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Abstract

In this paper we propose a new GARCH-in-Mean (GARCH-M) model allowing for

conditional skewness. The model is based on the so-called z distribution capable

of modeling moderate skewness and kurtosis typically encountered in stock return

series. The need to allow for skewness can also be readily tested. Our empirical

results indicate the presence of conditional skewness in the postwar U.S. stock returns.

Small positive news is also found to have a smaller impact on conditional variance

than no news at all. Moreover, the symmetric GARCH-M model not allowing for

conditional skewness is found to systematically overpredict conditional variance and

average excess returns.

JEL Classification: C16, C22, G12
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1 Introduction

The presence of both conditional and unconditional skewness in financial market

returns, especially stock returns, has been recognized in the empirical financial liter-

ature for decades, but only few attempts to explicitly model it have been made. In

this paper we introduce a new kind of GARCH model that allows the error term to

be conditionally skewed. The model is inspired by the so-called volatility feedback

effect (Campbell and Hentschel, 1992) that has been offered as an explanation to the

presence of conditional left-skewness observed in stock returns. In line with this ef-

fect, the model imposes comovement of conditional skewness and conditional variance.

Volatility feedback amplifies the impact of bad news but dampens the impact of good

news on returns through an increase in future volatility following all kinds of news.

This effect is also capable of explaining the observed left-skewness of unconditional

return distributions.

Although the literature is not voluminous, there are a number of recent papers

focusing on conditional and unconditional skewness in stock returns. It has even been

suggested that conditional skewness is a priced risk factor (see Harvey and Siddique,

2000, and the references therein), while we merely argue that unmodeled skewness

may affect inference on other parameters of the model, leading to biased pricing im-

plications. In addition to asset pricing, another field where it is important to take

potential conditional skewness properly into account, is risk management, i.e., risk

measurement and pricing of derivative securities. These applications often rely on

simulation methods that require data generating processes accurately describing the

behavior of asset returns (see, e.g., Kalimipalli and Sivakumar, 2003, and Christof-

fersen et al., 2003).

In this paper we consider a GARCH-in-Mean (GARCH-M) model based on the

so-called z distribution. This distribution was studied by Barndorff-Nielsen et al.

(1982) who showed that it can be represented as a variance-mean mixture of normal

distributions. The z distribution has an analytically simple density and its moments
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can be readily obtained. It is capable of modeling moderate skewness and kurtosis,

and the need to allow for skewness can be readily tested.

We apply the new GARCH-M model to study the relationship between risk and

return in monthly postwar U.S. stock market data. Our results indicate the presence of

conditional skewness in U.S. stock returns. It is also found that the news impact curve

is not minimized at zero, but small positive news seem to have the smallest impact

on the conditional variance. This goes contrary to most previous results according to

which ’no news is good news’, with Anderson et al. (1999) as a notable exception.

Moreover, allowing for conditional skewness seems to greatly affect the magnitude of

the conditional variance and risk premia predicted by GARCH models. In our data

set, the GARCH-M model based on the symmetric t distribution is shown to yield

systematically too high values of both of these, whereas the model based on the z

distribution is strikingly accurate. As a potential explanation the results suggest that

the GARCH-M model based on a symmetric error distribution is driven by highly

volatile observations, and hence, tends to overprice assets.

The plan of the paper is as follows. In Section 2 the new GARCH-M specification is

introduced and its properties as well as parameter estimation and statistical inference

are discussed. In Section 3 the empirical results are presented. Finally, Section 4

concludes.

2 Asset Pricing and Conditional Skewness

Several studies have examined the relationship between the expected return and con-

ditional variance of stock returns with Mertons’s (1973) Intertemporal Capital Asset

Pricing Model (ICAPM) as a starting point. According to this model the expectation

of the excess return on the stock market, rt, depends positively on its conditional

variance:

Et (rt) = δVart−1 (rt) , (1)
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where δ is assumed positive and can be interpreted as the coefficient of relative risk

aversion of the representative agent.

The empirical literature examining the expected return—volatility relationship is

vast. Typically GARCH-M models have been employed, and depending on the mar-

ket, the sample period, and the exact model specification, conflicting results have been

obtained. For instance, using monthly U.S. data French et al. (1987) and Campbell

and Hentschel (1992) found a predominantly positive but insignificant relationship,

while Glosten et al. (1993) found a negative and significant relationship employing an

extended GARCH-M model allowing for the leverage effect. Even though, theoreti-

cally, there should be no intercept term in equation (1), virtually all previous studies

have included one, which may explain the ambiguous results. Namely, Lanne and

Saikkonen (2005) have recently shown that the unnecessary inclusion of an intercept

term leads to inaccurate estimation and very low power in Wald tests of the null

hypothesis δ = 0.

In the empirical part of the paper we show that conditional skewness is present in

stock returns and explicitly allowing for it has a big effect on the estimates of δ. The

presence of conditional and unconditional skewness has been documented in a num-

ber of previous empirical studies. Campbell and Hentschel (1992) and Harvey and

Siddique (1999) also incorporated conditional skewness in various GARCH-M specifi-

cations to examine the expected return—volatility trade-off. Theoretically the condi-

tional skewness can be explained by the so-called volatility feedback effect (Campbell

and Hentschel, 1992) that relies on volatility persistence and a positive intertempo-

ral relation between expected return and conditional variance. This effect arises as

follows. Because of persistence, a large piece of news increases not only present but

also future volatility, which in turn increases the required rate of return on stock

and, hence, lowers the stock price. This effect amplifies the impact of bad news but

dampens the impact of good news, and therefore, large negative stock returns tend

to occur more frequently than large positive ones when volatility is high. As a result,

also the unconditional return distribution tends to be left-skewed.
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Of the studies mentioned above, the paper by Harvey and Siddique (1999) comes

closest to our approach. Like our model below, also their models allowed for time-

varying conditional skewness in a GARCH-M model for stock returns, but they failed

to find a significantly positive relationship between expected returns and conditional

variance in U.S. data, which may be attributed to the inclusion of the intercept term

in the mean equation, as discussed above. Harvey and Siddique (1999) employed

variants of Hansen’s (1994) autoregressive conditional density model, which is prob-

ably the most prominent GARCH specification allowing for conditional skewness in

the previous literature. The model extends the standard GARCH-M model by al-

lowing the conditional skewness and degrees of freedom of the skewed t distribution

to depend linearly on functions of lagged error terms. In our model, in contrast,

the conditional skewness is directly dependent on conditional variance, and, hence, it

lends itself to clear economic interpretation, in line with the volatility feedback effect

discussed above. A potential drawback of Hansen’s (1994) model is that it is not

very parsimonious and it may be difficult to find an adequate specification for the

degrees of freedom parameter, as the empirical examples of Hansen (1994) illustrate.

Moreover, transformations due to the parameter constraints imposed by the t distrib-

ution may not facilitate straightforward interpretation of the connection between the

conditioning variables and time-varying parameters.

2.1 GARCH-M-z Model

As a starting point for modeling the excess stock return rt we have the following

general GARCH-M model

rt = φ0 + φ1rt−1 + · · ·+ φprt−p + δht + h
1/2
t εt, (2)

where φ0, ..., φp and δ are real valued parameters, εt is a sequence of independent,

identically distributed (i.i.d.) random variables, and h
1/2
t is a (positive) volatility

process which describes the conditional heteroskedasticity in the observed process

rt. Independence of ht−j (j > 0) and εt is also assumed and, for stationarity, the
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roots of the polynomial 1 − φ1z − · · · − φpz
p are required to lie outside the unit

circle. Different versions of this model have been employed in the previous empirical

literature. In applications to low-frequency data lagged returns are rarely needed.

Also, as mentioned above, according to the ICAPM there should be no intercept

term and unnecessarily including one may obscure the results. Therefore, from now

on, we restrict φ0 to zero. Any available model can be used to model conditional

heteroskedasticity. We shall return to this point later after discussing the distribution

assumed for the error term εt.

The distribution we are going to apply is the so-called z distribution. This dis-

tribution has been studied by Barndorff-Nielsen et al. (1982) who show that it can

be represented as a normal variance-mean mixture with the mixing distribution an

infinite convolution of exponential distributions. Other members of the family of

variance-mean mixtures of normal distributions are the ordinary (symmetric) t dis-

tribution and its skewed version as well as the normal inverse Gaussian distribution

which has recently been applied by Andersson (2001) and Jensen and Lunde (2001) to

model conditional heteroskedasticity in stock returns. We refer to Barndorff-Nielsen

et al. (1982) for more details of these distributions.

Except for the ordinary t distribution, the density functions of the distributions

discussed above depend on a modified Bessel function. The z distribution, denoted

by z(a, b, σ, µ) , is analytically simpler and characterized by the density function

f (x) =
1

σB (a, b)

{exp [(x− µ) /σ]}a
{1 + exp [(x− µ) /σ]}a+b (x ∈ R; a, b, σ > 0; µ ∈ R) , (3)

where B (·, ·) is the beta function. Clearly, µ is a location parameter and σ is a scale

parameter. If a = b the distribution is symmetric whereas it is positively (nega-

tively) skewed if a > b (b > a) . The reason for the name z distribution is that the

z-transformation of the sample correlation coefficient from a normal population is

obtained as a special case. Another well-known special case is the logistic distribu-

tion which is obtained by assuming a = b = 1. The characteristic function of the
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z(a, b, σ, µ) distribution is

χ (s) =
eitµB (a+ iσs, b− iσs)

B (a, b)
. (4)

We shall now consider moments of the z distribution. First, suppose that the

random variable x has a z(a, b, 1, 0) distribution. From the characteristic function (4)

it is straightforward to obtain the cumulants of x. Let Ψ (s) = d logΓ (s) /ds signify

the psi or digamma function and denote Ψ(n) (s) = dnΨ (s) /dsn (n = 1, 2, ...) . Then,

the nth cumulant of x, denoted by κn, is

κn = Ψ(n−1) (a) + (−1)nΨ(n−1) (b) , n = 1, 2, ..., (5)

where Ψ(0) (s) = Ψ (s) . From this expression and the well-known relations between

cumulants and moments one can obtain the moments of x. The first four central

moments are

Ex = Ψ (a)−Ψ (b)
def
= µ (a, b) ,

V ar (x) = Ψ0 (a) +Ψ0 (b)
def
= σ2 (a, b) ,

E (x− Ex)3 = Ψ00 (a)−Ψ00 (b) ,

and

E (x− Ex)4 = Ψ000 (a) +Ψ000 (b) + 3σ4 (a, b) .

Because the transformed variable σx+µ has the z(a, b, σ, µ) distribution these results

can readily be extended to any values of the parameters σ and µ.

To get an idea of the possible shapes of the z distribution, consider the symmetric

z(λ, λ, 1, 0) distribution and note that the function Ψ(n) (s) has the series representa-

tion Ψ(n) (s) = (−1)n+1n!P∞
j=0 (s+ j)−n−1 (n = 1, 2, ...) (see Abramowitz and Stegun

(1972, result 6.4.10)). Using this result and the preceding expression of the fourth

central moment of the z(a, b, 1, 0) distribution it is not difficult to show that the excess

kurtosis of the z(λ, λ, 1, 0) distribution is a decreasing function of λ and approaches

three as λ approaches zero. In the asymmetric case the situation is different, however.

Arguments similar to those in the symmetric case show that, for a fixed value of the
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parameter b, the excess kurtosis of the z(a, b, 1, 0) distribution is a decreasing function

of a and approaches six as a approaches zero. The same result is obtained if the roles

of the parameters a and b are reversed. In a similar way it can also be seen that the

coefficient of skewness can be at most two in absolute value. Thus, data sets which

require very strong kurtosis or skewness cannot be modeled by the z distribution. It

is worth noting, however, that for us these limits of the skewness and kurtosis are

only relevant for the conditional but not for the unconditional distribution of the

considered series. Indeed, because a z distribution is specified for the error term εt

in (2) the unconditional skewness and kurtosis of rt are generally larger than their

conditional counterparts, and therefore, the limits are unlikely to be restrictive in

applications to typical financial time series.1

As already mentioned, we shall assume that the error term εt in (2) has a z

distribution. Because εt is an error term we want it to have zero mean and, as

common in GARCH and GARCH-M models, unit variance. Thus, we assume that

εt ∼ z (a, b, 1/σ (a, b) ,−µ (a, b) /σ (a, b)) . (6)

Using the moments obtained for the z distribution above it is easy to check that this

assumption really implies that Eεt = 0 and Var(εt) = 1. Thus, the model we wish to

consider is defined by (2) and (6). An alternative possibility to define the model is to

specify the conditional distribution of rt given its past. The result can be obtained

from (2) and (6). In symbols we have

rt | Ft−1 ∼ z
³
a, b, h

1/2
t /σ (a, b) , µt (ϕ)− h

1/2
t µ (a, b) /σ (a, b)

´
, (7)

where Ft−1 = {rt−1, rt−2, ...} and µt (ϕ) = φ1rt−1 + · · · + φprt−p + δht with ϕ =

1As an illustration, consider the standard GARCH(1,1) model yt = h
1/2
t εt where ht = ω +

0.87ht−1 + 0.10y2t−1 and εt ∼ i.i.d (0, 1) has a symmetric distribution with excess kurtosis 2.5. The

(positive) constant term ω has no effect on the excess kurtosis of yt which, from equation (8) of He

and Teräsvirta (1999), is found to be 20.05. In this example the sum α + β = 0.87 + 0.10 = 0.97

which is quite relevant for many financial time series and even its small increase can lead to a large

increase in the excess kurtosis of yt.
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£
φ1 · · · φp δ

¤0
. Clearly, µt (ϕ) and ht are the conditional mean and variance of rt,

respectively. If the distribution of εt is skewed, it is obvious from equation (2) that

the conditional skewness of rt, measured by the third central moment, increases with

its conditional variance. To make the specification complete, we still have to specify

a model for conditional heteroskedasticity.

As already mentioned, any available model can be used to model conditional het-

eroskedasticity. In this paper we consider a slight extension of the standard GARCH

model given by

ht = ω +
rX

j=1

βjht−j +
qX

j=1

αju
2
t−j, (8)

where

ut = rt − µt (ϕ)− κh1/2t

with κ a real valued parameter. As usual, the parameters in (8) are supposed to satisfy

ω > 0, βj ≥ 0 and αj ≥ 0. Because µt (ϕ) is the conditional mean of rt the choice
κ = 0 corresponds to the standard GARCH specification. The motivation to allow

for other possibilities is that in the case of skewed distributions is may not be clear

whether the conditional mean provides the best way to center the observed series.

For instance, choosing κ = −µ (a, b) /σ (a, b) means that the centering is performed
by using the location parameter of the employed z distribution (see (7)). Compared

to the standard specification ut = rt−µt (ϕ) this choice of κ shifts the distribution of

ut to the left (right) when the skewness is negative (positive), implying that negative

(positive) values of ut contribute more to conditional heteroskedasticity than in the

standard case. Of course, one can also specify κ as a free parameter and let the data

decide its most appropriate value.

If the value of the parameter κ is nonzero, the usual stationarity conditions of

the GARCH process are not directly applicable. However, because ut = h1/2t (εt − κ)

appropriate stationarity conditions can be readily concluded from results of Carrasco

and Chen (2002). For simplicity, consider the important special case p = q = 1 and
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assume that

E
¡
β1 + α1 (εt − κ)2

¢k
< 1, k ≥ 1, (9)

where k is an integer. Then, from Corollary 6 of Carrasco and Chen (2002) it follows

that the process ht (t = 1, 2, ...) can be given an initial distribution which makes it

stationarity and strong mixing (or even β-mixing) with geometrically decaying mixing

numbers. From the same result one also obtains that Ehkt <∞ and that the process

ut is stationary with Eu2kt < ∞. This implies that rt can be treated as a stationary

process with E |rt|k < ∞. It is also near epoch dependent in Lk-norm and of any

finite size (cf. Davidson (1994, Example 17.3.)). Thus, for k ≥ 2, usual laws of large
numbers and central limit theorems apply.

2.2 Parameter Estimation and Statistical Inference

Maximum likelihood (ML) estimation of the parameters of the model defined by

equations (2), (6) and (8) is, in principle, straightforward. Suppose we have an

observed time series rt, t = −l + 1, ..., T where l denotes the required number of

initial values. Then the conditional density of rt (t ≥ 1) given the past values of the
series can be obtained from (3) and (7). The result is

ft−1 (rt; θ) =
σ (a, b)

h
1/2
t B (a, b)

n
exp

h
σ (a, b) (rt −mt (θ)) /h

1/2
t

ioa

n
1 + exp

h
σ (a, b) (rt −mt (θ)) /h

1/2
t

ioa+b ,
where, for simplicity, mt (θ) = µt (ϕ) − µ (a, b) h

1/2
t /σ (a, b) and θ = [ϕ0 γ0 a b]0 with

γ = [ω β1 · · · βr α1 · · · αq κ]
0 . Here κ is treated as a free parameter. The restric-

tions discussed after equation (8) can be handled in an obvious way. Conditional on

the initial values, the logarithm of the likelihood function can thus be written as

lT (θ) =
TX
t=1

log ft−1 (rt; θ) .

The maximization of lT (θ) is, of course, a highly nonlinear problem but can be carried

out by standard numerical algorithms.
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By the stationarity and near epoch dependence properties of the processes rt and

ht discussed at the end of the previous section it is reasonable to apply conventional

large sample results of ML estimation. Thus, a ML estimator of the parameter θ,

denoted by bθ, can be treated as approximately normally distributed with mean value
θ and covariance matrix − (E∂2lT (θ) /∂θ∂θ0)−1 . Approximate standard errors of the
components of bθ can therefore be obtained by taking the square roots of the diagonal
elements of −

³
∂2lT (bθ)/∂θ∂θ0´−1. Likelihood ratio, Wald, and Lagrange multiplier

tests with approximate chi square distributions can also be performed in the usual

way.

3 Conditional Skewness in U.S. Stock Returns

We estimate GARCH-M models based on the implication of the ICAP model in

equation (1) using monthly excess U.S. stock returns from January 1946 to December

2002. As a proxy for the market return we use the value-weighted CRSP index and

the three-month Treasury bill rate as the risk-free interest rate. In particular, we

consider the following special case of model (8) for the excess return rt,

rt = δht + κh
1/2
t + ut

ht = ω + α1u
2
t−1 + β1ht−1, (10)

where ut = h
1/2
t (εt − κ). In line with the previous literature, GARCH(1,1) specifi-

cation turns out to be adequate. The innovation εt is assumed to follow either the t

distribution with ν degrees of freedom or the z distribution (6). In the former case

the value of κ is assumed to be zero, but in the case of the skewed z distribution,

this is not done. Specifically, in that case we set κ = −µ (a, b) /σ (a, b) which means
that in the model for conditional variance the observed series is centered by using the

location parameter of the z distribution assumed for the error term εt (see Section 2).

We also estimated the model with κ as a free parameter, but its estimate turned out

to be very close to −µ (a, b) /σ (a, b) and the results remained virtually intact (the

10



p-value of a LR test for this restriction is 0.233). As far as the symmetric distributions

are concerned, we also experimented with the standard normal distribution and the

conclusions were qualitatively the same as with the t distribution, but the latter is

preferred because of its ability to better capture the fat tails.

Table 1 contains the estimation results of two GARCH-M specifications corre-

sponding to equation (1). In each case the estimate of δ is positive and significant as

implied by Merton’s ICAPM. In the symmetric GARCH-t model the estimate of δ

is considerably greater (4.584) than in the GARCH-z specification allowing for con-

ditional skewness (3.377). Both estimates are reasonable compared to most previous

estimates of the relative risk aversion of the representative agent (see Hall, 1988).

However, as will be shown below, the estimated models are quite different in terms

of fit and average predicted excess returns.

Because the null hypothesis a = b is clearly rejected by the LR test (p-value

3.123e-8) our model implies significant conditional skewness which increases with

conditional volatility. Moreover, because ba < bb the conditional skewness is negative
as expected based on the discussion on the volatility feedback effect in Section 2.

Thus, the GARCH-z model captures the feature that large negative shocks, and hence

returns, are more likely than positive ones when conditional variance is high. The

point estimate of the coefficient of skewness of the error term εt is —0.43 which is well

within reach of the z distribution (see Section 2.1). The same can be said about the

kurtosis. The estimated excess kurtosis of the error term εt is only about 0.8 (the

corresponding figure implied by the estimated t distribution barely exceeds unity).

In a related application to daily U.S. stock returns from 1885 through 1997, signif-

icant negative skewness was also found by Jensen and Lunde (2001). These authors

used a model based on the normal inverse Gaussian distribution (cf. section 2.1) but

their model for conditional mean was different from ours. Instead of the conditional

variance used here, it contained the conditional standard deviation whose estimated

effect on expected returns turned out to be negative. The main advantage of our

model over that of Jensen and Lunde (2001) is that it allows for separately estimat-
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ing the conditional skewness and GARCH-in-mean effect. In Jensen and Lunde’s

(2001) model a single parameter determines both. Because conditional skewness is

expected to be negative and the GARCH-in-mean effect positive for stock returns,

interpreting their estimation results is ambiguous. They explain the negative estimate

as “the need to account for negative skewness in the return distribution dominating

the GARCH-in-mean effect”. Moreover, from economic point of view, the obtained

result cannot be interpreted in the same way as ours because the conditional mean

was specified differently and because pure returns instead of excess returns were used.

According to the diagnostic tests in Table 1 the specification is adequate: there is

no unmodeled autocorrelation or autoregressive conditional heteroskedasticity in the

residuals. The estimated model is also stationary as the estimated value of the left

hand side of inequality (9) with k = 1 is 0.883. Further evidence on the fit is provided

in Figure 1 that depicts a plot of the logarithmic density of the residuals against its

theoretical counterpart. The logarithmic scale is useful in detecting deviations on

the extreme tails. With the exception of the left tail the differences are minor, and

the discrepancy is caused by a single observation (October 1987 stock market crash).

The model was also estimated without this exceptional observation, but the results

remained virtually the same. Also, the conclusions are not reversed by using robust

standard errors.

To further check the fit of the GARCH-z and GARCH-t specifications, we com-

pared the conditinal variance series predicted by each model to the monthly realized

variance obtained by summing squared daily returns over each month. This compari-

son is restricted to the period beginning in July 1963 due to availability of data. Two

criteria, the mean square error (MSE) and mean absolute error (MAE) are employed,

and the significance of the differences is tested by means of the Diebold-Mariano

(1995) test. As the results in Table 2 show, the GARCH-z specification is more accu-

rate in terms of both criteria at least at the 5% level of significance. In addition to the

overall comparison comprising all observations, figures for three categories of equal

size sorted by the magnitude of the realized variance are reported. It is seen that,
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even though the GARCH-z model has a better fit in each category, the differences are

not significant when the realized variance is high. It is thus only in the less volatile

periods, especially in the medium volatility category, that there are significant dif-

ferences between the two specifications. In the low and middle variance ranges the

conditional variance predictions of the GARCH-t model are systematically too high

compared both to realized variance and the predictions of the GARCH-z model.2

This follows because the symmetric model predicts high conditional variance after

large shocks, irrespective of their sign, and is thus likely to predict too high variance

after large positive shocks. Because of volatility clustering, this is a somewhat lesser

problem when volatility is low. Systematically higher conditional variance coupled

with the higher estimate of δ in the GARCH-t model translates into too high risk

premia in the middle volatility range. It is likely that the estimation is driven by the

influential observations in the high-volatility range, and for the GARCH-t model to

be able to capture the risk-return tradeoff correctly there, δ must be great. Hence,

the estimate of δ is far too great for the observations in the low and middle volatility

ranges. These findings indicate that the GARCH-z model is more flexible due to its

ability to predict high volatility only following a large negative shock, in line with the

volatility feedback effect.

In addition to conditional variance comparisons, also the predicted average excess

returns can be compared to the actual average excess return. Already French et al.

(1987) pointed out that the GARCH-t predictions of average excess returns are far

too high. This finding is verified in Table 3 which shows that the average excess return

predicted by the GARCH-t model is over 42% higher than the actual value. For the

2Out of the 158 observations in the middle range, for 152 the conditional variance predicted

by the GARCH-t model is greater than the realized variance and for 93 of these greater than the

conditional variance predicted by the GARCH-z model. In the low variance range the GARCH-t

model always predicts too high conditional variance and for 87 observations the prediction exceeds

that of the GARCH-z specification. In the high volatility range the corresponding figures are 69 and

78, indicating no systematic pattern.
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GARCH-z model the corresponding difference is negligible (5%). As a robustness

check the sample period was divided into two periods of approximately equal length.

As far as the GARCH-t model is concerned, the relative difference is virtually the

same in both subsample periods, whereas the GARCH-z model yields a better fit in

the 1975—2002 period compared to the 1946—1974 period or the entire sample.

Because of the asymmetry inherent in the GARCH-z model, shocks of different

size and sign have different effects on the conditional variance. This is revealed by the

news impact curve (NIC) of the estimated model. Originally Engle and Ng (1993)

defined the NIC as

E (ht+1|ht = h, ut = λ) ,

i.e., the expectation of the conditional variance next period conditional on a current

shock of size λ, where the shock is taken to be the error term ut. Using this definition

we could write the NIC of the GARCH-z model as

NIC (ht+1|ht = h, ut = λ) = ω + α1λ
2 + β1h,

i.e., similar to the NIC of the GARCH-t model. However, following Anderson et al.

(1999), we find it more natural to define the shock as the innovation εt in which case

the NIC of the GARCH-z model becomes

NIC (ht+1|ht = h, εt = θ) = ω + αh (θ − κ)2 + β1h.

This expression shows that if the innovation is defined as standardized news, the NIC

is asymmetric. The news impact curves of the estimated model specifications com-

puted with εt as the shock are depicted in Figure 2. The NIC of the GARCH-t model

is, of course, symmetric around zero, while in the GARCH-z model large negative

shocks have greater impact on the conditional variance than large positive shocks.

Moreover, the NIC does not take a minimum at zero but at 0.8, suggesting that

slightly positive news is required for the market to be as tranquil as possible while

’no news’ causes higher volatility. This is in line with the findings of Anderson et al.

(1999) who fitted a smooth transition GARCH model to daily US stock returns from
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January 1990 to October 1995. It is worth pointing out that this result is not obtained

by using Hansen’s (1994) autoregressive conditional density model with a skewed ver-

sion of the t distribution. Even though that model is capable of capturing conditional

skewness, its NIC has properties similar to those of the symmetric GARCH-t model.

In Figure 2 the NIC’s are plotted for h = 0.01. A change in the value of h would

only move the NIC of the symmetric GARCH model vertically, whereas the NIC of

the GARCH-z model becomes flatter with decreasing h. In other words, according to

that model the impact of any kind of news is nearly the same in very tranquil times,

while the discrepancy between the impact of different kinds of shocks increases with

increasing volatility.

It is noteworthy that even though some previous GARCH specifications, such as

the GJR-GARCH (Glosten et al., 1993) and EGARCH (Nelson, 1991), also imply

asymmetric news impact curves, it is only the so-called leverage effect (Black, 1976,

and Christie, 1982) that they are capable of capturing. This effect was first pointed

out by Black (1976) and Christie (1982) who suggested that an inrease in risk and,

hence, volatility is followed by a negative shock causing an increase in financial lever-

age due to a drop in the stock price. The general conclusion in the previous literature

is, however, that the leverage effect does not play a major role in explaining the

observed asymmetry (see, e.g., Bae et al., 2004, and the references therein). As a

check, we also fitted a GJR-GARCH-M-t model to the excess return data, but the

results did not deviate much from those of the GARCH—M-t model, and are thus not

reported. This outcome lends support to the finding in the previous literature that

the volatility feedback effect is more important than the leverage effect in explaining

asymmetries in conditional volatiltity.

4 Conclusion

This paper has clearly demonstrated the importance of allowing for conditional skew-

ness when modeling stock returns. We modeled skewness by using the z distribution
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which can be thought of as an analytically simple special case of the family of a

variance-mean mixtures of normal distributions. As in Andersson (2001) and Jensen

and Lunde (2001), one may also consider other members of this family. At least in the

postwar U.S. stock returns the conditional variance and risk premia predicted by the

GARCH-M model based on the symmetric t distribution are systematically too high.

In contrast, the conditional variance predicted by the GARCH-M model based on the

skewed z distribution turned out to be much closer to the realized variance and the

deviation of the average predicted excess return from the actual value is strikingly

small. These findings lend support to the usefulness of the more flexible specification

for allowing conditional skewness. The results can also be interpreted in favor of

volatility feedback as the form of conditional skewness incorporated in our model is

in line with that effect.
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Figure 1: Plot of the logarithmic density of the residuals of the GARCH(1,1)-M-z

model (solid line) against the theoretical logarithmic density (dashes).
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Figure 2: News impact curves of the GARCH(1,1)-M-z (solid line) and GARCH(1,1)-

M-t (dashes) models.
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Table 1: Results of the GARCH(1,1)-M-z and GARCH(1,1)-M-t models for the excess

stock return series.
GARCH(1,1)-M-z GARCH(1,1)-M-t

δ 3.377 4.584

(0.966) (0.939)

ω 0.0002 0.0001

(0.0001) (6.483e-5)

α1 0.076 0.091

(0.021) (0.028)

β1 0.761 0.834

(0.065) (0.050)

γ1

a 1.564

(0.599)

b 3.128

(1.197)

ν 10.218

(3.158)

log likelihood 1222.54 1209.53

AR(1) a 0.852 0.189

ARCH(10) b 0.420 0.520

The figures in the parentheses are standard errors computed from the
inverse of the final Hessian matrix. The figures reported for the diagnostic
tests are marginal significance levels.

aThe alternative model is the corresponding AR(1)-GARCH(1,1)-M
model, and under the null hypothesis of no remaining autocorrelation the
coefficient of the AR(1) term equals zero. The test is robustified against
misspecified conditional variance following Wooldridge (1990, Example
3.3).

bA test for remaining ARCH of order 10. For details see Lundbergh
and Teräsvirta (2002).
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Table 2: Comparison of the predictive accuracy of the GARCH(1,1)-M-z and

GARCH(1,1)-M-t models for the excess stock return series.

Realized variance

Criterion Model All Low Medium High

MSE GARCH-z 8.01e-6* 1.14e-6* 9.10e-7** 2.19e-5

GARCH-t 8.15e-6 1.08e-6 1.03e-6 2.21e-5

MAE GARCH-z 0.00121** 0.00100* 7.92e-4** 0.00175

GARCH-t 0.00118 0.00103 8.53e-4 0.00176

Symbols * and ** denote significance in the Diebold-Mariano test at the 5% and 1% levels,

respectively.

Table 3: Average excess returns computed from the data and predicted by the

GARCH(1,1)-M-z and GARCH(1,1)-M-t models.

Actual GARCH(1,1)-M-z GARCH(1,1)-M-t

1946—2002 0.0059 (0.0429) 0.0062 (0.0029) 0.0084 (0.0034)

1946—1974 0.0053 (0.0396) 0.0057 (0.0026) 0.0076 (0.0026)

1975—2002 0.0066 (0.0461) 0.0066 (0.0030) 0.0093 (0.0038)

Standard errors in parentheses.
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