also exhibit some numerical solutions to the examples given above.
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1.3 Firm Value and Strategies in Equilibrium

In general, the value function V, which summarizes a firm’s possibilities in dynamic 

equilibrium for all possible values o f the state o f competition, does not have the 

same functional form as the ow profit function, or may even not be obtainable in 

closed form. Therefore a precise analytical characterization of the optimal strategies 

and competitive effects involved in equilibrium is hindered by the problem that the 

main tool o f analysis, the value function, is not known. There are two ways out of 

this problem: Either one analyses optimal innovation targets for extreme values of 

the state (<S —*■ 0 or 6 —► oo), as will be done in the following sections, or one uses 

the techniques o f asymptotic expansions introduced in Budd, Harris and Vickers 

(1993, BHV) to characterize the value function and strategies for large discounting 

(r —+ oo). Here we will state and discuss the results of this approach, assuming that 

the respective expansions exist. See appendix 1.A.2 for the computations underlying 

the following results.

We assume that the following expansions exist:4

rV(<5)

A («)

z(6)

where at least for 0 <  n <  2 the functions vn (.) are twice continuously differentiable. 

Furthermore, assume that the profit function n (.) and the innovation technology 

ij) (., 6) are twice continuously differentiable, and costs o f research effort are c (z) =  

z2/2.

Let

= £SV-"An(S) 

=  - * . ( « )

A 0 (5) =  argma xp (A , 6) [n (A ) — 7r (<5)] (1.6)

4 W e have dropped the index i  for clarity, while still indicating variables pertaining to  the other 

firm by the index j .
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be the innovation target that maximizes the expected increase in ow profits. Then 

the equilibrium value function can be expressed as

rV (6) =  7r (6) +  r~2v2 (6) +  O (r~3) , (1.7)

where

V2 (6) =  (ip (A 0, 6) [*• (Ao) -  7T (<5)])2 /2  +  zijip0j [n (l/A o>) -  ir (6)] ( 1.8)

and Z\j, tp0j — tp (A 0j, 1/ 6), and Aoj are the first terms o f the respective expansions 

of the other firm.

The optimal innovation target can be written as

A V ) =  Ao (6) -  +  O ( r '5) . (1.9)

and optimal research effort is given by

z(S) =  r “ V ( A o ,6)[7r(A 0) - 7r (6)] (1.10)

(Ao, 6) [v2 (Ao) -  V2 (6)] 4- O (r~4) .

Effort can be partitioned into two terms involved in the replacement and efficiency 

effects, respectively. Although these terms were originally coined to explain the 

incentives of monopolists to innovate, either to raise his profits, or to fend off a 

possible entrant, they readily extend to duopoly.

The replacement effect describes the "pure” incentives of the leader (the "m o­

nopolist" ) to innovate, given that by making the innovation he only replaces himself 

as the market leader, and leaving aside the threat of being overtaken by a competi­

tor. This effect therefore favours the emergence o f frequent changes in leadership if 

the leader cannot increase his ow profits, as e.g. in patent races. In our model this 

effect will be determined by the first term in (1.10),

zr =  r " V  (Ao, 6) [jt (Ao) -  7r (6)] , (1.11)

since this is the share of effort that is motivated by the expected increase in own 

ow profits.
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The efficiency effect, on the other hand, describes the incentives of the leader to 

fend off the follower: In the classical example, the value o f a nondrastic innovation 

is higher to the monopolist than to the entrant because the ensuing competition in 

a duopoly dissipates monopoly rents. Therefore, if joint value after an innovation 

of the leader is higher than after an innovation o f the follower, this effect favours 

persistence o f leadership. The part o f research effort attributable to the efficiency 

effect, apart from higher-order effects, is

~e =  r~ztp (A 0, S) [v2 (A 0) -  v2 (6)]. (1.12)

In general, both effects will be at work simultaneously, and the one that dominates 

will determine whether leader or follower expend more effort, and therefore whether 

persistence or change o f leadership will follow. Depending on the type o f ow profits, 

the replacement effect may actually work in favour of the leader, for example when 

ow profits o f the leader are not constant (as in a patent race) but increase with 

his advantage; in this case the leader may have a strong incentive to innovate even 

further.

Using the above partition of efforts, value function and strategies can be rewritten 

as

rV  (<$) =  7T (<5) -f r~2v2 (£) +  O (r“ 3) , (1.13)

v2 (5) =  - c  (rzr) +  (rzr) r/t (A 0, 5) [ir (A 0) -  7r (6)]

+  irZj )  %3 I* (1/Afltf) ~  7T (6)] (1.14)

A (£ ) — &o(6) — +  O (r~3) , (1.15)

z(6) =  zr + z e +  0  (r~4) . (1.16)

The interpretation o f these results is straightforward. If the discount rate is large, 

research efforts will be dose to zero since firms are very myopic and future profits 

count little; firm value will then mainly be determined by extending present ow 

profits into the indefinite future, V  (6) «  tt (6) /r . To second order in r, competitive 

effects stemming from effort cost, expected gains from making in innovation, and



expected losses from being preempted by the other firm, enter in the value function 

through the term t*2 (S).

The optimal innovation targets can also be partitioned into two terms: For large 

discounting the first term dominates, and the innovation target Ao is chosen as to 

maximize the expected increase in ow profits (A , 5) [7r (A ) — 7r (6)]. This value 

determines the size of the replacement effect. To second order in r, competitive 

effects enter through

A ( i ) « A o ( 6) - d  f  d2 , r

Assuming that Ao is an internal maximizer, and therefore d?zr/dA% <  0, this second 

order effect is determined by the effect o f the choice of the innovation target on the 

efficiency effect: A firm will raise or lower its innovation target as compared to Ao 

if doing so increases the joint effect o f expected gains from innovation minus effort- 

costs and expected losses from an innovation of the other firm.

As approximations, the above results will hold true not only for r —* oo, but 

by continuity also for large but finite r. Even though we do not analyze this issue 

here, as in BHV for large r very likely there is a unique and symmetric equilibrium, 

with value function, innovation targets, and research effort levels determined by the 

lowest order effects, and therefore directly by the form o f the profit function and the 

innovation technology.

Nevertheless, as in BHV, for small r, i.e. very patient firms, additional ’’self- 

enforcing” effects may enter that are not determined by the profit function or inno­

vation technology, and can even lead to multiple equilibria.5
The preceding discussion also sheds some light on the possibility of equilibria 

where the value function is ” of the same functional form” as, or an affine linear 

transformation of, the profit function. A  standard technique in dynamic program­

ming consists o f exploiting this feature by employing as candidate value function an

5 We have not yet been able to  identify such a case, which is not surprising given the difficulties 

described in BHV, p. 560.
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affine linear transformation of ow profits and determining the unknown constants 

through the Hamilton-Jacobi-Bellman equation (see e.g. Stokey and Lucas 1989). 

From (1.7), in our model a necessary condition is that z>2 (¿) as defined in (1*14) 

is an affine transformation of the profit function, in particular possibly a constant. 

Below we exhibit such a case, but in general this condition is hard to meet.

1.4 Optimal Innovation Targets

In this section we will discuss several properties of the optimal innovation targets. 

We will tackle the following questions:

• Are innovation targets o f better-placed firms always more ambitious?

• When are optimal targets given by constant steps, i.e. A  (5) =  p6 with 0 < p

<  1?

• What are the innovation targets of firms that are far ahead?

• What are the innovation targets of firms that are far behind?

For the rest of this section we will assume that the innovation technology is given 

by ip (A , 6) =  A v/<p (<5), where 77 >  0 and <p is increasing in <5. For this specification 

the elasticity o f the hazard rate with respect to the innovation target A is constant 

and equal to 77. Sometimes we will assume that <p (<$) =  <5**, /1 > 0.

1.4.1 Monotonicity of Innovation Targets

First we will show that innovation targets A  (6) are nondecreasing in the state if 

the value function is decreasing. Let <5i >  <50; then Wj =  V (6 1) < t>o =  V  (<50), and 

assume that A j =  A  (61) <  Ao — A  (¿0)* Since A j and Ao are solutions o f the 

problem

ma $ j ( r ( A ) - V ( i ) )  (1.17)
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for 6 — à\ or S =  <$o, the following inequalities hold:

(v  (A <») “  Vq)  >
Ù.V /Tr / A V

t>o),

V i ) .

These can he reformulated to

¿ ^ ( A oJ -A ÏK ÎA j) > (A j-A Ï)fo ,

AJK(Ao) -  A ? F (A :)  < ( A J - A ?)«*.

Now we arrive at a contradiction to A i < Ao since t>o >  and tj >  0. Therefore 

the conclusion is that:

Rem ark 1 If the value function is strictly decreasing, innovation targets A  are 

nondecreasing.

At this level of generality, the above reasoning is not able to demonstrate that A 

may be (strictly) increasing: If A i =  Ao then the conditions describing the optimum 

do not contradict each other, rather they show that in this case A is constant in the 

range 6q < 6 < 6\.

If on the other hand we assume that problem (1.17) has exactly one solution for 

each 6, then the above weak inequalities sharpen to strict ones, and this time we 

arrive at a contradiction if A j < Ao- Also, we can weaken the requirement on the 

value function:

Rem ark 2 If the value function is nonincreasing, and if problem (1.11) has exactly 

one solution for each <5 >  0, then innovation targets A  are (strictly) increasing.

Of course, the additional condition may be difficult to check without solving the 

problem in the first place. Applications include cases where first-order conditions are 

hard or impossible to solve explicitly but the shape of the value function is known.
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1.4.2 Step-by-step Targets

In some part of the literature on R&D races, for example in AHV, firms are by as­

sumption constrained to making innovations that reduce production costs by some 

exogenously given constant percentage p G (0,1), or more generally make innova­

tions of a fixed size, which we will call step-by-step innovation targets. We will show 

later through various examples that stepping may indeed arise exactly or approx­

imately in equilibrium, but as well may be far off track. In this section we tackle 

this subject explicitly and, under some mild technical assumptions, characterize the 

value and profit functions that give rise to optimal innovation targets A  (<5) =  p6 

locally or globally.

Under step-by-step targets, the set of states o f competition that can be reached 

is very simple: If the initial state o f competition is <5o, then the states that can be 

reached are o f the form 6 =  6opn, where n G % = {..., ~2, —1,0,1 ,2 ,....} and p >  0 

is some constant. Then ’catching up’ to being neck-to-neck as in AHV occurs if and 

only if ¿o =  pm for some m G Z , otherwise firms will always leapfrog each other 

when they ’meet’ .

To begin the analysis, let for 6 G (0,3), with <5 > 0,

V (S) =  Oo +  aifi“  +  a ,«19, (1.18)

with P > a >  —17, a ja  <  0 and a2p  <  0. Assume that the optimal target is A  (£) 

~  p<5, 0 <  p <  1, and insert this expression into the first order condition o f the 

maximization problem

leading to

Ai ((a +  t?) pa -  tj) 6a + 02 ((P +»?) fP -  t?) S0 = 0.

Since this relation must hold for all 6 G (0 ,3), the terms in the brackets must be
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identically zero, or

p =  (1 +  Q /rj)-I/o =  (1 +  P h T VB ■ (1-19)

Since these terms are strictly increasing in ct and ¡3 (with upper limit equal to 1), 

equality can only hold if a  =  /?, contradicting the assumption 0  >  a . The same 

argument holds if any countable number o f terms were included in the value function 

V, and the immediate conclusion therefore is:

Rem ark 3 If the value function on 6 € (0, <5), is of the form

+ (1.20)

where — rj < a i < ... < an <  Ot-a,- < 0, then A  (6) =  p6 for 6 6 (0,£) and for 

some p 6 (0, 1) if and only if there is exactly one i 6 N such that a* ^  0. In this 

case the step size is given by

/> = (  l+a i/r,)-1' « .  (1.21)

Note that (1.20) does not cover the case a, — 0, which corresponds to V  (6) =

— Ini, in which case the optimal innovation target is step-by-step with

A (5) =  argma | £(— In A  +  In i)

=  e” 1̂  =  lim (1 +  a/rj)~^a .a—*0

Rather than an exception to the above conclusions, this case turns out to be a border 

case for which the elasticity o f the value function goes to zero, a value for which our 

result on the step size is still valid in the limit. We will discuss logarithmic value 

functions further in the examples section.

If the value function has a Taylor expansion around zero, then some straightfor­

ward conclusions follow:

Rem ark 4 Let V be defined and equal to its Taylor series on [0,5), and let the 

optimal innovation target be given by A(6) =  pS for some p €  (0 ,1) for all 6 €  [0,6).
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If the slope of \ negative at 6 =  0 then V is linear on [0,6). and

P = _ 2_
1 7 + 1 '

(1.22)

If the slope of \r zerQ a£ ¿j =  q there is a unique integer m > 1 such that 
V  (5) — Qo +  and

¿ ? = ( l+ m /7 7 )-1/m. (1.23)

The first statement is proved by setting Qi =  1 and ai < 0, which is necessary 

for a negative slope at S =  0, noting that the Taylor expansion of V  around 5 =  0 
will be

V  ( 5 ) =  a o  +  f l i 5  4 * a 2& ^  +  . . . .

If the slope at 6 =  0 is zero, there will be a unique smallest integer m > 1 such that

V  (5) =  Oo +  am5m +  Qm+ii5Tn+1 4- ....,

with CLjn < 0.

In both cases, the value function will be of the form V  (5) =  a60 +  b ( l 3 > - n 1 

aft <  0). The innovation target will be

A (5 ) =  (1+ /?A ?)‘ *5, (1.24)

and inserting these expressions and A j (1/5) =  (1 4- /b in the equation de­

scribing the value function (1.3) with quadratic effort costs c(z) =  z2 f  2, the corre­

sponding "candidate’ profit functions are found to be

7T (fi) =  a 1fi2(”+<5- ,‘) +  at 6* +  Q3fii0*-’i) +  q4> (1.25)

with

ai =  “ 5 (ap/rj)2 p2v̂ 20 <  0, a 2 =  ra, 

a3 =  ( a p h f p ^ 0 > ^  a4 =  rft.
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Note that 7r (6) =  a60 +  6 if either /? =  2 (p — tj), or p =  tj.

Depending on the parameters, this candidate profit function may be increasing 

over some range, which means that for this set o f parameters the innovation target 

cannot be steps o f the given size. A sufficient condition (in addition to aB < 0) for 

a negative derivative of 7r is

r? -  p  >  ma { 0, - / ? } ,

as can be easily seen from a i < 0 and Q3 > 0. Thus, the above family of profit 

functions is very special, and intimately linked to the parameters of the innovation 

technology. Moreover, it is only one-dimensional given r, 7/, and p.

To sum up, the preceding discussion shows that, if we require that the value 

function has an expansion around zero, the family of profit functions that give rise 

to step-by-step innovation targets is a one-dimensional family in the space of all 

profit functions (therefore a null-set), and is intimately related to the parameters of 

the innovation technology.

1.4.3 Leaders’ Innovation Targets

The analysis o f the last section can be applied in an approximate manner to de­

termine the evolution of the innovation targets for firms that are far ahead, i.e. 

when 6 «  0. To this end, assume that for 6 close to zero the value function can be 

represented as

V(6) =  vo +  V! 6Q +  o (6a) , (1.26)

where the last term converges faster to zero than <5°, and a  > —77 is the asymp­

totic elasticity o f the value function. This approximation may stem from a Taylor 

expansion about 0 (in that case a  is a positive integer), or may simply describe 

asymptotic behavior as e.g. in 1/  (<5 +  <52) «  6"1 for 6 dose to zero. Also, assume 

that for A  —► 0 the innovation technology may be approximated as

* (A  .« )  =  $  +  » ( * ' ) ,  (1-27)
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for some 7/ >  0, taking on in the limit the form we have used before. The maximiza­

tion problem is then

0<A<£

with first order condition

g » ,  { m + 0 (A " ))  -  » i « ° + » («“ ) ) ,

( „  +  a  +  ^ + ^ ) A “ = ( ,  +  ^ )  ( l  +  î ÿ P ) « “ .

Since for <5 —► 0 also A  —► 0 , the solution in the limit is

A / 6  —► (1 +  a/77) 1/fQ as (5 —> 0. (1.28 )

Let us summarize:

Rem ark 5 If the value /unction V and thè innovation technology ip can be ap­

proximated as in (1.26) and (1.27), then fo rò  —♦ 0 the relative innovation target 

converges to a constant depending on the elasticities of the innovation technology 

and the value function: A/6 —*■ (1 +  ot/g)^a, i.e. the leader pursues step-by-step 

innovation targets.

If the value function is o f the types described in the previous section where the 

step size p is constant, then necessarily p ~  (1 4- a /rj)-1 Q̂.

We will now apply this finding to some value functions, some of which will 

appear in the examples treated below. For most of them the first order conditions 

d eterm in in g  the innovation targets cannot be solved explicitly.

• V (6) =  (1 +  ¿ )-Q =  1 — a6 -f o (6) : A/6 —*■ 77/  (7/  +  1), (0 <  a ).

• V(S) =  e p (-A *"*) =  1 -  Aí"* +  o(5) : A/6 — (1 +  a /m )_1/m, (A >  0,

771 G N).

• V  (5) =  — In (a +  6) =  -  In a — ¿6 4- o (¿) : A/6 —* 77/ (77 4-1) (a > 0). Note 

that the innovation target does not depend on a, which carries over to the 

limit case a =  0.
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1.4.4 Followers’ Innovation Targets

In this section we will characterize the innovation targets for a firm that is very far 

behind, 6 —► oo. Also, this analysis will give important insights into the occurrence 

of leapfrogging: A firm that leapfrogs when it is very far behind will leapfrog also 

when it is closer. On the other hand, a firm may try to catch up with the leader in 

a step-by-step fashion and leapfrog only when it is dose. We show in the following 

that the resulting behavior depends on the interplay between the profit function 7r 
and the innovation technology ip.

Assume that the value function V  has an asymptotic expansion of the form

V(6) =  b0 +  b ,6 -' +  o(6~ '), (76, >  0) , (1.29)

as well as the innovation technology,

y  (A , S) =  + o (A ’>) , 0? >  o ) , (1.30)

where lim *-.» o (x) jx  =  0. The following analysis is technically very similar to the 

one in the previous section, apart from one vital difference: We have to allow for the 

possibility that the innovation target A  does not rise proportionally with the state 

6, in particular that A may remain bounded from above while the state 6 goes to 

infinity. If this is the case we must use the exact functional form of V  (A ) instead 

o f approximating it asymptotically.

Let us first treat the case where A  goes to infinity with 6. Then the maximization 

problem is

gg<, ( w >+ ° (A")) M ' 7 -  w - t + °  (*-*)),0 < A < i

with approximate first order constraint

( ,  -  7 + + A - -  (n  +  4 S ? )  (>  +  = £ ? )  * - ’

In the limit 6, A  —» oo this can be written as

i)(& /sy =  1 ) - y.
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Contrary to the case 6 —+ 0 , this first order condition only has a well-defined solution 

in the limit if 7 <  77, with

A / « - ( l —7 h f h - (1.3 2 )

For 7 — tj in the limit it follows that A /<5 —► 0 even though A may still go to 

infinity. Finally, for 7 > 77 we arrive at an outright contradiction (to the form of the 

expansion o f V)  since the term on the left of (1.31) is positive. Therefore in this 

case A  must have a finite limit.

Let us now treat the case 7  —  77: Assume that the asymptotic expansion o f V  

can be refined to

V (6 )= b o  +  bjS~v +  W ” +  o (S~v) , (1.33)

The first order condition then becomes in the limit (using fF~v —* 0 )

rjb\Av = &2 O' — 77) $*1

which has a solution if and only if 62 <  0 with

A =  (62 (1 -  t'h ) /bi ) 1̂ ,  (1.34)

i.e. A  still converges to infinity, but slower than 6. If on the other hand asymp­

totically V (6) = bQ +  biS~ v 7 then the optimal innovation may be infinite or finite, 

depending on the exact form of the value function.

Finally we treat the case o f 7  > 77 where the innovation target remains finite. 

For large 6 the maximization problem can be written as

^  (A, 5) (V (A) -  to -  d1«-7  +  o (5-1) ) ,

and knowing that A  (6) remains finite, A  (5) will be dose to

A (i) =  arg ma *  (A , 6 ) (V  (A) -  60), (1.3 5 )
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for large 6, at least if this maximizer is unique. A  (6) is bounded from above since 

ibV A '7"0 tends to zero for large A . Let

A =  lim A (<5) < oo (1.36)<5—*oo

if this limit is defined, then A  (6) —'► A  as 6 —► oo. Thus, the decision which type 

of strategy to adopt depends only on the comparison of the elasticities of the value 

function (7) and the innovation hazard (r/).

Rem ark 6 If the value function V and innovation technology rp can be approximated 

as in (1.29) and (1.30), then for 6 —*• 00 the innovation target converges as follows:

• 7 <  rj: A  —+ 00 and A fd —*■ (1 — 7¡y )1̂ , ¿he follower makes step-by-step 

innovations;

• 7  =  77; A  —► 00 and A /^ * ' —► (62 (1 — u/rj) /fci)1̂  (under condition (1.33));

• 7  > tj:  A  —+ A < 00, i.e. the follower matches a certain multiple of the 

opponent’s level of progress.

In other words, if the value function increases slower with an improvement in the 

state than the probability o f making the innovation decreases, then it is optimal to 

aim for step-by-step innovations. If on the other hand the value function increases 

fast, then the follower should aim for a big innovation leaving him close to the leader. 

The probabilities of reaching the targets are rather different: Step-by-step (small) 

innovations are 'easy* because the probability o f success if rather high, whereas 

matching (big) innovations are 'difficult* and have a low probability o f success.

We apply the above results to some value functions and compute the asymptotic 

innovation targets:

• V  (6) =  (1 +  S ) -a =  r °  -  o i - (o + ,)  +  o ,  ( o  >  0)

q  <  tj : A /S  — ► (1 —  a /t))l/a

a  =  rj-. A / F /(’>+1) —  1.
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a > g : A  g/ (a — 77) which is the maximizer o f A v/ (1 + A)Q. In the case o f 

’’Cournot competition” with a = 2, and 77 = 1, the result is A  — 1/  (2 -  1) = 
1, close to the numerical solution shown below.6 7

• V  (5) =  e p (—A6m), (A > 0, m € N). Since for this value function ” 7 =  oc” 

(it decays faster than any S~a with a  < 00), A  will have a finite limit equal 

to argma A^e p (—AAm), i.e. A  —* (q/A m )w.

• V  (5) =  — In (a +  6) =  — In 6 +  o (In(5), (a >  0). Since this value function de­

creases slower than any <5-Q (q >  0), a good guess given the above observations 

is that A  converges to infinity with

A /6 —> lim (1 — 7A j)1/7 =7—0
which is exactly what we have determine analytically for a =  0 in section 1.4.2.

The above results were concerned with determining the nature o f optimal inno­

vation targets when the value function is known asymptotically. In general, what 

is known is the profit function 7T, and the value function has to be determined. We 

will now use our findings from above to classify optimal innovation targets accord­

ing to the asymptotic behavior o f the respective profit functions in relation to the 

innovation technology.

Specialize the innovation technology to ip (A , <5) =  AV^*1, ^ d  assume that the 

profit function can be approximated as 7T (<5) «  p6~Q for large <5, with pa >  0. 

Therefore a  is (the modulo of) the asymptotic elasticity o f profits with respect to  

the state o f competition, while g is the constant elasticity o f the innovation hazard 

with respect to the innovation target. We obtain the following classification:

R em ark 7 Let g <  2/x and 7r (5) =  p6~a *f o (5” Q) for large 6 (pa > 0)7 Then

6 N ote that while here we specify a  form  o f the value function, in the Cournot exam ple the

resulting value function is only approxim ately o f this form , given the form o f the profit function.
7 For g >  2p we have not been able to  derive similar results. It is possible that V  has no

asym ptotic expansion in this case. A lso, the results can be  generalized easily to effort cost functions 

c(z)  =  zvfv (v  >  1), with rj < 2 p  becom ing g <  vpf  (v — 1).
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almost alwayf ford  —» oc (the firm is far behind) the value function and innovation 

target behave asymptotically as follows:

• a < t) : The value function is of the same nature as the profit function,

V (6) =  O (<5-Q), and the asymptotic innovation targets are fixed steps, A/S —* 

(1 -  a/r))v °,

• a =  rj : The value function is of the same nature as the profit function,

V (6) = O (<5-Q) , and the asymptotic innovation targets are increasing steps, 

e.g. A/<5*̂ 1' —► const , while A/6 —► 0.

• 37 < Qi < 2p : The value function is of the same nature as the profit function,

V  (6) = O (6” °) t and the asymptotic innovation targets are to match a multiple 

of the opponent's progress, A  —* A .

• a > 2[i : The value function declines slower than the profit function, V  (6) =  

O (<5” 2i*), and the asymptotic innovation targets are to match a multiple of the 

opponent's progress, A  —* A .

P roof. (Outline) Substitute the asymptotic innovation targets derived above into 

equation (1.3 ) defining the value function. Use asymptotic expansions when vari­

ables go to infinity, and collect terms by magnitude. Then compare the exponents 

according to the cases above. ■

To summarize the above discussion: If profits are less elastic than the innovation 

hazard (a <  17), followers will try to catch up in a step-by-step manner, with a 

relatively high probability o f success; but if profits are more elastic (a >  77), followers 

will try to reduce their disadvantage by matching a fixed multiple of the opponent’s 

level o f progress, but the probability of success is low. 8

8 This is, apart from a null-set o f profit functions where the term  in the profit function with the 

highest exponent cancels out in (1.3), the equation defining the value function. In fact, the profit 

functions described at the end o f section 1.4.2 are o f this type.
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1.4.5 Leapfrogging and Persistence of Leadership

We will now turn to the discussion o f the two remaining points, leapfrogging and 

persistence o f leadership. It is important to remember that in this model leapfrogging 

only confers a temporary advantage which may be immediately reversed by compe­

tition, while in other models, e.g. Rosenkranz (1996) and Motta et al. (1997), this 

new state o f competition is stable. Therefore, in equilibrium the decision whether to 

leapfrog or not is subordinate to the deeper questions o f how the race will go on in 

the future, and how to catch up in the first place before leapfrogging can take place. 

The result are as following: Under the matching strategy, if the target multiple is 

less than 100% then followers will always try to  leapfrog, no matter how far they 

are behind. In all other cases, followers will first try to get close, either step-by-step 

or matching, and then leapfrog with a small step. Thus, even a firm that when far 

behind chooses the ’risky1 matching strategy, may attempt to leapfrog ’safely’ , i.e. 

to first come close with a big innovation and then leapfrog making a small one.

Persistence of leadership depends on a comparison o f the properties of the inno­

vation hazard and the value function (and ultimately the ow profits) between leader 

and follower, while the decision between step-by-step or matching targets depends 

on the properties o f the same functions for large values o f the state o f competition 8 

alone. In the former case, the replacement and efficiency effects determine which of 

the two will exert more effort, and ultimately have a higher probability o f making 

the innovation, while in the latter case it is only the prospect of higher expected 

value that counts. It is therefore not surprising that numerical simulations show 

that persistence of, or frequent changes in, leadership may each go together with 

both step-by-step or matching targets. Some examples are the following:

• Cournot competition, ?r(£) =  (1 +  £)~2, and xp(A,6) =  (A /5 )3: Step-by-step 

innovation target (A ¡8  w l/> /3 ), persistence of leadership; •

• Bertrand competition, 7r (<5) =  ma {1 — <5,0} , and ip (A , 8) =  (A/8)v for any

36



7} >  0: Matching innovation target9 with leapfrogging (A  «  r\/ {v + 1)), per­

sistence o f leadership;

• Patent race, with 7r(5) =  7Tm > 0 i f < 5 < £ < l ,  and tt(6) =  0 otherwise; 

tit (A , 5) =  (A/S)v for any »7 >  0: Matching innovation target (A »  5), frequent 

changes in leadership;

• Variant o f patent race, with 7T (¿) =  1 if 6 <  1, and 7f (£) =  1/6 otherwise; 

l'1.’ (A, 6) =  (A /5 )2: Step-by-step innovation target (A/<5 es 1/2), frequent 

changes in leadership.

Summing up, we can conclude that persistence of leadership is not related to 

optimal catching-up behaviour o f followers, but rather has to do with the classical 

replacement and efficiency effects.

1.5 Examples

In this section we will exhibit two short examples o f closed-form and numerical 

solutions. As before, we will concentrate on symmetric equilibria where (A;, Zi) — 

(A j 7Zj), and assume that c(z) =  z2/2.

Exam ple 1 (Logarithm ic ow  profits): 1r (£) =  a j In (¿) +  a2 (c*i < 0), with 

candidate value function V  (S) =  a In (5) +  6, with a <  0. This is one of the few 

cases that allows for a closed-form solution, and as stated above, is a limit case of 

the family of value functions that result in innovation targets of fixed step size.

Assume that ^(A,<5) =  (A/6)v. Then the optimal innovation target is step- 

by-step, A (6) =  The expected gain from making an innovation, and thus

also the optimal effort level, is constant with =  Zi =  —afr ê, and given identical 

strategies for the other firm, the expected loss from an innovation by the other firm

9In this example, as in the next one, the elasticity o f cw profits for followers can be interpreted 

as a  =  0 0 .
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is r_ =  a/Tje. The value function fulfills the HJB equation

r (a In (8) 4- b) — n (£) — z*/2  +  -f ZjV~

=  7r(<5) +  ( - a / 7?e)2 / 2 +  ( - a / 7je) a/ije,

which, comparing parameters, can be solved for

In this case, since research efforts are equal and constant, and also the hazard rate 

of making innovations is constant, the state of competition follows a random walk, 

with leadership changing often between intermittent periods of persistent leadership. 

The expected value of the state, conditional on the initial value, is identical to this 

initial value (the same is true of any future state, though). On the other hand, the 

variance of the state conditional on the initial state becomes arbitrarily large. In 

this sense initial differences in technical progress do not matter in the long run.

Example 2: (Bertrand competition with unit-elasticity demand):
The profit function is n (5) =  ma {1 — <5,0}. Let ip (A, 8) — A /6. Since ow profits 

are constant (and equal to zero) for 8 >  1, but the value o f followers is positive and 

decreasing with 6 because of the prospect of catching up, the functional forms of the 

profit and value functions are rather different in this case, as can also be seen from 

the following numerical results (r =  0.3):

The value function remains very close to tt (6) /r  for small ¿>, but differs significantly 

for around I. Optimal innovation targets of followers are to always leapfrog the
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leader, and match about 50% of the leader’s level, i.e. achieve the double of the 

leader’s progress (since A(<5) w v/ (*ƒ + 1 )  with tj — 1), while leaders attempt to 

roughly double their knowledge with each innovation (or A  (<5) /S ~  17/  (rj 4* 1)). 

Research efforts (not shown here) take on their maximum exactly at 6 =  1 where 

firms are neck-to-neck, whereafter they fall fast for rising <5. Nevertheless, the leader’s 

research efforts are always higher than the follower’s, and therefore persistence o f 

leadership emerges.

1.6 Conclusions

In this research we have introduced an R&D race with endogenous innovation targets 

and research effort levels. We have indicated the economic effects that determine 

the optimal strategies of leaders and followers, respectively. Leaders will follow a 

(safe) step-by-step innovation strategy, while followers in equilibrium either opti­

mally adopt step-by-step innovations or choose the risky strategy of matching a 

certain level of the leader’s progress. Followers choose the latter option if the elas­

ticity of ow profits (with respect to the state o f competition) is higher than the 

elasticity of the innovation hazard (with respect to the innovation target). That is, 

if innovation is difficult then step-by-step targets are optimal, and if innovation is 

relatively easy then aiming for a big jump is best.

Under the matching strategy, the follower may always try to leapfrog; but it is 

also possible that the follower first catches up and leapfrogs when close. Persistence 

of leadership is independent of the choice of the follower’s strategy, and is solely 

determined by the replacement and efficiency effects.

Further research should tackle the following points: First, the above solutions 

are valid only under the assumption that no firm exits even if firm value is negative. 

If firms can exit the industry, which should be determined endogenously as part 

of the equilibrium solution, then this would give the industry leader an additional 

incentive to move even further ahead in order to push the competitor out o f the
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market. On the other hand, if firms can reenter (the same firm or a new one), 

then the conditions under which it enters will be relevant for the incentives of the 

leader. In particular, a market leader may not push out a little efficient competitor 

to prevent entry of more efficient newcomers.

Second, we have only treated symmetric equilibria, where two firms that are 

identical apart from the initial state o f competition apply the same strategies in 

they find themselves in comparable circumstances. We are able to show that some 

o f the value functions treated in the text may only be the result of asymmetric 

equilibria if firms have differing profit functions or innovation technologies. This 

result is in contrast with the existence of asymmetric equilibria in the Aghion e£ al 

(1997) model (see chapter 2) and Budd e£ al (1993). In particular, Budd et al show 

that for large discounting no asymmetric equilibria arise, while for small discounting 

they are possible. Therefore, an analysis of our model for small discounting may be 

of interest.

l .A  Appendix

l.A .l The Derivation of the Value Function

As noted in Aghion et al. (1997), the value function can be derived heuristically 

from e.g. (notation adapted)

V iP O - lT T - c f c ) ] *

+ e -" “  {Zii> (A*, 6,) Vi (Ai) dt +  z t f  (A,-, Sj) Vi (1 /A ,) dt 

+[1 -  (Zitfi (A ., Si) +  z t f  (A jJ J W V i (S i)},

by approximating e~rdt by 1 — rdt and dropping all terms containing dt2 or higher 

powers of dt.

Alternatively, it can be derived analytically in the following way: Let the random 

variables t\ and £2 denote the points in time where the state switches (’exits*) from
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6i to 1/A j or A*, respectively. Both t\ and £2 are independently exponentially 

tributed with hazard rates pj =  Zji/j(Aj,6j) and pi =  <5̂ ), respectively. The

value (6i) o f being in state is the sum of three parts: Expected instantaneous 

profits until exit, plus expected value of exiting to any o f the other two states. Let 

r  =  min{£i, £2} be the time o f exit. The distribution function of r  is

<7(£) = Pr(r < £) = Pr(min{£i,£2} < £) 

= Pr (fj < t  or £2 < t )

— 1 — Pr (£1 > £ and £2 > £)

=  1 -  e_Plie"P3i 

=  1 _  g-fo+w)^

with density g (£) =  (pj +P2)e~^1+p7̂ \ i.e. r  is exponentially distributed with hazard 

rate (pi +P 2). The present discounted value of instantaneous payoffs until exit time 

r  is

f  e~n (7r (6i) -c (z i) )d t  =  ^—  (?r (Si) -  c(zt)),
J 0 r

and its expectation over r  is

1 — e~r
£r («(St) -  c(zi))

=  ( « & ) -  c(z i))  f ~  CPi +  f t )  e - ^ - ^ d r
Jo r

r + P l+ P 2 '

If exit at r  is to state 1 /A j, then t\ =  r  < £2. Therefore the expected value of 

exiting to state 1/A j is

f *  (e_rTK (1/A ,) )  Pr (t2 > T)pie~r'rdT

=  PlVi (1 /A ,) r  e-(r+P,+Pl)rdT

PiVid/A ,) 
r + f t + f t ’
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Similarly, the expected value of exiting to state A* can be found as

PzVi (At)
r + P i  + P 2 *

The sum of all three terms is

Vi (Si) =
7T (Sj) -  c(zj) +piVj (1/A j) + p 2Vj (A t) 

r + P i + P 2

and rearranging leads to

rViiSi) =

+ P 2 ( V i ( A i ) - V i ( 6 i ) ) .

1.A.2 Asymptotic Expansions

In this appendix we will perform an analysis o f the competitive effects for large 

discounting, using asymptotic expansions as r —► oo as in Budd et al. (1993, BHV). 

Our analysis will be heuristic, for an exact exposition o f this method we refer the 

reader to the appendix o f BHV. W e assume that the following expansions exist:

v(6) =  rV (< 5 )-S r=0r -X ( « 5 ) ,

M 6 )  =  S ^ o r - “A „(5 )

z(6) = E ^ 0r-"r„ (6)

where for all 0 <  n <  2 the functions vn (.), A „ (.), Zn (.) are sufficiently often contin­

uously differentiable. Also assume that the profit function 7T (.) and the innovation 

technology rp (., 6) are twice continuously differentiable. In the following, we will 

suppress the argument 6 whenever this does not lead to ambiguities.

Step 1: Expand v (A ) =  T%L0r~nwn (<5) and t/ (A ) =  E ^ 0r " n^  (6):

Consider 0 <  m <  2. Using the expansion of A , we find that

vm (A ) — vm (A q) +  (Ao) A i

+ r -*  (Ao) A? +  *4, (Ao) A ,)  +  O ( r '3)



if the derivatives exist. Collecting terms with the same powers of r,

v (A ) =  vo (A ) +  r “ 1̂  (A ) +  r“ 2t>2 (A ) +  O (r-3)

=  Wo (¿) +  r~lw1 (6) +  r~2w2 (6) +  O (r-3) ,

with

^o(£) =  ^o(Ao),

u>i (¿) =  Vq (Ao) A j 4- v\ (A o),

w 2 (¿) =  \̂ o (Ao) A f -h ( A o )  A2 +  v\ (Ao) A i +  v2 (A0) .

Proceeding similarly, we obtain

v' (A ) =  tío (¿) +  r_ 1T¿i (¿) +  r "2tí2 (Ó) +  O (r~3) , 

ito (6) =  vó (A 0) ,

«i (6) =  v¡¡ (Ao) A i +  v\ (A 0) ,

«2 (5) =  |tfi'(Ao)Af +  tJÍ(Ao)Aa +  t í (A o )A i+ t /2(Ao).

Step 2: Analyze the first order necessary constraint on effort

t y ( ^ 6 ) ( v ( A ) - v ( 6 ) )  =  ¿ ( z (6 ) ) ,  

using that c {z) =  z1 ¡2 and

V- (A,6) = Co («) + r-'Ci («) + r-2Cs («) + O (r~3) ,

with coefficients £n to be determined later. In

z(S) =  X S ^ r - ^ S )

= (S^or-nCn) [rSLor-(B+1) (wn - 1>„)]

compare terms of order 0 and 1 in r to obtain

zo(S) = 0

zi (<5) = Co [«o (Ao) -  Vo (6)].

(1.37)
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Step 3: Apply (1.37) to the Hamilton-Jacobi-Bellman equation (HJB) defining the 

value function,

f  (6) =  n (<5) +  - 2/2  +  \zjtj (v (1 /A j) -  v (6)),

with Zjipj as the opponent’s hazard rate, and A j its innovation target. Then use 

zo(6) = 0  and various series expansion to restate the HJB as

J ^ - " « W  =  * + (3 S L ,r - " a i, ) , /2  

+  ( £ £ . . - % , )  ^ S r =0r - (n+1> K  (1/A j )  -  r„ («)).

Comparing terms of order 0 and 1 in leads to

V0 (5) = 7 t(5),

Step 4: Simplify v (A ) and t / (A), using the expressions just derived:

U>o(£) =  7T(Ao)

Wl(S) =  rf (Ao) A i

W2 (¿) =  (Ao) A f +  V  (Ao) A 2 4  V2 (A o),

and

no (6) =  7/ (Ao)

M * )  =  ^ ( A o ) A i

«2 (6) = J«*(A 0)A f4 ^ (A o )A 14i4(A o).

Step 5: Now we will apply the results obtained so far to the first order constraint 

defining the optimal innovation targets,

iff [v (A ) — v (5)] 4  in/ (A ) =  0, (1.38)

where we used the shorthand \ff — dip/dA (rp" — cPip/dA2). Expanding \p (A , <5) 

and %f/ (A , 6) about r“ 1 =  0, we obtain (suppressing the argument 6 in ip and tpf for
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conciseness)

iK A ) =  C o W + ^ 'C .  (<5) +  t - - 2C 2 (6) +  o  (r--3)

=  ^ (A o) +  r “ V (A o ) A ,

+ r - 2 W  (Ao) A? +  i f  (A 0) A 2) +  O (r -1) ,

and

V ( A )  =  i o ( « ) + r " 1« i ( « ) + ' ' - 2i 2 ( i )  +  0 ( r - a)

=  (Ao) +  r“  V " (Ao) A,

+ r " 2 (5^  (Ao) Aj + iff (Ao) A2) +  O (r 3) •

Substituting the expansions into (1.38),

(E ^ o r -”Çn) [L ^ o r -  (wn - 1,„)] +  =  0,

and collecting the terms of order 0 in r~1 leads to

£o (wo “  ^o) +  Cô o =  0

$  (Ao) [** (Ao) -  * (<$)] + ifj (A0) it (A0) =  0,

or, assuming that the second order constraint is satisfied,

A 0 ($) =  arg ma xl> (A, 5) [7r (A ) -  tt (6)]. 

Collecting terms o f order 1 in r“ 1,

Îo (tüi — vi) +  Î j  (two — Uo) +  Co^i +  Ci^o =  0, 

ÿ  (Ao) i f  (Ao) A! + 2i f  (A0) it (Ao) A ï 

+V,// (Ao) [tt (Ao) — 7T (6)J Ai = 0,

A i ^j t  $  ( A ,  £ ) {n ( A )  -  7T (tf)]) |A=Ao =  0i

and assuming that generically the second order sufficient condition holds (d? (.) / 5A 2 
< 0), leads to

A i (6) =  0.

45



Step 6: Simplify v (A ), t1' (A ), ib (A ), and ip (A ) using A i — 0:

w Q -  tv (A 0) , w i  =  0, w 2 =  (A 0) A 2 4 1'2 (A o) ,

uo s= 7r' (A o) , ui =  0, u2 =  7r" (A o) A 2 4- v'2 (A o),

Co = ^ ( A 0) , Ci =°> C2 =='0, (A o) A 2,

C0 = $  (Ao), Ci = 0, C2 = V'" (Ao) A2.

Step 7: Find z2 (6): Simplify the result for zu and compare terms of order 2 in r-1 

in

z(6) =  S * i r - s . ( i )

=  ( £ S « r - " f „ )  [Sr=0r - (n+l) («*. -  #w)],

to obtain

zo (6) =  0, zi (6) =  ip (A 0) [tt (A o) -  tt (<5)]

*2 (<$) = Co (W1 (£) “  l'i W) + Ci (t»o W  ~  vo (¿))

= 0.

Step 8: Using the last result, identify the terms o f order 2 in r “ 1 in the HJB equation 

Sr=o»""vn =  7r +  (S ~  ir- ” - ) 2 /2  +  ( £ £ . !» - % ,)  x  

(E”=0r -nTpni) (S ” 0r - (n+1) [t>„ (1 /A j) -  vn ( i ) ] ) ,

to obtain

v2 =  z\/2 -f ZijVoj [i>0 (1 /A j)  -  I'D (<5)’

= (* (Ao) [tt ( A o) -  7r (5)])2 /2 + z ^ aj [* (l/A 0J) -  tt («)],

where Z\j, xp0j, A qj are the first terms o f the respective expansions of the other firm. 

Step 9: Find A 2, the next term in the expansion o f the optimal effort level by 

collection all terms of order 2 in r “ 1 in (1.38):

Co (™2 “  2̂) + Ci («>1 -  Vi) 4  C2 -  no) 4  Cou2 4  Ci«i 4  C2«o = 0,

■o ipf (Ao) [7r7 (Ao) A 2 4  u2 (Ao) — V2 (5)] 4  (Ao) A 2 [7T (Ao) — tt (<5)]

+*P (Ao) [tt* (Ao) A2 4  *4 (Ao)] 4  ip* (Ao) A ^  (Ao) = 0,
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which can be simplified to

2V ; ô%>(A)tir(a)-*(i)])/ôA2lA*Ao-

Step 10: Apply previous results to (1.37) and collect terms of order 3 in r“ 1 to find 

the next term in the expansion of z (6):

w0 = Jr(Ao), «ÜJ =0, ^ ^ / ( A o î A î  +  tiîiAo),
tio = rf (Ao), «i =  0, «2 = Jr* (A0) A2 + t/2 (A0) ,

Co = V(Ao), Ci = 0, C* = ^(A o)A ,,

Co = (Ao), Ci =  0, (Ao) A2.

23 (5) = Co [«"J ~ "îl + Cl K  -  Vi] + C2 K  -  I'd]

= V’ (Ao) [tt7 (Ao) A2 + 1>2 (A0) -  i>2 (i)] + i !  (Ao) A2 [tt (A0) -  7r (6)]

= A2&  (A) [w (A) -  7T (5)]) |*=Ao +  V» (A») h  (A») -  «2 (5)]

= ii> (A0,6) [i’2 (A0) -  V2 (5)],

since the derivative is zero.

As in BHV these expansions could be continued to find higher-order effects, but 

these will be hard to interpret since they will be a mixture o f the other effects 

and involve, higher-order derivatives o f the underlying ow profits and innovation 

technology.
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Chapter 2

A  Note on Step-by-step races

2.1 Introduction

In this note we will examine a relatively new model o f technical progress that has 

been used as a building block in the ’Schumpeterian* or endogenous growth lit­

erature, e.g. in Aghion, Harris and Vickers (AHV, 1997). It models non-drastic 

innovation by strongly restricting the dynamics o f competition: Innovations occur 

’step-by-step’ , which means that a firm that has fallen behind must first catch up 

and equalize with the leading firm before moving ahead. In particular, ’leapfrog­

ging’ is ruled out by assumption. AH V analyze this model to give an example of a 

model o f dynamic innovation competition where contrary to the results on drastic 

innovations ” more intense product market competition and/or imitations may be 

growth-enhancing” . They do this by comparing Bertrand and Cournot competition 

in the product market.

Our note elaborates on this example concerning two points: First, the authors 

only analyzed symmetric equilibria, showing that there is a unique one. This anal­

ysis does not reveal whether there are asymmetric equilibria as well, and whether 

the symmetric one is stable. In fact, these two points are connected, since in the 

presence of asymmetric equilibria the symmetric one is mostly unstable. Stability o f
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equilibrium is a desirable property for predictions or empirical applications, since the 

market will move away fast from unstable equilibria if there is the slightest amount 

o f noise. We show that a pair of asymmetric equilibria may arise under Bertrand 

competition in the output market, leaving the symmetric equilibrium unstable, and 

that economic growth is lower in these asymmetric equilibria.

Second, we will discuss the assumption that firms cannot leapfrog the leaders and 

delineate the circumstances where firms would leapfrog in equilibrium when they 

have the choice to do so. Leapfrogging in equilibrium would occur under Bertrand 

competition, but may not occur under Cournot competition. Our analysis provides 

hints that traditional Schumpeterian leapfrogging models o f drastic innovation are 

more appropriate if market competition is high, while the step-by-step assumption 

is justified when competition is less intense.

2.2 The Model

We will first describe the setup of the AHV model. Two duopolists with constant 

marginal cost compete in a market for a homogeneous product either in quantities or 

prices (Cournot or Bertrand competition, respectively). Market demand has unit- 

elasticity, i.e. it is o f the form p =  1 /Q , where Q is total output. Therefore if firms' 

marginal costs are q  and c; , ow profits o f firm i under Cournot competition are 7r* =  

1/  (1 +  Cj/Cj)2, while with Bertrand competition they are 7r* =  ma {1 — c,/c,-,0 }.

Both firms conduct research to make cost-reducing innovations. These innovar 

tions reduce unit costs by a fixed factor 7 >  1, i.e. cj =  Ci/7, and arrive randomly 

and independently in continuous time with Poisson hazard rates determined by the 

research efforts o f the two firms. A  fundamental assumption of this model is that 

any firm can be maximally  one step ahead: After a firm moves ahead it has to wait 

until the other one has caught up. This assumption can be justified by assuming 

that any further innovation would immediately disclose the last innovation to the 

other firm, so that in practice a new innovation does not change the cost gap. The
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possible states of competition are therefore S =  { —1,0 ,1 }, meaning that either firm 

i is behind, or firms are neck-to-neck, or firm i is in front.

Let firm z’s research efforts be (x ,y) € R 2 , and firm f s  (x,y) 6 R2 . When 

firms are neck-to-neck their research efforts are x  and x, and when they fall behind 

the efforts are y and y. Research is costly, with cost 0 (2) =  r2/ 2. Catching up 

is easier than moving ahead: The hazard rate o f a firm that has fallen behind is 

y 4- ft, where h >  0 measures the ease o f imitation. Market profit ows are given 

by 7T], 7To, and 7r_i, for a firm that is leading, neck-to-neck, or behind, respectively; 

r > 0 is the common discount factor. As in AHV, we will only be concerned with 

pure strategy equilibria in perfect Markov strategies, i.e. pine strategies that form 

a subgame-perfect Nash equilibrium o f the dynamic game, and only depend on the 

state in { —1, 0, 1} o f the game.

Expected equilibrium payoffs are then characterized by the value functions 

rVi =  f f i - t e  +  Z O M -V o ) ,

rV0 =  7T0 - c ( x ) - f  x(V1- V 0) - x ( V 0 - V „ i) t (2.1)

rVLi ~  7T-i — c (y) +  (y +  h) (Vo — VLi),

where Vi, V0t and V_i are the values of being ahead, neck-to-neck, and behind, 

respectively. For example, rVo, the discounted value o f being neck-to-neck, is deter­

mined as ow profits 7r<> minus costs o f research c (x), plus the expected gain from 

innovating x  (Vi — Vb), minus the expected loss caused by an innovation of the other 

firm, x (Vo — V lj). Given the strategy pair (x ,y ) of the other firm, the optimal 

strategies x  and y o f a firm that is neck-to-neck or behind, respectively, have to 

satisfy the necessary first order conditions

¿ {x )  =  (V, -  Vo) (2.2)

c '(y ) =  (V o -v - - , ) .

Taking pair-wise differences between the value functions (2.1) and inserting the first 

order conditions (2.2) we obtain the following system of equations characterizing the
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best responses (x ,y ) € 6 (x, y) (only the non-negative solutions are relevant), where 

b : —» R̂ _ is the best response correspondence (also, p\ =  TC\ — TTo, po =  no — tt- i ,

and s =  h +  r):

±x2 +  (y +  s ) x - x y  «  pi, 

\y2 - \ x 2 +  (x +  s)y  =  pq.

(2.3)

Corresponding equations characterize 5  and y. Note that we explicitly allow asym­

metric choices for all effort levels. For symmetric strategy pairs, x = x  and y =  y, 

(2.3) are solved by AHV to yield the equilibrium strategies

X = <s/s2 + 2pi — 3, 

y =  y/s2 +  x 2 +  2 (pi +po) -  y/s2 4- 2pi.

They also show that the growth rate of the economy if there are many identical

sectors is given by

9 =  2x
y +  h

y 4* h +  2x
In 7.

It can be shown that in asymmetric equilibria the average growth rate is given by

(Xi +  Xj) (Sft +  h) (y, +  h)
9 ”  ------- :--------n ------- :------- :---------- 1117.

( V i  + h 4* x j ) ( y j  +  h +  X*) -  x ^

2.3 Asymmetric Equilibria

In theory, (2.3) could be solved explicitly for (x, y) and (x , y ), since it can be shown 

that these four equations can be ’reduced1 to four independent polynomial equations 

of order four, which still have analytical solutions. Instead, we will use the inverse 

response map (x, y) ~  6“ 1 (x, y), similar to Harris and Vickers (1987).

2.3.1 The Inverse Best Response

We will move in two steps, first, as we show in appendix 2.A.1, note that the 

strategies that are used in some equilibrium are exactly the solutions to the fixed
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point equation (x, y) E b(b(x,y)),  while strategies in symmetric equilibria make up 

the subset for which also (x, y) E b (x, y) holds. Second, if b~l is the inverse o f 

the best response, (x,y) €  b(b(x,y)) if and only if (x, y) E b~l (b1 (x ,y )), as shown 

in appendix 2.A.2. Therefore we can work with the inverse reaction map which in 

this case is more straightforward, and have the following: (x, y) E is a strategy 

played in some pure strategy Markov perfect equilibrium (symmetric or asymmetric) 

if and only if (x,y) E (f>-1)2 (x,y). It is part o f some symmetric equilibrium if and 

only if (x,y) E b_1 (x,y) C (b~l)2 (x ,y).

Best responses (x, y) =  b (x, y) in pure Markov strategies for the R&D-race are 

given by the equations (2.3). Under the natural assumptions that ttj >  7r0 (profits o f 

a leader are strictly higher than those of a firm that is neck-to-neck), and 7T0 > 7r_j, 

for any best response (x, y) € R+ to (*» V) € M+ we must have x > 0 and y >  0, i.e. 

(x,y) E R++. The inverse response map 6 '1 : R̂ _+ —► R2 is then given by solving 

(2.3) for x  and y}

x =  ( p o  + x2/2 -  y2/2) /y -  a, (2.4)

9 =  (pi +  Po -  2/V2 -  Vs) ! x  ~ s •

Note that for large x or y the images x  or y may be negative. This simply means 

that this (x, y) is not a best response to any feasible (i.e. non-negative) strategy o f 

the other firm. Therefore, (x,y) is a best response to some feasible strategy by the 

other firm if and only if 6” 1 (x,y) >  0.

2.3.2 The Graphical Solution

The fixed point condition on pure Markov perfect equilibrium strategies, (x, y) 6 
(6-1)2 (x, y), is still difficult to visualize, since (6"1)2 is a map with a four-dimensional 

graph. The same is true for the fixed point condition on symmetric equilibria, 

(x, y) E b~l (x ,y ). They can be ’solved* numerically, but this is little intuitive, 

and also there is no guarantee that all solutions are found. We therefore propose



a graphical solution where the fixed points can be visualized in two-dimensional 

space. Let F  be either one o f the maps (fr-1) or h , and let F =  (FT, Fv), where 

Fx, Fy : R* -* R+. That is, if F  (x, y) =  (x, y), then Fx (x, y) =  x, and Fy (x, y) -  y. 

The fixed point condition (x, y) — F  (x, y) can then be expressed equivalently by 

the two conditions x — Fx (x, y) and y =  Fv (x, y). These describe two curves in R +, 

and equilibrium strategies can be found at their intersections. Denote by Alx and 

A* the curves pertaining to F  =  b~l (for symmetric equilibria), and by Ax and A* 

the curves pertaining to F =  (fc-1)2 (all equilibria).

Let us consider the cases o f Cournot and Bertrand competition. Under Cournot
* 2competition and unit-elasticity demand the profit function is 7T* =  1/(1 +  

with s =  0.02 and 7 =  2 we obtain the following figure:

Figure 1: Equilibria under Cournot competition (s =  0.02, 7 = 2).

We can see that A £  and meet at the same point as A \  and j4*, since A \ .  and 

describe the symmetric equilibria. Since A\ and A*, and also j4£ and j4J, do 

not meet anywhere else, there is exactly one equilibrium, and it is symmetric (at 

x «  0.604 and y  «  0.392, with average growth rate g «  0.209). This is the generic 

result under Cournot competition as we will argue below.

However, under Bertrand competition (71* =  ma (0 ,1 — 7"*}), also with s =  0.02 

and 7 =  2, we obtain Figure 2:



M

Figure 2: Equilibria under Bertrand competition (5 =  0.02, 7 =  2).

Here there is a pair of asymmetric equilibria (involving the strategy pairs (x i, t/j) 

w (1.229,0.734) and «  (0.643,0.156), and growth rate g «  0.140) and one

symmetric equilibrium, with (x ,y ) ft* (0.980,0.400) and growth rate g ft! 0.235. We 

can see that the existence o f asymmetric equilibria depends on the relative slopes 

of the loci and A j around the symmetric equilibrium: The example in Figure 3 

(s =  0.15, 7 =  2) shows that asymmetric equilibria exist if and only if the slope o f 

Aj is steeper than the slope of AJ (in coordinates (x,y)):

Figure 3: Equilibria under Bertrand competition (s =  0.15, 7 =  2).

Simulations show that these relative slopes vary monotonically with s and 7 : 

Decreasing "discount rate -f* ease o f imitation" s and increasing innovation size 

7 makes A^ steeper relative to A* around the symmetric equilibrium, i.e. make
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asymmetric equilibria more likely. Therefore, under Cournot competition there are 

no asymmetric equilibria since it can be shown that in the extreme case s —» 0 and 

7 —► oo no asymmetric equilibria exist. For Bertrand competition, given s (7) there 

is 70 ($0) such that there are no asymmetric equilibria for 7 < 70 (s >  so).

2.3.3 Welfare Properties of Asymmetric Equilibria

The existence o f asymmetric equilibria under Bertrand competition has a straight­

forward interpretation: More relative advantage for the leader, either because the 

product market is more competitive (Bertrand instead o f Cournot competition), or 

because cost reduction through innovations are bigger (7 higher), or because im­

itation is more difficult (lower /i), or because players are patient and care about 

long-term advantage (lower r ), may result in endogenous asymmetry'. Ex ante iden­

tical firms choose different strategies because ’the market is too small’ , and one o f 

them emerges as a ’natural leader’ , whereas the other becomes a ’natural follower*. 

Beliefs about each others’ strategies then reinforce the asymmetry even though there 

are times when both firms are neck-to-neck and have the same cost of production, 

because they follow different investment strategies.

As argued above, considering the symmetric equilibrium as the ” legitimate so­

lution” or even prediction o f the game is questionable if it is unstable. Using the 

best-response maps, we can show in our examples that in the presence of a pair of 

asymmetric equilibria the symmetric equilibrium is unstable in the sense of Seade 

(1980), i.e. not all eigenvalues of the matrix M  =  I2 +  B  are non-positive, where 

I2 is the 2 x 2  unity matrix, and B is the matrix o f derivatives o f the best-response 

function.1 Here the most reasonable prediction would be that the market ends up in 

one of the asymmetric equilibria, even if this is subject to the equilibrium selection 

problem.

The comparison o f payofls and growth rates between symmetric and asymmet-

l This is essentially an index-theoretic result, as was applied to  Cournot oligopoly by Kolstand 

and Mathiesen (1987).



ric equilibria is also o f interest: It turns out that the (neck-to-neck) pavofis for 

the Bertrand example in Figure 2 are 28.39 and 1.525, whereas in the symmetric 

equilibrium they are 8.813 for each firm. Therefore, in the asymmetric equilibrium 

the ’follower’ is much worse off, but joint payoffs are higher than in the symmetric 

equilibrium. We were not able to prove this analytically, but suspect that this may 

hold generally: Since for the disadvantaged firm it is rational to hold back its efforts, 

there will be less dissipation of monopoly rents than in a symmetric duopoly.

On the other hand, as noted above, average growth rates are higher in symmetric 

equilibria. This can be explained by the same factor: Even though the ’leader’ 

credibly exerts very high research efforts, since the disadvantaged firm invests less 

in research, catching up or overtaking will occur less often, which lowers the long-run 

growth rate.

This divergence between joint payoffs and growth, together with the instability 

o f the symmetric equilibrium, may make asymmetry a welfare issue: Too much 

advantage for the leader (even if the competitors are ex ante on equal footing) may 

slow down growth while keeping industry profits at a higher level. Therefore, higher 

competition in the product market will only certainly raise growth if the equilibrium 

will not give rise to asymmetric equilibria.

2.4 To leapfrog or not to leapfrog

AHV assume that cost-reducing innovations are o f a fixed size 7, and that a firm 

that has fallen behind first has to catch up with the leader (make an innovation of 

size 7) instead o f leapfrogging him (making an innovation o f size 72). In this section 

we will discuss the equilibrium outcomes if leapfrogging is possible.

We will analyze whether in the present model ’no leapfrogging’ is an optimal 

choice if leapfrogging to the leader’s position is possible. In this case the assumption 

o f ’no leapfrogging’ imposes no restriction on the equilibrium strategies.

We will assume that ’no leapfrogging’ is an equilibrium, with value functions as
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in (2.1) given by

rtf' =

tV — 7T0 -  c (xj) +  Xi (Hr - V ) -  Xj (V -  u ) , 

rU =  7r_i -  c (pi) +  (yj +  h) (V" -  U) ,

and first order conditions for optimal effort levels given as in (2.2) by

d (Xi) =  (W -  ? ) ,

¿ f a )  = < y - o ) .

A follower who is deliberating to leap-frog faces the following value of leapfrogging 

(assuming that afterwards the equilibrium without leapfrogging is played):

rUi =  7r_i -  c(z) 4- (z +  h() (W -  Ui) ,

where we assume that imitation is more difficult than for just catching up: 0 <  hi < 

h. Research effort is z >  0, and at the optimum is characterized by the usual first 

order condition d (z) — (IV -  C/j). Using this first order conditions and solving2 for 

Ui leads to (assuming quadratic cost of research as above)

0  =  ){* -\  +  \y1 +  hy),

Ui =  W - y / { h i + r ) 2 +  2 (rlV -  ir_i) +  (h, +  r ) .

The follower prefers catching up over leapfrogging if U >  Ui. After some manipula­

tions using the first order conditions, and because in equilibrium W  =  x  +  y  +  Vy 

this condition can be written as

x2 +  2xp +  2xhf -f 2yhi < 2ph.

This can only hold if, in equilibrium, effort levels are very small and hi is small 

enough. A  necessary condition for preferring catching up over leapfrogging is x2 +

2 The second root of the equation for Ui is occluded by W — Ui >0.
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2xy < 2yh, which is indej>endent of the value of h\. It can be shown that this condi­

tion is more likely to be satisfied if innovation size 7 is small or discount rate/ease of 

imitation s is large (and therefore x  and y are small), and an example for Cournot 

competition where catching up is preferred to leapfrogging is the equilibrium under 

the parameters 7 =  1.1, h =  0.2, and r =  0.01. On the other hand, under Bertrand 

competition this condition never holds for any 7 >  1, and therefore firms prefer 

leapfrogging even if imitation is difficult, h\ — 0, and therefore the ’equilibrium’ 

with catching up is never an equilibrium under Bertrand competition if we allow 

firms to leapfrog.

To sum up, if we relax the assumption that firms cannot leap-frog, then no 

leapfrogging arises as an equilibrium outcome only when the intensity o f competition 

in the product market is small (Cournot competition), or innovation size is small, 

or the discount rate and ease o f imitation are large. That is, if the advantages of 

being a leader are high then leapfrogging is more attractive.

2.5 Conclusion

For a simple model of step-by-step innovation competition we have shown that the 

unique symmetric equilibrium may be unstable if product market competition is 

high, innovations large, and discount rate and ease o f innovation small. In this case 

asymmetric equilibria exist as well, possibly altering the empirical predictions and 

welfare properties o f this model.

We have also shown that the assumption that firms cannot leapfrog each other 

does restrict equilibrium strategies in the sense that firms would prefer to directly 

leapfrog each other unless market competition is low, innovations are small, and 

discount rate and ease of innovation are large.
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2.A  Appendix

2.A.1 Symmetric and Asymmetric Equilibria

In a game with 2 players, strategy spaces Si (¿ =  1,2) and given pure strategy best 

response maps bt : Sj —► 5, (j ^  ¿), the pure strategy equilibria s =  (sj, s2) 6 Si x S2 
are characterized by the fixed point equations Si € bi (sj) (j i). This leads to the 

necessary condition on an equilibrium strategy s,

Si €  bi (bj {Si)) (j ±  i), (2.5)

which does not depend on the strategy o f firm j . For identical best response maps bj 

=  b2 = b on Si =  $2l this condition becomes s,- € b(b (s*)) — fe2 (s*) (i =  1,2). Any 

Si with 5, € b2 (s^ is part of some pure strategy Nash equilibrium (s^ Sj) since there 

is Sj € b(si) with Si € b (s^), but not all combinations of ($i, s2) with Si €  b2 (st) 

(i =  1, 2) is a Nash equilibrium.

Also, Si with Si 6 b(si) are part o f symmetric pure strategy equilibria (®i, «2) 

with Si =  s2. It is obvious that

{ S j  €  $ 1 *  €  b ( S i ) }  C  { S i  €  Si\st 6  i > 2  ( « * ) }  ,

i.e. symmetric equilibria are trivial ’asymmetric* equilibria. Strategies appearing as 

part of (non-trivial) asymmetric pure strategy equilibria are therefore given by

{ i i  €  $ 1 *  €  b2 A St i  & («,)} •

These conditions are illustrated in the context of the following static game: There 

are two players with strategy sets S\ — S2 — [0 ,1], and payoffs are s{ (sj — 1 )2 — s2/2 

(i — 1,2; i 7̂  j). Best responses are found to be single-valued with b (sj) =  (sj — l ) 2, 

and the pure strategies in equilibrium are given as the solutions (over [0 ,1]) of the 

following equations

symmetric : Sf =  (ŝ  — l ) 2 =» s* =  § — |v/5,

(a)symmetric : st =  ((s* — l )2 — l )2 =* s* € |o, | — |\/5, 1J .

The pure strategy Nash equilibria are therefore (0 ,1 ), (1,0), and (| —1\/5, | — j\ /5 ).
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2.A.2 The inverse best-response map

Above we argued that to find the set o f all pure equilibrium strategies we can work 

with the inverse response map instead o f the response map itself. To this end we 

prove the following lemma:

Lemma 1 The sets of fixed points of b2 : R .̂ —► R2 and of (b~1)2 : R2 + —► R2 are 

identical:

{(xi v )  I ( x , y )  e (*,y)} = {(x,y) I ( x , y )  € (6-1)2 (i,y)}.

P roof. Extend 6_1 to the whole o f R2 by defining b~l (x, y) =  0 if (x, y) G R2\R++, 

and define 6"1 (0) =  0. Let (x ,y) be such that (x,y) G fr2 (x ,y ); then there is 

(x ,2/) € R 2 + such that (x ,y) G b (x,y), (x ,y ) G 6(x, y), and therefore (x ,y ) G R 2 +- 

Then it is obvious that (x ,y ) G 6**1 (x ,y ) and (x ,y ) G 6“ 1 (x ,y ), therefore (x ,y ) G 

( ir 1)2 (x, y).

For the converse, let (x ,y ) G (6“ 1)2 (x ,y ). Then there is (x ,y ) G 

R++ such that (x ,y ) G i r 1 (x ,y ), otherwise (6“ 1)2 (x,y)  would be empty. Therefore 

(x,y) e b (x , y )  and (x ,y ) G 6 (x ,y ), i.e. (x ,y ) G 62 (x ,y ). ■
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Part II

Cournot Oligopoly
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Chapter 3

Existence and Comparative Statics 

in Heterogeneous Cournot 

Oligopolies

3.1 Introduction

Since Cournot’s early contribution his model of oligopoly has received more and more 

attention, and nowadays is a basic building block o f applied work on a wide range 

of topics involving imperfect competition. Its usefulness depends on two features: 

First, existence and uniqueness o f equilibria at the market stage must be easily 

established, and second, comparative statics results should be readily available. In 

the context o f homogeneous goods both these aspects have been treated extensively, 

whereas for heterogeneous goods there are much fewer results available.

It is possible to  ascertain the existence o f pure Cournot equilibria under the as­

sumption that profits are concave, using the general result that games with concave 

payofls possess pure equilibria (see Friedman 1991). This condition is not easily 

translatable into assumptions about demand and production costs, therefore there 

have been many attempts to identify those features that guarantee the existence
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o f equilibria. The first strand o f the literature identified conditions on demand 

that could be fruitfully exploited: Novshek (1985), Kukushkin (1994) and Corchon 

(1994,1996) assume that goods are strategic substitutes, while Vives (1990) assumes 

that goods are strategic complements. Therefore it is assumed that firms’ reaction 

functions are either decreasing or increasing. The second strand initially imposed 

assumptions only on costs and proved the existence o f symmetric equilibria: Mc­

Manus (1962, 1964), and Roberts and Sonnenschem (1976) assumed that costs were 

linear or convex, i.e. had nonincreasing returns to scale. Amir and Lambson (1998) 

showed for homogeneous goods that it was possible to allow for limited increasing 

returns to scale in production, resulting in a condition that combines both the de­

mand and cost functions. It is interesting to note that it is not by chance that these 

two strands o f the literature exist, since fundamentally each strand uses one of the 

two stability conditions by Hahn (1962), which impose different kinds of regularity 

on the model.

Most o f the above authors have only covered the case o f homogeneous goods. 

Kukushkin (1994) and Corchdn (1994, 1996) deal with additive aggregation, i.e. 

where the sum of competitors’ outputs is relevant, but assume strategic substitutes; 

Vives (1990) allows for general non-homogeneous goods, but under strategic com­

plements. Spence (1976) indicates how to prove existence o f Nash equilibria for a 

special class of inverse demand functions with heterogeneous goods. Our work is the 

first to address the question of existence of equilibria with heterogenous goods in a 

general context that does make not use of the assumption o f strategic substitutes 

or complements. Rather, it is based on the second strand o f literature and directly 

generalizes Amir and Lambson’s (1998) work to heterogeneous goods.

We impose the condition that firms react to a rise in competitors' quantities by 

adjusting their own production in such a way that their market price does not rise 

(condition A ). Doing so, output may increase or decrease, but must not decrease 

too strongly. This condition is formulated without making use of differentiability 

or convexity assumptions, rather it is formulated in lattice-theoretic terms as a
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single-crossing condition. If goods are substitutes, and under standard regularity 

conditions, we show that this condition implies the existence of symmetric pure 

Cournot equilibria even when outputs are heterogeneous.

Concerning uniqueness, asymmetric equilibria can be ruled out if we add the 

additional weak assumption that own market price reacts more to changes in own 

output than in competitors’ outputs (condition B ). Multiple symmetric equilibria 

can be excluded only under much stronger assumptions.

Comparative statics on demand or cost variables for Cournot oligopoly have been 

analyzed by many authors, among them Frank (1965), Dixit (1986), Corchón (1994, 

1996), while comparative statics with respect to the number of firms have been 

discussed by Frank (1965), Ruffin (1971), Seade (1980 ), Szidarovsky and Yakowitz 

(1982), Corchón (1994, 1996), and recently by Amir and Lambson (1998). The 

case of heterogeneous goods has been treated by Dixit (1986) for two firms, and 

by Corchón (1994, 1996) for additive aggregation, but they as most authors have 

imposed the assumption of strategic substitutes from the outset, which is irrelevant 

for most comparative-statics conclusions. In fact, Amir and Lambson have shown 

for homogeneous goods that the only relevant condition for decreasing equilibrium 

prices and increasing equilibrium total quantity is that there are no strong increasing 

returns to scale.

One of the fundamental conclusions of this literature is that stability o f equi­

librium is closely connected to Mnon-paradcodcaT comparative statics results. Our 

analysis for heterogeneous goods, which is based on lattice-theoretic monotone com­

parative statics methods, makes precise predictions for maximal and minimal equi­

libria that do not rely on stability, while we show that comparative statics results 

for arbitrary equilibria continue to depend decisively on the stability o f equilibrium.

In this work we will concentrate exclusively on the comparative statics o f entry. 

Our main result is that if competitors’ quantities enter inverse demand in some 

aggregated form, then equilibrium prices do not increase as more firms enter the 

industry. We also show by means o f an example that this result is not extendable
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to general heterogenous goods, i.e. equilibrium prices may rise even if there are no 

increasing returns to scale and equilibrium is stable.

Total equilibrium output may rise or fall even if prices are decreasing, but will 

rise under the same condition that we already used to rule out asymmetric equi­

libria. Individual output rises or falls depending on whether goods are strategic 

complements or substitutes, while profits always decrease.

The rest of our paper continues as follows: Section 3.2 sets out the model, and 

section 3.3 introduces the main condition. Existence results are presented in section 

1, and related conditions and some examples are discussed in sections 3.5 and 3.6. 

Section 3.7 presents our comparative statics results, and section 3.8 concludes. All 

proofs are in the appendix.

3.2 The Model

There are n firms with identical finite production capacities1 0 < K <  oo and 

identical production cost functions c : [0, K] —► R+, which are assumed to be lower 

semi-continuous.

Denote firm i ’s output quantity by x*, and by x„< the vector of outputs of the 

other firms. Inverse demand o f firm i (i =  l..n ) is given by a continuous function 

p : [0,K]n —► R+, with.pj =  p (x*,x_*),2 which is symmetric in the other firms* 

outputs: Let x_< be any permutation o f x_,, then p (xt, £_<) =  p (x itx_i) for all 

(x i,x -i) € [0, K]n. That is, firms are completely symmetric in that, apart from 

identical production technologies, all demand functions have the same functional 

form and all competitors* goods enter each demand function symmetrically. Assume 

that p is nonincreasing in x(- and x_,-, i.e. in particular goods are substitutes, and

1 Alternatively, as is often done, one may assume that inverse demand falls below marginal cost

(given any output o f rivals) or even becomes zero for outputs larger than a certain limit. All these

assumptions ensure that firms' outputs are bounded.
2By p(xi,  X - i )  we do mean that x, is the first argument o f p, i.e. that for all i own quantity x,

enters firm i ’s inverse demand differently from other firms' quantities Xj, j  ^  t.
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strictly decreasing in xt- where inverse demand is positive.
Firm t’s profits are, for X i  G [0, K ]  and given € [0, iv]"-1,

n  (Xi, x -i) =  Xip (Xi, x „i) -  c (Xi), i =  1 . . .  n. (3.1)

We will now reformulate profits II as a function of firm Vs market price pi and the 

other firms’ outputs3. As shown in the appendix, there is a set X  C R+. x [0, K}n~l 

such that we can express firm Vs output as a function x  ■' X  —► [0, K] of own market 

price pi and the others’ output that is continuous and nonincreasing in (pj,x_*) € X , 

and strictly decreasing in p,. Also, there is a new constraint set tt (x_,) that is non­

empty, closed, compact, and nonincreasing in x_i. Firm Vs maximization problem 

can then be expressed as

ma f t  (pi,X-i)  =  x ( P u x - i ) P i - c (X<J>i,X-i)),  (3-2)Pi€w(x_i)

resulting in the price best response4 P  (x_, ).

If we consider profits fi (pi, x .j )  ” on the diagonal” where all competitors produce 

the same amount y  G [0, A ], we can define

f l f a y )  =  ft(Pt (3.3)

Some special cases are, in order o f increasing specialization, what we will call 

” Competitor aggregation”, ” industry aggregation”,5 and homogeneous goods. Under 

competitor aggregation there are functions p : R+ —*■ R+ and ƒ : [0, K]n~l —► R+, 

where ƒ is strictly increasing, such that

p  (x 4 ,  x_i) =  p  {xit ƒ (x _ ,)) ,  (3.4)

where the competitors’ quantities are aggregated into one number. One example is 

additive aggregation with ƒ (x_<) =  Yi =  Ej&Xj.

3 N ote that the variable to  be maximized over (output or price) is irrelevant as long as afterwards

each firm ’commits* to  a fixed production quantity or at least com petitors believe that it is so.
4 We adopt this formulation to  avoid confusion with the standard (quantity) best response or

reaction function X i = r  (x_<).
5I would like to  thank Karl Schlag for proposing these terms.
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Under industry aggregation there exists a function p : R+ —► R+ and ¿ e l L  

such that

P (*•» * -i) =  P (Xi +  6Yi) , (3.5)

and if goods are homogeneous then <5 =  1.

For industry aggregation it is easy to see that X (P i,x_j) =  D (pi) — 6Yi, where 

D =  p~l is the demand function, and the profit maximization problem becomes

X~i] =  {D(P') ~ SY')Pi ~ C (D  ~  6Yi) ’ 

where for identical outputs by firm t’s competitors,

n(Pi,y) = (D (Pi) -  s (n -  1 )y )p i -c (D { j> i ) -6 ( n -  1 )y ) .

3.3 The Condition

Our main condition on profits is o f a type that has recently been shown to be 

of central importance in any exercise o f comparative statics: In a lattice-theoretic 

context, Milgrom and Shannon (1994) have shown that the set o f maximizers of the 

parametric maximization problem ma x<zs f  (x,£)> where S C R , is nondecreasing 

in (t, 5) if and only if ƒ satisfies the weak single crossing property in (x, t): for all 

a /> x  and t! > t  we have that

In the context o f game theory this result can be applied to  best response maps, and 

we do so after our change of variables from own quantity to own price described 

above. Underlying our results is the following condition:

Condition A: ft (pt, y) satisfies the dual6 weak single crossing property in (p\,y), i.e. 

for all & >  pi and xf > y we have that

ft (pi>y) -  ft (pi, y) < (< ) o => ft (ji, l/) -  ft (Pi> if) £  (<) (3*6)

6This is a "dual”  single-crossing property because the inequality signs in the definition ore 

reversed.
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Even though this condition seems to be extremely abstract, its interpretation is

very simple and economically intuitive: Condition A means that, starting from a 

situation where all other firms produce identical quantities. if the other firms raise 

their outputs by the same amount, it will be advantageous for firm i to adjust its 

output only in such a way that the resulting market price is not higher than before. 

Doing so, own output may increase or decrease, depending on whether goods are 

strategic substitutes or complements. This condition is a very natural condition to 

consider when one is interested in how equilibrium prices changes with entry of new' 

firms in a setting where all firms are equal; here we will show that it even implies 

existence of equilibrium, subject to some regularity conditions.

Note that condition A imposes the dual single crossing property only on the 

"diagonal” , i.e. where competitors all produce the same quantity. This is sufficient 

for the following existence result since we are only interested in symmetric equilibria, 

while we will have to state a condition covering the whole space of outputs to deal 

with asymmetric equilibria.

In addition, condition A  is formulated for identical increases in output for all 

competitors. This is equivalent to formulating the corresponding condition in terms 

of an increase in just one competitor’s quantity as long as inverse demand is sym­

metric in competitors’ outputs, while it is more general if inverse demand is not 

symmetric. Condition A therefore even applies to cases where firms are identical 

but inverse demands are not symmetric in all competitors’ outputs. One example 

o f this is a situation where each firm only has two neighbors, as in a "circular city” 

model. In this paper we will concentrate on the symmetric case.

It is important to note that condition A  rules out the existence of avoidable 

fixed cost, i.e. fixed costs that are not incurred if nothing is produced: If they were 

present, firm i might prefer to stop producing at all (in effect raising own price), 

instead of lowering its own price, if the other firms raise their outputs. Any other 

upward jump in production cost is similarly excluded.
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Condition A applies no matter whether inverse demand and production costs are 

differentiable or not. Since it is an ordinal condition, it is not surprising that there 

is no equivalent condition in terms o f derivatives even if demand or cost are differ­

entiable. Using the method of dissection discussed in Milgrom and Shannon (1994, 

p. 167), we can find a sufficient differential condition that is slightly stronger than 

condition A (see appendix 3.A.2). If IP* and IT-* are the second partial derivatives 

o f the profit function o f firm i with respect to outputs, and p1 and p3 the partial 

derivatives o f the inverse demand of firm i with respect to Xi and Xj, condition A is 

implied by

Condition AD: For all i, X* € [0, K ] , and x_* =  (y, ...,y ) €  (0, A ']"“ 1,

n* (**,*-<) pj
IF  (x*,x_t) <  0. (3.7)

In the cases o f industry aggregates or homogeneous goods, condition AD reduces 

to the condition (as we discuss in section 3.6) pf — c" <  0. Here condition AD has 

the following interpretation: There are at most weakly increasing returns to scale, 

or profit margins p — d are falling in own output7 The relation between conditions 

AD and A is as follows: If output by the other firms increases marginally, and if firm 

i reduces output such that its market price remains constant, then firm t’s profits 

decrease by the profit margin (p — d), which is a first-order effect; since by condition 

AD profit margins are decreasing in own output, this decrease in profits can only be 

counterbalanced by an increase in own output and a resulting lower market price, 

therefore firm i will not want to drive prices up. Best response output may go up 

or down since there are two opposite movements in output involved.

An interesting implication of condition AD is that it implies a bound on the

7An equivalent interpretation, due to Am ir and Lambeon (1998) for homogenous goods is that, 

"inverse demand or price decreases faster (...) at any given output level than does marginal cost 

at all lower output levels."
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slopes of quantity best responses r< (#-*),

— r -  ( x  • )  =  — —  >9xj ' { ) II" “  p -'

Apart from condition AD there are various other conditions that imply condition 

A and that may sometimes be easier to verify. Some we will discuss in the next 

section, but the one most easily verified is the following:8

Condition D: n  has (weakly) decreasing differences in (pt,X-i). i.e.

n ( p ' ,  x ' _ . )  -  n ( ? ( ,  x ' _ , )  <  n ( p < ,  x _ f )  -  n ( p ^  x . ( )  ( 3 . 8 )

for all p( > pi > 0 and xL,- > x_j € [0, if]"-1.

This condition is strictly stronger than condition A (Milgrom and Shannon 1994). 

If inverse demand and production casts are twice continuously differentiable, this is 

equivalent to (see appendix 3.A.3), for all j  ^

d2
dpidxj n (p ^ x_ i) <  o,

or

ip  -  + (pi + xp* -  c') ? p" < o. (3.9)

The last term in (3.9) disappears if goods are industry aggregates {p’p** —p*ptj — 0), 

or at interior best responses (p, +  xp1 — d =  0), leading to condition AD.

3.4 Existence of Equilibria

We will now state our main result on the existence o f symmetric pure Cournot equi­

libria. In addition to condition A  stated above, we need some regularity conditions 

to ensure that the decision problem o f each firm has an optimal solution:

Condition R (Regularity): 1. Production capacity K is limited: 0 < K  < oo;

2. production cost c (x<) is lower semi-continuous;

8 Here x’_i > X-i means that x'- > Xj for all j  £ i.



3. inverse demand p (x¿,x_i) ¿5 continuous in (x„x_*).

Multiple symmetric equilibria can be ranked according to equilibrium quantities 

(or prices). If there is a symmetric equilibrium where quantities are smaller (higher) 

than in any other symmetric equilibrium, this equilibrium is called minimal ( maxi­

mal).

Theorem  1 Assume that inverse demand is nonincreasing in all arguments (goods 

are substitutes), and strictly decreasing in own output while inverse demand is pos­

itive. Under conditions R and A there exist maximal and minimal symmetric pure 

Cournot equilibria.

From a technical point of view, at the heart of theorem 1 lies the fact that under 

condition A  the price best response P  (x_¿) has nonincreasing maximal and minimal 

selections, which allows for the construction of nondecreasing maps from the space 

of prices into itself. Tarsky’s (1955) theorem, which states that any nondecreasing 

map from an interval into itself has a fixed point, can then be applied to show 

that maximal and minimal fixed points exist. These result in maximal and minimal 

symmetric pure strategy Cournot equilibria.

The equilibrium is unique if and only if the maximal and minimal equilibria are 

identical, but this cannot be established without further assumptions. Under the 

strong assumption that profits are quasiconcave, multiple symmetric equilibria can 

be excluded if one assumes that the slopes of quantity best reactions are smaller 

than 1 / (n — 1), which follows in particular if all equilibria are stable (see appendix 

3.A.4). On the other hand, using stronger versions of condition A and a weak 

additional condition B, one can exclude the existence of asymmetric equilibria.

Let us state two conditions related to condition A, both of which are strictly 

stronger and involve the whole space o f competitors* outputs [0, K]n~lm. For all 

i =  l...n ,

Condition AS: ft (p¿, x_¿) satisfies the dual strict single crossing property in
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for all x -i € [0, K]n For all > pi and x'_t > x_*.

ft (p ',* -») -  ft (pi, x ^ ) <  0 =► ft (p ',*'_*) -  ft (p i,xV ) < 0. (3.10)

Condition ASD: dTl/dpi exists, and is strictly decreasing in x3 for all j  ^  t, 

where p (x i,x _ j) is positive and for all x_* 6 [0, iC]n_1.

Condition AS means that a firm will not raise any best response market price as 

a reaction to an increase in competitors’ outputs (as opposed to just maximum and 

minimum best response prices under condition A ). Condition ASD implies that a 

firm will strictly decrease its market price as a reaction to an increase in competitors’ 

outputs and is stronger than conditions A  and AS, and even stronger than weakly 

or strictly decreasing differences o f profits (see Edlin and Shannon 1998a).

Let be the vector o f outputs o f firms k ^  i, j .  The additional conditions on 

inverse demands are:

Condition BW  (weak): For all j  ^  i, all (xj,X j-,x_y) 6 [0, K]n, and all e >  0,

P fa  +  £, < p (x<, Xj *f £, x _fy).

Condition BS (strict): For all j  ^  i, all (x y x ^ x -y ) € [OjA]", and all e > 0, 

p(xi 4- £ ,X j,x_y) <  p (x,, x3 +  £ ,x _y ), where the inequality is strict when p(xiyXj +  

£,X_y) > 0.

If inverse demand is differentiable these conditions correspond to p* <  p7 and 

px <  p7, respectively. Conditions BW  and BS mean that each firm’s changes in 

quantity in uence its own market price more than the same changes in other firms* 

quantities, which is a very reasonable assumption as firms are symmetric. Note 

that the case o f homogeneous goods, where pl =  p7 =  j f , falls under condition BW. 

In fact, both these conditions follow from utility maximization of a representative 

consumer: If inverse demands are derived from maximizing a (strictly) concave 

utility function 17, where at the optimum Pi =  dU/dxi, then the condition p* <  p7 

(p* <  p7) follows from the (strict) definiteness o f the Hessian and the symmetry of 

the demand functions.9
9N ote that p* =  dPU/docf, p7 =  cPU/dxidxj, and that the determinant o f every 2x2 minor o f

72



With these conditions, we have the following proposition:

P roposition  2 Asymmetric equilibria do not exist if either 1. or 2. holds:

1. Conditions AS and BS hold.

2. Conditions ASD and BW hold.

For homogeneous goods we must assume condition ASD (including the assump­

tion that profits are differentiable) to rule out asymmetric equilibria, while for het­

erogeneous goods the weaker condition AS is enough. On the other hand, condition 

AS must be accompanied with the slightly stricter condition BS.

3.5 Related conditions

In the following we will discuss the conditions which have been used so far to establish 

existence of Cournot equilibrium and their relation to condition A. In general, strong 

conditions on payoffs, like concavity or quasiconcavity, yield existence in arbitrary 

games, see Friedman (1977, 1991), but are difficult to translate into economically 

meaningful statements about demand or cost.

Spence (1976) presents a class of demand functions with a special functional 

structure where Cournot equilibria can be found maximizing a certain ’wrong1 sur­

plus function. Here the question o f existence of Nash equilibria reduces to the 

question of existence of maxima of this function. Slade (1994) finds a necessary 

and sufficient condition for this relation between equilibria and maxima to exist, 

and shows that for homogeneous goods such functions exist if and only if demand 

is linear, while there are more general cases for heterogeneous goods.

Most work has concentrated on economically meaningful conditions on demand 

or cost, or both. Unsurprisingly, practically all are related with either one or the

the Hessian must be non-negative (positive):

( p f  - ( p*)* > ( > ) » .
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other of Hahn’s (1962) pair of stability conditions,

p '  — c" < 0, p ! + x t f <  0, (3.11)

or in our notation

ir * < I P , n ° < 0 ,  j ? i .  (3.12)

For homogeneous goods, McManus (1962, 1964) and Roberts and Sonnenschein 

(1976) prove existence of symmetric pure Cournot equilibrium assuming that pro­

duction costs were convex, while Szidarovsky and Yakowitz (1977 ) additionally 

assume that inverse demand is concave. Kukushkin (1993), assuming convex cost, 

shows existence of pure symmetric equilibria if outputs are discrete variables.10 If 

demand is nonincreasing, from the assumption o f convex costs follows that pf—dl <  0 

or IT* < Uij (i 7̂  j ) ,  i.e. the first o f Halm’s stability conditions. Amir and Lambson

(1998) , again for homogeneous goods, directly assume this, and prove existence of 

pure symmetric Cournot equilibria. Their work is important in several respects: It 

shows that the assumption of convex costs can be relaxed, and that the relevant con­

dition pf — d* <  0 is lattice-theoretic in nature. As one can see from condition AD, 

our condition A  is a direct generalization to heterogenous goods of this condition.

The second o f Hahn’s stability conditions, p! -f xpf* <  0 or IP  < 0, means that 

marginal revenue does not increase if competitors raise their outputs, i.e. that goods 

are strategic substitutes in the terminology of Bulow et ai. (1985). More generally, 

goods being strategic substitutes is equivalent to profits n  having weakly

decreasing differences in outputs (x^XjJ, for j  ^  i. This condition is not related to 

our condition A.

For homogeneous goods, Novshek (1985) shows that (possibly non-symmetric) 

Cournot equilibria exist if goods are strategic substitutes. Van Long and Soubeyran

(1999) prove existence and uniqueness o f Cournot equilibria under strategic substi­

tutes and convex cost. For general aggregative games, i.e. ’’ competitor aggregation” ,

10 Mixed equilibria always exist if outputs are discrete.
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Corch6n (199-1 , 1996) imposes a generalization of Hahn’s conditions, which can be 

written as 11”  < IT-* <  0, and proves existence through the concavity of pavofls, 

while Kukushkin (1994) only assumes strategic substitutes.

For strategic complements, i.e. weakly increasing differences of IT (xt, x_,) in 

outputs ( it ,Xj) for j  ^  t, or IIV > 0 (j  i) under differentiability, Vives (1990), 

shows existence of pure Cournot equilibria for heterogeneous goods (symmetric with 

symmetric firms) in the general context of supermodular games.

The most intuitive way to characterize both strands o f literature is to express 

all conditions used in terms of slopes o f (quantity) reaction functions r (x_«): As­

suming that profits are twice differentiable, we obtain r' (x_ j) =  -IP-*/IT*. The 

first strand of literature effectively assumes that this slope is bounded below by — 1, 

while strategic substitutes (complements) imply that r* <  (> ) 0. Our condition AD 

in general implies r' > ~pp /pi, which is equal to —1 under homogeneous goods, and 

larger than —1 under condition BS.

While condition A generalizes the first part of the literature, its relation with 

the second group is not straightforward. For homogeneous goods the assumption o f 

strategic complements implies condition A if profits are (at least locally) concave. 

Since profits are locally concave at interior best responses, this result captures the 

fact that reaction functions certainly have slope larger than —1 if they are nonde­

creasing. For heterogeneous goods this relationship is not clear.

Figures 1-3 summarize the relations between the various conditions mentioned 

above according to their implications on the slopes o f best responses, which for sim­

plicity are assumed to be differentiable. Most conditions only apply to homogeneous 

goods or "com petitor aggregation” .
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3.6 Examples

3.6.1 Linear Cournot Oligopoly

Consider the class o f Cournot models with heterogeneous linear demand and linear 

cost functions, with p* =* A  — Bxi — CY\, where V* =  and B  >  Q. Goods
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are substitutes for C >  0, and homogeneous if C =  B. Condition AD is always 

satisfied since IIM =  —2B, ITJ =  —C, and 11“ — (p '/p 7) IT-7 =  — B <  0. On the other 

hand, condition D is equivalent to strategic substitutes if goods are substitutes: 

n ,J =  — C, and =  - C/B, and both expressions are negative. Assuming

w.l.o.g. that marginal costs are zero, equilibrium prices p(nj =  A B f (2B + (n — 1)C ) 

are decreasing in the number o f firms if goods are substitutes.

3.6.2 Industry Aggregation

Here the demand function is of the type p(x + SY), and under differentiability 

condition AD becomes

0
which is equal to the condition p  — d* <  0 under homogeneous goods. Note that the 

lower bound on the slope of the quantity reaction function becomes r7 (K) >  —6. If 

<5 < 1 there are no asymmetric equilibria since for their existence it is necessary that 

the slope is —1 or smaller.

3.6.3 Non-aggregative demand

Here we give an example that shows that there are reasonable assumptions on con­

sumers’ preferences that give rise to inverse demand functions that do not allow 

aggregation o f competitors’ quantities (demand is non-aggregative).

Let the utility of a representative consumer be quasi-linear, and depend on a 

numeraire good y  and n other goods Xi, ...,x „ in the following form:

U — J/ 4* (x$ xt2/2 ) + £?=1 In (1 -  XiXj) ,

U (.) is a generalized quadratic utility function (Spence 1976).

At the consumer’s optimum we have dU/dx* =  pi for t =  1. . .  n, therefore the 

inverse demand functions are defined on x  € [0, l]n, with

/ . dU — Xj
P (̂ *>3L.») — n — 1OXi * 1  —  X tX y
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while dU/dxi >  0, and zero otherwise. W ith zero production cost, condition AD is 

satisfied ’’ on the diagonal” Xj =  x, j  ^  i since p is twice differentiable and it can be 

shown that

If* -  ¿ I F  =  (n - 1 ~ x ? ) g2 +  ( 1 ~ 2 x *g )2 < o
P’  (1 -  XiX)2

In the next section we give an example o f a non-aggregative inverse demand function 

that does not fall in Spence’s class.

3.7 Effects of Entry

A long-standing point of interest has been the question whether Cournot equilibrium 

approaches a competitive equilibrium as more firms enter the market. It has become 

common to call a Cournot equilibrium quasi-competitive if equilibrium total quantity 

is increasing or price is decreasing in the number o f firms. It it easy to see that for 

heterogeneous goods there is not necessarily a strict inverse relation between total 

quantity and market prices even if goods are symmetric. Since the sum of outputs 

makes less sense as a measure o f quasi-competitiveness for heterogeneous goods 

precisely because outputs are not o f the same good, we argue that the more useful 

measure is whether market prices are decreasing.

One should note that with heterogeneous goods the entry of a new competitor 

raises the number of goods (and welfare if consumers value variety), which in general 

may have surprising effects. As we will see in the following, under competitor aggre­

gation the conventional wisdom (equilibrium prices decrease after entry) prevails, 

while for more general forms o f heterogeneity this need no longer be true.

A t first we will restrict attention to competitor aggregation. Assume there is 

a countable number o f identical firms that may enter in the market11. Let ƒ : 

[0, K]°° —* F  C RU {o o } be continuous, strictly increasing, and symmetric in its

11 Since we are not interested in determ ining a free entry equilibrium , fixed cost o f entry are 

irrelevant.
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arguments: Let x_, be a permutation of x_i € [0, then f  ( i - i )  =  ƒ Let

inverse demand be given by

P  =  P ( x , J  (3 -1 3 )

where x 6 [0, K}°° and p : [0, K] x F  —► R+ is continuous and nondecreasing 

in (xt, ƒ,), and strictly decreasing in its first argument while inverse demand is 

positive. For competitor aggregation, industry aggregation and homogeneous goods 

the simplest definition of ƒ is ƒ (x_,) =

Under condition A, the existence o f symmetric Cournot equilibria follows from 

theorem 1, therefore the following comparative statics conclusions are not empty.

Theorem  3 Under competitor aggregation the following holds:

1. Under condition A maximal and minimal equilibrium prices are nonincreasing 

in the number of firms n.

2. Under condition ASD, and ifp is strictly decreasing inxj for allj ^  i

while pi > Qf then maximal and minimal equilibrium prices are strictly decreasing in 

the number of firms n as long as they are positive.

Some remarks are in order: As noted above, even if n  is differentiable, condition 

ASD, the condition that dfl/dpi exists and is strictly decreasing in Xj for all j  ^  i, 

is strictly stronger than condition A or even strictly decreasing differences o f II in 

(pt,x_j) (see Edlin and Shannon 1998a).

Second, our method also can say something about the comparative statics of 

symmetric equilibria that are interior , i.e. characterized by first-order conditions, 

if they are stable equilibria in the usual definition as asymptotically stable equilibria 

under some classes o f adjustment mechanisms. Hahn (1962) and Seade (1980 ) 

gave sufficient conditions for stability, while Seade also gave sufficient conditions for 

instability o f Cournot equilibria: Equilibria with n firms are stable if the slopes o f 

best reactions lie between the following bounds:

- K ^ j r  (*_ ,) =  —n « / i r  < 1 / (n - 1 ) ,  j  *  i, (3.14)
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and instable if

£ ~ r  ( i - i )  =  - I F / I F  > 1 / (n -  1 ), j  *  i. (3.15)

Define g (x, n) =  ƒ ( x , x ,  0 ,...), where n firms all produce x, and the others noth­

ing.

C orollary 4 Under competitor aggregation, let inverse demand and production cost 

be twice continuously differentiable, and let g (x, n) be differentiable in n with partial 

derivative gn > 0. If condition AD holds then at interior equilibria the equilibrium 

price is nonincreasing in the number of firms if the equilibrium under consideration 

is stable. If equilibrium price is increasing then the equilibrium is unstable.

In the appendix we show, making explicit use of the aggregation, that

^P(n) _  9nP2 (  rrit   P tt»j\
dn II" +  (n — 1) IF* \ p> )  ' (3.16)

where the second factor is non-positive by condition AD, and the first one is positive 

if the equilibrium is stable. Therefore dp^/dn is non-positive under condition AD 

and stability.

In the following schematic portrait o f the fixed point map rp (p) determining 

equilibrium prices, which was used in the proof of theorem 1, the TnarimAl and 

minimal equilibria (fixed points) are stable, and equilibrium prices decrease when 

we shift the map downwards to the dotted curve; the interior fixed point corresponds 

to an unstable equilibrium and indeed equilibrium prices increase.12

12 We show in appendix 3.A .4 that equilibria are unstable if the fixed point map cuts the diagonal 

from below.
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Figure 4

It can be shown that if n  (pt, y) satisfies the (non-dual) weak single-crossing prop­

erty in (pi, 3/), then extremal equilibrium prices are nondecreasing, which demon­

strates that condition A is critical for establishing quasi-competitiveness (see the 

proof of theorem 3).

Fourth, theorem 3 and corollary 4 do not extend to the case of non-aggregative 

demands, as the following example shows: Assume there are n  firms with production 

capacity K  > 1/2 and zero production cost. Inverse demands are p (x ,, x_*) =  1 — 

Xi — Ej^i (1 — e~XiX*) where this expression is positive, and otherwise p (xi, x_<) =  0. 

Symmetric equilibrium outputs are given by the first-order constraint (sufficient 

second-order conditions are satisfied)

2 -  2x — n 4- (n — 1) (l — x2) e~ * *  =  0,

which for each value o f n > 1 has exactly one solution X (n) <  1/2. Therefore for each 

n there is exactly one symmetric equilibrium which at the same time is minimal, 

mavimal and interior. On the diagonal Xj =  x (j  ^  i) condition AD is fulfilled since

IT  -  =  -x x  <  0 ,
P

and the equilibrium is stable according to the above definition since

IT  +  (n -  1) IP ' =  - 2  -  2 (n - 1) x  (2  -  **) e ~*2 <  0 .

Still, equilibrium prices fall until n =  3, and then rise:
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0 - 1  9

The reason for this maybe perplexing result is that the fixed-point maps defining 

successive equilibria are shifted upwards instead o f downwards for n > 3 since the 

reduction in individual output best responses caused by the entrant is outweighed 

by a corresponding reduction in competitors ’ outputs (see the argument in appendix

3.A.4). Note that the traditional comparative statics analysis based on the implicit 

function theorem, which in appendix 3.A .4 we extend to the case of competitor 

aggregation, is not applicable here since inverse demand cannot be written as a 

differentiable function of the number o f firms.

There are three other variables o f interest whose equilibrium values vary with the 

number of firms: Total output, individual outputs, and firm profits. In supermodular 

games, i.e. games with strategic complements, equilibrium strategies and individual 

payofis rise with the number o f players, see Topkis (1998), theorem 4.2.3. In Cournot 

oligopoly the comparative statics o f individual quantities, total quantities and profits 

each depend on a different condition.

We state the comparative statics results about quantities for competitor aggrega­

tion. Let us assume that inverse demand and production cost are twice continuously 

differentiable, and concentrate on interior equilibria, i.e. equilibria characterized by 

first order conditions. This is sufficient for our purposes since we want to make the 

simple point that conditions A  or AD  do not drive the results.

C orollary 5 Under condition AD, consider any interior equilibrium where equilib­

rium prices P(n) are decreasing in the number o f firms n.
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1. Under condition BS total equilibrium output Q(n) is strictly increasing in n.

2. Individual equilibrium quantities X(n) are decreasing (increasing} in n if goods 

arc strategic substitutes (complements).

Without proof we note that to both comparative statics results there corresponds 

an own differencing condition on profits: For total quantity, it is that

n {Q ix—i) — n (q SjyHXji

has nondecreasing differences in (Q, Xj) for all j  ^  i, and for individual quantities 

that II has nonincreasing (nondecreasing) differences in (xt, Xj) for all j  ^  i.

These could of course be generalized to single-crossing conditions.

On the other hand, condition A is sufficient to show that individual profits are 

decreasing:

C orollary 6 Under condition A individual profits II(n) in maximal and minimal 

equilibria are nonincreasing in the number of firms n, and strictly decreasing if 

inverse demand p (x iyfi) is strictly decreasing in fi.

Total firm profits, i.e. the sum o f profits o f all firms in the industry, may be increasing 

or decreasing.

The different effects of an increase in the number o f firms on prices and quantities 

are summarized in the following two figures, where ’+ ’ ( - ’ ) means that the variable 

is going up (down):
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3.7.1 Related conditions

Most o f the early literature on quasi-competitiveness, i.e. Frank (1965 ), Ruffin 

(1971), Seade (1980), Szidarovsky and Yakowitz (1982), all for homogeneous goods, 

assume both II*J =  j /  +  xjf' <  0 (strategic substitutes) and j /  — c" <  0 (condition 

AD for homogeneous goods), and show that equilibrium market prices decrease as 

more firms enter. Corchôn (1994, 1996) generalizes these conditions and results to 

general aggregative games; in the special case o f Cournot competition his conditions
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are

n M < IF  < 0 ,

where the first inequality corresponds to jf — c" <  0 for homogeneous goods.

Not until in Amir and Lambson (1998) it became clear that the only condition 

relevant for quasi-competitiveness with homogeneous goods is jf — c" <  0. As their 

work is based on lattice theory they can identify the conditions that are critical for 

their conclusions, and avoid unnecessary ones like strategic substitutes and concav­

ity.13 Our condition AD is a generalization to heterogeneous goods o f the classical 

condition ft — d' < 0 , and condition A  applies in more general contexts.14

Now we will give a simple example under homogeneous goods that shows that 

under condition A  equilibrium prices go down, while under its ’opposite’ they go 

up. Let inverse demand be given by p (Q) =  3 — 2Q, therefore goods are strategic 

substitutes.

First assume that marginal cost is constant with c (x ) =  lx . Then equilib­

rium price is pn =  (6 *f n) /2  (1 +  n) which is strictly decreasing and converges to 

d (0) =  min* c (x) /x  =  1/2, and therefore to the competitive outcome. Condition A  

is satisfied since j/ — d' ~ —2 < 0.

For strongly increasing returns to scale, for example c (x ) — \x — p x 2 (for 

x < 1/2) equilibrium price pn — (5n — 3) /  ( l O n  — 1) is strictly increasing in the 

number o f firms and converges to d (0) =  1/2 > min c (x) /x =  0. Condition A  rules 

this case out since ƒ/ — df — —2 +  44/20 =  1/5 > 0.

13 De Meza (1985) and Villanova, Paradis and Viader (1999) exhibit examples where n-firm 

oligopoly prices are decreasing (therefore quasi-competitive according to  the definition used here) 

but are higher than the m onopoly price. This outcome is due to  the assumption o f increasing

returns to scale in production that only set in for large output quantities.
14 An issue that is related but different from quasi-competitiveness is the issue o f convergence

of equilibrium to  the 'com petitive prioe'. Ruffin (1971 ), following McManus (1964) and R ank 

(1965), shows that the Cournot equilibrium prioe converges to the com petitive equilibrium price if 

and only if there are no increasing returns to  scale.
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Figure 7

3.8 Conclusions

Using a lattice theory-based approach, we established the existence of pure sym­

metric Cournot equilibria for homogeneous or heterogeneous goods under a simple 

condition that generalizes the condition o f weakly increasing returns used in the 

literature for the case of homogeneous goods. We were able to rule out asymmetric 

equilibria using a weak additional condition.

Under our main condition maximal and minimal equilibrium prices are decreas­

ing in the number of firms if competitors1 quantities enter inverse demand as an 

aggregate, but may be increasing if inverse demand is non-aggregative. We obtain 

the same result for stable interior equilibria. Total quantity increases with the num­

ber o f firms under the same additional condition as above, while individual quantities 

increase (decrease) if goods are strategic complements (substitutes). Individual firm 

profits are decreasing after entry. These results show quite clearly that each com­

parative statics result depends on a different critical condition, and therefore model 

builders striving for generality should attempt to only include the assumptions that 

drive the comparative statics results that they really need.

One topic for further research is to extend our methods (and maybe some results) 

to cases where product heterogeneity is not symmetric, as e.g. in Hotelling models, 

or to models with exogenous or endogenous quality differences.
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Second, similar results will certainly be obtained by applying corresponding con­

ditions to models of heterogenous price competition, which to some extent already 

have been treated.

3.A  Appendix

3.A.1 Change of variable in the profit function

In this appendix we discuss thoroughly the properties of the function \ (pn *-*) that 

is used to change the decision variable from own quantity to market price in the profit 

function. The important points are: monotonicity and continuity of x (}\, 2-*), and 

convexity, closedness and monotonicity of the constraint set 7T (x_{).

Let minimum and maximum prices be p# =  p (K , K ) and po =  ( 0 , 0 ) ,  and 

the interval of possible prices with outputs by the other firms fixed

7T (x-0 = [p (K, x_i) ,p (0, x-i)], x-i e  [0, K]n~l . (3.17)

The set it (x_») is the new constraint set for the maximization over p,, obviously 

non-empty, compact and convex, and is descending (nonincreasing) in x_j (in the 

strong set order, see Milgrom and Shannon (1994)) since p (., x_*) is nonincreasing 

in x_*.

The range o f possible combinations between market price and the others’ outputs 

is

X  = {(Pi,x-i) € [pk,Po] X [O, * ] " '1 Ip* e 7T (x-i)} . (3.18)

Let x (x_,) be the maximum output that firm i will produce given that the other 

firms are already producing x_*, either because this output is equal to capacity, or 

because inverse demand becomes zero:

x  (x_() =  min { if , min {x  € [0, K] |p(x,x_i) =  0 }} >  0. (3.19)
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Then since p is strictly decreasing and continuous on x* 6 [0, x  (x_,-)J, we can express 

firm i's output as a function o f market price and the others' output \ : Ar —♦ [0, K\ 

that is continuous and nonincreasing in (p ,,x_i) € A", and strictly decreasing in pt 

with image [0,x (x_i)] for each x^i € [0, /C]"-1 .15

3.A.2 Dissection condition

In this appendix we derive a differential condition that is sufficient for condition 

A to hold. Assume that inverse demand and production costs are twice continu­

ously differentiable. We apply the method of dissection described in Milgrom and 

Shannon (1994, p. 167). This method works as follows: The effect o f an increase 

in own price Pi on profits is ” dissected” into two parts, a beneficial effect due to a 

price increase (higher revenue per unit and lower total production cost due to the 

associated decrease in demand), and a costly effect due to the effect of the decrease 

in demand on revenue. To these effects are associated the price variables p+ and p~, 

respectively. Profits are written as

V  ( p ~ , p + , y )  = p + x ( p ' . y .  • • > ! / ) - c ( x ( p + , 2 / , . . , y ) ) ,

where

7 p = p ' V <  o. ^  =  x - ^ x r > o ,

where xp =  dx/dpi =  l/p* <  0 (superscripts denote partial derivatives). Then 

II fe , y) satisfies the dual weak single crossing property in (pt, y), i.e. condition A, 

if (dU/ dp~) /  \dU/dp+\ is nonincreasing in y. We have, replacing p+ and p~ by pi, 

d dU/dp~ d piXp
dy | dU/dp' d y x ~  ¿X?

PiXpj (x  - c V )  -  PiXp (xj -  d'xjxr ~~ ¿Xpj)
=  f a - 1 )

(x  -  ¿ x pf
(n — l)p i {xp)2 X

(X “  ¿Xp)‘
i ( L - < r - 2 L 2 ? L \ < o >

\xp x p x px3)

15 This is an application o f a continuous version o f the im plicit function theorem.
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where XJ =  <hc/dxj =  -p i/pi < 0, \VJ =  ^x/dpidxj =  ijPp" -  p{p'3) / {p ' f , and 

we have used the symmetry o f inverse demand with respect to opponents’ outputs. 

Therefore condition A holds if

_1_
Xp

X' XPJ t „ , ^piptt- p tpt3-------- - =  p ~ C 4- JET,-------- :-----
X P X P X J  p J

(2p' +  XiP* -  c") -  (pi +  Xipij)

IF  -  t r i f  <  0, 
f  ~

where

IT* =  (x „ x _ t) =  2pi {xu x-i)  +  x<pri -  c (xt) ,

n ° ’ =  a ^ 7n  =  p 7 (x „x _ .)  +  x{pij (xit x_<).

3.A.3 The differential version of Condition D

Condition D holds if and only if

^ - n ( P i , i - 0  =  (i - c " x p) r ’ +  ( p , - c ' ) x ri

=  (pi - ^ ' )  +  ( P i - c ') x w

< 0-

In the special cases o f industry aggregation or homogeneous goods we have xPJ =  0, 

as can easily be seen:

x>j = i m ? - p m } / ( p ? = o .

3.A.4 Proofs

Existence o f  E quilibrium  

P roof. (Theorem 1).
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1. First we show that price best responses are well-defined given the regularity 

conditions. Given any vector of outputs G [0, K]n~l o f the other firms, firm Vs 

maximization problem is

ma n (p i,x_i) =  x (P i,s -i)P i “ c (x(P«.*-0)>piewix.i)

where x  is continuous in p,, c is lower semi-continuous, and

is a non-empty compact set. Then n  is an upper semi-continuous function of pt on 

the compact set 7r (x_*) and therefore attains its maximum. Thus the price best 

response P(x-i)  exists, where P : [0,iC]n_1 —* \p k >Po] is a correspondence that 

is symmetric in x_, since p(xi,x_*) is symmetric in x_,. Now restrict P to the 

’diagonal’ x_t- =  (y , ...,p), y G [0, K\, and define

P{y) — P(y> - ) 2/ ) » y € [Q,K].

2. Maximal and minimal price best responses in P  {y) are nonincreasing in y: The 

constraint set 7T (x_j) is descending, or decreasing in the strong set order, since both 

p (K, x_i) and p  (0, x_j) are nonincreasing in x_*. This follows from the assumptions 

that goods are substitutes and that p  (x^,x_i) is continuous in x_,. Invoking this 

fact and condition A, by Milgrom and Shannon’ s (1994 ) monotonicity theorem the 

set o f maximizers P  (y) is decreasing in y  in the strong set order. This implies in 

particular that maximum and minimum selections o f P  exist and are nonincreasing 

in y. Let P  : [0, K] —► \pK,Po] be a maximum or minimum selection, then P  is a 

nonincreasing function.

3. Continuation 1 (Fixed point in prices): Consider prices at identical outputs 

for all firms: Let

p (x) =  p (x ,x , . . ,x ) ,  x G  [0 ,A ].

Then p is nonincreasing since p  is nonincreasing in own output and because goods 

are substitutes. It is strictly decreasing while positive, and maps [0, K] onto [p/c,po]*
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Let x  be the largest symmetric output that all firms might produce in equilibrium 

(for all larger outputs less than capacity market price is zero),

x — min {A , min {x  e (0, A'] |p(x) =  0 }} ,

then the restricted p : [0,x] —♦ (pa',P o] is strictly decreasing and one-to-one, and has 

a strictly decreasing inverse \ '• \pK*Po} —1► [0,x] C (0, A-].

4. Construct a fixed point map: The map

$ (p) = P  (x  (? )), P € \pK,Po] (3.20)

is a nondecreasing function from [pK,Pb] into itself. By Tarsky’s (1955) theorem 

there is a fixed point p* =  \j) (p*).

5. The market price p* is attained in the market of firm * if all firms produce 

x* = xip*)- On the other hand, if all o f firm Vs competitors produce x*, then firm i 

adjusts production such that its best response market price is p*, with best response 

quantity x  (p * ,x * ,x * ) — x* because x  is strictly decreasing in p. Therefore a 

symmetric equilibrium exists where all firms produce x* and market price is p* in 

all markets.

3*. Continuation 2 (Fixed point in quantities): Given identical outputs y € [0, A ] 

for all competitors, quantity best responses r : [0, A] —+ [0, A ] are given by r (y) =  

X ( p  (y ) , y , y ' j . Then f  is continuous but for upward jumps, since % is continuous 

in all arguments, and decreasing in its first, while P  (x_j) is nonincreasing and 

therefore has no upward jumps, only downward jumps. Therefore r has a fixed 

point (Milgrom and Roberts 1994b, cor. 1), which is an equilibrium output. ■

Stability and Multiple Symmetric Equilibria

We will now prove that instability o f an equilibrium point corresponds to a slope 

larger than 1 of the fixed point map defining this equilibrium point, i.e. it cuts the 

diagonal from below. Note that since the fixed point map starts above the diagonal, 

multiple symmetric equilibria will exist if and only if it crosses the diagonal from
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below at least once. In particular, if the map jumps upwards over the diagonal 

(which cannot happen if profits are quasiconcave) then multiple symmetric equilib­

ria will exist and all of them may be stable. Kolstad and Mathiesen (1987) give 

necessary and sufficient conditions for uniqueness o f equilibrium with homogenous 

goods which boil down to jf — d' < 0 and Iln  +  (n — 1) II12 < 0 (stability). They 

do assume quasiconcavity of profits, and the above heuristic argument shows that 

this assumption is indispensable.

Remember the fixed point map used in the proof of theorem 1, rp (p) =  P (x (p)) 

on p € [pkjPo]- From maximizing profits over prices we find that

± P ( y )  =  ( »  -  1) ( - f r * / n * ) ,

A y (p) = ---------------- -
dp p* +  (n —l)p**

with

tf”  = 2Xr +  { p - d ) X” - d ' ( x )  (x'f
=  n” / ( P' ) 2

* * *3
where we used x” ’ =  —p"/ (p’ ) , and

n* = x j  +  i p - d ) x p j - c " ( x ) ^ ,x j

- ( i r - £ n « y / ( p f

if the first order condition X +  PXp ~  d  (x ) Xp =  0 holds. Then the slope o f the 

fixed-point map is

5jV>(p) =  { ¡ P { x ( p ) ) i p c ( p )

=  ( n ~ f ) (p* -f (n — l)p>) 11“  ’
which is larger than 1, i.e. the fixed point map cuts the diagonal from below, if and 

only if

IF  +  (n — 1) IF  >  0 ** (x^)  =  - I F / I F  >  1 / (n -  1 ),

i.e. if the equilibrium is unstable according to Seade (1980).
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Asym m etric equilibria 

P roof. (Proposition 2)

Consider an asymmetric equilibrium x  =  (x j,. . . ,  xn), where w.l.o.g. X\ =  y+e  > 

X2 =  y. Then xf={x2 ,x\,x%t.. Mi n) is also an equilibrium. For conciseness we 

now suppress the arguments (X3, . . .  ,x n). Equilibrium prices for firm 1 are p =  

p{y + s, y) and pf (j/, y +  £), with pf >  p by condition BS or pf >  p b}r condition BW.

First impose condition BS, leading to pf > p. Under condition AS, i.e. under 

the dual strict single-crossing property of firm fs  profit n  in (p,, p) for all i =  l..n , 

all selections of best price responses are non increasing, i.e. p/ < p since y + s > y, 

which is a contradiction to p' >  p.

For the second statement impose condition BW, leading to pf > p. Since under 

condition ASD for all i = l..n  the partial derivative dfl/dpi exists and is strictly 

decreasing in Xj (j  ^  i), price best responses are strictly decreasing in Xj (Theorem

2.8.5 in Topkis 1998). Therefore, since p is a best response at y and pf at y +  £ > y y 

we must have pf <  p, and again arrive at a contradiction. ■

Entry: Prices

Before giving the proof of theorem 3, we will shortly discuss why it is not possible 

to give a corresponding proof for the non-aggregative case. Let us pay attention to 

the dependence on the number of firms in the fixed point map (3.20) used in the 

proof of theorem 1:

i>(p,n) =  P (x (p ,n ) ,n )  (3.21)

Then there are two opposing effects of an increase in n: First, best price responses 

are lower since P  (x, n) is nonincreasing in n; second, the market price p can only be 

sustained if all firms produce less, since x  (p, n) is decreasing in n. The first effect 

moves ip downwards, while the second effect moves it upwards. Under aggregation 

the first effect is stronger, but this is hard to show here. In the following proof we
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avoid this difficulty by constructing a different fixed point map making strong use 

of the assumption of aggregation.

P roof. (Theorem 3)

1. Price best responses: Because competitors’ outputs are aggregated by ƒ (x_*), 

price best response is a correspondence P  : F  —* [poo,PoK p =  P ( f  (x_*)), where 

Poo — p (A , K , ...), p0 — p (0,0, ...), and maximal and minimal selections exist. Under 

condition A these selections are nonincreasing in ƒ.

2. Symmetric outputs (this is the hard part, where the aggregation is really 

used): If the first n — 1 competitors o f firm i are active and the others produce zero, 

let

ƒ  (x, n) =  ƒ  ( x , x ,  0 ,...), x € [0, K ) ,

with image 4> (n) =  [ƒ (0, n) , ƒ (K, n )j =  [ƒ, ƒ  (n )], where ƒ  =  ƒ  (0 ,...) and / ( n )  =  

ƒ (K, 0 ,...). Then ƒ is strictly increasing and continuous in x , and strictly

increasing in n. Let $  =  { ( / ,n )  6  F  x N|/ € <f>(n) } , then we can express every 

firm’s output x  by the value of the aggregator and the number of firms through a 

function x  : $  —► [0, K] such that x  is strictly increasing and continuous in ƒ, and 

strictly decreasing in n.

Consider market price at a given value of the aggregator., if all firms produce the 

same amount, even firm i (this is the basic trick):

? (ƒ .« )  =  p (x (ƒ, n ) , ƒ ),

where p : F  x  N —> [pooipo] is strictly decreasing and continuous in ƒ, and strictly 

increasing in n. For fixed n, its image is 7r(n) =  [p (ff , ƒ (n)) ,p  (0, ƒ )], where 

the upper limit is fixed, and the lower limit is nonincreasing in n. Let ft =  

{(p, n) €  [pooiPo] X N|p € 7T (n )}. Invert p with respect to ƒ, to obtain a function 

ƒ : ft —► R  which is strictly decreasing (and continuous) in p and strictly increasing 

in n. The interpretation o f ƒ  is: given price p and number o f active firms n, value of
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aggregator if all n firms produce the same amount (even firm i), resulting in price

P*
3. Symmetric equilibria: Let P  : F  —* [pooiPto] be a maximal or minimal selection 

of the price best response map P. Consider the family of maps %l'n : n (n) —* [p<„, po] 

defined by

tn ip) =  p ( / ( p ,n ) )  ,

then a maximum or minimum fixed point p(n) o f this map is maximal or minimal 

equilibrium price. Under condition A , ipn is nonincreasing in n since P  is nonincreas­

ing, so that extremal equilibrium prices are nonincreasing in n (taking into account 

that 7r (n) C 7r (n +  1)) by corollary 2.5.2 o f Topkis (1998).

Under the (non-dual) weak single-crossing property o f profits in (p,, y), P  is 

nondecreasing, and \pn is nondecreasing in n. Thus extremal equilibrium prices are 

nondecreasing in n if equilibria exist.

4. If dll/dpi exists and is strictly decreasing in Xjy then by theorem 2.8.5 o f 

Topkis (1998), which follows Amir (1996) and Edlin and Shannon (1998b ) extremal 

price best responses P  (x_j) are strictly decreasing while interior, i.e. positive. Since 

ƒ is strictly increasing in n, the map ipn (p) is strictly decreasing in n for each p} 

and therefore by corollary 2.5.2 of Topkis (1998) the extremal fixed points of tpn are 

strictly decreasing in n (Note that a subtle point o f this proof is that we can only 

say something about the extremal fixed points and not about the others). ■

Entry: Interior equilibrium  prices 

P roof. (Corollary 4)

Denote the partial derivatives of inverse demand p (rt, ƒ  (x_*)) with respect to Xi 

and f  as pi < 0  and pi < 0, o f ƒ (x.,») with respect to Xj (j  t) as fj > 0 (therefore 

p* =  pi and p? — p2fj)j and of g (x, n) with respect to x  and n as gx — (n — 1) fj  >  0 

and gn >  0, respectively. The first-order necessary condition for an interior best
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response in terms of quantity, and the second derivatives of profits, are

IT =  -£ ;n (x itx_i) =  p (x i, f ( x - i) ) + x ip i {x tJ ( x _ i) ) - c , (xi) = 0 ,

IT  = ^ r l l  (x<,x_f) =  2pi +  XiPn -  c",w i
n*J =  (x;, i_ .)  =  (p s+ XiPn) Sr

At a symmetric equilibrium with n firms,

fi* (^(n)»*1) = n  (x^„), X(nj) =  p (x(n)i9 (^(n)) n) )

+S(n)Pi (x(n),p  (x (n),n )) -  d (x (n)) -  o,

we find the following second derivatives with respect to X(nj and n, respectively:

i r  = ^_fr = ir  + (P2 + xMPl2) 9x = it + („ -  i)irj,
= £ ir  = (P2 +  x {n)p12) gn =  Utlg„/ fj .

Equilibrium quantities evolve with

dxM =  =  n ijgn/fj
dn f i «  II”  +  ( n -  1) Il*> ’

where by Seade’s stability condition the denominator fl*1 is negative. The total 

derivative of equilibrium prices is

I b T  =  ¿ P  (*W>9 (*(„), « ) ) = ( P .  + f t S x ) ^ + p 2i/n

=  — — M i — —  ( n " - - £ U r A .  
n ”  +  ( n - i ) n « V  P2/2 /

Since by condition AD the second term on the right-hand side is non-positive, the 

sign of dp(n)/dn depends entirely on whether the equilibrium is stable: Prices are 

decreasing (increasing) if the equilibrium is stable (instable), i.e. II" +  (n — 1) IItJ <  

(>)0. .

Entry: Quantities 

P roof. (Corollary 5)
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From the proof of corollary 4 we already know* that

dn IT* +  (n — l ) i r j *

If condition AD holds and equilibrium price is decreasing, then from (3.16) we can 

conclude that IT* +  (n — 1) II*-7 < 0. Therefore di(n)/dn <  ( > ) 0  if IP-7 < (>)Q , i.e. 

if goods are strategic substitutes (complements). Similarly, we can find from the 

first order condition 11' (Q („)/n , (n ~  1) Q(n)/n ) =  0 that

dQ(n) Q(n) n* -
dn n II'' +  (n — 1) ’

i.e. dQ(n)/dn > 0 if IIU — IItJ < 0. Now from condition AD and condition BS, whose 

differential form is p* < p* <  0,

o > —if -  nf-f > if -  i f

since at interior equilibria II*1 <  0 and 0 <  p>/p* < 1. ■

Entry: Profits 

P roof. (Corollary 6)

From the proof o f theorem 3 it is easy to see that under condition A /(n) =  

ƒ (p(n)> n) is strictly increasing in n, since ƒ is strictly decreasing in p(„) and strictly 

increasing in nt and p(n) is nonincreasing in n.

Since goods are substitutes, profits I I (x ,/)  are nonincreasing in ƒ. As ƒ(„) is 

increasing in n,

n  (x(„), /(n)) >  n  (r(n+l),/(n)) >  II ( X ( n+1) ,  /(n+l)) ,

where X(„j and X(n+i) are the corresponding equilibrium outputs, and the first in­

equality expresses the fact that X(n) maximizes profits. If p is strictly decreasing in 

ƒ  then the second inequality is strict. ■
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