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On Using Markov Switching Time Series Models to Verify Structural

Identifying Restrictions and to Assess Public Debt Sustainability

Abstract

The first paper in this thesis deals with the issue of whether there are bubble compo-

nents in stock prices. This is joint research with Wenjuan Chen (Free Universtiy Berlin).

We investigate existing bivariate structural vector autoregressive (SVAR) models and test

their identifying restriction by means of a Markov switching (MS) in heteroskedasticity

model. We use data from six different countries and find that, for five of the country

models, the structural restriction is supported at the 5% level. Accordingly, we label the

two structural shocks as fundamental and non-fundamental. This paper illustrates the

virtue of being able to test structural restrictions in order to justify the relevant shocks of

interest.

The second paper proceeds in the spirit if the first paper. In particular, five trivariate

structural VAR or vector error correction (VEC) versions of the dividend discount model

are considered, which are widely used in the literature. A common structural parameter

identification scheme is used for all these models, which claims to be able to capture

fundamental and non-fundamental shocks to stock prices. A MS-SVAR/SVEC model in

heteroskedasticity is used to test this identification scheme. It is found that for two of

the five models considered, the structural identification scheme appropriately classifies

shocks as being either fundamental or non-fundamental. These are models which use

real GDP and real dividends as proxies of real economic activity. The findings are sup-

ported by a series of robustness tests. Results of this paper serve as a good guideline

when conducting future research in this field.

The third thesis paper addresses the question of how sustainable a government’s cur-

rent debt path is by means of a Markov switching Augmented Dickey-Fuller (MS-ADF)

model. This model is applied to the debt/GDP series of 16 different countries. Stationar-

ity of this series implies that public debt is on a sustainable path and hence, the govern-

ment’s present value borrowing constraint holds. The MS specification also allows for

unit root and explosive states of the debt/GDP process. Two different criteria are used to

test the null hypothesis of a unit root in each state. The countries with a sustainable debt

path are found to be Finland, Norway, Sweden, Switzerland and the UK. The model in-

dicates that France, Greece, Ireland and Japan have unsustainable debt trajectories. The

remaining seven countries, (Argentina, Germany, Iceland, Italy, Portugal, Spain and the

US) are all found to have uncertain debt paths. The model is robust to the sample size

and number of states used. It is shown that this model is an improvement to existing

models investigating this subject.
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Chapter 1

Are there Bubbles in Stock Prices?

Testing for Fundamental Shocks

Anton Velinov (EUI), Wenjuan Chen (FU Berlin)

Abstract

This paper makes use of a Markov switching-SVAR (MS-SVAR) model in heteroskedas-

ticity as in Lanne et al. (2010) and Herwartz and Lütkepohl (2011) to test a long-run re-

striction that would just-identify a bivariate SVAR model in the conventional sense. In

particular, we investigate the SVAR model considered by Binswanger (2004a) and Groe-

newold (2004), which tries to answer the question of how well stock prices reflect their

fundamentals. We use data from six different countries and find that, for five of the coun-

try models, the long-run restriction is supported at the 5% level. Accordingly, we label the

two structural shocks as fundamental and non-fundamental. From conventional SVAR

analysis, impulse responses show that in most cases there are significant long-run effects

of a fundamental shock to real stock prices at the 95% confidence level. Historical decom-

positions indicate a potential bubble in real stock prices for Japan and pricing according

to fundamentals for the UK and the US. This paper illustrates the virtue of being able to

test structural restrictions in order to justify the relevant shocks of interest.
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1.1 Introduction

There is a wide range of literature investigating stock prices and their relation to other

macroeconomic variables. A very popular tool in this area is the vector autoregressive

(VAR) or the so-called reduced form model. Once estimated this model can be used

to draw inferences about the economic relationships through empirical simulations

such as impulse response analysis, forecast error variance decompositions and his-

torical decompositions.

Studies applying the VAR model to share prices and macroeconomic variables

include some early work by Campbell and Shiller (1988), who try to forecast stock re-

turns and find that using historical averages of real earnings is one of the most impor-

tant predictors. Later applications include work by Gjerde and Saettem (1999) who

analyze the relations among stock returns and many other macroeconomic variables

for the Norwegian economy. They find that the real interest rate and real activity are

important variables for explaining returns. Cheung and Ng (1998) conduct a similar

analysis for several countries making use of a vector error correction (VEC) model to

control for cointegrating relationships.

However, because the error terms are often correlated in such models and due to

their non-theoretical nature, results from reduced form models could be subject to

ambiguous interpretation. This is because there is no clear distinction of the shocks.

Hence, it is not always possible to classify shocks in a desired way.

Many studies therefore make use of the structural VAR (SVAR) model, so that

shocks can be defined according to economic theory. This would make model sim-

ulation results potentially easier to interpret. Contributions in this area - applying

the SVAR model to share prices and other macro data - include work by Lee (1995b),

who finds that stock prices respond equally strong to both permanent and temporary

shocks to dividends. In a follow up analysis, Lee (1998) introduces a non-fundamental

component to the model and finds that stock prices tend to deviate from fundamen-

tals only in the short-run and then gradually reach their price according to funda-

mentals. He therefore draws the conclusion that there are fads rather than bubbles

present in stock prices.1 Lastrapes (1998) analyzes the effect of money supply shocks

on stock and bond prices and concludes that there is a real liquidity effect for both.

1A fad is defined by a gradual change in stock prices rather than a sudden shift as in a bubble.
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Rapach (2001) uses a four-variable SVAR model to characterize the effects of different

macro shocks on stock prices. Relying on macro theory he imposes restrictions on

the model to identify the structural shocks. He finds that the surge of share prices in

the late 1990s was driven by the expansionary effects of these macro shocks. Slightly

more recent publications are those by Binswanger (2004a) and Groenewold (2004),

both of whom use a bivariate SVAR model with industrial production and real share

prices. They try to determine whether stocks are priced above their fundamentals, i.e.

whether there are bubble components in stock prices. They conclude that from the

mid 1990s this has indeed been the case.

Although the SVAR model does solve some of the interpretation problems pre-

sented by the reduced form model, it has a drawback in that it requires identification

restrictions. This is caused by the fact that only the parameters of the VAR model

can be estimated consistently and efficiently by OLS. The reduced form parameter

estimates can therefore be used to obtain the structural parameter estimates. There

are however, more structural parameters than reduced form parameters hence K (K −
1)/2 identification restrictions need to be imposed, where K is the number of endoge-

nous variables. The restrictions are imposed on the structural parameters in various

ways, below we discuss this in more detail. For example, in a four-variable model

there would need to be 6 restrictions in order to identify the structural shocks. Since

these restrictions solely rely on economic theory and can hence not be tested, they

may not be altogether innocuous.

A way to go around this problem is proposed in Lanne et al. (2010) and slightly

more recently in Herwartz and Lütkepohl (2011); the latter of which deals with a struc-

tural vector error correction model. The basic idea is to let the data decide whether

the restrictions needed for identifying the structural model are supported or not.

This is done through a Markov switching-SVAR (MS-SVAR) model in heteroskedas-

ticity. Even with just two Markov states, this model is potentially exactly identified,

and hence any further restrictions would be over-identifying and could be tested by

means of conventional statistical tests.

The main contribution of this paper is to make use of this testing technique and to

apply it to an already existing SVAR model, namely the bivariate model of Binswanger

(2004a) and Groenewold (2004). Their model investigates the role of fundamentals in
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stock prices. It is therefore very important to make sure that these fundamentals are

truly captured, especially when using a simple bivariate model. Hence, we use the

MS-SVAR model to allow the data to tell us whether the structural shocks are correctly

identified. We find that in the majority of cases the structural identification scheme

is accepted, thereby providing a formal justification to the relevant shocks of interest.

We then use the properly identified SVAR model to derive impulse responses, forecast

error variance decompositions and historical decompositions.

The paper is structured as follows: Section 2 introduces the basic SVAR model and

the MS-SVAR model. Section 3 discusses the MS-SVAR model results and Section 4

displays the empirical results of the SVAR model, having concluded with the MS part.

Finally, Section 5 concludes.

1.2 The Model

The focus of this paper is on a bivariate SVAR model used in Binswanger (2004a) and

Groenewold (2004). The two variables are the log of industrial production (I Pt ) and

the log of real stock prices, (st ). Since industrial production and real GDP are closely

related, both measures are commonly used as proxies of real economic activity. Stud-

ies, such as James et al. (1985) and Chen et al. (1986), find that industrial production

is a significant factor in explaining share prices. The rest of this section elaborates on

the theoretical side of the model.

The following reduced form VAR(p) model in first differences is considered:

∆yt = ν+ A1∆yt−1 + A2∆yt−2 +·· ·+ Ap∆yt−p +ut . (1.1)

∆yt is a (K ×1) vector of the endogenous variables, in our case, ∆yt = [∆I Pt ,∆st ]′, so

that K = 2. ∆ is the first difference operator (such that ∆yt = yt − yt−1 = (1− L)yt ,

where L is the lag operator). ν is a (2 × 1) vector of constants, Ai , i = 1, . . . , p are

(2×2) parameter matrices and ut is a (2×1) vector of unobservable error terms with

E [ut ] = 0 and E [ut u′
t ] = Σu , not necessarily diagonal (where E denotes the expecta-

tion operator). The above equation can be rewritten as

A(L)∆yt = ν+ut , (1.2)
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where A(L) = IK − A1L − A2L2 −·· ·− Ap Lp . Provided that A(L)−1 exists, the Wold MA

representation for the stationary ∆yt process is

∆yt =µ+
∞∑

s=0
Φsut−s =µ+Φ(L)ut , (1.3)

where µ= (IK −A1−A2−·· ·−Ap )−1ν= A(1)−1ν,Φ(L) ≡ A(L)−1 andΦ0 = IK . Using the

B-model, structural shocks are identified as ut = Bεt , where B is the contemporane-

ous impact matrix. Further, it is usually assumed that E [εtε
′
t ] =Σε which is a diagonal

covariance matrix (usually the identity matrix). Hence, the structural representation

of the model is

∆yt =µ+
∞∑

s=0
Ψsεt−s =µ+Ψ(L)εt , (1.4)

here Ψi ≡ Φi B , for i = 0,1,2, . . .. The accumulated long-run effects of the structural

shocks over all periods are given by the long-run impact matrix, Ψ≡ΦB , where Φ≡∑∞
s=0Φs = A(1)−1.

1.2.1 Identifying restrictions

As already discussed, OLS estimation only yields consistent and efficient estimates

of the reduced form parameters in (1.1). From the assumptions made above it fol-

lows that Σu = BB ′. Since the covariance matrix is symmetric, it has K (K +1)/2 non-

repeating diagonal and off diagonal elements. The B matrix on the other hand con-

sists of K 2 elements. Hence, we need to impose K 2 −K (K +1)/2 = K (K −1)/2 restric-

tions to identify the structural parameters of the model. In our case this amounts to

one restriction since K = 2.

Restrictions can be imposed directly on the B matrix or indirectly through the

long-run impact matrix, Ψ as is proposed by Blanchard and Quah (1989). Long-run

restrictions are used in Binswanger (2004a) and Groenewold (2004), who both set

the upper right element, Ψ1,2, of the long-run impact matrix to zero making it lower

triangular. Hence,

Ψ=
[
F 0

F F

]
(1.5)

where F can take on any value. Consequently the structural shocks, εt = [εF
t ,εN F

t ]′

can be interpreted as fundamental and non-fundamental shocks respectively. Hence,
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it is assumed that a fundamental shock can have a permanent effect on the economy

and on the stock market, whilst a non-fundamental shock, although having a perma-

nent effect on real stock prices, can only have a transitory effect on the economy.

This way the model is just-identified, however, it is important to be able to test

this restriction. Since we only have two variables it is hard to be certain whether

we have indeed isolated the fundamental and the non-fundamental components of

stock prices. Any subsequent empirical results and conclusions are highly dependent

on this assumption. That is why in this case it would be good to test whether the

above identification restriction is supported by the data.

1.2.2 The MS-SVAR model

Testing such identifying restrictions is proposed in Lanne et al. (2010) and Herwartz

and Lütkepohl (2011) by means of a MS-SVAR in heteroskedasticity model. We briefly

present the model and the basic testing strategy here.

The MS-VAR in heteroskedasticity model is exactly the same as the conventional

VAR model given by equation (1.1) with the exception that the residuals are assumed

to be normally and independently distributed conditional on a Markov state. In other

words,

ut |St ∼ NID(0,Σ(St )), (1.6)

where St follows a first order discrete valued Markov process. Normality is assumed

so that it is possible to use maximum likelihood estimation to estimate the parame-

ters. As is demonstrated in Lanne et al. (2010), this assumption is not restrictive and

a wide class of unconditional distributions, other than just the normal, are captured.

The discrete stochastic process St is assumed to take on M regimes with transition

probabilities given by

pi j = P (St = j |St−1 = i ), i , j = 1, . . . , M ,

which can be arranged in an (M ×M) matrix of transition probabilities,

P =


p11 p12 · · · p1M

p21 p22 · · · p2M
...

...
. . .

...

pM1 pM2 · · · pM M

 . (1.7)
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Note that the probabilities add up to one row-wise, hence pi M = 1−pi 1 −pi 2 −·· ·−
pi M−1, i = 1, . . . , M .

In order to test the identifying restriction it is necessary to decompose the covari-

ance matrices in the following way:

Σ(1) = BB ′, Σ(2) = BΛ2B ′, . . . Σ(M) = BΛM B ′, (1.8)

where B is the contemporaneous impact matrix and Λi =diag(λi 1,λi 2), i = 2, . . . , M

can be interpreted as relative variances. The underlying assumptions are that the

contemporaneous effects matrix, B , stays constant across regimes and that shocks

are orthogonal across regimes, i.e. Λi , i = 2, . . . , M is diagonal. The assumption of

a regime-invariant B matrix means that impulse responses are constant throughout

different time periods so that empirical simulation results are as in a common SVAR

model. Orthogonality of the shocks implies that the covariance matrices are differ-

ent across regimes, which is necessary to identify the K 2 parameters of the B matrix

and the (M −1)K parameters of the diagonal Λi , i = 2, . . . , M matrices.2 As shown in

Proposition 1 of Lanne et al. (2010), provided that the pairwise diagonal elements of

one of the Λi , i = 2, . . . , M matrices are distinct, the B matrix is identified up to sign

changes and column ordering.

Although a state invariant B matrix may seem somewhat of a restrictive assump-

tion, it can be tested, provided that three or more Markov states are used. This is done

by a standard likelihood ratio (LR) test, which has an asymptotically χ2 distributed

test statistic with (1/2)MK (K +1)−K 2 − (M −1)K degrees of freedom.

Given the conditional normality assumption of the residuals, it is possible to use

maximum likelihood estimation and in particular, the Expectation Maximization (EM)

algorithm. This algorithm estimates the MS-SVAR parameters along with the unre-

stricted transition probabilities in (1.7) and shows the smoothed probabilities depict-

ing which state prevails at what time period. The EM algorithm was initially popular-

ized in Hamilton (1994) for the univariate case and was later extended to multivariate

models in Krolzig (1997). The parameters of the decomposition in (1.8) are estimated

2For example in case of two states we have two reduced form covariance matrices with 2×(K (K +1)/2) = K 2+K

unique diagonal and off diagonal elements. This is enough to identify the K 2 elements of B and the K diagonal

elements ofΛ2.
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using a non-linear optimization procedure in the Maximization step of the EM algo-

rithm. Details of the EM algorithm used in this paper are given in the Appendix.

Once the EM algorithm has converged, standard errors of the point estimates of

all unrestricted parameters are obtained through the inverse of the negative of the

Hessian matrix evaluated at the optimum. The standard errors enable the use of Wald

tests (and in addition LR tests are used) to determine whether the diagonal elements

of at least one of the Λi , i = 2, . . . , M matrices are distinct. The test distributions are

asymptotically χ2, with the degrees of freedom depending on the number of joint

hypotheses being tested, which depends on the number of Markov states.

Finally, provided that the B matrix is identified up to changes in sign, any addi-

tional restrictions on it are over-identifying. Hence, we are in a position to test the

identifying restriction in (1.5). This is done by estimating the restricted model (i.e. the

one with the restriction in (1.5)) and obtaining its maximum log-likelihood. A stan-

dard LR test is used to determine whether the identifying restriction is accepted. The

test distribution is χ2 with 1 degree of freedom since one restriction is being tested.

The next section describes the data and the results of the MS-SVAR model.

1.3 The MS-SVAR Model Results

1.3.1 The Data

Following Binswanger (2004a), we obtain most of the data from the IMF International

Financial Statistics (IFS) database; but Global Financial Data (GFD) and Datastream

are also used. The series consist of a seasonally adjusted industrial production index,

a stock price index and a consumer price index (CPI), all of which are normalized to a

base year of 2005. The stock price series is converted to real terms by dividing by the

percentage CPI, hence the CPI series is not used directly in the analysis. In addition,

all series are in logs. The data range is quarterly from 1960:I-2012:III; the frequency

and the starting date being inline with Binswanger (2004a) and Groenewold (2004).

We use data on France, Germany, Italy, Japan, the UK and the US. Figure 1.1 plots

both variables for each country. The UK and the US are also covered in Binswanger

(2004a). Together these countries have the highest nominal GDP in the world and
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Figure 1.1: Industrial production and real stock price series in log levels per country.
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consequently among the highest GDP per capita3.

Augmented-Dickey-Fuller (ADF) unit root tests show that the levels series for all

countries are integrated of order one, meaning that the first differences are station-

ary. When testing for cointegrating relationships on the levels VAR model using a

constant and trend term, both the Saikkonen and Lütkepohl (2000) and the Johansen

(1995) trace test cannot reject the null hypothesis of no cointegrating relations at the

1% level. Hence, it would appear to be justified to use the standard VAR model in

first differences, as given in equation (1.1). Multivariate conditional heteroskedastic-

ity tests show that in most cases the null hypothesis of no heterskedasticity can be

rejected at conventional statistical levels.4 All of the above tests are carried out using

the Lütkepohl and Krätzig (2004) JMulTi software.

1.3.2 MS-SVAR Model Specifications and Results

Before we begin with testing the identification restriction, we need to determine the

type of MS-SVAR model to be used per country. In other words, we need to select the

appropriate number states and lags that the model should have. In order to select

the states we make use of the information criteria developed by Psaradakis and Spag-

nolo (2006), which are also used by Herwartz and Lütkepohl (2011) and are found to

deliver reasonable results. In particular, we focus on the Akaike Information Criterion

(AIC) and the Schwartz Criterion (SC). The AIC is calculated as −2(log-likelihood −n)

and the SC is calculated as −2log-likelihood + log(T )n, where T is the sample size

and n stands for the number of free parameters of the model. While these criteria

can jointly help select the number of states and lags, we prefer to rely on residual

Portmanteau tests to help choose the lag length so as to be certain that there is no

presence of residual autocorrelation.

The log-likelihood and the information criteria values for unrestricted models -

without the long-run restriction in (1.5) - are reported in Table 1.1. The minimum val-

ues of the criteria are shown in bold. Both criteria agree on a model with two Markov

states for France and the US. For all the other country models, the AIC tends to opt for

3According to the IMF, the World Bank and the CIA World Factbook
4More precisely, a multivariate ARCH-LM test with four lag orders is used. Lag lengths for the individual coun-

try models are determined according to the Akaike Information Criterion (AIC), which opts for the same lag orders

as the ones chosen for the MS models discussed in Section 3.2.
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Table 1.1: Log-likelihood, AIC and SC per country for two and three-state models.

Country States Log-likelihood AIC SC

France

1 690.125 -1360.250 -1326.827

2 802.746 -1577.492 -1530.699

3 807.048 -1574.097 -1507.250

Germany

1 753.854 -1487.709 -1454.286

2 782.865 -1537.731 -1490.938

3 793.581 -1547.163 -1480.316

Italy

1 674.503 -1313.006 -1253.018

2 720.129 -1396.258 -1322.938

3 734.264 -1412.528 -1319.212

Japan

1 726.489 -1432.979 -1399.556

2 790.009 -1552.019 -1505.226

3 799.900 -1559.800 -1492.953

UK

1 805.791 -1567.582 -1494.369

2 865.552 -1679.104 -1592.580

3 875.643 -1687.287 -1580.795

US

1 942.415 -1864.831 -1831.408

2 970.008 -1912.016 -1865.223

3 974.119 -1908.239 -1841.297

more states than the SC. Without skipping too far ahead, it is sufficient to say at this

point that models with three volatility states meet the necessary requirement when it

comes to distinction of the relative variance elements,λi j , i = 2, . . . , M , j = 1,2. Hence,

in case of disagreement among the criteria, a model with three states is chosen, ac-

cording to the AIC. This means that Germany, Italy, Japan and the UK are all modeled

with three volatility states. Finally, no criteria favors a conventional SVAR model, not

subject to regime switches, i.e. in all cases, the AIC and SC values are fairly high for a

1-state model.

It is probably notable that a maximum of three Markov states are considered in

the table. In fairness, for Germany and Japan the AIC is marginally in favor for a

model with four states. However, when using more Markov states the probability of

ending up with very few observations in a given state increases. This can lead to

highly imprecise estimates and rather meaningless smoothed probabilities. Further,
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due to the specific non-linear nature of the models considered, when more states are

used it may be a time consuming and cumbersome exercise to find a global optimum.

Once such an optimum is found, there is a fair chance that it may give meaningless

results. In light of these considerations a maximum number of three states are taken

into account.

As discussed, the model lag lengths are chosen such that there is no residual auto-

correlation present according to standard Portmanteau tests. In the interest of parsi-

mony, as few lags are chosen as possible whilst ensuring that the mentioned require-

ment is met. Therefore, we use one lag order for France, Germany, Japan and the US,

three for Italy and four for the UK.

In summary, a MS(2)-SVAR(1) model is used for France and the US, a MS(3)-SVAR(1)

model for Germany and Japan, a MS(3)-SVAR(3) model for and Italy and a MS(3)-

SVAR(4) model for the UK. Here MS(M)-SVAR(p) stands for a SVAR model with p lags

and M Markov switching (MS) volatility states.

Once the models are estimated, the main parameters of interest for our analysis

are the relative variance parameters, λi j , i = 2, . . . , M , j = 1,2. These require to be

distinct in at least one Λi , i = 2, . . . , M matrix so that the contemporaneous impact

matrix, B in (1.8) is identified up to changes in sign. Other relevant parameters are

the transition probabilities, pi j , i , j = 1, . . . , M these indicate how persistent a given

state is and can be used to calculate the durations of states. It is easiest to present the

estimation results of these parameters along with other model results for two and

three-state models separately.

1.3.3 Results of 2-state models

Models with two MS states are used for the data from France and the US. The relevant

parameter estimates and their standard errors along with the covariance matrices

(scaled by 10−3) are presented in Table 1.2. This table only displays the parameters of

the unrestricted models, i.e. without the long-run restriction on the B matrix. Recall

that ifλ21 6=λ22, then the contemporaneous effects matrix is identified up to sign and

ordering. Hence, if that is the case, any additional restrictions can be tested. Upon

first glance these parameters seem distinct, however their standard errors are quite

large. Distinction is tested later in Table 1.4 by means of standard Wald and likelihood
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Table 1.2: Parameter estimates, standard errors and covariance matrices (scaled by 10−3) for

2-state unrestricted models.

France US

Parameter estimate σ estimate σ

λ21 70.022 31.776 7.731 2.092

λ22 2.538 1.206 3.352 0.914

p11 0.969 0.014 0.784 0.056

p22 0.481 0.171 0.662 0.138

Σ(1)

[
0.141 −
0.013 6.580

] [
0.046 −
−0.003 2.008

]

Σ(2)

[
9.831 −
−0.440 16.722

] [
0.344 −
0.305 7.267

]

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
0

0.5

1

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
0

0.5

1 (a) France (b) US

Figure 1.2: Smoothed probabilities of state 1 for the 2-state unrestricted models. US recession

dates according to NBER dating given by the shaded bars.

ratio (LR) tests.

To help classify the different volatility states, information on the covariance matri-

ces is needed as well as the on the smoothed probabilities. The smoothed probabil-

ities display the probability of being in a given state at a particular time period. The

ones for state 1 for the unrestricted models are shown in Figure 1.2. Note that in the

case of two Markov states, the probability of being in state 2 is the mirror image of

that of state 1.

For both models, the variances (the diagonal elements of the covariance matrices)

increase with the state. In that sense state 2 can be thought of as depicting more
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volatile periods than state 1. This can be seen as well when looking at the smoothed

probabilities, especially the ones for the US in Panel (b) of Figure 1.2. To help clarify

the time periods further, US recession dates are given by the shaded bars according

to NBER dating. There is a clear tendency for the model to indicate a switch to the

more volatile state in times of recessions. This is in line with literature studying stock

market volatility and stock returns. For instance, Schwert (1989) and Hamilton and

Lin (1996) find that volatility increases are a result of economic downturns such as

recessions or crises.

The duration of the states can be inferred from the transition probabilities - the

closer the value is to one, the more persistent the state is likely to be. The exact for-

mula for the duration of any of the M states is 1/(1−pi i ), i = 1, . . . , M . Clearly, state

1 is the more long-lasting state as we also would expect since non-recession periods

tend to last longer than recessionary ones.

Having concluded with the 2-state models for now, we turn to the models with

three Markov states.

1.3.4 Results of 3-state Models

The SVAR models, for Germany, Italy, Japan and the UK make use of three MS in

volatility states. Estimates of the same types of parameters as for the 2-state models

are shown in Table 1.3. With three volatility states there are two Λi matrices. Their

diagonal elements are not all above one as in the two state case. This means that

some of the relative variances in the other states are lower than those of state 1. This

can also directly be seen from the diagonal entries in the covariance matrices - they

are not always increasing with a given state. In most cases however, state 1 tends to

have the lowest volatility, whilst state 3 can be characterized as being most volatile.

The smoothed probabilities for the same 3-state models are displayed in Figure

1.3. Clearly, the third volatility state always captures the period of the late 2000s cri-

sis, indicating that this was indeed a globally very volatile event. State 1, usually

most prevalent with the exception of Italy, tends to capture more stable time periods,

which are characterized by lower volatility.

As previously noted, the assumption of a state invariant B matrix can now be

tested since three Markov states are used. We therefore formally test this assumption
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Table 1.3: Parameter estimates, standard errors and covariance matrices (scaled by 10−3) for

3-state unrestricted models. Tests for a state-invariant B matrix at the bottom.

Model Germany Italy Japan UK

Parameter estimate σ estimate σ estimate σ estimate σ

λ21 0.180 0.128 1.412 0.404 4.844 1.523 4.155 2.015

λ22 7.028 2.928 5.427 1.732 0.931 0.392 0.773 0.198

λ31 9.196 4.194 21.973 9.825 59.258 41.264 34.703 22.246

λ32 1.026 0.578 6.637 2.995 6.177 3.721 9.129 5.595

p11 0.937 0.033 0.905 0.048 0.982 0.012 0.929 0.036

p22 0.593 0.161 0.991 0.078 0.918 0.174 0.862 0.078

p33 0.742 0.158 0.745 0.124 0.605 0.310 0.544 0.168

Σ(1)

[
0.224 −
0.272 5.342

] [
0.191 −
0.107 2.028

] [
0.184 −
0.125 5.223

] [
0.056 −
0.019 3.698

]

Σ(2)

[
0.020 −
0.863 58.187

] [
0.270 −
0.098 10.705

] [
0.883 −
0.960 5.861

] [
0.235 −
0.048 2.863

]

Σ(3)

[
2.020 −
1.837 5.917

] [
4.188 −
2.546 14.617

] [
10.789 −
12.212 45.817

] [
1.958 −
0.422 33.800

]
H0: state invariant B

p-value 0.152 0.620 0.680 0.676

and show the relevant p-values per country at the bottom of Table 1.3. Recall that the

test statistic follows an asymptoticχ2 distribution with (1/2)MK (K+1)−K 2−(M−1)K

degrees of freedom, which is 1 in our case. We see that in all cases the p-values are

above the 10% critical level meaning that the assumption of a state invariant contem-

poraneous effects matrix has support from the data.

1.3.5 Testing the Model Restrictions

We now continue the analysis with both the two and three state models and test

whether the identifying restriction in (1.5) is supported. First, however, we need to

make sure that the state-invariant and unrestricted B matrix in (1.8) is identified up

to changes in sign and ordering. In other words we need to test whether the B matrix

is identified through heteroskedasticity. If that is the case then any additional restric-
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Figure 1.3: Smoothed probabilities of State 1 (top), State 2 (middle) and State 3 (bottom) for

the 3-state unrestricted models.

tions short or long-run become over-identifying and are in a position to be tested.

To make sure that B is identified through heteroskedasticity, it is necessary for the

pair of diagonal elements in at least one of the Λi , i = 2, . . . , M matrices to be distinct.

This can most readily be tested by means of a Wald test as the standard errors of the

parameters are available. We also use LR tests however, and usually both tests come

to the same conclusion. The test distribution is asymptotically χ2 with M −1 degrees

of freedom, since there are M −1 Λi matrices not equal to the identity matrix and a

joint test over the equality of their pairwise elements is made.
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The relevant null hypotheses and their p-values of both Wald and LR tests are

shown in Table 1.4. Since the models for France and the US make use of two volatility

states, their null hypothesis only concerns the elements in Λ2. The 3-state models

also have a Λ3 matrix, the elements of which need to be taken into account as well.

Hence, a joint hypothesis test is carried out.

Table 1.4: Null hypotheses and p-values for two and three state models.

H0 : λ21 =λ22 Wald test LR test

France 0.034 0.000

US 0.051 0.028

H0 : λ21 =λ22,λ31 =λ32 Wald test LR test

Germany 0.012 0.000

Italy 0.003 0.000

Japan 0.021 0.001

UK 0.696 0.004

It can be seen that in most cases the Wald tests reject the null hypotheses at the

5% level, while the LR tests usually reject them at the 1% level. Hence, we can be

fairly confident that a pair of diagonal elements in at least one of the Λi , i = 1, . . . , M

matrices are distinct. This means that the B matrix in all of the models considered

thus far is identified up to changes in sign and ordering.

Given that the long-run restriction in (1.5) is now over-identifying, it is in a po-

sition to be tested. This is done by means of an LR test, where the maximum log-

likelihood of the unrestricted model is compared to the maximum log-likelihood of

the model with the long-run restriction. The test distribution is asymptotically χ2

with 1 degree of freedom since one restriction is being tested.

The p-values of the LR tests are summarized in Table 1.5. Note that the null hy-

pothesis is the long-run restriction given in (1.5), while the alternative is an unre-

stricted state invariant B matrix. At the 5% critical level the restriction is accepted

for all models except for the one for the UK. The restriction for Japan and the US is

accepted at the 10% level. Overall, there seems to be credible evidence in favor of the

21

Velinov, Anton Stoyanov (2013), On using markov switching time series models to verify structural identifying restrictions and to 
assess public debt sustainability 
European University Institute

 
 

DOI: 10.2870/80034



long-run restriction in (1.5). Hence, we can characterize the shocks as being funda-

mental and non-fundamental as was our initial objective.

Table 1.5: p-values of LR tests of the long-run restriction in (1.5).

H0: (1.5) H1: unrestricted state invariant B

France Germany Italy Japan UK US

0.051 0.068 0.089 0.132 0.001 0.294

1.3.6 A Small Robustness Check

To see whether the results are to some extent driven by the data range or the specific

model used, a robustness check is in order. Firstly, although it is not a unique event

according to the smoothed probabilities, the period of the financial crisis marks a

rather turbulent time. There were large falls in stock prices worldwide as well as

a drop in the industrial production (IP) index. This event is also depicted by the

smoothed probabilities for all country models, making it a truly global occurrence.

To see whether the financial crisis does indeed influence the results, the sample pe-

riod is shortened to exclude it, and the same analysis is performed with the shortened

sample. Since the starting date of this crisis is not very clear for all countries consid-

ered, we decide to be on the safe side and cut the sample from 2006:II onwards, hence

the last observation is 2006:I. This way we are sure to avoid the event entirely in the

smoothed probabilities of all countries.

Secondly, the specific type of MS model chosen could potentially influence the

results. For instance, with data on stock markets (and to some extent IP), the inter-

cept could also be subject to Markov switches. It is well known that in times of high

(low) volatility stock prices tend to go down (up). In other words, there is no reason

to assume that the intercept of the SVAR models is also not state-dependent. The

autoregressive parameters could potentially also be switching, however the case for

them to switch is harder to justify and to interpret. Further, switching autoregressive

parameters may cause estimation issues; in that the number of parameters to be es-

timated increases and the data range may be too limited to give accurate estimates

22

Velinov, Anton Stoyanov (2013), On using markov switching time series models to verify structural identifying restrictions and to 
assess public debt sustainability 
European University Institute

 
 

DOI: 10.2870/80034



of all these parameters when using many MS states. Hence, we decide to investigate

a model only with a further switching intercept term in addition to the switching co-

variance matrix. The model then looks as follows

∆yt = ν(St )+ A1∆yt−1 + A2∆yt−2 +·· ·+ Ap∆yt−p +ut , (1.9)

where ut has the same distributional assumption as in (1.6).

For the ease of comparison, the models used for robustness analysis keep the

same number of states and lags as the original model specification. Residual auto-

correlation is avoided in all cases. The analysis for both robustness specifications

proceeds in the same way as before; first, the parameters of the unrestricted MS mod-

els are estimated, then for the 3-state models the hypothesis of a state-invariant B

matrix is tested as in Table 1.3. The distinction of the relative variance parameters is

then tested as in Table 1.4. Finally, provided that those tests yield favorable results the

long-run restriction in (1.5) can be tested. It turns out that the assumption of a state-

invariant B matrix is once again accepted for all 3-state models; and the B matrix

is also identified through heteroskedasticity in that the relative variance parameters

satisfy the distinction requirement.

Table 1.6 presents the p-values of the LR tests on the long-run restriction in (1.5)

for both alternative specifications along with the original p-values at the bottom for

comparison. We can see that the shorter range - excluding the financial crisis - usu-

ally leads to greater acceptance of the long-run restriction. Though the results do

not considerably change, only the restriction for the UK would be accepted at the 5%

level, while that of Japan would be rejected at that same level. With a switching inter-

cept term we do see more changes in the results, though the original conclusion still

holds for Japan, the UK and the US.

We therefore conclude that the restriction in (1.5) is overall supported by the data

and that the original conclusions are not merely subject to the data range and exact

model specification used. Relying on these conclusions, we next conduct a standard

SVAR analysis with the identified shocks.
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Table 1.6: p-values of LR tests of the long-run restriction in (1.5) for different robustness spec-

ifications.

H0: (1.5) H1: unrestricted state invariant B

France Germany Italy Japan UK US

Short rage 0.175 0.727 0.977 0.036 0.069 0.210

Intercept 0.027 2.548×10−5 0.001 0.096 0.370 0.699

Original 0.051 0.068 0.089 0.132 0.001 0.294

1.4 Empirical Simulations of the SVAR Model

Having found support for the long-run restriction in (1.5), we label the SVAR shocks

as fundamental and non-fundamental. Using conventional SVAR analysis, we inves-

tigate to what extent stock prices reflect their underlying fundamentals. This section

proceeds as in Binswanger (2004a) and Groenewold (2004). We investigate the im-

pact of fundamental shocks on stock prices by means of impulse responses (IRs), fore-

cast error variance decompositions (FEVDs) and historical decompositions (HDs).

The original lag lengths as in the MS-SVAR models are also kept for the conventional

SVAR models. This is because standard information criteria, such as the AIC, for

instance, suggest the same lag orders as the ones used for the MS case. These lag

lengths are again sufficient to remove any residual autocorrelation.

We begin with an impulse response (IR) analysis of the systems. More precisely,

we are interested in the response of stock prices to a fundamental shock. We also

need to construct appropriate confidence intervals for the IRs. In particular, since we

argue that a MS model in heteroskedasticity is appropriate for the type of data we are

investigating and in addition we confirm the presence of conditional heteroskedas-

ticity through tests; it is necessary to take the heteroskedastic properties of the resid-

uals into account when constructing the relevant confidence intervals. Accordingly,

we use the fixed design wild bootstrap technique as in Goncalves and Kilian (2004) to

construct the IR confidence intervals. The series are bootstrapped as

∆y?t = ν̂+ Â1∆yt−1 + Â2∆yt−2 +·· ·+ Âp∆yt−p +u?t ,
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Figure 1.4: Accumulated impulse responses of a fundamental shock to real stock prices. Bro-

ken lines indicate Efron confidence intervals according to the fixed design wild bootstrap

technique at the 95 and 68 percentiles with 2000 replications.
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where u?t = ϕt ût and where ϕt is a random variable, independent of yt following a

Rademacher distribution. In other words, ϕt is either 1 or -1 with a 50% probability.

The hat denotes estimated parameters. Note that since this is a fixed design boot-

strap method, in formulating the bootstrap series the lagged values are taken from

the original data and not from the lagged bootstrap series.

The accumulated IRs of a fundamental shock on stock prices are shown in Figure

1.4. The response itself is positive in all cases, as one would expect. This is also found

by Binswanger (2004a) and Groenewold (2004). Only for France and Italy is the long-

run effect of the shock insignificant at the 95% level. However, all IRs in Figure 1.4

are significant at the 68% interval. Hence, there is some evidence that fundamental

shocks influence stock prices.

As in Binswanger (2004a), we next conduct forecast error variance decomposi-

tions (FEVDs). The FEVD tells us to what extent the structural shocks account for the

forecast error of a specific variable. More precisely, we are interested in the extent the

forecast error variance of real stock prices is accounted for by fundamental and non-

fundamental shocks. Results of the FEVDs of real stock prices for all country SVAR

models are given in Table 1.7.

For most country models, the proportion of the forecast error variance of real

stock prices accounted for by fundamental shocks is between 30% to 40%. For Ger-

many this is slightly lower and for France this proportion is even under 5%. After

about 10 quarters usually, the FEVDs stabilize and the proportion of the forecast er-

ror variance explained by each shock stays at a constant level.

The FEVDs for Japan and the US are somewhat similar to the ones in Binswanger

(2004a), who also uses data on these countries. More precisely, when using his whole

sample he finds a slightly lower percentage of the forecast error variance of real stock

prices that can be explained by a fundamental shock for Japan and a slightly higher

percentage for the US. Binswanger (2004a) also argues for the existence of s struc-

tural break in the early 1980s and therefore splits the sample in two and analyzes the

FEVDs of both sub-samples as well. In our analysis however, we do not split the sam-

ple into two parts. We choose to work with the whole sample since the purpose of

our analysis is to investigate the empirical results of the SVAR models having first de-

termined whether the identifying restriction is supported by the data. In other words,
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Table 1.7: FEVD’s of the real stock price for all countries. Values are in percent

Percentage of variance attributable to: Percentage of variance attributable to:

Quarters ahead Fundamental Non-fundamental Quarters ahead Fundamental Non-fundamental

shock shock shock shock

France Germany

1 4.51 95.49 1 12.67 87.33

2 4.44 95.56 2 16.30 83.70

3 4.44 95.56 3 16.96 83.04

4 4.44 95.56 4 17.06 82.94

5 4.44 95.56 5 17.07 82.93

10 4.44 95.56 10 17.07 82.93

15 4.44 95.56 15 17.07 82.93

20 4.44 95.56 20 17.07 82.93

Italy Japan

1 32.81 67.19 1 32.63 67.37

2 30.24 69.76 2 30.90 69.10

3 29.97 70.22 3 30.71 69.29

4 28.93 71.07 4 30.75 69.25

5 28.65 71.35 5 30.77 69.23

10 28.58 71.42 10 30.78 69.22

15 28.58 71.42 15 30.78 69.22

20 28.58 71.42 20 30.78 69.22

UK US

1 31.27 68.73 1 42.23 57.77

2 28.58 71.42 2 39.00 61.00

3 28.97 71.03 3 38.56 61.44

4 31.74 68.26 4 38.75 61.25

5 32.04 67.96 5 38.88 61.12

10 32.32 67.68 10 38.92 61.08

15 32.32 67.68 15 38.92 61.08

20 32.32 67.68 20 38.92 61.08

after we test whether we can label the structural shocks as fundamental and non-

fundamental, we then conduct a standard SVAR analysis with these shocks in mind.

Further, smoothed probabilities from our MS-SVAR models show weak evidence at

best of any globally significant event occurring around the early 1980s. If there in-

deed is such a phenomenon, it is less pronounced than the financial crisis. Hence,

since we have not split the sample to determine whether the FEVDs change over the

sub-samples, the results of our FEVDs cannot really be interpreted as being in favor

or against a bubble hypothesis in stock prices.
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Finally, as in Binswanger (2004a) and Groenewold (2004), we perform a historical

decomposition (HD) to see to what extent fundamentals influence real stock prices.

The HD technique is not new in the multivariate time series literature. One of the first

papers to make use of this approach is Burbidge and Harrison (1985). In this paper

we follow their methodology. First, we obtain the estimates of the structural shocks

from ε̂t = B̂−1ût , then we set the non-fundamental shocks to zero after a specified

time period and finally we forecast the model from its moving average (MA) repre-

sentation. The exact formula for the decomposition is given as

∆yTH+ j − µ̂=
j−1∑
s=0

Ψ̂s ε̂TH+ j−s +
∞∑

s= j
Ψ̂s ε̂TH+ j−s , (1.10)

where the Ψs are the structural moving average coefficient matrices defined in (1.4)

and TH is the starting period of the decomposition.

So as to clarify the procedure in a little more detail, we set the non-fundamental

shocks to zero since we are only interested in the effect of the fundamental shocks

on real stock prices. The starting period of the HD, TH is unfortunately somewhat

arbitrary and does influence the results to a large extent. This problem is also noted

by Binswanger (2004a) and Groenewold (2004). Since we cannot forecast (1.10) by go-

ing backwards until infinity, we begin with the start of the sample period. Naturally,

the first several forecasts will differ from the actual data because of that constraint.

After about 20 quarters or 5 years, we find that the forecasted series matches the ac-

tual series (even though we do not have an infinite number of observations). Hence,

we choose 1965:I as a starting date for our historical decomposition; recall that it

is 5 years after the beginning of the sample period of 1960:I. This makes the choice

of a starting date somewhat less arbitrary and guarantees that the historical series

matches the actual series at TH . Finally, for better comparison, HDs in this paper

are constructed by integrating the historical series and the demeaned actual series

forward.

Results of the historical decompositions for all country models are displayed in

Figure 1.5. The fundamentals series refers to the decomposed series in which only

fundamental shocks influence stock prices, i.e. with the non-fundamental shocks set

to 0. The demeaned actual real stock price series is also given for comparison. From

the figure there are two quite apparent things. First, from the early 1970s through
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Figure 1.5: Historical decompositions of the real stock price according to fundamentals along

with the actual demeaned stock price series for each country model
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the mid 1980s, in most cases the fundamentals series is above the level of the actual

series. For France and the US this phenomenon lasts well until the mid 1990s. This

could indicate that stock prices may have been undervalued during that time period,

which is also the time of the oil crises (and the early 1980s and 1990s recession in the

US). Japan is an exception to this in that during that time period the fundamentals

and the actual series move closely together. Second, after the time period in which

stock prices appear to be undervalued, the actual series in most cases starts to go

above the series that can be explained only by fundamentals. This effect is especially

pronounced for Japan and could indicate that stock prices have started to become

overvalued or even of a potential bubble in stock prices. For the UK and the US this ef-

fect is not observable, in the sense that the actual series appears to be inline with the

fundamentals series. We therefore reach the same conclusion as Binswanger (2004a)

for Japan and a different one for the US, more similar to Rapach (2001).

The results of the HDs however may not be all that reliable. As noted before, the

starting date of the decompositions plays a large role in the final outcome. For in-

stance, had we started the HDs in the early 1980s, as is done by Binswanger (2004a),

we would have come to the same conclusion as him for the US; namely that the actual

stock price series is well above the fundamentals series. Hence, it is not an easy task

to draw conclusions solely based on the results of historical decompositions. Nev-

ertheless, given our results, we do not find real evidence of a bubble in stock prices

for the UK and the US, while there may be one such for Japan. It is less clear for the

remaining three countries.

1.5 Conclusion

Structural VAR (SVAR) models are a popular tool in the multivariate time series liter-

ature since they allow for the investigation of economic shocks of interest. They rely

however on identifying restrictions in order to estimate the structural parameters.

This paper makes use of a Markov switching-SVAR (MS-SVAR) model in heteroskedas-

ticity as in Lanne et al. (2010) and Herwartz and Lütkepohl (2011) to test a long-run

restriction that would just-identify a SVAR model in the traditional sense.

More precisely, we investigate a bivariate SVAR model already considered in the
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literature by Binswanger (2004a) and Groenewold (2004), which tries to answer the

question of how well stock prices reflect their fundamentals. One restriction on the

long-run impact matrix as in Blanchard and Quah (1989) is enough to identify the

structural parameters of the model.

Using data from six different countries, we find that for five of the country mod-

els the long-run restriction is supported at the 5% level. Two robustness specifica-

tions largely reinforce our conclusion of accepting the long-run restriction. There-

fore, we decide that there is enough support from the data to warrant the identifying

restriction. Accordingly, we label the two structural shocks as fundamental and non-

fundamental.

Having identified the structural shocks we analyze the conventional SVAR empir-

ical simulation results. Impulse responses show that in most cases there are signif-

icant long-run effects of a fundamental shock to real stock prices at the 95% confi-

dence band, constructed using the fixed design wild bootstrap method. Forecast er-

ror variance decompositions indicate that most of the forecast error variance of real

stock prices is explained by non-fundamental shocks. Finally, historical decomposi-

tions indicate a potential bubble in real stock prices for Japan and pricing according

to fundamentals for the UK and the US.

Even though the long-run restriction in almost all cases is supported by the data,

it does not necessarily have to be the case. Any standard SVAR analysis could po-

tentially suffer from inappropriate identification restrictions. Hence, this paper il-

lustrates the virtue of being able to test structural restrictions in order to justify the

relevant shocks of interest.

1.6 Appendix

This is a technical appendix explaining the EM algorithm used in this paper in more

detail. It is largely based on Krolzig (1997) and for more details the reader is referred

to that work and to Chapter 22 of Hamilton (1994). Here T denotes the sample size,

K the number of variables, p the number of lags and M the number of states.
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1.6.1 Definitions

For the expectation step define

ξ̂t |t =


P (St = 1|∆Yt )

P (St = 2|∆Yt )
...

P (St = M |∆Yt )

 , (1.11)

an (M × 1) vector of conditional probabilities of being in a particular state at time

period t given all observations up to that time period, i.e. ∆Yt = [∆y1,∆y2, . . . ,∆yt ].

These are also referred to as the filtered probabilities of a MS model. Further, the

conditional densities of an observation given a particular state, all past observations

and all SVAR parameter estimates, θ are defined as

ηt =


P∆yt |St = 1,∆Yt−1,θ)

P∆yt |St = 2,∆Yt−1,θ)
...

P (∆yt |St = M ,∆Yt−1,θ)

=



1
2π|Σ(1)|1/2 exp

{
− u′

tΣ(1)−1ut

2

}
1

2π|Σ(2)|1/2 exp
{
− u′

tΣ(2)−1ut

2

}
...

1
2π|Σ(M)|1/2 exp

{
− u′

tΣ(M)−1ut

2

}

 . (1.12)

Here θ consists of the vectorized SVAR parameters, i.e. ν, Ai ,Λ j ,B , i = 1, . . . , p, j =
2, . . . , M .

For the maximization step define

• ∆y = [∆y ′
1, . . . ,∆y ′

T ]′, a (T K ×1) vector of endogenous variables

• Z̄ = [1T ,∆Y−1, . . . ,∆Y−p ], a (T × (1+K P )) matrix

• ∆Y−i = [∆y1−i , . . . ,∆yT−i ]′, i = 1, . . . , p, a (T ×K ) matrix of lagged regressors

• β=vec[ν, A1, . . . , Ap ], a (K (K p +1)×1) vector of the parameters in (1.1)

• u, a (T K ×1) vector of residuals, ui , i = 1, . . . ,T distributed according to (1.6).

Then (1.1) can be rewritten as

∆y = (Z̄ ⊗ IK )β+u,

where ⊗ denotes the Kronecker product.

32

Velinov, Anton Stoyanov (2013), On using markov switching time series models to verify structural identifying restrictions and to 
assess public debt sustainability 
European University Institute

 
 

DOI: 10.2870/80034



1.6.2 Starting Values

• β0 = [Z̄ ′Z̄ ⊗ IK ]−1(Z̄ ′⊗ IK )∆y

• B0 = (UU ′/T )1/2, where U is obtained from u = ∆y − (Z̄ ⊗ IK )β0, where u =
vec(U )

• P0 = 1M 1′
M /M , 1M is an (M ×1) vector of ones

• ξ0|0 = 1M /M

• Λ2 = i × IK ,Λ2 = i 2 × IK , . . . ,ΛM = i M × IK , i = 2, . . . Different values of i are used

to determine which gives the highest sensible log-likelihood.

1.6.3 Expectation Step

Calculate the filtered probabilities, (1.11) from (1.12) as

ξ̂t |t =
η̂t ¯ ξ̂t |t−1

1′
M (η̂t ¯ ξ̂t |t−1)

, (1.13)

where

ξ̂t |t−1 = P̂ ′ξ̂t−1|t−1, (1.14)

for t = 1, . . . ,T . This generates an (M ×1) vector of conditional probabilities for each

time period. Here ¯ denotes element-by-element multiplication and P̂ is defined

as in (1.7). The sum of the denominators for t = 1, . . . ,T in (1.13) is the likelihood

of the MS-SVAR model as noted in Hamilton (1994). Using the estimated filtered

probabilities, the smoothed probabilities, conditional on all observations up to time

T , P (St = i |∆YT ), i = 1, . . . , M are estimated as

ξ̂t |T =
[

P̂
(
ξ̂t+1|T ® ξ̂t+1|t

)]
¯ ξ̂t |t , (1.15)

for t = T −1, . . . ,0 where ξ̂T |T is taken from the last iteration in (1.13). The symbol ®
denotes element-by-element division.

1.6.4 Maximization Step

Calculate ρ =vec(P ) using (1.13), (1.14) and (1.15) as

ρ̂ = ξ̂(2) ® (1M ⊗ ξ̂(1)), (1.16)
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where ξ̂(1) = (1′
M ⊗ IM )ξ̂(2), ξ̂(2) =∑T−1

t=0 ξ̂
(2)
t |T and

ξ̂(2)
t |T = vec(P̂ )¯

[(
ξ̂t+1|T ® ξ̂t+1|t

)
⊗ ξ̂t |t

]
.

Using (1.15), estimate B and Λi , i = 2, . . . , M by optimizing

l (B ,Λ2, . . . ,ΛM ) = T log
∣∣∣det(B)

∣∣∣+ 1

2
tr

(
(BB ′)−1Û Ξ̂1Û ′

)
+

M∑
m=2

[ T̂m

2
log(det(Λm))+ 1

2
tr

(
(BΛmB ′)−1Û Ξ̂mÛ ′

)]
, (1.17)

where Û is obtained from û =∆y−(Z̄⊗IK )β̂where û = vecÛ , Ξ̂m =diag(ξ̂m1|T , . . . , ξ̂mT |T ),the

smoothed probabilities of regime m and T̂m =∑T
t=1 ξ̂mt |T . To avoid singularity a lower

bound of 0.01 is imposed on the diagonal elements of the Λm ,m = 2, . . . , M matrices.

Using the estimates from (1.17), the updated covariance matrices are then derived as

in (1.8) as

Σ̂(1) = B̂ B̂ ′, Σ̂(2) = B̂Λ̂2B̂ ′, . . . Σ̂(M) = B̂Λ̂M B̂ ′. (1.18)

Using (1.15) and (1.18) calculate the remaining SVAR parameters as

β̂=
[ M∑

m=1
(Z̄ ′Ξ̂m Z̄ )⊗ Σ̂−1(m)

]−1[ M∑
m=1

(Z̄ ′Ξ̂m)⊗ Σ̂−1(m)
]
∆y. (1.19)

Obtain a new Û using β̂ from (1.19) and keep on re-estimating (1.17), (1.18) and (1.19)

until a convergence criterion is met.

Finally, using (1.15),

ξ̂0|0 = ξ̂0|T . (1.20)

1.6.5 Convergence

The expectation and maximization steps are iterated until convergence. Recall, the

log-likelihood of the MS-SVAR model is given by

l (θ|∆YT ) =
T∑

t=1
ln

(
1′

M

(
η̂t ¯ ξ̂t |t−1

))
. (1.21)

We use the absolute change in the log-likelihood as a convergence criterion in the

maximization step and for the EM algorithm as a whole, i.e.

∆=
∣∣∣l(• ) j+1

− l
(
•
) j ∣∣∣, (1.22)

where l (•) j is the log-likelihood given by (1.17) or (1.21) for the j -th iteration. Conver-

gence is satisfied when ∆≤ 10−6 or after a specified maximum number of iterations.
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1.6.6 Switching Intercept

The model with a switching intercept term as well as a switching covariance matrix,

given in (1.9) is easily calculated with a small modification to the Z̄ matrix. Namely,

Z̄m = [1T ⊗ ι′m ,∆Y−1, . . . ,∆Y−p ],m = 1, . . . , M ,

where ιm is the m-th column of the M-dimensional identity matrix. The above matrix

is of a (T × (M +K P )) dimension. Hence, β̂=vec[ν̂(1), . . . , ν̂(M), Â1, . . . , Âp ] in (1.19).

1.6.7 Standard Errors

Upon convergence of the EM algorithm, the optimal values ofβ,B ,Λm ,m = 2, . . . , M ,ξ0|0
and the M(M −1) unrestricted parameters in P are used in a function to calculate the

log-likelihood in (1.21) from (1.12), (1.13) and (1.14). Using this function, standard er-

rors of all unrestricted parameters are obtained by the inverse of the negative of the

Hessian matrix.
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Chapter 2

Can Stock Price Fundamentals Really

be Captured? Using Markov Switching

in Heteroskedasticity Models to Test

Identification Restrictions

Anton Velinov (EUI)

Abstract

This paper tests a commonly used structural parameter identification scheme to try

and determine whether it can really capture fundamental and non-fundamental shocks

to stock prices. In particular, five trivariate versions of the dividend discount model are

considered, which are widely used in the literature. They are either specified in vector

error correction (VEC) or in vector autoregressive (VAR) form. Restrictions on the long-

run effects matrix as in Blanchard and Quah (1989) are used to identify the structural

parameters. These identifying restrictions are tested by means of a Markov switching in

heteroskedasticity model as in Lanne et al. (2010) and Herwartz and Lütkepohl (2011).

It is found that for two of the models considered, the long-run identification scheme

appropriately classifies shocks as being either fundamental or non-fundamental. Those

are the models with real GDP and real dividends as proxies of real economic activity.

A series of robustness tests are performed, which largely confirm the original findings.

Results of this paper serve as a good guideline when conducting future research in this

field.
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2.1 Introduction

The question of how well stock prices reflect their underlying economic fundamen-

tals is not a new one. This paper aims to test some of the models in the existing litera-

ture to determine whether they really do capture fundamental and non-fundamental

shocks as they claim. In particular, many popular multivariate structural models are

considered. In this sense, the approach of this paper is similar to that of Binswanger

(2004b) and Jean and Eldomiaty (2010), though only in so far as the structural models

themselves are concerned. In other words, this analysis is only focused on determin-

ing whether the structural parameter identification schemes are correct as opposed

to considering how well stock prices are reflected by their fundamentals. A proper

identification scheme, one that is supported by the data, is crucial in any analysis

using structural models.

Structural vector autoregressive (SVAR) and error correction (SVEC) models have

extensively been used in the literature to determine stock price fundamentals. Some

notable contributions are by Lee (1995a,b, 1998), Chung and Lee (1998), Rapach (2001),

Binswanger (2004a,b,c), Allen and Yang (2004), Laopodis (2009) and Jean and Eldomi-

aty (2010). All of these models make use of long-run restrictions on the parameters

as in Blanchard and Quah (1989) to identify the structural shocks. These models are

not identical in the number of variables used or in the time periods considered. This

makes results difficult to compare, as noted by Binswanger (2004b) and Jean and El-

domiaty (2010). Nevertheless, there are some prominent (subset) models, all based

on the dividend discount model (DDM), which are considered here. These models

are summarized in Table 2.1.

The DDM is popular in asset pricing. Its basic premise is that an asset’s price is

the sum of its expected future discounted payoffs (i.e. dividends). These payoffs are

necessarily linked to real economic activity such as real GDP or industrial production.

Hence, Table 2.1 can be thought of as summarizing multiple variants of the DDM,

which is a widely used model in the literature.

Almost all the models considered in Table 2.1 use a lower triangular long-run ef-

fects matrix to identify the structural shocks. This paper is concerned with analyzing

these identifying restrictions in order to determine whether or not they truly capture

fundamental and non-fundamental shocks to stock prices. Even though these mod-
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Table 2.1: Popular models used in the literature.

(Subset) Model Used by

yt = [Yt ,rt , st ]′ Lee (1995a), Rapach (2001)*, Binswanger (2004b), Jean and Eldomiaty (2010)

Lanne and Lütkepohl (2010)

yt = [I Pt ,rt , st ]′ Binswanger (2004b), Laopodis (2009)*, Jean and Eldomiaty (2010)

yt = [D t ,rt , st ]′ Lee (1995a), Allen and Yang (2004), Jean and Eldomiaty (2010)

yt = [Et ,rt , st ]′ Binswanger (2004b), Jean and Eldomiaty (2010)

yt = [Et ,D t , st ]′ Lee (1998), Chung and Lee (1998), Binswanger (2004b), Jean and Eldomiaty (2010)

Here Yt , I Pt , D t , Et , rt and st stand for real GDP, industrial production index, real dividends, real

earnings, real interest rates and real stock prices respectively.
* These variables are a subset of the variables used in the original model.

els can all be thought of as similar - in terms of being derived from the DDM - im-

posing the same type of restrictions when using diverse data may lead to inadequate

identification of shocks.

A method of testing whether structural restrictions are supported by the data is

provided in Lanne et al. (2010) and in Herwartz and Lütkepohl (2011). Both extend

the basic multivariate structural model to allow for switching covariance matrices

according to a Markov process. This allows for heteroskedastic error terms across

states. Due to the extra covariance parameters, any structural restrictions become

over-identifying and can thus be tested. This procedure is explained in detail in sec-

tion 2 along with the relevant models used.

After elaborating on the models, section 3 discusses the estimation and testing

procedure briefly. Section 4 presents the model results along with relevant details

on the model selection procedure. Section 5 deals with model robustness issues and

finally section 6 summarizes the main conclusions.

2.2 The Models

This section briefly sets out the structural vector autoregressive (SVAR) and error cor-

rection (SVEC) models that are considered. Later a regime switching extension is
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introduced and the basic methodology for testing the identifying restrictions is ex-

plained.

2.2.1 The SVAR and SVEC models

The basic vector autoregressive model with p lags, VAR(p) is summarized in equation

(2.1).

yt = ν+ A1 yt−1 + A2 yt−2 + . . .+ Ap yt−p +ut , (2.1)

where yt is a (K ×1) vector of stationary endogenous variables, ν is a (K ×1) vector of

constants and Ai , i = 1, . . . , p are and (K ×K ) autoregressive parameter matrices. The

(K ×1) vector of reduced form error terms, ut is assumed to have an expected value

of 0 and a positive definite covariance matrix Σu . Hence, ut ∼ (0,Σu).

A reduced form vector error correction model, (VEC(p-1)) is given as follows

∆yt = νt +Πyt−1 +Γ1∆yt−1 +Γ2∆yt−2 + . . .+Γp−1∆yt−p+1 +ut , (2.2)

where now yt may include variables with unit roots. Here νt is a K dimensional de-

terministic component that can include an intercept and a trend term, hence νt =
ν0 +ν1t . Further, Γi , i = 1, . . . , p −1 are (K ×K ) parameter matrices and the residual

terms, ut are assumed to have the same properties as before. Here ∆ is the first dif-

ference operator (so that∆yt = yt − yt−1 = (1−L)yt , where L is the lag operator). This

means that ∆yt is assumed to be I (0), such that Πyt−1 also needs to be stationary.

The (K ×K ) matrix Π is of rank r , (where 0 < r < K ) and captures the cointegrating

relations of the model. More specifically, since Π is singular, it can be decomposed

into the product of two (K × r ) matrices of full column rank, α,β so that Π = −αβ′.
Here β is referred to as the cointegrating matrix and has the r linearly independent

cointegrating relations, so that β′yt−1 is stationary, and α is known as the loading

matrix.

In line with the literature, structural shocks are given as ut = Bεt , where εt is a K

dimensional vector of structural residuals such that εt ∼ (0,Σε), whereΣε is usually as-

sumed to be IK , the identity matrix. Here B is a (K ×K ) matrix depicting contempora-

neous effects. According to these assumptions Σu = BB ′. The structural parameters

can be derived from the reduced form parameters. However, since Σu is symmetric,
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this only leaves K (K +1)/2 reduced form parameters to identify the K 2 structural pa-

rameters of the B matrix. Hence, K 2−K (K +1)/2 = K (K −1)/2 restrictions need to be

imposed. How this is done for each model is discussed in the following.

Restrictions on the VAR model

All the papers considered in Table 2.1 make use of long run identifying restrictions, as

in Blanchard and Quah (1989). How such restrictions are imposed is briefly explained

here. Rewriting equation (2.1) in lag polynomial form gives

A(L)yt = ν+ut , (2.3)

where A(L) = IK − A1L− A2L2−·· ·− Ap Lp . Provided that A(L)−1 exists, the Wold mov-

ing average (MA) representation for the stationary yt process is

yt =µ+
∞∑

s=0
Φsut−s =µ+Φ(L)ut , (2.4)

where µ= (IK − A1 − A2 −·· ·− Ap )−1ν= A(1)−1ν, Φ(L) ≡ A(L)−1 and Φ0 = IK . Having

defined the structural shocks as εt = B−1ut , the structural representation of (2.4) is

yt =µ+
∞∑

s=0
Ψsεt−s =µ+Ψ(L)εt , (2.5)

here Ψi ≡ Φi B , for i = 0,1,2, . . .. The accumulated long-run effects of the structural

shocks over all time periods are given by the long-run impact matrix, Ψ≡ΦB , where

Φ ≡ ∑∞
s=0Φs = A(1)−1. It is on the Ψ matrix that Blanchard and Quah (1989) suggest

imposing identifying restrictions, usually in the form of zeros. That way some shocks

have permanent effects, while others only have transitory effects.

As is common practice, most papers mentioned in Table 2.1 make use of a lower

triangular Ψ matrix. In this case the matrix would appear as follows

Ψ=


F 0 0

F F 0

F F F

 , (2.6)

where F denotes an unrestricted element. Depending on the way the variables are

arranged this identification scheme distinguishes between fundamental and non-

fundamental shocks. The non-fundamental shock is assumed not to have any per-

manent effect on any of the variables except the last one (last column of (2.6)). The
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other two shocks are assumed to be of a fundamental nature; in that one of them

(first column of (2.6)) influences all variables in the long-run, while the other (sec-

ond column of (2.6)) only leaves a permanent impact on the last two model variables.
1 The identification scheme in (2.6) is used for testing restrictions on SVAR models

throughout this paper.

Restrictions on the VEC model

The long-run effects matrix for a VEC model is not derived in such a straightforward

way as that for a VAR model. Fortunately, from Granger’s representation theorem, the

VEC counterpart of Φ is given as

Ξ=β⊥
[
α′
⊥
(
IK −

p−1∑
i=1

Γi

)
β⊥

]−1
α′
⊥,

where ⊥ stands for the orthogonal complement of a given matrix. For instance, the

orthogonal complement of an (m ×n) matrix, A, is given by the (m × (m −n)) matrix,

A⊥. The Ξ matrix is computed from the estimates of the reduced form parameters.

Hence, the long-run impact matrix is ΞB and restrictions can be imposed on it in a

similar way as on the Ψ matrix above.

A quick note on the restrictions of the SVEC model is in order. SinceΞ is a singular

matrix, restrictions need to be placed appropriately. In particular, the rank of Ξ is

K − r and according to King et al. (1992) there can be at most r transitory shocks, i.e.

r columns ofΞB can be 0 and each column of zeros stands for only K −r restrictions.

In addition, there need to be r (r −1)/2 restrictions on the B matrix to identify the non-

permanent shocks. The remaining restrictions needed to identify the model (exactly)

can be placed on the non-zero elements of ΞB or directly on B . A good summary of

placing restrictions on a SVEC model can be found in Lütkepohl (2005).

In a similar lower triangular fashion, long-run restrictions on SVEC models in this

1The zero restriction in the second column of Ψ in (2.6) is left out in Lee (1995a) and Laopodis (2009). The

shocks are still identified as fundamental and non-fundamental, even though the model itself is underidenti-

fied. Further, the models used in Jean and Eldomiaty (2010) are initially identified according to the Swanson

and Granger (1997) identification scheme, however, in a section on model robustness, they mention that a lower

triangular long-run impact matrix as in (2.6) performs equally well.

41

Velinov, Anton Stoyanov (2013), On using markov switching time series models to verify structural identifying restrictions and to 
assess public debt sustainability 
European University Institute

 
 

DOI: 10.2870/80034



paper are placed as follows

ΞB =


F 0 0

F F 0

F F 0

 . (2.7)

Here againFdenotes unrestricted elements. It is now assumed that a non-fundamental

shock does not have permanent effects on any of the other variables, i.e. the last col-

umn of (2.7) contains only zeros. Note that such an assumption cannot be made for

the SVAR model restrictions since Ψ in (2.6) cannot be a singular matrix. It may be

more realistic to assume that shocks labeled as non-fundamental do not have a per-

manent impact on any of the model variables. Further, since the rank of Ξ is K − r ,

which is two (as will become apparent later, in all cases r = 1), the column of zeros

provides two independent restrictions. The identification scheme in (2.7) is therefore

enough to just identify the SVEC model in the traditional sense.

2.2.2 The Markov switching SVAR and SVEC models

In order to test identification schemes, as in (2.6) or in (2.7), it is necessary to expand

the basic model to allow at least for switching covariance matrices. Further, for esti-

mation convenience it is also assumed that residuals are normally distributed, hence,

ut ∼ NID(0,Σu(St )). (2.8)

As is made clear in Lanne et al. (2010), the normality assumption in no way limits

the unconditional distribution and it is also not a crucial assumption for the analy-

sis. Here St is assumed to follow a first-order discrete valued Markov process with

transition probabilities given by

pi j = P (St = j |St−1 = i ).

These can be grouped in an (M × M) matrix of transition probabilities, P such that

the rows add up to 1 and where M are the number of different states.

Note that it is also possible to allow for switches in the intercept term, ν in the

SVAR case and ν0 in the SVEC case. In principle, all the parameters could be subject

to regime switches, however such assumptions would need to be justified in the sense

of there being structural breaks in the data or some reasonable economic explanation
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as to why a certain parameter could be switching. In this analysis it is crucial for the

covariance matrices to be switching, it may also be reasonable to assume - given the

data used - that the intercept parameter could be subject to regime switches as will

be discussed later. All other parameters are assumed to be stable.

As already noted, the Markov switching (MS) model is a convenient way of deal-

ing with data subject to structural breaks. In the literature changes in structural re-

lationships are documented in Lee (1998), Chung and Lee (1998), Binswanger (2000,

2004a,c) and Laopodis (2009) among others. In this sense, a MS model may be bet-

ter suited to answering the question of how well stock prices are reflected by their

fundamentals. However, in this paper a MS model is used solely to test the above-

mentioned identifying restrictions.

Due to the many intricacies of the models described thus far it is worth elaborat-

ing on how the model parameters are estimated and how the identifying restrictions

are tested. This is done in the following section.

2.3 Estimation and Testing Procedure

The VAR parameters are estimated by means of OLS. Since only long-run restrictions

are imposed, estimation of the structural parameters is straightforward. With a sim-

ple substitution it follows that ΦΣuΦ
′ =ΨΨ′. The left hand side of this equation is

known, hence for a fully identified model,Ψ is easy to derive. The contemporaneous

matrix is then easily obtained as B =Φ−1Ψ.

The VEC parameters are estimated by the method of reduced rank regression in

Johansen (1995). Since the cointegrating matrix, β, is not unique it can be identified

by a simple normalization such that the first r rows contain an (r × r ) identity ma-

trix, as is shown in Lütkepohl (2005). The structural parameters are estimated by an

iterative algorithm proposed by Amisano and Giannini (1997) subject to identifying

restrictions placed as in Vlaar (2004).

The parameters of the MS models are estimated using the iterative expectation

maximization (EM) algorithm. This algorithm was initially popularized by Hamil-

ton (1994) for univariate processes and later extended to multivariate processes by

Krolzig (1997). Since the β matrix in the VEC models symbolizes long-run relation-
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ships, it is not re-estimated at each maximization step of the EM algorithm. It is

trivial to change this though, so that a reduced rank regression is performed in each

maximization step. However, this merely leads to an increase in computational time

without really affecting the conclusions obtained below.

In order to test the identifying restrictions it is necessary to decompose the covari-

ance matrices in the following way

Σu(1) = BB ′, Σu(2) = BΛ2B ′, . . . Σu(M) = BΛM B ′. (2.9)

This adds to a nonlinear optimization procedure in the maximization step of the EM

algorithm. The underlying assumption is that the contemporaneous effects matrix,

B stays the same across states. Here the Λi , i = 2, . . . , M matrices are diagonal with

positive elements, λi j , i = 2, . . . , M , j = 1, . . . ,K and can be interpreted as relative vari-

ance matrices. In order for the B matrix in (2.9) to be unique up to changes in sign

and column ordering, it is necessary for all pairwise diagonal elements in at least one

of the Λi , i = 2, . . . , M matrices to be distinct. For example, for a 3-state model it is re-

quired that λi j 6=λi l , i = 2 and/or 3, j , l = 1, . . . ,K , j 6= l . Hence, even if these elements

are equal in one state, they should not be equal in the other state. For a more detailed

explanation of the uniqueness of the B matrix the reader is referred to Proposition 1

in the appendix of Lanne et al. (2010). If this distinction requirement is fulfilled, then

B is said to be identified through heteroskedasticity.

The assumption of an invariant B matrix may seem rather crucial to this analy-

sis. However, when there are more than two states, this assumption can be tested by

means of a likelihood ratio (LR) test. The test statistic has an asymptotic χ2 distribu-

tion with (1/2)MK (K +1)−K 2 − (M −1)K degrees of freedom. Clearly, if M = 2 the

degrees of freedom would be 0, thus giving a nonsensical result. Note, that the above

procedures closely follow Lanne et al. (2010) and Herwartz and Lütkepohl (2011).

Standard errors of the parameter estimates are obtained from the inverse of the

negative of the Hessian matrix evaluated at the optimum. Distinction of the λi j , i =
2, . . . , M , j = 1, . . . ,K parameters is then determined through Wald tests. It is also pos-

sible to use LR tests for this purpose, however, such tests may not give very accurate

conclusions since they can potentially converge to the same optimum each time. 2

2For instance, the LR test proceeds by forcing two diagonal elements of Λi , i = 2, . . . , M to be equal and then
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If the distinction of the λi j , i = 2, . . . , M , j = 1, . . . ,K parameters is fulfilled, the B

matrix would be identified up to changes in sign and column ordering. Hence, any re-

strictions (short or long-run) would be over-identifying and could therefore be tested.

This is achieved by estimating the model with and without restrictions on the B ma-

trix and comparing both log-likelihoods. In other words, an LR test is used and the

test statistic has an asymptotic χ2 distribution with degrees of freedom equal to the

number of restrictions.

2.4 Model Results

Before the long-run identification schemes can be tested, it is necessary to determine

whether a VAR or a VEC model would be best suited to the data.

2.4.1 The Data and Model Specification

Most data are from the Federal Reserve Economic Database (FRED). The dividends

and earnings data are from Robert Schiller’s webpage.3 In line with many of the pa-

pers mentioned in Table 2.1, the data is quarterly. The data range is from 1947:I -

2012:III, with the exception of dividends and earnings, which are until 2012:I. All vari-

ables are in real terms (except for the industrial production (IP) index) and in logs

(except for the interest rate series). The interest rate is transformed to real terms by

subtracting the CPI growth rate. Other variables are transformed to real terms by

dividing by the percent level of the CPI. Figure 2.1 plots the data used along with re-

cession periods according to NBER dating marked by the shaded bars.

All variables are I (1), meaning that they contain a unit root. This is according

to Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS)

comparing the log-likelihoods of the restricted and unrestricted models. This is done until all pairwise combina-

tions of elements are exhausted. However, due to the highly nonlinear nature of the models, it is not uncommon

for the EM algorithm to converge to the same parameter estimates and log-likelihood values for different pair-

wise combinations tests. In other words, when testing for the equality of pairwise Λi , i = 2, . . . , M parameters, the

EM algorithm could potentially converge to the same values over different pairwise tests, thereby giving the same

results in each LR test. When working with trivariate models, three pairwise combinations exits, and it is usually

found that the EM algorithm converges to the same optimum usually for two out of the three cases. Hence, two

LR tests would have the same values. Therefore, Wald tests are deemed more reliable.
3Found at http://www.econ.yale.edu/ shiller/data.htm.
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(a) GDP, r, s, IP (b) e, d

Figure 2.1: Data used with recession dates indicated by the bars.

Table 2.2: Summary of VAR and VEC models.

Model I yt = [Yt ,rt , st ]′ VAR in first differences

Model II yt = [I Pt ,rt , st ]′ VAR in first differences

Model III yt = [D t ,rt , st ]′ VAR in first differences

Model IV yt = [Et ,rt , st ]′ VEC, r = 1

Model V yt = [Et ,D t , st ]′ VEC, r = 1

tests. This is true even for the real interest rate series, although only at the 10% level

according to the ADF test. Both the Johansen (1995) trace test and the Saikkonen and

Lütkepohl (2000) tests are used to test for cointegration. According to these tests, only

models IV and V show signs of cointegration and in each case the cointegrating rank,

r , is 1. Table 2.2 summarizes the models considered and which specification best fits

them. Unit root and cointegration tests were carried out with the JMulTi software by

Lütkepohl and Krätzig (2004).

2.4.2 Model Restrictions

As discussed, the structural models are all identified by means of restrictions on the

long-run effects matrix. In particular, the type of restrictions on the SVAR models are

all of the form as in (2.6). The restrictions on the SVEC models depend in part on the
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number of cointegrating relationships. In this case both models have one such rela-

tionship and hence no short-run restrictions are required, since r (r −1)/2 = 0. Hence,

the long-run restrictions as in (2.7) are used to identify the SVEC models. These iden-

tification methods provide three restrictions, as is necessary to just identify the mod-

els and are summarized as follows

Ψ=


F 0 0

F F 0

F F F

 ΞB =


F 0 0

F F 0

F F 0

 .

2.4.3 MS Model Specification

It is now necessary to specify the Markov switching (MS) models that are to be used.

The number of lags and states can in principle be determined according to the model

selection criteria developed by Psaradakis and Spagnolo (2006), who show that they

work reasonably well. These criteria are the Akaike Information Criterion (AIC) and

the Schwartz Criterion (SC). The AIC is calculated as −2(log-likelihood −n) and the

SC is calculated as −2log-likelihood + log(T )n, where T is the sample size and n is

the number of free parameters of the model.

In principle the log-likelihood increases with the number of states used, although

at a diminishing rate. When using too many states, however, there are usually conver-

gence and estimation problems and ultimately it is not possible to escape the prob-

lem of too few observations for a given state. Therefore, these model selection criteria

can provide good judgement as to which model should be used since they penalize

over-parameterized models. As already noted, these criteria can also help in select-

ing the number of model lags, however we prefer to choose model lag orders so as

to avoid any residual autocorrelation. Hence, the optimal number of lags are deter-

mined by Portmanteau tests.

Table 2.3 shows results of the information criteria along with values of the log-

likelihoods, ln(L) for all unrestricted models, i.e. models without any short or long-

run restrictions. Minimum values of the information criteria are in bold. The maxi-

mum number of states considered is four. Beyond that no information criteria reaches

a minimum and it becomes likely that there will be some states with very few observa-

tions. As noted, this causes convergence and estimation problems, often producing
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Table 2.3: Information criteria of unrestricted models.

Model States AIC SC ln(L)

I: yt = [Yt ,rt , st ]′

1 1845.537 -1738.716 952.768

2 -1946.747 -1822.123 1008.374

3 -1961.999 -1812.451 1023.000

4 -1980.622 -1798.028 1041.311

II: yt = [I Pt ,rt , st ]′

1 -1537.906 -1367.364 816.953

2 -1680.313 -1492.006 893.157

3 -1727.339 -1514.161 923.669

4 -1713.095 -1467.941 925.547

III: yt = [Dt ,rt , st ]′

1 -1629.014 -1490.600 853.507

2 -1773.642 -1617.482 930.821

3 -1791.649 -1610.646 946.825

4 -1798.315 -1585.371 959.157

IV: yt = [Et ,rt , st ]′

1 -659.727 -535.373 364.863

2 -1220.152 -1085.140 648.076

3 -1297.577 -1137.694 693.789

4 -1327.046 -1135.186 717.523

V: yt = [Et ,Dt , st ]′

1 -2775.382 -2619.222 1431.691

2 -3370.821 -3193.367 1735.410

3 -3455.565 -3253.268 1784.783

4 -3493.145 -3258.906 1812.572

meaningless results.

Both information criteria agree for models II and V. For all other models the AIC

favors more states than the SC. Unfortunately, convergence problems sometimes oc-

cur, even when using 4-state models. For instance, model III in four states turns out

to have two states with very few observations in them. With model V it is the case

that the restricted 4-state model (i.e. the one with the long-run restrictions) fails to

converge in the sense that the decomposition in (2.9) gives a singularity after a cer-

tain number of iterations. Given these considerations, two and three states are used

for model III and three states are used for model V. For all other models the states

suggested by the information criteria are used.

It is also worth noting that models with one state, or simply SVAR and SVEC mod-

els, are not supported by any criterion. In particular, for the SVEC models IV and
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V the AIC and SC values are very high. Further, although not shown here, the log-

likelihoods of models with a varying B matrix over states are only slightly higher than

those with a state invariant B matrix; and the AIC and SC values are lower for a model

with a state invariant B matrix as opposed to a varying one. This means that the as-

sumption of a state invariant B matrix in (2.9) may well be justified, although this will

formally be tested later on.

Portmanteau tests (not reported here) indicate that models I and III have no resid-

ual autocorrelation at 2 lags, models IV and V achieve this with 3 lags and model II

needs 4 lags. Although, in fairness models IV and V still show signs of autocorrelation

at the 10% level, which is also the case even when using higher lag orders. There-

fore, in the interest of parsimony, for all models, we choose the lowest reasonable lag

length possible.

2.4.4 Estimation results

The results of the MS models can most easily be presented according to number of

states.

2-state models

Models I and III are best captured with two states according to the SC in Table 2.3. The

most relevant parameter estimates, along with standard errors and the covariance

matrices (scaled by 10−3) of the 2-state unrestricted 4 models, are shown in Table 2.4.

Both the values of the relative variance, λi j , i = 2, . . . , M , j = 1, . . . ,K parameters and

the diagonal covariance matrix elements confirm that state 1 is the less volatile of the

two states. This can also be seen from the smoothed probabilities of state 1 in Figure

2.2. In both models state 1 is never present during severe recessions of 2% or more

economic contraction. For instance, the recession of 1958, the 1973-75 recession,

both early 1980s recessions and the great recession of the late 2000s are captured by

state 2.
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Table 2.4: Parameter estimates, standard errors and covariance matrices (scaled by 10−3) for

2-state unrestricted models.

Model I: yt = [Yt ,rt , st ]′ III: yt = [D t ,rt , st ]′

Parameter estimate σ estimate σ

λ21 4.295 1.088 2.398 0.824

λ22 2.523 0.706 10.004 2.531

λ23 8.084 1.991 6.777 1.730

p11 0.945 0.021 0.939 0.026

p22 0.775 0.081 0.735 0.086

Σ(1)


0.045 − −
0.893 278.148 −
0.033 −0.082 2.288




0.067 − −
−0.110 227.717 −
0.033 −1.199 2.440



Σ(2)


0.195 − −
1.819 2065.566 −
0.296 −12.278 6.423




0.559 − −
−7.257 1913.660 −
−0.029 −11.653 5.973



(a) Model I (b) Model III

Figure 2.2: Smoothed probabilities of state 1 along with recession dates.

3-state models

A 3-state model is the most prolific one. In particular, given the convergence and in-

terpretation issues mentioned above, three states are used instead of four for some of

the models. Hence, models II, III, IV and V are considered in three MS volatility states.

As with the 2-state models, the relevant parameter estimates along with standard er-

rors are shown in Table 2.5 and the smoothed probabilities of the states are shown in

Figure 2.3. Note that when using more than 2 states, all smoothed probabilities need

4Here unrestricted refers to no short or long-run restrictions on the state invariant B matrix.
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(a) Model II (b) Model III

(c) Model IV (d) Model V

Figure 2.3: Smoothed probabilities of State 1 (top), State 2 (middle) and State 3 (bottom) along

with recession dates.

to be displayed since it is no longer the case that one is the mirror image of the other.

Table 2.5 shows that the λi j , i = 2, . . . , M , j = 1, . . . ,K parameters still seem quite

diverse, however in some cases their standard errors are also high. Also worth noting

is that some of these parameters have rather low values, below 1, meaning that the

relative variance in the given state is less than that of the first state. This can also be

observed by the diagonal elements of the covariance matrices at the bottom part of

the table. With the exception of model IV, the variances are not always increasing with

a given state. This means that interpretation of the states is slightly more complex

than with the 2-state models above.

From the smoothed probabilities in Figure 2.3 it can be seen that for all models,
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state 1 is not usually associated with severe recessions. In particular, this is especially

the case for model IV and, to a lesser extent for model V. State 2 largely tends to cap-

ture recession periods along with some time interval around them. For model III,

state 2 is only associated with the early 1980s, where notably Binswanger (2004a,b,c),

Groenewold (2004) and Jean and Eldomiaty (2010) all argue for the existence of a

structural break in the relationship between stock prices and their fundamentals

around that time period. However, no other model indicates any significant event

around that time to warrant its own state. The great recession is always given by the

third state. In model IV this is also the only occurrence of that state and in the other

models state 3 is usually associated with severe recession periods. Hence, it can be

interpreted as being the most volatile state.

The estimates of the transition probabilities in Table 2.5 are usually close to one,

with the slight exception of p33. 5 This means that the states tend to be quite persis-

tent as seen in Figure 2.3, in that the smoothed probabilities do not fluctuate often.

The lower persistence of the third state is also something we would expect, since it

is usually the case that crisis periods tend to be more transitory than economically

stable periods. In this case the duration of the third state is roughly between 3 and

8 quarters, depending on the model used. This is a reasonable recession duration

estimate, given the data span.

Finally, as noted in section 3, when using three or more Markov states, the as-

sumption of a state invariant B matrix can be tested. The test distribution is asymp-

totically χ2 with (1/2)MK (K +1)−K 2 − (M −1)K degrees of freedom, or in this case

3. The p-values of such a test are shown in the bottom part of Table 2.5. Clearly, at

conventional critical levels the null hypothesis of a state invariant B matrix cannot

be rejected. Hence, one of the necessary model assumptions is justified by the data.

4-state models

Models I and IV are the only ones considered in 4 states. Results of their parameter

estimates and smoothed probabilities are displayed in Table 2.6 and Figure 2.4 re-

spectively. These models have the most parameters out of all the models considered

5These are not the only unrestricted elements of the transition probabilities, however to save space only these

ones are displayed as they tend to be of most interest.
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Table 2.6: Parameter estimates, standard errors and covariance matrices (scaled by 10−3) for

4-state unrestricted models. Tests for a state-invariant B matrix at the bottom.

Model I: yt = [Yt ,rt , st ]′ IV: yt = [Et ,rt , st ]′

Parameter estimate σ estimate σ

λ21 3.734 1.051 1.168 0.463

λ22 0.385 0.092 9.553 2.488

λ23 0.946 0.411 1.116 0.370

λ31 2.465 1.049 9.706 2.714

λ32 0.397 0.196 1.250 0.399

λ33 5.685 1.835 2.776 0.798

λ41 9.883 3.521 1086.648 651.861

λ42 6.081 1.916 49.092 34.599

λ43 1.763 0.798 1.544 0.975

p11 0.931 0.097 0.948 0.027

p22 0.948 0.040 0.793 0.090

p33 0.668 0.169 0.816 0.068

p44 0.795 0.082 0.828 0.362

Σ(1)


0.022 − −
0.254 362.760 −
0.039 −1.357 2.281




0.305 − −
−0.171 217.329 −
0.117 −1.879 2.164



Σ(2)


0.077 − −
1.430 180.694 −
0.062 −0.359 2.312




0.358 − −
−1.881 2073.731 −
0.141 −11.461 2.463



Σ(3)


0.214 − −
3.287 2148.423 −
0.118 −4.495 2.259




2.938 − −
0.236 272.111 −
0.580 −3.471 6.030



Σ(4)


0.082 − −
0.975 1261.377 −
0.265 −7.034 17.680




327.892 − −
53.393 10667.553 −
40.652 −47.875 8.602


H0: state invariant B

p-value 0.375 0.082
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(a) Model I

(b) Model IV

Figure 2.4: Smoothed probabilities of state 1 to state 4 (from top to bottom) along with reces-

sion dates.
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thus far. This consequently makes it more complicated to classify their states. The

diagonal elements of the covariance matrices in the lower half of Table 2.6 do not

always increase with the given state. Looking at the smoothed probabilities, it is how-

ever possible to classify state 1 as the least volatile state since it tends to avoid most

recession periods. State 4 on the other hand tends to capture periods of severe reces-

sions and for model IV only the great recession is present in that state. Hence, state

4 can be considered as the one with the highest volatility. States 2 and 3 are similar

especially for model IV in that they are present during different recession periods.

It is again worth noting that the point of a structural break in the early 1980s

can be somewhat justified when looking at the smoothed probabilities of state 1 for

model I in Panel (a) of Figure 2.4. This state seems to be present mainly after the

early 1980s, which could indicate a change in some fundamental relationship due to

the lower volatility after that period. Also interesting is that both in 3 and 4 states,

the most volatile state of model IV only captures the great recession and nothing else.

This may not be that surprising however - when looking at the real earnings series in

Panel (b) of Figure 2.1 a huge swing in real earnings is observed during the period of

the financial crisis. Whether this particular period drives the results is investigated in

the next section on model robustness.

Finally, as with the 3-state models, the assumption of a state invariant B matrix is

formally tested. The resulting p-values are displayed at the bottom of Table 2.6. Note

that the test statistic is asymptotically χ2 distributed with 6 degrees of freedom. At

the 5% critical level the hypothesis of a state invariant B matrix cannot be rejected.

This means that for both three and four-state models, this assumption is supported

by the data.

2.4.5 Testing the Identification Restrictions

We now turn to testing whether the restrictions in (2.6) and (2.7) are supported by

the data. The first step is by testing whether the state invariant B matrix is identified

through heteroskedasticity.
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Table 2.7: Null hypotheses by state and p-values of Wald tests for all models.

States Model p-values

H0 λ21 =λ22 λ21 =λ23 λ22 =λ23

2 I: [Yt ,rt , st ]′ 0.180 0.091 0.008

III: [Dt ,rt , st ]′ 0.007 0.031 0.266

H0 λ21 =λ22,λ31 =λ32 λ21 =λ23,λ31 =λ33 λ22 =λ23,λ32 =λ33

II: [I Pt ,rt , st ]′ 0.001 0.000 0.000

3 III: [Dt ,rt , st ]′ 0.019 0.009 0.005

IV: [Et ,rt , st ]′ 0.263 0.014 0.016

V: [Et ,Dt , st ]′ 0.001 0.000 0.000

H0 λ21 =λ22,λ31 =λ32,λ41 =λ42 λ21 =λ23,λ31 =λ33,λ41 =λ43 λ22 =λ23,λ32 =λ33,λ42 =λ43

4 I: [Yt ,rt , st ]′ 0.001 0.000 0.001

IV: [Et ,rt , st ]′ 0.000 0.034 0.000

Testing for distinct lambda parameters

As discussed in section 3, in order for the B matrix to be identified through heteroskedas-

ticity, it is necessary that all pairwise λi j , i = 2, . . . , M , j = 1, . . . ,K elements be distinct

at least once in any Λi , i = 2, . . . , M matrix. Since the standard errors are available,

this is most easily tested by means of a Wald test. Likelihood ratio (LR) tests are also

used, however, as already noted, such tests can suffer from convergence problems

and in most cases converge to the same values for different hypotheses at least once.

Nevertheless, when comparable, both tests yield the same results. The hypotheses

and p-values of the Wald tests by models are given in Table 2.7.

The test statistic follows a χ2 distribution with degrees of freedom equal to the

number of joint hypotheses being examined. Taking a 5% or even a 10% critical level,

no 2-state model can reject the null of at least one parameter pair of diagonal Λ2

parameters being equal. For the 3-state models this is only true for model IV and all

null hypotheses are rejected for the 4-state models.

It is promising that for all models the null hypotheses are rejected for a given num-

ber of states. In particular, the null hypotheses for models I, III and IV are all rejected

when using a higher number of states. This means that for all models the B matrix is

uniquely identified through heteroskedasticity. Hence, any restrictions now on that

matrix become over-identifying and are in a position to be tested.
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Table 2.8: p-values for LR tests of the long-run restrictions. The alternative hypothesis is a

state invariant, unrestricted B matrix.

model H0 LR test p-value

2 states I: [Yt ,rt , st ]′ (2.6) 0.698 0.874

III: [D t ,rt , st ]′ (2.6) 8.735 0.033

3 states II: [I Pt ,rt , st ]′ (2.6) 56.084 4.031 ×10−12

III: [D t ,rt , st ]′ (2.6) 7.581 0.056

IV: [Et ,rt , st ]′ (2.7) 19.764 1.900 ×10−4

V: [Et ,D t , st ]′ (2.7) 25.416 1.264 ×10−5

4 states I: [Yt ,rt , st ]′ (2.6) 6.601 0.086

IV: [Et ,rt , st ]′ (2.7) 72.808 1.110 ×10−15

Testing the restrictions

The restrictions to be tested are the lower triangular long-run identification restric-

tions mainly used in the literature, given by (2.6) and (2.7) for SVAR and SVEC models

respectively. These restrictions are tested by comparing the log-likelihood values of

the unrestricted (and identified) models with the restricted models according to (2.6)

and (2.7) by means of an LR test. The results of these tests are given in Table 2.8. The

distribution of the test statistic is asymptotically χ2 with 3 degrees of freedom since

all restricted models have 3 restrictions so that they are just-identified in the tradi-

tional sense. The alternative hypothesis is the model without any restrictions on the

state invariant B matrix.

Starting with the 2-state models, the long-run restrictions for model I are accepted

at the 10% critical value. However, that model did not have a uniquely identified B

matrix as indicated in Table 2.7. Hence, any conclusions on the acceptance of the

identification scheme become somewhat ambiguous. Moving on to the 3-state mod-

els, at a 5% critical value the long-run restrictions for model III are accepted. These

restrictions are resoundingly rejected for all other 3-state models, given that their p-

values are very close to zero. Finally, in four volatility states, the long-run restrictions

for model I are again accepted, this time at the 5% critical level. Now however, the
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B matrix is identified through heteroskedasticity, hence this result indeed shows sup-

port for the long-run identification scheme.

We therefore conclude that only models I and III in four and three states respec-

tively have support from the data for the lower triangular long-run identification

scheme. Such restrictions could indeed categorize shocks as fundamental and non-

fundamental as the literature tends to do. With other models these restrictions do not

seem to be warranted by the data, meaning that the identified shocks can probably

not be interpreted as fundamental and non-fundamental.

Finally, it is worth mentioning that in most of the literature VAR models instead of

VEC models are used. However, both cointegration tests indicate a strong presence of

cointegration in models IV and V. Therefore, it is better to use the VEC form for such

models. Note that a VAR in levels form is also possible, however this would again

diverge from the literature, which mainly uses VARs in first differences.

2.5 Robustness Analysis

This section investigates whether the results obtained thus far rely to some extent on

the exact model specifications used. Table 2.8 shows that the number of states do

not seem to influence the final results. They only seem to matter for identifying the

B matrix in (2.9) up to changes in sign and column ordering. A similar conclusion (al-

though not reported here) can be drawn for the number of lags; though models with

different lag orders may have residual autocorrelation as indicated by Portmanteau

tests, the results in Table 2.8 stay similar depending on the critical level threshold

chosen to evaluate them.

In order to investigate model robustness, it would be more relevant for example to

try to determine whether the sample range could somehow drive the results obtained

thus far. For instance, the smoothed probabilities of model IV in panels (c) and (b) of

Figures 2.3 and 2.4 respectively show that there is one state that always captures the

financial crisis. It would be interesting to investigate what would happen if the sam-

ple is cut to exclude the crisis years. Further, some papers for instance, Binswanger

(2000), Binswanger (2004b) and Jean and Eldomiaty (2010) use data starting from

1953 to avoid having the Korean War influence their results. Hence, removing the tur-
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bulent beginning and end of the sample would give a good indication of how robust

the results are. Therefore, we only keep the observations from 1953:I - 2007:III for the

robustness analysis.

Another factor potentially influencing the results could be the Markov switching

(MS) specification itself. For example, as was already clarified, a MS model in het-

eroskedasticity needs to be used so that the B matrix can be identified and any restric-

tions on it can be tested. There is, however, little reason to assume that no other pa-

rameters can switch. When using data such as interest rates and stock price indices,

it may well be the case that the intercept term is also subject to the same Markov

switches as the covariance matrix. Indeed, stock prices tend to rise (fall) in periods of

low (high) volatility. Allowing the intercept term to switch is another way of testing in

how far the results obtained above are robust. Note that the autoregressive parame-

ters could potentially also be switching, however the case for them to switch is harder

to justify and to interpret. Further, switching autoregressive parameters may cause

estimation issues; in that the number of parameters to be estimated increases and

the data range may be too limited to give accurate estimates of all these parameters

when using many MS states. Hence, we decide to investigate a model only with a

further switching intercept term in addition to the switching covariance matrix. The

VAR model, (2.1) then looks as follows

yt = ν(St )+ A1 yt−1 + A2 yt−2 + . . .+ Ap yt−p +ut , (2.10)

where St follows a discrete valued first order Markov process as before and ut still

has the same distributional assumption as in (2.8). The reduced form VEC model is

similar to (2.10) with the switching intercept being ν0(St ).

Finally, the Dow Jones index is not the only index followed by market participants.

It consists of only 30 companies, whereas for example, the S&P 500 index consists of

500 companies as its name suggests. Even though these indices are closely correlated,

the choice of index may influence the results and accept or reject some of the earlier

conclusions. Further, data on the S&P 500 starts from 1957:I thereby giving a joint

robustness check in terms of a different stock price index and data range compared

with the original analysis.

It is worth noting that by reducing the sample range or introducing a new stock

price index, the models need to again be tested for cointegration. It turns out that the
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Table 2.9: p-values for tests of a state invariant B matrix.

H0: state invariant B

1953:I -

model 2007:III intercept S&P 500 Original

3 states II: [I Pt ,rt , st ]′ 1.332 ×10−9 0.138 0.419 0.150

III: [D t ,rt , st ]′ 0.191 0.106 0.051 0.204

IV: [Et ,rt , st ]′ 0.008 0.256 0.307 0.600

V: [Et ,D t , st ]′ 1.459 ×10−5 0.901 0.006 0.946

4 states I: [Yt ,rt , st ]′ 3.195 ×10−8 0.611 2.679 ×10−6 0.375

IV: [Et ,rt , st ]′ 3.840 ×10−5 0.481 0.999 0.082

cointegration relationships discovered earlier are all kept. 6 Hence, models IV and V

are still of the VEC form, with a cointegrating rank of 1, while models I - III are still of

the VAR form. This is reassuring since cointegration is assumed to involve long-run

relationships, which should not really change simply due to changes in the sample

range used. Further, for all robustness specifications, the same lag lengths as in the

original analysis are kept. This could in principle lead to some residual autocorrela-

tion, however by using the same lag lengths the results from the robustness checks

can best be compared to the original ones.

As in the original analysis, it is first necessary to confirm whether the assumption

of a state invariant B matrix is justified. Recall, that this assumption can be tested

for models with three or more Markov states. The test distribution is given as before;

asymptotically χ2 with (1/2)MK (K + 1)−K 2 − (M − 1)K degrees of freedom. The p-

values of such tests for all three robustness specifications are given in Table 2.9. The

most right column of the table shows the original p-values from Tables 2.5 and 2.6 for

comparison. It can be seen that the null hypothesis is usually accepted at the 5% sig-

nificance level. A notable exception to this is for the shortened sample range. There,

in most cases very low p-values are obtained, meaning a rejection of the assumption

6Only model IV with the 1953:1 - 2007:III sample range shows weak signs of cointegration, however, it is still

present.
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Table 2.10: p-values for LR tests of the long-run restrictions for different robustness specifica-

tions. The alternative hypothesis is a state invariant, unrestricted B matrix.

1953:I -

model H0 2007:III intercept S&P 500 Original

2 states I: [Yt ,rt , st ]′ (2.6) 0.911 0.644 0.699 0.874

III: [D t ,rt , st ]′ (2.6) 0.287 0.032 0.888 0.033

3 states II: [I Pt ,rt , st ]′ (2.6) 1.332 ×10−9* 2.854 ×10−10* 0.038* 4.031×10−12*

III: [D t ,rt , st ]′ (2.6) 0.272* 0.474 0.984* 0.056*

IV: [Et ,rt , st ]′ (2.7) 0.277* 2.718 ×10−4 1.373 ×10−4 1.900 ×10−4

V: [Et ,D t , st ]′ (2.7) 1.325 ×10−10* 7.704 ×10−13* 0.055* 1.264 ×10−5*

4 states I: [Yt ,rt , st ]′ (2.6) 0.451 0.023* 0.026* 0.081*

IV: [Et ,rt , st ]′ (2.7) 0.002* 9.525 ×10−9* 6.387 ×10−7* 1.110 ×10−15*

* The B matrix is identified up to changes in sign.

of a state invariant B matrix. Overall however, from the results of the other robustness

specifications, we can conclude that the assumption of a state invariant B matrix is a

rather robust one.

Assuming that there indeed is enough justification for a state invariant B matrix,

we then turn to test whether this matrix is identified through heteroskedasticiy and

if so whether the long-run restrictions in (2.6) and (2.7) are supported by the data.

The p-values for tests of the long-run restrictions are reported in Table 2.10. Their

test distributions are again asymptotically χ2 with three degrees of freedom, since

both identification schemes contain three restrictions. The most right column of the

table again shows the original p-values from Table 2.8 for comparison. The stars in

the table indicate when the B matrix is identified up to changes in sign and column

ordering, i.e. when the null hypotheses in Table 2.7 are rejected.

Analyzing the results by model, it can be seen that there is no new conclusion for

model I in two states; in all cases, the B matrix is not identified and the restricted

model is accepted. When using a 1% critical value, the original conclusion also holds

for that model in four states. Granted, the p-values are usually less than in the original
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specification, however they are not arbitrarily close to zero, as is the case for some

of the other models. Only for the short sample range is the B matrix not identified

through heteroskedasticity, making any conclusion on accepting the identification

scheme ambiguous.

Moving on to model II, its identification scheme is rejected over the robustness

specifications, except when using the S&P 500 series and a 1% critical value. Overall,

these results suggest that the identification restrictions for model II can largely be

rejected. This means that when using industrial production data instead of GDP data

the structural shocks may not be properly identified in the sense that the structural

identifying restrictions are not supported by the data. This could be due to the stock

price index and interest rates being more reflective of GDP rather than the industrial

production index. It illustrates the need of being able to test a given identification

scheme so as to let the data speak up about the restrictions. This shows that simply

using the same identification scheme for different models, although closely related,

does not necessarily lead to the identification of the same type of shocks.

The original conclusion for model III in two states does not really change since

again the B matrix is not identified for any of the models. When using three states, the

restricted model is accepted, as was originally the case. The p-values are in all cases

higher than for the original model. However, the B matrix is not identified through

heteroskedasticity when using a model with a switching intercept term. Nevertheless,

it can be concluded with reasonable confidence that the identification scheme in

(2.6) is robustly accepted for model III.

For model IV, the original conclusion is also accepted in all cases except when

using a shorter sample range and three states. Then the identification restrictions in

(2.7) are accepted. This could mainly be due to omission of the financial crisis period.

As seen in Figure 2.1, panel (b), real earnings were severely affected during that time

period. However, since the original conclusion rejecting the long-run identification

scheme holds in almost all cases, it can be said to be quite robust.

Similarly for model V, the original conclusion is only rejected in one instance at

the 5% critical level. Overall, the results in Table 2.10 lend some credibility to the orig-

inal findings and show that they are rather robust over different model specifications.

To complete this analysis, a brief note on the smoothed probabilities is in order.
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(a) Model IV (b) Model IV

Figure 2.5: Smoothed probabilities of model IV with the 1953:I - 2007:III sample range with 3,

(a) and 4, (b) states.

For the 2-state models, the periods depicted by the smoothed probabilities are very

similar to the ones shown in Figure 2.2. In other words, they are not really different

from the original ones.

The smoothed probabilities of the 3-state MS-SVAR models do not seem as robust

to model specification however. In particular, for model II a similar picture as that in

Panel (a) of Figure 2.3 is only obtained when using a model with a switching intercept

term. Similarly, for model III, none of the robustness specifications show a unique

event in the early 1980s as is the case in Panel (b) of Figure 2.3. Nevertheless, for all

robustness models, the first state still depicts the most stable periods and recessions

and crises are captured by states two and three as before.

The MS-SVEC models, on the other hand, tend to deliver rather robust smoothed

probabilities over different robustness specifications when modeled in three Markov

states. They largely resemble the ones in Panels (c) and (d) of Figure 2.3. Interestingly,

when cutting the sample to before the financial crisis, state three no longer indicates

a unique event for model IV. Rather recession periods are depicted by both states two

and three as can be seen in Panel (a) of Figure 2.5. Model V with a switching intercept

displays the financial crisis as a unique event in the third state.

A similar conclusion can be made for the 4-state models in the sense that the

smoothed probabilities of the MS-SVEC models are more robust than those of the

MS-SVAR models. It is also the case with these models that the first state depicts
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the more stable economic periods, while other states capture more turbulent times.

As in the 3-state case, when excluding the financial crisis, the fourth state no longer

depicts a unique event for model IV, as shown in Figure 2.5, (b).

The robustness tests show that the results obtained earlier are not merely subject

to chance and that there is some credible evidence either in favor or against the rele-

vant identification scheme of a given model.

2.6 Conclusion

This analysis focuses on testing a commonly used structural parameter identifica-

tion scheme that claims to identify fundamental and non-fundamental components

of stock prices. In particular, five trivariate versions of the dividend discount model

(DDM) are considered, which are widely used in the literature. The first variable of

these models consists of different proxies of economic activity such as real GDP, the

industrial production index, real dividends and real earnings; each proxy being a dif-

ferent model. All models are either specified in vector error correction (VEC) or in

vector autoregressive (VAR) form. In this sense, the approach of this paper is similar

to that of Binswanger (2004b) and Jean and Eldomiaty (2010), with the emphasis be-

ing on testing the structural parameter identification scheme. Restrictions are placed

on the long-run effects matrix as in Blanchard and Quah (1989), making it lower tri-

angular. All models are hence just-identified in the traditional sense.

A Markov switching in heteroskedasticity model as in Lanne et al. (2010) and Her-

wartz and Lütkepohl (2011) is used to test whether the long-run restrictions are sup-

ported by the data. It is found that for two of the models considered, the long-run

identification scheme appropriately classifies shocks as being either fundamental or

non-fundamental. Those are the models with real GDP and real dividends as proxies

of real economic activity.

Three robustness tests are performed; one by cutting off volatile periods at the

beginning and at the end of the sample. Another by allowing for a switching inter-

cept term in addition to the switching covariance matrix; and a final robustness test

uses S&P 500 data instead of DJIA 30 data. The robustness tests largely confirm the

original findings.
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Therefore, even though all the models are similar in the sense of being derived

from the DDM, results of this paper suggest that simply using the same identifica-

tion scheme for models with different variables may not be warranted by the data.

Structural shocks may not be properly identified in this way, making any labeling of

the shocks ambiguous. Hence, in order to ensure that economic shocks of interest

are captured, it is good to test the relevant identification scheme using the MS in

heteroskedasticity framework.

This paper therefore finds that models in which real GDP and real dividends are

used as proxies of economic activity could potentially capture fundamental and non-

fundamental shocks to stock prices. Since the findings in this paper are relatively

robust, they serve as a good guideline when conducting future research in this field.

66

Velinov, Anton Stoyanov (2013), On using markov switching time series models to verify structural identifying restrictions and to 
assess public debt sustainability 
European University Institute

 
 

DOI: 10.2870/80034



Chapter 3

Assessing the Sustainability of

Government Debt - on the Different

States of the Debt/GDP Process

Anton Velinov (EUI)

Abstract

This paper addresses the question of how sustainable a government’s current debt

path is. In particular, use is made of a Markov switching Augmented Dickey-Fuller (MS-

ADF) model to determine the sustainability of public debt by testing whether a govern-

ment’s present value borrowing constraint holds. Building on the work of Raybaudi et al.

(2004) and Chen (2011), the model in this paper is of a very general form. Using the data

set from Reinhart and Rogoff (2011), it is possible to obtain long time series on debt/GDP

for many different countries. In total 16 countries are investigated. Two different crite-

ria are used to test the null hypothesis of a unit root in each state. The countries with

a sustainable debt path are found to be Finland, Norway, Sweden, Switzerland and the

UK. In contrast, the model indicates that France, Greece, Ireland and Japan have unsus-

tainable debt trajectories. The remaining seven countries, (Argentina, Germany, Iceland,

Italy, Portugal, Spain and the US) are all found to have uncertain debt paths. The model

is robust to the sample size and number of states used. It is shown that this model is an

improvement to existing models investigating this subject.
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3.1 Introduction

The ramifications of the late 2000s financial crisis are ongoing. With the spectacular

bankruptcy of Lehman Brothers in late 2008 and the subsequent stock market col-

lapse, all signs were pointing to a severe recession, if not a depression. In order to deal

with this unprecedented situation, governments around the world initiated stimulus

packages to help kick-start the ailing economy. Alongside these measures, massive

loan guarantees were made and financial institutions received large amounts of tax

payer money in order to stay afloat.

The result of these market-intrusive measures left many governments (especially

in developed countries) around the world straddled with high debt burdens. For in-

stance, Ireland and even the UK, which until the mid 2000s were praised for their

good budgetary housekeeping (see Afonso (2005)), saw their public debt burden sky-

rocket as financial institutions needed to be bailed out. For others this problem be-

came so severe that the international community, acting through the IMF, had to step

in so that contagion could be avoided. The most notable case being Greece.

This brings us to the topic of this paper: are current levels of public debt sustain-

able? This issue is by no means new. One of the first papers to analyze it is Hamilton

and Flavin (1986). The basic idea of their paper is to set up a present value borrowing

constraint (PVBC) for government spending and to test whether it is satisfied in the

sense of a no-bubble condition. The test boils down to examining whether the debt

and deficit series are stationary. This can be most easily accomplished by means of a

unit root test as designed by Dickey and Fuller (1979) or Kwiatkowski et al. (1992) for

example.

Regardless of the comprehensive amount of later literature on this issue, discussed

in the next section, I argue that there is still unexplored potential. In particular, many

of the earlier papers find evidence of structural breaks and nonlinearities in the debt

process (such as Tanner and Liu (1994) and Quintos (1995)). This means that models

capable of capturing such phenomena need to be considered. For instance, regime

switching models. A popular method of obtaining endogenous regime shifts is through

the use of the Markov switching (MS) technique. However, the MS models used to as-

sess fiscal sustainability do so in a rather constricted setting. For instance, not all

parameters in the Markov switching ADF (MS-ADF) model are allowed to switch, es-
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pecially the variance parameter is held constant across states.1 This may not be a

correct assumption as the results of this paper show evidence of heteroskedasticity.

Even for the parameters that are allowed to switch, there is no real reasoning provided

as to why they should be switching. Another important limitation is that higher or-

der autoregressions are left out,2 which may make the conclusions of these studies

doubtful as Kremers (1988) shows. In addition to these issues, only a handful of stud-

ies make use of long range data sets - for instance, starting earlier than the 1960s

and including the latest financial and debt crises. Usually studies tend to avoid the

turbulent war years.

My contribution is therefore, to analyze the issue of debt sustainability by means

of a very general MS-ADF model for many different countries. Further, I determine

the order of autoregression, the number of states, and which parameters should switch,

based on Portmanteau tests, the information criteria in Psaradakis and Spagnolo

(2006) and relevant diagnostic tests respectively. I also make use of a rich data set

from Reinhart and Rogoff (2011), which includes many countries and usually a long

time span (more than 100 years) of observations per country. Further, I bootstrap

critical values to test the null hypothesis of a unit root in each regime. In this sense I

largely expand on the work by Raybaudi et al. (2004) and Chen (2011).

The empirical results indicate that the countries with a sustainable debt path are

Finland, Norway, Sweden, Switzerland and the UK. These countries either only have

stationary states or their debt trajectory is currently in a stationary state. In contrast,

it is found that France, Greece, Ireland and Japan have unsustainable debt trajecto-

ries. This is because their debt path is currently in an explosive state and for some

countries all of the states are explosive. The remaining seven countries, (Argentina,

Germany, Iceland, Italy, Portugal, Spain and the US) are all found to have uncertain

debt trajectories. This is because their debt process is currently in a unit root state

(with the exception of Argentina and Iceland); and in some cases both of their states

are governed by a unit root process.

The next section discusses in detail the relevant literature on this topic. Section

1For the cointegration test model, however, Gabriel and Sangduan (2011) do allow all three parameters of that

model to switch.
2Both Raybaudi et al. (2004) and Chen (2011) drop the last lag term in the original ADF model by Hamilton and

Flavin (1986).
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3 presents the model and in section 4 the data and the countries investigated are

described. Diagnostic tests and model selection are performed in section 5. The esti-

mation and testing procedure is briefly explained in section 6 and section 7 presents

the results of each model. Section 8 checks for robustness of the results and, finally,

section 9 concludes.

3.2 Related Literature

To acquire an adequate overview of the extensive literature on this topic, I start with

Hamilton and Flavin (1986) and work forward. Their paper uses annual US data from

1962 - 1984 on government debt and deficits and concludes, by means of an ADF test,

that both series are stationary and, hence, the government is expected to balance its

budget in the long-run.

Unfortunately, this conclusion is not universal. Two subsequent papers, by Kre-

mers (1988) and Wilcox (1989), find that the US public debt series is non-stationary.

They argue that Hamilton and Flavin (1986) did not specify their ADF model prop-

erly, in that higher order autocorrelation is not taken into account. A further paper

by Trehan and Walsh (1991), however, accepts the original conclusions of Hamilton

and Flavin (1986).

Subsequent papers, by Haug (1991) and Hakkio and Rush (1991), make use of

cointegration tests to evaluate sustainability of government debt. Specifically, Hakkio

and Rush (1991) argue that since government revenues and expenditures inclusive of

interest payments are non-stationary, they must be cointegrated with a cointegration

coefficient of around 1 for government spending to be sustainable. Their regressions

find this coefficient to be below 1 in all cases and thus they conclude that the budget

deficit is too large. However, Tanner and Liu (1994) conducting a very similar analysis,

but including a structural break for 1981, reach an opposite conclusion. A later paper

by Quintos (1995) sets out some conditions for deficit sustainability. In particular she

shows that the coefficient of cointegration can be lower than 1 for the deficit to still

be sustainable. Similarly, she also shows that cointegration between government rev-

enues and expenditures inclusive of interest payments is only a sufficient condition

for deficit sustainability. She finds a structural break in the 1980s after which the two

70

Velinov, Anton Stoyanov (2013), On using markov switching time series models to verify structural identifying restrictions and to 
assess public debt sustainability 
European University Institute

 
 

DOI: 10.2870/80034



series are no longer cointegrated, however, she concludes that the deficit policy is still

on a sustainable path. As can be seen, this alternative approach to testing whether

the trajectory of public deficits is sustainable does not yield a universally held con-

sensus either.

Yet another alternative approach is employed by Bohn (1998). He investigates the

response of primary (non-interest) budget surpluses to changes in the debt-income

ratio, claiming that a positive response provides reliable evidence for debt sustain-

ability. In addition, he controls for wars and cyclical factors. He concludes that the

current level of US debt is sustainable; although he does note that there can be some

bad states of nature that can lead to excessive debt levels.

Later studies continue to investigate the issue of debt sustainability by means of

the aforementioned stationarity and cointegration tests. They extend the analysis to

other countries aside from the US and they continue to reach diverse conclusions.

Granted, in most of the papers the data range and frequency differ. A good summary

of much of the literature on this issue is provided in Table 1 of Afonso (2005) as well as

in Tables 1 and 2 of Chen (2011). The former analyzes fiscal sustainability for 15 EU

countries and concludes that most of them may not be on a balanced budget path;

an ominous sign to the prelude of the financial and debt crisis.

Most recently, papers propose the use of regime switching models. This is a log-

ical extension since many studies find evidence of structural breaks and also Bohn

(1998) mentions that there could be different states of nature. In particular, Raybaudi

et al. (2004) investigate debt for several different countries from the point of view of

current account trade deficits. They use a MS-ADF type model in which one state is

imposed to be non-stationary (i.e. unsustainable) and the other stationary (i.e. con-

sistent with the PVBC). They claim that although one state would be associated with

an untenable trade policy, the overall debt process may still be sustainable depending

on the duration of the states and on the values of the parameter estimates. This ap-

proach is slightly generalized by Chen (2011), who does not impose a non-stationary

state. Instead, it is left to the data to determine whether a state is stationary or not.3

3Related literature that uses regime switching models includes for example, Davig (2005) and Gabriel and Sang-

duan (2011). The former analyzes debt sustainability from a fiscal policy point of view as in Wilcox (1989). He uses

a discounted debt series with a MS in intercept model. He distinguishes between a sustainable and an unsustain-

able state depending on whether the intercept parameter is significantly positive. The latter expand the cointe-
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It is worth noting a strong critique to the whole literature on debt sustainability

tests by Bohn (2007). He argues that stationarity and cointegration tests are irrelevant

for assessing whether the PVBC holds. In fact, the PVBC would be satisfied after any

finite number of differencing operations on the debt, revenues and interest inclusive

expenditures series so that they are made stationary. Bohn only provides a mathe-

matical intuition of this result. For instance, if a series is integrated of order m say,

its n-period-ahead conditional expectation can at most be an mth-order polynomial

of the n time horizon, while it will be discounted exponentially at a rate of n. He

argues that since exponential growth dominates polynomial growth of any order, sus-

tainability is still satisfied.4 This seems to invalidate stationarity and cointegration

tests, however, they are still a sufficient condition for sustainability. Further, lenders

could impose upper bounds on public debt, beyond which they would not be willing

to lend so readily.

In light of this critique, I argue that the case for using a MS model is all the more

potent. Such a model is able to provide information on what kind of states a country’s

debt process has experienced and what state it finds itself in at present. This way one

could better judge whether public debt is currently on a sustainable path or not. This

kind of model is not focused on a yes/no conclusion, rather it can paint a clearer

picture of how the debt process is developing. The model is presented in the next

section.

3.3 The model

The starting point of every analysis is the government’s one-period borrowing con-

straint

Gt + (1+ rt )Bt−1 = Rt +Bt , (3.1)

gration test for sustainability to include MS parameters. They subsequently classify different states as strongly

and weakly sustainable depending on the coefficient of cointegration as in Quintos (1995).
4Intuitively, one could think of this as a country being on a seemingly highly unsustainable debt path and

experiencing hyper inflation or severe exchange rate devaluation thereby making it substantially easier for it to

repay its debt. Even though a country’s debt-to-GDP series is currently non-stationary, there is nothing to say that

at some point in the future this conclusion would not be reversed.
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where Gt stands for government expenditures exclusive of interest payments, Bt is

government debt, Rt government revenue and rt can be either the the real or nom-

inal interest rate depending on how the other variables are measured (see Hakkio

and Rush (1991)). In each subsequent period there will be a similar borrowing con-

straint, for t +1, t +2, . . ., etc., hence, the present value borrowing constraint (PVBC)

is obtained by solving (3.1) forward:

Bt =
∞∑

s=1

s∏
j=1

βt+ j (Rt+s −Gt+s)+ lim
s→∞

s∏
j=1

βt+ j Bt+s , (3.2)

where βt = 1/(1+ rt ). For sustainability of the PVBC the last term needs to be zero,

hence the following transversality condition needs to hold:

lim
s→∞

s∏
j=1

βt+ j Bt+s = 0. (3.3)

This implies that the present value of the government’s debt is equal to the present

value of its budget surpluses. Following Hakkio and Rush (1991), a slightly different

formulation is used to derive testable implications. Assuming that interest rates are

stationary with mean r , r Bt−1 could be added and subtracted from both sides of (3.1)

to obtain

Et + (1+ r )Bt−1 = Rt +Bt , (3.4)

where Et ≡Gt + (rt − r )Bt−1. This formulation yields the following PVBC

Bt−1 =
∞∑

s=0
βs+1(Rt+s −Et+s)+ lim

s→∞β
s+1Bt+s , (3.5)

where β = 1/(1+ r ). Again for debt sustainability, the transversality condition needs

to hold, in that the second term in (3.5) needs to be zero. If that is the case the term

on the right hand side of (3.5) is expected to be stationary, which means that the left

hand side, of the debt process also needs to be stationary. This is tested by means of

stationarity tests on the first difference of the stock of public debt.5

5For completeness I also mention the cointegration test approach. In order to apply it, (3.5) needs to be rewrit-

ten as follows:

Gt + rt Bt−1 = Rt +
∞∑

s=0
βs−1(∆Rt+s −∆Et+s )+ lim

s→∞βs+1Bt+s .

Using the notation in Hakkio and Rush (1991), I define the left-hand side of the above equation as GGt , hence

GGt ≡ Gt + rt Bt−1. Meaning that the left-hand side includes government spending and interest payments on
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Such stationarity tests can be extended to allow for different states of the public

debt process. This implies that there may be stationary and non-stationary states

of the path of government debt. Using a Markov switching (MS) framework, which

captures switches in states endogenously, the following MS-ADF model is applied to

test for unit roots

∆Bt = ν(St )+φ1(St )Bt−1 +φ2(St )∆Bt−1 +φ3(St )∆Bt−2 + . . .+φp+1(St )∆Bt−p+1 +ut ,

(3.6)

where the residual term ut can also be subject to a regime switching variance. For esti-

mation purposes this residual is also assumed to be normal, hence ut ∼ Nid(0,σ2(St )).
6

It is assumed that St follows a first-order discrete valued Markov process with

transition probabilities

pi j = P (St = j |St−1 = i ),

which can be grouped in an (M×M) matrix of transition probabilities, P such that the

rows add up to 1, and where M are the number of different states. The next section

discusses the data to be analyzed with the MS-ADF model in (3.6).

3.4 The Data and Countries Investigated

This paper makes use of the extensive data set from Reinhart and Rogoff (2011), who

provide an in-depth analysis of banking crises and public debt (defaults). The data

consist of annual observations on the gross central (or when unavailable general)

debt. Again, assuming the absence of Ponzi games, the last term on the right-hand side of the equation needs to

go to zero. To test whether this is the case, the estimate of the b parameter needs to be examined in the following

regression

Rt = a +bGGt +εt .

Here εt is assumed to be stationary, while Rt and GGt follow a unit root process. Hence, a sufficient condition for

the above regression to be stationary is that Rt and GGt are cointegrated and the estimate of b is close to 1, Bohn

(2007) shows that this is not a necessary condition.
6An extension of the cointegration approach allowing for regime switches is given as in Gabriel and Sangduan

(2011)

Rt = a(St )+b(St )GGt +εt ,

where εt can share the same properties as ut . This would imply that the cointegrating relationship is subject to

regime changes.
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Table 3.1: Countries and their data ranges.

Argentina1 1864 - 2011 Japan2 1872 - 2011

Finland 1914 - 2011 Norway 1946 - 2011

France 1949 - 2011 Portugal 1851 - 2011

Germany 1951 - 2011 Spain 1850 - 2011

Greece 1950 - 2011 Sweden 1719 - 2011

Iceland 1923 - 2011 Switzerland 1929 - 2011

Ireland 1924 - 2011 UK 1692 - 2011

Italy 1861 - 2011 US 1790 - 2011

1 One period is interpolated.
2 Several periods are interpolated.

nominal government debt-to-GDP ratio. The data are until 2010 and I extend for an

extra year of observations based on the original sources. For a detailed description

of the data sources, see the data set accompanying Reinhart and Rogoff (2011). The

countries investigated and their sample ranges are summarized in Table 3.1.

In this literature - starting with Hamilton and Flavin (1986) - it is common prac-

tice to make use of annual frequency data.7 This is due to the unavailability of higher

frequency data for many countries prior to the 1990s, and, because of the slow chang-

ing nature of the debt/GDP process, higher frequency data is not a necessity. Unlike

most of the literature, which typically uses data starting after WWII (and omitting the

crisis of the late 2000s), the data series I use is far more prolific in observations. For

instance, the longest series is that for UK, which is from 1692 - 2011. The second-

longest is that for Sweden spanning from 1719 - 2011. This long sample range is

particularly useful not only for improving estimation precision, but also since debt

cycles can last for half a century or more as Reinhart and Rogoff (2011) point out.

In this study I do not make use of the full range of countries covered in Reinhart

and Rogoff (2011). This is to avoid making the analysis convoluted, and also the exis-

tence of gaps in the data for some countries renders meaningful results improbable.

I do however choose several countries as representative of a certain fiscal policy. For

7This can also be affirmed in Table 1 of Afonso (2005).
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instance, Greece, Iceland, Ireland, Italy, Portugal and Spain are included as examples

of budgetary-lax countries.8 I also include the so-called "safe haven" countries such

as Germany, Switzerland, the UK, and the US, which have seen their long-term bor-

rowing costs decrease sharply at the onset of the debt crisis. Another set of stable

countries are the Nordic states, represented by Finland, Norway and Sweden; these

are also small and open economies. The remaining countries investigated are Ar-

gentina, France and Japan.

3.5 Diagnostic Tests and Model Selection

Having determined the countries of investigation, the next step is to select an appro-

priate specification of the MS-ADF model, (3.6), for the data of each country. The

model is repeated here for convenience

∆Bt = ν(St )+φ1(St )Bt−1 +φ2(St )∆Bt−1 +φ3(St )∆Bt−2 + . . .+φp+1(St )∆Bt−p+1 +ut ,

where ut ∼ Nid(0,σ2(St )). The task is to determine the lag length, p, the number of

states, M and which parameters should switch. Since this analysis tries to distinguish

between periods of different fiscal regimes, (possibly a sustainable and an unsustain-

able one) the autoregressive parameters always need to switch.9 Diagnostic tests are

conducted to determine whether the other parameters need to be switching.

3.5.1 Diagnostic Tests

Table 3.2 summarizes the results of some standard diagnostic tests per country data.

Note that all diagnostic tests in this section are performed using the JMulTi software,

developed by Lütkepohl and Krätzig (2004).

The lag lengths are chosen using the Akaike Inforamtion Criterion (AIC), the Final

Prediction Error (FPE), the Hannan-Quinn Criterion (HQC) and the Schwarz Crite-

rion (SC). These criteria do not always agree on the lag length of the model, which is

why for some countries several lag lengths are reported.10

8Some of which are part of the recently coined term PIGS (Portugal, Italy, Greece and Spain).
9As will be discussed, this is supported by relevant model diagnostic tests.

10In a few cases a criterion (especially the AIC or the FPE) chooses a very high lag order, for instance, a 7-lag

model for Japan. These high lag values are discarded since they do not seem very realistic when annual data is
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Table 3.2: Diagnostic tests for all countries at various lag lengths

Lag Stationarity tests Autocorrelation tests† Heteroskedasticity tests†

Country Length ADF* KPSS** Q12
1 Q A

12
2 LM5

3 LMF5
4 ARC HLM (12)5 ARC HLMF (12)6

Argentina
1 -3.70 0.78 0.28 0.25 0.22 0.23 0.00 0.00

4 -3.27 0.45 0.28 0.23 0.86 0.87 0.00 0.00

Finland 1 -3.20 0.28 0.37 0.32 0.16 0.18 0.01 0.01

France 1 1.78 2.54 0.89 0.86 0.34 0.37 0.49 0.30

Germany 1 2.54 2.89 0.77 0.70 0.27 0.31 0.99 0.97

Greece 2 1.85 1.98 0.71 0.61 0.37 0.42 1.00 1.00

Iceland 1 0.69 2.49 0.94 0.92 0.75 0.78 0.96 0.94

Ireland 1 -0.20 1.79 0.19 0.15 0.11 0.11 0.55 0.41

Italy 1 -0.34 0.75 0.34 0.30 0.32 0.31 0.03 0.01

Japan 1 1.50 1.60 0.43 0.40 0.27 0.28 0.04 0.02

Norway 1 -1.50 0.67 0.53 0.43 0.58 0.62 0.77 0.64

Portugal 4 0.64 1.03 0.48 0.44 0.89 0.90 0.02 0.01

Spain
1 -1.08 4.82 0.68 0.65 0.42 0.43 0.00 0.00

2 -1.17 3.25 0.75 0.71 0.73 0.74 0.00 0.00

Sweden
1 -1.63 2.87 0.01 0.01 0.02 0.02 0.00 0.00

4 -1.40 1.20 0.16 0.14 0.29 0.30 0.00 0.00

Switzerland 1 -1.06 1.27 0.71 0.65 0.54 0.57 0.00 0.00

UK
1 -1.02 1.62 0.19 0.18 0.07 0.07 0.00 0.00

2 -1.10 1.09 0.28 0.26 0.24 0.25 0.00 0.00

US 2 -0.08 4.20 0.69 0.66 0.62 0.64 0.00 0.00

† Only p-values are reported.
* Critical values are -3.43 at 1%, -2.86 at 5% and -2.57 at 10%. Tests use an intercept term.
** Critical values are 0.74 at 1%, 0.46 at 5% and 0.35 at 10%. Tests use an intercept term.
1 Portmanteau test statistic using 12 lags with a χ2 distribution.
2 Adjusted Portmanteau test statistic using 12 lags a with χ2 distribution.
3 LM test statistic using 5 lags with a χ2 distribution.
4 LM test statistic using 5 lags with an F distribution.
5 ARCH-LM test statistic using 12 lags with a χ2 distribution.
6 ARCH-LM test statistic using 12 lags with an F distribution.
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As is common in most of the literature, I use ADF and KPSS unit root tests to deter-

mine stationarity of the data. From the relevant literature review discussed in section

2, it appears that a unit root or any non-stationary debt/GDP series is in violation of

the PVBC, and hence, indicates an unsustainable public debt policy. From Table 3.2

it can be seen that for only 2 out of the 16 countries investigated, both the ADF and

the KPSS test statistics indicate a stationary debt/GDP process at the 5% level.11 Nor-

way only has a stationary series according to the KPSS statistic; the ADF test still in-

dicates non-stationarity. This inconclusiveness of the tests is a key motivation for

both Raybaudi et al. (2004) and Chen (2011) to use a MS model. In particular, Chen

(2011) argues that due to the nonlinear property of the time series involved, a con-

ventional unit root test could have low statistical power. Afonso (2005) states that, in

the presence of structural breaks, in particular the ADF test would be biased towards

nonrejection of the unit root hypothesis. The reasoning in Raybaudi et al. (2004) is

that non-stationarity due to large falls in the series (due to budget surpluses) is not an

adverse event and therefore cannot mean that debt is on an unsustainable trajectory.

Further, as Bohn (2007) shows, stationarity is not a necessary condition for the

PVBC to hold. What is required is that the series are difference-stationary of any ar-

bitrary order, which is satisfied since all first difference series are stationary.12 One

may argue that a unit root process leads to an exploding debt-to-GDP ratio, which is

clearly unrealistic. That said, factors such as (hyper)inflation or a currency devalua-

tion can significantly reduce a government’s debt burden without it having to default.

The next four columns of Table 3.2 present the p-values of residual Portmanteau

and LM autocorrelation tests, both also with adjusted tests, more suited to small sam-

ples. One can notice that both statistics usually have similar p-values, unless short

sample series are investigated. A high p-value cannot reject the null hypothesis of no

residual autocorrelation.

The final two columns of Table 3.2 show the p-values of heteroskedasticity tests.

In particular ARCH-LM tests with a χ2 and an F distribution. For most countries

concerned. Hence, the lag lengths presented in the table are the reasonable ones or the ones for which all criteria

agree on, the latter is most often the case.
11These are for Argentina with a 4-lag model and Finland.
12This is not really true for Greece since the ADF test still indicates nonstationarity, even though the KPSS test

accepts the null of stationarity. Taking second differences makes both tests give a unanimous conclusion of sta-

tionarity.
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with a short sample range it appears that there is no conditional heteroskedasticity

present due to the high p-values. However, this conclusion may be unreliable; and,

as discussed later, models that allow for a switching variance seem to convey more

meaningful results than those that do not.

The next battery of diagnostic tests is preoccupied with model stability. In partic-

ular, Chow tests, recursive tests and cumulated sum of recursive residuals of squares

(CUSUM-SQ) tests are used.

I use three types of Chow tests; the sample-split, break-point, and forecast test.

In particular, the break-point test can provide (further) evidence of a structural break

in the variance parameter, which is especially relevant for countries with positive p-

values for the ARCH tests. These tests are carried out for a range of possible break

dates and indicate that, for all country models, there is evidence of a structural break

at certain time points in the relevant data range. This leads to a rejection of the

null hypothesis of stable parameters. It lends further evidence in support of a non-

constant variance over time, as most ARCH tests indicate.

The recursive tests for the AR coefficients and the intercept term reinforce the

conclusion of breaks in the parameters. For some models, however, the intercept

parameter could be stable according to this test. Also for a handful of data series the

CUSUM-SQ test indicates potential parameter stability at the 5% level.

Overall, no single model is indicated as having stable parameters by all the tests.

This lends support to using a switching parameter model and it means that the unit

root test results may not be too reliable as Afonso (2005) and Chen (2011) point out.

Exactly what kind of MS model is needed is discussed in the following.

3.5.2 Model Selection

The tests carried out above show that the data is subject to nonlinearities and struc-

tural breaks, hence a regime switching model, such as a Markov switching (MS) model

is warranted. A MS model allows for parameters to switch endogenously, without

having to impose a given break date. It is a very general model and therefore, can en-

compass other more restricted models. For instance, a smooth transition (ST) model

is comparable to a MS model where one state is forced to be an absorbing state. As

is shown later, if there is indeed an absorbing state, a MS model is able to capture it
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without requiring the need of a ST model.

For univariate MS models, Psaradakis and Spagnolo (2006) develop several infor-

mation criteria that can help decide simultaneously on the number of lags and states

of the model. I use their AIC, BIC and HQC criteria. These criteria all give the same

conclusions on the number of lags and states for all country models. They tend to

opt for the most parsimonious configuration of 1 lag and 2 states. However, this con-

figuration is not always optimal since Portmanteau tests sometimes show significant

residual autocorrelation when using a single lag.13 Further, sometimes the smoothed

probabilities of 3-state models capture more meaningful periods than those of 2-

state models. Hence, when choosing the appropriate number of lags and states, I not

only focus on the information criteria proposed by Psaradakis and Spagnolo (2006),

but I also make sure that there is no residual autocorrelation and that the smoothed

probabilities convey meaningful results.14

It is further necessary to decide which parameters need to be switching. As noted

earlier, crucial for the analysis is a switching φ1 coefficient. For higher order autore-

gressions, I let all such autoregressive coefficients switch. Parameter stability tests

indicate that the variance is non-constant over time, which lends support to a switch-

ing variance. The intercept term is sometimes indicated as stable by some of the

stability tests and therefore, I decide to usually keep it constant. A switching inter-

cept term can also offer conflicting results. For instance, in many cases a switching

intercept tends to capture periods with very high intercept levels together with very

negative values of the φ1 coefficient and visa versa; i.e. periods in which debt/GDP is

very high (low), but supposedly very sustainable (unsustainable) as well. This is also

found in Raybaudi et al. (2004) and in Chen (2011), but is not commented upon.15

Hence, I find it best to keep the intercept term non-switching in most cases, the only

exception being the model for Germany.

Table 3.3 summarizes the models used for each country (based on (3.6)). The

most general model syntax is a MS(M)-ADF(p)IAH model, where MS(M) stands for

13As Kremers (1988) points out, one should use a model without any residual autocorrelation.
14In section 8 on model robustness, two and three-state models are compared in more detail.
15It could be a consequence of allowing all the parameters to switch at the same time and may be averted if

they can switch at different time points. This means that there would need to be more states in the model, which

consequently may lead to inaccurate parameter estimates due to potentially very few observations per state.
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Table 3.3: Model investigated by country.

Country Model Country Model Country Model

Argentina MS(2)-ADF(4)AH Ireland MS(3)-ADF(1)AH Sweden MS(2)-ADF(5)AH

Finland MS(2)-ADF(2)AH Italy MS(3)-ADF(1)AH Switzerland MS(2)-ADF(1)AH

France MS(2)-ADF(1)AH Japan MS(2)-ADF(1)AH UK MS(2)-ADF(2)AH

Germany MS(2)-ADF(1)IAH Norway MS(2)-ADF(1)AH US MS(2)-ADF(2)AH

Greece MS(2)-ADF(1)AH Portugal MS(2)-ADF(4)AH

Iceland MS(2)-ADF(1)AH Spain MS(3)-ADF(1)AH

MS(M) stands for Markov switching with M states, ADF(p) for ADF model with p lags, I for a switch-

ing intercept term, A for switching autoregressive parameters and H for a switching variance param-

eter.

Markov switching with M states, ADF(p) for ADF model with p lags, I for a switching

intercept term, A for switching autoregressive parameters and H for a switching vari-

ance parameter. Note that a single lag model in Table 3.3 is defined as ∆Bt = ν(St )+
φ1(St )Bt−1 +ut , while a 2-lag model is ∆Bt = ν(St )+φ1(St )Bt−1 +φ2(St )∆Bt−1 +ut ,

etc.

Ultimately, it turns out that the most popular model has only a single lag. This

seems to vindicate earlier studies in which higher autoregressive orders are left out

when using a MS model. However, a note of caution needs be made concerning this

conclusion. Firstly, due to the small sample size of some (European) countries, for

estimation purposes it is necessary to use a single lag model.16 Secondly, the US,

which is one of the most studied countries in this literature, should have a model

allowing for higher autoregressive orders. As Kremers (1988) shows, not accounting

for the proper lag order of the ADF model could lead to residual autocorrelation and

erroneous conclusions. Residual autocorrelation is present when using a single lag

model for the US.

As a further generalization to the existing literature, I make use of more than two

Markov states for some countries. Indeed, all the papers I am aware of that use MS

16This specification is always supported by at least one model selection criterion and Portmanteau tests indi-

cate no residual autocorrelation present.
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models to assess debt sustainability assume models with only two states. While two

states can potentially distinguish between "stable" and "unstable" periods, a better

picture can be obtained from a larger number of states. The reader may already an-

ticipate that due to the limited number of observations for some countries it is not

possible to use more than two states; just as it is not recommended to go beyond

one lag order. This argument is correct, however, for countries with a longer data

range, 3-state models not only give a higher log-likelihood, their smoothed probabili-

ties and parameter estimates are sometimes more meaningful. No reasonable results

are found for models with more than three states. The countries for which a model

with three states is appropriate are Ireland, Italy and Spain. In section 8 on model

robustness, it is shown that the 3-state model for these countries does indeed seem

more reasonable in that the smoothed probabilities tend to be more meaningful in

distinguishing between different historical time periods.

3.6 A Note on Estimation and Testing

All models in this paper are estimated in Matlab (R2011a) by means of the Expecta-

tion Maximization (EM) algorithm for univariate processes, as explained in Chapter

21 of Hamilton (1994). Standard deviations of the parameter estimates are obtained

from the negative of the inverse of the Hessian matrix evaluated at the optimum.

The Markov switching ADF (MS-ADF) model given in (3.6) has a null hypothesis

of φ1(St ) = 0, for St = 1, . . . , M . This means that there is a unit root in each state

according to the null. Also, unlike the conventional ADF test where the alternative

hypothesis is a value of the test statistic lower than zero, in a MS framework there can

be positive values of the test statistic in given states. This indicates the presence of

an explosive process as argued in Hall et al. (1999).

In order to assess whether the estimated coefficients significantly differ from zero,

Chen (2011) makes use of their standard deviations. He justifies this citing Gabriel

et al. (2002), who come to the conclusion that testing for cointegration in a MS model

can be accomplished by means of the standard errors. This approach seems to of-

fer quite reasonable results and is used in this paper. However, as argued by Hall

et al. (1999), the distribution of the test statistic under the null is unknown in a MS
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framework. Hence, they parametrically bootstrap the model under the null to obtain

critical values for hypothesis testing. They show through simulations that this is in-

deed a reliable approach. For completeness I make use of this approach as well. In

particular I bootstrap the model in the vein of Psaradakis (1998).

It is usually the case that both standard deviations and bootstrapped critical val-

ues offer similar conclusions. Although, a note of caution is required when using the

bootstrap technique. For instance, due to the highly nonlinear nature of the models,

bootstrapping may not be a very accurate procedure. There are many local optima

that the estimation could converge on. This may lead to a diverse range of critical

values. Indeed, when running 2000 bootstrap replications for a given model several

times, the critical values are found to diverge by a not too small amount in some

cases. For more than two-state models this problem could potentially become even

more severe. Of course, one could increase the number of bootstrap replications in

the hope of alleviating this issue, however it is still not certain whether this would

lead to an improvement in accuracy since the asymptotic properties of the bootstrap

are not really known. Moreover, it would be a notoriously time consuming exercise.

Therefore, it is advisable to not only rely on the bootstrapped critical values.

3.7 Empirical results

In the analysis that follows, I order the first state as being the one with the lowest

value of the φ1 parameter. In other words the states are classified as going from most

"stationary" to least "stationary". Note that this in no way puts any restrictions on

the parameter estimates since the states can be ordered in whichever way is desirable.

Naturally, this is also done for the bootstrapped critical values.

For better clarity, I begin with the results of the 2-state models and subsequently

present the results of the 3-state models. The final part of the section provides a

summary of the results.

3.7.1 Results of the 2-state models

The most copious model is the one with two Markov states. This is always favored by

the selection criteria in Psaradakis and Spagnolo (2006). It is the most parsimonious
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configuration that can potentially distinguish between stationary and non-stationary

periods.

The parameter estimates of these models are given in Table 3.4. So as not to take

up too much space, the autoregressive parameter estimates for models with more

than one lag order are not reported. Further, it is indicated which coefficients are

stationary, φ̂1(m) < 0, and which coefficients are explosive, φ̂1(m) > 0,m = 1, . . . M .

The criteria used to test this are discussed in the previous section, namely the stan-

dard deviations and the bootstrapped critical values. Since standard deviations are

reported, it is straightforward to see which criterion accepts/rejects the null hypoth-

esis. Significance is concluded at the 10% level.

In most cases the estimate of φ1(1) is negative, while that of φ1(2) is positive. Usu-

ally this is indicated as significantly different from zero by at least one criterion. In

some cases both criteria reach the same conclusion, which makes it easy to classify

the given state. To obtain a better picture of each state it is further necessary to ob-

serve the smoothed probabilities; these are shown in Figure 3.1. Note that, for a 2-

state model, the smoothed probabilities of state 2 are the mirror images of those of

state 1.

Starting with the first country, Argentina, it can be seen that it has a stationary

and an explosive state according to at least one test criterion. It is the country with

the largest debt default in history. This happened a year after its economic collapse of

2001, at a time when its GDP had declined by 20% in four years. Argentina’s economy

has already recovered and its debt is now at around 40% of GDP. Regardless of this

rather chaotic debt history, Argentina is one of the only countries in Table 3.2 to have

a stationary debt process. This may not be very heartening for the investors who lost

money during the Argentine default. It also illustrates the limitations of only looking

for unit roots and concluding on debt sustainability. The MS model offers a way of

obtaining information about the different states that the Argentine debt process finds

itself in.

The smoothed probabilities in Panel (a) of Figure 3.1 reveal that the second state

is associated with tumultuous periods in Argentina’s history. The most notable being

the severe stagflation of the 1980s and 1990s along with the debt default associated

with the economic collapse of 2001. Clearly, state 2 follows a more volatile pattern
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Figure 3.1: Smoothed probabilities of State 1, solid line (left axis) with the respective

debt/GDP series, dashed line (right axis)
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Figure 3.1: (continued) Smoothed probabilities of State 1, solid line (left axis) with the respec-

tive debt/GDP series, dashed line (right axis)

than state 1. This is reflected in the estimate of the variance of the second state,

which is huge in comparison to that of state 1. Even the crisis of the late 2000s was

not enough to plunge Argentina’s debt into the more volatile state. In fact, the boot-

strapped critical values (not reported here) indicate that the second state is highly

explosive, with a coefficient of well beyond the 1% critical value.

From the point of view of an investor, it is good to know that the Argentine debt

process currently finds itself in the less volatile, stationary state. However, its other

state is explosive and associated with very extreme events, such as a severe stagfla-

tion and a debt default. It may still mean that, overall, the path of Argentine debt is

uncertain. This is more than can be said by simply looking at the ADF and KPSS test

values in Table 3.2. It is one of the merits of using a MS model.

Moving on to Finland, Table 3.4 shows that both coefficients of φ1 are negative

and significantly so according to at least one test criterion. From Panel (b) of Fig-

ure 3.1 it is clear that the first state depicts more stable periods. It is absent during

both World Wars, the Finish depression of the early 1990s and the recent financial

crisis. Currently, Finland’s debt process is in the first state. With a debt-to-GDP ratio

of below 50%, Finish debt seems to be on a sustainable path. It is also one of the few

countries to have a stationary debt process according to both the ADF and KPSS tests
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in Table 3.2.

France is the opposite of Finland, the estimated φ1 coefficients are significantly

positive according to at least one criterion, (the bootstrapped critical values). This

means that France has two explosive or at least non-stationary unit root states. Its

smoothed probabilities do not seem to convey too much additional information. The

second state follows shortly after the 1973 oil crisis and its last occurrence is during

the financial crisis. It seems that the second state captures periods of higher volatility,

as can also be seen by the variance estimates. France is currently in the less volatile,

though still non-stationary state. Such a state could be labeled as quasi-stable as in

Chen (2011). However, these results seem to indicate that France’s debt may not be

on a sustainable path.

Germany is the country with the shortest data range, starting from 1951. Even

though data starting from after WWII is standard in the literature, there is the possi-

bility that very long-term debt cycles are not captured.17 This could potentially lead

to inaccurate conclusions as is the case for all countries with short data ranges. This

issue is investigated in detail in the next section on model robustness.

Although the parameter estimates of both φ1 coefficients for Germany are posi-

tive, they are not significantly so according to both test criteria. Both states can hence

best be characterized as having a unit root. The smoothed probabilities for Germany

in Panel (d) of Figure 3.1 show that its debt process is currently in the second state.

This is also the slightly more volatile of the two unit root states and has a positive

intercept term. As already noted, a unit root does not necessarily mean that debt is

headed toward unsustainable levels. The data show that until the mid 1970s, German

debt-to-GDP was fluctuating at around the 20% level, since then it has been steadily

on the rise with the latest estimate for 2011 putting it at above 80% of GDP. A unit root

state means that the path of German debt is uncertain.

Greece also has both estimates of φ1 above zero. However, unlike Germany, they

are significantly positive. In fact, the estimate for the second state is positive accord-

ing to both test criteria. Thus it can confidently be concluded that the second state is

explosive. From the smoothed probabilities in Panel (e) of Figure 3.1, it can be seen

17Reinhart and Rogoff (2011) claim that these cycles can persist for half a century or more. In fact the UK

debt/GDP process seems to have cycles lasting for more than a century.
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that, unfortunately, Greece’s debt is currently in the explosive, more volatile state.

The first time its debt process was in that state was during the 1980s, which were

characterized by a period of high inflation and weak economic growth.18 The first

state, on the other hand, captures the Greek economic miracle from 1950 through the

1970s, as well as the stabilization and high growth that followed the turbulent 1980s.

Since Greek debt is currently in the second explosive state, which is associated with

adverse economic conditions, its current debt levels are probably unsustainable.

Similar to Greece, ever since the financial crisis, Iceland has been marred by debt

problems. The φ1 parameter estimates for Iceland are slightly negative and fairly

positive for states 1 and 2, respectively. Since the estimate for state 1 is insignificantly

different from zero, it could be characterized as a unit root state. State 2 seems to

be explosive according to bootstrapped critical values. The smoothed probabilities

in Panel (f) of Figure 3.1 show that state 2 is indeed associated with more turbulent

times. The first occurrence of this state was for a brief spell during WWI, while the

second one is at present. This also explains the much higher variance estimate of

that state compared to the first state. Overall, the first state seems quasi-stable, as

characterized in Chen (2011), while the second state seems to be one in which the

debt path may be unsustainable. These results also raise the question as to what kind

of government actions could throw a country into a situation that it only experienced

once before; during the dark days of a world war.

Japan as well fares similarly to Greece. Its second state is characterized as explo-

sive by both criteria - well beyond the 1% bootstrapped critical value. Its first state

is also indicated as explosive according to bootstrapped critical values. Currently,

Japanese debt is in state 1, although the smoothed probabilities show that this is a

rather transitory state.19 It seems to capture periods during which debt is either in-

creasing and decreasing or only decreasing. State 1 is present during the world wars

and, hence, it is the more volatile of the two states according to variance estimates.

What is remarkable is the rampant growth of Japanese debt since the Lost Decade of

the 1990s. It currently stands at above 200% of GDP. Since Japanese debt only seems

to have explosive states - one of which is explosive according to both criteria and per-

18Inflation throughout the 1980s was at an average of 19% while average GDP growth rate was 0.7%.
19State persistence is given by 1/(1−pmm ), for m = 1, . . . , M , in this case the first state is said to persist for about

12 years.

89

Velinov, Anton Stoyanov (2013), On using markov switching time series models to verify structural identifying restrictions and to 
assess public debt sustainability 
European University Institute

 
 

DOI: 10.2870/80034



sists for long time periods - it is not likely that its debt path is sustainable. Again there

is a curiosity as to how long investors will continue to be attracted to the ever growing

debt of a country with little to negative economic growth.

Both testing criteria indicate that both states of Norwegian debt are significantly

stationary. The second state seems to capture more volatile periods as indicated by

the variance estimates. Norwegian debt is now in its less volatile state and can accord-

ingly be classified as being on a sustainable path. Norway is a large oil and natural

gas exporter, which is clearly helpful in creating current account surpluses to stabilize

excess deficits.

Both states of Portuguese debt can be characterized as having a unit root since

their φ1 parameter estimates are very close to zero. Panel (i) of Figure 3.1 shows that

the states have changed in a rather erratic way during the years up to and includ-

ing WWI. Clearly, as the variance estimates also show, state 1 is associated with less

volatile periods, for instance the high growth period of 1950 - 1973. Note that the mil-

itary coup of 1974 is in this state as well, indicating that this event did not destabilize

government debt too much. Currently, Portugal’s debt is in state 2, the unit root state

with the higher variance. A unit root state means that it is uncertain as to whether

debt levels are likely to be sustainable.

Sweden has the second longest sample after that of the UK, beginning in 1719,

shortly before the end of the Great Northern War (1700 - 1721). Since that war there

were numerous conflicts with Russia, which occurred until the early 1800s. This can

be observed in the debt-GDP series, the dashed line in Panel (j) of Figure 3.1. Even

these times of conflict did not push Swedish debt to much above 40% of its GDP. The

19th century brought about a period of industrialization and modernization to Swe-

den. This kept its debt in relation to GDP at stable and low levels. After that only

WWII and the crisis of the 1990s seem to have caused large rises in debt. Government

debt reached its highest level of almost 80% of GDP in 1994. From 1998 onwards the

Swedish government has run budget surpluses, except for 2003 and 2004, and has

reduced its debt burden to around 35% of GDP. Both states of Swedish debt are there-

fore, indicated as stationary according to one of the testing criteria.20 The first state

20Even though parameter estimates of the φ1 coefficients are close to zero, the long data range leads to more

precise estimation results thereby making it easier to determine significance.
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captures less volatile periods than the second state - as can be seen by the variance

parameter estimates and the model smoothed probabilities. Currently, the Swedish

debt process is in the second sate, the more volatile stationary state. This state is also

associated with large downward movements in the debt series, which could explain

why Swedish debt is currently in it. Overall, this analysis suggests that Sweden has a

sustainable government debt.

Switzerland appears to have a stationary and a unit root state, where the station-

ary state is the less volatile one. The smoothed probabilities clearly depict state 2 as

being the WWII state, in which Swiss debt spiked to close to 80% of GDP in 1945. All

remaining time periods have been in state 1. Accordingly, state 1 can be labeled as

stationary, or at least quasi-stable as in Chen (2011), which means that Swiss debt is

currently on a sustainable path.

The UK is the country with the longest data range, with the first observation start-

ing in 1692.21 The series is depicted in Figure 3.1, (l) by the dashed line. Ever since

it began, it has seen a persistent growth throughout the 18th century, the result of

numerous conflicts such as the American War of Independence and the Napoleonic

Wars. After the Battle of Waterloo (1815) this figure reached to more than 200% of GDP.

Since that spike government debt gradually fell over the years to a mere 25% of GDP

just prior to the outbreak of WWI.22 The above-mentioned pattern repeated itself in

the years following WWI. Government debt soared again to over 200% of GDP by the

end of WWII, only to "slowly" drop to a low of 25 % of GDP in 1992. It is currently

estimated to be at about 80% in 2011.23 This illustrates the claim made by Reinhart

and Rogoff (2011) that government debt can be subject to cycles persisting for half a

century or more.

The relevant coefficient estimates for the UK are both close to zero with small
21This was before the establishment of the Bank of England, (1694) and before the treaty of Great Britain, (1707)

that resulted in the political union of the Kingdom of England and the Kingdom of Scotland.
22This is a good example of the critique by Bohn (2007). If we were to observe the UK debt-to-GDP series from

its initial period until the early 1800s we would conclude that the PVBC is violated, since there seems to be a unit

root in the debt trajectory - this is indeed confirmed by the ADF and KPSS test, the latter giving a test statistic

value of 5.57, far above the 1% critical value of 0.74. However, this conclusion would in the end be an erroneous

one, since in the subsequent years that followed, the UK has managed to reduce its debt burden. Hence, a unit

root in the debt/GDP process does not necessarily mean that government debt is on an unsustainable path.
23A good summary on the UK public debt series can be found at http://www.ukpublicspending.co.uk/debt_brief.php
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standard errors - the large number of observations improves estimation precision.

State 1 can be characterized as stationary by both criteria, while state 2 is a unit root

state associated with higher volatility. Judging by the smoothed probabilities, state 1

is more often associated with periods in which the debt/GDP ratio has been declining.

State 2 tends to capture many of the war years and other such turbulent times. At

present it appears that the UK’s debt is in such a situation as characterized by the

second state.24 Since this is a unit root state, it is not certain how sustainable the

UK’s debt really is. Fortunately, the other state is stationary, which bodes well for

British debt.

The last country with a 2-state model is the US. It too has a long data series, start-

ing from 1790, slightly after the American War of Independence. Although compara-

ble in length, its series is by no means as colorful as that of the UK. From the dashed

line in Figure 3.1, (m) one can notice that most of the time American debt/GDP has

been very low. This is with the exception of some major events, such as the War

of 1812, the American Civil War of the 1860s, the World Wars and the Great Depres-

sion, where government debt has seen significant rises with respect to GDP. Note that

debt/GDP was declining throughout the whole period of the Vietnam War. Both φ1

parameter estimates are very close to zero and indeed indicate that both states are

unit root states. State 2 has a higher variance than state 1. From the smoothed prob-

abilities it can be seen that state 2 captures the more politically and economically

unstable periods already mentioned. Currently, American debt is in the more volatile

unit root state making the sustainability of its debt path uncertain. One must also

keep in mind that American debt/GDP is close to its record highs.

3.7.2 Results of the 3-state models

All 3-state models for the three countries investigated are the same, namely the MS(3)-

ADF(1)AH model. The single lag implies that all of the parameter estimates for each

country are reported in Table 3.5.25 The relevant smoothed probabilities are depicted

in Figure 3.2. Note that, unlike with the 2-state models, no probabilities can be mirror

images of each other and hence, all are shown.

24The current smoothed probability for this state is slightly above 50%.
25The only exception is three unrestricted transition probabilities parameters.
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Table 3.5: Parameter estimates for 3-state models, standard devia-

tions in parentheses.

Parameter Ireland Italy Spain

ln(`) 253.358 484.514 484.160

p̂11 0.902 (0.037) 0.929 (0.206) 0.870 (0.057)

p̂22 0.922 (0.050) 0.969 (0.221) 0.887 (0.303)

p̂33 0.709 (0.174) 0.976 (0.011) 0.882 (0.054)

ν̂ 1.210 (1.024) 2.028 (0.700) 1.586 (0.595)

φ̂1(1) -0.086 (0.018)† -0.043 (0.012)† -0.103 (0.024)†

φ̂1(2) 0.017 (0.016) -0.037 (0.026) -0.013 (0.027)

φ̂1(3) 0.188 (0.075)**¶ -0.008 (0.011)¶ -0.010 (0.024)¶

σ̂2(1) 8.921 (2.266) 3.198 (1.177) 4.480 (2.723)

σ̂2(2) 12.798 (3.996) 242.124 (59.226) 255.035 (102.623)

σ̂2(3) 36.580 (16.853) 29.728 (4.770) 16.574 (3.869)

¶ The current state.
† Stationary according to one criterion.
** Explosive according to both criteria.

Starting with Ireland, from the estimated φ1 coefficients, it seems that state 1 is

stationary, state 2 follows a unit root, while state 3 is clearly explosive as indicated by

both testing criteria.26 The smoothed probabilities show that Irish debt is currently

in the third state, which is explosive and is also the most volatile state. The first state

captures periods in which debt/GDP is stable or slightly declining, as can be seen

by the dashed line representing the series. The second state shows periods in which

debt/GDP is moderately increasing. Since Irish debt is currently in the explosive state,

it is not likely to be sustainable.

For Italy, all three values of the φ1 coefficients are negative. The one for state 1

significantly so according to the standard deviation, while the other two states seem

to be governed by a unit root process. The smoothed probabilities in Panel (b) of

Figure 3.2 show that the first state is associated with stable and high-growth periods.

26A word of caution needs to be noted about the bootstrapped critical values; since these are 3-state models,

the bootstrapped estimates may converge to many different local optima thereby giving a very diverse range of

critical values. This could mean that they may potentially be insensitive to detect coefficient significance.
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(c) Spain

Figure 3.2: Smoothed probabilities of all State 1 (top), State 2 (middle) and State 3 (bottom)

solid lines (left axis) with the respective debt/GDP series, dashed lines (right axis)

From 1951 until 1973 the Italian economy grew at a rate slightly higher than 5% per

annum on average. In fact this was one of the highest growth rates among European

countries.27 The second occurrence of state 1 is from the mid 1990s until before the

financial crisis. Although the economy did not grow at such vigorous rates during

that period, debt/GDP was apparently stable. The second state captures the period

from WWI up to and including WWII. Clearly an exceptional time frame, in which

the debt-income ratio experienced erratic shifts, as shown by the high value of σ̂2(2).

Currently, Italian debt is in the third state, the less volatile of the two unit root states. It

depicts the period of political instability from the 1970s and the economic recession

of that time. Also, it is a period in which debt started to increase to reach 120% of GDP

27This has been documented in Crafts and Toniolo (1996) and in Di Nolfo (1992).
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by the mid 1990s. It is unclear whether this state of Italian debt could be sustainable

and hence, its debt path is at best characterized as uncertain.

The final country investigated in this category is Spain. It has very similar results

as Italy in that the first state seems stationary, while the other two follow a unit root

process. The smoothed probabilities in Panel (c) of Figure 3.2 show that state 1 cap-

tures the economic stabilization of the mid 1950s and the "Spanish miracle" of 1959

to 1975. It ends prior to the early 1990s recession and is present again during the

Spanish property boom of 1997 - 2007. Clearly, state 1 depicts the high-growth, rather

stable periods in Spain’s history. State 2, which is also the most volatile state, captures

some earlier periods in which debt/GDP has had some drastic shifts. Spanish debt

is currently in the third state, which has been quite prevalent in its history. Though

since it is a unit root state - as is the case with Italy - it is uncertain whether Spanish

debt is sustainable at the moment.

3.7.3 Summary

Due to the many country models investigated, it is convenient to have a short sum-

mary of the above results. In particular, Raybaudi et al. (2004) and Chen (2011) in

their analyses took notice of the duration of the states, (1/(1−pmm), for m = 1, . . . , M)

and the current state the debt process finds itself in. This is also a good way to sum-

marize the results obtained here and is presented in Table 3.6.

Naturally, there are some limitations to the general model used in this paper. Most

prominent would be the comparison of states that are characterized in the same way,

across countries. For instance, an explosive state could be more or less severe for one

country than for another country. The same holds true for a unit root state. A further

issue, as discussed before, is the unavailability of long data series for some countries.

This is a problem of empirical work in general. Shorter time series may mean that

very long term debt cycles as noted in Reinhart and Rogoff (2011) are not captured.

Therefore, the conclusions in the last column of Table 3.6 need not be interpreted too

literally, though they can provide a good guidance.

From the table one can see that the debt path of only few countries is charac-

terized as sustainable. This is because it is preferred to err on the side of caution

in concluding a sustainable debt path. Such a conclusion is usually reached if the
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Table 3.6: Durations of regimes and current state of regime by country.

Country (1−p11)−1 (1−p22)−1 (1−p33)−1 Current state Debt path

Argentina 12.8 2.7 - Stationary Uncertain

Finland 10.8 4.9 - Stationary Sustainable

France 4.8 3.5 - Explosive Unsustainable

Germany 7.0 4.2 - Unit root Uncertain

Greece 21.3 8.1 - Explosive Unsustainable

Iceland 38.5 4.1 - Explosive Uncertain

Ireland 10.2 12.8 3.4 Explosive Unsustainable

Italy 14.1 32.2 41.7 Unit root Uncertain

Japan 11.9 20.4 - Explosive Unsustainable

Norway 5.9 4.0 - Stationary Sustainable

Portugal 7.2 2.8 - Unit root Uncertain

Spain 7.7 8.8 8.5 Unit root Uncertain

Sweden 15.1 10.5 - Stationary Sustainable

Switzerland 58.8 12.8 - Stationary Sustainable

UK 12.0 7.0 - Unit root Sustainable

US 16.1 6.2 - Unit root Uncertain

current state is stationary and if it has a longer duration than the other (potentially

non-stationary) state. This is the case for Switzerland and for those countries which

only have stationary states, such as Finland, Norway and Sweden. The UK’s debt is

also labeled as sustainable since the smoothed probability of it currently being in the

unit root state is barely above 50% and its other state is stationary according to both

test criteria. Argentina is absent from this list, since its explosive state is clearly very

severe and were it to occur, it may mean a debt default. Its stationary state only per-

sists for about 13 years, which is not a reasonable enough time span to conclude on

long-term debt sustainability and explains why Argentine debt is mainly issued in

short-term maturities of three to six years.

Most countries with a current explosive state are characterized as having an un-

sustainable debt path. These countries are France, Greece, Ireland and Japan. Per-
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haps it is surprising that France is in this category. This is because both of its states

are deemed as explosive according to at least one test criterion. Since France has a

short time series, it could be that a long term debt cycle has not been captured and

that, in the long run, French debt is indeed sustainable. However, given the current

data used, the model indicates that France’s debt is on an unsustainable path. The

next section on model robustness considers whether the sample size indeed affects

the results in a significant way.

For the countries with unsustainable debt paths, (especially Japan) the explosive

state has a relatively long duration compared to the other (in some cases also explo-

sive) state. One can notice that this is not the case for Iceland. Even though its debt is

in an explosive state at the moment, this state is rather transitory. Its other - unit root

- state lasts for a much longer time period and hence its debt path is at best labeled

as uncertain.

The remaining seven countries, (Argentina, Germany, Iceland, Italy, Portugal, Spain

and the US) all have uncertain debt trajectories. This is because they are currently in

a unit root state, (with the exception of Argentina and Iceland); and in some cases

both of their states are governed by a unit root process, such as Germany, Portugal

and the US. Italy and Spain each have a stationary state, however their other two

states are unit root states. Especially in the case of Italy, its unit root states last for

much longer time periods than its stationary state. Iceland, fairs probably the worst

out of this group, since it has an explosive and a unit root state.

Comparing these results with those in the existing literature is not a straightfor-

ward task since the models and data used differ. For instance, Raybaudi et al. (2004)

using current account data also analyze Argentina, Japan, the UK and the US. They

reach a different conclusion only for Japan. However, no real comparison can be

drawn, since the longest data range they use is from 1970:I - 2002:IV. This excludes,

for example, Japan’s rampant debt increase in the 2000s. Chen (2011), who also uses

current account data, though expanded until 2009:III, reaches the same conclusion

for Portugal and Spain and a different conclusion for Finland. However, again the

data range is much shorter than the one investigated here, starting from 1975:I for

Finland and Portugal and from 1983:I for Spain. Further, only two states are used

throughout the analysis and there is no switching variance term, making the conclu-
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sions - especially for Spain - hard to compare.

Finally, it is worth mentioning that, according to the global stationarity conditions

for univariate MS models by Francq and Zakoıan (2001), all models are found to be

globally stationary. This seems somewhat surprising as conventional unit root tests

in Table 3.2 reject stationarity in most cases. Whether this indicates some lack of

power in the test itself or is indeed a reliable result is an interesting issue to examine.

However, it is beyond the scope and purpose of this paper.

Other potential issues worth considering are refinements that can be made to the

MS-ADF model considered here. For instance, it may be a good avenue to explore

separate parameter switches. There is no reason to assume that all parameters need

to switch simultaneously. Perhaps some interesting dynamics can be captured by

letting them switch separately, according to their own regime. Although, with this

approach there may be some estimation issues when using small samples since the

number of states also needs to increase.

3.8 Robustness Analysis

One potential problem with this analysis is that some countries have a short sample

range and hence, very long term debt cycles may not be captured. Even though it is

standard practice in the literature to use data starting from after the war years, this

may provide erroneous results. Other issues to consider are about the model specifi-

cations used in this paper. Would similar results be obtained by just using two-state

models, and how can the results be compared with the model used in Chen (2011)?

These issues are investigated in this section.

3.8.1 Shortening the data

An easy way to determine whether the results are subject to the data range used is

to cut the sample, re-estimate the parameters and observe if any of the conclusions

change. This approach is naturally, only feasible for the countries with longer time

series. Further, when using a shorter sample size, in most cases the lags are reduced

since Portmanteau tests indicate no residual autocorrelation at lower lag orders.

For example, starting from the beginning of the 1950s for Argentina, Finland, Japan,
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Sweden, the UK and the US, the new smoothed probabilities of being in state 1 are

depicted in Figure 3.3. One can see that, with the exception of Japan, the smoothed

probabilities for the period examined are almost identical to the ones in Figure 3.1.

However, parameter estimates indicate different conclusions about the nature of the

states. For instance, state 2 for Argentina, Finland and Sweden is now a unit root state,

while for the UK it is a stationary state. State 1 remains the same as before in all cases

except for the US, where it is indicated as a stationary state. The above conclusions

would nevertheless, probably be unchanged for these countries, given the duration

of the states and current debt levels. For example, even though Swedish debt is cur-

rently in a unit root state, it is a transitory state, which also captures large downward

movements in the debt/GDP ratio. The only exception is perhaps Argentina, where

the explosive state is now attenuated to a unit root state.

As already noted, the smoothed probabilities for Japan with the short data sam-

ple28, (Figure 3.3, (d)) look very different to the ones for the same period when using

the full data range, (Figure 3.1, (g)). Parameter estimates however, indicate that the

same conclusion as before still holds, since now both states are indicated as explosive

by both test criteria.

For the remaining countries in Figure 3.3 the same analysis is conducted, except

with different starting dates. For instance, taking data from shortly after WWI ex-

cludes the first occurrence of state 2 for Iceland. This leads to the same smoothed

probabilities as before, however, the model now indicates that state 2 is an absorbing

state. In other words, going back to the 1920s, the Icelandic debt process has never ex-

perienced a similar state as it is currently in. Parameter estimates confirm, as before,

that state 1 is a unit root state, while state 2 is an explosive state. From this example it

is also clear that a MS model is more general than say a smooth transition (ST) model.

If there happens to be an absorbing state it is captured; however, unlike a ST model,

a MS model allows for switches back to the original state if the data do so indicate.

Finally, trimming the data series of Portugal to start from 1930 removes the spo-

radic shifts from the earlier period in the smoothed probabilities, (Figure 3.1, (i)) and,

hence, shows a higher persistence of state 1, (Figure 3.3, (e)). Parameter estimates

reaffirm that both states are still unit root states.
28The sample starts from 1955 in order to avoid interpolation issues.
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(a) Argentina
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(c) Iceland

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
0

0.5

1

S
m

oo
th

ed
 P

ro
ba

bi
lit

ie
s

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
0

100

200

D
eb

t/G
D

P

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
0

0.5

1

S
m

oo
th

ed
 P

ro
ba

bi
lit

ie
s

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
0

100

200

D
eb

t/G
D

P
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(g) UK
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(h) US

Figure 3.3: Smoothed probabilities of State 1 with shorter sample ranges.

Removing periods of economic and social upheaval from the data usually does

not change the smoothed probabilities compared to the original ones over the same

time period. State 1 is almost always the same as before. However, state 2 sometimes

changes its characteristic. Nevertheless, in most cases the original conclusions are

still upheld, making the model rather robust to the sample size used.

3.8.2 Using only two states

Only Ireland, Italy and Spain have models with three Markov states. It is argued that

such models fit their data well and portray a better picture than a 2-state model can.
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(a) Ireland
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(b) Italy
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(c) Spain
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(e) Spain

Figure 3.4: Smoothed probabilities of State 1 for Ireland, Italy and Spain using a two-state

model and with shorter sample ranges for Italy and Spain.

In particular, there are periods for Italy and Spain, which have caused violent shifts

in their debt/GDP series - that are captured by one of the states in a 3-state model.

Nevertheless, using only a 2-state model for their data, the smoothed probabilities of

being in state 1 are shown in Panels (a) through (c) of Figure 3.4.

When comparing Panel (a) of Figure 3.4 with Panel (a) of figure 3.2, one can see

that the smoothed probabilities of state 1 for Ireland appear very similar in both mod-

els. In the 2-state model, state 1 is deemed as stationary according to standard errors,

while state 2 is a unit root state. The 2-state model has mixed the unit root and the

(short-lasting) explosive state into one. At best Irish debt can now be characterized

as uncertain, since it is currently in the unit root state and that state has a longer

duration than the stable state.

For Italy and Spain the results are even more extreme when using only two states.

In both cases, state 1 in the 2-state model is a mixture of states 1 and 3 of the three-
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state model. The fact that state 2 of the 3-state model stands out on its own could be

because it captures periods of very high volatility. For Italy, both states are unit root

states, and the more stable first state of the 3-state model can no longer be distin-

guished. For Spain, state 1 is stationary according to standard deviations, (although

its coefficient point estimate is less negative than before) while state 2 is a unit root

state.

Starting the analysis after WWII and WWI for Italy and Spain respectively excludes

the very volatile periods from the sample. The smoothed probabilities with this shorter

data range are shown in Panels (d) and (e) of Figure 3.4. Now the periods captured by

states 1 and 2 in the 2-state model are almost identical to the ones captured by states

1 and 3 in the 3-state model. Parameter estimates reveal that state 1 is stationary (ac-

cording to standard deviations) and state 2 is a unit root state. These are exactly the

same conclusions as before.

Using fewer states is more parsimonious, however, it also means that some rich

data dynamics may not be captured. In this case, even when using fewer states, the

original conclusions for these countries’ debt trajectories remain largely unchanged.

3.8.3 Using a standard model for all countries

This paper advocates in favor of selecting a proper model for a given time series. In

particular, Kremers (1988) shows that not using the proper lag order - to remove resid-

ual autocorrelation - could lead to erroneous conclusions. Whether the more general

models in this paper indeed offer an improvement can be seen by comparing their

results with the results one would obtain by using the model in Chen (2011). This

model is a simplified version of equation (3.6) of the form

∆Bt = ν(St )+φ1(St )Bt−1 +ut , (3.7)

where ut ∼ Nid(0,σ2). In other words, there are no further lag orders involved and no

switching variance. Further, no more than two states are considered.

Figure 3.5, (a) shows the typical smoothed probabilities of being in state 1 when

using model (3.7). For all data series starting from before the war years, the smoothed

probabilities resemble those of the UK, the only exception being Japan. For the UK,

the first state is still deemed as stationary, while the second one is a unit root state 1.
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(b) Iceland

Figure 3.5: Smoothed probabilities of State 1 using model (3.7).

This model is mainly capable of capturing sudden changes in the series investi-

gated. Furthermore, the magnitude of the intercept is often at logical odds with the

estimate of the autoregressive parameter. In other words, a state may depict periods

that are supposedly more (less) stable, but have a higher (lower) debt/GDP level. This

is also found in Raybaudi et al. (2004) and Chen (2011), although it is not commented

upon. In that vein it is worth noting that the smoothed probabilities for Iceland when

using model (3.7), depicted in Panel (b) of Figure 3.5, show the financial crisis period

as a unique event in Iceland’s debt history. However, the parameter estimates of φ1

are very similar in both states and are insignificantly different from zero. This is be-

cause the intercept parameter in the absorbing state is roughly 50 times higher than

it is in state 1. Hence, the previously explosive state, has now turned into a unit root

state with a much higher intercept term. Such a result ultimately characterizes both

states as unit root states making them therefore indistinguishable from each other. In

other words the explosive nature of the second state is no longer apparent when using

model (3.7). Although, the original conclusions for both Iceland and the UK would

probably be unchanged, clearly some interesting dynamics cannot be captured by

model (3.7).

Further, in most cases, when using long-range data, the residuals from model

(3.7) show significant signs of autocorrelation. This is the case for instance with Swe-

den, the UK and the US among others. This renders the conclusions of this model

subject to the critique in Kremers (1988), thereby making its results ambiguous. Fi-

nally, this model is not robust in terms of reducing the sample size. Unlike the mod-

els used in this paper, when using (3.7) the sample length matters for the results one

would obtain. Trimming the sample as is done in the earlier part of this section does

not give similar conclusions in most cases.
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Overall, the models used in this paper do offer an improvement to existing models.

They help to better classify different states and are more robust to the sample range

used. They are also designed in such a way as to avoid any residual autocorrelation,

thereby giving some validity to their findings.

3.9 Conclusion

This paper makes use of a Markov switching ADF (MS-ADF) model to assess the sus-

tainability of public debt by testing whether a government’s present value borrowing

constraint (PVBC) holds. Building on the work of Raybaudi et al. (2004) and Chen

(2011), the model in this paper is of a very general form. The number of lags and

states are in principle unrestricted and all of the parameters can be switching. This

makes the model resilient to the critique in Kremers (1988), who shows that excluding

higher lag orders may mean that there is still residual autocorrelation present, which

could lead to erroneous conclusions.

Using the data set from Reinhart and Rogoff (2011), it is possible to obtain long

time series on debt/GDP for many different countries. This is in contrast to most

of the literature, which uses data starting from after WWII. In total 16 countries are

investigated. Several diagnostic tests indicate the presence of structural breaks and

nonlinearities in the parameters. This warrants the need of using a MS model. Such

a model is appropriate since it is very general and can therefore encompass other

models. For instance, a smooth transition model can be thought of as a MS model

with an absorbing state. To test the null hypothesis of a unit root in each state, I make

use of parameter standard deviations as in Chen (2011) and bootstrapped critical

values as in Hall et al. (1999).

The countries with a sustainable debt path are found to be Finland, Norway, Swe-

den, Switzerland and the UK. These countries either only have stationary states or

their debt is currently in a stationary state. In contrast, the model indicates that

France, Greece, Ireland and Japan have unsustainable debt trajectories. This is be-

cause their debt is currently in an explosive state and in some cases both states are

explosive. The remaining seven countries, (Argentina, Germany, Iceland, Italy, Por-

tugal, Spain and the US) are all found to have uncertain debt trajectories. This is be-
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cause their debt is currently in a unit root state (with the exception of Argentina and

Iceland); and in some cases both of their states are governed by a unit root process.

Robustness tests are performed to investigate the validity of the original findings.

First, the influence of the sample size on the results is determined by shortening the

original data and observing whether any of the original conclusions change. It is

found that the smoothed probabilities are in most cases almost identical for the short

and long sample ranges over the same time period. State 1 is usually the same as

before. However, state 2 sometimes changes its characterization and is less persistent

than before. Most of the conclusions are nevertheless, unchanged, making the model

largely robust to the sample size used. Second, two Markov states are used for all

models originally in three states. The original conclusions are unchanged when using

fewer states, however some of the rich dynamics in the data are not captured with

only two states. Finally, the more general MS-ADF model in this paper is compared

with the one in Chen (2011). Both the smoothed probabilities and the parameter

estimates are more meaningful for the model proposed in this paper. Residuals of

the model advocated in this paper are also not subject to autocorrelation, thereby

warranting the conclusions as Kremers (1988) observes. Further, unlike the model in

this paper, the model in Chen (2011) is not robust to the sample range used. Overall,

it is found that this model is an improvement to existing models investigating debt

sustainability.
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