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Abstract

In my thesis, I study the effects of agents’ heterogeneity on labor market outcomes, with
particular focus on sorting, performance, wages, and inequality.

Chapter one studies multidimensional matching between workers and jobs. Workers differ
in manual and cognitive skills and sort into jobs that demand different combinations of these
two skills. To study this multidimensional sorting, I develop a theoretical framework that
generalizes the unidimensional notion of assortative matching. I derive the equilibrium in
closed form and use this explicit solution to study biased technological change. The key finding
is that an increase in worker-job complementarities in cognitive relative to manual inputs leads
to more pronounced sorting and wage inequality across cognitive relative to manual skills.
This can trigger wage polarization and boost aggregate wage dispersion. I then estimate the
model for the US during the 1990s and show that cognitive-biased technological change (i.e.
increases in worker-job complementarities in cognitive inputs and in cognitive skill-bias) can
account for observed changes in worker-job sorting, wage polarization and a significant part
of the increase in US wage dispersion.

Chapter two develops a theory that links differences in men’s and women’s social networks
to disparities in their labor market performance. We are motivated by our empirical finding
that men’s and women’s networks differ. Men have a higher degree (more network links)
than women, but women have a higher clustering coefficient (a woman’s friends are also
friends among each other). In our model, a worker with a higher degree has better access to
information. In turn, a worker with higher clustering faces more peer pressure. Both peer
pressure and access to information can attenuate a team moral hazard problem in the work
place. But whether peer pressure or access to information is more important depends on the
work environment. We find that, in environments where uncertainty is high, information is
crucial and, therefore, men outperform women — in line with findings from sectors with high

earnings’ uncertainty like the financial or film industry.
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Introduction

In my thesis, I analyze the role of individual-level heterogeneity in labor market outcomes.
Heterogeneity of workers and jobs is an important aspect of the labor market. Individuals are
born with different abilities, they are raised in distinct environments, have diverse educational
backgrounds and work experiences as well as different social network structures. The jobs
that are available to these individuals also differ in a range of attributes, namely in skill
requirements, productivity, riskiness and in the stream of income they generate. Everyone
chooses the job that best suits his characteristics, giving rise to many heterogeneous worker-job
matches with varying performance. In my thesis, I study the effects of agents’ (multidimen-
sional) heterogeneity on labor market outcomes, with particular focus on worker-job sorting,

performance, wages, and inequality.

Chapter one studies multidimensional matching between workers and jobs. Workers differ
in manual and cognitive skills and sort into jobs that demand different combinations of these
two skills. To study this multidimensional sorting, I develop a theoretical framework that
generalizes the unidimensional notion of assortative matching. I derive the equilibrium in
closed form and use this explicit solution to study biased technological change. The key
finding is that an increase in worker-job complementarities in cognitive relative to manual
inputs leads to more pronounced sorting and wage inequality across cognitive relative to
manual skills. This can trigger wage polarization and boost aggregate wage dispersion. I
then estimate the model for the US and identify sizeable technology shifts: during the 1990s,
worker-job complementarities in cognitive inputs increased by 15% whereas complementarities
in manual inputs decreased by 41%. In addition to this bias in complementarities, there
has also been a strong cognitive skill-bias in production. Counterfactual exercises suggest
that these technology shifts can account for observed changes in worker-job sorting, wage

polarization and a significant part of the increase in US wage dispersion.

Chapter two develops a theory that links differences in men’s and women’s social networks
to disparities in their labor market performance. We are motivated by our empirical finding
that men’s and women’s networks differ. Men have a higher degree (more network links)
than women, but women have a higher clustering coefficient (a woman’s friends are also
friends among each other). In our model, a worker with a higher degree has better access to
information. In turn, a worker with a higher clustering coefficient faces more peer pressure.

We show that both features have a significant impact in labor settings where information



and incentives are important and highlight the trade-off between them in a model of teams:
Someone with more information can better adjust his effort to the expected project value. In
turn, more peer pressure always induces higher effort, thereby mitigating the team moral hazard
problem independent of the expected reward. One of our main results is that information is
more beneficial for performance when the uncertainty about the project value is large while
peer pressure is more valuable in the opposite case. We therefore expect men to outperform
women especially in jobs that are characterized by high earnings uncertainty, for instance in
the financial sector or film industry — in line with the evidence.
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1 Sorting Multidimensional Types: Theory
and Application

1.1 Introduction

Technological progress has drastically changed the task composition of work and hence the
structure of labor demand. Across the board, workers spend less time performing manual
tasks such as assembling cars and more time performing cognitive tasks such as computer

1 During the 1980s, a blue-collar worker

programming or selling products and services.
in the car industry might have spent some time on cognitive tasks such as reporting to
his supervisor, but he mainly engaged in manual labor on the assembly line. Ten years
later, a newly-developed machine carries out his manual task. Programming the machine
requires more cognitive than manual skills, and thus a different skill mix than the worker
can offer. So, who operates this machine? What is the worker’s new job? And, how
does this technological shift affect wages and inequality? This is a multidimensional assignment
problem where workers with different bundles of manual and cognitive skills sort into jobs
that require different combinations of these skills.

This paper develops a general theoretical framework for multidimensional sorting that
extends the unidimensional notion of positive assortative matching. I derive the equilibrium
allocation as well as equilibrium wages in closed form. I use this explicit solution to analyze
the impact on equilibrium outcomes as cognitive (as opposed to manual) inputs become more
important in production, capturing one of the main recent technological shifts. I then take
this model to the data to study technological change in the US during the 1990s. Using
this theoretical framework of multidimensional sorting, I can infer from data on observed
equilibrium outcomes the degree to which underlying technological determinants have changed
over time, and I can study their effects on sorting and wage inequality.

A key insight from this model is that workers face a sorting trade-off. Whether to take a job
that better fits their cognitive or their manual skills depends on worker-job complementarities
in cognitive versus manual tasks.? Task-biased technological change, which increases the
level of complementarities between cognitive skills and skill demands (relative to those in

the manual dimension), puts this trade-off to work. Sorting improves along the cognitive

!See Autor et al. (2003) for an empirical analysis of the changing skill content of tasks.
2The meaning of complementarities in this context is that workers with high cognitive skills are particularly
productive in jobs that put significant weight on cognitive ability, and similar in the manual dimension.
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dimension but the opposite is true in the manual dimension, where matches are characterized
by a poorer fit between workers’ skills and job demands. In light of the previous example, the
blue-collar worker who was replaced by a machine may now be employed as a car salesman.
This new job is tailored to his cognitive skills but a poor fit with his manual abilities. The
new allocation benefits workers with high cognitive abilities but harms those with manual
know-how. This makes wages more convex in cognitive but less convex in manual skills,
thereby fueling wage inequality along the cognitive dimension but compressing inequality in
the manual dimension.

I estimate this model for the US and identify sizeable technological shifts: I find that during
the 1990s, complementarities in cognitive inputs increased by 15% whereas complementarities
in manual inputs decreased by 41%, in line with cognitive task-biased technological change.
Moreover, there was significant cognitive skill-biased technological change that affected the
productivity of skills independent of the task, leaving worker-job complementarities unchanged.

The key findings are that these technological shifts may account for both observed wage
polarization (i.e. stagnant lower tail but expanding upper tail wage inequality) and much of
the increase in wage dispersion. More precisely, counterfactual exercises show that task-biased
technological change can account for wage polarization. The reason this technology shift
affects upper and lower tail wage inequality differently is that winners (i.e. workers with high
cognitive skills) are clustered in the upper part of the wage distribution while those adversely
affected (workers with mainly manual skills) are concentrated in the lower part. In turn,
cognitive skill-biased technological change, which does not affect the curvature of the wage
schedule, fuels inequality across the whole distribution. It can account for a significant part of
the increase in US wage dispersion over the 1990s.

Biased technological change, and particularly task-biased change, is considered an im-
portant force behind recent wage inequality trends in the developed world (Acemoglu and
Autor (2011)). The idea is that technological advances like the development of computers
have replaced workers in manual tasks but created stronger complementarities between skills
and job attributes in cognitive tasks. However, even though two intrinsically different skills
are involved (manual and cognitive), the literature has analyzed this technological change only
in one-dimensional settings. In these frameworks, an adverse technology shock reduces firms’
demand for medium-skilled workers (who presumably hold manual skills). As a result, their
relative wages drop and so do employment shares in medium-skilled jobs — a phenomenon that
is referred to as labor market polarization.?

One advantage of these one-dimensional models is their tractability. However, it is
important to note that collapsing agents’ multiple characteristics into a single index is not
innocuous. A notable study that rejects the single index model is by Willis and Rosen

(1979). They show that worker performance depends on a bundle of different skills including

3See, for instance, Costinot and Vogel (2010) and Acemoglu and Autor (2011). In the literature, task-biased
technological change is often referred to as routinization, meaning that new machines replace those workers
performing routine tasks (e.g. Autor et al. (2003), Autor et al. (2006), Autor and Dorn (2012)). Routine skills
also capture manual skills. To fit their analysis more closely, the two skills here could be interpreted as routine
and non-routine.
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intellectual and manual skills. Some people are strong in both skills (e.g. mechanical engineers
or surgeons) and others specialize. This points to the main reason for requiring matching
models with multidimensional heterogeneity: In the data, characteristics are not perfectly
correlated, which is why agents can only be partially ordered. Thus, it is problematic to
aggregate different attributes into a single one-dimensional index, according to which agents

are ranked and matched.*

To assess the (quantitative) importance of multidimensional matching in the labor market,
one needs a tractable theoretical framework. While the literature on optimal transport has
studied the existence and uniqueness of multidimensional assignments under transferable
utility, existing studies provide little insights into the characteristics of the equilibrium and
comparative statics.® This paper makes a first attempt at developing a tractable framework
that allows for both.

Section 1.2 introduces the general theoretical framework. I develop an assignment model
where workers and jobs match in pairs. Workers possess manual and cognitive skills. Each
worker performs two tasks, a manual and a cognitive one. Jobs, in turn, differ in productivities
or skill demands for each task. Within this task-based framework, I propose a generalization
of positive assortative matching (PAM) and negative assortative matching (NAM) to the
multidimensional setting. In non-technical terms, my definition of PAM means that, ceteris
paribus, workers with more cognitive skills match with jobs whose cognitive task is more
demanding, and similarly in the manual dimension. This captures, for instance, that the best
scientists usually work in the best universities (universities put a lot of weight on intellectual
skills but little on manual dexterity) whereas the best mechanics often work in professional
motor sports (which require manual skills more than intellectual abilities). I then state
conditions on the production function such that the equilibrium is assortative. Intuitively, if
there are complementarities of skills and productivities within tasks but not across tasks, then
the optimal assignment satisfies PAM. These properties are shown in full generality without
any assumptions on the distributions or specific functional forms of the production technology.

To study biased technological change, one ideally has a closed form solution that is
amenable to comparative statics and estimation. Toward this goal, Section 1.3 specifies the
environment to Gaussian distributions and linear-quadratic technology. Using this notion
of assortative matching, I develop a technique to solve for equilibrium assignment and wage func-
tion in closed form.

It is important to note that notwithstanding many parallels to the one-dimensional setting,
there is also an important difference: with multidimensional heterogeneity, there is no complete
order of types. As a result, there is no unique PAM allocation that clears the labor market.
This is why, contrary to one-dimensional matching in Becker (1973), super or submodularity of

technology is not sufficient to pin down the output-maximizing PAM allocation. Instead, the

“More recently, results by Papageorgiou (2013) also favor the specialization hypothesis over a single in-
dex model.

5In non-technical terms, the optimal transport problem involves finding a measure-preserving map that
carries one distribution into another at minimal cost, relying on linear programming. See, for instance, Gretsky
et al. (1992), Villani (2009), Chiappori et al. (2010) and Ekeland (2010).
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parametric specification of the production function (i.e. the relative level of complementarities
across tasks and not only their signs) is crucial to determine the unique equilibrium assignment.

This strong link between technology and assignment creates the main technical difficulty
in solving the model. But it also allows for a richer analysis than one-dimensional matching
and offers a natural framework to study task-biased technological change, which focuses on
complementarities. Worker-job complementarities determine the optimal PAM allocation from
many existing ones. They range from strong assortativeness to significant mismatch between
worker and job traits in one or both task(s), capturing a much richer set of assignments than one-
dimensional PAM.

Section 1.4 uses the closed form to analyze task-biased technological change, which
demonstrates how these matching patterns (and ulitmately wages) are shaped by technology.
I also contrast these results with those for more standard skill-biased technological change.
The latter only increases the relative productivity of workers’ cognitive skills without affecting
worker-job complementarities.

Section 1.5 brings this model to the data. I focus on the US economy during the 1990s.
I first construct bivariate skill and skill demand distributions, combining data from the
National Longitudinal Survey of Youth (NLSY) and the O*NET. I then estimate the model by
Maximum Likelihood to quantify technological change during this period and to decompose
changes in wage inequality into those driven by different technological and distributional shifts.

I also highlight in which dimensions the multidimensional model offers a richer interpreta-
tion of the data than a similar model with one-dimensional traits. The one-dimensional model
misses several important margins: first, it misses the manual-cognitive sorting trade-off, and
closely related, the differential impact of biased technological change on manual and cognitive
returns. Moreover, it fails to account for a sizeable group of generalists (holding both types of
skills) whose cognitive skills allow them to buffer against adverse shocks to manual skills.

Section 1.6 places the main contribution of the paper into the literature. Section 1.7

concludes. The Appendix contains all proofs, data details and estimation results.

1.2 Theoretical Framework for Multidimensional Sorting

Toward the goal of developing a theoretical framework for multidimensional sorting, this
section outlines the general model absent specific assumptions about underlying distributions or
production technology. To make the results most intuitive, I will focus here on two-dimensional

heterogeneity. Notice that this section fully generalizes to N-dimensional heterogeneity.%

1.2.1 Environment

Agents: There are two types of agents, firms and workers. All are risk-neutral. There is a
continuum of each type. Every worker is endowed with a skill bundle of cognitive and manual
skills, x = (z¢,zp) € X C Ri. Points in X represent worker types. Denote the joint c.d.f.
of (z¢,zpr) by H(xc,xpr), which is assumed to be absolutely continuous with respect to

S All proofs for this section are given for N-dimensional heterogeneity.
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the Lebesgue measure. In turn, each firm (which I use interchangeably with job) is endowed
with both cognitive and manual skill demands, y = (yc,ym) € Y C R2. yc (respectively
yu) corresponds to the productivity or skill requirement of cognitive task C' (respectively
manual task M). Points in Y represent firm types. Denote the joint c.d.f. of (yo,yar) by
G(yc, ynm), which is also assumed to be absolutely continuous. Assume that overall masses of
firms and workers coincide.”

Production: Every firm produces a single homogenous good by combining all inputs. Denote
the technology by F(zc,xa, yo,ya). 1 assume that F is twice continuously differentiable.

Labor market: Firms and workers match pairwise. The labor market is competitive.

1.2.2 Definitions

Matching Function: The sorting between workers and firms is described by a map x* = v(y),
where v(y) is the worker type that firm y optimally chooses to hire ("*’ indicates an equilibrium
object). The focus here is on a bijective C* map v : Ri — Ri, which can be uniquely

characterized by its inverse p = v=1.

I call p the matching function, which describes the
assignment of workers to firms.

Assortative Matching: What makes assignment problems tractable in the one-dimensional
world is the concept of assortative matching: There, PAM (NAM) is defined by a monotonically
increasing (decreasing) matching function, denoted as y = u(x), meaning that better (worse)
workers work in better firms. This concept captures two aspects: (a) purity of matching (i.e.
w(x) is one-to-one), and (b) direction of sorting. Here, I aim to define a multidimensional
version of assortative matching that also incorporates these two features. As in the one-
dimensional setting, here assortativeness involves properties of the first derivative of the

matching function (i.e. of its Jacobian), given by:

oy 9y
= * al’c (?$
J# =Dy = 0y, dy%

oxe ox
I define multidimensional positive and negative assortative matching as follows:

Definition 1.1 (Assortative Matching with Multidimensional Types). The sorting pattern is

PAM (NAM) if Dyy* is a P-matriz (P~ -matriz), i.e. if

o . Oy oys Oyny  Oys Oy
— > (< 0 > (< 0 Det(J,) = — >0

[Z] 8.TC ( ) [ZZ] axM ( ) [ZZZ} e ( ;U') a.:UC 8.1“]\/[ afL’M axc

(1.1)

First, I will give the intuition and then the technical details. To illustrate most arguments
in this paper, I will focus on P-matrices and PAM.® In economic terms, PAM means that

intellectual types work in firms where workers need to perform complex intellectual tasks

"Otherwise, there is equilibrium unemployment or idle firms, which unnecessarily complicates the model.

8Generally, a matrix is a P-matrix if all its principal minors are positive. Hence, every positive definite
matrix is a P-matrix but the converse statement only holds for symmetric matrices. In turn, matrix M is P~
if —M is P.
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(part [i]). Similarly, workers with strong manual skills work in firms that attach considerable
weight to the manual task (part [ii]). Moreover, inequality [iii] dictates that these within-task
matching forces dominate between-task matching forces. Otherwise, scientists would work in
the best garages whereas the best mechanics would work at leading universities. Hence, this
definition captures the direction of sorting, which under PAM is a positive relation between
worker and firm traits along the natural sorting dimensions.

Definition 1.1 also captures the fact that the assignment is pure, defined as follows:
Definition 1.2 (Pure Matching). Matching is pure if u is one-to-one almost surely.

In economic terms, pure matching means that two firms of the same type choose the
same worker. Technically, purity is closely related to the properties of the Jacobian of the
matching function and particularly to the P-matriz property of the Jacobian.” Gale and
Nikaido (1965) link the P-matrix property of the Jacobian of a function to the function’s
injectivity, giving a sufficient condition for purity in the current setting: if D,y* is a P-matrix
(or P™-matrix), then the matching function is globally one-to-one. The P-matrix property
is also sufficient for global invertibility, justifying my approach to consider ;4 = v~! as the
matching function instead of v.19

Definition 1.1 is a natural generalization of one-dimensional assortative matching, capturing
the same two aspects: the direction of sorting in each task dimension (given by [i] and [ii] in
(1.1)) and purity of the assignment (guaranteed by the determinant condition [iii]). In both
the one-dimensional and multidimensional settings, PAM implies purity.

The figure below provides a graphical illustration of multidimensional PAM, using a
discrete 2x2 example: Each side of the market has two attributes that can be high (H) or
low (L). Hence, there are four worker and four firm types. In each subfigure, the left panel
represents worker types and the right panel firm types. Dots indicate types. Assume that all
dots carry the same mass of agents, and suppose worker and firm types of the same color match.
In subfigure (a), matching is characterized by PAM (which implies purity). In subfigure (b),
matching is pure (i.e. every agent matches with a single preferred type) but PAM is violated
along the C dimension. In subfigure (c¢), matching is neither positive assortative nor pure

because agents are indifferent between several matches.

1.2.3 The Firm’s Problem

A firm with given productivity bundle (yco,yar) chooses a worker with skill bundle (x¢, zr)
in order to maximize profits. It takes the wage schedule as given, meaning that wages are
not a function of productivities. In this section, I derive the firm’s problem and optimality
conditions heuristically, taking as given that the wage function (denoted by w(zc,zas)) is

twice continuously differentiable. Below, I show conditions under which w(z¢, zys) satisfies

9P-matrices have so far not been exploited in the matching literature but have been used in other fields of
economics to rule out multiple equilibria. See, for instance, Simsek et al. (2005).

10See Theorem 1.1 in Chua and Lam (1972) and the references therein for the equivalence of the class of
globally one-to-one and continuous functions from R™ into R™ and the class of globally homeomorphic functions
from R™ to R".
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this property. The firm’s problem is given by:

max  F(zc,zum,yo, ym) — w(ze, ) (1.2)
(ro,wp)eX

The FOCs of this maximization problem read

Fee(zo,on, Y0, Ym) — Wae (To, 0r) =0 (1.3)

Fwﬂ{(xCaxM7y07yM)_w:pM(fL'C,:UM) =0 (14)

where subscripts denote derivatives. Equations (1.3) and (1.4) hold only at the equilibrium

assignment.

1.2.4 The Equilibrium

I focus on a competitive equilibrium, which is defined as follows.

Definition 1.3 (Equilibrium). An equilibrium is characterized by a matching function  :
X =Y, and a wage function w : X — Ry, satisfying:

(i) Optimality: Price-taking firms mazximize profits (1.2) by choosing (xc,xar) for a given
w(ze,xprr). (1) Market Clearing: Feasibility of p requires that when x ~ H then y* ~ G.

Optimality of the firm’s choice is a standard requirement of a competitive equilibrium.
Market Clearing requires that the amount of workers of type (z¢, ) demanded across all
firm types cannot exceed the measure of such workers in the economy.

Existence of a Walrasian equilibrium in the continuous assignment problem was proven in

Gretsky et al. (1992) (Theorem 4) and, for slightly modified environments, in Chiappori et al.
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(2010) and Ekeland (2010).!! Notice that these papers do not guarantee that the equilibrium
will be differentiable. Nevertheless, in what follows, I focus on a differentiable equilibrium
where g is C' and w is C2. I show below that the differentiable equilibrium exists in various
multivariate environments with absolutely continuous distributions. I will discuss some of

them, with particular emphasis on the case with Gaussian distributions.

1.2.5 The Equilibrium Assignment

This section relates properties of the production technology to properties of the equilibrium
assignment (y¢&,yy;) = u(xc,xa), which I will explicitly denote by y& = yo(zc,zm) and
Yy = ym(xzc,zpr). This assignment is only optimal if the second-order conditions of the
firm’s problem, evaluated at (yg,y3,), i.e. negative semi-definite Hessian, are satisfied. Using
these necessary second-order conditions for optimality, I show that if technology features the

following complementarities

+
F, 0
D2 F = cve (1.5)
O FII\/IyM

then the equilibrium assignment satisfies PAM (i.e. D,y* is a P-matrix). For NAM, a similar
statement holds when replacing complementarities by substitutabilities.'? Moreover, under

the same condition, the assignment is a global maximum:

Proposition 1.1 (Assortativeness and Global Maximum). If DgyF is a diagonal P-matriz

(P~ -matriz), then the equilibrium assignment satisfies PAM (NAM), and is globally unique.

The proof is in Appendix 1.8.1. To gain intuition into the assortativeness result, con-
sider PAM. If there is complementarity between skills and productivities within both the
cognitive task (Fy.y, > 0) and the manual task (F,,y,, > 0) and interfering between-task
complementarities are absent (Fyy,, = Fryye = 0), then it is optimal that workers and
firms match in a positive assortative way: Agents with strong intellectual skills work in firms
that value these skills (and similarly for the manual dimension).!3

This sorting result, which ensures a positive relation between skills and productivities
along natural dimensions (i.e. within cognitive and manual tasks), is obtained under strong
restrictions on the complementarities in production. The intuition is that, in the multidi-
mensional world, sorting occurs along all skill and productivity dimensions, i.e. also between
tasks; that is, between manual productivity and cognitive skill, % # 0, and also between
cognitive skill demands and manual ability, ng:?f = 0. Allowing for complementarities between,

say, manual skill demands and cognitive skills (F}y,, > 0) might render a positive relation

N Their work extends Gretsky’s existence result on the endowment economy where every seller is endowed
with a given type of good to a production economy where sellers can choose the type of good they want to sell.

12The presented condition is related to the twist condition from optimal transport but is not equivalent.
See Section 1.6.

13Similarly, in the case of NAM, assortative matching within tasks dominates assortativeness across tasks,
only in this case high productivity workers are matched with low productive firms.
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between these two attributes, % > 0. This may come at the expense of negative sorting in
the manual task, gg% < 0, especially when skills are negatively correlated, violating PAM.

It is important to note that the stated sufficient condition for PAM is distribution-
free. If one is willing to impose restrictions on the distributions, this condition can be
considerably weakened, allowing for across-task complementarities or substitutatabilities
(Freynrs Feyye 7 0). In Section 1.8.5 of the Appendix, I show that a weaker version of (1.5)
applies to settings where skills and productivities are (i) uniformly distributed, (ii) identically
distributed or (iii) normally distributed. For (i) and (ii), the sufficient condition for PAM is
that the matrix of cross-partials of F' is a symmetric P-matriz (i.e. positive definite) and for
(iii) a diagonally dominant P-matrix.

This section closes with a comparison to the one-dimensional setting. With one-dimensional

traits, the requirement of a negative definite Hessian collapses to the requirement on the

second-order condition, given by —Fy, 8‘55;':) < 0. If F,,y is positive, then matching is PAM.
Purity is given by strict monotonicity of matching function p and the sorting direction by its
positive slope. Similarly in this model, I impose conditions on the matrix of cross-partials
DgyF to obtain PAM. The difference is that with multiple dimensions not only the signs but
also the relative magnitudes of different complementarities need to be restricted in order to

ensure assortative matching.

1.2.6 The Equilibrium Wage Function

This section derives conditions for the existence of a unique wage schedule that supports
the equilibrium assignment. The equilibrium wage is the solution of a system of partial
differential equations (PDEs), which are given by the first-order conditions of the firm, (1.3)
and (1.4), evaluated at the equilibrium assignment. To solve a system of PDEs, integrability
conditions of the system need to be specified in order to make the system involutive (i.e.
formally integrable). For the linear system of first-order PDEs given above, there is only one
integrability condition. It is given by the commutativity of mixed partial derivatives and

obtained by cross-differentiating (1.3) and (1.4), when evaluated at (y¢, yi):

Weeczy = Wapze

Wi _ 9% My

QY&

cyc@JrF

A Fx TCYM 8$M - TMYC 8550 + TMYM 8xc :

(1.6)
This condition is equivalent to the requirement that the Hessian of the firm’s problem
is symmetric. The next proposition states the result on existence and uniqueness of the

equilibrium wage function.

Proposition 1.2 (Existence and Uniqueness of the Wage Function). There ezists a unique
wage function (up to a constant) that decentralizes the equilibrium assignment if and only if

the equilibrium assignment satisfies (1.6).

The proof relies on Frobenius’ Theorem. Both theorem and proof are stated in the Appendix

1.8.1. Integrability condition (1.6) has technical and economic implications. Technically, given
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(1.6), there exists a C2 wage function w, justifying the differentiation-based approach above.

Condition (1.6) also carries an important economic message. It highlights a crucial
difference between multidimensional and one-dimensional settings. With multiple dimensions,
there is a stronger link between technology and assignment. The equilibrium assignment (i.e.
the Jacobian of the matching function) does not only depend on the signs of the cross partial
derivatives, Fy,y,,1,j € {C, M}, but also on their strength. Changing the strength (but not
the signs) of F,,. will induce worker reallocation without necessarily violating PAM or NAM.
Matching multidimensional types thus generates something similar to an intensive margin
even though firms and workers match in pairs.

In the one-dimensional setting, there is no integrability condition because the wage is the
solution to a single ordinary differential equation. In such a setting, the assignment depends
only on the sign of Fj,,,, not on its level: supermodularity (submodularity) of the technology
implies PAM (NAM). Given PAM (NAM), there exists a unique measure-preserving increasing
(decreasing) map of skills to productivities, which can be pinned down by labor market clearing
alone. Under PAM, this map is given by y = G~}(H(x)). However, with multiple traits,
there is no complete order of types. Hence, there is no unique measure-preserving positive (or
negative) assortative map of skills to productivities. The optimal assignment must be jointly
determined by labor market clearing and the firm’s problem. This is central to the closed

form derivation below.

1.3 Quadratic-Gaussian Model

A main goal of this paper is to apply this multidimensional sorting framework to the empirically
relevant phenomenon of biased technological change. This section takes an important step
toward achieving this objective. It specifies the environment to Gaussian distributions and
quadratic technology and develops a technique to compute the multidimensional assignment
and corresponding wage explicitly. The closed form solution then allows me to focus on the
economics of multidimensional sorting, characterizing equilibrium properties and analyzing
comparative statics.

PAM provides the crucial link between the previous general section on multidimensional
sorting, this section on the closed form and the next section on the application: First, PAM
puts a useful structure on the equilibrium assignment that helps to solve multidimensional
assignment models similarly to one-dimensional problems. Second, despite the imposed
structure, PAM is flexible enough to allow for a wide range of assignment patterns. I will
show how technology and distributions generate a rich set of positive assortative matchings,

which is at the heart of the paper’s application below.

1.3.1 Environment

Let skills (z¢, xpr) and productivities (yc, yar) follow bivariate standard normal distributions:

Ll ) Ll () )
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Denote the bivariate distribution functions of skills and productivities by ®,(z¢c, xpr) and

@, (yc, ym ), respectively. Assume, pg, p, € (—1,1). I focus on the bi-linear technology

F(zc,zm,yo,ym) = axcyc + Pemym = o(zcyc + 0xarynr) (1.7)

where a and 8 are task-weights that indicate the level of worker-job complementarities or sub-
stitutabilities across tasks. Notice that § = g indicates the relative level of complementarities
across tasks. Without loss of generality, set o« > 3 such that ¢ € [0, 1], meaning that worker-
firm complementarities in the cognitive task are weakly stronger than in the manual task.'

Technology (1.7) captures that there is within-task complementarity but between-task
complementarity is shut down. Based on the results in Section 1.2, certain properties of the
equilibrium assignment are already known at this point without having to check second-order
conditions of the firm’s problem.'® Under (1.7), DgyF is a diagonal P-matrix. Consequently,
the equilibrium assignment is unique and satisfies PAM. These properties will prove useful

in the construction of the equilibrium.

Notice that this model can be generalized in various ways. It can be solved in closed form for

F(zco,xm, yo,ym) = axcym + Bruyc + yxeyc + 0xmym (1.8)

allowing for non-zero between-task complementarity (Appendix 1.8.5 with the assignment
given by (1.87)-(1.90)). Moreover, I can allow for non-standard normally distributed variables
or even arbitrary marginal distributions that are linked via Gaussian copulas (see Appendix
1.8.7). However, here I focus on the simplest environment that conveys the full intuition. I
solve this assignment problem in two steps. First, I construct the equilibrium assignment and

then the wage schedule that supports it. Appendix 1.8.2 provides the details.

1.3.2 The Equilibrium Assignment Functions

The objective is to compute equilibrium assignment functions y¢ = yo(zc, xar) and y3, =
ym(xzo,xpr) in closed form. They must be consistent with both labor market clearing and
the firm’s optimality. Due to the incomplete order of types in the multidimensional setting,
there are many possibilities of how to match workers with firms in a positive assortative way.
This is the main difficulty in solving for the assignment. What matters for pinning it down is
not only the sign but also the relative strength of skill-productivity complementarities across
tasks, captured by d. By temporarily converting the two-dimensional problem to two separate
one-dimensional problems, I make the model tractable. I do the matching in the transformed
space and then re-transform as follows:

I first apply a measure-preserving transformation that un-correlates the Gaussian variables.

In particular, let x be a p-variate random vector with mean p and nonsingular covariance ma-

Nothing hinges on this restriction but it simplifies interpretation, and moreover, is in line with the data.
15 Analogously to the general model, the firm’s problem is given by: MaX (g .z )ex &(Toyo + 0xnmyn) —
w(zc,xum).
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trix Y. Then,
z=3"2(x—p) (1.9)

has mean 0 and covariance matrix I,. Matrix 373 is the inverse of any square root of
the covariance matrix, i.e. E%(E%)T = ¥. Denote by ¥, (respectively ¥,) the covariance
matrix of skills (respectively productivities). Apply (1.9) to the standard bivariate normal

skills and productivities

Zx —
ZX = c = E[E
“rym

where zyx and zy are the vectors of uncorrelated skills and productivities, respectively. The

e

N

(1.10)

_1
and zy = [ “vo ] =3, 2 [ ve
2y Ym

TM

labor market clearing condition can now be specified in terms of uncorrelated variables,
which is consistent with labor market clearing in (x,y) because the applied transformation
is measure-preserving. Since the equilibrium assignment will satisfy PAM, I map skills

to productivities in an increasing way

(1= ®(2y0)) (1 = B(zyp,)) = (1 = B(220)) (1 = P(22,)) (1.11)

where ® again denotes the standard normal c.d.f. The interpretation of (1.11) is that if firm
(2yes Zyay ) matches with worker (2, 2z,,), then the mass of workers with better skills than
(225 22y, ) must be equal to the mass of firms that are more productive than (2, 2y,,) (due
to PAM).16

The market clearing condition (1.11) implicitly defines the vector-valued matching function
of transformed variables, denoted by ;i : R> — R2. The objective is to back out two real-
valued assignment functions of this vector-valued matching function. To do so, set equal the
quantiles of the marginal skill and productivity distributions within the cognitive and within

the manual dimension
P(zy,) = P(2,) vV ie{C, M} (1.12)

which gives a system of two equations. In principle, there are many possible ways to match
up the marginals in (1.11) but due to PAM (i.e. positive diagonal elements of D,y*), this is
the only sensible way. System (1.12) can be be retransformed into original variables, explicitly
solving for productivities yo and yps as functions of skills ¢~ and xjs, which constitutes the

candidate equilibrium assignment

[ ve } S I { ve ] (1.13)
Ymr

1

1
where D,y* = X7 %, ? is the Jacobian of the matching function. System (1.13) is the candidate

161 will verify below that market clearing in transformed variables (22, 22), which is based on purity and
PAM, gives rise to an assignment in (z,y) that also admits purity and PAM.
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equilibrium assignment, mapping bivariate skills into bivariate productivities. By (1.11),
it is measure-preserving (i.e. in line with labor market clearing). Notice, however, that a
covariance matrix has an infinite number of square roots because it is a symmetric positive
definite matrix. Hence, there are many matchings that satisfy market clearing and that are
potentially in line with PAM. How to pick the optimal one? I use the degree of freedom in
computing the square roots to take into account a firm’s optimal choice, which depends on the
relativ? levlel of skill-productivity complementarities, captured by 6.7 The Appendix shows
how 273, ? can be parameterized by ¢, such that the resulting assignment is consistent with

the firm’s optimality for any level of complementarities across tasks.

Proposition 1.3 (Equilibrium Assignment). The equilibrium assignment p is given by

* 1 1
l y*C ‘| :Ey22$2 [ el ‘| — [ Jll(ﬁa:apyafs) J12(anpy75) ‘| [ e ‘| (114)
Ymr M JQl(pmapyaé) J22(px>py75) Tpm
Dy y*

where Ji1, J12, Jo1, Jag are given in (1.56) in the Appendiz.

Remark 1.1. For § = 1: J11 = J22 and J12 = J21. For § = O: J22 7’5 J11 =1 and

Jo1 # Jig = 0. For é € (0,1): the assignment lies in between these two polar cases. The
11

square roots, Xy, X7, are obtained from a rotation of the spectral square roots. They range

between the spectral square root (for § = 1) and the Cholesky square root (for § = 0).

See Appendix 1.8.2 for the proof and explicit expressions. With symmetric technology
(6 = 1), the equilibrium assignment is fully symmetric across the two tasks. The spectral
square root, which is the unique symmetric positive definite square root of the covariance
matrix, is used to compute this assignment. In the completely asymmetric case (6 = 0),
only the cognitive task matters for production. The Cholesky square root is the unique
lower triangular square root, and hence asymmetric. It delivers an asymmetric assignment,
which is optimal when technology exhibits extreme asymmetries. Last, when there are some
asymmetries in the production technology § € (0, 1), then the assignment is in-between these

two polar cases (more intuition below).

There are two main messages from this proposition. First, the assignment can be computed
in closed form and is a linear map from skill bundles to productivity bundles. Second, there
is a much stronger link between technology and assignment compared to the one-dimensional
case, where the matching function only depends on underlying distributions (through skill
correlation p, and productivity correlation p,). Unlike in 1-d, here also the relative level of
skill-productivity complementarities enters the assignment, which is captured by covariance

square roots that adjust to the level of é.

"This is done by taking into account the integrability condition (1.6), under which a wage schedule exists

that induces firms to choose this assignment. With this bilinear technology, (1.6) collapses to gf—f{ = (;il‘é .




14 CHAPTER 1. SORTING MULTIDIMENSIONAL TYPES

1.3.3 The Equilibrium Wage Function

I close the model by computing the wage function that supports the assignment found
above. In this quadratic-Gaussian model, the wage function admits a highly tractable closed-

form solution.

Proposition 1.4 (Equilibrium Wage Schedule). The equilibrium wage function is given by
1 T fad
w(x) = 50X Jx + wo (1.15)
where wq is the constant of integration.

See Appendix 1.8.3 for the proof and explicit expression. J is a matrix of parameters
closely related to the equilibrium assignment. It contains the assignment coefficients from
the Jacobian of the matching function, J,,. For the special case of symmetric tasks (6 = 1),
the two coincide, J = Ju, emphasizing the tight link between allocation and wages, which is
typical for assignment models. The wage function is a quadratic form in standard normal
variables, which allows me to compute the moments of the wage distribution in closed form.
The next sections extensively discuss the properties of the wage function and how they depend
on distributions and technology through the assignment.

As a final note on the equilibrium, notice that, not surprisingly, the one-dimensional equi-
librium is subsumed by the two-dimensional model as a special case: For perfect correlations,
Pz, py — 1, the Jacobian of the matching function J,, in (1.56) becomes the identity matrix
(i.e. the assignment is independent of the complementarity weights in the production function)

and the wage collapses to a simple quadratic function in skill.

1.3.4 Properties of the Equilibrium

This section discusses equilibrium properties of the benchmark case with symmetric tasks
(6 = 1). The next section on the application of task-biased technological change (task-biased
TC hereinafter) examines in detail the case of asymmetric task weights (6 # 1). To analyze
the sorting properties of this equilibrium, it is useful first to define the concepts of perfect

assortativeness and mismatch.

Definition 1.4 (Perfect Assortativeness and Mismatch). An assignment in task i € {C, M}
is perfectly assortative if x; = y;. An assignment is characterized by mismatch if |y; — ;| # 0.

Mismatch is said to be increasing in |y; — x;|.

Perfect assortativeness means that a worker’s skills perfectly match a firm’s skill require-
ments for a certain task. The opposite of perfect assortativeness is structural mismatch, which
I define as the dissimilarity between skills and skill demands in a given match. Notice that
mismatch in this frictionless economy has nothing to do with inefficiencies. Instead, it refers
to the misfit between workers’ and firms’ traits. I can now state the following properties of

the equilibrium assignment.
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Proposition 1.5 (Equilibrium Sorting). (i) The equilibrium assignment is characterized by
PAM. (i) For a perfect fit of skill supply and demand (p, = py), sorting is perfectly assortative
in both tasks, i.e. yo = xc and ypr = xpr. In turn, for the poorest fit of skill supply and

demand (i.e. maximal |py — py|), mismatch along both task dimensions is mazimized.

By construction, the equilibrium assignment satisfies PAM, meaning that workers with
more intellectual skills work in jobs that value them and similarly on the manual dimension.
This stems from the technology that features worker-firm complementarities in each task.
Interestingly, the degree of assortativeness depends on the underlying distributions. This is
illustrated by two polar cases. First, when skill supply and demand perfectly overlap (p, = py),
then every worker matches with the firm that needs exactly his skills. On the other hand, if
there is a large discrepancy between skills needed and skills supplied (|p, — py| — 2), then the
labor market can only clear under considerable mismatch, with every worker being in a job
for which he is either under or overqualified.

These results are illustrated in Figure 1.1, which displays contour plots of two standard
normal distributions for various skill and productivity correlations. For the sake of illustration,
assume that workers are represented by blue contour lines and firms by red ones. In the
middle panel, there is a perfect fit of skill supply and demand distributions, which would lead
to perfect matches between workers and jobs. The panels at the left and right show the other
extreme case, where skill demand and supply are most misaligned. Focus on the left panel. In
this economy, workers are specialists (they are either good in the manual or in the cognitive
task but not in both) whereas firms want generalists. The labor market clears under PAM

but matches are characterized by a poor fit between workers’ and firms’ attributes.

P>

Figure 1.1: Contour Plots of Skill and Productivity Distributions

The Jacobian of the matching function offers an alternative graphical way of looking at
equilibrium sorting properties. In the graph below, I plot productivity in the cognitive task
(left) and the manual task (right) as a function of both skills. The constant slopes of the lines
stem from the linearity of the assignment functions. The slope of solid lines resembles the
assortativeness of the match (they show how strongly skills and productivities relate within

tasks) and the slope of dotted lines indicates the degree of mismatch in a pair (they show how
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strongly skills and productivities relate between tasks). Assortativeness forces are given by
the diagonal elements of the Jacobian J,, (J11 and J2), and mismatch forces are given by the
off-diagonal elements of the Jacobian, (Ji2 and Jaq).

The assignment in the upper panel is perfectly assortative where only the right skill
contributes to the match: the straight lines have slope one and the dotted lines lie on the
x-axis, i.e. yo = r¢o and yyr = xp7. This assignment results when underlying distributions
are identical (p; = py). The lower panel displays the other extreme. Here matches are
characterized by maximum mismatch with the wrong skill dimensions contributing almost
as much to the match as the assortative dimensions: the slopes of straight and dotted lines
are similar. Such an assignment corresponds to the left and right panels in the previous
figure where the underlying distributions differ significantly. Notice that despite considerable
mismatch, PAM is satisfied ((i) positively sloped straight lines, (ii) straight lines steeper
than dotted lines). One advantage of my multidimensional notion of assortative matching is
that, despite the imposed structure, it is flexible enough to allow for a rich set of assignment

patterns, ranging from perfect assortativeness to significant mismatch.
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Figure 1.2: Perfect Assortativeness (upper panel) and Mismatch (lower panel) within PAM

The next result summarizes a selected set of properties of the wage function.

Proposition 1.6 (Equilibrium Wages). .

(i) Wages are convex in skills. (ii) The wage distribution is positively skewed.

The central idea of assignment models is that the allocation of workers to firms shapes
wages, and hence, wage inequality. Since sorting is positive assortative (implying that J
in (1.15) is a symmetric P - matrix or positive definite) wages are convex. Convex wages

mean that workers with large (absolute) quantities of skills earn disproportionally more than
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workers with small (absolute) quantities of skills. Notice that skills are not the only force
behind high earnings. Due to PAM, skill differences are magnified because skilled workers are
matched to more productive firms, convexifying the wage schedule. On the other hand, if
sorting were negative assortative, the wage function would be concave.!®

An alternative measure of wage inequality is the skewness of the wage distribution. In
line with many empirical wage distributions, the model’s wage distribution is positively
skewed, indicating that a large fraction of workers earns little while a small fraction earns
disproportionally much. The force behind positive skewness is again PAM, which is the driving
factor of wage inequality in an economy.

It can also be shown that the average performance of an economy depends on the assignment
of workers to firms and thus on underlying distributions. The average wage (and also output)
is maximized when skill supply and demand are perfectly aligned (p, = py). Intuitively, at that
point, every worker obtains the perfect firm match in both tasks. In turn, the economy performs
most poorly on average when misalignment between skills and skill requirements is largest.

This section illustrated how sorting depends on an economy’s skill and productivity
distributions and how this feeds into wages. It was shown that PAM is the major force behind
wage inequality. The next section revisits the key message from Proposition 1.3 that the
assignment not only depends on distributions but also on technology (through the relative
level of firm-worker complementarities across tasks). I will use the closed form and the
developed sorting framework to examine the central application of this paper: How does
task-biased technological change affect assignment and wages? How are these effects mitigated

or reinforced by the underlying distributions?

1.4 Biased Technological Change

This section uses the closed form to study the central economic question raised in this paper.
I analyze the effects of task-biased TC and also contrast them with skill-biased TC.

1.4.1 Task-Biased Technological Change

Task-biased TC is viewed as an important force behind recent wage inequality shifts in the
developed world. The idea behind task-biased TC is that technological advances have replaced
workers in performance of manual tasks but created stronger complementarities between
skills and job attributes in cognitive tasks. The literature also refers to this technological
change as routinization, where workers performing routine tasks are increasingly substituted
by computers and machines.'® Notice that task-biased TC does not imply that the prevalence
of routine tasks in the production process has diminished over time — quite the opposite

(Acemoglu and Autor (2011)). What has changed is the technology to perform them.

¥Even though this is not the focus here, it is worth mentioning that in this model, wage data is sufficient to
determine the direction of sorting. In several one-dimensional models, this is not the case (see e.g. Eeckhout
and Kircher (2011)).

19Gee, e.g. Autor et al. (2003), Autor et al. (2006) and Autor and Dorn (2012). There is a close mapping
between manual and routine skills on the one hand, and between cognitive and non-routine skills on the other.
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Even though two intrinsically different skills are involved (manual and cognitive), task-
biased TC is analyzed in the literature only in one-dimensional settings. Contrary to these
models, my model does not assume that manual skills are only used by medium-skilled workers.
Instead, I make the more natural assumption that both types of skills are used on every job
yet in different proportions.?°

In the presented model, task-biased TC can be captured by a relative decrease in skill-
productivity complementarities in the manual task. Recall the technology F(xc, xar, Yo, yar) =
alxcyc + dxpryn) where 6 = g indicates relative complementarities in the manual task.
Consider a change from ¢ to &’ such that & < § = 1. Then, ¢’ is called task-biased relative to
0, with the bias favoring the cognitive task. Moreover, to obtain clean analytical results, I
will focus on cases where p;, p, < 0 or pg, py, > 0.2! The next result summarizes the effect of

task-biased TC on the equilibrium assignment.

Proposition 1.7 (Task-Biased TC and Sorting). Suppose there is cognitive task-biased TC
(0 < ' <6 =1): (i) Sorting becomes more (less) pronounced in the cognitive (manual) task
(i.e. |yc — xc| decreases, |ynpr — xpr| increases). (ii) As & — 0, perfect assortativeness is
achieved in the cognitive task (yo = x¢) but manual mismatch becomes maximal. (iii) Given
a perfect fit of supply and demand (p, = py), task-biased TC has no effect on the assignment.

For the poorest fit (mazimal |py — py|), assignment changes are largest.

As long as § > 0, the equilibrium assignment will satisfy PAM. Hence, all matching
patterns discussed in this section can be analyzed in the proposed sorting framework.

For most underlying distributions, the equilibrium assignment will be such that workers
do not obtain their perfect job matches. This is because such a situation is simply not feasible.
However, in a multidimensional world, agents can decide in which dimension (cognitive or
manual) sorting is more important. This decision depends on technology and in particular
on relative levels of worker-firm complementarities across tasks. In the task with relatively
large complementarities, perfect assortativeness is strongly desired whereas in the task with
weaker complementarities, mismatch is tolerated. This trade-off is what I call mismatch-
assortativeness trade-off across tasks.

Task-biased TC, which is defined as a change in relative complementarities, puts this
trade-off to work. Consider, for instance, the development and increasing use of computers,
which makes cognitive skills more productive in jobs that demand them. On the other hand,
computers perform several manual tasks, replacing workers with manual know-how. As a
result, sorting becomes more pronounced in the cognitive task at the expense of mismatch in
the manual task (part (i)). The amount of worker reallocation depends on both, the size of
the shock (part(ii)) and underlying distributions (part(iii)). How the size of the shock matters
is illustrated in the figure below, which has a similar structure to that in Figure 1.2. The

upper panels plot cognitive sorting, i.e. yc as a function of z¢ and x s before (left panel)

20This is similar to the skill weights approach by Lazear (2009).
21This can be relaxed but I would have to rely more on simulations. Moreover, the restriction captures the
empirically relevant case for the US. See below.
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and after task-biased TC (as § goes to zero). The lower panels plot manual sorting, i.e. yas

as a function of x); and x¢ and have the same structure.
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Figure 1.3: Effects of TBTC on Sorting in Cognitive (upper panel) and Manual Dimension (lower panel)

The slope of the straight lines indicates how strong the sorting forces are within tasks.
The slope of the dotted lines is an indicator of how strong sorting forces are between tasks.
Due to the bilinear technology, the within-force is desirable whereas the between-force is not
(it reflects mismatch). Before task-biased TC, cognitive and manual tasks receive identical
weights in production (§ = 1), hence, the left panels in both figures are identical. Going from
left to right, relative complementarities in the cognitive task increase: the economy converges
to the perfectly assortative allocation in the cognitive task. But this comes at the expense
of significant misalignment between workers’ skills and firms’ skill needs in the manual task,
with manual productivity responding even more strongly to changes in the cognitive than in
the manual skill.

Besides the size of the technological shock, what matters for the sorting response to
task-biased TC is the shape of the underlying distributions (part (iii)). If skill supply and
demand are perfectly aligned (p, = py), task-biased TC has no effect on the assignment. This
is because sorting in both tasks is perfectly assortative to start with (yo = x¢ and ypr = xpr).
Thus, the worker-firm assignment in the cognitive task cannot further improve as ¢ decreases.
On the other hand, the amount of resorting in response to task-biased TC is maximized
when skill supply and demand differ considerably. In this situation, the initial assignment is
convoluted by mismatch in both tasks. Hence, there is much to gain from improving cognitive

sorting in response to task-biased TC.
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It follows from this discussion that there are two sources of structural mismatch in
the economy, technology and distributions. The first source stems from asymmetries in
production technology (Proposition 1.7). The second is due to discrepancy between skill
and productivity distributions or, in other words, between supply and demand (p, # py,
Proposition 1.5). It arises because the frictionless labor market must clear no matter how

different skill and productivity distributions are.

Clearly, these assignment changes feed into wage changes, summarized by the next result.

Proposition 1.8 (TBTC and Wages). Suppose there is task-biased TC (0 < ' < 6 =1):

(i) Aggregate Wage Inequality: The effect on the wage variance is ambiguous.

(it) Wage Curvature: If |pz| < |py|, wages become more convex in cognitive but less convex in
manual skills. For a perfect fit of supply and demand (p, = py), changes in the curvature are

smallest. In turn, for the poorest fit (i.e. mazimal |p, — py|), curvature changes are largest.

Task-biased TC has ambiguous effects on the variance (part(i)). The wage variance
is sensitive to the level of technology. It increases in both technology parameters o and
B. Since cognitive task-biased TC can either be driven by an increase in cognitive task-
weight a or by a decrease in manual task-weight 3, the overall effect depends on the relative
magnitude of these two changes.

Task-biased TC also affects wage inequality by altering the curvature of the wage sched-
ule (part (ii)): Wages convexify in cognitive skills but become less convex in manual skills
(for the empirically relevant case |p,| > |pz|, see below). Intuitively, this technology shift
favors workers with high levels of cognitive skills, driving up wage inequality in the cognitive
dimension. On the other hand, manual workers are adversely affected by task-biased TC.
Those with many manual skills are hit most severely, compressing wage inequality in this
dimension. The magnitude of these effects depends on the amount of worker-job reallocation
in response to task-biased TC. If there is considerable misfit in initial worker-job matches
(which is the case when |p, — py| is large), then the reallocation response is strong. These
allocation shifts translate into larger wage inequality movements.

To the extent that manual specialists are medium-income earners whereas cognitive
specialists are high-income earners, the discussed (de)convexification fuels upper tail but
compresses lower tail inequality.?? This is reminiscent of wage polarization from the one-
dimensional literature, which refers to expanding upper tail but compressing lower tail
inequality, relevant for the empirics below.

Notice an important difference from the one-dimensional setting is that in my model, there
exist generalists. Generalists have a second (i.e. cognitive) skill, which offer them a shield
against shocks to manual skills. They gain over manual specialists, who additionally lose
relative to low-skilled workers and cognitive specialists in the economy (see Appendix 1.8.6

for formal statements).

221 think of manual (cognitive) specialists as workers who have manual (cognitive) but low cognitive (man-
ual) skills.
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1.4.2 Skill-Biased Technological Change

An important advantage of the specified technology is its tractability. On the downside, it
generates a non-monotonous wage schedule in skills, which would be difficult to reconcile with
the data.?? To make the model more suitable for empirical analysis, I augment the production

technology by non-interaction skill terms and a constant, given by

F(xc,zm,yo,ym) = zo(ayc+N)+xa (Byn +n)+ fo = alzcyc+oxmyn) +MNzo+rkzar) + fo

(1.16)
where § = % is the relative manual task weight, A, n are skill weights, Kk = g is the relative
manual skill weight and f; is a constant.?* The assignment is unaffected by this new technology

but the wage becomes a non-homogenous quadratic form in standard normal variables,

w(ze,xTp) = %a(x—h)'j(x—h)—i—c =« <;J11x% + Jisxcxn + ;5J22x23>+)\(:vc+/£xM)—|—wo.
(1.17)
See Appendix 1.8.4 for the derivation and expressions h,J, C. Non-interaction skill terms
can shift the location of the minimum wage to the left, allowing for a wage schedule that is
increasing Vxc,xp > 2o, 25y, Where o,z are, for instance, the lowest observed skills in
the data. Moreover, I include a constant fy, which then translates into a non-zero constant in
the wage function wg, guaranteeing non-negative wages to all agents in the economy.?’
Technology (1.16) gives rise not only to a more realistic wage schedule, it also allows for a
sensible definition of skill-biased technological change (skill-biased TC hereinafter), indepen-
dently of task-biased TC that works through complementarities in production. Consider a
change in relative manual skill weight from x to x’ with £’ < k. Then, x’ is called skill-biased
relative to k, with the bias favoring cognitive skills. This shift increases the productivity of
cognitive skills independent of a job’s cognitive skill demands. For instance, advancements in
communication technology (e.g. google) benefit both the secretary and the CEO even though

their tasks require different levels of cognitive skill.

Proposition 1.9 (Skill-Biased Technological Change). Suppose there is cognitive skill-biased
TC (k' < k). Then: (i) The assignment is unaffected. (ii) The curvature of the wage function

is unaffected. (iii) The effect on the wage variance is ambiguous.

Skill-biased TC has no impact on the assignment, reiterating that what matters for the
assignment is the relative level of complementarities across tasks. Moreover, from (1.17) it is
clear that it also has no impact on the curvature of the wage function, which solely depends on
task-bias parameters. Finally, similar to task-biased TC, the effect of skill-biased TC on the
wage variance is ambiguous. However, for the empirically relevant case below with negative
skill correlation (p, < 0) and relatively large cognitive skill weight (—pz A > 1), wage dispersion

unambiguously increases with skill-biased TC. In this case, the decline in x affects the variance

Z3Under the previous technology, the wage is folded around (0, 0), e.g. workers (-1,-1) and (1,1) earn the same.

Z4Notice that including additional non-interaction productivity terms in the technology would not affect wages.

Z5With the previous technology, wages were always positive (see Appendix 1.8.6). However, when including
non-interaction terms, wages can become negative. Hence, the inclusion of the constant.
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mainly through the increase in cognitive skill weight A, shifting the wage schedule without
affecting its curvature. Compared to task-biased TC, skill-biased TC does not compress lower
tail wage inequality but fuels inequality across the whole distribution. The next section brings
the model to the data, which will allow me (a) to quantify skill-biased and task-biased TC

over time and (b) to disentangle their roles in observed allocation and wage inequality shifts.

1.5 Quantitative Analysis

In this section, I first I estimate the model by Maximum Likelihood (ML), providing insights of
how technology in the US has evolved over time. Then I use various counterfactual experiments
to decompose wage inequality shifts into those driven by (i) task-biased technological change,

(ii) skill-biased technological change and (iii) changes in underlying distributions.

1.5.1 The Data

I use the National Longitudinal Survey of Youth 1979 (NLSY) as the main data source.
The NLSY follows a (single) cohort since 1979, interviewed every year until 1994 and since
then biennially. The reason for using the NLSY is that it contains detailed information on
respondents’ occupations, training and degrees, which I will use to construct a skill supply
distribution. I supplement the NLSY by O*NET data to learn about occupational skill
requirements. This data will be crucial for constructing a skill demand distribution, where
I interpret occupations as the empirical counterpart of my model’s firms.?6 The analysis in
this paper covers the period 1992-2000.%7 I restrict the sample to employed male and female
workers in non-military occupations who work more than twenty hours per week and forty
weeks per year. For the analysis, I consider hourly wages, computed as yearly gross labor
income divided by yearly hours worked and adjusted by the CPI. Additionally, my analysis
requires measures of workers’ cognitive and manual skills (z¢,zyr) as well as occupations’
cognitive and manual skill requirements (yc, yar)-

To construct these bivariate distributions, I rely heavily on the O*NET data, which provide
detailed information on skill requirements for a large number of occupations. This information
can be classified into two categories, manual and cognitive, and then aggregated to two task
measures for each occupation. They indicate the level of skills needed to perform manual
and cognitive tasks, which I interpret as the (yc, yar)-bundle from my model (see Table 1.4
in Appendix 1.8.8 for examples).?® I then merge these scores into occupations of employed

workers in the NLSY, which yields the bivariate skill demand distribution. Constructing

26The O*NET is the U.S. Department of Labor Occupational Characteristics Database.

2TThis period is chosen for two reasons: First, there is a consensus in the literature that task-biased TC started
around the beginning of the 1990s when computers and advanced technology became widely spread. I choose
the starting year 1992 because this is when I begin observing task-biased TC in the data, i.e. a technological
shift away from manual and towards cognitive task inputs in production. Second, years beyond 2000 are
excluded because NLSY occupations are recoded in 2002, which complicates the measurement of sorting.

28This data as well as the crosswalk linking O*NET occupational codes to NLSY occupational codes
come from Sanders (2012). Yamaguchi (2012) uses a similar approach to classify manual and cognitive
occupational inputs.
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the bivariate skill distribution is involved. Data on manual skills are not readily available.
Moreover, the literature provides little guidance on this issue.? To impute agents’ manual
and cognitive skills, I use information on their college degrees, apprenticeships and vocational
degrees, degrees of government programs and training on-the-job paid for by firms, provided
by the NLSY . From this information, I can proxy a manual and cognitive skill for each
agent (see Appendix 1.8.8 for details). After data cleaning and sample restrictions, I am left
with around 2700 yearly observations.

The Appendix provides summary statistics of bivariate skill and productivity distributions
in 1992. In order to align the data with the model, I transform empirical skill and productivity
distributions into Gaussian copulas, which takes out marginal characteristics (means and
variances) and leaves the correlation as the only distributional parameter (see Appendix
1.8.7). The correlations between the transformed variables are plotted below (standard errors
in parentheses). Manual and cognitive skills are negatively correlated, indicating that a
worker with high cognitive skills has little manual dexterity and vice versa. Occupations’ skill
requirements are more strongly negatively correlated than skills. The interpretation is that
jobs in the US demand workers with higher degrees of specialization than available workers
can offer. In light of the model, it is crucial that these empirical correlations are not equal as
the model predicts a non-trivial effect of technological change on sorting and wages, which

will be analyzed below.

® x-bundles fitted values ® y-bundles fitted values
pz = —0.2079 py = —0.415
(0.0184) (0.017)

Figure 1.4: US Skill and Productivity Correlations in 1992

1.5.2 Estimation

I estimate the model by Maximum Likelihood (ML). The closed form solution is particularly
useful for this purpose since it allows me to specify an exact expression for the likelihood

function. Denote the parameter vector by 0 = ((J11, J12, J21, J22), (o, B, A\, n, wo), (s, t,u)),

2Yamaguchi (2012) and Sanders (2012) estimate the bivariate skill distribution from their models. In turn,
I aim to provide information on the skill distributions that is independent of the model.

39T only consider training paid by a firm because it is presumably related to the occupation performed by
the worker.
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which is to be estimated. The first set of parameters corresponds to the coeflicients of the
assignment functions (i.e. the Jacobian of the matching function), the second set are technology
parameters, the last set relates to measurement errors of the wage and assignment, respectively.
The data vector is given by z = (21, ..., 2,) where V i = 1,...n,2; = (Wi, Yoi, YMi, TCi» TMi)-
The log-likelihood function for this model is given by:

In L(g]z) = — i (wi — (zaJuzd; + aliprciti %2- %ﬁbzx?\ﬁ + Arci + nzas + wo))?
S

i=1

_ zn: (yoi — (uzci + Ji2emi))® <= (Ymi — (Ja1zoi + Jaoaani))?

2t2 ; 2u?

3
—nln(stu) — " lnor
2
i=1 =1

(1.18)
See Appendix 1.8.8 for details. Notice that another advantage of this model is that all
parameters are identified.?! I estimate the model year by year. Appendix 1.8.8 reports

detailed estimation results.

1.5.3 Technological Change in the US

Identifying unobserved worker-job/firm complementarities from observed equilibrium out-
comes has been of independent interest and the focus of a growing literature on the identi-
fication of sorting.?? Using my model as a measuring instrument, I can identify from data
on wages and worker-job assignment the underlying technological determinants of the US

economy and how they changed over time. Recall

F(zc,zm, yo,ym) = axcyc + Bruym + Azc + nzar + fo

which is the specified production function, where «, 8 are complementarity weights, A, n are
skill weights, and fy is a constant. Table 1.1 contains the ML-estimates of these technology
parameters for the years 1992 and 2000. The estimation results suggest that production
technology features complementarities between worker and job attributes in both tasks («
and [ are positive; see Appendix 1.8.8 for the results of the remaining years). Moreover, the
1990s were characterized by task-biased TC in favor of cognitive tasks: Complementarities
between cognitive worker and job attributes have gone up by 15% whereas complementarities
in manual inputs have decreased by 41%. Relative manual complementarities, 6 = g, dropped
from 0.55 to 0.29 — a decline of 47%.

Besides these shifts in relative task complementarities, there was also a change in the
skill-bias of technology, indicated by the skill weights n and A. Over the 1990s, the US

economy was characterized by a strong cognitive skill-biased TC. The cognitive skill weight A

3'My model circumvents non-identification of similar linear-quadratic Gaussian models arising due to
collinearity (pointed out by Brown and Rosen (1982) and Ekeland et al. (2004)). There, the identification
problem stems from an additional quadratic term in production technology. More generally, my model avoids
such collinearity problem because the curvature of w(z) in z is not the same as the curvature of technology
F(z,y) in x.

328ee Abowd et al. (1999) and also Eeckhout and Kircher (2011).
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«@ 154 A n wWo
1992 2.7291 1.5009 2.7962 0.2079 15.1680
(0.6090)  (0.7244)  (0.1668) (0.1677) (0.2380)
2000 3.1358  0.8954 4.7352 —0.1773 18.4752
(1.0472) (0.8028) (0.2641) (0.2632) (0.3792)

Standard errors in parenthesis.

Table 1.1: Maximum Likelihood Estimates of Technology Parameters

increased sharply (+68%) whereas the manual weight 1 decreased (however, 7 is statistically
insignificant). In sum, these estimates suggest that during the 1990s, the US faced two major
technological shifts: first, a bias in favor of the cognitive task and, second, a bias favoring
cognitive skills. Additionally, there was a positive trend (indicated by an increase in wy),
which had an impact on all workers independent of their skills.

Notice that apart from technological change, there was a change in distributions: workers
were less specialized in 2000 compared to 1992 (p, = —0.2079 in 1992 and p, = —0.05 in 2000,
see Appendix 1.8.8). On the other hand, the change in skill demand was negligible.

1.5.4 The Role of Technological Change in US Wage Inequality Shifts

Observed wage inequality shifts in the data can occur for many reasons. The advantage
of estimating a structual model is that the effects of various sources can be disentangled.
This section conducts counterfactual exercises to decompose the impact of task-biased TC,
skill-biased TC and changes in underlying distributions on wage inequality. For instance,
to study how much of the change in wage inequality is due to task-biased TC alone, I keep
both skill-bias parameters A and 7 as well as distributional parameters p, and p, at their
1992-levels and only feed the estimated changes in the task-bias into the model (given by
a, B); similarly, for skill-biased TC and the change in distributions.

Wage Polarization

A growing literature documents wage polarization in the US. This phenomenon refers to
a slow-down in lower tail wage inequality and a boost in upper-tail inequality. Figure 1.5
plots hourly wages by wage percentile for 1992 and 2000 (solid and dashed line, respectively),
illustrating that inequality disproportionally increased in the upper part of the distribution
with little action in the lower part. What might have caused this specific change in the wage
distribution? Panels (a), (b) and (c) in Figure 1.6 analyze whether wage polarization can
possibly be triggered by estimated technology shifts in task and skill-bias or distributional
changes when fed into the model (blue curves).?3 Panel (a) shows that task-biased TC matches
fairly well the increase in upper tail wage inequality and exactly matches the halt in lower
tail inequality. In turn, skill-biased TC in panel (b) can only match the expanding upper tail
inequality. It fails to account for stagnating inequality in the lower part of the distribution,

overpredicting the increase in lower tail wage inequality. Finally, had only distributional

33Notice that I the model wage distribution exactly matches the data wage distribution in 1992, which is
why I do not display the blue curves for 1992. They lie on top of the red solid lines.
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Figure 1.5: Wage Polarization in the US (Data)

changes taken place over the period of the 1990s, then the wage distribution would have

simply shifted but not polarized (panel (c)).

The model offers an explanation for why only task-biased TC can account for wage
polarization. Through an increase in cognitive input complementarities (o goes up) and
a decrease in manual input complementarities (8 goes down), task-biased TC affects the
curvature of the wage schedule. Wages become more convex in cognitive but less convex in
manual skills. This fuels wage inequality in the cognitive but compresses inequality in the
manual dimension. Polarization occurs because differently skilled workers are not uniformly
distributed across the wage distribution. Instead, workers with high cognitive skills are
concentrated in the upper part of the wage distribution. This is why these differential wage
changes lead to a disproportionate increase in upper tail inequality.

To see this, I plot the c.d.f’s of the empirical wage distributions for low-skilled workers,
manual specialists, generalists and cognitive specialists in 1992 and 2000 (Figure 1.7).3*
Cognitive specialists and generalists form the group of high-income earners in the US economy.
In 1992, the wage distribution of cognitive specialists first-order stochastically dominates the
distribution of generalists, which in turn dominates the distributions of manual specialists and
low-skilled workers. Strikingly, in the course of the 1990s, there is no increase in lower tail
inequality (the difference between low-skilled and manual wages remains nearly unchanged).
In turn, the first order stochastic dominance of wage distributions of cognitive specialists
and generalists over distributions of low-skilled and manual specialists has become more
pronounced over time (compare panels (a) and (b)). This implies that generalists and
cognitive specialists gain significantly relative to low and medium income earners, fueling

upper tail wage inequality.3?

34Low-skilled are defined as zc < E(zc), xm < E(xar), manual specialists as xc < E(xc), za > E(zar) etc.
35Figure 1.12 in Appendix 1.8.8 makes the same point with wage densities.
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Figure 1.7: Wage Distributions by Worker Group (Data)

Recall from Proposition 1.8 that task-biased TC affects the curvature of cognitive and
manual returns (and hence polarization) through two channels. First, there is a direct effect
through changes in worker-job complementarities. Second, there is an indirect effect through
re-sorting of workers to jobs. Due to task-biased TC, sorting along the cognitive dimension
should improve whereas sorting along the manual dimension is expected to deteriorate. To
evaluate these predictions, recall that the sorting patterns are fully captured by the assignment

coeflicients of the matching function, given by:

IR
vipg || Ja Ja TMm

Ju
J is estimated via ML. If it is a P-matrix (i.e. with positive diagonal elements and positive
determinant) then sorting satisfies PAM. In Figure 1.8, I plot the assignment estimates for
the year 1992 in blue (left panels). For the year 2000, I only plot the estimates whose change
was statistically significant compared to 1992 (in red, right panels). See Appendix 1.8.8
for the estimates. The structure is as in Figure 1.3: the slope of the solid lines indicates
assortativeness (diagonal elements of Juy J11 and Jo2) whereas the steepness of the dashed
lines indicates mismatch (off-diagonal elements of J,,, Ji12 and Jo1).

Both in 1992 and 2000, sorting satisfies PAM with a positive relationship between skills
and skill requirements in both tasks (given by positively sloped solid lines). This is in line
with estimated worker-job complementarities (i.e. a, 8 > 0).* Moreover, the sorting changes
over time are consistent with task-biased TC: assortativeness in the cognitive task significantly
increased between 1992 and 2000, indicated by a steeper red solid line in the upper right
panel. In turn, there is a statistically significant deterioration in the manual fit, indicated by
a steeper red dashed line (lower right panel). Quantitatively small assignment changes were
expected: given that skill supply and demand (i.e. p, and p,) are fairly well aligned in 1992,

my model predicts minor effects of task-biased TC on sorting.

“Moreover, the solid lines are steeper than the dashed lines, fulfilling the condition on the determinant of J,,.
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Figure 1.8: Maximum Likelihood Assignment Estimates 1992 and 2000: Cognitive Dimension

(upper panel), Manual Dimension (lower panel)

In sum, task-biased TC leads to less convex manual returns but more convex cognitive
returns because of two effects, a direct one operating through the change in complementarities
and an indirect one through worker-job reallocation. Since cognitive (but not manual) workers
are concentrated in the upper part of the wage distribution, these wage movements trigger
wage polarization. In turn, for skill-biased TC neither of the two effects is at work. Thus,
skill-biased TC has no effect on the curvature of the wage schedule but simply shifts it.
As a result, skill-biased T'C triggers an increase in wage inequality across the whole wage
distribution. (For more analysis, see Figure 1.13 in Appendix 1.8.8.) Finally, the distributional

changes over the 1990s are small and were no driving force behind polarization.

Wage Dispersion

There has been a substantial increase in US wage dispersion during the 1990s (see Figure
1.9).The proposed model — despite being frictionless — does a decent job in matching this
increase. It generates an increase of 126%, compared to an increase of 145% in the data.
Moreover, the model matches well the shape of this shift. Only in terms of the level of variance
is the model off (the data variance in 1992 is 6.7 times higher than the model’s variance). A
possible reason is that the model is frictionless whereas search frictions are believed to play

an important role in wage dispersion (e.g. Uren and Virag (2011)). Moreover, in the data not
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only skills but many other factors impact wage dispersion, which are not part of my model.
To be able to make a better comparison between the variance change in data and model, I

normalize the model variance so that it has the same level as the data variance in 1992.
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Figure 1.9: Evolution of Wage Dispersion in the US (Data)

It can be shown that the driving force in wage inequality increase is the within-variance of
manual workers, E[Var(w|zg)], as opposed to their between-variance, Var(E[w|xg]). This
multidimensional model offers a natural way to think about these concepts since, for instance,
every group of workers with similar manual skills has a whole distribution of wages due
to differences in their cognitive skills. Technological change in favor of cognitive inputs
exacerbates this within-group wage dispersion. In contrast, between-wage dispersion of
manual types contributes little to overall variance or its shift (indicating that the driving force

of wage inequality is the cognitive and not the manual skill).3¢

Figure 1.10 gives clues into what drives the increase in wage dispersion: task-biased
technological change, skill-biased technological or distributional changes. Table 1.2 reports

the corresponding numerical decomposition for the shift in wage variance.

36The within and between variance predictions of the model can be computed since closed forms are available.
Regarding the data, I first categorize workers into thirty bins depending on their manual skills, and then
compute the wage variance within and across bins. The results are robust using more or fewer than thirty bins.
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Figure 1.10: Wage Dispersion 1992-2000: Data, Task-Biased T'C, Skill-Biased TC, Distribu-
tional Shifts
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The results suggest that skill-biased TC was the driving force behind the increase in wage
dispersion, generating a boost of 119%. Compared to skill-biased TC, the role of task-biased
TC is moderate, only achieving an increase of 7% over this period. The model offers two
explanations to why task-biased TC played a minor role for wage dispersion. First, over the
1990s, the increase in cognitive task-weight « is accompanied but a strong decrease in manual
task weight 3. The first force fuels wage inequality while the second one compresses it, which
is why the net effect of task-biased TC on wage dispersion is small. To the contrary, the
changes in the skill bias are mainly due to the increase in cognitive skill weight A, which shifts
the wage schedule (instead of impacting its curvature) and fuels inequality across the whole
distribution. The second reason for the minor impact of task-biased TC is that sorting shifts

are quantitatively small (see above). Stronger re-sorting would have triggered more inequality.

Data Model — Task-Bias (o, ) Skill-Bias (n,A\) Distributions (pz, py) Trend (wo)

AVar(w) + 145% +126% 7% +119% 4% -

Table 1.2: Change in Wage Variance over 1992-2000 (Data versus Model)

Besides technological progress, distributions also changed during the 1990s. There was
a shift in skill supply, with workers becoming less specialized, but skill demand remained
constant (see Appendix 1.8.8). At odds with the observed increase in inequality, the change
in skill distribution had a negative effect on wage variance. Finally, the TFP shifter does not
affect wage dispersion because it enters as a constant in the wage function.

In sum, this exercise shows that technological change rather than changes in distributions
mattered for US wage inequality shifts.?” Skill-biased TC accounts for a significant portion of
the increase in wage dispersion. On the other hand, task-biased TC played a critical role for

wage polarization, being particularly important for stagnating lower tail wage inequality.

1.5.5 Comparison to the One-Dimensional Assignment Model

In what sense does the multidimensional model provide a richer understanding of the data
than a comparable one-dimensional model? In order to address this question, I specify
the one-dimensional analogue of my model and estimate it using cognitive skills and skill
requirements only. I interpret cognitive skills as a proxy for years of schooling, commonly the
single worker characteristic in one-dimensional settings.3®

To ensure comparability of the two models, I assume standard normal distributions
zo,yo ~ N(0,1) and technology F(xc,yc) = axcyc + Axc + fo. It is immediate that the
wage is given by

2
w(zo) = ozx?c + A\xc + wo (1.19)

3"Notice that similar to the variance exercise, the change in distributions had little effect on the change in
the curvature of the wage function, which is why it is not included here.
38This is justified since I construct skills from educational attainment (i.e. degrees) and training data.
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where wy is the constant of integration. I estimate parameters a, A\, wy by OLS, using (1.19).
During the 1990s, « increased by 88% and A by 74% (see the Appendix 1.8.8 for details),
suggesting that technological change favored workers with high cognitive skills.

The one-dimensional model captures well the convexification in cognitive returns, indicated
by an increase in ««. However, it misses that manual returns have become concave (see previous
section). As a result, this model overpredicts the change in wage dispersion during 1992-2000.
It predicts an increase of 220%, compared to an observed increase of 145%.

Moreover, the one-dimensional model misses the fact that not all workers with manual
skills suffer from cognitive-biased technological change. Looking at the data through a two-
dimensional lens suggests that generalists (who hold above average skills in both dimensions)
experienced a substantial real wage increase of 27% over the 1990s. Their second skill offers a
buffer against shocks to manual skills. Notice that generalists form a sizeable group, almost
one fifth of the US workforce in 1992 (see Appendix 1.8.8). This suggests that the distinction
between generalists and specialists is important. Yet it falls short of the one-dimensional model.

Finally, this model cannot account for reallocation of workers to jobs in response to
technological change unless technology shifts so drastically that negative instead of positive
assortative matching becomes optimal.®® For changing (but still positive) «, the model
predicts no shift in assignment. Moreover, since there is only one skill, the one-dimensional
model entirely misses the assortativeness-mismatch trade-off across skills, which was present
in the US during the 1990s.

1.6 Literature Review

This work contributes to literature of two types: that concerning multidimensional match-
ing under transferable utility (including hedonic models and optimal transport); and that
concerning task-biased technological change. I will now discuss those papers that are most
relevant to my research.%%

MULTIDIMENSIONAL MATCHING. Variations of the quadratic-Gaussian model have been
studied in several contexts. Building on Tinbergen (1956), Ekeland et al. (2004) analyze
the econometric identification of hedonic models with focus on a quadratic-Gaussian setting.
They discuss an identification problem which arises in that model because wage function
and production technology have the same curvature in x. To address this collinearity issue,
the authors propose a change of the environment, for instance, by considering Gaussian
mixtures. My model circumvents this problem by specifying a production technology without
quadratic loss terms. Additionally, to make my model suitable for empirical analysis I include
non-interaction skill terms in the technology such that marginal wages can be positive over
the whole observed skill support. Olkin and Pukelsheim (1982) solve a related Gaussian
example but in a symmetric setting (i.e. § = 1). Bojilov and Galichon (2013) extend the

quadratic-Gaussian setting to include unobserved heterogeneity.

39This would be true if o switches from positive to negative, which is according to the estimates not the case.
497 do not discuss papers with non-transferable utility because there is little relation.
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My contribution to this literature is as follows. First, I develop a framework for multidi-
mensional sorting that extends the unidimensional notion of (positive) assortative matching
(PAM). Second, using this notion of PAM, I develop a technique for deriving the equilibrium
in closed form, which can be used not only for the quadratic-Gaussian model (as I illustrate)
but also in other settings (Appendix 1.8.5). Third, I use PAM to characterize equilibrium
sorting. Moreover, I study a new application (i.e. technological change) in this setting. Last,
I make the model amenable to empirical analysis and bring it to the data.

This paper also relates to literature on multidimensional matching on the marriage market.
Choo and Siow (2006) propose a transferable utility model of the marriage market to estimate
the marriage matching function from observed matches in the US. Their model allows for
multidimensional (un)observed heterogeneity under the assumption that there is no interaction
between unobservable characteristics of partners (separability assumption).*! More recently,
Galichon and Salanié (2010) study optimal matching in a model with multidimensional
(un)observed characteristics. Under the same separability assumption, the authors show that
optimal matching on observable characteristics is non-pure. In related work, Dupuy and
Galichon (2012) extend their set-up to continuous types.

These studies differ from my research in terms of objective and modeling choices. Choo
and Siow (2006) estimate the gains from marriage, i.e. their focus is empirical. In turn,
Galichon and Salanié (2010) and Dupuy and Galichon (2012) develop techniques to estimate
complementarities in the surplus function from observed matches. They pursue this objective
without providing a closed form. Conversely, my paper aims at developing a multidimensional
sorting framework that allows for closed form characterization and comparative statics. In
the above-mentioned papers, modeling devices are (un)observed heterogeneity and extreme
value distributions of unobserved traits. I rely on observed heterogeneity and Gaussian
copulas. Notice, however, that there is an important conclusion common to the papers by
Galichon and Salanié (2010), Dupuy and Galichon (2012) and my own: With multidimensional
matching, there is a trade-off between matching along different characteristics that depends

on complementarity weights in the surplus function.

McCann et al. (2012) develop a model of marriage, educational and occupational choices
when agents have both cognitive and social skills. This discussion focusses on their marriage

t.42 Under the assumption of complete overlap in distributions (i.e. equal male-female

marke
sex ratio by type) and their specified technology they prove that matching is positively
assortative in both dimensions. When looking at this result through the lens of my model,
it can be shown that it is captured by Proposition 1.11 (b) in Appendix 1.8.5. Similarly,

this model would capture sorting results from the environment specified in Eeckhout and

“Decker et al. (2013) analyze the existence and uniqueness of equilibrium, provide a closed form as well
as comparative statics of the Choo-Siow model. Chiappori et al. (2012) also provide a closed form of a
multidimensional matching model and then test predictions of how spouses trade off education and non-
smoking. Their assumptions are as follows: (i) Smoking status (binary) and education (continuously uniform)
are independent. (ii) In the surplus, the disutility of smoking is proportional to the surplus generated by the
spouses’ skills.

42In their paper, the marriage market is the only one in which choices are based on two characteristics on
both sides of the market, and hence, where a comparison to my set-up makes sense.
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Kircher (2012), if they extended their model to a fully bi-dimensional setting where firms and
workers not only sort on the quality but also on the quantity dimension (Proposition 1.11 (a),
Appendix 1.8.5). This suggests that the developed sorting framework is useful for deriving
closed forms beyond the quadratic-Gaussian case.

Finally, this paper relates to the literature on optimal transport. In non-technical terms,
the optimal transport problem involves finding a measure-preserving map that carries one
distribution into another at minimal cost, using linear programming.*3 A tight link has been
established between the following two formulations of the assignment problem: a hedonic
pricing problem with transferable utility (like the problem in this paper) and an optimal
transport problem. Shapley and Shubik (1971) show this equivalence in a discrete and Gretsky
et al. (1992) in a continuous setting.**

Different from Gretsky et al. (1992), in the multidimensional assignment problems of
Chiappori et al. (2010) and Ekeland (2010), sellers can also choose the characteristics of the
good they sell.*> Apart from providing existence and uniqueness results, both papers establish
purity of the assignment: Their sufficient condition for purity is the twist condition, which
states that D, F(x,y) is injective with respect to y. Notice that the P-matrix property of
DgyF (x,y) from my paper is sufficient for the twist condition to hold. Since DgyF (x,y) is
the Jacobian of D,F(x,y), the P-matrix property ensures that D,F(x,y) is injective (by
Gale and Nikaido (1965)). While this literature has developed powerful general tools to
study multidimensional matching problems, it provides little guidance on how to solve them
explicitly. This is what my paper seeks to address.

TASK-BIASED TECHNOLOGICAL CHANGE. Costinot and Vogel (2010) and Acemoglu
and Autor (2011) use one-dimensional assignment models to analyze (amongst other issues)
task-biased TC. In these frameworks, an adverse technology shock reduces firms’ demand for
medium-skilled workers and hence their relative wages. This fuels upper-tail but compresses
lower tail wage inequality — a phenomenon referred to as wage polarization.t

Instead of implicitly assuming that manual skills are only used by medium-skilled workers,
I make the assumption that every worker has both skills, yet in different proportions. This
makes it possible to distinguish between generalists and different types of specialists, thereby
capturing that generalists can shield against adverse shocks to manual inputs. Moreover, by
including a second dimension, I can analyze the differential effect of task-biased TC on sorting
and wage inequality in manual and cognitive skills. I identify a new channel of how this
technology shift affects wage inequality and polarization: task-biased TC endogenously changes
the allocation of workers to jobs, improving the fit of worker-firm pairs along the cognitive task

relative to the manual task dimension. It is noteworthy that this assortativeness-mismatch

430ptimal transport has a long tradition in mathematical theory. See Villani (2009) for a recent reference book.

44 Additionally, both show the equivalence to a third formulation, namely the market game. Notice that
the examples provided in Gretsky et al. (1992) are restricted to one-dimensional types. See also Dizdar and
Moldovanu (2012) for recent work on the intersection of multidimensional matching and mechanism design
that makes use of the twist condition.

45Tn that setting, Chiappori et al. (2010) establish a similar equivalence, namely between hedonic pricing,
stable matching and the optimal transport problem.

45Tn their frameworks, task-biased TC also leads to employment polarization, which is beyond the scope of
my model since jobs and workers match one-to-one in a frictionless and competitive labor market.
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trade-off across tasks takes place despite pairwise matching and without violating positive
assortative matching.*” Finally, my paper adds a unified framework of task-biased TC and
the more standard skill-biased TC to the literature, allowing me to distinguish between their
effects both theoretically and quantitatively.

There is plenty of empirical evidence on labor market polarization in developed countries
but little structural analysis into the causes of this phenomenon. An exception is Boehm
(2013) who studies wage polarization in an empirical Roy model where a variety of abilities
determine three occupation-specific skills (for low, medium and high-skilled occupations). Also
using NLSY data, he finds that the US has undergone a relative decrease in the medium-skill

price and wage polarization.

1.7 Conclusion

Technological change has drastically changed the structure of production in favor of cognitive
relative to manual inputs in the developed world. How does this shift affect worker-job
assignments, wages and inequality? This is a multidimensional assignment problem where
workers with different bundles of manual and cognitive skills sort into jobs that require
different combinations of these skills. To make this issue tractable, this paper develops a
theoretical framework for multidimensional sorting that extends the unidimensional notion
of assortative matching. I derive the equilibrium allocation as well as equilibrium wages in
closed form. I then analyze the impact on these equilibrium outcomes as cognitive (as opposed
to manual) inputs become more prevalent in production, capturing one of the main recent
technological shifts. Finally, I take this model to the data to study technological change in the
US during the 1990s. The empirical analysis reveals that technological change was strongly
biased toward cognitive inputs. Counterfactual exercises suggest that this technology shift (as
opposed to changes in skill and skill demand distributions) can account for observed changes
in worker-job sorting, wage polarization and wage dispersion.

It is worth pointing out that the theoretical framework developed here is of independent
interest and can be used beyond this paper’s application to technological change. It could
be applied to a variety of matching problems that involve multidimensional heterogeneity, not
only in the labor but also in the marriage or education markets. To broaden the applicability
of this theory even further, it would be important to extend this framework to settings
with search frictions (see the Appendix 1.8.7 for first insights on sorting conditions in such
an environment) and to settings where the two sides of the market have different numbers
of characteristics, preventing pure matching. These are challenging problems that form part

of my ongoing research agenda.

4TContrary to Costinot and Vogel (2010) and Acemoglu and Autor (2011), there is no intensive margin here.



1.8 Appendix

1.8.1 Proofs General Model (Section 1.2)

The Equilibrium Assignment

In order to prove Proposition 1.1, the following Lemma and Corollary are useful. Notice
that the proofs will be given for N-dimensional heterogeneity where firm are characterized by
y = (y1,...,yn) €Y C RY (with abs. continuous c.d.f. G(y)) and workers are characterized
by x = (z1...,2n) € X C RY (with abs. continuous c.d.f. H(x)).

Lemma 1.1 (P-Matrix Property). If DgyF(x,y) is a diagonal P-matriz (P~ -matriz), then
Ju(x) = D,y* is a P-matriz (P~ -matriz).

Throughout the proof I will make the following assumption:
Assumption 1.1. DgyF is a diagonal P-matriz.

Proof. It will be shown that under Assumption 1.1, optimality of the firm’s choice requires
that the Jacobian of the matching function, D,y™, is a P-matrix. The proof for the case when

Df,yF is a P~ -matrix is analogous and therefore omitted. I proceed in several steps.

1. The Hessian of the firms’ problem evaluated at the equilibrium assignment, given by
H* = D2, F(x,y*) — D2, w(z), is negative semi-definite. These are the necessary second order

conditions for optimality. It follows that —H* must be positive semi-definite.

2. Det(—H*) #0, i.e. —H* is positive definite. To show this, differentiate the first order
conditions (1.3) and (1.4), evaluated at the optimal assignment y* = p(x), with respect to

skill vector x, which gives
H* = DI, F(x,y") — Diw(x) = —(D3,F(x,y")(Day") (1.20)
where D,y* is the Jacobian of the matching function and D2, F(x,y*) is defined as

chxc (Xv y*) FICSCM (X7 y*)

*

D? F(x,y") =
o Fypzc (va*) Fupzy (Xay )

Since chyF is a P-matrix everywhere (and, hence, also along the equilibrium allocation y*),

-1

it is non-singular and hence the inverse (D?CyF (x,¥"))"" exists. From (1.20), it is given by

(D3, F(x,y7)) " = —(Day") (D2, F(x,y") — D3 w()) ™" (1.21)

It follows that (D2, F(x,y*)—D?, w(x))~! exists, and thus Det(H*) # 0 and also Det(—H*) #
0. Then, by Step 1, it must be Det(—H*) > 0. Hence, —H* is a positive definite.



8. If D,y* is sign-symmetric then it is o P-matriz. Suppose that D,y™* is sign symmet-

* 0y .. . . . . . e
ric, i.e. gz;a%i_ > 0,Vi,5 € {1,2,..., N},i # j. For sign-symmetric matrices, positivity of

principal minors and stability are equivalent (see Theorem 2.6. in Hershkowitz and Keller
(2005)). In the following, I show that D,y* has positive eigenvalues, i.e. is stable. From
(1.20) —H* = (DgyF(X,y*))(Dzy*), where —H* has all positive eigenvalues (Step 2). Denote
M = DgyF(x,y*), J = D,y*. Denote the eigenvalues of —H* by A’t. They must obey the
characteristic equation det(MJ — A"I) = 0. Since M is a P-matrix (Assumption 1.1), it
is invertible and the characteristic equation can be reformulated as det(R — A\*M~1) = 0,
where A7 is the generalized eigenvalue of the square matrices (J, M~!). Given (J, M~!), the
generalized Schur decomposition factorizes both matrices J = Q572 "and M1 =QTZ /, where
(Q, Z) are orthogonal matrices and (S,7T) are upper triangular matrices with the eigenvalues
of (J,M~1) on their diagonals.*® The (real) generalized eigenvalues can be computed as
A= %z Notice that Tj; > 0 Vi because M is a diagonal P-matrix, which implies stability
(i.e. positive real part of eigenvalues) and AMTT = ﬁ For A > 0, it must be that S;; > 0,

i.e. J = D,y* has positive eigenvalues, i.e. is stable.

4. D.y* is sign-symmetric. To see this, notice that by symmetry of the Hessian and
mej =0,1,5 €{1,2,...,N},i #j,

H;'kj = sz
oy} dy; . .,
& inyia—é = ijyja—;i vV oi,5€{1,2,...,N},i# 7, (1.22)

* Oyt .. . .
and hence D,y"* is sign-symmetric, i.e. g?_ —BZJ_ >0 Vi,je{l,2,..,N},i # j. Moreover,
J K2

D,y* is stable (see Step 3). A sign-symmetric and stable matrix is a P-matrix (Theorem 2.6.
in Hershkowitz and Keller (2005)), which proves the result.

Corollary 1.1 (Assortativeness and Local Maximum). .
If DgyF(x, y) is a diagonal P-matriz (P\")-matriz), then the assignment . (i) satisfies PAM
(NAM) and (ii) is a strict local mazimum.

Proof. .

(i) Assortativeness: Follows from the definition of assortativeness (Definition 1.1) and Lemma 1.1.
(ii) Local Maximum: If the Jacobian of a function is a P-matrix (or a P(~)-matrix), then the

function is injective (one-to-one) on any rectangular region of R” (Gale and Nikaido (1965),

Theorem 4). It follows from Lemma 1.1 and the Gale-Nikaido theorem that the solution to

the firm’s problem a strict local maximum.

Proof of Proposition 1. .

(i) Assortativeness: Follows directly from Corollary 1.1.

(ii) Global Maximum: It will be shown that the solution to the firm’s problem is a global

481f J has complex eigenvalue, S is quasi-upper triangular.



maximum. [ proceed by contradiction. Consider a firm y which optimally chooses worker x,
i.e. y = u(x).* Consider another firm y’, y’ # y, for which worker x’, x # x’, is an optimal
choice, and hence y’ = pu(x’). Let y = pu(x) and y’ = u(x’) be the local optima from Corollary
1.1. Now suppose that worker x’ is also an optimal choice for firm y, that is x’ satisfies the

optimality (first-order) conditions of both firms:

Fo(X')y) = w.(x) (1.23)
Fo(x'y') = we(X). (1.24)

I will show that, under Assumption 1.1, (1.23) and (1.24) cannot hold simultaneously. It
suffices to show that the function F, = (Fy, Fy,,) is one-to-one, i.e. Fy(x,y) = F,(x,y’)
implies y = y’. By Assumption 1.1, DgyF(x,y*) is a P-matrix. Moreover, Fy is defined
over a rectangular region on R%. Tt follows from the Gale-Nikaido Theroem (Gale and
Nikaido (1965)) that F, is injective with respect to y. Thus, (1.23) and (1.24) cannot hold

simultaneously because
Fo(x,y) = Fao(x,y') (1.25)

only if y = y’, contradicting the assumption that y # y’. It follows that the singleton solution

to the firm’s problem found in Corollary 1.1 is not only a local but also a global maximum.

The Wage Function

In technical terms, Proposition 1.2 states: Given a continuously differentiable assignment
y* = pu(x), condition (1.6) is necessary and sufficient for the existence of a unique solution to

the system (1.3) and (1.4), given by w(x), such that w(x) = w.>°

Proof of Proposition 1.2. The proof is based on Frobenius Theorem. Consider a system of

linear first-order partial differential differential equations

ouP
oxt

=¢f(z,u) i=1,.,Nip=1,.,n (1.26)

where u : RY — R”. Consider the following theorem.

Theorem 1.1 (Frobenius Theorem). The necessary and sufficient conditions for the unique

solution u® = u®(x) to the system (1.26) such that u(xg) = ug to exist for any initial data

49More precisely, this is x = v(y). But recall that v~ = p is the unique inverse and hence the assignment
can be completely characterized by the inverse p.

5040 is the reservation wage of the least productive worker x, set s.t. he is indifferent between working
and not working.
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N
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5ei oot Bz/)ﬁ 5¢ﬁ> =0 Vi,j=1,...,N, a,8=1,..,n.  (1.27)

hold where v = 945, y? = S

Applying Frobenius’ Theorem to this model implies: © = w, x = (z1, z2,...xx) and
Yi(x,u) = Fy,(x,y(x)). Notice that n = 1 because w is a real-valued function. Then, (1.27)

reduces to

op; O,

ord Ozt 0

which in the presented 2-dimensional model is given by

0yt oy;
FxCxM + Fl‘cyca C + ICy]\/Ia M FIJMIC - szwycﬁ + xMy]W% — O (128)

(1.28) coincides with condition (1.6) from the main text since Fy.z,, = Fy,,2.. Hence, given
(1.6), the involutivity condition from Frobenius theorom is satisfied. A unique (local) solution

to the system of linear partial differential equations (1.3) and (1.4) exists.

1.8.2 Proofs of Quadratic-Gaussian Model (Section 1.3)
Labor Market Clearing under PAM (or NAM)

Having applied the measure-preserving transformation (1.9) to skills and productivities, the

labor market clearing of transformed variables under PAM reads

[ 1.0

9(ycs Zypy )2y A2y = / h(Z2cs Zapg ) B0 A2 (1.29)
yo Y RyM feg V2

M

where h and g denote the standard normal p.d.f’s of the uncorrelated skills and productivities,
respectively. Equation (1.11) follows immediately, taking into account that the z’s are

independent and standard normally distributed. Similarly, under NAM, the market clearing

I

The Equilibrium Assignment

would read

Fro Rz
zycv ym )dzyM dzy, = / / h(zxm Rz )dzzM dZge-
— 00 — 00

YMm

The following two lemmas are building blocks for the proof of Proposition 1.3.

Lemma 1.2 (Continuum of Square Roots). (i) There exists a continuum of square roots of
the covariance matriz X, denoted by S. Denote its elements by DERS S, where E%(E%)T = 3.

(ii) The elements of S can be computed by applying an orthonormal transformation to any given



square root. In particular, let R be an orthogonal matrix, i.e. its columns are mutually orthog-
onal unit vectors. Hence, R~' = RT. Then, E%R(E%R)T = Z%RRT(Z%)T = Z%(E%)T =2

Proof. .

(i) The existence of an infinite number of square roots of the covariance matrix follows

from its symmetry. The following non-linear system

D=

b 1
wre)l = ¢ R N I I 5 (1.30)
c d b d p 1
or,
a?+b =1
A+d?=1
ac+bd =p

is underdetermined. Thus, it either has none or an infinite number of solutions. Since X is

positive-definite, one square root can be computed using the spectral square root decomposition

S = CDC
— Dz (1.31)

N|=

&S X

where D is a diagonal matrix with the eigenvalues of 3 as diagonal entries and C' is a matrix
of orthonormal eigenvectors of X. Since the spectral square root is one solution to (1.30), it
follows that the system has an infinite number of solutions.

(ii) follows directly from orthonormality of R, as stated in the Lemma.

The next lemma states how the orthogonal transformation matrices R;,i € {z,y} can be

parameterized by 4.

Lemma 1.3 (Orthogonal Transformation Matrices). The system of equations to be solved

is given by:
a2+ pE=1 (1.32)
ay + B =1 (1.33)
e _ Oy
—= =0 1.34
ox oxc ( )

where oy, Bz, oy, By are the elements of the orthogonal transformation matrices:

Rx:lax _Bx]’ Ry:[ay _ﬁy]

Bz Qg 624 Qy



(i) For all 6 € [0, 1], the solution to system (1.32)-(1.34) is given by ag = £1, 5, =0 and

(1+0) (72 + 172 (1.35)
- (i) e (Vi )
5 m (1.36)

(it) For py < py, set a; > 0. For py > py, set a; < 0, where i € {x,y}.

oy ==&

%Y
oz’

Proof. To solve (1.32)-(1.34), first express the off-diagonal elements of D,y*, gfff

as functions of the unknowns. To this end, I compute a candidate equilibrium assignment

and

from (1.13) where I use rotations of the spectral square root (given by (1.31)) to uncorrelate

skills and productivities. They are given by:

|

Using (1.37), the candidate equilibrium assignment can be computed from (1.13) as

Itey \/1 N Vit VI= . Vit Vi-

|: s } B L (ayaw + ByBa) \/% R = v + (Byor — oy fBs) \/# \/% 1 (ayaw + ByBa) \/% — : — (Byaz — ayBe) \/17—;): + \/T;‘j |: zc :|
o V1+py \/ Vit /1 ViHpy, /1 ) [Txpy Tp

1 (Cyore + By (Ve — 17,’), + (Byow — o) (Yt + YY) 5 (o + 8yB:) (Ve + Vit ) — (By0a — o) - .

(VI+pi+vVI—pi)
(VI+pi—VT—pi)

by

S0l

(Vl+m—vq—m)][% —Bi

WI+pi+VI—pi) || Bi ]N i€ ta,y) (187)

N[ N[

1
2
1
2

"
Ym

Dzy*

(1.38)
(i) The underdetermined system (1.32)-(1.34) has one degree of freedom. I exploit it by setting
Bz = 0, which immediately gives o, = +1 from equation (1.32). It remains to determine
two unknowns, ay, f, from two equations (1.33) and (1.34). From (1.33), 3, = £,/1 — 2.
Using this relation along with «, = +1, 8, = 0 and candidate assignment (1.38), integrability
condition (1.34) reads:

L+py L—py / L+p L—p
— —.J1=a2 Y Y _
(ay (\/1+px \/1pz ay 1*paz+ 1+px
1+p 1—0p 1+p 1—p
6 Y — / 1— a2 S S 1.
(ay<\/1—|—px \/1—pgg>+\/7o‘(\/1—@%+ 1+ ps (1.39)
Reorganizing terms and solving for «, yields:
i -
(1+8) (i + Vi) )
2 2 '
= A
Using (1.40), 8, can be backed out from (1.33)5!

By = /1 — a2 (1.41)

*INotice that 8, = —+/1 — a2 is also possible but does not affect the result, which is why I focus on the
positive square root.

oy ==




(ii) Rearranging (1.39) yields:

a¢1—®<vg123—¢1:2>:.h—ag6+n<vgfzz+¢ilz> (1.42)

While RHS > 0,Ypg, py, LHS ; 0 for py § pz- It follows that oy, > 0 for p, < p, and oy <0
for py > py.

Proof of Proposition 1.3. .

Computing the Assignment:
(i) For § =1, from (1.35)
oy = *1. (1.43)

The orthogonal transformation (1.37) delivers:

for i€ {z,y}.

(1.44)

To see that these are the spectral square roots of the covariance matrix (or minus one times

s(WVIFpi+ VT =pi) %(\/1+Pi_\/1_ﬂi):||:i1 0
SWITFP—VT=p) s(VTHpi+vT=p) || 0 =1

:i[%(\/l‘i‘f)i“‘\/l_ﬂi) s(VTHpi —vVI=pi)
s(WVTFpi—VI=pi) 3(VT+pi+vIT—p)

them), I derive them below using the spectral square root decomposition, which is given by

Y =0CDC
& Y2 =CD:iC (1.45)

where D is a diagonal matrix with the eigenvalues of ¥ as diagonal entries and C' is a matrix
of orthonormal eigenvectors of ¥. The matrix 22 in (1.45) is called the spectral square root of
3. Notice that for $3 to be positive-definite, the positive square roots of the diagonal entries
of D are used. From (1.45) it follows that Ey% is given by:

(\/IJFPy*\/l*Py)

[

E;:[ ﬁnﬁpy 0 H : %}:[%(\/Hpﬁﬂpy)
Y 1 1 1
2 2

1
2
1
2

1 - 0 VI=p [/ -3 (VIFpy = VT=py) 5 (VTFpy+ T 1)
(1.46)
Moreover, since
L . 1 0
X :=CD:C'=C| V" | | (1.47)
0 7=

where A1, Ay are the eigenvalues of ¥ and C' is a matrix of the corresponding orthonormal
1

eigenvectors, the matrix ¥, ? is given by

L 1 \/I 1 0 1 \/I 1 R | 1 1 1
Y2 2 2 VItps 2 2 _ 2 T+pa T—pa 2 T+pz 1—pa
* \/I 1 0 1 \/I 1 1 11 1 Lo, 1

2 2 1=pz 2 2 2 \V1+ps 1—pa 2 1+p 1—pe



It follows that the Jacobian of the matching function is given by:

1 (Ve | VI 1 (Ve ey
= 1 _ -1 2 \/1+p1, \/1_pw 2 \/1+Pz \/1 Pz
* 2 2 1 _ 2 2 _
Doy = (B Ry) (B2 o)™ =252 = | 0 A i\ 1 (/e VT
2\ V1itpz VI-pg 2\ V1+ps V1=pz
(1.49)

The assignment is then computed using (1.13).

(ii) For § = 0, it follows from Lemma 1.3 that R, and R, are respectively given by

R Qy *\/1*0‘;2/ } _ i%(\/(1+9y)(1+ﬂr +\/ = py)( ) %(\/1""/)1/ \/ 1+Pr)
! V1—op ay %(\/(pr)(l*pz) \/(1*/)74 1+/JT) i%(\/lﬂ)y 1+Pr +\/1*ﬂy )
(1.50)
Qy —/1—a? +1 0
= = 1.51
i l V1—a2 fors 1 0 =1 (1:51)

1 1
Let X7 and X2 be the spectral square roots of skill and productivity covariance matrices,

given by (1.46) and by the inverse of (1.48), respectively. Then,

LT a +VI=7) %(M VI=5)

5 (VI= 2oy +4/1U=08) + VT Daloy = /1= 18)) 5 (VI=palopy 1= 03) + VTF Doy /1= 1)

1
X Ry =

1 1 1 1
ol bvieri il—px 2\ Vi T Vi

It can be shown that the Jacobian is then given by:

1-py (153)
1—=p3

=y
8]
N—
L
|
>
<
|
<
8
TN
R s
8BNS
1] <
[MES]

1
D,y* = Xj Ry (X2

In the following, it is shown that (1.53) is equivalent to Ly (L,)~! where L;,i € {x,y}, is the
Cholesky square root of skill and productivity covariance matrices, which is the unique lower
triangular matrix L; such that L;(L;)T = %;,i € {z,y}. By definition, L; is a square root of
Y. Under the assumption of standard normality, L; is given by:

10 ,



Ly(L,)™ e [ ! 0 ]_1 : /70 (1.55)
y\ Lz = = 1—p2 1—p2 .
Py 17pg2/ Pz \/1_p% Py_Pm\/ﬁ \/ﬁ

which coincides with (1.53). The equilibrium assignment is then given by (1.13)

lyé ]:@53@,)(2%&)1 e =<Ly><Lx>1lmC]
Ym Ty Tpr

-1
1 0 1 0 To 1 . 0 . xcC
= \/1—p \/1—p
Py \/1_p32/ Px \/1*P§ T p py_pz\/ﬁ \/ﬁ T M
(iii) The equilibrium assignment is obtained by using the suitable rotation matrices from

Lemma 1.3 for each ¢ € (0,1) together with the candidate equilibrium assignment (1.13).

Consistency of the Assignment Functions from (i)-(iii) with the Equilibrium. Three properties
have to be verified: (a) Consistency with market clearing; (b) the assignment satisfies PAM;
(c) the integrability condition is satisfied. (a) Market clearing is satisfied by (1.11) and because
the transformation (1.9) is measure-preserving. (b) Verifying the PAM-property amounts to
checking that D,y* is a P-matrix. Using Lemmas 1.2 and 1.3 equilibrium assignment (1.38)

can be simplified by substituting in the expressions for a’s and f’s:

[ yo ] -~ { J11(pzy py, 0)  J12(pz, py, 6) } { xc } B \/1+25(Plﬁy+\/lfp;-7\/l—p?p)+62 \/Hzg(pmpﬁ ST T 722 [ 2o ] (1 56)
?Jz*w B J‘Zl(pt:pyﬁ(s) J22(P1,,0y,5) M B ﬂy—ﬂr\/% 5+\/:£:7:§; Tar :
ey V1200000, TN T 42 14200000+ T T2 402
Dyy*
Taking derivatives yields:
a *
e~ (1.57)
oxc
8 *
M g (1.58)
oz
out Ot out, Oyt 1 — p2
Yo 9Ym _ ¥ 9Yn _ %50 for py <<l (1.59)
Oxc Oxpyy Oz Oxc 1—p2

where (1.57) and (1.58) follow immediately from (1.56). Hence, D,y* is a P-matrix. (c¢) The

assignment was derived under the integrability condition (1.34), i.e. it is satisfied.

1.8.3 The Equilibrium Wage Function

Proof of Proposition 1.4. .

I proceed by guess and verify. The guess is that equilibrium wage function is given by the



sum of marginal products integrated along the assignment paths
T R R 1 el R 1 TN R T M R R
w(ze,Trp) = @ (/ Jnzcdic + ixM/ J12dZo + 5(51‘0/ Jor1dZpr + 5/ Jgg:L‘Md:UM>
0 0 0 0
1 2 1 2
=« §J11:cc + Jisrp e + §5J22xM + wo

where wy is the constant of integration, which I set to zero.”? Ji1, Ji2, Ja1, Joo are the elements
of the matching function’s Jacobian, which are given by (1.56). Using the assignment (1.56)
explicitly, this is

Vi-rj Vi-e3

]+6ﬁ 8 py*pm\/ﬁ
( ) 1 [ ] \/1+26(pmpy+\/1*p§\/1*;)3)%2 \/1+26(pmpy+\/1fp§\/17;)3)%2 To 1 [ ] Ju  Jia zo

wlxo,Tpy ) = 50T Tp = 50|Tc TMm N
' : §{ py—pe Y120 PP Tm ? dJ2n  0Jo2 Eavs
\/1+25(p1~Py+\/lfpfw/l*pi)#»&z \/1+25(pxpy+\/17p'§,/17p§)+52 =/
=J
(1.60)

which is equivalent to expression (1.15) in Proposition 1.4, taking into account wg = 0. The
guess needs to be verified. Given (1.60), the partial derivatives of the wage with respect to

skills ¢,z are given by

aw(x07 $M)

= 1.61

Bz a(Jnze + Jiex ) (1.61)

M = ad (Jooxpr + J2120) (1.62)
Ox s

which coincide with the first-order conditions of the firm,

&U(ggm = ayl (1.63)
C
ow(rc,xym) N

evaluated at the equilibrium assignment (1.56). Moreover, the integrability condition

Pw(zc,zy)  0*w(ze, zy)

drcdzy Oz Oxe
<~ Jig = 5J21 (1.65)

is satisfied by construction of the equilibrium assignment, which gives uniqueness of (1.60) by

Proposition 1.2.

Proof of Proposition 1.5. .
(i) See Proof of Proposition 1.3 (last part, under Consistency of the Assignment Functions
from (i)-(iii) with the Equilibrium.).

2Type (xc,znm) = (0,0) is the least productive worker. He produces zero output. wo is his reservation
wage, making the least productive worker, (xc,za) = (0,0), indifferent between working and not working.



(ii) For py = py, (1.35) yields
oy = *1

and hence, §, = 0. Substituting this (along with o, = £1,8, = 0) into the candidate

assignment given by (1.13) yields y& = z¢ and y3; = za and, hence, g% = gzg =1

oy¥ oy . . . oy
and a%f{ = ayTJZ{ = 0. Hence, there is perfect assortativeness according to Definition 1.4.

The second result is that the maximum mismatch is achieved at |p, — py| — 2, i.e.

_ 1 (VIHey | /1=py — 1 VIHpey  /1-py
Jo = 3 NiETS + \/1_/)1) and abs(J21) = abs | 5 o~ Vies have suprema at
pz = 1,py = —1 as well as p, = —1, p, = 1. I show this in two steps.

1. Step: No interior maximum:

1<\/1+py+\/1—,0y>

pepy 2 \ 1+ pz  V1I—pa

< ! - ! )—0 (1.66)
Pu VIt pyVI+pe /1= py/1—po - ‘

(AR VR
T - A - 3+ 3 —0 167
’ 2( L+p)f  (1—p)} o7

Solving the system of first order conditions (1.66) and (1.67) (necessary for an interior solution)
yields p2 + 1 =0. A contradiction. There is no interior maximum. Likewise, maximize Jo1

with respect to p; and p,:

max
Pz »Py 2

\/1+,Ox \/1fo

1 1
. <\/1+py\/1+px+\/1_py\/1_px> =0 (1.68)

Px31<_\/1+py— \/1_Py>:0 (1.69)

2\ (I4p)2 (1=po)?

1(\/1+py_ \/1_Py>

where it is immediate that (1.68) does not omit a solution for —1 < p, < 1,-1 < p, < 1.

2. Step: Suprema at the boundary. First, focus on Jos. Fix p, =1 —€,e > 0. Maximize Jao

with respect to p,.

max
py 2

2—¢

1<\/1—|-,0y+\/1—,0y>

( 1 1 )_0
2—evI+tp, e/T—py)
(2—¢)? — ¢

N S
Py (2—€?+¢€



Now fix p, = —1+¢€,¢ > 0.

(2 —€)? — €
<Py = (2—¢€)2+¢€ !
Morever, the same value of Jyg is achieved at (pz,py) = (1 — ¢, —%) and (pz, py) =

L )22
(_1 + €, g,egQJFGQ )

Then, focus on Jy;. In a similar way, fixing p, to (i) p = 1 — € and (ii) p, = —1 + €, and
(—2+¢)2—¢€2 _ (=2+e)?%-€& _ 1
(—2+e)%+€2 YT (—2+e)2Fe T
Both points give the same absolute value of Jo1. Both steps together imply that mismatch in

maximizing with respect to p, gives (i) py = — ~ —1 and (ii) p

the manual task, defined as |yp — 2| = |ym — cxe — dxy| is maximal for |p, — py| = 2.

Proof of Proposition 1.6. .

(i) Wages are convex in skills: Recall, the wage function is given by

w(fc,fEM)Zla[xc ] S e
2 0Ja1 0J2 TM
[ —
=J

where Jy1, Ji2, Jo1, Jog are the elements of the matching function’s Jacobian given in (1.56).

The Hessian of the wage function is given by
H(w)=-aJ

Since the Jacobian of the matching function is a P-matrix, i.e. Jy1, Jao > 0, J11Jo2—J19J21 > 0.
By assumption, § > 0, > 0, so that dJo2 > 0 and Det(H (w)) = %aé(Jngg — JiaJo1) > 0.

Hence, the Hessian is positive-definite and the wage function is convex.

(ii) The moments of the wage distribution are given by

- 1 1
BE(w(zc,zum)) = tr(J8:) = 5J11 + J12pa + 5022 (1.70)
- 1
Var(w(xc,xzp)) = 2tr(JE, %) = 5((J11 + J12px)2 + 2(J11px + J12)(J12 + 0J22ps) + (J12p2 + 5J22)2)
(1.71)
. (w - E(w)>3 _ B(w®) ~ 3B(w)Var(w) - E(w)®  8tr(JS.JE:J50) 1)
Var(w) Var(w)? (2tr (S, T5,)) 2 '




where J11, J12, J21, Joo are defined in (1.56), J denotes the Hessian of the wage function and
where

tr(JXe IS T 8e) =(J11 + Jiope) (Ji1 + Ji2pe)? + (J11pe + Ji2)(J12 + 8J22p2))
+ 2(J12 + 0J22p5) (J11pz + J12)(J11 + 2J12p5 + 6J22)
+ (J12pz + 6J22) ((J12 + 8J22p2) (J11pa + J12) + (J12pz + 6.J22)°)

See e.g. Magnus (1978) for the derivation of moments of quadratic forms in normal variables.

For the symmetric case, § = 1, these expressions simplify to

E(w(zc,zym)) = tr(JuEe) = % <\/(1 + pe) (1 + py) + \/(1 — pa)(1 — py)>
Var(w(ze,zm)) = 2tr(JuXeJu32) = 1+ papy
Ew?) = tr(J,5,)* + 6tr(J,S0)tr(J, S0 1 20) + 8tr(J, 20,5 J,50)

5 (w — E(w)>3 _ B(w?*) = 3E(w)Var(w) — Ew)* _ 8tr(Ju %0 JuS0 )y Es)
Var(w) Var(w)? (2tr(J, S0 Ju50))
(VO 2t )+ = ) (1= p2)) (24 200 — JUL= )= 1))
(1+ papy)? '

where, as before, J, denotes the Jacobian of the matching function.

Skewness: J,¥;J, and ¥;J,X; are two positive definite matrices. Since the trace of the
product of two positive-definite matrices is positive and since the variance is positive, the re-
sult follows.

Finally, a result mentioned in the main text is that the average wage is maximized at
pz = py and has two infima at p, = —1,p, = 1 and p, = —1, p, = 1. To see this, maximize

E(w(zc,zn)) with respect to py and p, yields:

max% <\/(1 + p2) (1 + py) + \/(1 —pz)(1 = Py))

Pz Py
Pz - Pz = Py
Py Pz =Py
The Hessian of this maximization problem is given by:
_1( L1—py + \/1+py) 1( 1 + 1 )
H(E(’UJ)) _ 8 (l—pw)% (1+Px)% 8 V1=pz\/1—py V1tpz/1+py
1 1 n 1 1 ( p: | Vb )
8 \VI=pa/1-py  VIFpzr/1+py 8\ (1-py)3  (14py)?



Notice that H11(E(w)) < 0 and Det(H (E(w))) simplifies to

Det(H(E(w))) = (1= py)(1 + pa) = (1 = pz)(1+ py))* 2 0

Hence, the Hessian is negative semi-definite Vp,, p,. Hence, E(w(xc,znr)) is concave. At
pe = py, Det(H(E(w))) = 0, indicating that p, = p, are (degenerate) maxima. Due to
concavity of E(w), its infimum is achieved at the boundary of the domain —1 < p, < 1,—-1 <
py < 1. E(w) has two infima at p, = —1,p, =1 and p, = —1,p, = 1.

1.8.4 Proofs on Technological Change

Task-Biased Technological Change (Section 1.4.1)

Proof of Proposition 1.7. .

Notice that I focus on the cases for which p;, p, < 0 or pg, py > 0. I will make explicit where
this assumption is needed to arrive at clean analytical expressions.

(i) Mismatch-Assortativeness Trade-Off Across Tasks. It needs to be shown that as ¢’ < § =1,
lyc — x| decreases and |yp — xpz| increases. Recall that the Jacobian of the matching

function is given as in (1.56):

1""5177[)3 3| py—pa lipg
V1-2 \1-p2
J11(pzs py,0)  J12(pa, Py, 9) } _ \/1+25(pzpy+\/17p§\/17/)%)4’62 \/1+25(pwpy+\/17/)5«/17/)%)4’52 (1 73)
J21(pz; py: 0)  J22(pz; py, 6) py—pa Y L S+ —L 17,;?
\/l—p‘,% 1—p£
Day*
Y \/l+26(pxpy+\/1—p§\/ 1—p2)+42 \/l+26(pmpy+\/1—p§\/ 1—p2)+42
Dyy*

I will show this claim in two steps:

1. Step:

Jit > 1 for [pz]| > |pyl
Ji2 >0 for pp < py
J21 >0 for p, < py
Jag =1 for [pg| > |py]



This follows from (1.111), since

\/1—p2
1+ 66—+
Ju = L >1

\/1 +20(papy + /1 — py/1—p3) +07

2
1—p2 ,
& <1+5 y) Z1+26(p1.py+\/1—,012/\/1—;)3.)—1—52

V1-p3
25V1_p5pi_pzpym 52 L 1| >0 for |[ps]>|pyl
A — + -1z or |pg| >
1—p2
5(py—pmﬁ)
< 1_2
Ji2 = Vit >0

N e e R
& pyV1=p2—pe\/1=p3 >0 for p, <p,.

Notice that for § = 1, J11 = J22 and J12 = J21.

2. Step: At 6 =1,

WZO for |pz| > |pyl
8;9](;2 >0 for py<py
8;;1 >0 for py>py
8;?20 for |pz| < |pyl
where
0Ju _ \/% o <5\/@ - 1) (pupy + /T — BT 2)

Vi=r _ 2. /=2
8J11‘ (\/ﬁ 1 (1+Pxpy+m 1 Pz)
e 10=1 =
09 (2+ 2(pepy + /1 = P51 = p7))

/1—p2
dJ1o (Py_/)x\/%) (1+Pzpy+mvl_pg)

= >0 for py<py

96 (1 +25(papy + Mm) )l
1—p2
0Ja (py—px\/\/l_:Z;:) (Pxpy+m\/q+5)

_ >0 for pz>py

0 (14 28y + 1 VT = p3) + )3

20 for |pz] = [py]

wlw




0J22 1= 5\/\/% ( 1 ZZ - 1) (pzpy + mm)
(1 +26(pzpy + \/7\/@) +62)3
<1 - ﬁ) (1+ papy + HH)

_ >0 for |pz| <|pyl

ls=1
09 (24 2( pxpy \/ \/ )2

which together with Step 1 establishes the result.

OJ

(ii) Sorting when § = 0. In the cognitive task, yo = z¢, follows from (1.53) in proof of
Proposition 1.3. In turn, in the manual task, there is maximal mismatch |y — xps]. To see
this, notice that

5+V170§
ERVIETR Vi

Joals=0 = >
Vet \/1+25(Pxpy+\/1_p%/\/1_1’%)4'52

since

= Jalszo for |pz| = |pyl

£/ 1— py
\/1_py 6+\/1 —p2
vi=r ¢1+26 (papy + /1~ /T = 12) + 0
(1= p2)(L+28(papy + /1 — p2\/1 = p2) +6%) > (1 — p3)6° + 204 /1 — p2\/1 — p2 + (1 — p2)
(1= p)(26(papy + /1 = P21 = p2) +6%) > (1 = p2)6° + 20, /1 — p2\/1 — p?
2(pepy(1 = py) = pgJ1 — P2\ /1= p2 + 62 (03 — p})) = 0 for  |pz| > [py].

Since Joa|s2o > 1 if |pz| > |py|, the result follows. Also,

‘/l—p%

1—p2 5<py_l7m 17'2

px\/\/l_ ;/Z V1-p2
P \/1+25(pxpy+\/1—pZ\/l—p%)MQ

since for p; < py,

Jatls=0 = py —

= Jotlszo for pr < py

\/1-p2
,/1—/)321 5<Py_/)x\/ﬁ)

>

pff )
V- \/1+25(Pmpy+\/l_1032/\/1_:03:)"‘62

& \/1+25(pxpy+\/1—p§\/1—p%)—|—52 >4
& 1420(pepy + /1 —p2y/1—p2) >0

Clearly, for p, = py, Jo1|s20 = Jo1|s=o- Since Jai|s20 > 0 if p < py, the result follows.

Py —

(ili) Task-biased TC has no effect on sorting for p, = p,. Follows from (ii) in proof of Proposi-



3J11

tion 1.5. Furthermore, task-biased TC has maximal effects on reallocation (i.e. , ls=1,

d‘]12| 5=1, d‘] 2L |5 ¢ and 8‘]22 |s=1 are largest) when |p; — p,| is maximal. To see this, Iﬁrst show
that these expressmns do not have an interior maximum. Notice that a‘]” \5 1= aJ22 |s=1 and
8]12 |5 1=
Vig
p= Virk (1.74)
= 3 1 :
a9 22(2+ 20(papy + /1 — P2/ 1= p3))2
Py — pu il
5= 78J12|5 1= SRRV (1.75)
- .3 1 :
% 22(2 4 20(papy + /1 — P2/ 1= p3))?
Then,
VR, T2 T 1 (Y 1\ [, o VR
or P T Pepy VLT 2n/1 = ) Vi )\ (1.76)
= - S .
Opa 25(1+pxpy+\/1—py\/1—p§)5

Y VR - _ Vi v
or —t > ﬁ L+ papy + V1= p3y /1= pp) — < Ry R Ul Ty
Opy 22 (1+ popy + /1 — p2V/1— p2)2

(1.77)

2
17} P2 7 2) 4 1 V1-ry
- (14 £25 ) (14 papy + V1 —p2 /1= p2) + 5 | py — Pu 2
—p2 1—p2 4 z Y 2 Y _ 2

0s 1 pz< p ) V1-p2 (1.78)

Opz 23 (1+ pupy + /1 — p2V/1— p2)7
PyPz — 1 (per/1=p2—py+/1—p2)?
ﬁ B (1 + - pz %> 1 + pxpy + AV 1 /)x 1 py + 2 /1—072; /1_p% (1 79)

3 3
Opy 22 (L4 papy + /1 = pyv/1—p3)2

Expression (2.21) is negative for all p,, p, < 0 and positive for all p,, py, > 0. At p, = p, =0,

the expression is zero, indicating a minimum (i.e. no reallocation when p, = p,). Expression
(2.22) is positive for all p;, p, < 0 and negative for all p,,p, > 0. At p, = p, = 0, the
expression is zero, indicating a minimum (i.e. no reallocation when p, = p,). Hence, (1.74)
has no interior maximum. Also, (1.79) is positive Vp,, p,. Evaluating (2.23) at the corners
pr — 1 and p, — —1 yields a strictly positive and a strictly negative expression. Hence, (1.75)
has no interior maximum. The supremum of (1.74) and (1.75) must be in the corner. In a
second step, it can be shown that (1.74) and (1.75) are most positive or negative for p, = £1

and p, = 0 as well as p, = 0 and p, = %1.

Proof of Proposition 1.8. .
(i) The results follow from simulations of the closed forms (1.70) and (1.72). Available upon
request.



(ii) Wage Curvature. Wages are convex in x¢ and xj since

aQw(xc, JUM)

= OZJH >0
oxZ,
?w(ze,
7(8 02 M) :ﬁJQQ > 0.
LM

Consider task-biased TC (¢ decreases), triggered by an increase in « (one could additionally

assume [3 decreases). For |p;| < |pyl|, J11 < 1 and 8‘8%1 < 0 as well as Jyz < 1 and 88‘]§2 > 0,

where Ji1, Jo are defined as in (1.111). It follows that for |pz| < |pyl,

aa2w(xc,xM)

89520 . &]11 o))
G I
Pw(zc,x )
J 395%1 - _ 5&]22@ <0
o 798 da '

Hence, due to task-biased TC, wages become more convex in ¢ but less convex in x;. Notice
that additionally decreasing (8 reinforces the effects. Finally, the result that that the curvature

changes are largest follows from Proposition 1.7 part (iv).

Skill-Biased Technological Change (Section 1.4.2)

The wage function under the augmented technology
F(zc,zm,yc,ym) = axcye + Bryym + Aze +nzm + fo (1.80)
is given by
w(zo,Ty) = @ (;X/jx + 9’X> +wy = %a(x —h)'J(x—h)+C (1.81)

where

T T 75 X 35 )‘ F— 1 F—
J= T (pespy,0) - Jiz(pw, £y 0) , 0= , X= re ., h=—-J71'0 C=wy—-ab'J 6
5J21(pz7py75) 5J22(pzapya5) n T M 2

Proof of Proposition 1.9. (i) It is immediate that assignment (1.56) satisfies the first-order
conditions of the firm under (1.80). (ii) (1.81) satisfied integrability condition (1.6), i.e. is the
unique wage schedule supporting the assignment. From (1.81), skill-biased TC parameters A
and 1 do not affect the curvature of the wage function. (iii) Under (1.81), the variance of the
wage distribution is given by:
2
1 2) )1tz (D i + P2 ) (o)’
(1.82)
For p, > 0, Var(w) positively depends on A and 7 (i.e. the effect of skill-biased TC on Var(w)

Var(w) = o*(1-p2) ((J21 + Jipe)® +

is ambiguous). For p, < 0 and —p, A > n, Var(w) positively depends on A and negatively on
n (i-e. in this case, the effect of skill-biased TC on Var(w) is unambiguously positive). To



derive (1.82), notice

J 0.
E(w|zy) = « (;E(CE%L’I}M) + Jiszp E(xelram) + ;Qx?w) +nxar + AE(zco|zar)

J 0J.
—a (R + (1= ) + P20 ) + pami(@iaas + X) + nag

J §.J22\ 2
Var(B(wlea) = a2Var(ad,) ("3 + peha + 222 )+ Var(ean) (o +0)°

9n (J11 9 §J22\ 2 9
= a2 e+ pedizt = ) + (A +) (1.83)

since cov(z3;, xy) = E(x3;) — E(xpy)E(23,) = 0. Moreover,

Var(w|zy) = Var(xc]mM)(QQJux?V[ + )\2) + Var(:v%|:rM)a2J121 + cov(x%, :Ec|xM)(a2J11J12xM +A)
where
Var(aclau) = E(abloar) - (B@dloa))? = 402031 — p2) +2(1  p2)?
cov(xg, xolen) = E(xglan) — E(ad|om) E(zolem) = 200em (1 = p7).
Hence,

J2
Var(wlzy) = o*(1— p2)(@3,(J12 + pad11)® + %)(1 —p2) + (1 = p2)(padirdans + A%)

E(Var(wlea)) = a2(1 — p2)((J12 + puin)? + ‘];2%1 — )+ (L - 2N (L.84)

(1.82) follows from adding (1.83) and (1.84), i.e. Var(w) = E(Var(w|zy)) + Var(E(w|zar)).

1.8.5 Relaxed Sufficient Conditions for PAM

Section 2 provides a distribution-free sufficient condition for assortative matching, under which
between-task complementarities are shut down. In turn, this section makes assumptions on the
skill and productivity distributions, under which the sufficient conditions for PAM/NAM can
be relaxed, allowing for non-zero between-task complementarities. The first subsection deals
with Gaussian distributions. The subsequent one with independent uniform distributions or

arbitrary but overlapping skill and productivity distributions.

Gaussian Distributions

Suppose the skill and productivity distribution are bivariate standard Gaussian and the

technology is given by:

F(zo,za,y0,ym) = Y(xeye + axcyn + Brarye + 0xaynr) (1.85)



In this setting, with non-zero between-task complementarities, the sufficient condition for
PAM/NAM is stated in the following proposition.

Proposition 1.10 (Sufficient Condition for PAM in Gaussian-Quadratic Setting). Suppose
that (xc, xpr) and (yo,yur) follow bivariate Gaussian distributions and the technology is given

by (1.85). If

meflzll a]

Fx]\/IyM /8 6

is a strictly diagonal dominant P-matriz (P~ -matriz) by row and column, then the equilibrium
assignment satisfies PAM (NAM).

F,
D:%yF(va) = l chyC

TMYC

Proof. A matrix M is strictly diagonally dominant if |m;| > 32, [mi;l,i = 1,2,...,n and
row diagonally dominant if [mj;| > >, ; mjil,i = 1,2,...,n. In this setting, D2, is strictly
diagonally dominant if 1 > ¢ > |a| and 1 > ¢ > ||, which is assumed to hold. The proof will
be given for PAM and standard Gaussian distributions. The proof for NAM is equivalent
(just match up the marginal cdf’s in a decreasing instead of increasing way). The extension to

non-standard Gaussian variables is given in Appendix 1.8.7.

Under (1.85), integrability condition (1.6), which needs to be satisfied in order for a unique

wage schedule to exist, is given by:

O?w(xc, ) B O?w(xc, )

0xc Oz oxp0xc
& Jio+adyn = BJi1 +0Jx (1.86)

_ 9y _ Oy _ 9y; _ Oy; .
where Jy1 = ﬁ, Jig = 8&:1?4"]21 = axfg,Jgg = ax;‘; denote the elements of the matching

function’s Jacobian. Using (1.86), the equilibrium assignment follows Proposition 1.3. It is

given by
Ar=ﬂzf_p§u+a%>1—ma+w+amhﬁ—p@ (1.87)
Jis = 223?<_(%((B+5Py)x/1/ii(5Pz +a)y/1-2) (1.88)
k1=22?@Ka+pqu—p%—@x+mvﬂ—p$ (1.89)
szZZ?_p§®+B%)1—p%+ﬂ+ﬁmhﬁ—p@ (1.90)
where

ZEJW+®(115+im:+&Hﬂw¢ﬁz—wixnﬂwu—®0ﬁmywﬁiﬁ+w—m(ix$+

1-py
1=pa

)



PAM holds since Vpg, py,

Jip >0 if 1>6>|q
Jog >0 if 125>|5|
Det(JM) = Jy1Jog — JigJor >0 if 1> o > |f)’|, |Oz|,

where determinant of the matching’s function Jacobian reads

Ji1doz — Ji2do1 ZL[O - pi) ((1 + apy)(é +pyf) — (Py + a)(Py5 + ﬁ))

27/1 — p2 ~
+ V1= pi/1=p5 (1+apy) (14 peB) + (6 + apz) (8 4 pyB) + (py + a)(8pz + @) + (po + B)(pyd + B))

=Y

+ (1= 93) (6 + apa) (1 + poB) = (px + B) (0ps + )]

=Z

where X and Z are positive under diagonal dominance and where Y can be expressed as:

Y =1+ 0%+ 2+ 6% +28ps + 20(8 + pa)py + 20(8ps + py + Bpapy)

It remains to show that Y is positive. Notice that Y is linear in each of the correlations, p,
and p,. Hence, the infimum of ¥ must be in a corner. If Y is positive in all corners, then
Det(J,) > 0. To simplify this argument, I evaluate ¥ at p, &1 and p, £ 1 (since if Y is
positive at the corners it is also positive arbitrarily close to the corners)

Yp,=p,=1 = (1+8) + («+8))* >0
Ypompy=1 = (1+6) = (@+8))> >0
Y]p=1,p,=1=((1=6) = (a=p))* >0
Y]p=—t1,py=1 = (1 =0) = (= $))* >0

which proves the result.

Non-Gaussian Distributions

This section states the sufficient condition for PAM

Proposition 1.11. For (a) independent uniform skills x ~ U(|z, 7)) and productivities
y ~ U([y, 71V) or (b) whenever G=H, if DgyF(x,y) is a P-matriz everywhere and, moreover,

positive definite along the equilibrium path, then the equilibrium assignment is PAM.

Proof. 1 prove this result in four steps:

1. Step: There exists a feasible PAM allocation. Consider (a). Denote by Hy,., Hy,,, Gye, Gyy,
the marginal cdf’s of x¢,zy, yo and yys, respectively. Due to independence, the market

clearing in line with PAM can be specified as

(1 = Hae (20))(1 = Hay, (201)) = (1= Gye(ye)) (1 = Gyy, (Yar))-



Because of PAM, match up the marginals within each dimension

Hyo(2c) = Gye (yo)
Hgy, (xM) = GyM (yM)

which gives the assignment functions:

Y- -y

Yyo=——Tc—r——_ 1Y (1.91)
T—x T—x =
y—y y—y

YM = ——Ipy — =4y (1.92)
r— - -

Both (1.91) and (1.92) are in line with PAM since gg—g > 0 and gz—% > 0 as well as

Oyc Oym . Oyc dym -
Oxc Oz oz Oxco :

Consider (b). A PAM allocation is given by yc = x¢ and ypr = 7, which is clearly feasible.

2. Step: The PAM allocation from Step 1 satisfies the firms’ necessary second-order conditions
for optimality under the P-matrix property of D?CyF . Recall from the proof of Lemma 1.1
that the Hessian of the firm’s problem is given by:

H* = D?czF(Xay*) - D:%a:w(x) = _(D:%yF(X7y*))(ny*) (193)

In the PAM allocations from Step 1, D,y* is a diagonal matrix. Since chyF is a P-matrix,
the matrix product (D2, F(x,y*))(D.y*) is positive-definite and, hence, the Hessian (1.93) is

negative-definite.

3. Step: The PAM allocation from Step 1 satisfies the integrability condition (1.6). Hence,
there exists a unique wage schedule supporting this allocation. To see this, first focus on (a).

Since D,y* is diagonal, (1.6) collapses to

oy’ oys
chyM ﬁ = FIMZUC% (1-94)

which must hold at the equilibrium path. Using (1.91) and (1.92), this simplifies condition
(1.94) to

F,

T -
CcYM T

—F Z 2

T -
MyC:C

v-y vy—y
—Z —Z
which holds under the assumption of positive-definiteness of DgyF (Froyns = Frpye) along
the equilibrium path.
Consider (b). Under the assignment yo = z¢ and yyr = xar, (1.6) collapses to

F,

rcYym

=F

TMYc

which again holds under the assumption of positive-definiteness of D%yF (Froyn = Frpye)



along the equilibrium path. Hence, for both (a) and (b), there exists a unique wage schedule
that support the PAM allocation from Step 1.

4. Step. Since Din is a P-matrix everywhere, the equilibrium is globally unique (Proposition

1). Hence, the PAM allocation from Step 1 is the unique equilibrium.

1.8.6 Additional Results

Lemma 1.4 (Non-Negative Output and Wages). Both equilibrium output F(xc, zn, Y&, Yis)

and equilibrium wages w(xc,xpr) are non-negative for all xo,xp € X.

Proof. Both equilibrium output F(zc, 2w, & Ya) = oys + Tmyny = Jllx% + 2J1ox e +
6J22m%4 = XTJMX > 0 and equilibrium wages w(zc, zpr) = %Jnx% + Jioxr e + %5JQQ$?M =
%XTJuX > 0 are positive-definite quadratic forms in standard normal variables and hence

positive for all non-zero column vectors x = (x¢,xp7). (Notice that T used Jig = dJa1 by

(1.6)).53

Lemma 1.5 (Task-Biased TC and Relative Wages). The return to manual specialists decreases

relative to cognitive specialists, generalists and low-skilled workers.

Proof of Result 1.5. Let a worker with (z¢,xp) = (|z],0),]|z] < oo be a specialist in task
C' and the worker (zc,zp) = (0, |x|), |z| < 0o be a specialist in task C. Notice that their

relative wage is given by:

'UJ(‘.Z",O) . 1792
wO1) ™ 5 (54 )
1-p2

Differentiating the relative wage with respect to § gives:

— 2
ozl —\%,23(252 +1)—26
le) : <0 (1.95)

)

Hence, the relative wage increases as ¢ drops.

Let a worker with (xc,xa) = (|z],|z]), |z| < oo be a generalist. Then, using (1.15):

1—p2 1—p2
;(14—5 1_Z§>+5<py—pz 1_2%)
wilal, o) _, V V

w(0, J2]) » ( o )
5 2

(1.96)

1_pz

=S

%3For the copula model below it holds that, for all (zc,za) such that 2c = & '(Hco(zc)) # 0 or
iy = O (Hy(zam)) # 0, Fzo,zm,ye,yy) > 0 and w(zc,zn) > 0, which can be verified by simply
plugging Z¢, T into wage and output.



Since,

<0 for pz<<1
2 1, 1 1

oS T=pt (—152 -7 552%) —30 — 58%py

% B 1 1*P2 2
(v

it follows that (1.96) increases as § drops.

<0 (1.97)

Finally, let a worker with (zc, zar) = (J€], |€]) be a low-skilled worker. Then, using (1.15):
Then,

1 1-pj _ 1-p§
ol ) & 2<1+5 1p3>+5<:0y P\ 7=
1 1—p3
=

=S

(1.98)

It follows from (1.97) that this relative wage is increasing as § drops.

1.8.7 Generalizations and Extensions

Equilibrium for Non-Standard Normal Distributions

The continuum of square roots used to un-correlate skills and productivities cannot only deal
with asymmetries in the technology (i.e. § < 1) but also with asymmetries in the distributions
(i.e. different means and variances of skill and productivity distributions). This section solves

the model in closed form for non-standard normally distributed skills and productivities.

Proposition 1.12 (Equilibrium Assignment and Wages under Normality). Denote the non-
standard normally distributed skills by (¢, Zar) and the productivities by (§co,Gar), where:

Ic N Wi ’ O'?CC O3c 030 Pi ’ Jc ~N Hye 7 O—;C 09cTgm Py
Tm 12237 020040 P J;%M Ym Hgar O9c O Py UEM
(i) Assignment: (i)-(iii) of Proposition 3 apply with minor modifications (see Proof,main pa-

per).
(i) Wage Schedule: If skills and productivities are normally distributed, the wage is given by

"2
<&+ Jio

R . 1 .
% Tic ToZy + §5J22 Tim .f]?\/[ (199)
oA A R

A 1
w(Zc, &) =§J11
TMm

TCo T M

o4 o4 N o4 o ~
+ (M@c — e i - f/c#meﬁz) Tc+9 <#@M — g S — u;zMJzz) Ear + wo

Zc O Zc O

where Ji1, J12, Jo1, Jog are the elements of the Jacobian of the matching function under standard

normality (see Proposition 3, main paper).



Proof. .

(i) Recall the equilibrium assignment under standard normality:

- 1+67/W 5 e /l—pg 7
Vi-rd \/1-p2
Y& \/1+25(pzpy+\/1*p§ V/1-p2)+62 \/1+25(pzpy+\/1*p§ V1-p2)+62 T
= Vompys — (1.100)
Yu Py—Px 170y sV TM
Y ’\/1—p% \/1—;1%
L \/1+25(pzpy+\/1—p§\/1—pi)+52 \/1+25(pzpy+\/1—p§\/1—pi)+52 ]

Dyy*

Denote J,(xc,xn) = Dyy* the Jacobian of the matching function with standardized variables,

J12 ]
Ja2

Non-standardized skills, denoted by Z;, and productivities ¢; need to be standardized in order
for (1.100) to hold: x; % and y; yz;&

express the assignment in terms of the non-standardized variables Z;,¢;. The equilibrium

where:

Ji

(1.101)
Jo1

']M(mcv‘rM) = [

. This transformation is reversed below to

assignment with normally distributed skills and productivities is given by

Yyc zc
=J,
Ym | | TM
] — Lte!
& T Ju Err—tisy, (1.102)
KA V. L Tép

where J, is given in (1.101). (1.102) can be solved explicitly for (9, 93,) as a function of
(Zc, &ar). Parts (i)-(iii) of Proposition 3 readily apply.

(ii) The wage guess needs to be verified. Denote the parameter in (1.100) by ¢ instead of
0 and set

§ = 0 T2u (1.103)

Oic Tgc

where § € [0,1] is again the relative task weight in the production function. Given (1.99), one

obtains:
e

ow To, Tpm Oje 0y ~

(8A ) _ Ju " (20 — pae) + 12— S (B — frang) + Hge (1.104)
Witel To T

ow(Ze, Ty Cing ) n Ognr 7 a

¥ =0 | Ja 2L (80 — pae) + Jor =2 (B0 — Hang) + Hgar | - (1.105)
O Oic Oz

Ak

Ynm



which coincide with the first-order conditions of the firm, (1.3) and (1.4), evaluated at the
equilibrium assignment (1.102). To derive (1.104) and (1.105), I made use of the integrability
condition (1.6).

*w(zc, &) B O*w(zc, Zr)

02cOiy  Oipy0ic
& Ji2 Tho _ 5J210'yl
O@n Oic
& Jpp= &]21 (1.106)

which is satisfied by construction of the equilibrium assignment. Moreover, (1.106) implies

uniqueness of w(Z¢, Zp7) by Proposition 2 (main paper).

The Gaussian Copula Model

Deriving the assignment under standard normality can be generalized to any continuous
marginal distributions via Gaussian copulas. The idea is to transform skills and productivities
from arbitrary marginal distributions into variables that are marginally Gaussian and then use
a copula to bind them together. This approach enables me to apply a second transformation
that un-correlates Gaussian random variables and transforms them into independent standard
normal ones. This transformation is crucial for the tractability of the model. The occurrence
when the original variables are marginally Gaussian is captured as a special case.

Besides tractability, the advantage of copulas is their flexibility. Copulas are multivariate
distributions where the margins cannot only come from different families of distributions but
can also include positive and negative variables at the same time. The construction of copulas
allows for separating considerations about the marginal distributions on the one hand and
dependence of the data on the other. The Gaussian copula is particularly tractable®® and has
been widely used for applications when the data exhibit little or no tail dependence. For a
discussion on copulas in general and on the Gaussian copula in particular, see, for instance,
Cherubini et al. (2004).

In what follows, I formally define copulas with focus on the Gaussian copula and show
why they prove useful in this model. I focus on the case of N = 2 although this section
can be generalized to arbitrary N. A two-dimensional copula is a c.d.f. whose support is
contained in [0, 1]2 and whose one-dimensional margins are uniform distributions U(0, 1).%%
Consider a bivariate distribution function Q(z1,x2) with univariate marginal distributions
Q1(x1), Q2(x2) and quantile functions Ql_l, QQ_I. The copula associated with Q(z1,z2) is a
distribution function C : [0,1]? — [0, 1] such that

Q(z1,72) = C(Q1(71), Q2(22); 0) (1.107)

where # is the dependence parameter of the copula, which measures the dependence between

54(a) The only constraint on the correlation matrix is that it has to be positive definite. (b) One can specify
different levels of correlation between the margins.
5Copulas were initially introduced by Sklar (1959).



the marginals ()1 and ()2. The copula is unique if the marginal c.d.f’s ()1 and Q2 are continuous
(Sklar’s Theorem). Equation (1.107) captures the relation between distribution functions and
copulas. Denote u; = Q1(z1),u2 = Q2(x2), where uy, uy are uniformly distributed on [0, 1].
Then, x1 = Q7 *(u1), 22 = Q5 (ug) and (1.107) can be expressed as

C(u1,u2;0) = Q(Q1 ' (u1), Q3 (u2)). (1.108)

To construct the Gaussian copula, skills and productivities from arbitrary marginal distri-
butions are converted into Gaussian variables using the inverse transform method and then
bound together via (1.108). To illustrate this, consider the case of bivariate skills. Assume
that the two skills z¢ and x s have marginal distributions Heo(z¢) and Hps(x ), respectively.
Then, Zc = ® Y (He(xc)) and 2y = ®1(Hps(zp)) are standard normally distributed whose

dependence is modeled using the Gaussian copula, given by

C(He(we), Hu(war); pz) = $2(@7 (He(zc)), @' (Har(21)))-

Then, (Z¢, Zp) are standard bivariate normal with correlation p;.

The equilibrium of the Gaussian copula model can be derived in the exact same way as in
Section 3 (main paper): Compute the closed form assignment and wage function, using the
transformed variables (Z¢, Zar) and (§c, §ar) (which are bivariate standard Gaussian) as well
as the technology (1.7) defined in terms of the transformed variables. Then, the equilibrium

assignment is linear and the wage function convex in transformed variables.

Notice that important properties of equilibrium assignment and wages in transformed
variables (X,¥) can be shown to also hold for the original variables (x,y). The assignment in

terms of original variables is given by

jo = Juic+ Juiv & © HGo(yp) = In® H(He(xe)) + Jio®  (Hu(xar))

Uog = InZe+ Jniu & @ HGu(yiy)) = Ju® (Ho(xo)) + Joo® (Hur (2ur))

where jn, jlg, jgl, jgg are the elements of the matching function’s Jacobian (in transformed
variables). The variables (X,y) were obtained by monotone transformations of (x,y). Since
the sign of the first partial derivative is invariant under monotone transformations of the
variables, it holds that Jy; = g%ﬁ >0 and Jyo = gz—ﬁ > 0 (in original variables). Moreover,

the determinant of the matching function’s Jacobian in original variables is positive if and

only if the determinant of the Jacobian in transformed variables is positive since
Det(Dyy*) = R(®,Ho, Hyp, Go, Gap) Det(Dizy™)

where R(.) is a function that takes positive values. Hence, matching in original variables

satisfies PAM. The next Lemma summarizes this result.

Lemma 1.6 (PAM in Original Variables). (y&,y3) = u(xc, zar) satisfies PAM.



Proof. (y&,yiy) = (@, xar) is implicitly given by

Gelyy)) = Ju® '(He(ze)) + Ji2®@ (Hyr(zwr)) (1.109)
“NGCum(yiy) = Jn® N (He(ze)) + Jo2® (Hur(zar)) (1.110)

where ju, j12, jgl, Jog are the elements of the Jacobian of the matching function in transformed

variables given by:

146V % ey s( pyp, V120
v Py =Pz ,717,0%
ve | Ji1 Ji2 zc | \/1+25(Pa:ﬂy+1/1*‘05\/1*;7%)4»52 \/1+2(5(pmﬂy+\/1*p§\/l*pg)#ﬂ;z o
- T T - _ 2 _,2
Yt Ju J | [ am py—pa L o4 Y i oM
—_— ) Vi-s2 Vi-s2
Doy*
oy \/1+25(pzl)y+\/17;)12]\/17/)_,2,,)4»52 \/1+26(p1py+\/17p§\/lfp_,z,,)+52
Dyy*
(1.111)

It has to be shown that J, = D,y* is a P-matrix. (X,y) are obtained by monotone

transformations of (x,y). Since the sign of the first partial derivative is invariant under

monotone transformations of the variables and J11 = gyc >0, J22 = ayM > 0 (by Proposition

3, main paper), it holds that Jy; = g@ > 0,J0 = vy > 0. It remains to show that

T oz g

Det(Dgy*) > 0. Implicit differentiate (1.109) and (1.110) with respect to ¢ and s, which
gives four derivatives. For instance:

00~ 9H o
_ OHg Oz¢ 7
Ju = gg- 1BGcJ

0Gc Jyc
Then compute Det(D,y*) as

09~1 0Hc 09! 0HNy

0Hg Oxzc OHp Oz 77 i 7
Det(Dyy”) = Ji1do2 — 12Jo1 = Gg-tga0 ge-Taa,. (J11J22 — Ji2J21)

0Gco Oyc 0Gm Oym

Det(Dz§*)

=R(®,Hc,Hy,Go,G )

where R(®, He, Hyy, G, Gay) takes only positive values because it involves derivatives of
strictly increasing c.d.f’s and where Det(D;¥*) is positive from the proof of Proposition 3.
Hence, Det(Dgy*) > 0 if and only if Det(Dzy*) > 0 .

To find the wage as a function of the original variables, w(xc, ), substitute #; =
&1 (H;(x;)),i € {C, M} into (1.15). Notice that (1.15) is a positive-definite quadratic form
in standard normal variables for all original skills (z¢,zps). Hence, even though original
skills and productivities are allowed to be negative, wages and output are non-negative
for all matches that form in equilibrium (see Section 1.4 in this Appendix). The intuition is
that supermodularity of skills and productivities within tasks induces PAM, which is a force
towards matching firms and workers of similar types.

This section closes with an illustrative example of the copula approach. Consider standard
normal marginal distributions of skills and productivities, H; = ®,G; = ®, so that ; = x;

and §; = v;,Vi € {C,M}. Then, the assignment is linear in the original skills (z¢,z )



and productivities (yc, yar)

Jo = Juic +Jidn & Yo = Juzc + Jiary

Uir = Jnfc + Juiy & yi = Juzce + Jery

where J11, Ji2, Ja1, Joo are the elements of the matching function’s Jacobian, given by (1.111).
Hence, the example with (standard) normally distributed skills and productivities is captured

as a special case of the Gaussian copula model.

Labor Market with Search Frictions

In this section, the model of multidimensional heterogeneity is embedded into a model with
search frictions on the labor market and directed search. The search frictions stem from the lack
of coordination of a large number of agents when applying for jobs. As in the baseline model
with competitive labor market, I derive a sufficient condition on the production technology
for purity of the equilibrium and assortative matching. This condition is a straightforward
generalization of root-supermodularity from the one-dimensional setting (Eeckhout and Kircher
(2010)) to the setting with multidimensional heterogeneity. I briefly outline the model, which
is identical to theirs except that it allows for two-dimensional skills and productivities.

The frictional hiring process of firms can be described by a static game with three stages:
In the first stage, every firm, characterized by some productivity bundle y = (yc, yar), posts
a wage w(y). In a second stage, unemployed workers observe these wages. They anticipate
that different wages w(y) are associated with different applicant-vacancy ratios ¢(y) € [0, o],
which I will refer to as the queue length. They choose to apply at firm y, characterized by a
pair (w(y), ¢(y)), to maximize their expected income. In the last stage, firms that receive at
least one application hire one worker and production takes place. If a firm receives more than
one applicant, then it hires one of them at random. Unmatched workers remain unemployed
and unmatched firms will end up with a vacant job. Unmatched agents produce nothing and
have zero payoff.

Denote the probability that firm y fills a vacancy by m(q(y)) and the probability that

m(q(y))

a worker is hired by that firm by ) where the matching technology has the following

ma(y))
properties: m(.) is twice differentiable and satisfies mg(.) > 0, mgq(.) < 0, 852;’,)) < 0,

m(0) = 0 and m(oco) = 1. In words, the vacancy-filling probability is strictly increasing
and strictly concave in the queue length whereas the worker’s hiring probability is strictly
decreasing in the number of other workers queueing up for the same job.

In order for a firm to attract a certain worker type x = (x¢, ) it needs to offer him
an expected payoff that is at least as high as his expected equilibrium market utility U(x).
Ux) = %w(y) is what he would get at his best alternative job, where w(y) is the
worker’s actual wage when hired. The expected market wage U (x) implicitly defines the queue
length ¢(y) as a function of the actual wage w(y), which can be shown to be an increasing
function. Notice that the firms (and workers) take U(x) and hence the relationship between

q(y) and w(y) as given, which is justified by the large number of both workers and firms.



Contrary to the competitive labor market, however, here the firm chooses the wage. The

firm’s problem is:

max  m(q)(F(x,y) - w) (1.112)
st m;q)w > U(x) (1.113)

Before analyzing the equilibrium properties, it is useful to define a pure equilibrium in this

setting.

Definition 1.5 (Pure Equilibrium with Search). A pure symmetric competitive search equi-
librium consists of wages, queue length, and market utility (w(y),q(y),U(x)) as well as
a mapping y* = u(x) s.t.:

(i) Firm optimality: Given U(x) and other firms’ strategies, each firm'y solves (1.112) s.t.

(1.113);
m(q(y))

(i) Worker optimality: A worker x applies to a job at'y only if WM(Y) > U(x);
(iii) Purity: y* = u(x) is a one-to-one function;

(iv) Market clearing: The queue length q satisfies the market clearing for applications.

In equilibrium, the firm will not offer more utility to the worker than necessary to attract
him. Hence, the constraint (1.113) holds with equality. The maximization problem can be

reformulated as:

max  m(q)(F(x,y) - w)

ISl

m

s.t. ﬂw =U(x) (1.114)
q

In words, the firm can choose the wage and the trading probabilities in order to attract a

certain worker type (to whom it needs to offer his market utility). The constraint is similar to

a participation constraint. When substituting (1.114) into the firm’s objective function, the

maximization problem reads:

max  m(q)F(x,y) — ¢U(x)

The first oder conditions with respect to ¢, x are respectively given by

mq(q)F(x,y) — U(x)
m(q)Fxc (X, Y) - qUCCc (X)
m(Q)FﬂcM (X) Y) - qUxM (X)

0
0
0

where subscripts denote derivatives. An assignment is consistent with the equilibrium only if
the second-order conditions are satisfied, i.e. if the Hessian is negative semi-definite. Denote
the decision variables of the firm by the vector z = (x, ¢), where x = (z¢, zp). Hence, the

Hessian is a 3x3 matrix. Differentiating the FOCs (evaluated at y*) with respect to z = (x, q)



yields the Hessian evaluated at the equilibrium assignment y*

D2, (m(g(y")F(x,5*) = a(y")U(x)) = D2, (m(a(y") F(x,5")) (o272 — en(a(y*))) Day*

(1.115)
where €)/(q) = mQ(gzL((Zl)‘;ISZZ‘I(;)T;(q)) = %Zi(g;%flggg is the elasticity of the aggregate matching

function, as in Eeckhout and Kircher (2010).°® A necessary condition for optimality is

that (1.115) is negative semi-definite. Notice that by assumption mg(g) < 0 and hence
DZ, (m(q)F(x,y*)) is a negative scalar. (1.115) is the multidimensional extension of expression
(12) in Eeckhout and Kircher (2010). Optimality requires that

(F(Xa y*)me(Xa y*)

Fo(,y)E, (5, y") em(q(y*))> (D2y") (1.116)

is positive semi-definite. The following proposition states a sufficient condition for purity and

assortativeness of the equilibrium assignment in the multidimensional setting.

Proposition 1.13 (Pure and Assortative Equilibrium under Search). If

FFerye FFeryp,
FE et —em(e) 5t —em(q)
et = | Fep P (L.11)
yr FyCFIM B EM(q) Fy]MlevI N EM(q)

is a diagonal P-matrixz (P~ -matriz), then D,y* is a P-matriz (P~ -matriz). The assignment

px) =y !

* is positive (negative) assortative. The equilibrium (if it exists) is globally unique.’

Proof of Proposition 1.13. When [?j}i —€ M(q)} is diagonal, then the symmetry of the Hes-
sian, given by (1.116), requires that D,y* is sign-symmetric. The proof of Lemma [1] applies,
which proves that D,y* is a P-matrix. The result on assortativeness follows. The proof for

global uniqueness is stated by Eeckhout and Kircher (2010) (p. 569) and applies here as well.

In the setting with one-dimensional heterogeneity, the matrix condition of Proposition

1.13 reduces to the technological condition of root-supermodularity, f,ﬁiz —epm(q) > 0, which
ensures both assortativeness and uniqueness. Root-supermodularity is a stronger notion of
complementarity than supermodularity. This concept is extensively discussed in Eeckhout
and Kircher. When there are search frictions, high skilled workers and high productivity
firms have strong incentives to secure a match during search. The types who provide this
trading insurance are the low types because matching is less important to them. Hence, search
frictions are a force towards negative assortative matching. In order for PAM to obtain, the
complementarities between skills and productivities must be stronger than supermodularity
(which is required under the competitive labor market). If the production function is root-

submodular, NAM obtains in equilibrium.

56The aggregate matching function is defined as the total number of matches that form when v workers and
v vacancies are in the market M (u,v) = vm(u/v) = vm(q).

5TThe focus here is on the characterization of the equilibrium. Existence is dealt with in Eeckhout and
Kircher (2010).



1.8.8 Quantitative Analysis
The Data

I drop observations with missing wage data or those with hourly wages smaller than one euro
or one dollar. Notice that labor income in the NLSY is truncated. The NLSY truncation
algorithm takes the top two percent of respondents with valid values and averages them. The
averaged value replaces the value for all cases in the top range.

Also notice that due to the panel structure of the NLSY that starts surveying and following
young people over time starting in 1979, only a certain age group is present in the US sample
in each year. As a result of the data limitation of the NLSY, I am following one (young)
cohort over the 1990s.

Table 1.3:  Age of the Observations by Year

year min max
1992 27 35
1993 28 36
1994 29 37
1996 31 39
1998 33 41
2000 35 43
Total 27 43

To increase the number of observations, I do not only consider observations from the
balanced panel but treat the data as subsequent cross sections. The results are qualitatively

robust to considering the panel.

Construction of Skill and Productivity Distributions

As far as the productivity distribution is concerned (i.e. the distribution of y’s), I use the data
by Sanders (2012) who classifies occupational skill requirement into two categories, manual and
cognitive. He then aggregates this large amount of information, using Principal Component
Analysis, to get two task scores for each occupation (i.e. yo and yps). Using this procedure,
task scores are obtained for over 400 occupations. The scores have an ordinal interpretation
and allow to rank occupations according to their manual and cognitive skill requirements.
I interpret these occupational task scores as the (yc,yar)-bundle from my model. I drop
the observations whose (y¢, yar)-bundles are missing. Table 1.4 provides some examples of
occupations and their manual and cognitive skill requirements, starting with low-skilled jobs
(requiring low amounts of both skills), followed by manual jobs, generalist jobs (requiring a
fair amount of both skills) and purely cognitive jobs.

To construct the skill distribution, I proceed as follows. College, apprenticeships and
training qualify workers for particular occupations. I match the data on college degrees and
apprenticeships to occupations, using standard cross-walks. Then, the (yc, yar)-bundles from

the O*NET data can be used to learn about the skills required for these occupations. I assume



Occupation Cognitive score (yc) Manual score (yar)

Ushers, Lobby Attendants, and Ticket Takers 1846 .3149
Telephone Operators .2994 1383
File Clerks .3190 .3099
Legal Secretaries .3796 .0731
Brickmasons, Blockmasons, Stonemasons 1705 .8360
Helpers—Pipelayers, Plumbers, Pipefitters, Steamfitters 1759 .6792
Helpers—Carpenters .1984 7187
Dancers 3374 1

Radiologic Technicians 4280 .6470
Machinists 14303 7152
Physical Therapist Assistants 4758 .5494
Electricians 4879 .8146
Economists .6149 .0334
Public Relations and Fundraising Managers .6199 .0587
Judges, Magistrate Judges, and Magistrates 6752 .0517
Physicists 1 1113

Table 1.4: Examples of Occupations’ Manual and Cognitive Skill Requirements

that if a worker is trained in a particular occupation (through college, an apprenticeship or
on-the-job training), then he also holds the skills required for that occupation. For instance,
if a worker holds a degree in economics and the occupation economist has skill requirements
(yo = 1.34,ypr = —1.58), then he holds the skills (z¢g = 1.34, zpy = —1.58).

To construct the skill distribution in a given year, I use each worker’s occupational training
experiences up to the previous year as well as his educational history, giving a vector of
manual and cognitive skills for every agent in the data.’® To obtain a single cognitive and a
single manual skill from the skill vectors, I take the mazimum skills from the vectors.? For
instance, if a worker who is economist by training (with skills (z¢ = 1.34, z)s = —1.58)) had
a previous career as a dancer (with skills (zc = —0.25, 2y = 2.2)), then he holds the skill
bundle (z¢ = 1.34, zps = 2.2), implying that he is qualified for both jobs with high cognitive
and jobs with high manual skill requirements.

In the NSLY, there are observations to whom I cannot assign any skills either because
there is no information on training or degrees. These agents might be educated and the
information is simply missing. Or they are low-skilled and do not have any degrees. In many
cases, the latter is true: Skills are missing for low-skilled workers who have never received a
degree or training. The number of observations that are not assigned any skills from education
or training is non-negligible. During the period considered (1992-2000), this affects 20%-30%
of the NLSY observations.

If the skill information is missing but if the workers have received some education, I assign
them cognitive and manual skills through a random draw from the distribution of skills of
similarly educated people. For instance, if the skill data of a worker with high school degree in
the US is missing, he gets a random draw of cognitive and manual skills of the distribution of
other high school graduates who do have skill data.%° On the other hand, if the worker with

58T do not use the training received in the current year to avoid an extremely high correlation between skills
and skill requirements, which might be mechanical if a worker receives some training in nearly every job.

®Taking averages leads to similar results in the analysis.

597 might over-estimate the skills of those workers with missing data if their skills are missing because they



missing skill information has no education at all (high school drop out), then I assign to him

the lowest cognitive and the lowest manual skill from the data set.%!

Finally, to reduce the
discreteness of the skill distributions and better align them with the continuous distributions
of the model, I add random noise to each skill observation, which is in size 5% of the variance
of the corresponding skills. Similarly, for the productivity distribution.

Tables 1.5 and 1.6 provide summary statistics of skill and productivity distributions in
1992 and 2000. Table 1.5 shows that jobs in the US require on average a higher level of
cognitive than manual skills in both years. In line with this demand, workers hold more
cognitive than manual skills. Over time, both skill and skill demand distributions are relatively

stable in terms of means and variances of the marginal distributions.

W o min | max n o min | max
rxc | 41 | .88 | -2.05 | 2.67 zc | 49 | .89 | -1.97 | 3.55
yo | .08 | .86 | -2.18 | 3.55 yc | 16 | 90 | -2.06 | 2.26
xy | -14 ] .95 | -1.79 | 2.20 xy | -.07 | 1.01 | -1.74 | 2.16
yv | --11 | 1.04 | -1.69 | 2.19 yu | -.16 | 1.06 | -1.69 | 2.10

Table 1.5: Summary Statistics of Skills and Skill Demand Distributions in 1992 (left)
and 2000 (right)

The skill correlation indicates how specialized the workforce is, with a more negative
correlation pointing to more specialized workers who are either good in the cognitive or in the
manual task. Similarly, a strongly negative productivity correlation indicates that most jobs
require either in manual dexterity or cognitive ability and few jobs require a balanced skill
set. Table 1.6 shows that in the US in 1992 most jobs are specialized, indicated by a negative
productivity correlation of around -.5. Notice that the demand for skills is considerably more

specialized than skill supply.

1992 2000
p, | -0.4741 | -0.5081
pe | -0.2428 | -0.1283

Table 1.6: Estimated Skill and Productivity Correlations in 1992 (untransformed)

The distributional parameters are estimated from the empirical distributions. The correla-
tions of the transformed data (i.e. after transforming the skill and productivity distributions
to Gaussian copulas; see Section 1.8.7), are given by Table 1.7:

To obtain the proportions of generalists, manual specialists, cognitive specialists and
low-skilled workers in the US, I define cognitive (manual) specialists as worker with cognitive
(manual) skills above the mean and manual (cognitive) skills below the mean. Similarly,

generalists are workers who have above-average skills on both accounts whereas low-skilled

have not acquired any skills after high school. However, drawing the missing skills from the lower part of the
distribution of other high school graduates leads to similar results in the following analysis.

51To decrease the discreteness of the distribution, I let them randomly draw their manual and cognitive skills
from below the tenth percentile of the economy’s marginal skill distributions. Nothing in the analysis hinges
on the tenth percentile. The reason why I chose it is to assign low skills to low-skilled workers.



year |  pg Py

1992 | -0.2079 | -0.4156
1993 | -0.1893 | -0.4263
1994 | -0.1028 | -0.4391
1996 | -0.0721 | -0.4459
1998 | -0.0992 | -0.4457
2000 | -.0535 | -0.4337

Table 1.7: Estimated Skill and Productivity Correlations over Time (transformed)

workers hold below-average skills. In 1992, the proportion of generalists, cognitive specialists,
manual specialists and low-skilled workers is respectively, 18.69%, 34,51%, 30,92%, 15,88%.
The evolution of their hourly wages (CPI adjusted) during the 90s is plotted in the Figure
below (left panel: data, right panel: model).
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Low-Skilled

I

1992 1993 1994 1996 1998 2000

/
|4\/\
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g

Mean Wages for Different Skill Groups (Data)
Mean Wages for Different Skill Groups (Model

Data Model

Figure 1.11: US Wage Polarization over 1992-2000 (Data and Model)

Maximum Likelihood Estimation

The system of equations used for the MIL-estimation is given by

1 1
w = iaJnx?; + adJiszoar + 5/”223:%[ + Azc +nTMm + wo + €y
yo = Juxc + Jioxpm + €c

ym = Janxc + Jaoxym +em

where I assume measurement errors e, ec, ey with e, ~ N(0,52), e¢ ~ N(0,t2), exr ~
N(0,u?). Then,

1 1
wlxe, Tpr ~ N(iaJnxQC + adJipxory + iﬁJQQI‘QB + Az + nxar + wo + €4, 5%) (1.118)
yolze, xy ~ N(Juze + Jipzar, t°) (1.119)
ymleo, xar ~ N(Jnzo + Jagar, u?). (1.120)

Denote the parameter vector by 6 = (J11, J12, J21, Joo, a, B, A, n, wo, s, t,u) and the data vector
z = (21,...2n) where Vi = 1, ..n, z; = (W4, Yci, Y, TCi, Tari); 1 is the number of observations.
Due to conditional independence of w, yc, yar given [zc, i, @, 8, Ji1, Ji2, Jo1, Jo2, A, 0, wol,



the likelihood function is given by

L(0|z) = I [wi, yoi, YarilTes, Tari, &, By Ji1, Jiz2, Jo1, Jaz, A, 1, wo)

- H?:l[wi|xci7x1\/[iaaaﬁ7 J117 J127 J217 J22; )\7777“)0]

(1.121)

x I [yeilzci, T, Jit, Jiz, Jo1, Joo| X ey [yass|zci, age, Ji1, Ji2, J21, J22]

From (1.121), one obtains (1.18) when using (1.118)-(1.120) and taking logs. The parameter

estimates are obtained by maximizing (1.18) with respect to 6.

«

B

A

n

Wo

Ji1 J12 Jo1

Joo

S

t

u

1992
1993
1994
1996
1998
2000

2.7291
(0.6090)

1.9176
(0.5815)
1.1832
(0.5479)

3.4585
(0.7968)

3.3866
(0.6682)

3.1358
(1.0472)

1.5009
(0.7244)

0.6535
(0.7168)

0.3048
(0.8175)

2.6730
(1.1946)

1.2076
(0.9832)

0.8954
(0.8028)

2.7962
(0.1668)

2.9093
(0.1685)

3.0329
(0.1683)

3.8010
(0.2396)

3.8139
(0.2173)

4.7352
(0.2641)

0.2079 15.1680 0.3627 —0.0957 —0.1687 0.3309
(0.2380) (0.0178) (0.0173)  (0.0175)

—0.0327 15.7141 0.3824 —0.1125 —0.1954 0.3311
(0.2405) (0.0175) (0.0172) (0.0173)

(0.1677)

(0.1677)

—0.0196 16.3309 0.4202 —0.1045 —0.2409

(0.1682)

—0.4512 15.9802 0.4238 —0.1342 —0.2573

(0.2379)

0.2278 17.2972 0.4680 —0.0773 —0.2756

(0.2170)

—0.1773 18.4752 0.4870 —0.0986 —0.2695

(0.2632)

(0.2386) (0.0170) (0.0170)  (0.0172)

(0.3398) (0.0188) (0.0182) (0.0190)

(0.3117) (0.0168) (0.0164) (0.0173)

(0.3792) (0.0168) (0.0167) (0.0170)

(0.0176)

(0.0172)

0.2957
(0.0173)

0.2935
(0.0192)

0.3198
(0.0173)

0.3675
(0.0171)

8.6916
(0.1151)

8.8081
(0.1163)

8.8550
(0.1176)

0.9150
(0.0121)

0.9051
(0.0120)

0.8929
(0.0119)

11.3905 0.8890

(0.1670)

(0.0130)

11.1818 0.8643

(0.1515)

(0.0117)

13.4909 0.8624

(0.1842)

(0.0118)

0.9137
(0.0121)

0.9025
(0.0119)

0.9096
(0.0121)

0.9088
(0.0133)

0.8931
(0.0121)

0.8761
(0.0119)

Standard errors in parentheses

Table 1.8: Maximum Likelihood Estimates for Years 1992-2000

Estimation Results One-Dimensional Model

The following results are obtained from an OLS regressions of [19].

« A wo
1992 0.7289 2.7454 15.5910
(0.2357)  (0.1633)  (0.2006)
1993 0.4309 2.9150 16.0110
(0.2382)  (0.1654)  (0.2021)
1994 0.2704 3.0447 16.5016
(0.2385)  (0.1666)  (0.2040)
1996 0.9897 3.8227 16.6513
(0.3461)  (0.2384)  (0.2912)
1998 1.3519 3.7958 17.6281
(0.3115)  (0.2156)  (0.2636)
2000 1.3724 4.7944 18.7158
(0.3777)  (0.2612)  (0.3203)

Standard errors in parentheses
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Figure 1.12: Wage Densities by Worker Group (Data)
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Figure 1.13: (De)Convexification of Wages 1992-2000: Data and Model (TBTC and SBTC).
This figure displays the wage as a function of cognitive skills (upper panels) and manual
skills (lower panels), comparing data and model, where the model is simulated separately for
task-biased TC and skill-biased TC. To construct these figures, I use conditional wages. For
instance, in the upper panels, the plotted wage is the residual wage from regression wages on
manual skills. Task-biased TC gets the shifts in the curvature of the returns qualitatively
right. In line with the data, task-biased TC makes cognitive (but not manual) returns more
convex. To the contrary, skill-biased TC causes cognitive returns to become simply steeper
(but not more convex) and manual returns to become more convex.
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2 Gender, Social Networks and Performance

“Loose connections are the connections you need. It’s the No. 1 rule of business.”

Sallie Krawcheck, owner of the global women’s network 85 Broads'

2.1 Introduction

Gender differences in labor market outcomes remain striking. In the US, women’s earnings in
2012 were 80.9% of men’s earnings.? Even though part of it can be explained by occupational
sorting, within occupations wage gaps are considerable. Management occupations, such as
financial manager and chief executive, are particularly affected, whereas healthcare support
and administrative occupations show much smaller gaps.® Similar patterns were found for
the UK, where full-time working women in the financial sector earn 55% less than full-time
male workers — a gap twice as large as the gap in the economy as a whole.* What these
high-wage-gap occupations have in common is that they are characterized by a large amount
of uncertainty, commonly measured by earnings variability. Earnings of both executives and
financial managers are largely based on performance pay and thus not constant. Women’s
lower earnings in these occupations are mainly due to large differences in performance pay
and bonuses, suggesting that men perform better. At the same time, and possibly as a logical
consequence, more men than women sort into occupations with high earnings volatility.> But
why do women perform relatively poorly in “high-risk” occupations and avoid them?

In this paper, we offer a novel answer to this question, which is based on social network
heterogeneity between men and women.® We argue that men’s network structures allow them
to better perform in uncertain environments compared to women and our model clarifies how
this works. This approach is motivated by our empirical finding that men’s and women’s
social networks differ. We show in the AddHealth Data Set that women have less friends than

'Krawcheck at Marie Claire’s luncheon for the New Guard, November 2013.

2See http://www.bls.gov/cps/cpswom2012.pdf

3See Reports (2013), http://www.bls.gov/cps/cpswom2012.pdf

Wage differences are considerable even when controlling for hours of work (full time) and type of job. See
the report by the Equality and H.R.Commission (2009).

®See Dohmen and Falk (2011).

5Common explanations for these patterns are discrimination against women in male-dominated environments,
or differences in preferences and risk aversion. See Eckel and Grossman (2008) for an overview of the literature
that finds women to be more risk averse than men. Other explanations involve differences in bargaining
strength, which can account for part of the gender wage gap (Card et al. (2013)) as well as future fertility
concerns which leads women to self-select in different occupations (Adda et al. (2011)).

7
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men, but their friends are more likely to be friends among each other.” Thus, women have
smaller but tighter networks, whereas men have larger but looser ego networks. To the best
of our knowledge, we are the first to document this empirical fact.

We argue that tight and loose networks provide different types of social capital: A tight
network fosters trust or peer pressure among agents, as it prevents them from shirking because
they fear repercussions not only from the individual they affect directly with their behavior
but also from other members of their network. As a result, closed networks help overcome
free-riding problems (Coleman (1988a)).® But network closure comes at a cost. Networks
with high closure do not allow individuals to access as much information and other low-value
resources as networks with lower closure. Being in a loose network with links to individuals
that are not connected themselves is particularly valuable for information acquisition. This
is what the literature has referred to the "strength of weak ties" (Granovetter (1973)).° We
are interested under what circumstances tightly connected female networks and thus high
peer pressure are more important for performance on the job and in what environments the
opposite is the case.!”

We focus on differences in the network structure of workers and develop a theory that
connects workers’ networks to their outcomes at work. In our model, workers repeatedly
form partnerships to complete projects. Project success positively depends on the partners’
efforts. Effort is unobservable and only the project outcome is public information. If the
project is completed successfully, the project payoff is shared between the team members.
Because output is split but costs are not, there is a team moral hazard problem at work. As a
result, the project partners exert inefficiently low effort.!’ We will show how networks can
help attenuate this moral hazard problem by increasing effort.

We are interested in the effort levels of the project partners as a proxy for their performance
and specifically in the factors influencing this choice. First, the choice of effort depends on
information about the value of the project, which can be high or low, depending on the state
of the world. Workers receive signals about the state and form expectations about the project
value. These expectations influence effort. The more information a worker has, the more
precise is his belief about the state of the world. This allows for a better judgment whether
high effort (in case the signals point towards the good state) or low effort (if the signals make
the low state more probable) should be exerted. Second, effort positively depends on the
amount of peer pressure individuals face.

How much information a worker has and how much peer pressure he faces depends on

"We are using data of teenagers, not of men and women who are already employed. We do this as we are
interested in the informal networks, not the formal ones. To our knowledge there does not exist a data set that
contains information on informal networks at the workplace.

8Specifically, closed networks mitigate free-riding problems through the creation of norms and punishment
systems. Coleman (1988b) emphasizes the importance of this mechanism for diamond traders in New York.

9These two types of social capital can also be related to the concepts of bonding versus bridging social
capital defined in Putnam (2000).

10We do not aim to address the question of job search, as has been done, for example, in Arrow and
Borzekowski (2004), Calvo-Armengol and Jackson (2004), Calvé-Armengol and Jackson (2007), but we are
interested in how the network structure matters once the job has been found.

See Holmstrom (1982) for moral hazard problems in teams.
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his network structure. Workers with a higher degree (i.e. with more friends) hold more
information, as they receive a higher number of signals about the state of the world. In turn,
workers with higher clustering (i.e. agents whose friends are also friends among each other)
face more peer pressure through the following mechanism: A failed project leads to discord
between the project partners. But this discord also affects their common friends, that is
their disagreement spreads through the entire group — an idea that is based on the structural
balance theory.'? Since an intact friendship is necessary for a successful project, repercussions
of a failure are worse for a worker with high clustering compared to someone with a looser
network. Therefore, higher clustering leads to higher effort in order to be on good terms with
future potential project partners.

Our model then allows us to rank the networks of workers regarding their benefit for job
performance. We show under which circumstances a network with higher clustering is more
beneficial for performance and ultimately wages and when a network with a higher degree is
more advantageous. Our main findings are as follows: A higher degree is more beneficial for
performance in environments where the uncertainty about the project value is considerable,
which is particularly true when (i) overall information (that is information coming from
sources unrelated to the network) is scarce, (ii) when signals are noisy and (iii) when project
rewards differ significantly across the two states. In these cases, uncertainty about the state
of the world is large and the benefits of a purely information-based, loose network outweigh
the benefits of a closed network that leads to more peer pressure. In turn, peer pressure leads
to higher effort and thus project completion in environments characterized by certainty where
additional information has no value. In general, someone with more information can better
fine-tune his effort to the expected project reward, exerting high effort only when there is
something at stake. In turn, a worker facing high peer pressure exerts extra effort even if the
project reward is expected to be low.

Effort choices directly translate into wages. Someone with higher clustering earns more
than someone with higher degree when uncertainty about the state is negligible (in both
states of the world). Such a worker also has a comparative advantage in jobs whose outcomes
are more certain compared to jobs with less certain outcomes. Finally, we show that, due to
the dynamic effect of clustering, there is a strong persistence of wage patterns across time,
consolidating early career wage gaps.

We then model a man’s network as one that is characterized by a relatively high degree
and a woman’s network as one that is characterized by relatively high clustering. We provide
a mechanism of how this social network heterogeneity relates to differences in labor market
outcomes of men and women and show that our theory is consistent with a variety of empirical
facts: (1) Wage gaps within occupations are large and especially within those occupations
that characterized by uncertainty.'> (2) More men than women choose occupations with

high earnings volatility (Dohmen and Falk (2011)). In our model, this would happen even

12This is a concept first proposed by Heider (1946) who has spawned a field of research that remains active
even today. For an overview on the numerous works on structural balance theory, see Easley and Kleinberg
(2010), chapters 3 and 5.

13See, for instance, http://www.bls.gov/cps/cpswom2012.pdf or Equality and H.R.Commission (2009).
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though both men and women are risk-neutral and thus have the same attitude towards risk.
The reason is that women have a comparative advantage in job environments characterized
by little uncertainty. (3) Having women in the network is particularly beneficial high up
in the organizational hierarchy (Lalanne and Seabright (2011)). In light of our model, we
expect that having women in the network is particularly beneficial when information is
abundant. We argue that this is the case at higher levels of the organizational hierarchy
when networks have grown large rather than in low positions that are commonly held at the
beginning of the career. (4) During recessions (i.e. when returns are low) men’s unemployment
exceeds women’s unemployment (Albanesi and Sahin (2013)). Our model predicts that,
incentivized by peer pressure, women put over-effort despite low expected rewards whereas
men are more selective in their effort choice. (5) The beginning of the career is the crucial
period for the wage gap (Babcock and Laschever (2003), Gerhart and Rynes (1991), Martell
et al. (1996)). In our model, an initial wage gap is strongly persistent because women are
deprived of more project opportunities over time due to their high clustering. This makes it
difficult for them to catch up.

In sum, we expect that, based on their loose networks, men outperform women in work
environments that are characterized by uncertainty but yield high expected returns — conditions
that are typical for a large number of jobs in business and research. Our predictions are in
line with the claim of various business leaders that loose and not deep connections are the key

to success in business.

We add to the limited amount of network literature that evaluates the trade-off between
network density and the network span. We explicitly model the impact of these network
features on peer pressure and information acquisition at the work place. This allows us to
gain novel insights on the impact of these network characteristics on labor market outcomes.
The trade-off between network density and span has also been analysed in Karlan et al. (2009)
where individuals use their network to borrow goods. They focus on the trust generated in
networks and find that higher closure increases trust but reduces access. Although the impact
of network closure on economic outcomes is analysed in both Karlan et al. (2009) and our
work, the theoretical frameworks and applications are entirely different. Dixit (2003) also
discusses the trade-off between sparse and closed networks in a trade setting. He focuses on
the role of self governance, as an alternative to official institutions, in trading relationships.
Trading with more distant individuals offers higher gains, but information flows about cheating
are decreasing in this distance. There is a clear trade-off between networks that have a high
closure, that is a local bias in trade, and networks that span a larger distance but this trade-off

differs from ours that focusses on information and peer pressure.

Our work also contributes to a growing literature on the origins and effects of peer pressure.
Kandel and Lazear (1992) incorporate peer pressure in their model through a simple function,
where peer pressure depends on own effort, the effort of peers as well as other actions of the
agents that do not affect firm output directly. Their finding is that peer pressure induces
individuals to exert higher effort, which leads to a higher profit for the firm. They argue that

firms can create peer pressure by establishing norms and mutual monitoring. In the case of
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mutual monitoring, the crucial issue is to define the relevant group, that is the team, the
department or the entire firm. We put forward an alternative source of peer pressure (i.e. the
social network), define the relevant group (i.e. friends and common friends) and provide a
novel mechanism of how peer pressure operates.

The paper proceeds as follows: In section 2, we document empirically that men’s and
women’s networks differ. In Section 3, we develop the general model, which we then solve for
the static case in Section 4 and for the dynamic case in Section 5. Section 6 uses the model to
make predictions on gender differences in labor market outcomes and connects these results to

a variety of empirical facts. Section 7 discusses our equilibrium selection. Section 8 concludes.

2.2 Gender Differences in Networks

A main assumption of our model is that women have a higher clustering coefficient than men,
but that men have a higher degree than women. This is based on our findings of different
network properties of males and females in the AddHealth data set.

The AddHealth data set contains data on students in grades 7-12 from a nationally
representative sample of roughly 140 U.S. schools in 1994-95. Every student attending the
sampled schools on the interview day is asked to compile a questionnaire (in-school data)
on respondents’ demographic and behavioral characteristics, education, family background
and friendships. The AddHealth website describes surveys and data in detail. This sample

contains information on 90,118 students.™

Why AddHealth? Our main reason for using a dataset of students instead of employees in a
firm is to circumvent the problem that networks can be shaped by the work environment. For
instance, if men and women prefer to have friends of the same gender, some male-dominated
work environments would cause women to have smaller networks. Moreover, if we were using
data of firms or occupations we would be concerned that individuals with certain network
types sort into those occupations and firms for which their network type is most beneficial.
However, at the school level there is no such selection bias or constrained availability of
same-sex individuals. We can therefore estimate male and female network structures more
accurately with this data set.

Further, it is well documented that individuals are more likely to name others as their
friends if these have a higher social status, see Marsden (2005). At the workplace social status
is connected to a higher position in the hierarchy and therefore to formal power. However, here
we think of a link between individuals as a friendship instead of trying to have a connection
with someone superior. Additionally, as higher status is connected to formal power, it is
difficult to distinguish between formal and informal networks. We believe that this is less of
a problem at school as by definition the networks formed there are informal. There might
be some misreporting in the sense that popular children will also be named as friends by

individuals who would just like to be associated with them. But we believe that there is less of

14 For more information on the AddHealth data set, see http://www.cpc.unc.edu/projects/addhealth.
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an incentive for high school students to be strategic about their friendship nominations than
for employees. A possible reason is that superiors might be able to access this nomination
data and therefore employees have an incentive to name them. In contrast, from the design of
AddHealth it is clear that students will not have access to the nomination data.

We are interested in these network characteristics of men and women as exogenous types,
comparable to different ability or skill types commonly used in the literature, where this
network type is stable over time. Burt (2011) provides evidence for the existence of different
network types from a multi-role game in a virtual world.!®> He finds that people build a similar
type of network, e.g. either a closed or a sparse network independently of what is required for
the role.'® Based on this, we argue that boys’ and girls’ networks at school, closely resemble

the ones they will form as adults both in their private and work life.!”

Friendship Network The friendship network constructed from the AddHealth dataset is a
directed network, based on friendship nominations.'® For this network, we compute both the
directed and undirected clustering coefficients as well as the in-, out- and overall degree.'?

The clustering coefficient is computed as the ratio of the number of links between a node’s
neighbors to the total possible number of links between the node’s neighbors, both for the
directed and undirected network. The in-degree denotes how often an individual was named,
the out-degree gives how many friends this individuals named and the degree is then the sum
of in- and out-degree.

We consider two subsamples, namely students that are at least 17 and students that are
older than 17.2 We do a t-test of the standardized variables and consider the differences
between boys and girls.?! The results are given in Table 2.1. We find that boys always have a
lower clustering coefficient, independently of whether we consider the directed or undirected
one. If we consider the sample that contains 17 year olds, we find that boys have a lower
in-degree, but a higher out and overall degree. This changes when we consider the sample of
students above the age of 17. Then for any measure of the degree, boys have a higher one

than girls.

15This is a video game where players can play different roles and the different roles require different network
structures. For some roles it is better to have sparse networks, for others dense networks.

1 About a third of network variance is consistent with individuals across roles, but the correlation coefficient
between the network formed and the network type is above 0.5.

1"Unfortunately, there does not exist much further evidence of how persistent network types are or in general
of how persistent differences between girls and boys are, i.e. whether this improves over time or not. A notable
exception is Sutter and Riitzler (2010) who shows that gender differences in competitive behavior emerge as
early as age three and are quite persistent over time. The girls who exhibited a more competitive behavior
earlier on, were more likely to be less competitive later on, those who were less competitive remained so.
Therefore, the gender differences became more pronounced later in life.

8For more details on the friendship networks, see the Appendix.

YFor the undirected clustering coefficient we assume that a link exists if at least one of the individuals
named the other one as a friend.

200ur results for the entire sample are given in the Appendix.

21 As we have standardized the clustering coefficients as well as degrees, the coefficients can be interpreted in
terms of standard deviations.
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Table 2.1: Difference in Network Characteristics Men- Women

Age > 16 Age > 17
ClL Coeff. (dir.) -0.0799*** -0.0677***
(0.0112) (0.0144)
Cl. Coeft. -0.0721%** -0.0618***
(0.0112) (0.0145)
In Degree 0.0261** 0.0222*
(0.00859) (0.00965)
Out Degree -0.0635"** 0.0208**
(0.00847) (0.00669)
Degree -0.0236** 0.0259***
(0.00827) (0.00749)
Observations 42072 28259

* p < 0.05, ** p <0.01, *** p < 0.001, Standard errors in parentheses.

Male and Female Networks Beyond AddHealth To the best of our knowledge, differ-
ences in the clustering coefficient between men and women have not been documented in
the literature. However, Fischer and Oliker (1983) look at the number of friends individuals
have. They show that women have a lower number of friends than men, in particular at the
workplace. We use part of the table from Fischer and Oliker (1983), p. 127, to document this.

Their sample consists of employed men and women. They find that the number of friendships

Under 36, Under Under 36, 36-64, mar- 36-64, mar-
unmar- 36, mar- married, ried, no ried, chil-
ried, mno ried, no children children dren
children children
Men 2.8 3.4 3.1 2.3 2.0
Women 2.5 2.1 0.9 14 14
Men (N) 113 50 70 63 o4
Women(N) 76 51 98 67 60

Table 2.2: Friendships with Coworkers, see Fischer and Oliker (1983), p. 127

with co-workers differs greatly between them. For individuals under 36, who are unmarried
and do not have children, the gender difference in the number of friends at the work place
is small: men have on average 2.8 friends, women 2.5. But this difference increases, when
men and women under 36 and married, with or without children, are compared. Without
children, men have on average one more friend than women, with children they even have
two more friends at the workplace. Therefore, our finding that older girls have a lower degree
than older boys does not suddenly reverse, but is also documented for man and women at the

workplace across all age groups.
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Other studies also find network differences between the sexes. That girls and boys
have different types of networks has been shown by Eder and Hallinan (1978) and is also
documented in a survey by Belle (1989). The emphasis in this literature is on dyadic and triadic
relationships, whereas we focus on the entire network. Gender differences in networks for
adults have been shown by Kiirtosi (2008), Tattersall and Keogh (2006) and Marsden (1987).
These studies emphasize the number of friends and the content of the relationship, but do not
contain precise information on gender differences in the network structure. Nevertheless, this
literature shows that women form closed groups and emotional ties, whereas men’s networks
are sparser and characterized by instrumental ties, which is in line with our empirical findings.

Taking our estimation results together with the evidence in the literature, we feel confident
to assume that women have a higher clustering coefficient but lower degree than men. This
points to a new dimension of heterogeneity between men and women, which might help
explain the gender wage gap or differences in occupational sorting. We do not have a causal
argument since there might be an underlying factor that causes these network differences but
also impacts labor market outcomes directly. Identifying the source of network differences is
beyond the scope of this paper. Nor do we want to argue that differences in social networks is
the whole story behind wage and performance gaps as well as occupational sorting. However,
we do believe that networks play an important role and our model clarifies how these network
differences can matter for job performance and wages.

In our setting, a higher clustering coefficient leads to higher peer pressure and a higher
degree leads to more information. Both of these features are valuable and we characterize
environments under which peer pressure is more beneficial and contrast them to settings
where access to information is more important. We then obtain theoretical predictions for
when we would expect men to perform better than women, which we connect in Section 6
to observed disparities in labor market outcomes. Our first step is to develop a model that
translates clustering into peer pressure and the degree into access to information, highlighting

our main theoretical mechanism.

2.3 Model

We consider an undirected network g of N workers. Two of those workers, i,7 € N, are
selected in each period ¢. We focus here on a two period model, ¢ € {1,2}, to keep our set
up as simple as possible but note that it is straightforward to extend our setting to more
periods. Once two workers are selected they have to complete a project. Whether they are
successful or not depends on their network structure and past project outcomes as well as
exerted effort. In order to highlight how each of these factors matter we first consider the

game that is played in each period ¢.

1. Worker Selection At the beginning of each period, two workers are drawn at random
from the set of workers to complete a project. These workers can be linked directly, where a

link between 4 and j, denoted by g;; = g;; = 1, implies a good relationship between coworkers.
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We assume that two workers can only complete their project successfully if there exists a
direct link between them. If there is no link between two selected workers, their project fails
with certainty, leading to a payoff of zero.?? The number of links of worker i, his degree, is
denoted by d;. Then, the probability of being selected for a project and being partnered with

a directly connected worker is given by (see Appendix)

2d;
NN —1)

S; =

This probability is proportional to the degree of an individual, that is workers with higher

degrees will be selected more often into potentially profitable projects.?3

2. Information Every period is marked by a state of the world, 6, which can be high or low

0 0 with probability ¢
] g with probability 1 —gq.

It is drawn after project teams are formed and is not observable to the workers. In the high
(low) state, the project value is 2vp, (2v;), with v, > v;. We assume that the payoff of the
project is split equally among the project partners.??

In the following, we show how a worker’s network structure affects his information about
the state of the world. Each worker obtains a signal x; € {0,1} about the state, where z; = 1
indicates the high state. Signals are informative in the sense that Pr(z; = 1/6,) = p > % and
PT((E,‘ = 1|91) =1 —p.25

Each worker receives one signal directly, but can also observe the signals of all workers he
is directly or indirectly connected to. Note that the entire network might or might not be
connected (where connected means that there are no isolated nodes). We denote the overall
number of signals a worker receives by n;. We allow for n; > N and interpret the additional
signals (i.e. the signals beyond the number of workers in the network N) as basic information
everyone possesses, which enables us to vary the baseline amount of information below.

Based on the observed signals, a worker can compute a sufficient statistic y;, which is the
number of high signals out of all observed signals, that is y; € {0,1,...,n;}. Note that for
two (directly or indirectly) connected workers, ¢ and j, y; = y;. Let nyq, = maz;n;. Then
Yi,i = 1,..., N takes values on Y = {0,1,...,maz }-

As our focus is on the effects of ego-networks, we distinguish between the number of signals
a worker obtains from himself and his direct friends, n,:; = d; + 1 and the signals he obtains

indirectly from external sources, negzt i, With 1n; = nine; + nem,i.%

22 A link or rather a good relationship between workers makes them better team partners. To simplify, we
set the payoff of projects between unlinked workers to zero.

Z3This is in line with Aral et al. (2012), who study project performance in a recruiting firm. They find that
peripheral nodes, i.e. nodes that are not well connected, do fewer projects per unit of time than central nodes.

24We impose the equal split assumption as we aim for a model in which agents are perfectly symmetric
except for their network. This allows to show the effects of network structures in the cleanest way possible.

2Pyt differently, if = ), each signal x; ~ Bernoulli(p) and if § = 6;, this signal is z; ~ Bernoulli(1 — p).

26Ego networks consist of a focal node (ego) and the nodes to whom ego is directly connected to (friends)
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Based on y;, the posterior probability of being in the high state, Pr(6y|y;), is computed via
Bayesian updating and thus having a higher number of signals gives a more precise posterior.

The project value, 7(y;), is then given by
m(yi) = PrOnlyi)vn + (1 — Pr(On|y:))or.

To summarize, the network structure matters as a higher degree gives a higher number of

internal signals, which in turn affects the expectation about the project value.

3. Choice of Effort The paired workers simultaneously choose what effort, e; > 0, Vi to
exert on the project. This effort is costly with all workers facing the same cost function c(e).

We impose the following assumptions:
Assumption 2.1. Cost of Effort: c(e) = ke?, where k > 0.

Given that the project fails certainly if the two project partners are not connected, we focus
on the effort choice of two directly linked project partners. Effort makes project success
more likely. The probability that the project is completed is given by the success probability
function f(e;,e;) € [0,1). In order to ensure that f(e;,e;) is strictly smaller than one, we
assume that effort is bounded, e; € E = [0, €;az] Where f(€maz,€maz) < 1.27 This implies
that success cannot be guaranteed. We impose additional assumptions on the success function,

summarized in Assumption 2.2.

Assumption 2.2. Success Probability Function f(e;, e;):
(a) Symmetry: e; and e; enter f(e;,e;) symmetrically.
(b) filei,e;) = falej,ei) >0
(c) fuilei e;) = far(ej, ;) <O.

(d) Strict Supermodularity: fi2(e;, e;) = fai(ei,ej) > 0.
(6) f(elao) = f(oaej) =0.
(f) f()‘eh)\e]) = A,}0(67;76_]‘)7 A@i, Aej < €max-

The effort levels of the workers are complements. We focus on complements as with substi-
tutes a worker should complete the project by himself. There is no reason to form a team.
Additionally, if one team member chooses zero effort, the project fails for sure. We assume
further that the success probability function exhibits constant returns to scale. We know that
ei € [0, emaz]. If A € [0, 1], then Ae; < epmaz, and for A > 1 we impose the additional restriction
that Ae; < enaz, Vi. After effort has been chosen, the project outcome — success or failure —

is realized.

These three stages occur in both periods. What differs across periods is information (i.e. the
signals workers obtain) and the effect of peer pressure (which impacts effort only if today’s

project outcome matters for tomorrow’s). Effort depends on information through the sufficient

plus the ties, if any, among the friends.
2TBy choosing an appropriate bound on vy, we can guarantee an interior solution e < €mqe.
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statistic y. It depends on peer pressure because publicly observable past project outcomes
affect current relationships between coworkers, especially when the network is characterized
by high clustering. We now outline the peer pressure channel and how past project outcomes
matter rather informally, a formal description is in the Appendix.

We assume that a failure has an impact if the same team partners are chosen in two
consecutive periods. We believe it is intuitively plausible that a project failure leads to discord
among team partners and their relationship turns ‘bad’. The failure has to be justified, which
is disagreeable and affects their relationship. We further argue that this discord between
team partners also spreads to common friends. This idea is based on the well-established
structural balance theory. According to this theory, triads of friends are only stable as long as
the relationships are balanced. Suppose that ¢, j and [ are all directly connected. Initially, all
their relationships are ‘good’. Then, ¢ and j work on a project together that fails, turning their
relationship into a bad one. But a triad in which one relationship is bad and the other two are
good is unstable. This instability has to be resolved, meaning the workers have to take sides.
To simplify our analysis, we assume that all relationships in a triad will be bad after a project
failure.?® This is why project failures affect workers with high clustering more than those
with low clustering. They are deprived of more future project opportunities. This sequence of

events is depicted in Figure 2.1, where a plus (minus) signifies a good (bad) relationship.?’

Figure 2.1: Structural Balance Theory

) ) i

Each project failure induces some bad relationships, whereas a project success means
that all directly connected workers have good relationships. We denote the quality of the
relationship by v € {y,7,}, that is the relationship can be good or bad. The relationship
between ¢ and j is bad after a project failure in the previous period if either (1) ¢ and j
were teamed in the previous period or (2) i or j were teamed with a common friend in the
previous period. Otherwise, ¢ and j have a good relationship. We assume that in period one
the relationship between any two workers is good.

This relationship quality between two directly connected workers constitutes a state,
~v €T, and we can define a pure public strategy o(v,y) : I' x Y — E, which maps from the

relationship state and the signals into the action space.

28 According to the (weak) structural balance theory a triad with three negative links is balanced (Davis
(1967)). Our assumption is a simplification of the following idea: Given a project failed, a worker faces with a
positive probability more than one negative connection if he and the project partner had common friends, but
only has one negative connection if the project failed with someone he does not have a common friend with.

29Note that discord does not imply that links are cut. If there is no link between two workers, then they
never get along. Once a link exists, we interpret this as two individuals getting along in principle. Thus, a bad
link is transitory. Also, information is still transferred if the link is bad but is not if the link was cut.
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Due to our restriction to public strategies, the equilibrium concept applied is that of a

public perfect equilibrium. We index the variables in the second period by prime.

Definition 2.1. A public perfect equilibrium (PPE) is a profile of public strategies o that for
any state v,y € T and for any signal realization y,y' € Y specifies a Nash equilibrium for the
repeated game, i.e. in the first period, o(vg,y) is a Nash equilibrium and in the second period

a'(v',y') is a Nash equilibrium.

In our setting a higher degree leads to more signals, which allow for a more precise belief
about the project value. Higher clustering, on the other hand, makes a bad relationship after
a project failure more likely and therefore incentivizes effort through peer pressure. This is the
basic trade-off we are focussing on. We will show in more detail how peer pressure influences
effort choices in the dynamic setting but, before doing so, we want to discuss the static case,
where only information matters. After presenting the model and our results, we will justify
our equilibrium selection, comparing the workers’ payoffs from choosing this strategy to the

payoffs of other strategies.

2.4 Static Decision Problem

In the static setting, worker i chooses effort to maximize his expected payoff, given by

max f(e;, ;)7 (y) — clei). (2.1)

Recall that y; = y; = y since each worker observes not only his own signal but also the signals
of all workers he is (in)directly connected to, so we write w(y). Given our assumptions, the
first order condition of (2.1) is both necessary and sufficient for a maximum. The same holds
true for worker j. Based on the first order approach, we can determine the pure strategy
public perfect equilibria of the game where, to simplify notation, we define e(y) to denote the

optimal strategy based on .

Proposition 2.1 (Public Perfect Equilibria Static Game). .
1. Every public perfect equilibrium is symmetric s.t. in equilibrium e;(y) = e;(y) = e(y) Vy.

2. For each vy, there exist exactly two pure public perfect equilibria.

(i) Zero effort: e(y) =0

f1(17 l)ﬂ(y)
2k
All proofs are in the Appendix. Given the symmetry in our setting, in particular, the

(ii) Strictly positive effort: e(y) = (2.2)

symmetry of f(-,-), identical cost functions and equal split of the payoff, both workers will
always exert the same effort in any equilibrium. We further show that the one-period problem
has two pure strategy PPE. There always exists a PPE where both project partners exert
zero effort independently of signal realizations. It is a best response to choose zero effort
given the other worker has chosen zero effort as f(e;,0) = f(0,e;) = 0. Each team member

has to exert at least some effort for the project to be successful. But there also exists a PPE
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with strictly positive efforts. The uniqueness of the positive effort equilibrium follows from
supermodularity and constant returns to scale property of f(-,-), as well as the convexity of
the cost function. In particular, we obtain a closed form expression for effort when taking
into account symmetry across team members, where k is the multiplicative constant in the
cost function and where f;(1,1) is a constant as well.

We are now interested in how network characteristics influence equilibrium effort through
the information channel in the static model. All else equal, a worker with a higher degree
receives more signals about the state of the world. We want to know how effort varies with the
number of signals. It follows from (2.2) that effort positively depends on the project value 7 (y).

We therefore focus on how the expected project value, E(m(y)), varies with the number of
signals as this is the channel through which information affects effort. If additional signals
increase the expected project value, then expected effort, E(e(y)), increases as well. A worker
has an incentive to work harder if he believes the payoff for his work to be higher.

We first show that 7(y) has the martingale property, meaning that it is unaffected by the
number of signals, which follows from Bayes’ Rule. This is not true once we condition on the
state. To emphasize that a worker receives n signals, we denote the project value by 7 (y;)

instead of m(y).

Lemma 2.1 (Information and Expected Project Value). 7(y,) satisfies the martingale
property: w(yn) = E(7(Ynt1)|yn). However, given that the state is realized, a worker with
more signals holds a more accurate posterior belief about the state of the world and thus about

the project value:

vp > E(m(Ynt1)|0n) > E(7(yn)|0h) v < E(7(yn1)101) < E (7(yn)|00) -

The impact of an additional signal vanishes, if uncertainty vanishes, i.e. E (m(yn,)|0) =
E (7(yn+1)|0), if either (i) vy — vy (i) p — 1, (i1i) g — 1 if 0 = 0, ¢ — 0 if 0 = 6}, or (iv)

Negt — O0.

An additional signal does not contain further information about the state of the world,
given the state of the world has not been realized, that is E (7(y,)) = E (7(yn+1)) - But once
the state of the world has been realized, this is no longer true. Since signals are informative,
the more signals are available the more accurate is the posterior belief about the state of
the world. The expected project value increases in the number of signals if the state of the
world is high and decreases in the number of signals if the state of the world is low. This
implies that, given the high state of the world, a worker with more information expects a
higher project value compared to a worker with less information. If the low state has been
realized, the reverse is true.

The expected project value becomes independent of the number of overall signals n when
the uncertainty of the underlying environment vanishes. This can happen for four reasons: (i)
There is no difference between high and low project values. (ii) The signals are completely

informative.3" (iii) A worker’s prior reflects complete certainty about the state of the world.

3%Tn fact, the expected project value also becomes independent of the number of overall signals n when
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(iv) Moreover, if overall information becomes abundant, which happens when the number of
external signals, ne.¢, becomes large, then in the limit, all agents know the state of the world
with certainty even if the number of signals obtained through their ego-networks, n;y;, differs.
The expected payoff converges to the high (low) value when the state is high (low). In sum, the
effect of additional information on the expected project value is reinforced when the uncertainty
of the underlying environment is considerable and dies out when uncertainty vanishes.
Taking Lemma 2.1 together with equation (2.2) we can shed light on the effect of information

on expected effort, summarized by the following proposition.

Proposition 2.2 (Information and Expected Effort). A worker with more information, i.e.
with a higher degree, exerts on average more (less) effort when the state of the world is high
(low) compared to a worker with less information. The impact of additional signals on effort

vanishes as the underlying uncertainty vanishes.

A worker with a higher degree and thus more signals holds more accurate information
about the state of the world. Therefore, if the state is high, more information leads to a higher
expected project value (Lemma 2.1) which in turn leads to higher effort. The opposite is true
for the low state. Intuitively, workers with more accurate information, i.e. more signals, can

better fine-tune their effort to the expected project reward.

2.5 Dynamic Decision Problem

Having discussed the static game, we can now analyse the agents’ effort choices and how they
are impacted by their network characteristics in a dynamic setting. Here, not only agents’
degree but also their clustering matters for their actions as they adjust their effort to their
relationship quality, namely V 1/

o' (75,9") >0 and  o'(v,y) = 0.

This implies that, when two workers have a bad relationship, they exert zero effort. We
know from the static game that zero effort in every period constitutes a PPE, regardless of
the signals. As f(0,0) = 0, such a project will fail for sure and yields zero payoffs. In turn,
when two team partners have a good relationship they exert strictly positive effort. In what
follows, we focus on the dynamic decision problem that pins down the high effort PPE in
both periods. We are interested in what determines this choice.

The dynamic maximization problem of team partner i reads

max  —c(e;) + f(ei e5) (7(y) + Bsi B (flef,ep)m(y’) — cle)))

ei,ei

+ (1= fleire;)) (04 Bsi(1 = i) E (f(ei, e)m(y)) — c(€f))) (2.3)

where the expectation is taken over all possible signal realizations in period two. Problem

(2.3) is dynamic since workers choose today’s effort not only based on the current project

signals are completely uninformative p — 0.5.
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payoff but also based on the second period expected payoff, taking into account that today’s
project outcome matters for tomorrow’s through its impact on relationships. Therefore, this
expected payoff of workers i and j, who are selected in period one to complete a project,
depends not only on second period performance but also on

(i) the probability of being selected next period, as defined in the worker selection, s; and s;,
(ii) the probability of first period project success, f(e;,e;), or failure, 1 — f(e;, e;), as well as
(iii) the probability that in the next period they are doing a project with someone who would
be affected by the project failure, given that they are chosen for a project, r;; and r;;, where
ri;j is given by

Lk ki 9ik9ik  Cij

» T 2.4
Tij dl dz ( )

The term 3y 2 1+; 9ikgjx denotes the number of common friends of ¢ and j and therefore
Cj; is a proxy for their common friends. Equation (2.4) gives the probability of workers having
a bad relationship after a failure. They are only affected by their failure if they are chosen to
do a project together or with a common friend in the second period.

We solve problem (2.3) by backward induction, starting in the second period. Clearly,
the second period problem is identical to the static problem.?! Recall that the high effort

level is given by

oi" (v, y) = argmax Vi(yy, ') = arg max|f (e}, j)w(y') - e(e})]; (2.5)
where ag*('yé,y’ ) is the optimal second period effort level if the project partners have a
good history and observe signals y' (see equation (2.2) for the solution to this problem).
We will denote this equilibrium effort by e}(y’) = 07" (v5,y'). Moreover, we denote the
maximized second period payoff by V;*(fy;, y'). Then, the maximization problem of agent i in

the first period reads
max f(ei, e)m(y) — cei) + Bsi(f(eire) + (L= rig) (1= flei ) JEV (g, ¢')  (2:6)

Similar to the static problem, we show that there exists a unique PPE in which both team

partners exert positive effort. The solution to (2.6) is given by e;(y) = o} (v4,9).

Proposition 2.3 (Public Perfect Equilibria Dynamic Game). .

1. Both project partners always exert the same effort in any PPE, that is effort is symmetric.
2. In both periods, there exists a unique PPE in which both team partners exert strictly positive
effort, Yy, v’
Si(L D) (w(y) + BsrEV*(vg,9'))
ei(y) = e;(y) = g (2.7)

2k
eg(y/) _ 6;'(,@,) :f1(1721]37r(y)

31As j and [ belong to the same set, namely the friends of 4, we can replace ! in the second period by j.
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We already know from Proposition 2.1 that in the second period there exists exactly
one PPE with strictly positive effort, which is symmetric. But also in the first period,
effort levels are symmetric. This is because two workers can only have the same number of
L(N-1)N
Bsiriy EVi* (v, y') = BsrEV* (v, y').32 Moreover, for y = ¢/ first period effort is higher than

second period effort, stemming from the dynamic effort-enhancing effect of clustering: Having

common friends, implying that s;r;; = is constant across project partners and, thus,

common friends creates particularly strong incentives for effort, reducing the team moral
hazard problem that causes effort to be inefficiently low.

Again, we are interested in how the agents’ network characteristics affect effort. We first
discuss the effect of degree, which impacts effort through the information channel because
someone with a higher degree receives more signals about the state of the world. We then
turn to the effect of clustering, which influences effort through peer pressure.

Taking expectations over first period signals in (2.7), it follows that information impacts
expected effort through the expected first period project value, E (7(y)), and second period
value, EV* (7;, y'). Both have a positive effect on effort. Recall from our discussion on the
static game that F (w(y)) positively (negatively) depends on the number of signals if the state
is high (low). To see how the expected value, EV*(v,,y'), depends on the number of signals
and thus information, we first establish that V*(vy,y’) is a convex function of the second
period project value, 7(y') (which, in turn, is a martingale). It immediately follows how the
expected second period value depends on the number of signals and thus on information. To

simplify notation, we write EV*(y') instead of EV*(vg,y').

Lemma 2.2 (Information and Second Period Expected Value). V*(y!)) is a submartingale.

And, thus, a worker with more signals has a higher second period expected value:
E(V*(yn)) < E(V*(Ypt1)),

The impact of an additional signal vanishes, if uncertainty vanishes, i.e. E(V*(y))) =
E(V*(yn41)), if either (i) vy — vy, (i) p— 1 (i) ¢ = 1 if = 6y, ¢ = 0 if 0 = 6;, or (iv)

Next — O0.

To gain some intuition for this result first suppose that the additional signal is high. This
implies that effort increases, that the project value increases and that the overall payoff,
V*(y), increases as well. If the additional signal is low, then effort decreases, the project value
decreases and the overall payoff is lower. But due to the convexity of the payoff, an additional
positive signal has a stronger effect than an additional negative signal. Therefore, having an
additional signal increases the expected value in the second period unless uncertainty vanishes.
As in the static game (see Lemma 2.1), here additional information has no impact if (i) there

is no variance in the project value across states, (ii) if signals are completely informative, (iii)

32Note that the symmetry in efforts only holds in the two period model, as in the last period having common
friends does not matter anymore and both project partners have the same level of information. Thus, if this
game is played for T periods, then in T and T — 1, effort levels are symmetric. But the network structure
matters in period T'— 1 and is therefore taken into account in T' — 2 resulting in asymmetric effort levels.
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if the prior is correct, or (iv) if overall information becomes abundant. Intuitively, information
only matters under uncertainty.

In turn, the effect of peer pressure, s;r;, on first period effort (through clustering) is
straightforward and unambiguously positive.

We summarize the effect of information and peer pressure (and thus of the agents’ network

characteristics) on first period effort in the next proposition.

Proposition 2.4 (Information, Peer Pressure and Expected First Period Effort). More
information, i.e. a higher degree, unambiguously increases first period effort only if the state
is high. Furthermore, higher peer pressure, i.e. higher clustering, increases first period effort
independently of the state of the world. Finally, unless uncertainty vanishes, a worker with
more information but less peer pressure better adjusts his effort to the expected project value

compared to a worker with less information and more peer pressure.

The proof follows immediately from Lemmas 2.1 and 2.2 and equation (2.7) and is therefore
omitted. Both network characteristics, high degree and high clustering, affect first period effort
and thus project completion. A higher degree improves information about the state of the
world. This information is particularly beneficial when the true state is high and, at the same
time, when the agents’ uncertainty about the state is considerable. In this case, additional
signals induce the agents to put significantly more weight on the high state, translating into
higher effort. (The same logic also applies to second period effort, given by the static case in
Proposition 2.2.)

In turn, clustering or common friends positively impact first period effort through a
dynamic peer pressure effect. This channel is independent of the true state of the world and
the underlying uncertainty. Peer pressure induces higher effort because a potential project
failure today puts more friendships and thus future project opportunities in jeopardy. Since
workers with more information are more selective with their effort choice (depending on the
state) and workers facing peer pressure increase their effort no matter the expected payoff,
it follows that workers with a higher degree are better able to fine-tune their effort to the
project reward than workers with higher clustering. This means that their difference of efforts
across states, E(e(y)|0n) — E(e(y)|0:), is larger, which follows directly from (2.7).

We now turn to the agents’ wages, which are tightly linked to their effort choices. Denote
the probability of having a good relationship with the second period project partner given
first period state by

Pr(v,10) = E[f (e(y), e(y)) + (1 = ri)(1 = f (e(y), e(y))|0] = E(e(y)[0)rif(1,1) + 1 — 7.

We define first and second period wages as follows:
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Definition 2.2 (Equilibrium Wages). First and second period wages for a given state are re-

spectively defined as

wi(0) = E[f (e(y), e(y)) vl6] = E(e(y)|0) f(1,1)v(0) (2.8)
wi(0,6") = siPr(v0)ELf (¢'(y), €' (y)) v'|6'] = s:Pr(vg|0) E(e'(y)10) £ (1, Du () (2.9)

)

where 0,0" € {0,,0,} is the realized first (second) period state.

These are expected wages because even though positive effort is exerted there is no
guarantee for project success. The wages reflect that the agents obtain their share of output
in case the project is successful. We define these wages given that a certain state of the
world has materialized. The expected wage across states can then be easily computed, e.g.
E(w;) = qw;(0n) + (1 — q)w;(6;).

Notice that the structure of both periods’ wages is the same, only that in the second period,
one also has to take into account the probability of being selected for a project with someone
the agent is on good terms with (i.e. the probability of having a good friendship history with
the project partner, given by Pr('y&]@)). Since friendship histories matter, the second period
expected payoff depends not only on contemporaneous but also on first period effort.

Both periods’ wages are increasing in effort, highlighting the tight link between the agents’
actions and their rewards. As a consequence, Propositions 2.2 and 2.4 on the effects of network
characteristics on effort give insights into how degree and clustering affect the agents’ wages.

We summarize these results in the next proposition.

Proposition 2.5 (Information, Peer Pressure and Wages). More information, i.e. a higher
degree, unambiguously increases first and second period wages only if the state is high in
both periods. The effect vanishes as uncertainty vanishes. In turn, peer pressure, i.e. higher
clustering, increases the first period wage independently of the state but has an ambiguous

effect on second period wage.

These results follow from Propositions 2.2 and 2.4 and wage Definition 2.2. Information
(and thus a high degree) leads to a significant effort and wage boost if the underlying state of
the world is high because agents want to reap the benefits of a high project value.?® Through
the effort channel, information only increases wages if there is uncertainty about the state
of the world. In turn, when the agent faces a dynamic decision problem (i.e. in the first
period), higher clustering unambiguously increases effort and wages through peer pressure,
independent of the state and the underlying uncertainty. Only in the second period, the effect
on wages is ambiguous: Peer pressure leads to higher first period effort (increasing Pr(v|0)),
but many common friends also make a non-intact relationship with the second period team
partner more likely (decreasing Pr(vy|0)).

While this discussion has focussed on comparative statics effects of a single network
characteristic holding other network characteristics fixed, we now turn to the more interesting

but also more involved case of comparing two types of workers: one with higher degree

331f the state is low, it is ambiguous whether clustering or degree leads to a higher wage.
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but lower clustering (denoted as D-worker) and one with lower degree but more clustering
(denoted as C-worker).

Proposition 2.6 (Trade-Off Between Information and Peer Pressure). Suppose that vy = 0.
(i) Wage Dynamics: If a C-worker has a lower first period wage than a D-worker, then he also
expects a lower wage in the second period, even if second period uncertainty vanishes. This
wage gap arises even if both workers perform equally well in the first period. (ii) Comparative
Advantage: If E(w(y)|0n) and EV*(y') are sufficiently concave in information n, signal

precision p, and the prior belief q, C-Workers hold a comparative advantage in environments

E(w®)
» E(wD)

with less uncertainty, that is increases as uncertainty becomes smaller.

We make these statements precise in the Appendix where all the formal conditions are
provided. Our model predicts a strong impact of early career wages on the future wage
trajectory through peer pressure, which puts workers with high clustering but low information
into disadvantage. Notice that wage gaps between C-workers and D-workers arise even if they
exert the same effort in the first period. Moreover, if these wage gaps exist in the first period,
they persist in the second period even if they perform equally well (i.e. even if uncertainty
vanishes in the second period).

Our model also predicts that workers with higher clustering and less information have a
comparative advantage in environments characterized by less uncertainty compared to workers
with less clustering and more information. That is, the ratio of expected wages of C-workers to
D-workers increases when uncertainty diminishes, which happens when the amount of overall
information, n, increases, when signals become more informative (for p sufficiently large),
and when the prior belief ¢ becomes more correct.® This is consistent with our previous
predictions that clustering gains importance as uncertainty vanishes.

Our framework allows us to rank networks according to effort choices and wages for different
underlying environments. In the next section, we connect this theory with our empirical

finding on gender networks that men have a higher degree and women more clustering.

2.6 Performance of Men versus Women

In this section, we use our model to analyse how peer pressure and information influence
effort and wages of men versus women. We show that these results are consistent with various
observed gender differences in labor market outcomes. Previously, we showed that women
have a higher clustering coefficient and a lower degree than men, that is, they face more peer
pressure but are less informed. We therefore want to compare agents with these features. To
do so, we fix the number of links and nodes in the network, so additional clustering comes at
the cost of a lower degree and vice versa.

Recall that in our model effort and wages are determined by first and second period

expected payoffs as well as clustering. Women have a lower degree than men and therefore

34We also allow for v; > 0 in simulations. When project values, v; and v, become more similar across states,
then the ratio of expected wages of C-workers to D-workers increases.
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fewer signals. As a consequence, men have an informational advantage over women, implying
that their expected first period payoff, E (m(y)|f), more accurately reflects the state and
their second period expected payoff, EV*(y'), is always higher. In turn, women have more
clustering, sr, which translates into higher peer pressure. Thus, the trade-off between degree
and clustering translates into a trade-off between peer pressure and access to information and it
is not a-priori clear which network characteristic is more conducive to project success and wages.

In what follows, we use our model to predict in which environments men outperform

women and show that these predictions are in line with a variety of empirical facts.

1. Wage and performance gaps between men and women are especially large within occupa-
tions and tasks characterized by uncertainty like in the financial sector, film-industry and

in basic research.

In most developed countries, the gender wage gap is still large. In the US in 2012, for
instance, women’s earnings were 80.9% of men’s earnings.?> Part of it can be explained by
differences in occupational choices where women select into low-paying occupations while
men go into high-paying jobs. However, even within occupations wage gaps are considerable.
Notably, some occupations are more affected than others. In the US, the within-occupational
wage gap is pronounced in management occupations, especially for financial managers and
chief executives where female earnings are respectively 70.3% and 76% of male’s, as well as
in business and financial operations occupations where women earn 74% of men’s earnings.
In contrast, the wage gap is much smaller in healthcare support and administration where
women’s earnings are respectively 90.2% and 89.9% of men’s.3¢ A similar pattern was found
in the UK, where full-time working women in the financial sector earn 55% less than full-time
male workers — a gap twice as large as the gap in the economy as a whole.?” The evidence
suggests that women’s lower earnings in financial management and executives occupations are
especially due to large differences in performance pay and boni.?®

Another well-studied sector where gender inequalities persist is the film industry (Lutter
(2012) and Lutter (2013)). This industry is highly project-based where tasks involve little
routine work and have uncertain outcomes. Ferriani et al. (2009) argue that the film market
requires constant adjustment to new work environments since film ventures operate under
constant uncertainty and have to foresee ex-ante whether the project opportunity is valuable.
Women in this sector generate lower box revenues from movies, which is a direct measure of
performance.

Last, an area well-known for gender disparities is the market for patents. Hunt et al.
(2012) document that women in the US are much less likely to be granted a patent than
men, with women holding only 5.5% of commercialized patents. This is not due to women’s

underrepresentation in science and engineering degrees but due to their underrepresentation in

35See http://www.bls.gov/cps/cpswom?2012.pdf

36See Reports (2013), http://www.bls.gov/cps/cpswom?2012.pdf

3TWage differences are considerable even when controlling for hours of work (full time) and type of job. See
the report by the Equality and H.R.Commission (2009).

38See the report by the Equality and H.R.Commission (2009).
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patent-intensive fields of study as well as patent-intensive job tasks like design and development.
Again, patents can be seen as measures of performance.

This implies that the gender wage gap is particularly pronounced in occupations or tasks
characterized by a large amount of uncertainty, commonly measured by earnings variability.
In these occupations, earnings are uncertain. They are based on success which is difficult to
foresee. Earnings of executives and financial managers are largely based on performance pay.
Similarly, the success of research (and thus patents) as well as movies is difficult to foresee at
the time of production.

Our model provides a new mechanism why men outperform women under uncertainty.
The main prediction is that men’s network structure is conducive to information acquisition
which is more valuable in such environments than the undifferentiated effort-enhancing effect
of women’s peer pressure.

Our network-based view finds support in various empirical studies on financial and
management occupations, the film industry and patenting. Forret and Dougherty (2004)
analyse the impact of networking activities on career outcomes (promotions, total compensation
and perceived career success) of male and female MBA graduates over 35 years in the U.S.
Those graduates take on positions in management, finance, marketing and other professional
jobs — occupations characterized by relatively large amounts of earnings variability. They find
that only for men, network activities positively affect career outcomes. The authors speculate
that the reason for this finding is that women network less effectively. We propose a theory
why women’s networks are less effective in these settings.

As far as the film industry is concerned, Ferriani et al. (2009) argue that information
is crucial to identify potentially successful scripts and to assemble the right project team.
Based on the finding that producers who are more central in their network (i.e. have more
access to information) are more likely to increase the box revenue from a movie, the authors
conclude that social networks provide crucial access to information. In a similar vein, Lutter
(2013) documents that women with loose information-based networks perform better in the
film-industry than women with dense networks, supporting our hypothesis that information is
the key to success in uncertain environments.

With regards to research and development, Gabbay and Zuckerman (1998) document
that in basic research, which is typically characterized by complex, uncertain tasks, scientists
benefit from sparse networks with many holes, whereas in applied research, which is typically
characterized by noncomplex, certain tasks, scientists benefit from dense networks. Supporting
this view, Ding et al. (2006b) argue that an important reason for the gender wage gap in
patenting is that women’s networks are less effective: In relying more on close relationships,
they lack reach to industry contacts.

Our theory offers a unified explanation for these findings. In uncertain environments
information is crucial for success and men hold more of this type of social capital than women.
We show next that this argument also provides a rationale for why occupational choices differ

across gender.

2. More men than women choose occupations with high earnings volatility.



98 CHAPTER 2. GENDER, SOCIAL NETWORKS AND PERFORMANCE

Dohmen and Falk (2011) show that men rather than women select into “risky” jobs that
are characterized by performance pay and high earnings volatility. They explain this finding,
arguing that men and women face the same mean-variance trade-off with regards to wages
in all occupations but differ in their attitude towards risk (with men being less risk-averse).
We offer an alternative explanation, which is based on comparative advantage. Our model
predicts that women have a comparative advantage in environments characterized by lower

uncertainty.

In such environments, women put relatively more effort than men, translating into relatively
higher earnings, compared to more uncertain environments. In turn, in uncertain environments,
men tend to face more income dispersion but are compensated for this risk by higher expected
wages. We do not model occupational choice explicitly but this argument suggests that women
would select into environments with low uncertainty whereas the opposite is true for men.
Notably, this holds even though both men and women are risk-neutral and hence do not differ

in their risk attitudes.

3. Having women in the network is particularly beneficial high up in the organizational

hierarchy.

Lalanne and Seabright (2011) document empirically that having females in the network is
beneficial to both male and female executives but not to agents at lower levels in the organi-
zational hierarchy. We believe that networks at high levels of the hierarchy are considerably
larger than at lower levels. Hence, information is particularly scarce at the beginning of
the career but abundant at the executive level. The more information there is, the lower
is the uncertainty about the true state, making men’s additional information less valuable.
To the contrary, women bring closure to the network, which is particularly beneficial once
a sufficient amount of information is available. This is the case further up the hierarchy,
but not initially. Therefore, in line with Lalanne and Seabright (2011), our model predicts
that at management levels, it is especially profitable to have women in the team because, in
environments saturated with information, women’s peer pressure kicks in more strongly than

men’s additional information.

Walker et al. (1997) provides additional support for this view, arguing that sparse networks
are most important at the beginning of the network formation process. They analyze the
changing value of social capital over the life cycle of inter-firm networks and find that being at
a position that bridges a structural hole is more valuable at early stages of network formation,
since most tasks of the early networks are informational. However, as the network becomes
established, densely connected network relationships and closure become more valuable than
brokerage opportunities. In a similar vein, Ferriani et al. (2009) show that producers in the
film industry who are more central in the network (i.e. have more access to information) are
more likely to increase the box revenue from a movie but that returns to centrality become
smaller the more central the producer is. Our theory sheds light on the diminishing returns
to network reach (i.e. to degree) and provides a mechanism for why the different types of

social capital that emerge from tight and lose networks are complementary.
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4. During recessions men’s unemployment exceeds women’s unemployment.

Albanesi and Sahin (2013) find that this is true even when controlling for sectors. Employers
seem to have a preference for keeping woman on their workforce during recessions, a pattern
our model can help understand. Our model predicts that women do particularly well when
rewards are low, which we believe is the case in economic downturns. Men’s additional
information leads to a particular advantage if the state of the world is high. In this case,
they are more certain than woman that the true state is high, leading to extra effort. The
opposite is true in the low state where men assign a higher probability to the low state than
women, leading to lower effort. In turn, women take into account that project failures hit
them particularly hard because, due to more common friends, failures destroy more second
period project opportunities. This effect pushes up women’s effort independently of the state
of the world.

This is the mechanism why women are more likely to outperform men when the state of
the world is low. We thus argue that women perform relatively better than men in recessions
because they remain productive even if rewards are low. In contrast, men are more selective
in their effort choice and better adjust their effort to the expected project value. They put

low effort for low value.

5. The beginning of the career is the most decisive period for the gender wage gap formation.

Several studies point out the importance of the gender wage gap at early stages of the
career for the future wage path (Babcock and Laschever (2003), Gerhart and Rynes (1991),
Martell et al. (1996)). Bertrand et al. (2010a) document that, already 5 years into the career,
the gender wage gap among MBAs in the US is substantial and keeps growing thereafter.
Napari (2006) shows that in Finland, early years after labor market entry have the largest
impact on gender wage differences. Thereafter, the wage gap simply persists. Similar findings

are documented for Germany, where the entry wage gap is already 25% (Kunze (2003)).

Our model predicts a strong impact of the performance at the beginning of the career on
the future income trajectory of men relative to women. This is because the second period
wage does not only depend on the contemporaneous project outcome but also on first period
performance. This effect is particularly important for women. Due to their higher clustering,
they would lose more second period project opportunities in case of first period project failure
even if first period performance is equal across gender. Because of this dynamic effect of peer
pressure and since men outperform women in the high state, a first period wage gap in favor
of men is persistent and can only be reverted if the second period state is low. Interestingly, a
first period wage gap would persist even if there is no uncertainty in the second period. The
reason is that women are more likely to be teamed up with someone who punishes them for a

previous failure by exerting low effort.



100 CHAPTER 2. GENDER, SOCIAL NETWORKS AND PERFORMANCE

2.7 Equilibrium Selection

In our analysis, we have selected the equilibrium that induces workers to play high effort if their
relationship is good and zero effort if their relationship is bad. In an alternative equilibrium,
agents could choose to play the static high effort PPE in each period, independently of their
relationship.?? Here we justify why we focus on the former equilibrium.

We first show that there are settings where payoffs from playing the static high effort
PPE are lower than payoffs from our proposed strategy. We then argue that the theoretical
predictions obtained under our strategy are similar to those we would obtain if the agents
always chose the payoff-dominant strategy. To see this, we compare the overall welfare across

time under these two strategies,

Wt =si(1+ B)E [f(e'(y), €' ()7 (y) — c(e'(y))] , (2.10)
W™ =5, [f(e(y), e(y)m(y) — cle(y))]
+ siBE[(1—ri(1— f(e), e E [f(e'W),e@W)m(y) — el W))]. (211)

In equation (2.11), the expectation has to be taken not only with respect to y but also
with respect to r;. To avoid this, we assume that r; is constant. The equilibrium we
select yields a higher payoff than the static PPE whenever Widy" > W#tat which may
or may not hold. To simplify notation, we let EV]; = E[f(e(y),e(y))m(y) — c(e(y))] and
EVo=E|[f(e(),€W)n(y) — c(€(y'))]. Welfare under our strategy, mdy", is higher than

welfare in the static high effort PPE, W' whenever
EVi — EVy > fBri(1 — E[f(e(y), e(y))]) EVa (2.12)

So, if EV) — EV, > 0 and E[f(e(y),e(y))] is sufficiently large, then welfare is higher under
our strategy.** An example for which equation (2.12) holds is given in the Appendix.

Notice that E[f(e(y),e(y))] is large if effort is high under any signal realization. But
effort is only stable if the project values across states are similar, implying little uncer-
tainty in the environment. And we have shown that women exert higher effort than men
in these environments.

Instead, suppose now that agents always play the payoff-dominating strategy. Then, in
an environment with high uncertainty the static high effort PPE will be selected, whereas
in an environment with low uncertainty and relatively high payoffs, our proposed strategy
should be implemented. But this implies that the differences between men and women, which

we discussed in Section 6, would be exacerbated if agents always choose the payoff dominant

390bviously, there are other equilibria, such as whenever a project fails, all relationships in the network turn
bad and then all players choose zero effort. Another possibility is that a good relationship leads to zero effort
and a bad relationship to positive effort. We find these equilibria hard to justify and therefore use the static
PPE as a benchmark.

“ONote that EVi — EV> > 0 might not always be the case, although e > ¢’. To see this we consider the
example given in Section 6, where EVi < EVa. The reason is that workers choose very high effort in the first
period even if the project does not yield a payoff in order to avoid having a bad relationship in the second period.
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strategy.! Women would do even worse than men in uncertain environments than under our
strategy and do even better in situations with low uncertainty and high payoffs. Essentially,
our proposed strategy biases the results against us, which is why we feel comfortable about
our equilibrium selection.

A different question is whether the payoff dominant strategy will always be played. There
are two equilibria in the static game, where choosing zero effort is risk dominant. The
evidence on whether the payoff dominant or risk dominant strategy is played is mixed at best
(Van Huyck et al. (1990), Cooper et al. (1990), Cooper et al. (1992)). We give an intuitive
explanation under which circumstances workers might risk to choose the high effort which can
potentially result in a loss (namely when they trust their project partner after a good history)

and when they go for the risk dominant strategy (which is after a loss and thus bad history).

2.8 Conclusion

We identify a new dimension of heterogeneity between men and women, namely differences in
their networks structure, and connect these differences to discrepancies in their labor market
outcomes. We first establish that men have a higher degree than women, whereas women have
a higher clustering coefficient. Based on this, we build a model that sheds light on the relative
advantages of having a male network (high degree, low clustering) versus a female network
(low degree, high clustering). A higher clustering coefficient implies higher peer pressure,
whereas a higher degree improves access to information. Both peer pressure and access to
information can attenuate a team moral hazard problem in the work place. But whether peer
pressure or access to information is more important depends on the work environment. We
find that, in environments where uncertainty is high, information is crucial and, therefore, men
outperform women. This uncertainty can either stem from large payoff variability, moderately
informative signals, a small number of overall signals or little prior knowledge about the state
of the world.

Our findings are in line with large gender wage gaps in occupations characterized by
uncertainty and with the fact that more men than women choose occupations with high
earnings volatility, where volatility can be interpreted as uncertainty. Additionally, it is
documented that having women in the network is beneficial once there is an abundance of
information. Our model suggests that this is due to women adding network closure which
is more beneficial under these circumstances than additional information. Further, it is
documented that women have a higher employment rate in recessions when rewards are low,
which our model would also predict. Last, our model is consistent with empirical findings of
how the gender wage gap changes over the career paths, with a strong impact of the early
career wage gap on future wage trajectories of men and women.

We propose a novel, network-based explanation for gender differences in labor market

outcomes. We see this approach complementary to other explanations, such as differences

4IThere is one exception concerning the benefit of having women in the network higher up in the organizational
hierarchy. Here women would not outperform men anymore, but would do the the same unless the payoffs in
both states are fairly close together.
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in preferences, risk aversion, bargaining behavior and discrimination. Ideally, we would like
to test our theory empirically in order to quantify the impact of network differences on
wages is. However, data requirements are significant. We would need a dataset of informal
networks at the workplace. We are aware of no such dataset at this moment and leave this
question for future research.

It is beyond the scope of this paper to analyse the source of network differences between
men and women. There could be an underlying trait that makes women choose more closed
networks, such as risk aversion, which also leads them to choose different occupations. But the
network structure could also emerge due to differences in games boys and girls play. Whereas
boys tend to play in big groups, girls are encouraged to socialize in a different manner already
from an early age onwards. So the question is whether friendship formation is guided by an
innate trait or a trait that is learned.

Last, at its current stage, we do not use our model to study the optimal composition of a
team. The optimal team composition should depend on the network structures of the team
members. We believe that this is an interesting extension of our research, which we aim to

address in future work.



2.9 Appendix

2.9.1 Data Appendix
Friendship Networks

The friendship information in the AddHealth data set is based upon actual friends nominations.
Students were asked to name up to 5 male and female friends. Students named friends both
from the school they attend as well as friends from outside the school. Some of the friends,
who do not attend the same school attend a sister school*? and can still be identified. The

other friends cannot be identified and are dropped subsequently from the sample.*?

Descriptive Statistics AddHealth

Table 2.3: Differences in Degree and Clustering for Men and Women

Male Students Female Students

Mean Std Dev. Min Max | Mean Std Dev. Min Max
Cl. Coeff. 0.117 0.195 0 1 0.130 0.195 0 1
Cl Coeff. (dir.) 0.0876 0.151 0 1 0.0996 0.154 0 1
In Degree 3.597 3.554 0 37 3.917 3.482 0 34
Out Degree 3.417 3.660 0 10 4.100 3.651 0 10
Degree 7.014 5.921 0 44 8.017 5.970 0 43
Age 15.08 1.719 10 19 14.92 1.702 10 19
Size/1000 1.196 0.678 0.0290 2.982 | 1.200 0.686 0.0290 2.982
Observations 54881 53240

Estimation Results

We estimate whether gender has a significant influence on degree as well as on the clustering
coefficients. We standardize all of our measures in order to improve the interpretability of
our results. Further, we normalize the age by subtracting 16. In all our regressions, we also
control for school, which serves to capture location effects as well as time differences from
when the data was collected. Note that we are not interested in determining which other

factors influence these network characteristics, as is done e.g. in Conti et al. (2013).4* The

42 A sister school is a school in the same community. So, if in a community there is a high school and a
middle school, then the high school is the sister school of the middle school and the middle school is the sister
school of the high school.

43Overall, less than 10% of the observations are dropped. We believe this to not be a problem as we are
interested in a proxy for the friendship network at the workplace, not for the entire friendship network of
individuals.

44 Conti et al. (2013) take the in-degree of high school students and find that wages 35 years are influenced
by how often students were named as friends. They argue that a high in-degree is a measure of social skills, of
how good someone is in building positive personal relationships and in adjusting to a certain environment and
situation. They also provide evidence that the in-degree manages to capture something other than personality,
by controlling for personality traits. Similarly, we use the network as a measure of social skills that can still
impact outcomes later on.



Table 2.4: Differences in Degree and Clustering for Men and Women

Cl Coeff. (dir.) ClL Coeff. (dir.) Cl. Coeff. Cl. Coeff. In Degree In Degree Out Degree Out Degree Degree Degree
Female 0.110*** 0.0729*** 0.0922***  0.0612***  0.107*** 0.146*** 0.186*** 0.193*** 0.178*** 0.205***
(0.00565) (0.0107) (0.00563)  (0.0106)  (0.00683)  (0.0144) (0.00609) (0.0123) (0.00634)  (0.0131)
Age-16 0.00440 -0.000773 0.00456 -0.000780  -0.0173*** 0.00629 -0.0500*** -0.0375***  -0.0410***  -0.0193***
(0.00249) (0.00292) (0.00252)  (0.00296)  (0.00271)  (0.00335) (0.00247) (0.00304) (0.00255)  (0.00313)
Size /1000 0.0310 0.0235 -0.0170 -0.0224 0.0420 0.0329 0.0339 0.0240 0.0457 0.0342
(0.0634) (0.0631) (0.0750) (0.0748) (0.0571) (0.0578) (0.0839) (0.0831) (0.0714) (0.0707)
Female*Age 16-17 0.0668*** 0.0594*** -0.102*** -0.0443*** -0.0878***
(0.0111) (0.0110) (0.0121) (0.0108) (0.0113)
Female*Age 18-19 -0.0360 -0.0126 -0.356*** -0.214*** -0.342***
(0.0253) (0.0258) (0.0221) (0.0230) (0.0225)
Female*Size /1000 0.0122 0.00858 0.0148 0.0169 0.0192*
(0.00901) (0.00896) (0.00991) (0.00911) (0.00936)
Constant 0.0767 0.0842 0.186 0.190 -0.242* -0.210 0.165 0.189 -0.0410 -0.00819
(0.127) (0.126) (0.151)  (0.150)  (0.114)  (0.116) (0.169) (0.168) (0.144) (0.142)
Additional Controls: School Fixed Effects
Observations 84792 84792 84792 84792 84792 84792 84792 84792 84792 84792
R? 0.198 0.199 0.205 0.205 0.132 0.134 0.170 0.170 0.205 0.207

Standard errors in parentheses
* p<0.05 " p<0.01, ™ p < 0.001



purpose of this estimation is only to show that men’s and women’s networks differ. Our

results are given in Table 2.4.

We find that girls have a significantly higher clustering coefficient, independently of how
the clustering coefficient is measured. Both younger and older girls have a higher clustering
coefficient, i.e. this characteristic does not change as students grow older. Girls also have
a higher in and out degree as well as overall degree. But older girls have a lower absolute
degree, out degree and in degree than younger girls, i.e. unlike with the clustering coefficients
this property changes as girls mature. However, the degree does not change much for boys as
they grow older. When just taking into consideration the oldest students, i.e. those aged 18
and 19, which are the students we are most interested in as we are interested in the network

properties of men and women, girls have a lower in, out and overall degree.*®

2.9.2 Technical Appendix A

Derivation of s;

The probability that one agent is chosen is given by Pr(K) = % = %, and the
probability that this agent ¢ is linked to the suggested project paerner 7, given that he is
selected by Pr(g;; = 1|K) = %. Then, the probability of being chosen and being partnered

with a friend is

S; EPT(gij = 1/\K) :Pr(gij = 1‘K)PT(K) = m

Relationship Quality

We outline here formally how a project outcome affects the relationships of workers. As
mentioned previously, whether the project of workers 7 and j was a success, S, or a failure,
F is publicly observable and denoted by w € Q = {S, F} x {1,2,...,N}?. As an example,
if w = 512, this means that a project was successfully completed by workers 1 and 2. We
condition also on the workers who carried out the project as we do not only care about
whether the project was successful but also about the workers who were involved. Each
project failure induces some bad relationships in the network g. The network that contains
the links that signify a bad relationship is denoted by g, C g. The specific network g, that
arises after F'ij, that is a project failure between workers ¢ and j, where g;; = 1, is given by
gv(Fig) = {{ij,4l, jl}|gi = 1 A g = 1,VI}. Workers i and j have a bad relationship with each
other if their joint project fails. But a worker [, who is connected to both ¢ and j also has a
bad relationship with both of them. Denote by gq4(F'ij) = ¢\gp(F'ij) the good relationships in
the network g. Let 4 € g4 and 7;, € gp. Further, for any i, j g4(Sij) = g.

45 As we have standardized the clustering coefficients as well as degrees, the coefficients can be interpreted in
terms of standard deviations.



Equilibrium Selection

An example for which equation (2.12) holds is given in Table 2.5. We assume f(e;, e;) = ,/€i, €;
and c(e;) = %e?. In this example, men exert on average lower effort than women, in both
states of the world. This is not surprising given that the project value in both states of the

world is fairly similar.

Table 2.5: Welfare Parameters
v v D q g dV 4™ CW CM N
1.5 1.6 0.75 0.5 0.9 2 3 2 1 4

2.9.3 Technical Appendix B: Proofs
Proof of Proposition 2.1: Static Decision Problem

Given the assumptions on f(.,.), there always exists an equilibrium where both project
partners exert zero effort. It therefore remains to be shown that there exists exactly one
equilibrium with e; = e; > 0.
We first show symmetry. From the first order conditions we obtain
fileiej) _ d(ei)

faleirey)  d(eg) (2.13)

Suppose, by contradiction, that effort levels are not symmetric and assume that e; > e;. Due
to convexity of the cost functions, the RHS of (2.13) is smaller than one. Due to concavity
and supermodularity of the effort function, we have fi(e;,e;) > fa(es, e;), which is why the
LHS is larger than one, which gives the contradiction.

Further, there is exactly one equilibrium where both workers exert strictly positive effort.
It suffices to show that the FOCs (which under symmetry become a function of one variable)

have one zero under the condition that effort is strictly positive.

file,e)m(y) = ' (e) (2.14)

Due to our assumption of constant returns to scale, fi(e, e) is constant in e. The first derivative
of the cost function ¢/(e) is linear in e and starts in the origin (due to Assumption 2.1). Hence,
the two functions have a unique intersection, implying one symmetric equilibrium with strictly

positive effort.

Proof of Lemma 2.1:

7(y) has the martingale property:

T(yn) = Pr(Onlyn)vn + (1 = Pr(Oalyn))vi



Define 1, = Pr(0|yyn). We know that the stochastic process {¢,} is a martingale as

E(d’n—f—l’yn) - E(E(w‘yn-f—l)‘yn) - E(¢|yn) = tn,

where the second equality follows from the tower property of conditional expectations. Then,

E(m(yn+1)yn) = E(¥nt1vn + (1 = Yni1)viyn) = E(Wni10nlyn) + E(1 = Yny1)vilyn)
= wnvh + (1 - wn)vl = W(yn)

Properties of E (w(yy)) and E (7(yy)|0):

1. The number of signals do not matter for E(m(y)) due to the martingale property of 7(y),

E(m(ynt1)) = E(E(@(Yn+1)lyn)) = E(7(yn))-

2. We note that the posterior is given by

Pr(9h|y) _ Pr(ymh)Pr(Qh) _ qpy(l _p)nfy
Pr(0x)Pr(y|0n) + Pr(0)Pr(yl6)  qpv(1 —p)"¥ + (1 - q)p"¥(1 —p)¥
1
- (2.15)
1 (52)
To simplify notation we define p = 1%", j= % and § = 2y—n. Then, 1, = Pr(0|y) = ﬁ.
We are interested in showing that
E (7 (yn+1)|0n) > E (7(yn)|0n) (2.16)
E (7 (ynt1)|01) < E (w(yn)|01) (2.17)

We will show that equation (2.16) holds and leave the proof of equation (2.17) to the reader.

We can rewrite equation (2.16) and we obtain

(vh = v) E ((Yn+1 — ¥n)|0n) >0

As (vp — v;) > 0, by assumption, it remains to be shown that E (¢,+1 — ¥,|0r) > 0. Given

0 = Oy, Ypy1 = =7 with probability p and 1,1 = with probability (1 — p). We

1
T+gp0 T T+gpi =1

can show that
1 1—
S T
L+qp? ~ 14gp9tt 1+ gpit
& ppt+(1—p)—p<ip+ (1 —p)p*—p)

Note that pp? + (1 —p) — p = 0. Then, 0 < §p?(p + (1 — p)p* — p), which holds for p > % and

concludes the proof.



Additional signals do not matter in the following cases:

(i) For v; — vy,

n

i, B ) = 32 e (00 =) = o+ L= p) e =

where the second step follows from the binomial formula. The expression is independent of n
and therefore additional signals do not matter. Similarly, this also holds for E (7 (y)|6;).
(ii) Assume p — 1. Then,

. S (! ey (YL —p)"Yon + (1 — q)p" V(1 — p)Yu
};LH%E (7 (yn)|0n) = 11;%1 = yl(n —y)! (py(l ) y) < ap’(1 = p)"v + (1 — q)p—¥(1 — p)¥
(n)' ni _ \n—n qpn(l — p)n—nvh + (1 — Q)pn_n(l — p)nvl
o=y 7)) < (1= p)" ="+ (1= )p" (1~ p)" )
n ("o + (A=) —p)"u\ _
p<qw+a—@u—mn)‘h’

and analogue for 6 = 6;.

(iii) Assume ¢ — 1. Then,

n

éLII%E (Yn)|On) = Z P/ =p)"Y)on=(p+1—p)"vp =0y

which is independent of n. Similarly for ¢ — 0 and E (7 (y)|6;).
(iv) Note that y ~ Binomial(np, np(1 — p)) if 6 = 0, and y ~ Binomial(n(1 — p),np(1 — p)) if
0 = 0;. Then, lim,, oo (y — (n — y)) = o0 if § = 6}, and lim,, oo (y — (n — y)) = —c0 if 6 = ;.
To see this note that y — (n — y) = 2y — n. By the central limit theorem, as n — oo,
if 0=0, ySnp = lim(2np—n) =
n—oo

if =26, ygn(l—p) :>nli_>ngo(2n(1—p)—n):—oo_

Then, lim,,_oo Pr(0y|y) = 1 if 0 = 0}, and lim,_,oc Pr(fnly) = 0 if 6 = 0; as

. 1 1
lim Pr(0yly) = lim |4 g (1) "
25

We have already shown that Pr(6p|y) is increasing in n if § = 65, and decreasing in n

if 6 = 0;. Thus we can apply the Monotone Convergence Theorem, which implies that
limy, 00 E(Pr(0p|y)vy) = E(limy, o0 Pr(0|y)vp). From this it follows that lim, .. E (7(y)|0n) =
vy, and limy, o0 F (7(y)]0;) = v



Proof of Lemma 2.2:

V*(y') is a Submartingale: We can express V*(y') as a function of 7(y’), and write

V(') = g9(n(y)) (2.18)

As 7(y’) is a martingale, we know that when g is a convex function, then g(7(y')) is a
submartingale whenever E(V*(y/,)) < oo, which is always fulfilled as 0 < E(V*(y/,)) < vy Vn.

Note that the equilibrium effort depends the expected project payoff through the signals,
or €("y). We mostly omit this dependence here in order to keep notation simple but write
simply €.

Applying the envelope theorem repeatedly, the first and second derivative of g are given by

dg9(m(y)) _ o Nl o¢’ o ¢
67r(y) _fQ( ’ ) (y)aﬂ'(y,) +f( ) )
629(7T(y/)) _ o e A ¢’ ? o Nl d%¢ o o ¢’
87T(y’)87r(y’) - [f22( ) )+f12( ) )] (y) (87T(y/)> +f2< ’ ) (y>87r(y’)(97r(y’) +f2( ) )aﬂ_(y/)
FUE ) + Rl ) g s
26/ el e’
= € ) gt + () G + () + (e ) 5o

From first order condition of the static problem, evaluated at the equilibrium effort, we can

compute

o' fi(e,€)

o)~ ey
02¢ (e, €) + f21(€',€'))aif;) 0
on(y)on(y) (e a
It follows that
829(77(3//)) _ N . . e’
orlyionly) D gay TG DTRG0 2 0

which implies that V*(y/,) is a submartingale.

Properties of E(V,) = 20_o ey (a0Y(1—p)" Y+ (L—q)p" ¥ (1—p)¥) (f (€, ¢')m(y) — c(¢'))

(i) UV — Vp.

We are interested in

n

Jim B(V;) = lim > i =g’ (=) (L= @p ™ (1= p)") (£ ), € ) y) = ('),
y=0 77" ’

n!

where €'(y') is the equilibrium effort for given y’. As the other terms are constant in




v, all that matters is

lim (f(e'(y), € (y)m(y) — c(e(y))) = lm f(e'(y),€'(y)) lim w(y) — lim c(e'(y))

VI —Vp VI —Vp V—Vp V] —Up,
_ . ow) ow) _ . / /
= Jlim f(e'(y), €' (y))on — lim c(e(y))

Note that limg(,_,,, € (y') = €, , i.e. the effort converges to some constant as m(y') —

Vp?

vy, since €/(y') is a linear function of 7(y') (see (2.2)). Also, due to constant returns to
scale, f(e/(y),€e'(y')) =€ (y)f(1,1) and thus limel(y/)ﬁe;h fleW),e')) = e, f(1,1), which

again is constant in n. As f(.,.) is continuous, i.e. f(e], e, ) = e, f(1,1), we know that

lim (), F('(Y), €' (y')) = €, f(1,1). The argument is similar for ¢(.). Then, we can write

lim (f(¢/ (), (y)m(y) - (e W))) = b

V| —Vh,
where b,, is constant and thus independent of n. Therefore, as v; converges to vy, the expected
second period value converges to a constant and is independent of the number of signals,

lim E(V}) = by,

V—Vp

(ii) p — 1 for 6 € {6,,0,;}.

Note that
limn(y) =v, if n—2y<0
p—1

limn(y) =qup+ (1 —qv; if n—2y=0

p—1
limn(y)=v if n—2y>0
p—1

As w(y) converges to some constant (and, of course, the same holds for m(y')), so does
(fe'W), e W)m(y') —c(e)). We denote by V*(vy) (V*(v;)) [V*(v)] the limit when 7(y) con-
verges to vy, (v7) [qun + (1 — q)vy].

Note further that if n—2y < 0, limy1(gp(1 —p)" ¥ + (1 = q)p" ¥(1 —p)¥) = limp1 gp*(1 —
p)"~Y. Then we know that
. g if y=n
lim =
p—1 0 otherwise
If 1 — 2y > 0, limy, 1 (gp¥(1 — p)" Y + (1 — @)p" ¥(1 — p)¥) = limy, 1 (1 — @)p™ ¥(1 — p)¥. It
follows that

lim =
p—1

{1—q if y=0

0 otherwise

Last, if n — 2y = 0, limp1(gp?(1 —p)" ¥ + (1 — ¢)p" ¥(1 — p)¥) = limp1 pY(1 — p)" ¥ = 0,



as y,n > 0 From this it then follows that

lim E(V,}) = qV*(vp) + (1 — Q)V*(vy),

p—1

which is independent of n.
(iii) ¢ — 1.
Notice that,

lim (gp”(1 = p)"™¥ + (1 = q)p" (1 =p)*) = p" ¥ (1 = p)",

li = vp.
ql_{q m(y) = vp

It follows that lim,; E(V;

) is a constant and independent of n.

Next, ¢ — 0.

and lim,_,o E(V,;

) is constant.

(iv) Abundance of Information: ne,s — oo.

We want to show that

lim E(V) = B(V*).

n—oo

We know that for each n, E(V,’) < E(V,", ;) as V,} is a submartingale and that E(V,) < v,
for all n. By the monotone convergence theorem, we know that a finite limit exists, which we
denote by E(V*).

Proof of Proposition 2.6: Trade-Off Between Information and Peer Pressure

We assume that a D-worker has a higher degree and hence more signals n;,,; and has clustering
(sr)P. In turn, a C-worker has a lower degree and thus a lower number of signals (and

¢ > (sr)P. Further, assume v; = 0.

therefore s” > s¢) but higher clustering and therefore (s7)

(i) Wage Dynamics:

Claim 1: wP(0) >w®) = E@?P)> EBWw").



From definition (2.2), it follows that the second period expected wage across states is defined as
EW'") = qu'(0,07,) + (1 — q)w'(0,0)) = qu'(0,0)

where the second equality is due to v; = 0 and where we dropped the subindex 7 for convenience.

Also, recall
w'(0,0) = sPr(vg|0)E(e' (y)10n) f (L, 1)vn

where Pr(yy|0) = E(e(y)|0)rf(1,1) + 1 — r. Suppose that in the first period wP(0) > w®(9),
implying E(e(y)”]0) > E(e(y)¢|0). Moreover, by assumption, s¢ < s? and (sr)¢ > (sr)P.
Hence, [sPr(v,|0)]P > [sPr(v,]0)]. Last, by Proposition 2, E(e'(y)?|6}) > E(e'(y')¢16})
and therefore w'P (0, 0})) > w'(6,0}). Thus, w”(8) > w®(0) implies E(w'”) > E(w'®), which

proves the claim.

Claim 2: (a) w?(0) = w® () = E(w'P) > BE(w'®).
(b) wP(0) > w(9) = E(w'P) > E(w'®) even if E(e'(y")P|0},) = E(e'(v)€16})-

S

(a) Even if w” () = w®(0) and thus E(e(y)”|0) = E(e(y)¢|0), we have [sPr(v,|0)]” >
[sPr(74]0)]¢ due to s¢ < sP and (sr)¢ > (sr)P. Also, by Proposition 2, E(¢/(y)P|6)) >
E(e'(y)¢10;) and therefore w'P(6,6}) > w'“(6,0}). It follows: w? () = w®(0) = E(w'P) >
E(w').

(b) We use a similar argument as in (a). Even if uncertainty vanishes in the second period,
that is even if the D-worker loses his informational advantage, implying E(¢'(y')"16)) =
E(e'(y)€]6}), it holds that if w?(8) > w®(#) then E(w'P) > E(w'®), because [sPr(v,|0)]” >
[sPr(7410)]°.

(ii) Comparative Advantage:

(w®)
D

We want to show that g(w y increases in n, g and p > p* if E(w(y)|0n) and EV*(y') are

sufficiently concave in n, ¢ and p, respectively. First notice that, assuming v; = 0,

E(wC) _ qu () _ [E(x(y)|0n) + BsrEV*(v5,4)]° (2.19)
E(P)  quP(n)  [E(r(y)0n) + BsrEV*(y), y)|P '

where we used the definition of wages and the expression for equilibrium effort (2.7). We
want to show that (2.19) is increasing as uncertainty vanishes. To illustrate the argument, we

show this for the case of increasing n (strictly, speaking we let ne,; increase). We adopt the



following notation

[E(x()160)] = E(r(yn)|0n)
[E(x(y)|60)]” = E(m(Ynt1)|0n)
[EV*(v;, 4] = EV*(y},)
[EV* (74,47 = EV*(yp,11)
(sr)c =3r
(sr)? = sr

We will show that (2.19) is increasing in n, that is,

E(w(yn)|6n) + BSTEV™ (yp) E(m(yn-1)|0n) + BSTEV*(yy,_1)

E(r(yns1)|0n) + BsrEV (1)~ E(n(yn)|0n) + BsrEV*(y)

if E(m(y)|0r) and EV*(y') are sufficiently concave, i.e. if

EV*(y)* > EV*(y,_1) EV* (Y1)

E(n(yn)|0)* > B (Yn+1100) B (7 (yn—1)|6h)

EV*(y,)  E((yn)|0n) >§>EV*(yn+1) E(7m(yn—1)|0n)
EV*(yp_1) E(m(yn+1)10n) = st = EV*(y,)  E(m(yn)|0h)

To show this, rearrange (2.20) to get:

[E(7(yn)|0n)]* — E(m(ynt1)|0n) E(7(yn—-1)|0n)+
srsTB*([EV* ()]? — EV* (4 ) EV* (4 1))+
BSTE (7 (yn)|08) EV*(y),) — Bsr E(m(yn—1)|0n) EV* (Y4 1)+

(
BsrE(m(yn)|0n) EV* (1) — BSTE(T (ynt1)|08) EV* (y),_1) > 0

(2.20)

This expression is positive if (2.21)-(2.23) hold. To see that (2.21)-(2.23) are implied by

sufficiently strong concavity note the following. A function f(n) is log-concave if:

fin+1)f(n—1) < f(n)?

(2.24)

Hence, for (2.21)-(2.23) to hold, E(n(y)|0r) and EV*(y') must be sufficiently log-concave.

But concavity implies log-concavity: Concavity of an increasing discrete function means

S+ 1)+ f(n - 1) < f(n)

Then (2.25) implies (2.24) since

S+ + = 1)) > (fr+ 1) fn— 1)

(2.25)

Last, we established before that E(w(y)|0,) and EV*(y') are increasing in n and converge.



Consequently, for all n > n*, E(x(y)|0y) and EV*(y’) are concave as defined in (2.25). We
focus on the part of the parameter space where E(n(y)|0n) and EV*(y') are sufficiently
concave, i.e. where conditions (2.21)-(2.23) hold.

The arguments that (2.19) is increasing in p (for p > p*) and ¢ are analogous and slightly
simpler because E(7(y)|0y) and EV*(y') are continuously differentiable in p and ¢g. We omit
them for brevity and instead highlight some of our simulation results.

To graphically illustrate the comparative advantage results, we compute a parametric
example of this model and provide some simulations. Effort and cost functions are respectively
given by f(e;,e;) = \/éi, € and c(e;) = %e%. We set the parameters such that e < e,,4, always
holds (see Table 2.6).

Table 2.6: Baseline Parameters
v, Up P q g dvV JdM CcW CM N
0 1 07 05 09 2 3 2 1 10

Figure 2.2: Expected Wage of Agent with Higher Clustering Relative to Agent with More
Information
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