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Abstract

This paper presents a model of non-cooperative network formation sim-

ilar to Bala and Goyal (2000), except that marginal costs in the size of the

network is increasing. Agents link among each other to gain information

and update their links according to a better reply dynamics. In the long run

the system settles in a state that consists of starred-wheel networks. This

is reminiscent of some real world features. Collections of smaller disjoint

networks connecting few agents are more common than global networks

connecting all agents of the community. Differences within a connected

component such as core and periphery are established.
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1 Introduction

A network formation game is presented in this paper. This is a non-cooperative

game among agents who individually decide whether or not to build a link with

some other agent. Economic investigation in network formation and interaction

among networked agents can be divided in two branches. The Þrst one considers

the network structure exogenous and studies the interaction of linked agents given

the network. Local interaction and peer pressure are examples of interactions

of agents within given networks. This research agenda on �static networks� was

developed both theoretically and empirically.1 The second branch of investigation

focuses on changing networks and adopts a game-theoretic approach to analyse

the dynamic process leading to the formation of the actual network. Jackson [15]

provides a clear and up-to-date overview of this literature.

Game-theorists initially focused on cooperative network formation. The co-

operative feature is the fact that if one agent wants to link to another one then

the former needs the agreement of the latter: i.e. the two must cooperatively

agree on being linked. This literature2 comprises Jackson, Watts ([30], [16] and

[17]), Dutta, van den Nouweland, Slikker and Tijs ([6], [25], [26] and [27]) among

others. The cooperative approach is helpful in many contexts in which is not a

limitation to assume that the agent who receives a link may veto it.

The stream of literature to which this paper belongs was opened by Bala

and Goyal [1] (henceforth BG) who focus on the importance of non-cooperative

incentives for network formation. BG innovate the literature by modelling self-

interested boundedly-rational agents who can unilaterally decide whether to build

or sever a link. Their predictions depend on the relative cost of a link and on

whether information ßows in one direction only or in both directions through

the links. In every time period BG�s agents select the best response given the

current network. It is noteworthy that both with one-way and with two-way

1Within this literature see for example Ellison [7] and Tesfatsion [28] which are theoretical

papers and Bertrand et al. [2], Case and Katz [4] and Ichino and Maggi [14] which are empirical

works.
2For a detailed account of this literature see Jackson [15] and references therein.
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information ßow the BG non-empty steady-state networks connect all the agents

in the population.

Goyal, Galeotti, Joshi, Moraga, Vega-Redondo ([10], [11], [12] and [13]), Lar-

rosa and Tohmé ([18]) present applications and extensions of this framework.

Falk and Kosfeld [8] experimentally test BG�s model both with one-way and with

two-way information ßow. The predictions of the one-way ßowmodel can be repli-

cated in the laboratory while those of the two-way ßow one cannot.3 Currarini

and Morelli [5] and Mutuswami and Winter [21] develop a mechanism-design

approach to characterise the mechanism achieving efficient networks. Networks,

local and group interactions are of interest in all the social sciences. Historians

for example use networks to analyse behavioural and power relationships among

agents in order to have a better understanding of micro-determinants of historical

events.4

The observation that it is extremely rare that real-world networks connect all

the individuals in a society motivates this research. In fact there are two main

features that arise in the real world. Agents are usually connected locally and

not globally with the whole community. Often they are also partitioned in a core-

periphery dichotomy where agents in the core are usually better off then those in

the periphery.

This paper develops an extension of BG�s with one-way information ßow. The

homogenous agents in the network bear the cost of the links they sponsor. In

addition each agent pays the network maintenance cost. This is modelled as an

increasing and convex function of the number of observed agents, but it does not

directly depend on the number of sponsored links of each agent. In every period

the agents play the network formation game, each of them with a probability

of maintaining the strategy implemented in the previous period. Active agents

3Falk and Kosfeld [8] observe that fairness considerations (Fehr and Schmidt [9]) may explain

these results. Fairness is deÞned as inequality aversion, hence BG�s two-way information ßow

equilibria �which are (pay-off) asymmetric� are not fairness compatible while equilibria with

one-way information ßow are symmetric and hence fairness compatible.
4See Padgett and Ansell [23] and Lipp and Krempel [20] among others.
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change their current strategy only if they switch to another strategy that improves

their current payoff. So the dynamic analysis is based on better response.

The essential difference between this paper and BG is the presence of the

network maintenance cost. Such a cost makes the marginal cost of every addi-

tional link an increasing function of the total number of observed agents, while

the marginal beneÞt is constant. Hence there exists an optimal number of agents

that each player wants to observe. The network maintenance costs implies that

there are decreasing returns to linking and it can also be interpreted as costs due

to congestion in the network.

The main results are as follows. The dynamics converges in Þnite time. The

basic component of the absorbing state architecture is a starred wheel where some

agents form a wheel5 and others are linked to the wheel �from outside�. Limit

networks consist of disjoint components each of which is characterised by the fact

that some agents (who are in the wheel at the centre of the network) enjoy a

higher payoff -in fact the maximum payoff attainable- than the peripheral ones.

While all the outside agents observe the central wheel, they do not observe each

other. The results of this paper are in line with the real world features mentioned

above: limit networks are local rather than global and in the absorbing state

agents are partitioned between a centre and a periphery. All the starred wheels

have the same dimension. This means that the number of agents involved in

the central wheel is the same among the components of the limit network. The

number of peripheral agents connected to each of this wheels may however vary.

Social welfare �as measured by the sum of agents� payoffs� increases with the

number of disconnected components in the limit network.

Simple comparison between the limit networks obtained here and those of

BG shows the impact of the introduction of the network maintenance cost. As

we are considering the one-way information ßow, let us recall the two networks

that are absorbing states in this case of BG analysis: the (global) wheel and

5Given a (sub)set of agents the wheel is a network that connects all of them, each of whom

has one link to another one and is linked by a third (different) one only.
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the empty network.6 The BG dynamics settles to a wheel for low values of the

unitary cost of link and to the empty network for high values of the cost, while

both networks are absorbing states for intermediate values of the cost of a link.

BG analysis is a special case of the model presented in this paper: there are no

network maintenance costs. For a small population size BG results hold even in

presence of network maintenance costs. For any given level of the maintenance

cost, the bigger the population the larger the number of disconnected components

in the limit networks. In addition in BG�s limit networks all agents receive the

same payoff while central agents in a starred wheel are better off than peripheral

ones.

Of particular interest is also a comparison of the results of this paper with

those of Galeotti and Goyal [10] since they reach some results which have a sim-

ilar ßavour building on different assumptions to those used here. Galeotti and

Goyal [10] restrict the analysis to the case of two-way information ßow and as-

sume that agents are heterogeneous and that their heterogeneity is an observable

characteristic. Their Þndings are that limit networks may be either collections

of disconnected components or characterised by an insider-outsider dichotomy.

Galeotti and Goyal [10]�s results reinforce rather than contradict those presented

here. Total connectedness of the limit network as in BG can be broken in two

manners. With one-way information ßow it is sufficient to assume a convex cost

for network maintenance maintaining the original assumption of homogeneous

agents as is done in this paper. With two-way information ßow one can introduce

exogenous heterogeneity among the individuals as in Galeotti and Goyal [10].

The paper is organised as follows. The next section outlines the model. Sec-

tion 3 provides the preliminary analysis. Section 4 characterises the absorbing

state networks and section 5 concludes. The appendices collect some of the proofs.

6This network is obviously characterised by the absence of any link between any two agents.
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2 The Model

There is a population of P agents. With a slight abuse of notation let us indicate

with P both the population and its size. Every agent plays the network formation

game. A strategy of each agent i indicates for all agents j j 6= i whether i has a
direct link to j. It is represented with a vector gi = (gi,1, . . . , gi,i−1, gi,i+1, . . . , gi,P )

of dimension P − 1, where each element of the vector takes value 1 if i has one
(direct) link to j and 0 otherwise. We say that agent i observes agent j j 6= i

if either i built a link to j, i.e. gi,j = 1, or there exists a path in the network

that goes from i to j, i.e. there exists a set of agents {k1, .., kn} ⊂ P such that
gi,k1 = gk1,k2 = ... = gkm,km+1 = ... = gkn,j = 1. We adopt the convention that

every agent always observes himself.

The set of all strategies of each player is Gi = {0, 1}P−1 for i = 1, ..., P . Every
strategy proÞle translates into a (directed) network. Both a network and the

strategy proÞle that generates it are indicated with g ∈ G1 × . . .× GP . We write
g = gi ⊕ g−i to stress that the network g is made by the composition of the
strategy of i with those of his opponents.

Consider the following example: P = 4, g1 = (0, 0, 0), g2 = (0, 1, 0), g3 =

(1, 1, 0) and g4 = (0, 0, 1). Agent 1 has no links. Agents 2 and 4 each have one

link only to agent 3. Agent 3 has two links, one with agent 1 and the other with

agent 2. This network is depicted in the Þgure below. The arrows indicate the

direction of the information ßow.

2

1

3 4

Figure 1: Example of a network
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This is the one-way information ßow model of BG.

Let us indicate with c the cost building one link, with µi (g) the number of

agents i is directly or indirectly linked with through the network g (including

agent i himself) and with µdi (g) the number of links set up by agent i. In the

example of Figure 1 above µ1 = 1, µ
d
1 = 0, µ2 = 2, µ

d
2 = 1, µ3 = 3, µ

d
3 = 2 and

µ4 = 4, µ
d
4 = 1. Note that the arrows indicate the identity of the agent who is

bearing the cost of the link.

The individual payoff function is a function of the network g which player i

belongs to:

πi (g) = µi (g)− c µdi (g)− α [µi (g)]2 (1)

The term −α [µi (g)]2 in the payoff function represents the network mainte-
nance cost. This implies that there are decreasing returns to linking, as the total

cost of a network c µdi (g) + α [µi (g)]
2 is increasing and convex in the number of

observed agents. Parameter values belong to the set R

R =
n
(α, c) ∈ R2

¯̄̄
0 < α ≤ 1

4
, 0 ≤ c ≤ 1

4α
− 1

o
(2)

which is needed to guarantee that agents have incentives to connect. Notice that

in the limit case α = 0 the model is the same as that in BG.

DeÞne N (i, g) as the set of agents observed by i through the network g. So

µi (g) = kN (i, g)k i.e. µi (g) is the cardinality of the set N (i, g). DeÞne the
geodesic distance between agents i and j in a network g d (i, j; g) as the number

of links on the shortest path from j to i. If j /∈ N (i, g) set d (i, j; g) = +∞. Given
an agent i in any network g the agent who is furthest away from i among those

he observes is j := argmax)∈N(i,g) d (i, 0; g). Note that i does not need any links

of j to observe any one in N (i, g), otherwise j would not be furthest away from i.

For all g in G the set of all networks that are the same as g up to a permutation
of the indexes are called the set of architectures equivalent to g. Finally deÞne

a network component as a subgraph consisting only of agents that have links to

agents belonging to the same component and who are not observed by any other

agent.

Let us now give the deÞnition of some special network components.
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DeÞnition 1 A network component is called a wheel of dimension n if there

exists k1, .., kn with {k1, .., kn} ⊂ P such that gkiki+1 = 1 for i = 1, ..., n − 1,
gkn,k1 = 1 and gr,s = 0 otherwise.

The set of wheels of dimension n is denoted by W (n).

The Þgure below depicts a wheel with 6 agents.

6

4

35

2

1

Figure 2: A wheel of dimension 6

In a wheel of dimension n the payoff of each agent belonging to this wheel

equals n− c− αn2.
Another important network component for the analysis of this paper is the

starred wheel. A starred wheel of dimensions n and m consists of n +m agents,

such that n agents are connected in a wheel, with all the further m agents being

directly connected to the central wheel. The n agents who form the wheel are

called the central agents and the other m are the peripheral agents.

DeÞnition 2 A starred wheel of dimensions n and m is a network component

connecting n +m agents characterised by the following conditions:

1. each agent only sponsors one link, i.e. µdi (g) = 1 for all i;

2. there exists a permutation of n agents k1, ..., kn such that gkiki+1 = 1 for

i = 1, ..., n− 1 and gkn,k1 = 1;
3. for each j /∈ {k1, ..., kn} there exists i ∈ {1, ..., n} such that gj,ki = 1.
The set of starred wheels of dimensions n and m is denoted by SW (n,m).
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We say a starred wheel of dimension n (omitting the number of peripheral

agents) when it only is important to stress the number of agents forming the

central wheel.

DeÞnition 3 A constellation of starred wheels of dimension m is a network which

can be partitioned into components each of which is a (starred) wheel of dimension

m.

Recall that the ßoor of x is indicated with bxc and is deÞned as the smallest
integer greater than or equal to x, i.e. bxc = max {z ∈ Z : z ≤ x} for all x ∈ R.
Note that a constellation of starred wheels of dimension m can be made of a

number of starred wheels ranging from 1 to
¥
P
m

¦
and is obtainable from any

permutation of the agents provided that: i) in the network there are only starred

or simple wheels; ii) each wheel has dimension m; iii) all the P agents are linked.

Figure 3 represents a starred wheel with 4 central agents and 3 peripheral

ones.

1

5

3

7

6

2

4

Figure 3: A starred wheel of dimensions 4 and 3

Let us Þnally deÞne two special roles that an agent can play in a network g:

the stand-alone and the terminal. A stand-alone is an agent who does not have

any links and is not observed by anyone in the network. A terminal does not

have any links, yet he is observed by someone else in the network.
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DeÞnition 4 Agent i is a stand-alone if N (i, g) = {i} and i /∈ N (j, g) for all
j ∈ P\ {i}.
Agent i is a terminal if N (i, g) = {i} but i is not a stand-alone, i.e. there exists
k ∈ P\ {i} such that i ∈ N (k, g).
Both stand-alones and terminals receive the same payoff: 1− α.

3 Preliminary Properties

Let us exclude the (zero-measure) case that there exists an integer 0 such that

α = 1
2)+1

, i.e. α is the inverse of an even number. DeÞne then n∗ as the integer

that is closest to 1
2α
. Formally n∗ ∈ N such that¯̄

n∗ − 1
2α

¯̄
< 1

2

The restriction on the values of the parameter α guarantees that n∗ is unique.

Further deÞne

n :=

»
1−
√
1−4α(c+1−α)
2α

¼
where dxe is the ceiling of x that is dxe = min {z ∈ Z : z ≥ x} for all x ∈ R and

n :=

¹
1+
√
1−4α(c+1−α)
2α

º
where bxc is the ßoor of x deÞned earlier.
Lemma 4 in Appendix A demonstrates that n and n are well deÞned and

0 < n < n, 0 < n ≤ n∗ and n∗ ≤ n for all α and c in R. The following lemma
compares the payoff of a stand-alone with that of an agent connected in a network

establishing the incentives to link. The proof is in Appendix A.

Lemma 1 If (α, c) ∈ R then there exist a network g such that πi (g) > 1−α for
some i ∈ P .
Lemma 1 shows that agents have incentives to connect for parameter values

in the set R. Otherwise stand-alones may receive a higher payoff than connected
agents.
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Lemma 2 Let (α, c) ∈ R and m ∈ N. Then m− c− αm2 ≥ 1−α if and only if
m = {n, ..., n}.

The proof is given in Appendix A. Lemma 2 also offers an intuitive interpre-

tation of the thresholds n and n: n and n represent respectively the dimension

of the smallest (proÞtable) wheel and of the largest (proÞtable) wheel which any

member has no incentives to break.

Lemma 3 The payoff of an individual i ∈ P is maximal if he belongs to a wheel
of dimension n∗ formally W (n∗) ⊂ {g| argmaxg πi (g)}.

Proof. Note that the payoff of each agent is a decreasing function of the

number of links he builds. Consider agent i. It is always payoff improving to

observe the same number of agents with less links as πi (g) ≤ kN (i, g)k − c −
α kN (i, g)k2. If agent i has only one link and observes m agents then i�s payoff is

the one he would get in a wheel of dimension m, i.e. πi (g) = m− c−αm2. So we

can restrict attention to wheel network components. Let us extend the (wheel)

payoff function to the real line: i.e. ϕ (γ) := γ − c− αγ2. It can be easily shown
that the maximum of ϕ (γ) is attained for γ = γ∗ := 1

2α
. The function ϕ (γ) is

symmetric about the axis γ = γ∗, as ϕ (γ) = 1
4α
− c − α (γ − γ∗)2. Hence the

payoff function (1) is maximised in a wheel of dimension n∗ agents where n∗ ∈ N
solves |n∗ − γ∗| ≤ 1

2
.

Notice that the central agents of a starred wheel of dimension n∗ enjoy the

maximum payoff. The peripheral ones observe n∗ + 1 agents with one single

link: they receive the payoff of an agent who belongs to a W (n∗ + 1). Lemma

3 also shows that the decreasing returns to linking equal the marginal beneÞt of

observing one additional agent for µi (g) = n
∗.

Let us now deÞne a Nash network and a strict Nash network. These are

the networks generated by strategy proÞles that respectively constitutes a Nash

equilibrium and a strict Nash equilibrium of the linking game. Formally:
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DeÞnition 5 A network g∗ is a Nash network if

πi (g
∗) ≥ π ¡g0i ⊕ g∗−i¢ (3)

for all g0i ∈ Gi and all i ∈ P .
A Nash network g∗ is a strict Nash network if equality in equation (3) implies

g0i = g
∗
i for any agent i in the population.

To illustrate the above deÞnitions consider a population of 9 agents. Set

α = 1
10
and c = 3

5
, so that (α, c) ∈ R. Then we obtain that n∗ = 5, n = 2 and

n = 8. The following Þgure depicts a Nash equilibrium network which is not a

strict Nash network.

3
6

27

9

4
5

8

1

Figure 4: A Nash equilibrium network

for P = 9, α = 1
10
and c = 3

5

For instance agent 2 is indifferent between connecting to 9 (as depicted) or to

6 and player 3 is indifferent between having a link to 9 (as in the Þgure) or to 7.

In the rest of the paper we use the following set-wise solution concept.
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DeÞnition 6 A non-empty set of pure strategy combinations B ⊆ G1 × . . .× GP
is a pure-strategy strict Nash equilibrium set (PSNES) if for every strategy proÞle

σ ∈ B, for all i ∈ P and every gi ∈ Gi
πi (σ) ≥ πi (gi ⊕ σ−i)

where equality implies (gi ⊕ σ−i) ∈ B.

This is the restriction to pure strategies of the concept of strict equilibrium

set (Balkenborg [3]).

4 Dynamic Analysis

Building on BG and on Ritzberger and Weibull [24], we now consider the dy-

namics induced when in each round a single random agent is selected who then

chooses among the strategies that make him better off given that the others do

not change their strategy. Formally,

DeÞnition 7 In a network g = gi ⊕ g−i g0i is a better response to g−i than gi for
i if πi (g

0
i ⊕ g−i) ≥ πi (g).

The set of all agent i�s better responses to g−i is deÞned as βi (g−i).

In any time period agents observe the network built in the previous periods.

With positive independent probability γi > 0 each agent will exhibit �inertia�, i.e.

will maintain the strategy played in the previous period. With the complementary

probability 1−γi > 0 the agent will play a better response to the current network.
This induces the better reply dynamics introduced by Ritzberger and Weibull [24]

and deÞned below

gt+1i =

(
g0i ∈ βi

¡
gt−i
¢

with probability 1− γi
gti with probability γi

(4)

for all agents in the population.7

7See also Maynard Smith and Price [22].
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A limit network of the better reply dynamics (4) can be a steady state or

belong to an absorbing set.

DeÞnition 8 A network �g is steady state of the better reply dynamics (4) if gti =

�gi implies that g
t+1
i = �gi for all i ∈ P .

DeÞnition 9 A subset A ⊂ G1 × . . .× GP is an absorbing set of the better reply
dynamics (4) if gt ∈ A implies gt+1 ∈ A.

For the sake of simplicity we restrict to the case in which agents face strong

incentives to connect. SpeciÞcally this restriction is used in the following remark.

ASSUMPTION: For (α, c) ∈ R, assume further that 0 < c < 1− 3α.

The parameter space used in the rest of the paper is thus given by

P =
©
(α, c) ∈ R2 ¯̄ 0 < c ≤ 1− 3α for α ∈ ¡0, 1

6

¤
and 0 < c ≤ 1

4α
− 1 for α ∈ ¡1

6
, 1
4

¢ª

Remark 1 If (α, c) ∈ P then n = 2 which means that no agent has an incentive
to cut all his links in a network in which he observes 2 agents.

The proof is given in Appendix A.

Combining the previous remark with Lemma 2 we observe that it is never

payoff maximising to have no links at all if it is possible to observe no more than

n agents with one link.

In the following we Þrst establish results for the case n∗ ≤ n−1 and a large and
non-pathological population size. Proposition 3 deals with these special cases.
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Proposition 1 Assume that P > n∗, that (α, c) ∈ P\©(α, c) : 1
6
≤ α < 1

5
,

3− 15α < c ≤ 1
4α
− 1ª and in addition if n∗ > 1

2α
that there exists no integer

k such that P = (k + 1)n∗ − 1. Then a constellation of starred wheels of dimen-
sion n∗ is a PSNES.

Proof. Consider a constellation of starred wheels of dimension n∗. Given

the n∗+m agents who form one SW (n∗,m), none of them wants to individually

deviate in a way that alters the starred wheel architecture. Consider Þrst the

n∗ agents who form the W (n∗). They obtain the maximum payoff since they

observe n∗ agents and only pay for one link. So they have no incentive to deviate.

Let us now consider the m peripheral agents who are linked to the wheel. None

of them can improve his payoff: if one of them cuts his link and links somewhere

else to the wheel neither his payoff nor the architecture change. If he links to

someone else who is directly linked to the W (n∗) his payoff reduces since now

this agent observes n∗ + 2. If a peripheral agent links somewhere outside the

starred wheel then the starred wheel still exists. He can only increase his payoff

linking (with only one link) to someone who observes n∗ − 1. This is impossible
since the original network was a constellation of starred wheels of dimension n∗.

So a constellation of starred wheels of dimension n∗ is a PSNES because every

time agents deviate in a way that the resulting architecture is not a constellation

of SN (n∗,m) these agents are worse off and agents are indifferent only among

strategies that do not alter the architecture.

Let us now analyse the better reply dynamics. The following proposition

proves that the dynamics always converges to a constellation of starred wheels of

dimension n∗ in Þnite time.

Proposition 2 Assume that P > n∗, that (α, c) ∈ P\©(α, c) : 1
6
≤ α < 1

5
,

3− 15α < c ≤ 1
4α
− 1ª and in addition if n∗ > 1

2α
that there exists no integer

k such that P = (k + 1)n∗ − 1. Then in Þnite time each agent belongs to a
starred wheel of dimension n∗. From then on, while the network might change, it

remains a constellation of starred-wheels of dimension n∗ in each period.

15



The proof is given in the Appendix B and contains 6 steps. Starting from

an arbitrary network we Þrst show that in Þnite time there will be no connected

agents who observe less than n or more than n agents (Step 1). Secondly we prove

that all the agents in the network either observe someone or they are stand-alones,

so in Þnite time terminals connect to someone (Step 2). Thirdly also stand-alones

have an incentive to join in the network (Step 3). Hence in Þnite time the network

is such that all the agents observe a number of agents between n and n. We then

show that starting from such a network in Þnite time (at least) one agent gets to

observe n∗ agents (Steps 4). Each time someone observes n∗ a starred wheel of

dimension n∗ arises (Step 5). The Þnal step of proof shows that the absorbing set

of the better reply dynamics is a constellation of starred wheels of dimension n∗.

Note that the actual number of starred wheels of dimension n∗ that arise in

the limit state of the dynamics is indeterminate. During the dynamic process a

peripheral agent of a starred wheel might sever his link and join another subset

of agents if by so doing he gets to observe n∗ agents. Then by Proposition 2 the

process that leads to the formation of a new starred wheel begins. This implies

that the better reply dynamics (4) does not converge to a steady state but that a

constellation of starred wheels of dimension n∗ is an absorbing state of the better

reply dynamics (4). Notice that BG assume that α = 0 and c ∈ [0, 1].8 In our
set-up this implies that n = 1 and n∗ = +∞. Thus they obtain a global wheel
which is a limit case of the absorbing states found in the above proposition.

Let us now consider the three cases of a pathological population size, of n∗ = n

and of a small population. If n∗ > 1
2α
and there exists an integer k such that

P = (k + 1)n∗ − 1 or if (α, c) ∈ ©(α, c) : 3− 15α < c ≤ 1
4α
− 1, 1

6
≤ α < 1

5

ª
or

if P < n∗ then the steady state architectures are as shown by the following

proposition.

Proposition 3 i) Let P be such that there exist an integer k such that P =

(k + 1)n∗−1 and n∗ > 1
2α
. Then with positive probability the better reply dynam-

8BG, Theorem 3.1, Part a), p. 1197.
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ics settles in Þnite time to a network consisting of k wheels of dimension n∗ and

one wheel of dimension n∗ − 1, which is a steady state.
ii) Let (α, c) ∈ ©(α, c) : 3− 15α < c ≤ 1

4α
− 1, 1

6
≤ α < 1

5

ª
. If there exist an

integer h such that P = 3h + 1 then the unique steady state of the better reply

dynamics is a set of h wheels W (3) and the remaining agent is a stand-alone; if

P = 3h+ 2 the unique steady state is a set of h wheels W (3) and the remaining

2 agents form a W (2); and if P = 3h the unique steady state is a set of h wheels

W (3).

iii) Let P < n∗ then in Þnite time the agents form one wheel of dimension P

which is a steady state of the better reply dynamics.

Proof. Part i): assume there are k players who observe k disjoint groups of n∗

agents. This is an event that happens with positive probability. Then k wheels

of dimension n∗ surely arise (applying Step 5.a of the proof of Proposition 2).

Assume that the remaining (n∗ − 1) agents are linked to each other only. Then
they have the choice between forming their own wheel of dimension (n∗ − 1) or
linking (from outside) to the existing wheels of dimension n∗. Since n∗ > 1

2α
, the

payoff of a wheel of dimension (n∗ − 1) is higher than that one can get by linking
to wheel of dimension n∗. Hence they form a wheel W (n∗ − 1).
Part ii) It can be easily veriÞed that the assumptions on α and c are equivalent

to the following values for n∗, n and n: n∗ = n = 3 and n = 2 which is the only

possible case in which n∗ = n for (α, c) ∈ P . We can apply Steps 1, 2, 4 and

5 a. of the proof of Proposition 2 to show that at least one W (3) forms. Once

all the W (3) formed, there will be either 1 or 2 or no remainders. If there are 2

remainders they will form a W (2) as n = 2.

Part iii): Take the agent who is observing the largest number of agents and call

him i1. Now either i1 observes the whole population or there exists someone who

is not observed by i1. In the Þrst case apply replacing n∗ with P , the argument

of Step 5.a of Proposition 2 to show that one simple wheel of dimension P forms.

Otherwise take among the agents not observed by i1 the one who observes the

most agents and call him j. For him it is payoff improving to cut all his link(s)

and link to i1 directly. So j does and now j is the one who observes most agents
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in P . Repeat the argument until one agent observes all the P agents. Then apply

the argument of Step 5.a. of Proposition 2 (replacing n∗ with P ).

The case of Part iii) is not surprising since it is intuitive that every agent is

connected and observes everyone else when the population is small. This means

that a small population size prevents the decreasing returns to linking to prevail

on the marginal beneÞt of observing one additional agent.

Let us concentrate on the absorbing architecture found in Proposition 2. De-

Þne now r, q ∈ N such that

P = q n∗ + r for 0 ≤ r < n∗ (5)

so q =
¥
P
n∗
¦
, i.e. q is the maximum number of starred wheel that can arise. DeÞne

the aggregate payoff of the population as the sum of the payoff of each agent. A

network g is called a Pareto efficient architecture if it is impossible to increase

the payoff of any agent without reducing the payoffs of others.

Corollary 1 Assume that P > n∗, that (α, c) ∈ P\©(α, c) : 1
6
≤ α < 1

5
,

3− 15α < c ≤ 1
4α
− 1ª and in addition if n∗ > 1

2α
that there exists no integer

k such that P = (k + 1)n∗ − 1. Consider the absorbing set found in Proposition
2: the aggregate payoff of the population increases with the number of starred

wheels in the limit architecture. The Pareto efficient architecture consists of q

starred wheels of dimension n∗ with the remaining r agents being linked from

outside to these wheels, where q and r are deÞned in equation (5).

Proof. The Þrst part of the statement is easily veriÞed. The aggregate payoff

of the population increases with the number of starred wheels as central agents

in a starred wheel of dimension n∗ enjoy the maximum payoff and their number

increases of with the number of starred wheels in the limit architecture.

Let us now prove the second part. Given a constellation of q starred wheels

of dimension n∗ it is impossible to increase the payoff of any agent without re-

ducing that of another one. The n∗× q central agents enjoy the maximum payoff
attainable (by Lemma 3) so there is no way to improve it. Peripheral agents
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observe n∗ + 1 agents with one single link and receive a lower payoff, that of

the members of a W (n∗ + 1). The only way they can improve the payoff is to

reduce by one unit the number of agents observed. This is impossible because

the peripheral players are too few (r < n∗ by equation 5) to set up a W (n∗) on

their own without reducing the payoff of some central agents.

Notice that the aggregate payoff of the population can be interpreted as the

Social Welfare.

5 Conclusion

In this paper the effects of network maintenance in the process of network for-

mation are studied as a variant of the model by Bala and Goyal [1]. Network

maintenance which is related to network size affects the payoffs of the agents in

a way that dramatically changes the steady state predictions with respect to the

original. The presence of the maintenance cost implies that there are decreasing

returns to linking. The agents who are assumed homogenous have to trade off not

only the number of links they sponsor with the beneÞt of observing the others.

They also have to consider that larger networks are proportionally more expensive

to maintain than smaller ones. Strategy revision occurs by better response.

In this model the dynamics converges in Þnite time. Absorbing states are

a constellation of disjoint starred wheels, where core agents are linked in the

optimally-sized wheel and peripheral agents link to the wheel from outside. Simi-

lar architectures of links among economic agents are found in Taiwanese industrial

districts (Lee [19]).

Examples of disjoint networks are much more common in the real world than

global networks. As an illustration consider the furniture industry in Italy: it

is localised in nine major industrial districts which are not located close to each

other, rather than being agglomerated in one single location. Similarly there are

eight major industrial districts in Italy in the textile and apparel sector and nine
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in the leather goods sector9. The result that social welfare increases with network

fragmentation may explain this observation.
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A Miscellaneous Preliminary Results

Lemma 4 For all (α, c) in the set R we Þnd that n < n, n ≤ n∗ and n∗ ≤ n.

Proof. Recall that n∗ is deÞned as the integer that is closest to 1
2α
. Formally,

n∗ ∈ N such that ¯̄
n∗ − 1

2α

¯̄
< 1

2

which is positive and well-deÞned for all positive α as we excluded the zero-

measure case that there exists an integer 0 such that α = 1
2)+1

, i.e. that α is the

inverse of an even number. Moreover recall that

n :=

»
1−
√
1−4α(c+1−α)
2α

¼
and

n :=

¹
1+
√
1−4α(c+1−α)
2α

º
The thresholds n and n are well-deÞned for α > 0 and c ∈ £0, 1

4α
+ α− 1¤.

Also note that both n and n are non-negative, as
1−
√
1−4α(c+1−α)
2α

> 0 if and only

if c+ 1 > α -which is always true- and also
1+
√
1−4α(c+1−α)
2α

> 0.

Finally n < n, n ≤ n∗ and n∗ ≤ n is guaranteed by
1+
√
1−4α(c+1−α)
2α

− 1−
√
1−4α(c+1−α)
2α

≥ 2

which holds as (α, c) ∈ R. This concludes the proof.

Lemma 1 If (α, c) ∈ R then there exist a network g such that πi (g) > 1− α
for some i ∈ P .
Proof. Let a network g contain a wheel of dimension m, i.e. in g there

exists a subset M of the population such that the agent in M form a wheel

W (m). Consider an agent i who belongs to this wheel. Agent i receives a payoff

πi (g) = m− c−αm2 in the network g. Recall that stand-alones receive a payoff

equal to 1− α.
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It can be shown that −m2α + m + α − c − 1 > 0 for some m if (α, c) ∈ R.
Let φ (γ) := −αγ2 + γ + α − 1 − c. Consider the equation φ (γ) = 0. Its

roots are γ1,2 :=
1∓
√
1−4α(c+1−α)
2α

. The roots γ1 and γ2 are real number only if

1−4α (c+ 1− α) ≥ 0, i.e. c ≤ 1
4α
−1+α. If 1−4α (c+ 1− α) = 0 then φ (γ) = 0

for γ = 1
2α
and φ (γ) < 0 otherwise. So 1− 4α (c+ 1− α) > 0 which means that

the parameters belong to the set R deÞned in equation (2) above. The statement

follows as α > 0 and hence −m2α +m− c > 1− α if and only if γ1 < m < γ2.

Notice that Lemma 4 above guarantees the existence of such m.

Lemma 2 Let (α, c) ∈ R and m ∈ N. Then m− c− αm2 ≥ 1− α if and only
if m ∈ {n, ..., n}.
Proof. Recall that n = dγ1e and n = bγ2c and that γ1 and γ2 are the

solutions of the equation −αγ2 + γ +α− 1− c = 0. So m− c+ αm2 ≥ 1− α for
all m = n, ..., n and m− c+ αm2 < 1− α for m < n and m > n.

Remark 1 If (α, c) ∈ P then n = 2 which means that no agent has an incentive
to cut all his links in a network in which he observes 2 agents.

Proof. Recall the deÞnition of the set P

P =
©
(α, c) ∈ R2 ¯̄ 0 < c ≤ 1− 3α for α ∈ ¡0, 1

6

¤
and 0 < c ≤ 1

4α
− 1 for α ∈ ¡1

6
, 1
4

¢ª
Notice that 1

4α
− 1 < 1− 3α for α ∈ ¡1

6
, 1
4

¢
.

Figure A1 below plots the set P .
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Figure A1: The parameter space P

Recall that n = dγ1e. So it is enough to verify that 1 < γ1 ≤ 2. Note that

γ1 =
1−
√
1−4α(c+1−α)
2α

> 1

as (1− 2α)2 > 1− 4α + 4α2 − 4αc
as 0 > −c

Now verify that γ1 is smaller than 2:

γ1 =
1−
√
1−4α(c+1−α)
2α

≤ 2
if and only if 1− 4α <

p
1− 4α (c+ 1− α)

As α < 1
4
then 1 − 4α > 0. So γ1 ≤ 2 if and only if (1− 4α)2 ≤ 1 −

4α (c+ 1− α), i.e. c ≤ 1 − 3α which holds for all α, c ∈ P . So n = 2 for all

α, c ∈ P
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B Proof of the Main Results

To prove Proposition 2 we need to establish some preliminary results. The Lem-

mas in the next subsection present some relevant cases in which the better re-

sponse dynamics (4) leads to the emergence of a wheel or of an agent who observes

n∗ players. These are building blocks for the proof of the proposition as we will

show that every time an agent observes n∗ players a starred wheel of dimension

n∗ arises.

B.1 Preparatory Lemmas

Lemma 5 is of some independent interest as it deals with the case of (simple)

wheel formation. It is sufficient that an agent is better off than all those he

observes for a wheel to emerge among these agents.

Lemma 5 Let agent i1 be such that πi1 ≥ πj for all j ∈ N (i1, g), i.e. i1 is best
off among those he observes. Let m := kN (i1, g)k so m is the number of agents

observed by i1. If m > 1 then in Þnite time a wheel W (m) arises among the

agents originally in N (i1, g).

Proof. Let M := N (i1, g). Consider i2 ∈ argmax)∈M d (i1, 0; g) so i2 is

furthest away from i1 among those who are observed by i1. Note that i1 does not

use any of i2�s links to observe anyone else. Agent i2 can improve his payoff by

cutting all his links and linking to i1 directly since

πi2 (g) ≤ πi1 (g) ≤ m− c− αm2

as i2 ∈ N (i1, g). So he does. Call this new network g(2).
Note that now i2 observes all the agents in M (so m) with one single link

and his payoff is exactly m− c − αm2 which is the new maximum payoff in M .

Moreover all the agents who observe i2 now observe all the agents in M .

We proceed by induction. Assume we have done the Þrst 0−1 iterations. Call
agent i) the player who moved in iteration 0−1 for 0 > 1. Let g()) be the network
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formed at the end of iteration 0, i.e. after i) moved. Notice that all the agents

who moved in the previous round are consecutively linked to each other, i.e. is

has one single link to agent is−1 for s = 2, . . . , 0. So the distance between i) and i1
in the network g()) is 0−1 for 0 > 1. Moreover °°N ¡is, g())¢°° = m for s = 1, . . . , 0

and 0 > 1. Consider now i)+1 ∈ argmaxj∈M d
¡
i), j; g

())
¢
so i)+1 is furthest away

from i). By the reasoning applied to i2 agent i)+1 has a better reply of cutting

all his links and linking to i) directly.

We now show that eventually i1 is selected, so that a wheel W (m) forms.

Consider the iterative procedure above. Since ih ∈ M and
°°N ¡ih, g(h)¢°° = m

for all h > 2 eventually i1 is selected as M is Þnite and the distance between ih

and i1 increases by 1 in each step. Let ik be the last agent who moves before i1

is selected. Notice that ik observes i1 through a path consisting of all the agents

who moved before him. As ik observes m agents and i1 is the furthest away from

ik it follows that k = m.

Notice now that i1 is the only agent in M who can possibly have more than

one link. If so then let i1 play. By the same reasoning as i2 agent i1 has a better

response to cut all his links and link to im. Now i1 observes m agents with one

single link and closes a wheel of dimension m among the agents i1, . . . , im with

possibly other players observing them.

In the proof of Proposition 2 we Þnd a path of the better reply dynamics that

leads to the formation of a constellation of starred wheels once at least one agent

in the population observes exactly n∗ players. The next Lemmas consider Þrst

the case of a highly fragmented network and then of a highly connected one. In

particular Lemma 6 assumes that there exist more than n∗ agents who observe

less than n∗ and shows that one of them will observe n∗ agents in Þnite time.

Lemma 6 If there exist more than n∗ agents each of whom observes between n

and n∗ − 1 agents then in Þnite time at least one agent who observes exactly
n∗ agents will arise, i.e. the better response dynamics gt is such that for some

Þnite t0 there exist an agent j for whom
°°N ¡j, gt0¢°° = n∗.
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Proof. Consider the assumptions of the Lemma. Call H the set of agents

each of whom observes between n and n∗ − 1 agents in the network g. Notice
that kHk ≥ n∗ + 1. DeÞne �P as the subset of the population consisting of

all the agents observed by some h ∈ H , formally �P =
S
h∈H N (h, g). Among

the agents belonging to �P let i1 be an agent who observes the most agents, i.e.

i1 ∈ argmaxj∈ �P kN (j, g)k. Let m1 := kN (i1, g)k. Note that m1 ≤ n∗ − 1.
Consider i2 ∈ argmax)∈N(i1,g) d (i1, 0; g) so i2 is furthest away from i1 among

those who are observed by i1. Recall that i1 does not use any of i2�s links to

observe anyone else. Agent i2 can improve his payoff by cutting all his links and

linking to i1 directly since

πi2 (g) ≤ m1 − c− αm2
1

as i2 ∈ N (i1, g). So he does and receives a payoff exactly equal to m1− c−αm2
1.

Call this new network g0. Note that N (i2, g0) = N (i1, g) and that i2 is the

best off among the agents he observes. So by Lemma 5 the agents observed by i2

form a W (m1).

Call this new network g0. Assume there exist a k ∈ �P\N (ij, g0) for some
agent ij in theW (m1) such that d (k, ij; g0) = 1, i.e. agent k is directly linked the

wheel without belonging to it. As m1 ≤ n∗ − 1, agent ij+1 in the W (m1) whose

only link is to ij has a better response to cut his link and link to k. This makes

a wheel of dimension m1 + 1. Repeat until an agent gets to observe n
∗ (which

completes the proof) or no such k outside the wheel exists anymore.

In the letter case call the new network �g and m2 the dimension of the (en-

larged) wheel. So m2 ≥ m1. Note that all the agents in �P either belong to the

wheel W (m2) or are not in the wheel and hence observe less than or equal to m1

agents. Call L the subset of �P of agents who do not belong to the wheel

So �P is partitioned into the agents belonging to the wheel W (m2) and those

in L. Each agent 0 ∈ L has a better response to cut all his links and link directly
to someone who belongs to the wheel as kN (0, �g)k ≤ m2 ≤ n∗−1. By so doing all
the agents in L directly link to the wheel without belonging to it. So we re-apply

the argument developed above for an agent k who is linked the wheel directly
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without belonging to it. Note that at some point an agent observes n∗ players as°°° �P°°° > n∗ by assumption of the Lemma. This completes the proof.
In the next Lemma we consider the case of a network which is so highly

connected that there exists a subset of the population such that all the agent in

this subset observe more than n∗ agents and all the agents observed by them also

observe more than n∗. We then show that in this case an agent observing exactly

n∗ will emerge.

Lemma 7 Assume there exist an agent k such that n∗ + 1 ≤ kN (0, g)k ≤ n for
all 0 ∈ N (k, g), i.e. such that all the agents observed by him observe between

n∗ + 1 and n agents. Then in Þnite time at least one agent who observes exactly

n∗ agents will arise.

Proof. Let �P =
S
)∈N(k,g)N (0, g). Note that

°°° �P°°° ≥ n∗ + 1 since N (i, g) ≥
n∗ +1 for all i ∈ �P . Consider now the agent who is best off in �P and call him i1,

so πi0 (g) ≤ πi1 (g) for all i0 ∈ N (i1, g). Let m1 = kN (i1, g)k so m1 ≥ n∗ + 1. By
Lemma 5 the agents in N (i, g) form a wheel W (m1).

Call this new network g0. Take now an agent j belonging to this wheelW (m1).

Agent j has a better response (in fact it is his best response) to cut his link and

link to agent r in the wheel such that d (r, j; g0) = n∗. So he does and observes

exactly n∗ agents improving his payoff. This completes the proof

The following lemma considers another situation in which there is an agent

j1 who observes more than n
∗ agent. It assume further that among the agents he

observes all those who observe less than n∗ players observe so few that they have

a better response to cut all their links and link to j1 directly. Once all of them

linked to j1 no-one observed by j1 observes less than n∗. Then by Lemma 7 one

agent who observes n∗ players arises in Þnite time.

Lemma 8 Assume there exist an agent j1 such that n
∗ + 1 ≤ kN (j1, g)k ≤ n

and for each agent 0 ∈ N (j1, g) such that kN (0, g)k ≤ n∗ − 1 we have that
kN (j1, g)k + kN (0, g)k + 1 < 1

α
. Then in Þnite time at least one agent who

observes exactly n∗ agents will arise.
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Proof. Let m1 := kN (j1, g)k, so m1 is the number of agents observed by

j1. Consider j2 ∈ argmax)∈{)∈N (j1,g): kN(),g)k<n∗} kN (0, g)k so j2 is the agent who
observes the maximum number of agents among those observed by j1 who observe

less than n∗. Agent j2 exists by assumption of the Lemma. Consider an agent

� ∈ argmax)∈N (j2,g) d (j2, 0; g) so � is furthest away from j2 among those who are

observed by j2. So kN (�, g)k ≤ kN (j2, g)k ≤ n∗ − 1 and π� (g) ≤ kN (�, g)k −
c − α kN (�, g)k2. Notice that m1 + kN (�, g)k + 1 < 1

α
implies that kN (�, g)k −

c − α kN (�, g)k2 < m1 − c − αm2
1. Hence it is a better response for � to cut all

his links and link to j1 getting to observe m1 agents. So he does and receives a

payoff equal to m1 − c− αm2
1.

Call this new network g0. Notice that � and all the agents in N (j1, g) who

observed � in g now observe exactly m1 ≥ n∗ + 1 agents in g0 as they were all

observed by j1 in g. However nothing changed for the other agents observed by

j1. So g
0 is identical to g with the exception of the move made by �. In particular

for each agent 0 ∈ N (j1, g0) such that kN (0, g0)k ≤ n∗ − 1 we still have that
kN (j1, g0)k + kN (0, g0)k+ 1 < 1

α
. We can then replicate this argument until no

agent observes less than n∗. Now by Lemma 7 at least one player who observes

exactly n∗ agents emerges. This completes the proof.

We are now ready to prove the main result of the paper.

B.2 Proof of Proposition 2

Proposition 2 Assume that P > n∗, that (α, c) ∈ P\©(α, c) : 1
6
≤ α < 1

5
,

3− 15α < c ≤ 1
4α
− 1ª and in addition if n∗ > 1

2α
that there exists no integer k

such that P = (k + 1)n∗− 1. Then in Þnite time each agent belongs to a starred
wheel of dimension n∗. From then on, while the network might change, it remains

a constellation of starred-wheels of dimension n∗ in each period.

Proof. We Þnd a path of the better reply dynamics (4) such that starting from

an arbitrary network it leads in Þnite time to a constellation of starred wheels of

dimension n∗ through the following steps:

1. From an arbitrary network in Þnite time we eliminate all agents whose
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payoff is less that 1 − α. In the resulting network there are either stand-
alones or terminals or agents who do not observe less than n or more than

n agents.

Proof. Take an arbitrary network g. Consider the set of the agents Q (g) =

{i ∈ P |πi (g) < 1− α}. Take the agent with the highest index in Q (g) and
call this agent j. So j has a better response is to cut all his links. Thus

j becomes a stand-alone (or a terminal in the case he was observed by

someone else) and receives 1− α.
Call this new network g0. For every agent i /∈ Q (g) such that j ∈ N (i, g) if j
cuts all his links then πi (g

0) ≥ 1−α since n = 2. So kQ (g0)k ≤ kQ (g)k−1.
Replicate this argument until all the agents receive a payoff greater or equal

to 1−α. Then by Lemma 2 all the agents who are neither stand-alones nor
terminals observe between n and n.

2. Let us eliminate from the network the terminals in Þnite time.

Proof. Consider a terminal agent i. By deÞnition there exists an agent

j ∈ P\ {i} who observes i, i.e. i ∈ N (j, g). We show that if i links to
j then i is better off. Call the new network g0. When i links to j then

N (i, g0) = N (j, g) as i was a terminal in g. Since i has only one link in

g0, kN (i, g0)k = kN (j, g)k ≤ n and πj (g) ≥ 1− α we Þnd πi (g0) ≥ 1− α.
Replicate this argument until all terminals connect.

3. We now show that in Þnite time stand-alones connect.

(a) If there exist an agent i ∈ g such that n ≤ kN (i, g)k ≤ n − 1, i.e. if
there exists an agent i who observes no more than n − 1 and no less
than n then we eliminate all the stand-alone in Þnite time.

Proof. Any stand-alone has a better response to link to i. By so

doing he observes kN (i, g)k+1 ≤ n and receives a payoff greater than
or equal to 1− α. Notice that agent i still observes the same agents
as in g.
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(b) If kN (j, g)k = n holds for all j ∈ g such that kN (j, g)k > 1 we

eliminate all the stand-alone in Þnite time.

Proof. The assumption (α, c) ∈ P \©(α, c) : 1
6
≤ α < 1

5
, 3− 15α <

c ≤ 1
4α
− 1ª is equivalent to n∗ ≤ n− 1 and n = 2.

Let us divide the proof in two cases.

First assume that there exist an agent i such that µdi (g) = 1, i.e. i

has only one link. Then i is best off among all the agents he observes.

So by Lemma 5 a wheel W (n) forms among all the agents in N (i, g).

Call this new network g0. Take now an agent j belonging to this wheel

W (n). As n∗ ≤ n−1 agent j in the wheel has a better response to cut
his link and link to agent r in the wheel such that d (r, j; g0) = n − 1.
So he does and observes exactly n − 1 agents improving his payoff.
Now we are back to the case considered in part a) of this Step and the

proof is complete.

Second assume that µdi (g) 6= 1 for all i. Fix one agent and call him
i1. Consider an agent i2 ∈ argmax)∈N (i1,g) d (i1, 0; g) so i2 is furthest
away from i1 among those who are observed by i1. Note that i1 does

not use any of i2�s links to observe anyone else. Agent i2 improves his

payoff by cutting all his links (which are more than one) and linking

to i1 directly. Now agent i2 has one link only and we are back in the

previous case of part b).

4. Now all the players in the network only observe a number of agents between

n and n. From any such network in Þnite time a player that observes n∗

agents emerges.

Proof. Take the agent who observes the maximum number of agents i1 ∈
argmaxj∈P kN (j, g)k. Take i2 ∈ argmaxj∈{)∈P : kN (),g)k<n∗} kN (j, g)k, so i2
is the agent who observes the maximum number of agents among those

who observe less than n∗. If i2 does not exist then by Lemma 7 at least one

player who observes exactly n∗ agents will arise. Let m1 := kN (i1, g)k and
m2 := kN (i2, g)k whenever it exists.
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Let us consider the following 3 cases.

(a) Assume that m1 = m2. In Þnite time one player observing n∗ emerges.

Proof. If m1 = m2 then all the players observe less than n
∗ agents

and hence by Lemma 6 at least one player observing exactly n∗ agents

emerges.

(b) Assume that m1 +m2 + 1 <
1
α
and m1 ≥ n∗ + 1. Then in Þnite time

one agent observes exactly n∗ agents.

Proof. Assume Þrst that some agents who observe less than n∗ are

observed by i1. Note that for all agents j with kN (j, g)k ≤ n∗ − 1
we have kN (j, g)k ≤ m2. In particular for all � ∈ N (i1, g) such that
kN (�, g)k ≤ n∗ − 1 we have that m1 + kN (�, g)k + 1 < 1

α
. So by

Lemma 8 in Þnite time at least one player observing exactly n∗ agents

emerges.

If instead for all j such that kN (j, g)k ≤ n∗ − 1 we have j /∈ N (i1, g)
then kN (k, g)k ≥ n∗ + 1 for all agents k ∈ N (i1, g) and hence by
Lemma 7 at least one player who observes exactly n∗ agents will arise.

(c) Assume m1 +m2 + 1 ≥ 1
α
and m1 ≥ n∗ + 1. To show: one agent that

observes n∗ players will arise in Þnite time.

Proof. Let �P := N (i1, g)∪N (i2, g). Note that
°°° �P°°° ≥ m1 > n∗. Also

note that m1+m2+1 ≥ 1
α
implies πi1 (g) ≤ m2 +1− c−α (m2 + 1)

2.

So agent i1 has a better response of linking to i2 cutting all his original

links. Let him do it and call the new network g0.

Note that N (i1, g0) = {i1} ∪N (i2, g) and kN (i1, g0)k = m2 + 1 ≤ n∗.
If kN (i1, g0)k = n∗ then the proof is complete. If kN (i1, g0)k ≤ n∗− 1
then i1 is best off among the agents in N (i1, g

0). So by Lemma 5 a

wheel W (m2 + 1) forms with possibly other agents observing it. Call

this new network g00.

We now show that the wheel enlarges so that no agent in �P can be
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directly linked to the (enlarged) wheel and observe less than n∗ overall.

Call this agent i. By deÞnition of i there exists an agent i0 in the wheel

such that d (i, i0; g) = 1. Asm2+1 ≤ n∗−1 agent i00 in the wheel whose
only link is to i0 has a better response to cut his link and link to i. So

the wheel enlarges by 1. Call this new network g000. Assume further

that i observes some agents who do not belong to the W (m2 + 1).

As kN (i, g00)k ≤ n∗ − 1 also kN (i, g000)k ≤ n∗ − 1. Notice that for
all j in the wheel we have that N (j, g000) = N (i, g000). In particular

agent i0 who belongs to the wheel W (m2 + 1) is best off among the

agents in N (i0, g000) so by Lemma 5 a wheel of dimension kN (i0, g000)k
forms. Repeat until an agent gets to observe n∗ (which completes the

proof) or no such i linked to the wheel and observing less than n∗

agents overall exists anymore. Call this new network ÿg and the wheel

dimension ÿm := kN (i, g000)k.
We now enlarge the wheel further so to partition the agents in �P

into those who belong to the wheel and observe less than n∗players

and those who observe more than n∗ players. So we eliminate all

the agents observing less than n∗ agents who do not belong to the

wheel. Note that in ÿg if agent j does not belong to the W ( ÿm) then

either kN (j, ÿg)k ≥ n∗ + 1 or kN (j, ÿg)k ≤ m2 by deÞnition of m2. So

kN (j, ÿg)k ≤ ÿm whenever kN (j, ÿg)k ≤ n∗−1 for all j ∈ �P . Take agent

h1 who does not belong to the W ( ÿm) such that kN (h1, ÿg)k ≤ n∗ − 1.
As kN (h1, ÿg)k < ÿm and ÿm ≤ n∗ − 1 then h1 has a better response to
cut all his links and link to the W ( ÿm) (from outside). So he does and

observes ÿm+ 1 agents.

If ÿm+1 = n∗ then the proof is complete. Otherwise take h2 among the

agents not observed by h1 in the new network such that h2 observes

less than n∗. By the same reasoning applied to h1 agent h2 improves

his payoff cutting all his links and linking to h1. Repeat this argument

until either some agent observes n∗ or there exist no agent in the

network who does not belong to the wheel and observes less than
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n∗ players. If some agent observes n∗ then the proof is complete.

Otherwise call ÿh the last agent who moved and note that he is best off

among all those he observes as he observes the most and still observes

less than n∗ players with one link only. So by Lemma 5 a wheel forms

among the agents observed by ÿh. Call this new network �g and the

(new) wheel dimension �m ≤ n∗ − 1.
Note that in �g all the agents in �P either observe more than n∗ agents

or belong to the wheel W ( �m) and thus observe �m ≤ n∗ − 1. Take
j0 = argminh∈{)∈ �P : kN (),�g)k>n∗} kN (h, �g)k. Let m0 := kN (j0, �g)k.
Assume Þrst �m+m0+1 <

1
α
then i1 who belongs to the wheel W ( �m)

has a better response to cut his only link and link to j0. By so doing i1

breaks the wheel. As in �g everyone who observed less than n∗ agents

belonged to the wheel W ( �m) now there exists no agent 0 ∈ �P such

that kN (0, �g)k < n∗. So by Lemma 7 one agent observing n∗ agents
surely emerges.

Assume instead �m+m0 +1 ≥ 1
α
then j0 cuts all his links and links to

the wheel. By deÞnition of m0 for all j0 ∈ �P with kN (j0, �g)k ≥ n∗ we
have that �m+ kN (j0, �g)k+1 ≥ 1

α
. So all j0 ∈ �P with kN (j0, �g)k ≥ n∗

have the same better response and link to the wheel. As �m ≤ n∗ − 1
and

°°° �P°°° > n∗ the wheel enlarges to n∗ − �m − 1 (peripheral) agents
and an agent observing n∗ players will arise.

5. Now in the network at least one agent observes n∗ players. In Þnite time

all the agents in the network observing n∗ players belong to a SW (n∗,m).

Proof. The proof is divided in two parts.

(a) If a player observes n∗ agents then this player belongs to a W (n∗) in

Þnite time.

Proof. By assumption of this Step a player who observes n∗ agents

exists. Take an agent who observes n∗ agents and call him i∗1, that is
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kN (i∗1, g)k = n∗. Consider i∗2 ∈ argmax)∈N(i∗1,g) d (i
∗
1, 0; g), i.e. con-

sider an agent who is furthest away from i∗1. We already know that

then i∗1 does not use any of i
∗
2�s links to observe anyone else. Agent i

∗
2

improves his payoff (in fact it is his best response) by cutting all his

links and linking to i∗1 directly. So he does.

Call this new network g0. Now i∗2 enjoys the maximum payoff attain-

able: he observes n∗ agents paying the cost of one single link and the

maintenance cost of a network of n∗ agents. Notice that i∗2 is best off

in N (i∗2, g
0) and that kN (i∗2, g0)k = n∗ so by Lemma 5 a wheel W (n∗)

forms. Replicate this argument until there exist no agents observing

n∗ players who do not belong to a wheel W (n∗).

(b) If all the agents who observe n∗ players belong to a wheel W (n∗) and

there exists an agent who does not belong to a W (n∗) then a starred

wheel of dimension n∗ emerges in Þnite time.

Proof. Call i the agent who does not belong to a W (n∗). Let mi :=

kN (i, g)k. Note that mi 6= n∗.
We claim that agent i has a better response to cut all his links and

link to the wheel from outside since by assumption of the Proposition

if n∗ > 1
2α
then there exists no integer d such that P = (d+ 1)n∗ − 1.

Assume Þrst that either mi > n
∗ or mi < n

∗ − 1 then πi (g) ≤ n∗ +
1− c− α (n∗ + 1)2. So i has a better response to cut all his links and
to link to a wheel of dimension n∗ forming a starred wheel of the same

dimension.

Assume instead that mi = n
∗−1. Note that n∗−1− c−α (n∗ − 1)2 R

n∗+1−c−α (n∗ + 1)2 is equivalent to n∗ R 1
2α
. So if n∗ ≤ 1

2α
any agent

observing n∗ − 1 has a better response to link to a W (n∗) forming a

starred wheel of the same dimension. Assume now that n∗ > 1
2α
. If

there exists another agent j who does not observe n∗ then j has a

better response to cut all the links and link to i getting to observe n∗

agents. Then a new wheel will arise by part a) of this Step. If no such
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agent j exists then exists an integer d such that P = (d+ 1)n∗ − 1
which is a contradiction.

6. In Þnite time the better reply dynamics converges to a constellation of h

starred wheels of dimension n∗, h = 1, ...,
¥
P
n∗
¦
.

Proof. By Proposition 1 a constellation of starred wheels of dimension n∗

is a PSNES which is absorbing for the better reply dynamics (4).

This concludes the proof of the Proposition.
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