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Abstract. Vector autoregressive (VAR) models are capable of capturing the dynamic struc-

ture of many time series variables. Impulse response functions are typically used to inves-

tigate the relationships between the variables included in such models. In this context the

relevant impulses or innovations or shocks to be traced out in an impulse response analysis

have to be specified by imposing appropriate identifying restrictions. Taking into account the

cointegration structure of the variables offers interesting possibilities for imposing identify-

ing restrictions. Therefore VAR models which explicitly take into account the cointegration

structure of the variables, so-called vector error correction models, are considered. Specifi-

cation, estimation and validation of reduced form vector error correction models is briefly

outlined and imposing structural short- and long-run restrictions within these models is dis-

cussed.
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1 Introduction

In an influential article, Sims (1980) advocated the use of vector autoregressive (VAR) models

for macro econometric analysis as an alternative to the large simultaneous equations models

that were in common use at the time. The latter models often did not account for the

rich dynamic structure in time series data of quarterly or monthly frequency. Given that

such data became more common in macro economic studies in the 1960s and 1970s, it was

plausible to emphasize modelling of the dynamic interactions of the variables of interest.

Sims also criticized the way the classical simultaneous equations models were identified and

questioned the exogeneity assumptions for some of the variables which often reflect the

preferences and prejudices of the model builders and are not necessarily fully backed by

theoretical considerations. In contrast, in VAR models all observed variables are typically

treated as a priori endogenous. Restrictions are imposed to a large extent by statistical tools

rather than by prior beliefs based on controversial theories.

In a VAR analysis, the dynamic interactions between the variables are usually investi-

gated by impulse responses or forecast error variance decompositions. These quantities are

not unique, however. To identify those shocks or innovations and the associated impulse re-

sponses that reflect the actual ongoings in a given system of variables, usually also requires

a priori assumptions which cannot be checked by statistical tools. Therefore structural VAR

(SVAR) models were developed as a framework for incorporating identifying restrictions for

the innovations to be traced out in an impulse response analysis.

In a parallel development it was discovered that the trending properties of the variables

under consideration are of major importance for both econometric modelling and the as-

sociated statistical analysis. The spurious regression problem pointed out by Granger &

Newbold (1974) made it clear that ignoring stochastic trends can lead to seriously mislead-

ing conclusions when modelling relations between time series variables. Consequently, the

stochastic trends, unit roots or order of integration of the variables of interest became of

major concern to time series econometricians and the concept of cointegration was devel-

oped by Granger (1981), Engle & Granger (1987), Johansen (1995) and many others. In

this framework, the long-run relations are now often separated from the short-run dynamics.

The cointegration or long-run relations are often of particular interest because they can be

associated with relations derived from economic theory. It is therefore useful to construct

models which explicitly separate the long-run and short-run parts of a stochastic process.

Vector error correction or equilibrium correction models (VECMs) offer a convenient frame-
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work for this purpose. They also open up the possibility to separate shocks or innovations

with permanent and transitory effects. This distinction may be helpful in identifying impulse

responses of interest. Therefore these models will be used as the framework in the following

exposition.

A variable will be called integrated of order d (I(d)) if stochastic trends or unit roots can

be removed by differencing the variable d times and a stochastic trend still remains after

differencing only d− 1 times. In line with this terminology, a variable without a stochastic

trend or unit root is sometimes called I(0). In the following, all variables are assumed to be

either I(0) or I(1) to simplify matters. Hence, for a time series variable ykt, it is assumed

that the first differences, ∆ykt ≡ ykt−yk,t−1, have no stochastic trend. A set of I(1) variables

is called cointegrated if a linear combination exists which is I(0). If a system consists of both

I(0) and I(1) variables, any linear combination which is I(0) is called a cointegration relation.

Admittedly, this terminology is not in the spirit of the original idea of cointegration because

in this case it can happen that a linear combination of I(0) variables is called a cointegration

relation. In the present context, this terminology is a convenient simplification, however.

Therefore it is used here.

Although in practice the variables will usually have nonzero means, polynomial trends

or other deterministic components, it will be assumed in the following that deterministic

terms are absent. The reason is that deterministic terms do not play a role in impulse

response analysis which is the focus of this study. Moreover, augmenting the models with

deterministic terms is usually straightforward.

In the next section the model setup for structural modelling with cointegrated VAR

processes will be presented. Estimation of the models is discussed in Section 3 and issues

related to model specification are considered in Section 4. Conclusions follow in Section 5.

The structural VECM framework of the present article was proposed by King, Plosser, Stock

& Watson (1991) and a recent more general survey of structural VAR and VECM analysis

with some examples was given by Breitung, Brüggemann & Lütkepohl (2004). Further

references will be given in the following. The present article draws heavily on Lütkepohl

(2005, Chapter 9), where further details can be found.

The following general notation will be used. The natural logarithm is abbreviated as

log. For a suitable matrix A, rk(A), det(A) and A⊥ denote the rank, the determinant

and an orthogonal complement of A, respectively. Moreover, vec is the column stacking

operator which stacks the columns of a matrix in a column vector and vech is the column

stacking operator for symmetric square matrices which stacks the column from the main

2

Helmut Lütkepohl

EUI WP 2005/2



diagonal downwards only. The (n× n) identity matrix is signified as In and Dn denotes the

(n2 × 1
2
n(n + 1)) duplication matrix defined such that for a symmetric (n × n) matrix A,

vec(A) = Dn vech(A).

2 The Model Setup

As mentioned earlier, it is assumed that all variables are at most I(1) and that the data

generation process can be represented as a VECM of the form

∆yt = αβ′yt−1 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + ut, t = 1, 2, . . . , (2.1)

where yt is a K-dimensional vector of observable variables and α and β are (K× r) matrices

of rank r. More precisely, β is the cointegration matrix and r is the cointegrating rank

of the process. The term αβ′yt−1 is sometimes referred to as error correction term. The

Γj’s, j = 1, . . . , p − 1, are (K × K) short-run coefficient matrices and ut is a white noise

error vector with mean zero and nonsingular covariance matrix Σu, ut ∼ (0, Σu). Moreover,

y−p+1, . . . , y0 are assumed to be fixed initial conditions.

2.1 The Identification Problem

Impulse responses are often used to study the relationships between the variables of a dy-

namic model such as (2.1). In other words, the marginal effect of an impulse to the system

is traced out over time. The residuals ut are the 1-step ahead forecast errors associated

with the VECM (2.1). Tracing the marginal effects of a change in one component of ut

through the system may not reflect the actual responses of the variables because in practice

an isolated change in a single component of ut is not likely to occur if the component is

correlated with the other components. Hence, in order to identify structural innovations

which induce informative responses of the variables, uncorrelated or orthogonal impulses or

shocks or innovations are usually considered.

The so-called B-model setup is typically used in this context. In that setup it is assumed

that the structural innovations, say εt, have zero mean and identity covariance matrix,

εt ∼ (0, IK), and they are linearly related to the ut such that

ut = Bεt.

Hence, Σu = BB′. Without further restrictions, the (K × K) matrix B is not uniquely

specified by these relations. In fact, due to the symmetry of the covariance matrix, Σu = BB′

3
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represents only 1
2
K(K + 1) independent equations. For a unique specification of the K2

elements of B we need at least 1
2
K(K − 1) further restrictions. Some of them may be

obtained via a more detailed examination of the cointegration structure of the model, as will

be seen in the following.

According to Granger’s representation theorem (see Johansen (1995)), the process yt has

the representation

yt = Ξ
t∑

i=1

ui +
∞∑

j=0

Ξ∗jut−j + y∗0, t = 1, 2, . . . , (2.2)

where the term y∗0 contains the initial values and the Ξ∗j ’s are absolutely summable so that

the infinite sum is well-defined. Absolute summability of the Ξ∗j implies that these matrices

converge to zero for j →∞. Notice that the term xt ≡
∑t

i=1 ui = xt−1 + ut, t = 1, 2, . . . , is

a K-dimensional random walk. The long-run effects of shocks are represented by the term

Ξ
∑t

i=1 ui which captures the common stochastic trends. The matrix Ξ can be shown to be

of the form

Ξ = β⊥

[
α′⊥

(
IK −

p−1∑
i=1

Γi

)
β⊥

]−1

α′⊥.

It has rank K − r. Thus, there are K − r independent common trends. Substituting Bεi for

ui in the common trends term in (2.2) gives Ξ
∑t

i=1 ui = ΞB
∑t

i=1 εi. Clearly, the long-run

effects of the structural innovations are given by ΞB because the effects of an εt impulse

vanish in
∑∞

j=0 Ξ∗jBεt−j in the long-run.

The structural innovations εt represent a regular random vector with nonsingular covari-

ance matrix. Hence, the matrix B has to be nonsingular. Thus, rk(ΞB) = K − r and there

can at most be r zero columns in the matrix ΞB. In other words, at most r of the structural

innovations can have transitory effects and at least K − r of them must have permanent

effects. If a cointegrating rank r is diagnosed and r transitory shocks can be justified, r

columns of ΞB can be restricted to zero. Because the matrix has reduced rank K − r, each

column of zeros stands for K−r independent restrictions only. Thus, the r transitory shocks

represent r(K − r) independent restrictions only. Still, it is useful to note that restrictions

can be imposed on the basis of knowledge of the cointegrating rank of the system which

can be determined by statistical means, provided as many transitory shocks can be justified

as there are linearly independent cointegration relations. For a unique specification of B,

further theoretical considerations are required for imposing additional restrictions, however.

For just-identification of the structural innovations in the B-model we need a total of

K(K − 1)/2 independent restrictions. Given that r(K − r) restrictions can be derived
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from the cointegration structure of the model, this leaves us with 1
2
K(K − 1) − r(K − r)

further restrictions for just-identifying the structural innovations. More precisely, r(r− 1)/2

additional restrictions are required for the transitory shocks and (K − r)((K − r) − 1)/2

restrictions are needed to identify the permanent shocks (see, e.g., King et al. (1991), Gonzalo

& Ng (2001)). Together this gives a total of 1
2
r(r−1)+ 1

2
(K−r)((K−r)−1) = 1

2
K(K−1)−

r(K − r) restrictions. The transitory shocks may be identified, for example, by placing zero

restrictions on B directly and thereby specifying that certain shocks have no instantaneous

impact on some of the variables. Clearly, it is not sufficient to impose arbitrary restrictions

on B or ΞB. They have to be such that they identify the transitory and permanent shocks.

For instance, the transitory shocks cannot be identified through restrictions on ΞB because

they correspond to zero columns in that matrix. In other words, r(r−1)/2 of the restrictions

have to be imposed on B directly. Generally, identifying restrictions are often of the form

CΞBvec(ΞB) = cl and Csvec(B) = cs, (2.3)

where CΞB and Cs are appropriate selection matrices to specify the long-run and contempo-

raneous restrictions, respectively, and cl and cs are vectors of suitable dimensions. In applied

work, they are typically zero vectors. In other words, zero restrictions are specified in (2.3)

for ΞB and B. The first set of restrictions can be written alternatively as

Clvec(B) = cl, (2.4)

where Cl ≡ CΞB(IK ⊗ Ξ) is a matrix of long-run restrictions on B.

So far we have just discussed a “counting rule” and, hence, a necessary condition for

identification. Even though the restrictions in (2.4) are linear restrictions, the full set of

equations we have for B is a nonlinear one because the relation Σu = BB′ is nonlinear.

Hence, the matrix B will only be identified locally in general. In particular, we may reverse

the signs of the columns of B to find another valid matrix. If restrictions of the form

Clvec(B) = cl and Csvec(B) = cs (2.5)

are available for B, a necessary and sufficient condition for local identification is that

rk




2D+
K(B ⊗ IK)

Cl

Cs


 = K2,

where D+
K is the Moore-Penrose inverse of the (K2× 1

2
K(K +1)) duplication matrix DK (see

Lütkepohl (2005, Proposition 9.4)). Although the unknown parameter matrix B appears in
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this condition, it is useful in practice because it will fail everywhere in the parameter space

or be satisfied everywhere except on a set of Lebesgue measure zero. Thus, if a single

admissible B matrix can be found which satisfies the restrictions in (2.5) and for which

also the rank condition holds, then local identification is ensured almost everywhere in the

parameter space. Thus, trying an arbitrary admissible B matrix is a possibility for checking

identification.

As an example, consider a model for K = 3 variables. Assuming that all variables are

I(1) and the cointegrating rank r = 2, then there can be two transitory shocks and one

permanent shock. If two transitory shocks are assumed, the permanent shock is identified

in this situation without further assumptions because K − r = 1 and, hence, the number of

additional restrictions is (K−r)((K−r)−1)/2 = 0. Moreover, only 1 (= r(r−1)/2) further

restriction is necessary to identify the two transitory shocks. Assuming a recursive structure

for the two transitory shocks and placing the permanent shock first in the εt vector, the

following restrictions are obtained:

ΞB =



∗ 0 0

∗ 0 0

∗ 0 0


 and B =



∗ ∗ ∗
∗ ∗ 0

∗ ∗ ∗


 .

In these matrices the asterisks denote unrestricted elements. The two zero columns in ΞB

represent two independent restrictions only because ΞB has rank K−r = 1. A third restric-

tion is placed on B. The way it is specified, the third shock does not have an instantaneous

effect on the second variable. Hence, there are K(K − 1)/2 = 3 independent restrictions in

total and the structural innovations are locally just-identified. In this case, uniqueness can

be obtained, for instance, by fixing the signs of the diagonal elements of B.

In this example, with two zero columns in ΞB, it is also easy to see that it does not

suffice to impose a further restriction on this matrix to identify B locally. To disentangle

the two transitory shocks, we have to impose a restriction on B. In fact, it is necessary to

restrict an element in the last two columns of B.

In the standard B-model with three variables which does not take into account the

cointegration structure, at least 1
2
K(K − 1) = 3 restrictions are needed for identification. In

contrast, in the present VECM case, assuming that r = 2 and that there are two transitory

shocks, only one restriction is required because two columns of ΞB are zero. Thus, the long-

run restrictions from the cointegration structure of the variables may help in the identification

of shocks of interest. As another example consider a bivariate system with one cointegrating
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relation. No further restriction is required to identify the permanent and transitory shocks

in this case, if, say, the first shock is allowed to have permanent effects and the second one

can have transitory effects only. Further examples may be found in Breitung et al. (2004)

and more discussion of partitioning the shocks in permanent and transitory ones is given in

Gonzalo & Ng (2001) and Fisher & Huh (1999) among others.

2.2 Computation of Impulse Responses and Forecast Error Vari-

ance Decompositions

If the matrix B is uniquely specified, impulse responses can be computed easily from the

structural form parameters. Rewriting the VECM (2.1) in levels VAR form as

yt = A1yt−1 + · · ·+ Apyt−p + Bεt,

where A1 = αβ′+ IK +Γ1, Ai = Γi−Γi−1, i = 2, . . . , p− 1, and Ap = −Γp−1, and computing

matrices

Φi =
i∑

j=1

Φi−jAj, i = 1, 2, . . . ,

with Φ0 = IK and Aj = 0 for j > p, the structural impulse response coefficients can be

shown to be the elements of the matrices

Θj = ΦjB, j = 0, 1, 2, . . . (2.6)

(see Lütkepohl (2005) for details).

Forecast error variance decompositions are alternative tools for analyzing the dynamic

interactions between the variables of a VAR model. Denoting by ωkj(h) the percentage

contribution of variable j to the h-step forecast error variance of variable k, it can be shown

that

ωkj(h) = (θ2
kj,0 + · · ·+ θ2

kj,h−1)

/
K∑

j=1

(θ2
kj,0 + · · ·+ θ2

kj,h−1) ,

where θkj,l is the kj-th element of Θl. Because these forecast error variance components

depend on the structural impulse responses, they also require identified innovations, that is,

a uniquely specified matrix B, for a meaningful interpretation.

In practice, the parameters of the VECM are unknown and have to be estimated from the

given time series data. This issue will be considered next. Computing the impulse responses

and forecast error variance components from estimated rather than known parameters gives

estimates of these quantities. Some implications of working with estimated impulse responses

will also be considered in the next section.
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3 Estimation

If the lag order p−1 and the cointegrating rank r as well as structural identifying restrictions

are given, estimation of a VECM can proceed by first estimating the reduced form parameters

and then estimating B as described in the following.

3.1 Estimating the Reduced Form

The parameters of the reduced form VECM (2.1) can be estimated by the Johansen (1995)

Gaussian maximum likelihood (ML) procedure. In presenting the estimators, the following

notation will be used, where a sample of size T and p presample values are assumed to be

available: ∆Y = [∆y1, . . . , ∆yT ], Y−1 = [y0, . . . , yT−1], U = [u1, . . . , uT ], Γ = [Γ1 : · · · : Γp−1]

and X = [X0, . . . , XT−1] with

Xt−1 =




∆yt−1

...

∆yt−p+1


 .

Using this notation, the VECM (2.1) can be written compactly as

∆Y = αβ′Y−1 + ΓX + U. (3.1)

Given a specific matrix αβ′, the equationwise least squares estimator of Γ is easily seen to

be

Γ̂ = (∆Y − αβ′Y−1)X
′(XX ′)−1. (3.2)

Substituting this matrix for Γ in (3.1) and rearranging terms gives

∆Y M = αβ′Y−1M + Û , (3.3)

where M = I−X ′(XX ′)−1X. Estimators for α and β can be obtained by canonical correla-

tion analysis (see Anderson (1984)) or, equivalently, a reduced rank regression based on the

model (3.3). Following Johansen (1995), the estimator may be determined by defining

S00 = T−1∆Y M∆Y ′, S01 = T−1∆Y MY ′
−1, S11 = T−1Y−1MY ′

−1,

and solving the generalized eigenvalue problem

det(λS11 − S ′01S
−1
00 S01) = 0. (3.4)

Denote the ordered eigenvalues by λ1 ≥ · · · ≥ λK and the associated matrix of eigenvectors

by V = [b1, . . . , bK ]. The generalized eigenvectors satisfy λiS11bi = S ′01S
−1
00 S01bi and they are
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assumed to be normalized such that V ′S11V = IK . An estimator of β is then obtained by

choosing

β̂ = [b1, . . . , br]

and α is estimated as

α̂ = ∆Y MY ′
−1β̂(β̂′Y−1MY ′

−1β̂)−1, (3.5)

that is, α̂ may be regarded as the least squares estimator from the model

∆Y M = αβ̂′Y−1M + Ũ .

Using (3.2), a feasible estimator of Γ is Γ̂ = (∆Y − α̂β̂′Y−1)X
′(XX ′)−1. Under Gaussian

assumptions, these estimators are ML estimators conditional on the presample values (Jo-

hansen (1988, 1991, 1995)). They are consistent and jointly asymptotically normal under

more general assumptions than Gaussianity,

√
Tvec([Γ̂1 : · · · : Γ̂p−1]− [Γ1 : · · · : Γp−1])

d→ N (0, ΣΓ̂) (3.6)

and √
Tvec(α̂β̂′ − αβ′) d→ N (0, Σα̂β̂′). (3.7)

The asymptotic distribution of Γ̂ is nonsingular so that standard inference may be used for

the short-term parameters Γj. On the other hand, the (K2 × K2) covariance matrix Σα̂β̂′

can be shown to have reduced rank Kr. Hence, N (0, Σα̂β̂′) is a singular normal distribution

if r < K. Moreover, the distribution in (3.7) provides an asymptotic distribution for the

product matrix αβ′ and not for α and β separately.

Notice that for any nonsingular (r×r) matrix C, we may define α∗ = αC ′ and β∗ = βC−1

and get αβ′ = α∗β∗′. In order to estimate the matrices α and β consistently, it is necessary

to impose identifying (uniqueness) restrictions. Without such restrictions, only the product

αβ′ can be estimated consistently. An example of identifying restrictions which has received

some attention in the literature, assumes that the first part of β is an identity matrix,

β′ = [Ir : β′(K−r)], where β(K−r) is a ((K − r) × r) matrix. For instance, for r = 1, this

restriction amounts to normalizing the coefficient of the first variable to be one. By a

suitable rearrangement of the variables it can always be ensured that the normalization

β′ = [Ir : β′(K−r)] is possible.

Using this normalization, the parameters β(K−r) are identified so that inference becomes

possible. Generally, if uniqueness restrictions are imposed, it can be shown that T (β̂−β) and√
T (α̂−α) converge in distribution (Johansen (1995)). Hence, the estimator of β converges
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with the fast rate T and is therefore sometimes called superconsistent. In contrast, the

estimator of α converges with the usual rate
√

T . It has an asymptotic normal distribution

under general assumptions and, hence, it behaves like usual estimators in a model with

stationary variables. In fact, its asymptotic distribution is the same that would be obtained

when β̂ were replaced by the true cointegration matrix β and α were estimated by least

squares from (3.3).

Although inference for α and β separately requires identifying restrictions, such con-

straints for α and β are not necessary for the impulse response analysis. In particular, the

same matrices Ξ and Θj, j = 0, 1, 2, . . . , are obtained for any pair of (K× r) matrices α and

β that gives rise to the same product matrix αβ′.

3.2 Estimating the Structural Parameters

Replacing the reduced form parameters by their ML estimators gives the concentrated log-

likelihood function

log lc(B) = constant− T

2
log |B|2 − T

2
tr(B′−1B−1Σ̃u), (3.8)

where Σ̃u = T−1
∑T

t=1 ûtû
′
t and the ût’s are the estimated reduced form residuals. Maximiza-

tion of this function with respect to B subject to the structural restrictions has to be done

by numerical methods because a closed form solution is usually not available.

Suppose the structural restrictions for a VECM are given in the form of linear restrictions

as in (2.5). For computing the parameter estimates, we may replace Ξ by its reduced form

ML estimator,

Ξ̂ = β̂⊥

[
α̂′⊥

(
IK −

p−1∑
i=1

Γ̂i

)
β̂⊥

]−1

α̂′⊥,

and the restricted ML estimator of B can be obtained by optimizing the concentrated log-

likelihood function (3.8) with respect to B, subject to the restrictions in (2.5), with Cl

replaced by

Ĉl = CΞB(IK ⊗ Ξ̂)

(see Vlaar (2004)). Although this procedure results in a set of stochastic restrictions, from a

numerical point of view we have a standard constrained optimization problem which can be

solved by a Lagrange approach. Due to the fact that for a just-identified structural model

the log-likelihood maximum is the same as for the reduced form, a comparison of the log-

likelihood values can serve as a check for a proper convergence of the optimization algorithm

used for structural estimation.
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Under usual assumptions, the ML estimator of B, B̂ say, is consistent and asymptotically

normal, √
Tvec(B̂ −B)

d→ N (0, ΣB̂).

Thus, the t-ratios of elements with regular asymptotic distributions can be used for assessing

the significance of individual parameters. The asymptotic distribution of B̂ is singular,

however, because of the restrictions that have been imposed on B. Therefore F -tests will in

general not be valid and have to be interpreted cautiously. Expressions for the covariance

matrices of the asymptotic distributions in terms of the model parameters can be obtained

by working out the corresponding information matrices (see Vlaar (2004)). For practical

purposes, bootstrap methods are in common use for inference in this context.

Although in structural VAR and VECM analysis just-identified models are often used

to minimize the risk of misspecification, the same approach can be used if there are over-

identifying restrictions for B. In that case, B̂B̂′ will not be equal to the reduced form white

noise covariance estimator Σ̃u, however. Still the estimator of B will be consistent and

asymptotically normal under general conditions. The LR statistic,

λLR = T (log |B̂B̂′| − log |Σ̃u|), (3.9)

can be used to check the over-identifying restrictions. It has an asymptotic χ2-distribution

with degrees of freedom equal to the number of over-identifying restrictions if the null hy-

pothesis holds.

3.3 Estimation of Impulse Responses

The impulse responses are estimated by replacing all unknown quantities in (2.6) by esti-

mators. Suppose the structural form coefficients are collected in a vector α and denote its

estimator by α̂. For inference purposes it is important to note that any specific impulse

response coefficient θ is a (nonlinear) function of α and it is estimated as

θ̂ = θ(α̂). (3.10)

If α̂ is asymptotically normal, that is,

√
T (α̂−α)

d→ N (0, Σα̂), (3.11)

then θ̂ is also asymptotically normally distributed,

√
T (θ̂ − θ)

d→ N (0, σ2
θ), (3.12)
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and the variance of the asymptotic distribution is

σ2
θ =

∂θ

∂α′Σα̂
∂θ

∂α
. (3.13)

Here ∂θ/∂α denotes the vector of first order partial derivatives of θ with respect to the

elements of α. The result (3.13) holds if σ2
θ is nonzero, which follows if Σα̂ is nonsingular

and ∂θ/∂α 6= 0. In general the covariance matrix Σα̂ will not be nonsingular for cointegrated

systems, however, because, for example, Σα̂β̂′ is singular due to the superconsistency of β̂.

Moreover, the impulse responses generally consist of sums of products of the VAR coefficients

and, hence, the partial derivatives will also be sums of products of such coefficients. Therefore

the partial derivatives will also usually be zero in parts of the parameter space. Thus, σ2
θ = 0

may hold and, hence, θ̂ may actually converge at a faster rate than
√

T in parts of the

parameter space (cf. Benkwitz, Lütkepohl & Neumann (2000)).

It was found, however, that even under ideal conditions where the asymptotic theory

holds, it may not provide a good guide for small sample inference. Therefore bootstrap

methods are often used to construct confidence intervals for impulse responses (e.g., Kilian

(1998), Benkwitz, Lütkepohl & Wolters (2001)). In the present context, these methods have

the additional advantage that they avoid deriving exlicit forms of the rather complicated

analytical expressions for the asymptotic variances of the impulse response coefficients. Un-

fortunately, bootstrap methods generally do not overcome the problems due to zero variances

in the asymptotic distributions of the impulse responses and they may provide confidence

intervals which do not have the desired coverage level even asymptotically (see Benkwitz

et al. (2000) for further discussion).

Although we have discussed the estimation problems in terms of impulse responses, sim-

ilar problems arise for forecast error variance components. In fact, these quantities are

proportions and they are therefore always between zero and one. In other words, they are

bounded from below and above. Moreover, the boundary values are possible values as well.

This feature makes inference even more delicate.

So far it was assumed that a model and identifying structural restrictions are given. In

practice this is usually not the case. While the structural restrictions normally come from

theoretical considerations or institutional knowledge, there is a range of statistical tools for

specifying the reduced form of a VECM. These tools will be summarized briefly in the next

section.
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4 Model Specification and Validation

The general approach to structural VECM analysis is to specify a reduced form first and then

impose structural restrictions that can be used in an impulse response analysis. To specify

the reduced form VECM, the lag order and the cointegrating rank have to be chosen. Most

procedures for specifying the latter quantity require that the lag order is already known

whereas order selection can be done without prior knowledge of the cointegrating rank.

Therefore lag order selection is typically based on a VAR process in levels without imposing

a cointegration rank restriction. Standard model selection criteria of the form

Cr(m) = log det(Σ̃u(m)) + cT ϕ(m), (4.1)

can be used for that purpose. Here Σ̃u(m) = T−1
∑T

t=1 ûtû
′
t is the residual covariance

matrix estimator for a model with lag order m and ϕ(m) is a function which penalizes large

VAR orders. For instance, ϕ(m) may represent the number of parameters which have to be

estimated in a VAR(m) model. The quantity cT is a sequence that depends on the sample size

T . For example, for Akaike’s AIC, cT = 2/T and for the popular Hannan-Quinn criterion,

cT = 2 log log T/T . The term log det(Σ̃u(m)) measures the fit of a model with order m. It

decreases (or at least does not increase) when m increases because there is no correction for

degrees of freedom in the covariance matrix estimator. The criterion chosen by the analyst

is evaluated for m = 0, . . . , pmax, where pmax is a prespecified upper bound and the order p

is estimated so as to minimize the criterion. Rewriting the levels VAR(p) model in VECM

form, there are p− 1 lagged differences that may be used in the next stage of the analysis,

where the cointegrating rank is chosen.

Once the lag order is specified the cointegrating rank can be chosen by defining the matrix

Π = αβ′ and testing a sequence of null hypotheses H0(0) : rk(Π) = 0, H0(1) : rk(Π) = 1, . . . ,

H0(K − 1) : rk(Π) = K − 1 against the rank being greater than the one specified in the null

hypothesis. The rank for which the null hypothesis cannot be rejected for the first time is

then used in the next stages of the analysis. A range of test statistics is available for use in

this testing sequence (see, e.g., Hubrich, Lütkepohl & Saikkonen (2001) for a recent survey).

The most popular tests in applied work are Johansen’s (1995) likelihood ratio tests. They

are easy to compute because the Gaussian likelihood function is easy to maximize for any

given cointegrating rank, as shown in Section 3.1.

When a reduced form model has been specified, a range of tools can be used for model

checking. For example, tests for residual autocorrelation and structural stability may be used
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(see Lütkepohl (2005) for details). Finally, once a satisfactory reduced form is available, the

structural restrictions may be imposed and the model can then be used for impulse response

analysis.

5 Conclusions

In this article a brief overview of some important issues related to structural modelling based

on VARs with cointegrated variables was given. Generally, using a standard VAR analysis,

the impulse responses are the relevant tools for interpreting the relationships between the

variables. Unfortunately, they are not unique and subject matter knowledge is required to

specify those impulses and their associated responses which reflect the actual ongoings in

the system of interest. It was discussed how the cointegration properties of the variables

can help in specifying identifying restrictions properly. In particular, the cointegrating rank

specifies the maximum number of transitory shocks in a system with cointegrated variables.

This rank in turn can be determined by statistical procedures. As a final note it may be

worth mentioning that the software JMulTi (Lütkepohl & Krätzig (2004)) provides easy

access to the necessary computations for a structural VECM analysis.
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