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Abstract 
Integrated quarticity, a measure of the volatility of volatility, plays a key role in analyzing the 
volatility of financial time series. As it is an important ingredient for the construction of accurate 
confidence intervals for integrated volatility, its accurate estimation is of high interest. Given that it 
includes fourth order returns, it is relatively hard to estimate. This article proposes a new, very 
efficient and jump-robust estimator of integrated quarticity -based on intraday open, high, low and 
close prices (ohlc data) -  and compares its performance to that of the realized quarticity. 

Keywords 
Volatility, integrated quarticity, high-low prices, high-frequency data, jumps. 
 
 
 
 
JEL-codes: C10, C13, C14, G10 
 
 
Janine Balter 
Max Weber Fellow, 2012-2013 
Janine.Balter@EUI.eu 
 

mailto:Janine.Balter@EUI.eu




Introduction

In finance, volatility is understood as a measure of the variation in the price of a financial
instrument over time. Thus, it is one measure of the risk inherent in that financial instru-
ment. Consequently, volatility plays an indispensable role in asset and derivative pricing,
portfolio optimization and in investment decision making (see Busse (1999), Bollerslev and
Mikkelsen (1999) or Fleming et al. (2003), among others). As volatility is unobservable, its
appropriate estimation is a key issue. The measurement of volatility had a breakthrough
with the availability of high-frequency data. Based on intraday returns, Andersen and
others (2011) constructed the realized variance, RV (the expression realized volatility is
often used synonymously in the literature). Barndorff-Nielsen and Shephard (2002) were
able to show that for general semimartingales, RV converges in probability to the quadratic
variation of the process when the number of intraday observations N increases (the time
between the observations decreases). The quadratic variation is composed of integrated

volatility, IV :=
∫ 1

0
σ2
sds, and the sum of squared price jumps. Therefore, in the case of no

price jumps, RV is a consistent estimator of the continuous part of volatility, IV. Integrated
volatility is of high importance in option pricing theory, where the price of an option usu-
ally depends on the integrated volatility of the underlying stock price (see, for example,
Hull and White (1987) or more recently Corsi et al. (2013)). By means of certain finan-
cial instruments, for example variance swaps, it is also possible to speculate on volatility
itself. Hence, there is an interest in constructing confidence intervals for integrated volatil-
ity. Barndorff-Nielsen and Shephard (2002) showed that in the absence of price jumps,
the

√
N-scaled difference between RV and IV is mixed-normal distributed with a variance

depending on the (unfeasible) integrated quarticity IQ :=
∫ 1

0
σ4
sds. Consequently, IQ is a

critical ingredient when it comes to the construction of confidence intervals for IV. How-
ever, the estimation of integrated quarticity is particularly hard as it involves the fourth
power of returns, which are even more exposed to measurement errors than squared ones.
In addition to the requirement of accurate estimates, the efficiency of the estimator plays
another important role: an estimator of IQ which is two times more efficient than an
alternative estimator reduces the length of the confidence interval by a factor of

√
2.

Besides this, IQ is also attractive for itself as it describes the fluctuations in volatility. The
importance of (knowledge about) the fluctuation in volatility should not be underrated
as it constitutes a part of the risk investors are confronted with. See, for example, Carr
and Wu (2009), who stated “When investing in a security, an investor faces at least two
sources of uncertainty, namely the uncertainty about the return as captured by the return
variance, and the uncertainty about the return variance itself.” Further, Christensen et al.
(2011) noted that unexpected changes in prices can often be attributed to changes in
volatility instead of being attributed to the occurrence of price jumps. Consequently,
Barndorff-Nielsen and Veraart (2012) established a stochastic volatility model which allows
for stochastic volatility of volatility. With this model, heavy fluctuations in volatility can
be established.

Recently, special attention has been paid to the estimation and performance of integrated
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quarticity. The well-known realized quarticity, which is constructed from the fourth power
of intraday returns, is a natural estimator of integrated quarticity and is a straightforward
extension of the concept of realized variance. Unfortunately, it fails under many realistic
scenarios. For example, it is not consistent if the underlying price process exhibits jumps
(see Barndorff-Nielsen and Shephard (2002)).

The first consistent estimators of IQ in the case of jumps of finite activity were provided by
Barndorff-Nielsen and Shephard (2002). They extended the theory of multipower variation
estimators to the fourth power. These estimators are based on the multiplication of a fixed
number of adjacent fourth-power intraday returns. The idea is to mitigate the influence
of a possible jump by multiplying the absolute value of the affected intraday return by
the absolute value of adjacent, unaffected intraday returns. Clearly, this requires the
assumption that not too many (adjacent) intervals contain a jump. Generally, lower order
multipower-based statistics (by order, we refer to the number of adjacent returns which are
multiplied) are more efficient but less jump-robust than those of a higher order. This leads
to a trade-off between efficiency and jump robustness. Moreover, Veraart (2010) showed
that in volatility estimation, multipower variations of orders up to ten generate a finite
sample bias when the underlying process contains price jumps (see also Corsi et al. (2010)
and Barndorff-Nielsen et al. (2006)). Regarding multipower-based estimators, we also face
a trade-off between locality and jump robustness. The reason is that the estimator’s value
of the i-th intraday interval includes not only the information contained in the i-th interval
but also the information from the adjacent intervals. Hence, the higher the order the less
local the multipower-based estimator is. This can especially result in a bias when volatility
fluctuates heavily.

Recently, Kolokolov and Renò (2012) analyzed the efficiency of truncated multipower vari-
ation estimators. These estimators are an extension of the standard multipower variations
(see Corsi et al. (2010)). The idea is to increase the robustness to jumps (under competi-
tive efficiency) by computing the estimators on the basis of intraday returns which are not
influenced by jumps. An appropriate threshold for the returns was provided by Mancini
(2009). Kolokolov and Renò (2012) figured out that (truncated) multipower variations with
equal exponents (like tripower quarticity, where each of the adjacent returns is taken to the
power 4/3) are not the most efficient ones within the class of possible estimators. Hence
they determine the vectors of exponents which generate estimators of higher efficiency. Ad-
ditional symmetrization leads to estimators which have a distinctly smaller mean square
error compared to commonly used multipower variations.

Andersen et al. (2012) introduced two jump-robust estimators of integrated quarticity,
which are also based on adjacent intraday returns. Instead of multiplying, they choose
the minimum or median of two and three adjacent returns respectively in order to reduce
the influence of jumps. In Andersen et al. (2011), they further suggested to use a cer-
tain filtering procedure when it comes to the estimation of integrated powers of volatility,∫ 1

0
σp
sds. This filtering procedure enhances the estimator’s robustness to noise and to pos-

sible outliers in the data. It takes a fixed number m (a block) of adjacent intraday returns
(a block of size smaller than 6 is suggested). Then, an unbiased local estimator of the p-th
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power variation is computed for each block. This is done by raising a fixed number j<m of
returns of each block to p-th power (for example the j largest returns) and to scale them
appropriately. Among these candidates of unbiased estimators, the best one is chosen (for
example by taking the minimum or median of the estimates). Another appropriate scaling
(where the scaling depends on the chosen composition) yields the final unbiased estimator.

Mancino and Sanfelici (2012) provided a framework for the estimation of both spot and
integrated quarticity. It is an extension of Mancino and Sanfelici (2008), were estimators
for the integrated volatility, based on the calculated Fourier coefficients of the volatility
process, are established. By linking the Fourier series of the underlying price process
(without jumps) with the one of the volatility process, the zero-th Fourier coefficient of
the fourth power of volatility can be calculated. This serves as an estimator of integrated
quarticity, which is characterized by not being sensitive to certain microstructure noise
effects.

Independent from this work, Jacod and Rosenbaum (2012) provided a framework for the
estimation of integrals of functions (of class C3) of the volatility matrix. The underlying
considered process is quite general, being an Itô semimartingale plus possible price jumps
of finite activity. The idea is to approximate the integral over the desired function of
volatility by Riemann sums and to replace the spot volatility by an appropriate estimate.
This approach is not new. The originality lies in the fact that the authors could provide
two estimators (one makes use of overlapping intervals to stabilize the estimates in the case
of outliers) which allow for an (easily made feasible) unbiased central limit theorem with
convergence rate

√
1/N. Moreover, the authors showed that their estimators are (under

certain assumptions on the model) efficient in the sense that the corresponding variances
reach the lower bounds of the Hajek convolution theorem (see Clément et al. (2013)).

The present work provides an alternative estimator of integrated quarticity which is based
on the ideas on volatility estimation given in Klößner (2009). Its computation is based on
the intraday open, high, low and close (ohlc) values of a log price process and thus takes
into account the full range of prices. Consequently, we might expect estimators of higher
efficiency compared to estimators which exploit just the intraday open and close values.
The use of daily ohlc prices dates from Parkinson (1980) and Garman and Klass (1980).
In fact, Parkinson (1980) found that volatility estimators based on daily ohlc data are over
eight times more efficient than simple squared daily returns. Using intraday ohlc values
in order to estimate volatility was the natural next step. Thus, Christensen and Podolskij
(2007) used the intraday price range (the difference between the highest and smallest value
within each intraday interval) in order to estimate integrated volatility and integrated
quarticity (without providing a central limit theorem for the latter). Unfortunately, some
problems arise with the use of intraday ohlc data, as the correct determination of the
high and low values requires continuous observations. As already pointed out by Garman
and Klass (1980), under discrete sampling, the observed high (low) values will be lower
(higher) than the ones reached under continuous prices. In simulation studies this problem
can be mitigated by choosing the discretization fine enough. Nevertheless, the estimates
remain subject to bias in empirical studies, when – in order to account for microstructure
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noise effects – data are considered at comparably low frequencies. However, the bias-
correction factor of our estimator is not influenced by discrete sampling. The reason is
that it does not depend on the observations (or number of intraday observations) as it is
derived from the common density of the high, low and close values of a standard Brownian
motion and thus is independent from N. In our Monte-Carlo study, it turns out that the
new ohlc-based estimator performs poorly in the case of daily bounce-backs. However, in
the case of stochastic volatility and large daily jumps, it is a highly precise estimator of
integrated quarticity and produces narrow confidence intervals for IV. Its robustness to
adjacent jumps is interesting in particular, as estimators which are functions of adjacent
non-truncated returns are known to react very sensitive to adjacent jumps.

The rest of this article is organized as follows. Section 1 presents the new ohlc-based esti-
mator of integrated quarticity and some alternative estimators provided by the literature.
The properties of the ohlc-based estimator and some of its drawbacks are discussed. The
performance of the estimator is examined by Monte-Carlo simulations in section 2. Section
3 concludes. The detailed proofs can be found in the Web Appendix.

6



1 Theory

Let the log price process p := (pt)t∈[0,1] be defined on a filtered probability space
(Ω,F , (Ft)t∈[0,1], P ) so that p is adapted to the filtration (Ft)t∈[0,1]. We assume that p
follows an Itô semimartingale described by

pt = p0 +

∫ t

0

µsds+

∫ t

0

σsdWs + Jt, (A1)

where (µt)t∈[0,1] is a drift process, which is locally bounded and predictable, W := (Wt)t∈[0,1]
is a standard Brownian motion, σt is the never vanishing càdlàg spot volatility and J :=
(Jt)t∈[0,1] is a pure jump process with jumps of finite activity.

In some cases, we will need some further mild structural assumptions on the volatility
process:

σt = σ0 +

∫ t

0

µ̃sds+

∫ t

0

σ̃sdWs +

∫ t

0

ṽsdBs, (A2)

where (µ̃t)t∈[0,1], (σ̃t)t∈[0,1], (ṽt)t∈[0,1] are càdlàg, (µ̃t)t∈[0,1] is locally bounded as well as pre-
dictable and B := (Bt)t∈[0,1] is a standard Brownian motion independent of W . Obviously,

the Brownian semimartingale p0 +
∫ t

0
µsds+

∫ t

0
σsdWs captures the continuous part of the

price process, while jumps ∆pt := pt − pt− are given by Jt.

We further assume that the intraday open, high, low and close values of p are given on an
equidistant grid π := {0 < 1

N
< ... < N−1

N
< 1} for every trading day:

p i
N

(intraday log prices), (p∗)i,N := sup
i−1
N

≤t≤ i
N

pt (intraday highs)

(p∗)i,N := inf
i−1
N

≤t≤ i
N

pt (intraday lows),

where N is the number of intraday observations and i = 1, ...,N.

First estimators of integrated quarticity IQ :=
∫ 1

0
σ4
τdτ were provided by Barndorff-Nielsen

and Shephard (2002, 2004, 2006). The so-called realized quarticity is a consistent estimator
of IQ in the case of no jumps. It is

RQ =
N

3

N∑

i=1

(p i
N
− p i−1

N
)4

P→ IQ

for N → ∞ and P denotes convergence in probability. It is a natural extension of the
concept of realized variance (RV :=

∑N
i=1(p i

N
− p i−1

N
)2) which is a consistent estimator of

the quadratic variation of a price process. Unfortunately, RQ does not remain consistent
when jumps occur.
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First estimators of IQ which are asymptotically robust to jumps were developed by Barndorff-
Nielsen and Shephard (2004) and Andersen et al. (2007). They are a natural extension of
multipower variation to the fourth power and are formally defined as

MPV(m, 4) := µ−m
4
m

N2

N−m+1

N∑

i=m

| p i
N
− p i−1

N
| 4
m · ... · | p i−(m−1)

N

− p i−m
N

| 4
m (1)

with

µa = E(|Z|a), Z ∼ N(0, 1), a > 0 and m > 2.

MPV(m, 4) converges to IQ in probability for N → ∞. Some commonly used versions are
the realized tripower quarticity MPV(3, 4), the realized quadpower quarticity MPV(4, 4)
and the realized quintpower quarticity, MPV(5, 4). Central limit theorems for estimators
of the form (1) are given under the jump alternative for m > 4. It holds that

√
N(MPV(m, 4)− IQ)

dS→ MN(0, µ−m
4
m

∫ 1

0

σ8
sds), (2)

where µ−m
4
m

is the efficiency factor, dS denotes stable convergence in law and MN stands

for the mixed normal distribution.

A technique to increase the robustness of multipower variation to jumps was suggested
by Corsi et al. (2010). They truncate the intraday returns according to a certain thresh-
old function θt. The necessary requirements on θt were introduced by Mancini (2009).
Precisely, they estimate integrated quarticity by

TMPV(r, 4) := cr,4
N2

N−(m−1)− NJ

N∑

i=m

| p i
N
− p i−1

N
|

4
r1 · ... · | p i−(m−1)

N

− p i−m
N

| 4
rm ·

I{| p i
N

− p i−1
N

|≤θ i−1
N

} ·... · I{| p i−(m−1)
N

− p i−m
N

|≤θ i−m
N

}, (3)

where NJ is the number of intraday returns which are truncated (vanish) due to the indi-
cator functions, the vector r := (r1, ..., rm)

′ has positive, real entries with
∑m

i=1 ri = 4 and
cr,4 := (µr1 · ... · µrm)

−1 is a constant which makes TMPV unbiased. In Corsi et al. (2010)
it is shown that under the two conditions θt → 0 and N−1 log(N)/θt → 0 (for N → ∞)

√
N

(
TMPV(r, 4)−

∫ 1

0

σ4
sds

)
dS→ MN(0, Vr

∫ 1

0

σ8
sds)

with a certain efficiency factor Vr (see Corsi et al. (2010), formula (2.13)). In Kolokolov
and Renò (2012), it is proved that the common practice of choosing equal exponents,
meaning that r1 = ... = rm, does not result in the most efficient estimator (the one with
the smallest possible Vr) within the class of estimators of the form (3), but the scheme
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r∗ = (3.5455, 0.2182, 0.2362)′,1 which yields Vr = 9.70 (instead of, for example, 13.65,
which is the efficiency factor of MPV(3,4)). Consequently, Kolokolov and Renò (2012)
suggest using the following symmetrized estimator

STMPV :=
TMPV (r∗, 4) + TMPV (sr∗, 4)

2

with sr∗ := (0.2362, 0.2182, 3.5455)′. Choosing θt = 5σN
t as the threshold function and

estimating the intraday volatility σN
t as in Corsi et al. (2010), the gained mean square

error is up to 30% lower when using STMPV instead of the corresponding estimator with
r1 = ... = rm.

Another method was suggested by Andersen et al. (2011). Their estimators of IQ are a
natural extension of the estimators of integrated volatility proposed in Andersen et al.
(2012):

MinRQ = N µ−1
min

N

N−1

N∑

i=2

min(| p i
N
− p i−1

N
|, | p i−1

N
− p i−2

N
|)4,

MedRQ = N µ−1
med

N

N−2

N∑

i=3

med(| p i
N
− p i−1

N
|, | p i−1

N
− p i−2

N
|, | p i−2

N
− p i−3

N
|)4

with µmin = E [min(|Z1|4, |Z2|4)], µmed = E [med(|Z1|4, |Z2|4, |Z3|4)], Zj ∼ N(0, 1) and Zj

independent from each other for j ∈ {1, 2, 3}. Both estimators are consistent for IQ in the
presence of jumps of finite activity and allow for a central limit theorem:

√
N (MinRQ− IQ)

dS→ MN(0, 18.54

∫ T

0

σ8
sds),

√
N (MedRQ− IQ)

dS→ MN(0, 14.16

∫ T

0

σ8
sds).

MinRQ and MedRQ are more local than MPV(m, 4) with m > 2 and m > 3, respectively,
as their calculation include fewer adjacent returns.

Now we will introduce a new estimator of IQ, which is based on the intraday open, high,
low and close (ohlc) values of a log price process. Thus it incorporates the full range of
prices. At the beginning, we consider six estimators of the same structure. Later, we will
combine these in an optimal way in order to obtain the estimator of minimal (under certain
constraints) variance. The considered six estimators are formally given by

N
N∑

i=1

f
(
(p∗)i,N − p i−1

N
, (p∗)i,N − p i−1

N
, p i

N
− p i−1

N

)
, (4)

1At least for m=3. The consideration of more than three adjacent returns leads to even higher efficiency
but comes along with a loss of locality and a higher bias in the presence of jumps due to unequal weights.
However, this effect is mitigated by the threshold.
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where f is some appropriate homogeneous function of order four in its three arguments
xi,N := (p∗)i,N − p i−1

N
, yi,N := (p∗)i,N − p i−1

N
and zi,N := p i

N
− p i−1

N
.

These appropriate functions f combine the three arguments in a way that makes the es-
timators robust to jumps. Precisely, we exploit the specific reaction of the so-called stick
lengths of the intraday ohlc value to jumps. The stick lengths are defined by −yi,N and
xi,N − zi,N = (p∗)i,N − p i

N
in the case that the i-th intraday return is positive (the clos-

ing price of the interval [ i−1
N
, i
N
] is higher than its opening price). Conversely, in the case

that the i-th intraday return is negative (the closing price of the interval is lower than its
opening price), the stick lengths are given by xi,N and zi,N − yi,N = p i

N
−(p∗)i,N. Let us

illustrate the reaction of the stick lengths to negative and positive jumps. Suppose that
a negative jump occurred in the i-th intraday interval. The corresponding return will be
negative (as the jump should dominate the price movement) and the stick length zi,N−yi,N
will be comparably small since the continuous part of the price movement cannot revert
the downward directed movement generated by the negative jump. In contrast, the second
stick length, xi,N, will not be affected at all. Similarly, in the case of a positive jump,
the difference between the highest and the closing price (xi,N − zi,N) will be small and the
second stick length, −yi,N, will not be affected. Of course, this consideration requires that
the jump is large enough to dominate the intraday return.

Based on these thoughts we will consider functions f, which account for positive and nega-
tive intraday increments separately and which combine the stick lengths in a way that f is
not affected by jumps (asymptotically). Concretely, we consider the following six functions

f ÎQp1

(xi,N, yi,N, zi,N) := d1
(
(xi,N − zi,N)

4 + y4i,N
)
I{zi,N>0},

f ÎQp2

(xi,N, yi,N, zi,N) := d2
(
(xi,N − zi,N)

3(−yi,N) + (xi,N − zi,N)(−yi,N)
3
)
I{zi,N>0},

f ÎQp3

(xi,N, yi,N, zi,N) := d3 (xi,N − zi,N)
2y2i,N I{zi,N>0},

f ÎQn1

(xi,N, yi,N, zi,N) := d1
(
x4
i,N + (zi,N − yi,N)

4
)
I{zi,N<0},

f ÎQn2

(xi,N, yi,N, zi,N) := d2
(
x3
i,N(zi,N − yi,N) + xi,N(zi,N − yi,N)

3
)
I{zi,N<0},

f ÎQn3

(xi,N, yi,N, zi,N) := d3 x
2
i,N(zi,N − yi,N)

2 I{zi,N<0} .

Inserting these functions in (4), we obtain six estimators of IQ:

ÎQp1
:= N

N∑

i=1

f ÎQp1

(xi,N, yi,N, zi,N) , ÎQp2
:= N

N∑

i=1

f ÎQp2

(xi,N, yi,N, zi,N) ,

ÎQp3
:= N

N∑

i=1

f ÎQp3

(xi,N, yi,N, zi,N) (5)

and

ÎQn1
:= N

N∑

i=1

f ÎQn1

(xi,N, yi,N, zi,N) , ÎQn2
:= N

N∑

i=1

f ÎQn2

(xi,N, yi,N, zi,N) ,
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ÎQn3
:= N

N∑

i=1

f ÎQn3

(xi,N, yi,N, zi,N) . (6)

Note that the constants dj, j ∈ {1, 2, 3}, which are given by2

d1 =
16

3
, d2 =

32

96 ln(2)− 54− 9ζ(3)
, d3 =

32

3− 2ζ(3)
,

make the estimators asymptotically unbiased. To calculate the desired values dj exactly, we
have to derive the common density of the high, low and close values of a standard Brownian
motion, see formula (12). With the help of this density, we can calculate the reciprocals of
the expected values of the estimators, which gives us the values of dj, j ∈ {1, 2, 3}. Hence,
the constants are independent from N and thus do not suffer from a finite sampling error,
which can be especially severe when using ohlc values. Consequently, the estimators ÎQpj

and ÎQnj
are unbiased for standard Brownian motion. In the Web Appendix A, Lemma 1,

(I) we prove the asymptotic unbiasedness of the estimators for processes of the form (A1).

The estimators in (5) and (6) are robust to jumps of finite activity, as is stated in the
following Proposition

Proposition 1 Let J := (Jt)t∈[0,1] be a jump process of finite activity, pt = p0 +
∫ t

0
µsds+∫ t

0
σsdWs, σt is the never vanishing càdlàg (spot) volatility and Û denotes one of the six

estimators ÎQp1
,...,ÎQn3

. Then it holds that

N
N∑

i=1

f
Û
(x

(J)
i,N, y

(J)
i,N, z

(J)
i,N)− N

N∑

i=1

f
Û
(xi,N, yi,N, zi,N)

P→ 0.

with x
(J)
i,N := ((p+J)∗)i,N−(p+J) i−1

N
, y

(J)
i,N := ((p+J)∗)i,N−(p+J) i−1

N
and z

(J)
i,N := (p+J) i

N
−

(p+J) i−1
N
.

The proof is straightforward and will therefore not be shown.

We can prove consistency of the following combined estimators

ÎQ1 :=
1

2

(
ÎQp1

+ ÎQn1

)
, ÎQ2 :=

1

2

(
ÎQp2

+ ÎQn2

)
, ÎQ3 :=

1

2

(
ÎQp3

+ ÎQn3

)
. (7)

With the definitions

f ÎQ1
(xi,N, yi,N, zi,N) :=

1

2

(
f ÎQp1

(xi,N, yi,N, zi,N) + f ÎQn1

(xi,N, yi,N, zi,N)
)
,

f ÎQ2
(xi,N, yi,N, zi,N) :=

1

2

(
f ÎQp2

(xi,N, yi,N, zi,N) + f ÎQn2

(xi,N, yi,N, zi,N)
)
,

f ÎQ3
(xi,N, yi,N, zi,N) :=

1

2

(
f ÎQp3

(xi,N, yi,N, zi,N) + f ÎQn3

(xi,N, yi,N, zi,N)
)
,

2With Riemann’s Zeta function ζ(a) :=
∑

∞

k=1
1/ka.
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the estimators read as

ÎQ1 := N
N∑

i=1

f ÎQ1
(xi,N, yi,N, zi,N) , ÎQ2 := N

N∑

i=1

f ÎQ2
(xi,N, yi,N, zi,N) ,

ÎQ3 := N
N∑

i=1

f ÎQ3
(xi,N, yi,N, zi,N) .

Consistency of the estimators ÎQ1, ÎQ2 and ÎQ3 is enough to guarantee consistency of the
final (most efficient) estimator of IQ, which will be a convex combination of these three
estimators.

Proposition 2 Let the log price process p fulfill the assumptions in (A1) and σt is the
never vanishing càdlàg (spot) volatility. Then we have for all j ∈ {1, 2, 3} and N → ∞

ÎQj

P−→
∫ 1

0

σ4
sds.

Proposition 2 can be proved by the help of an auxiliary estimator which depends on the
high, low and close values of the standard Brownian motion W :

˜̂
V := N

N∑

i=1

(ξ
V̂
)i,N, (ξ

V̂
)i,N := σ4

i−1
N

f
V̂
(ai,N, bi,N, ci,N) (8)

with the definitions ai,N := (W ∗)i,N − W i−1
N
, bi,N := (W∗)i,N − W i−1

N
, ci,N := W i

N
−

W i−1
N
, (W ∗)1 := supt∈[0,1] Wt, (W∗)1 := inft∈[0,1] Wt and V̂ denotes one of the estimator

ÎQ1, ÎQ2, ÎQ3. Then we have to show that

• the auxiliary estimator
˜̂
V converges to IQ in probability:

˜̂
V

P→ IQ and that

• the difference between the estimator V̂ and the auxiliary estimator vanishes: V̂ − ˜̂V P→
0.

For the detailed steps see Web Appendix A.

Now we state a central limit theorem (CLT) for the estimators in (7). For this purpose,
let us define the vectors

ÎQp := (ÎQp1
, ÎQp2

, ÎQp3
)′, ÎQn := (ÎQn1

, ÎQn2
, ÎQn3

)′ and ÎQ := (ÎQ1, ÎQ2, ÎQ3)
′.

Note that we need further assumptions on the volatility process and that we have to exclude
price jumps for the CLT:
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Theorem 1 (Central Limit Theorem) Let the log price process p fulfill the assump-
tions in (A1) with J = 0 and σt is the never vanishing spot volatility given by (A2). Then
we have the following stable convergence in law:

√
N
(
ÎQ− IQ ι

)
dS→ R

∫ 1

0

σ4
sdB

(3)
s

with

• ι := (1, 1, 1)′,

• a three-dimensional Brownian motion B := (B
(3)
t )t∈[0,1] with standard Brownian

motions Bi, i ∈ {1, 2, 3}, as entries, which are independent from each other and
from the Brownian motion W ,

• a matrix R ∈ R
3×3, which consists of entries which depend on the moments of func-

tions of ((W ∗)1, (W∗)1,W1).

The proof of the CLT works in two steps, where the details are set out in the Web Appendix
B.

First, we have to show the following convergence of the auxiliary estimator
˜̂
V :

√
N

(
˜̂
V

(3)

− IQ ι

)
dS→ R

∫ 1

0

σ4
sdB

(3)
s

with

• a 3-dimensional vector
˜̂
V

(3)

, consisting of entries of the form (8),

• V̂ denotes one of the estimators ÎQ1, ÎQ2, ÎQ3,

• the matrix R ∈ R
3×3 and the three-dimensional Brownian motion B from the CLT.

Second, we have to prove that

√
N

(
ÎQ− ˜̂

V
(3)
)

P→ 0

with the zero-vector 0 := (0, 0, 0)′.

Now we can come to the construction of the final estimator IQOHLC. We want to derive

the combination of the three jump-robust and consistent estimators ÎQ1, ÎQ2 and ÎQ3,

IQOHLC := w1ÎQ1 + w2ÎQ2 + w3ÎQ3, (9)
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which has the smallest possible variance under the restriction w′ι = 1 with the vector
w := (w1, w2, w3)

′. From the CLT we have that the variance of IQOHLC is given by

Var (IQOHLC) = Σ

∫ 1

0

σ8
sds (10)

with Σ := RR′. Further, from the proof of Lemma 2, step (b) (see Web Appendix B) we
know that the matrix Σ is given by

Σ := E

{
χ̃

(3)

V̂
χ̃

(3)′

V̂

}
(11)

with a three-dimensional vector χ̃
(3)

V̂
consisting of entries of the form

χ̃
V̂
:= f

V̂
((W ∗)1, (W∗)1,W1)− 1 with V̂ ∈ {ÎQ1, ÎQ2, ÎQ3}.

We can simplify the task of calculating the matrix Σ as it holds

Proposition 3 Σ = 1
2
Σp − 1

2
E3×3, where all entries of the 3× 3-matrix E are equal to 1.

Thus it is enough to calculate the matrix Σp := E

{
χ̃

(3)

V̂p

χ̃
(3)′

V̂p

}
with V̂p ∈ {ÎQp1

, ÎQp2
, ÎQp3

}.
For the proof of the proposition see Web Appendix C.

To calculate the matrix Σp exactly, we have to derive the common density of the high,
low and close values of a standard Brownian motion from the mixed distribution/density
function given in Borodin and Salminen (2002, 174, formula 1.15.8):

P

(
inf

0≤s≤t
Ws ∈ da, sup

0≤s≤t

Ws ∈ db,Wt ∈ dz

)

=
4√
2π

(
−1∑

k=−∞

k2Ak (a, b, z) +
∞∑

k=1

k2Ak (a, b, z)

−
−2∑

k=−∞

k(1 + k)Bk (a, b, z)−
∞∑

k=1

k(1 + k)Bk (a, b, z)

)
(12)

with

Ak (a, b, z) := exp

(
−(z + 2k(b− a))2

2

)(
(z + 2k(b− a))2 − 1

)

Bk (a, b, z) := exp

(
−(z − 2a+ 2k(b− a))2

2

)(
(z − 2a+ 2k(b− a))2 − 1

)

and a < 0, b > 0. For example, the (1,3)-entry of the matrix Σp,

E

{
χ̃ÎQp1

χ̃ÎQp3

}
= E

{(
f ÎQp1

((W ∗)1, (W∗)1,W1)− 1
)(

f ÎQp3

((W ∗)1, (W∗)1,W1)− 1
)}

,

14



reads as

E
{(

d1
[
((W ∗)1 −W1)

4 + (W∗)
4
1

]
I{W1>0} −1

) (
d3
[
((W ∗)1 −W1)

2(W∗)
2
1

]
I{W1>0} −1

)}
,

which equals

cE
{[

((W ∗)1 −W1)
4 + (W∗)

4
1

]
I{W1>0}

[
((W ∗)1 −W1)

2(W∗)
2
1

]
I{W1>0}

}
− 1

(with c := d1d3 =
512

9−6ζ(3)
), as the expectation value of the estimators ÎQp1

, ÎQp2
and ÎQp3

is

1 under a standard Brownian motion (due to the constants dj, which make the estimators
unbiased). Now, the expectation value can be calculated by the help of the density (12).
Accomplishing these steps for all entries yields the matrix

Σp :=



c1 c2 c3
c2 c4 c5
c3 c5 c6


 ≈



10.88225 5.84777 4.22960
5.84777 7.90597 8.36909
4.22960 8.36909 9.64623


 (13)

with constants

c1 :=
70

3
− 2

3
ζ(7)− 8

3
ζ(5)− 20

3
ζ(3)− 1,

c2 :=
512

(
3945
128

− 60 ln(2) + 345
1024

ζ(7) + 855
512

ζ(5) + 3675
512

ζ(3)
)

3(54 + 9ζ(3)− 96 ln(2))
− 1,

c3 :=
512(105

256
− 15

256
ζ(7)− 15

128
ζ(5)− 45

256
ζ(3))

9− 6ζ(3)
− 1,

c4 :=

(
32

96 ln(2)− 54− 9ζ(3)

)2(
105

128
− 21

256
ζ(7)− 27

128
ζ(5)− 105

256
ζ(3)

)
− 1,

c5 :=

(
32

3− 2ζ(3)

)(
32

54 + 9ζ(3)− 96 ln(2)

)
·

(
1065

256
+

15

512
ζ(7) +

135

1024
ζ(5) +

735

1024
ζ(3)− 15

2
ln(2)

)
− 1,

c6 :=

(
32

3− 2ζ(3)

)2(
−30451

41472
− 3

256
ζ(7)− 3

64
ζ(5)− 73

384
ζ(3) +

40

27
ln(2)

)
− 1.

By the help of matrix (13), we can calculate the vector of optimal weights, w∗ := (w∗
1, w

∗
2, w

∗
3)

′

with the following Lemma.

Lemma 1 Given a matrix A of full rank and a right-hand side c, minimizing w′Σw under
the condition Aw = c is achieved by

w∗ = Σ−1A′
(
AΣ−1A′

)−1
c with (w∗)′Σw∗ = c′

(
AΣ−1A′

)−1
c.
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Choosing A = Σp and c = (1, 1, 1)′ (as we require w′τ = 1) we obtain
w∗ = (0.49349,−0.18630, 0.69281)′ and (w∗)′Σpw

∗ = 7.55353. Thus, our final estimator is
given by

IQOHLC = w∗
1 ÎQ1 + w∗

2 ÎQ2 + w∗
3 ÎQ3 (14)

with (w∗)′Σw∗ = 1
2
7.55353 − 1

2
= 3.27676 (see Proposition 3). Note that despite the

negative weight, the entire estimator IQOHLC is P almost surely greater or equal to 0,
which can be checked by showing that the global minimum of the function is zero. We
used MAPLE to do this.

Implication 1 Let the log price process p fulfill the assumptions in (A1) with J = 0, σt is

the never vanishing spot volatility given by (A2) and IQOHLC := 0.49349ÎQ1−0.18630ÎQ2+

0.69281ÎQ3. Then we have the following stable convergence in law:

√
N(IQOHLC − IQ)

dS→ MN

(
0, 3.27676

∫ 1

0

σ8
sds

)
.

Note that the efficiency factor 3.27676 is smaller than the factor of the optimal estimator
proposed in Jacod and Rosenbaum (2012), see formula (3.7) and example (3.9) therein, as
our approach exploits the full range of data.

1.1 The role of zero returns

In Monte-Carlo studies, intraday zero increments constitute no problem, as the assumed
model for the log prices rules them out theoretically. Nevertheless, they can occur in
empirical applications with positive probability, as the market is not perfect. In fact, we
have to deal with microstructure noise effects or stocks which are not perfectly liquid. This
can lead to intraday zero increments. Consequently, neglecting them could distort our
estimator of integrated quarticity (which takes just positive and negative increments into
account so far) in empirical applications. Therefore, we additionally consider the estimators

ÎQm1
:= N

N∑

i=1

f ÎQm1

(xi,N, yi,N, zi,N) , ÎQm2
:= N

N∑

i=1

f ÎQm2

(xi,N, yi,N, zi,N) ,

ÎQm3
:= N

N∑

i=1

f ÎQm3

(xi,N, yi,N, zi,N)

with

f ÎQm1

(xi,N, yi,N, zi,N) := d1
(
(xi,N − zi,N)

4 + y4i,N
)
I{zi,N=0},

f ÎQm2

(xi,N, yi,N, zi,N) := d2
(
(xi,N − zi,N)

3(−yi,N) + (xi,N − zi,N)(−yi,N)
3
)
I{zi,N=0},

f ÎQm3

(xi,N, yi,N, zi,N) := d3 (xi,N − zi,N)
2y2i,N I{zi,N=0} .
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Thus, estimators accounting for zero returns are given by

ÎQ1(m) :=
1

2

(
ÎQp1

+ ÎQn1

)
+ ÎQm1

, ÎQ2(m) :=
1

2

(
ÎQp2

+ ÎQn2

)
+ ÎQm2

,

ÎQ3(m) :=
1

2

(
ÎQp3

+ ÎQn3

)
+ ÎQm3

.

Hence, we use the estimator

IQOHLC(m) = w∗
1 ÎQ1(m) + w∗

2 ÎQ2(m) + w∗
3 ÎQ3(m)

in empirical applications.

1.2 Bounce-Backs

We speak about so-called bounce-backs when the price jumps in one direction but immedi-
ately returns to its old level. These movements are a form of market microstructure noise
(see Aı̈t-Sahalia et al. (2006) and Andersen et al. (2012)) and result in a severe distortion
of the estimator IQOHLC. The reason is that IQOHLC uses only the information contained
in the i-th intraday interval in order to obtain the i-th estimated value of IQ. To illustrate
the effect of bounce-backs on the estimator let us assume that in some intraday interval
the price jumped down and immediately returned to its former level and that the corre-
sponding intraday return was negative. Consequently, the corresponding lowest value is
comparatively far off the closing value (as the price bounced back). Thus, the candlestick
zi,N − yi,N will be very large, resulting in a bias in IQOHLC.

2 Simulation Study

We investigate the ohlc-based estimator under five models and compare its performance
with that of realized quarticity. The models considered are:

• Standard Brownian motion (SBM),

• Standard Brownian motion with small adjacent jumps,

• Standard Brownian motion with bounce-backs,

• Standard Brownian motion with large jumps,

• A stochastic volatility (SV) model without jumps.
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The required processes are simulated by the Euler scheme. We simulate 10000 days, where
every day is based on a simulation step size of 390 (N) times 50000 (f) in order to create
an equally spaced frequency of 1 minute (a sampling frequency of 1 minute corresponds to
N = 390 subdivisions per day for a presumed trading day of 6.5 hours). The simulation
requires a high number of discretization steps in order to establish intraday high and low
values which are as unbiased as possible. Lower frequencies are derived from the original
sample space by aggregation.

For the case of four small adjacent jumps we choose a deterministic jump height of 3
√

1/N
with N = 390 (inspired by Kolokolov and Renò (2012)). We randomly place the first jump
in one of the first N-3 intraday intervals. The three remaining jumps are forced to appear
in the three following subsequent intervals (if the first jump is set, for example, in the
third intraday interval, the other three occur in the fourth, fifth and sixth). For the case of
bounce-backs, we simulate a standard Brownian motion with one randomly placed jump of
normal distributed jump height (which ensures a jump contribution to total daily volatility
of 10%, as in Huang and Tauchen (2005)). The second jump is placed in the same 1-minute
interval and is forced to have the same jump height but to be of opposite sign. For the
case of large jumps, we place one jump of deterministic height of 10

√
1/N, N = 390,

randomly in one of the intraday intervals. For the simulation of the stochastic volatility
model without jumps, we follow the suggestions in Jacod and Todorov (2009), Veraart
(2010), Andersen and others, Chernov and others and Andersen et al. (2002). Thus, we
consider the process

d pt = µdt+ exp(β0 + β1σt)dW
p
t

dσt = ασσtdt+ dW σ
t (15)

with standard Brownian motions W p = (W p
t )t∈[0,1] and W σ = (W σ

t )t∈[0,1] with
corr(W p,W σ) = ρ, (σt)t∈[0,1] is the stochastic volatility process and ασ describes the rate
of mean reversion of the volatility. The parameters are given by µ = 0, β0 = 0, β1 = 0.125
and ασ = −0.1 (medium mean reversion, half life just over one week) and ρ = −0.62. The
mean of the approximated integrated quarticity of the simulated data is 1.06, where IQ is
approximated by 1

N ·f

∑N ·f
i=1 σ

4
i−1
N ·f

with N = 390. Its minimum is 0.41 and its maximum is

3.07.

Table 2 states the (averaged) variance of
√
N
(
ÎQ− IQ

)
/
√∫ 1

0
σ8
τdτ for all simulated data

sets for a frequency of 1 minute. We know from Implication 1 that this expression should be
around 3.28 for ÎQ = IQOHLC and around 10.66 (see, for example, Andersen et al. (2011))

when ÎQ = RQ, at least for the models which meet the theoretical assumptions (A1) and
(A2). In this way, the correctness of both the calculations and the simulations could be
checked.

For the evaluation, we state the bias and the mean square error (MSE). The real unknown
IQ is 1 in the case of a standard Brownian motion and is approximated by the formula
mentioned above for the SV model. For each day, we also compute the confidence interval
(CI) for integrated volatility IV :=

∫ 1

0
σ2
τdτ (estimated by RV) with a significance level
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of α = 0.05. We use IQOHLC and RQ as estimates for the required integrated quarticity
and state the length (calculated as the median over all days) and the empirical size of the
resulting intervals. The size is the proportion of days on which the real IV (in the case of
SBM plus jumps, IV equals 1. In the case of stochastic volatility, IV is approximated by
1

N ·f

∑N ·f
i=1 σ

2
i−1
N ·f

) lies in the CI. Optimally, the size should be around 1-α. Table 1 states all

findings.

2.1 Standard Brownian motion

The first two columns of Table 1 show the bias and the MSE. The bias is small with
a distortion less than 1% for RQ and around 1% for IQOHLC. The MSE confirms the
theoretical result that IQOHLC fluctuates not as heavily as RQ. We obtain quite precise
coverage rates of the confidence intervals using the new ohlc-based estimator. Up to 10-
minute frequency, the size is more or less around 95% whereas the confidence intervals
using RQ cover the unknown integrated volatility in less than 94% of the days already for
frequencies lower or equal to 5 minutes. Comparing the lengths of the confidence intervals
with nearly correct coverage rates, we see that the numbers are quite similar. At first glance
this seems to be surprising since the MSE of IQOHLC is much smaller than the MSE of RQ.
But we have to bear in mind that RQ fluctuates in both directions. In fact, in roughly
half of the cases, the value of RQ is smaller than the value of IQOHLC, creating a CI of
smaller length. As we take the median over all lengths, the values of the lengths do not
differ. As realized quarticity and realized variance are similar by construction, it is likely
that on days when RV deviates a lot from the true value of IV, RQ is biased also, likely in
the same direction. Consequently, when RV differs considerably from the unknown value
of integrated volatility, the less fluctuating estimator IQOHLC cannot create a CI which is
superior to the confidence interval including RQ in terms of covering the unknown IV.

2.2 Standard Brownian motion with adjacent jumps

RQ and RV are known to be biased in the case of adjacent jumps. Thus, not surprisingly,
the bias and the MSE quickly deteriorate with decreasing sampling frequency. However,
the influence of adjacent jumps diminishes with lower frequencies since we placed the jumps
on a 1-minute frequency. By aggregating the data, the probability increases that all jumps
lie in the same interval. This can still interfere with RV and RQ as they are not jump-
robust. Regarding IQOHLC the bias is quite small for high frequencies. Compared to the
results under SBM, the bias is worse for lower frequencies when jumps start to aggregate
in some interval. However, the MSE remains small. Considering the size and the length
of the confidence intervals, we observe the following: in the case of RQ, the size of the CI
exceeds the value 0.95 in general, whereas the size is too small in the case of IQOHLC. We
attribute this to the fact that both RV and RQ are upward biased because of jumps (for
example, the mean of RV is 1.28 for 5-minute frequency). Consequently, we have a higher
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chance to cover the unknown integrated volatility using RQ (which is highly upward biased
too).

2.3 Standard Brownian motion with bounce backs

As already discussed, the ohlc-based estimator is not robust to bounce-backs. As can
be seen from the bias and the MSE, IQOHLC is severely affected, where the performance
improves with decreasing frequency when the effect of the bounce-backs on the returns
diminishes and the continuous part of the price process becomes more influential. Since
IQOHLC is highly upward biased and fluctuates heavily, the size of the confidence intervals
exceeds the desired confidence level. The lengths are surprisingly close to the lengths of
the confidence intervals using RQ. But we have to be aware of the fact that we state the
median of the lengths. In fact, in the case of bounce-backs, the length of the CI can reach
11.88 using IQOHLC (for 30-minute frequency) compared to 5.41 using RQ. In general, the
results for RQ are in line with the results found under SBM. This confirms that RQ is
robust to bounce-backs.

2.4 Standard Brownian motion and one large jump per day

Not surprisingly, the bias and the MSE is very high for RQ, since it is not robust to jumps.
Consequently, the length of the confidence interval is comparably large (larger than in the
case of small jumps for 1- and 3-minute frequency). The coverage rates are quite high,
which – except for 30-minute frequency – exceed the value 0.97. Regarding the new ohlc-
based estimator, the findings confirm small fluctuations and high robustness to jumps. The
lengths of the confidence intervals are comparable to the lengths under SBM. However, the
intervals fail to cover the value of IV too often. We attribute this again to the fact that
RV is highly upward biased.

2.5 SV model without jumps

In general, both estimators work well in the case of stochastic volatility. The bias is
negligible and the MSE is small. IQOHLC fluctuates less around the true value than RQ,
especially for lower frequencies. The sizes of the confidence intervals using IQOHLC are more
or less around 0.95 (except for a frequency of 30 minutes). Regarding RQ, the coverage rate
of the confidence interval is acceptable for a frequency of 1-minute. For lower frequencies,
the real integrated volatility is covered on less than 94% of the days. Using IQOHLC, we
produce narrower intervals compared to using RQ, where the lengths do not differ much
in their median but in the range of lengths. Thus, using RQ, the lengths vary from 0.28
to 1.44, whereas we observe lenghts from 0.34 to 1.17 using IQOHLC.
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3 Conclusion

Integrated quarticity describes the fluctuations in volatility and is a crucial ingredient in
constructing confidence intervals for volatility. In this work, we propose a new estimator of
integrated quarticity based on the intraday open, high, low and close (ohlc) values of a log
price process. Thus, the whole observed process enters into the estimation, leading to an
estimator which is very efficient. We investigate the performance of the new estimator under
various scenarios which can potentially decrease its accuracy. In particular, we investigate
the size and the length of confidence intervals for integrated volatility. The results are
compared with the findings obtained by using the well-known realized quarticity. It turns
out that the new proposed estimator is robust against large and adjacent jumps. We also
briefly discuss drawbacks involved in using intraday ohlc data. More Monte-Carlo studies
have to be conducted to examine alternative estimators of integrated quarticity provided
by the literature.
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bias MSE size of CI length of CI

Estimator RQ IQOHLC RQ IQOHLC RQ IQOHLC RQ IQOHLC

1 min 0.0013 -0.0162 0.0282 0.0081 0.9459 0.9449 0.2790 0.2780
3 min 0.0033 -0.0102 0.0819 0.0249 0.9441 0.9506 0.4771 0.4808

SBM 5 min 0.0051 -0.0114 0.1417 0.0397 0.9316 0.9424 0.6105 0.6178
10 min 0.0001 -0.0062 0.2694 0.0803 0.9164 0.9437 0.8413 0.8686
30 min -0.0011 -0.0094 0.7836 0.2271 0.8662 0.9285 1.3341 1.4664

1 min 0.4630 0.0231 0.3221 0.0116 0.8744 0.7325 0.3343 0.2827
3 min 1.9459 0.0061 6.4391 0.0266 0.9535 0.5765 0.7741 0.4848

SBM+4jumps 5 min 2.5693 0.0156 13.8908 0.0476 0.9718 0.5794 1.0351 0.6252
10 min 2.0524 0.0383 10.0801 0.1104 0.9793 0.6608 1.3534 0.8838
30 min 1.2520 0.1892 7.0691 0.5742 0.9573 0.7777 1.9031 1.5491

1 min -0.0002 16.7150 0.0274 2895.3638 0.9444 0.9785 0.2788 0.4023
3 min 0.0006 5.3096 0.0819 303.7859 0.9344 0.9723 0.4773 0.5742

SBM+bb 5 min -0.0036 3.1659 0.1327 109.2183 0.9311 0.9708 0.6082 0.7177
10 min -0.0076 1.6155 0.2528 27.7174 0.9155 0.9673 0.8368 0.9891
30 min -0.0170 0.6135 0.7390 4.7996 0.8631 0.9475 1.3210 1.6228

1 min 9.0711 -0.0059 95.3213 0.0088 0.9940 0.0958 0.8661 0.2792
3 min 3.3507 0.0209 16.5606 0.0339 0.9812 0.4818 0.9522 0.4867

SBM+large jump 5 min 2.2534 0.0462 9.0887 0.0677 0.9788 0.6270 1.0391 0.6323
10 min 1.3712 0.0908 4.9071 0.1692 0.9770 0.7493 1.2211 0.8965
30 min 0.8200 0.2088 4.1028 0.5667 0.9447 0.8238 1.7360 1.5689

1 min -0.0019 -0.0172 0.0338 0.0106 0.9428 0.9447 0.2806 0.2790
3 min -0.0027 -0.0069 0.1053 0.0305 0.9388 0.9449 0.4791 0.4843

SV model 5 min -0.0013 -0.0082 0.1683 0.0501 0.9301 0.9433 0.6106 0.6229
10 min -0.0057 -0.0048 0.3470 0.0975 0.9137 0.9422 0.8394 0.8750
30 min 0.0127 -0.0015 1.1967 0.2950 0.8650 0.9246 1.3250 1.4740

Table 1: Obtained results for RQ and IQOHLC and the corresponding confidence intervals (CI) for SBM, SBM with 4 small adjacent jumps,
SBM with bounce-backs (bb), SBM with one large jump and the stochastic volatility model.
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SBM SBM+4jumps SBM+bb SBM+large jump SV model

RQ IQOHLC RQ IQOHLC RQ IQOHLC RQ IQOHLC RQ IQOHLC

11.00 3.06 42.01 4.32 10.70 1020332 5085 3.41 10.69 3.19

Table 2: Efficiency factors of RQ and IQOHLC for the simulated data sets for 1-minute frequency.
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