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ABSTRACT

This thesis utilizes factor models to test the predictions of macroeconomic theory and

introduces a new model for estimating structural relations in the economy. Factor

models have proven useful in overcoming limited information bias. Limited information

bias occurs because the information set of the actual decision makers in the economy is

larger than the information set captured by conventional empirical models (i.e. small

VARs). With the help of factors we can model a large dataset by using a small model

of factors that still capture the majority of aggregate dynamics in the economy.

In the first chapter, joint work with Massimiliano Marcellino, we introduce a new empir-

ical model: mixed frequency structural factor augmented VAR model. We show that in

a mixed data frequency setting the model reduces aggregation bias and provides more

precise estimates of factors and impulse responses, than competing models. We support

this claim by means of a detailed Monte Carlo examination that also tests the new

estimation procedure that we design. Finally we provide three empirical applications

(monetary policy, oil and government expenditure shock) to show the usefulness of the

model.

In the second chapter I utilize a dynamic factor model to test the predictions of the

rational inattention theory as put forward by Mackoviak et al. (2009). I first estimate a

time varying parameter dynamic factor model on US post-war data on macroeconomic

variables and sector prices. I identify impulse responses of three macroeconomic shocks

and sector specific shocks to prices. I then regress price impulse responses, void of the

influences of changing variances, on the variances of the shocks, to test the predictions

of the rational inattention model over time.
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1 Chapter

Large scale factor models have been often adopted both for forecasting and to identify

structural shocks and their transmission mechanism. Mixed frequency factor models

have been also used in a reduced form context, but not for structural applications, and

in this paper we close this gap. First, we adapt a simple technique developed in a small

scale mixed frequency VAR and factor context to the large scale case, and compare the

resulting model with existing alternatives. Second, using Monte Carlo experiments, we

show that the �nite sample properties of the mixed frequency factor model estimation

procedure are quite good. Finally, to illustrate the method we present three empirical

examples dealing with the e�ects of, respectively, monetary, oil, and �scal shocks.
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1.1 Introduction

Since the pioneering work of Sims [1980], vector auto-regressions (hereafter VARs) be-

came a dominant device to identify structural shocks and investigate their propagation

mechanism. But VARs are not without �aws. To prevent the curse of dimensionality,

they are estimated on a small set of macroeconomic variables. In contrast, economic

agents and decision makers generally consider a large set of variables when making their

decisions. This discrepancy in information sets can generate statistically biased shock

responses and economically counterintuitive results. For example, a typical monetary

policy VAR su�ers from a price puzzle, namely, after a negative monetary policy shock

(unexpected rise in the policy rate) prices initially increase.

Recently, Bernanke et al. [2005] introduced a way to overcome the curse of dimen-

sionality in a structural VAR, see also Marcellino et al. [2005], Forni et al. [2009] and

Andreou et al. [2013]. The relevant large set of economic variables are assumed to be

generated by a factor model, where few common factors explain the bulk of the variation

in all the variables and therefore provide an exhaustive summary of the relevant informa-

tion. Factors, generally estimated by (static or dynamic) principal components, do not

have a clear economic interpretation. However, they can be modeled with a VAR, possi-

bly augmented with a few observable variables, and the VAR used to identify structural

shocks. In a second step, Bernanke et al. [2005] estimate how the factors load on the

macroeconomic variables, and can therefore investigate how the structural shocks a�ect

each of the large set of variables under analysis. The combination of the factor model for

the variables and the VAR for the factors is known as a factor augmented VAR (hereafter

FAVAR).

Typically a FAVAR is estimated on a dataset comprised of variables of the same

frequencies. For example, Bernanke et al. [2005] estimate a monetary policy VAR using

only monthly variables. This implies that a monthly FAVAR leaves out potentially

important variables that are observed at other than monthly frequencies. For example, it

leaves out real GDP, which is accepted as the most accurate measure of economic activity

but is only available at quarterly frequency. One could aggregate monthly variables to a

quarterly level and estimate the model on a quarterly frequency. But then the quarterly

model is subject to aggregation bias, meaning that important information gets lost in

the aggregation process. This suggests to estimate FAVARs combining data at di�erent

frequencies, and various techniques are now available, see e.g., Giannone et al. [2006],

Jungbacker et al. [2011], Banbura and Modugno [2010], Mariano and Murasawa [2010]

and Frale et al. [2010]. All these studies on mixed frequency (MF) factor models are

not of structural nature but focus on reduced form analyses, such as nowcasting and
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forecasting quarterly GDP growth using monthly or higher frequency indicators.

In this paper we introduce an alternative method to estimate a large MF factor

model. We start from the Doz et al. [2011] procedure for estimating plain factor models

and extend it to allow for the presence of mixed frequency data, where mixed frequencies

are handled along the lines of Mariano and Murasawa [2003] and Mariano and Murasawa

[2010]. We then assess the �nite sample performance of our procedure in a set of Monte

Carlo experiments, comparing it with that of alternative estimators for MF factor or

FAVAR models. It turns out the procedure performs quite well even in small samples

not only in terms of factor estimation but also to recover the impulse response functions

to structural shocks. Finally, it can be easily modi�ed to allow for observable factors, in

high or low frequency.

Our second contribution, as anticipated, is to show how to conduct structural eco-

nomic analyses using MF FAVAR models. So far there are few examples of structural

analyses based on mixed frequency data, see e.g. Giannone et al. [2010], Chiu et al.

[2011], Ghysels [2012], Foroni and Marcellino [2013] and Foroni and Marcellino [2014].

However, all these papers are based on VAR or DSGE models. We present three empirical

examples.

First, we add quarterly variables to the monthly dataset of Bernanke et al. [2005],

in particular GDP, and investigate how monetary policy shocks identi�ed at monthly

level a�ect GDP and other key macroeconomic variables. Second, again using a mixed

frequency dataset, we study how monthly oil price shocks propagate to quarterly GDP.

Finally, in our third application, we impose quarterly government expenditure as an

observable factor, governed by the sum of three latent monthly expenditure growth rates.

Using this speci�cation, we can evaluate how monthly government expenditure shocks

a�ect the economy. In all cases we �nd reasonable results in economic terms from the

MF FAVAR, sometimes with interesting di�erences with respect to the standard FAVARs

and VARs.

The remainder of the paper is structured as follows. In Section 2 we introduce the

MF FAVAR. We �rst present dynamic factor models, next explain how we suggest to

estimate them in the presence of mixed frequency data, then compare our proposal

with other methods suggested in the literature, and �nally we discuss estimation in the

presence of some observable factors. In Section 3 we use Monte Carlo experiments to

analyze the performance of our estimation method when varying the cross-sectional (n),

temporal (T ) dimensions, the amount of missing observations (generated by the presence

of the mixed frequency data) and the frequency of the factors. In Section 4 we present

the three empirical applications, studying the e�ects of, respectively, monetary, oil, and
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�scal shocks. Finally, in Section 5 we summarize our main results and conclude.

1.2 Mixed Frequency FAVAR

1.2.1 The single frequency FAVAR model

We assume that an n dimensional zero mean stationary vector of variables yt can be

represented as a sum of two components, a common component (Λft) and an idiosyncratic

component (et):

yt = Λft + et. (1)

ft is a k × 1 dimensional vector of factors that are common to all the variables in yt,

with the number of factors being (much) smaller than the number of variables (k < n).

Factors capture the majority of comovements in the evolution of the individual variables.

Λ is an n × k matrix of factor loadings. The loadings determine how the factors a�ect

the dependent variables. Λft is called common component of the factor model because

it represents that part of the variability of yt that originates from the k factors that are

common to all the n variables. On the other hand, et is an n× 1 zero mean vector that

represents the idiosyncratic component of the factor model. This source of variability in

yt can not be captured by the k common factors and is variable speci�c.

Equation (1) represents a classic factor model. If the n × n covariance matrix of

the idiosyncratic components (E(ete
′
t) = Ψ) is a diagonal matrix, then the model in (1)

becomes an exact factor model. A diagonal covariance matrix can be too restrictive for

macroeconomic applications, so we let et have some limited cross correlation. Such model

is called an approximate factor model.

Speci�cally, following Doz et al. [2006], we impose two conditions:

A1) 0 < λ < lim infn→inf
1
nλmin(Λ′Λ) ≤ limsupn→infλmax

1
n(Λ′Λ) < λ < inf .

A2) 0 < ψ < lim infn→infλmin(Ψ) ≤ lim supn→infλmax(Ψ) < ψ < inf .

λmin and λmax indicate the smallest and the largest eigenvalues of a matrix. Condi-

tion A1 ensures that the factors are pervasive, that is, that they a�ect most dependent

variables. Condition A2 ensures that the variance of the idiosyncratic components is

greater than zero, but limits the extent of the cross-correlation. Again as in Doz et al.

[2006], et can be also serially correlated, see their Assumption (A3).

The common factors and the idiosyncratic components are assumed to be uncorrelated

at all leads and lags, E(fjteis) = 0 for all j = 1, ..., k, i = 1, ..., n and t, s ∈ Z.
In equation (1), Λ and ft are unobserved and need to be estimated. This poses an

identi�cation problem because there are di�erent combinations of Λ and ft that deliver
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the same common component. To identify the factors we assume that the �rst k×k entries

of the loadings matrix form an identity matrix: Λ =

[
Ik

Λ∗

]
, where Λ∗ is an (n − k) × k

matrix of unrestricted loadings. This method of identi�cation is also used in Bernanke

et al. [2005].

Finally, we assume that the factors follow a p-th order VAR:

ft = A1ft−1 + ...+Apft−p + ut, (2)

where p is �nite and ut is a k dimensional Gaussian white noise process with covariance

matrix Σ.

The model presented in equations (1) and (2) represents a static form of a dynamic

factor model. It is called the static form because factors enter equaion (1) without lags.

As shown in Stock and Watson [2005] the static form of a dynamic factor model nests the

dynamic representation. Suppose that static factors ft are composed of dynamic factors

qt (r × 1) and their lags: ft = [qt, qt−1, ..., qt−g]
′, such that k = r × (g + 1). We can then

rewrite the model into the dynamic form:

yt = λ̃(L)qt + et, (3)

qt = ã(L)qt−1 + vt, (4)

where λ̃(L) and ã(L) represent lag polynomials in the dynamic representation and vt the

fundamental shocks that govern the dynamic factors. The number of fundamental shocks

(vt) can be smaller than the number of static shocks (ut): ut = G × vt. Where G is of

dimension k × r and r ≤ k. In the static representation of the factor model we need to

chose k and p high enough to capture all the e�ects that the dynamic factors and their

lags (λ(L)qt) exert on the dependent variables. We can then use the static factor model

to uncover the e�ects that the fundamental shocks have on the economy.

Equations (1) and (2) represent the (single frequency) FAVAR model.

1.2.2 Estimation of the single frequency dynamic factor model

Doz et al. [2006] propose to estimate the model in (1) and (2) using a Quasi Maximum

Likelihood (QML) approach where the maximum likelihood estimates of the model are

obtained using the expectation-maximization algorithm (hereafter EM). The EM algo-

rithm iterates between two steps. In the �rst (maximization) step, it calculates the
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maximum likelihood estimates of the factor model parameters (θ̂ =
{
λ̂, Â, Ψ̂,Σ̂

}
) condi-

tional on the estimates of the factors. In the second (expectation) step, conditional on

the parameter estimates, it uses the Kalman �lter-smoother to get the factor estimates

(f̂t) and the likelihood function of the model. The estimated factors are then used to

produce another set of parameter estimates, then another set of estimated factors, and

so on until convergence.

When calculating the maximum likelihood estimators, we assume that the idiosyn-

cratic shocks et are not auto-correlated and cross correlated, although they often are.

Hence, more properly, we obtain QML estimates, following White [1982]. Doz et al.

[2006] show that this QML approach is valid for estimating the model parameters and

the factors, even when the approximating model is mis-speci�ed and the shocks exhibit

week cross correlation and auto-correlation. They show that the QML estimators are

consistent for the true factor space, with a consistency rate equal to min
{√

T , n
log(n)

}
.

The initialization of the EM algorithm requires (consistent) estimates of the factors.

For this, we can use principal components (PCA), since consistency of PCA estimates of

the factors results from Stock and Watson [2002b], Bai and Ng [2002], Bai [2003].

1.2.3 Estimation in the presence of mixed frequency data

We now extend the Doz et al. [2006] estimation procedure summarized in the previous

subsection in order to handle mixed frequency data. Next, we compare our proposal with

two alternative methods.

We closely follow the notation used in Mariano and Murasawa [2010], to whom we

refer for additional details. We assume that we have two types of variables, low frequency

and high frequency (e.g. quarterly and monthly data). Let yt,1 represent an n1 variate

low frequency vector of variables, that are observed only every third period (e.g. only

in periods t = 3, 6, 9, ...). Let yt,2 represent an n2 vector of high frequency variables

that are observed in every period. As before, the total number of variables is n (where

n = n1 + n2) and yt = [y′1,t, y
′
2,t]
′ is an n × 1 dimensional vector. We assume that

underlying y1,t there is a process y∗1,t. Most of the time y∗1,t is unobservable, except for

every third period when it has the same value as the observable y1,t
1. We adopt the same

model as in the previous section, but this time we assume that the common factors load
1This implies that y1,t is obtained via point in time sampling from y∗1,t. The method can be extended

for di�erent sampling schemes and di�erent frequency mis-matches. In fact, in the practical implementa-
tion of the mixed frequency factor model we assume that real GDP is a geometric mean of an unobserved
monthly process. To preserve clarity we present the method by assuming point in time sampling.
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on the (sometimes unobservable) process y∗t instead of on (observable) yt directly:

ft = A1ft−1 + ...+Apft−p + ut, (5)

y∗t = Λft + et, (6)

where y∗t = [y
′∗
1,t, y

′
2,t]
′. Since y∗t is unobservable, we need to link it to the observables yt.

This is done with the following equation:

y+
t = Cty

∗
t +Dtvt (7)

where:

y+
t =

[
y+

1,t

y2,t

]
and y+

1,t =

y1,t when y1,t is observed

v1,t when y1,t is not observed

vt =

[
v+

1,t

0

]
and v+

1,t =

0 when y1,t is observed

v1,t when y1,t is not observed

Ct =

[
C1,t : 0n2

0n1 : In2

]
and C1,t =

In1 when y1,t is observed

0n1 when y1,t is not observed

Dt =

[
D1,t

0n2

]
and D1,t =

0n1 when y1,t is observed

In1 when y1,t is not observed

In1 indicates an identity matrix of size n1×n1 and On1 a matrix of zeros of size n1×n1.

We assume that v1,t is a normally distributed random vector of size n1, v1,t ∼ N(0, In1).

But, although vt is a random vector, it is assumed that all the realizations of the vector

vt are simply zero. Hence, the measurement equation (7) is rewritten as if it consists

of the observable variables only, and when the data is missing the missing data are

replaced by a N(0, In1) random vector v1,t whose realizations are zero.2 Mariano and

Murasawa [2010] propose this approach since it implies that equations (5) and (7) form

a state space model where, from the point of view of the Kalman �lter-smoother, all the

variables are observed. Because the loadings of the missing data points are set to zero

for the missing variables, the Kalman gain has zeros in the columns that correspond to

the missing variables, so that when forecasting a new value of the state vector, the errors

corresponding to the missing observation do not contribute to the new value of the state

and to the new value of the state variance. The Kalman �lter-smoother simply skips the

in�uence of the missing observations when it estimates the factors and the likelihood.

It is convenient to take one last step and transform the state equation. First we
2The value of realizations makes no di�erence for the method to work.
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use the companion form for the factor VAR model in (5). That is, we shift the factor

lags into the state vector st, so that the resulting model becomes a VAR(1) model in st.

Second, we insert equation (6) into equation (7). The resulting model has the familiar

state space form:

st = Ast−1 +But (8)

y+
t = Htst + ṽt (9)

where

st =


ft (k×1)

ft−1:(k×1)
...

ft−p+1:(k×1)

 , A =


A1:(k×k) : · · · : Ap:(k×k)

I(k×k) . . . 0(k×k)
...

. . .
...

0(k×k) . . . Ik 0(k×k)

 , B =

[
Σ

1
2

uu:(k×k)

0 :([k(p−1)]×k)

]
.

The matrix Ht in equation (7) is de�ned as:

Ht = [CtΛ︸︷︷︸
n×k

0:(n×k) . . . 0:(n×k)︸ ︷︷ ︸
n×[(p−1)×k]

]

and ṽt = Ctet +Dtvt is a compound error term, where Dt and vt are de�ned as before.

It is clear now that the model in equations (8)-(9) represents a simple state space

model that can be estimated using the Kalman �lter-smoother. It can also be extended

by adding a moving average component for the idiosyncratic shocks, to explicitly account

for auto-correlation. This can be done by adding lags of the idiosyncratic shocks to the

state vector and adjusting the matrices accordingly.

The model in equations (8)-(9) is slightly di�erent from the model presented in Mar-

iano and Murasawa [2010]. They plug the idiosyncratic error term into the state vector.

This greatly increases the dimension of the state vector, which is not desirable in applica-

tions with large datasets since the estimation becomes very slow, or in practice infeasible.

We instead form a compound error term. They estimate the model using a quasi-Newton

method. We use a simpler approach based on Doz et al. [2006] QML estimator.

The starting estimate for the factors can be obtained by the EM algorithm of Stock

and Watson [2002a], which is a PCA approach applied to an unbalanced dataset. We then

use the EM algorithm as described in the previous section to get the maximum likelihood

estimates of the parameters and the factors. Our procedure is more e�cient than just
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using Stock and Watson [2002a], and can more easily handle a variety of aggregation

schemes.

1.3 Comparison with other estimation methods for MF factor models

Harvey and Pierse [1984] �rst handled missing data in the Kalman �lter context, by

modifying the updating and backdating equations of the �lter. This approach can become

cumbersome when handling systematically missing data, as in the mixed frequency case.

Besides the PCA based EM algorithm of Stock and Watson [2002a] mentioned above,

the two computationally feasable and closest approaches to ours are those by Giannone

et al. [2006] and Banbura and Modugno [2010].

Giannone et al. [2006] exploit the fact that the value for a missing data point is

irrelevant if its variance is in�nite. The Kalman �lter puts zero weight on such points

and the missing value does not a�ect the estimates. Banbura and Modugno [2010] use

a selection matrix that modi�es the Kalman �lter smoother formulae so that only the

available data are used in the estimation.

In practice, Giannone et al. [2006], Banbura and Modugno [2010] and our procedure

induce the Kalman �lter to skip the missing observations. Hence, not surprisingly, they

produce numerically equal results. We believe that our procedure is easier to under-

stand and more closely related to the approach to handle mixed frequencies in other

types of models, such as VARs. Moreover, as we will see in the next section, it can

be easily modi�ed to allow for some observable factors, which is relevant for economic

applications.3

1.4 Estimation in the presence of observed factors

Bernanke et al. [2005] assume that, in a FAVAR model for a large set of same frequency

variables, one of the factors is observable. It coincides with a short term interest rate

as economic theory suggests that monetary policy should a�ect most variables in the

economy, at least in the short term, and therefore it is pervasive. This helps both

structural shock identi�cation and the interpretation of the impulse response functions.
3Jungbacker et al. [2011] introduce a more complex procedure based on two di�erent state space

representations. A normal representation for when all data are available and a modi�ed representation
for when there are missing data. In the modi�ed representation they add the missing data into the state
vector, so that missing values are estimated together with the factors, we refer to them for additional
details. Jungbacker et al. [2011] report that there are substantial computational gains with their the
method. We achieve similar gains because instead of putting the error term into the state vector, as
in Mariano and Murasawa [2010], we form a compound error term, leaving the size of the state vector
unaltered.
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Hence, we now consider how observable factors can be treated in a mixed frequency

context.

To ease the exposition, let us assume that we have only two factors, one latent and one

observable. The model is the same as in equations (5)-(7), that we repeat for convenience:

ft = A1ft−1 + ...+Apft−p + ut (10)

y∗t = Λft + et (11)

y+
t = Cty

∗
t +Dtvt (12)

where ft is now [f1,t, it]
′. f1,t is a latent unobservable factor as before and it is an

observable factor, in our example the interest rate. Let y+
N−1,t represent all the variables

in y+
t , except the interest rate. Further, assume that the interest rate is ordered last,

in the N th place, in the mixed frequency vector of the dependent variables. Then the

vector of dependent variables is y+
t = [y+′

N−1,t, it]
′.

For simplicity, let us now focus on the last row of equation (11), the interest rate

equation, since nothing changes for other parts of the FAVAR model. The last equation

is:

it = ΛNft + eN,t, (13)

and, since it coincides with the observable factor, it must be ΛN = [0, 1], eN,t = 0 for

all time periods. The corresponding variance and covariances of the error term of the

interest rate equation are also zero (ΨN,i = Ψi,N = 0, where i = 1, ..., N).

The model can be then estimated using the EM procedure introduced in Section 2.3.

Note that a similar procedure can be used when the observable factor is a low frequency

variable.

1.5 A Monte Carlo Evaluation of the MF Estimation Procedure

Doz et al. [2006] prove the consistency of the QML estimator. Since our speci�cation

is nested in their model, the estimation procedure remains consistent. To verify this

statement and asses the �nite sample performance of the procedure when using mixed

frequency data and observable factors, we set up a Monte Carlo experiment. We monitor

how well the method uncovers the factors and impulse responses (hereafter IR) of the

dependent variables to shocks in the observable factors, conditional on the sample size T ,

the size of the cross section n, the number of low frequency variables and the frequency

of the factors. We focus on shocks to the observable factor since this case was not
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considered in the previous literature and it is related to the empirical applications that

we will present in the next section, but similar results apply for shocks to unobservable

factors.

We use a modi�ed version of the data generating process (hereafter DGP) commonly

used in a same frequency setting, see among others Stock and Watson [2002b],Doz et al.

[2006] and Doz et al. [2011]. Following Doz et al. [2006], we write the DGP as:

yt = Λft + et,

ft = A1ft−1 + ...+Apft−p + ut,

et = d1et−1 + · · ·+ dqet−q + vt,

Let Λij represent the ijth element of Λ, where i = 1, ..., n and j = 1, ..., k. We assume

Λij ∼ i.i.d.N(0, 1). Let aij(l) represent the ijth element of Al, where l = 1, ..., p. We

assume:

aij(l) =

1− ρ if i = j

0 if i 6= j
, i, j = 1, ..., k,

and ut ∼ i.i.d.N(0, (1− ρ2)Ik). Let dij(l) represent ijth element of dl, where l = 1, ..., q.

We assume:

dij(l) =

1− d if : i = j

0 if : i 6= j
, i, j = 1, ..., n,

and vt ∼ i.i.d.N(0, T ). And, �nally, we assume that the elements of T satisfy:

τij =
√
αiαjτ

|i−j|(1− d2), i, j = 1, ..., n,

αi =
βi

1− βi
Σk
j=1Λ2

ij , βi ∼ i.i.d.U([u, 1− u]).

This a standard factor data generating process. Note that the idiosyncratic shocks

are allowed to be auto-correlated and also weakly cross correlated, with cross correlation

governed by the parameter τ . T is a Toeplitz matrix. When τ is zero the model becomes

an exact factor model and T is a diagonal matrix. The parameter βi controls for the

ratio between the common component (Λift) variances and the idiosyncratic component

(eit) variances (where Λi is the ith row of Λ and eit the ith element of et). Following

Doz et al. [2006], we set it to 50%. u is a parameter that controls the cross sectional

heteroscedasticity. We set it to 0.5, which implies cross correlation with the closest two

adjacent time series equal to 0.5 (on average) and decays below 0.1 (on average) after

the forth closest series. Therefore, cross correlations between the idiosyncratic shocks
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are clustered.

We estimate the model using the approximating speci�cation that assumes no cross

correlation. Hence, the true data generating process is an approximate factor model and

we model it using an exact factor model.

We deviate from previous Monte Carlo analyses in two ways. First, we assume that

some of the variables are not observed all the time. This is done simply by �rst simulating

the model data and then deleting some of the observations in the data set. In particular,

assuming that t is measured in months, some variables are only observed at the end

of the quarter (so that all observations corresponding to the �rst two months of each

quarter are deleted). These are the low frequency variables in our simulation study.

Second, to align the Monte Carlo study with the MF structural FAVAR used in practice,

we assume that two factors generate the data and that one factor is observable. The

resulting simulated mixed frequency data set and the observable factor are then used to

estimate the space spanned by factors and to produce IRs of the dependent variables to

a shock in the observable factor.

We compare �ve di�erent estimators for the factors. First, the PCA estimator on

a data set without imposing the observable factor and without missing observations.

This in practice is not feasible, but we use it as a benchmark to asses the e�ects of

the missing observations. Second, the PCA estimator computed after dropping the series

with missing observations from the data set. Third, we use the Stock and Watson [2002a]

EM algorithm based approach to estimating factors from unbalanced datasets. Fourth,

we use the Doz et al. [2006] two step estimator4 where mixed frequencies are handled as

in Mariano and Murasawa [2010]. The two step estimator of Doz et al. [2006] is called a

two step estimator because in the �rst step they estimate the factors and the parameters

by using the PCA estimator and then use the estimated parameters in the second step,

where they re-estimate the factors using the Kalman �lter smoother approach. The

(modi�ed) Doz et al. [2006] estimator is just the �rst step in our estimation procedure.

Instead of stopping the estimation procedure after the �rst run of the Kalman �lter

smoother we continue with an EM algorithm5, and thereby obtain a QML estimator for

a mixed frequency data set with observable factors, introduced in the previous Section.

We inspect the performance of the estimators in uncovering both the space spanned

by the factors and the impulse responses of the dependent variables to a shock in the

observable factor. To gain further insight, we vary the number of time observations,
4Doz et al. [2006] estimates latent factors. We modify their method so that it can handle observable

factors as proposed in subsection 2.5.
5Note that in the two step estimator approach one needs to use the same identifying restrictions that

underly the PCA approach, otherwise it will produce biased estimates.
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size of the cross section, the number of low frequency variables and the frequency of the

observable factor.

1.6 Recovering the space spanned by the factors

In this section we investigate how well the alternative estimators uncover the space

spanned by the factors. We base the evaluation on the trace statistic, a multivariate

version of the R2 measure, also used in Stock and Watson [2002b], Giannone et al. [2006]

and Banbura and Modugno [2010]. It measures how close the estimated factors are to

the true factors which generated the data, and is de�ned as:

Trace(F ′F̂ (F̂ ′F̂ )−1F̂ ′F )

Trace(F ′F )
, (14)

where F = [F 1, F 2] are the true factors and F̂ = [F̂ 1, F̂ 2] their estimated version. The

trace statistic lies between one and zero, being equal to one when the factor space is

perfectly estimated.

We assume that one of the true factors is observable (i.e. we impose F̂ 2 = F 2),

therefore we only estimate the latent factor and the model parameters6. In Table 1 we

report the average trace statistic computed over 1000 replications for di�erent values of

n and T (n = 50, 100, 200, T = 50, 100, 200), and a �xed number of low frequency series

(d = 20). Four main �ndings emerge. First, for all methods the values increase with n

and/or T . Second, the values are already rather large for n = T = 50, suggesting that

the procedures work well also in �nite samples, notwithstanding the presence of missing

observations. Third, PCA on full sample, even though based on a larger information

set than the other methods, performs generally worse because the observable factor

is not imposed. Finally, the DGR and our MF estimators perform comparably and

slightly better than principal components, with a slight advantage in all cases for our

MF estimator.

Table 2 presents results for n = 200, T = 200 and a varying number of series with

missing observations: 20, 100, 180. While the results naturally deteriorate when the

number of missing observations increases, the average trace statistics remain quite good

also when 180 series are only observable on a quarterly basis, with values in the range

0.98 − 0.997. The rationale is that the factor structure is quite strong so that few
6For the �rst estimator, the unattainable PCA estimator on the full sample, we do not impose that

the second factor is observable. We do this to show the merit of introducing an observable factor, even
in a case when one compares it to an estimator where all the factors are latent but one observes all the
data.

7The trace statistic for our method performs even better than the competitors, if we compute the
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variables already contain substantial information on the factors, as indicated by the still

good performance of PCA applied on the reduced sample of monthly only observations.

However, adding the quarterly variables improves the trace statistic, the most so when

using our MF estimator.

Table 3 presents results for n = 200, T = 200 when the observable factor is of quarterly

frequency and varying number of series with missing observations: 20, 100, 180. Naturally

the results are slightly worse, compared to the case when the observable factor is of

monthly frequency, but the estimators still preform quite well. Our estimator does slightly

better than the other estimators, the more so when the number of quarterly series is high.

1.7 Recovering the impulse responses

In the preceding section we have seen that our MF method recovers quite well the space

spanned by the factors, slightly better than the competing methods. In this section

we investigate how well it uncovers the impulse responses to a shock in the observable

factor. We run two experiments. In the �rst experiment we compare the Stock and

Watson [2002a] EM algorting to handle factor estimation in unbalanced datasets with

our procedure. In the second experiment we investigate if the mixed frequency data

reduces the aggregation bias that is present when one instead aggregates all the variables

to a quarterly frequency.

In the �rst experiment we �x n and T to 200 and the number of quarterly variables to

100. We draw the factor loadings Λ at the �rst iteration and then retain the same Λ for

the remaining replications for comparability.8 We report the average estimates over 1000

replications. We explore the results along two dimensions. First, we compare the IRs

of the low frequency variables (with missing data) and of the high frequency variables.

Second, we investigate how the number of low frequency variables a�ects the IRs.

Figure 1 and Figure 2 plot the IRs of, respectively, the low frequency variables and

the high frequency variables. Each �gure contains IRs of the �rst 9 variables9 Solid black

lines with dots represents the true IRs. Solid red lines are the IRs obtained with the

Stock and Watson [2002a] algorithm, and the solid black lines the IRs obtained using our

procedure. As a measure of uncertainty, we also report the +/− 2 std. dev. con�dence

bands obtained from the Monte Carlo experiments with our approach, and represented

with dashed black lines.

trace statistic for the latent factor only.
8We repeated the experiment several times to make sure that a speci�c draw of Λ did not a�ect the

results.
9The variables are representative for the other variables. Note also that the loadings matrix is sampled

randomly, therefore one can consider the selected IRs as being chosen randomly.
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We observe from Figure 1 that the estimated IRs in general track the true IRs quite

closely. Comparing the IRs obtained with our procedure (solid black line) to the IRs

obtained using the Stock and Watson [2002a] procedure (solid red line) we note that

there are not many systematic di�erences, tough for most variables the IRs obtained

with our procedure are closer to the true ones, but only marginally so. From Figure 2,

the true and estimated IRs are in general even closer for the high frequency variables, and

the di�erences between our procedure and that based on the Stock and Watson [2002a]

factors are again small.

Figure 3 plots the IRs from an experiment where n = 200, T = 200, there are no

missing variables, but the observable factor is of quarterly frequency. In this case there

can be some larger discrepancies between the true and estimated responses, but our MF

FAVAR estimation method still generally outperforms the use of the Stock and Watson

[2002a] factors. This is likely due to the fact that our procedure explicitly takes into

account the model generating the quarterly factor whereas the Stock and Watson [2002a]

approach does not.

In the second experiment we investigate if the use of mixed frequency data reduces

the aggregation bias. In this experiment we �x n and T to 200. We then estimate three

models. In the �rst model we use quarterly data, in the second we use mixed frequency

data and in the last (empirically unfeasible) model we use monthly data. We set the

number of quarterly series in the mixed frequency dataset to 100. We compare the IRs

estimated on the monthly, mixed frequency, and quarterly datasets.10 In addition, to

make sure that the di�erences between the estimated IRs only result from the di�erent

types of datasets, we initialize the three models with the parameter values of the true

DGP.

Figure 4 plots the IRs of variables that are quarterly in the mixed frequency dataset

(�rst 9 variables) and Figure 5 plots the IRs of the variables that are monthly in the

mixed frequency dataset (the last 9 variables). In each �gure the black lines with dots

represents the true IRs, the black solid lines the IRs estimated with the monthly dataset

(dashed black lines are the +/− 2 std. dev.), solid gray lines are the IRs estimated on

the mixed frequency data, and the red lines the IRs estimated with the quarterly dataset.

The �gures show that the IRs estimated on a monthly dataset are in general very

close to those estimated on a mixed frequency dataset. In fact, the IRs estimated on the

monthly dataset are often not visible because they overlap with the IRs estimated on

the mixed frequency dataset almost perfectly (the solid gray line overlaps the solid black

10To facilitate comparison of monthly IRs with the quarterly IRs we "skip sample" the monthly IRs
to a quarterly frequency, namely, we record the monthly IRs only at times t = 1, 4, 7, ....
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line). Both estimated IRs track the true IRs (solid black line with dots) very closely.

This is natural because the sample size is quite large, the shocks belong to an always

observable factor and we used the true DGP to initialize the EM algorithms. Based on

this evidence, we conclude that our MF-S-FAVAR performs quite well in recovering the

true IRs, even of the quarterly variables.

We next compare the IRs estimated on the mixed frequency data (solid gray lines)

with the IRs estimated on the quarterly data (red lines). While the IRs estimated

on the mixed frequency data track the true IRs very closely, the IRs estimated on a

quarterly dataset sometimes depart from the true IRs, in particular in the short run. Two

sources drive this result. The shock variances of the model estimated on the quarterly

dataset are consistently overestimated, and the factor VAR parameters are consistently

underestimated, with the �rst type of bias dominating the latter. Hence, the aggregation

bias can be substantial, and the use of mixed frequency data can reduce it. Foroni and

Marcellino [2013] and Foroni and Marcellino [2014] obtain similar results for, respectively,

DSGE and structural VAR models.

In summary, this section shows that the MF-S-FAVAR, estimated using our method,

performs quite well in recovering the space spanned by the factors and the true IRs, even

in small samples. It also performs well when one of the observed factors is at quarterly

frequency and it reduces the aggregation bias. To further motivate the usefulness of

our method and illustrate its practical implementation, we next present three empirical

applications.

1.8 Empirical applications

1.8.1 Bernanke et al. [2005] Monetary Policy Shocks

In this �rst application we assess the e�ects of monetary policy measured at the monthly

level on quarterly GDP growth. We start with the original monthly FAVAR model put

forward by Bernanke et al. [2005]. To bypass other in�uences that could a�ect the

comparison, we use their same data set, Xt, consisting of 120 monthly variables from

February 1959 to August 2001. The variables summarize all the major developments in

the economy and include measures of real output, income and price indicators, interest

rates, employment indices, consumption variables, housing prices, etc. To facilitate com-

parability, we �rst estimate the same monthly model as in Bernanke et al. [2005], using

3 latent factors, one observable factor (the federal funds rate) and 7 lags for the factor

VAR. Bernanke et al. [2005] also use 3 latent factors and indicate that a larger number

does not change the results. Next, we add quarterly GDP growth to create a mixed
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frequency factor model, where quarterly GDP is modeled as a sum of three consecutive

unobserved monthly growth rates.1112.

Before discussing the results, it is important to consider as issue not addressed by

Bernanke et al. [2005], namely, the number of dynamic factors driving Xt, given the

assumed number of static factors (four in our case). We use the Stock and Watson [2005]

approach to determine their number.13 They suggest regressing each variable on own

lags and the lags of the static factors, recover the residuals (ε̃it, for i = 1...n), and test

how many factors drive them. The number of factors driving the estimated residuals is

equal to the number of dynamic factors driving the variables Xt. Table 4 displays the

values of the Bai and Ng [2002] information criteria associated with di�erent assumptions

regarding the numbers of static factors driving ε̃it's (q̂, with q̂ ≤ 4 where 4 is the number

of static factors we use for Xt). All criteria favor 4 static factors for ε̃Xit's and hence 4

dynamic factors for Xt. This implies that static factors for Xt are equivalent to dynamic

factors, and we can proceed with our structural analysis by identifying structural shocks

directly on the static factor VAR residuals.

Figure 6 presents the factors estimated by PCA (solid line) and those obtained with

our method (dashed line). It turns out that the �rst factor is smoother when estimated

using our method, and the opposite holds for the second estimated factor, but overall

the behavior of the three estimated factors is rather similar.

Using the monthly FAVAR model, Figure 7 reports the impulse response functions

of selected variables to a monetary policy shock identi�ed as in Bernanke et al. [2005]

(together with the 90% con�dence bands). In the same �gure, the dashed black lines

represent the IRF obtained using our estimation method for the MF-FAVAR model.

Overall, the IRFs are quite similar, and those obtained with our method are most of the

time statistically indistinguishable from the IRFs estimated using the Bernanke et al.

[2005] approach. This result is not surprising since both methods are based on consistent

parameter and factor estimators and, in addition, in this case there is only one quarterly
11Namely, yt = y∗t + y∗t−1+ y∗t−2, where yt is the quarterly GDP growth observed only every 3rd period

and y∗t represents the latent monthly GDP growth. The results are almost identical when we assume
that quarterly GDP growth is point in time sampled from monthly GDP growth. Small di�erences arise
when we assume that quarterly GDP is modeled as a geometric mean of unobserved monthly GDP, as
in Mariano and Murasawa [2010]. These alternative results are presented at the end of the section.

12It is not likely that adding a small number of quarterly series would a�ect the number of static
factors needed to model the economy. More so because the quarterly variables can be explained with
corresponding monthly variables (i.e. quarterly GDP can be explained with the factor closely related
to the monthly variables that represent economic activity and the GDP de�ator to the factor that
predominantly explains monthly prices.). In addition the IRs of monthly variables were not a�ected by
adding quarterly series.

13Bai and Ng [2007] test is not appropriate in our applications because the identifying assumption
underlying their test (ΛΛ′ = I) is violated.
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variable. However, our method can also handle mixed frequencies. Moreover, there are

some interesting and signi�cant di�erences. Policy rate and other interest rates show

stronger increase after a monetary policy shock. As a result there is also a stronger

reaction on the labor market. We estimate a stronger increase in unemployment and a

stronger decrease in employment. This is possibly due to a more marked decrease in the

capacity utilization rate after the monetary contraction.

In Figure 8, we report the response of the monthly (unobservable) GDP growth rate

to the monetary policy shock. For comparison, we add in the same graph the response of

monthly IP (with the 90% con�dence bands) calculated with the Bernanke et al. [2005]

method. The response of GDP has the same shape as the response of IP, although more

pronounced.

Finally, Figure 9 presents the IRs obtained when we model the GDP growth rate as a

geometric mean of the underlying latent monthly series, ln yt = 1
3(ln y∗t +ln y∗t−1+ln y∗t−2)

(see Mariano and Murasawa [2010] for details). Comparing Figure 7 and Figure 9, the

di�erences are either minor or negligible.

1.8.2 Bernanke et al. [1997] Oil Price Shocks

In the second application we reconsider the analysis of the e�ects of oil price shocks by

Bernanke et al. [1997]. They set up a small scale VAR for (in this order): 1) the log

of real GDP, 2) the log of the GDP de�ator, 3) the log of an index of spot commodity

prices, 4) an indicator of the state of the oil market and 5) the level of the federal funds

rate. As alternative indicators of the state of the oil market, they assess: the log of the

nominal PPI for the crude oil products, Hoover-Perez's oil prices, Mork's oil prices and

Hamilton's measure of oil price changes (we refer to Bernanke et al. [1997] for additional

details on these measures). They estimate the model on monthly data for the period

from 1965 to 1995, using interpolated data for real GDP and the GDP de�ator based on

a cubic spline.

Figure 10 reports the IRFs in Bernanke et al. [1997]. An oil price shock is followed by

a rise in output for the �rst year and by a slight short-run decline of prices, when using

the log level of oil prices. The other three measures produce better results, although,

immediately after the oil shock one can still observe a slight increase in output. Eventu-

ally, Bernanke et al. [1997] prefer the Hamilton's measure for oil prices since it induces

positive price response to an oil shock.

We now repeat their exercise but instead of estimating a VAR we estimate a MF

FAVAR, for their same sample period. We combine the set of slow moving monthly

variables in Bernanke et al. [2005] with quarterly GDP and GDP de�ator, both modeled
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as a sum of three latent monthly growth rates. We estimate a MF-FAVAR with two

unobservable factors14 and three observable factors, Ft = [f1
t , f

2
t , P

comm
t , P oilt , it]. The

�rst estimated factor turns out to be highly correlated with real measures of economic

activity, and the second one with measures of prices. Hence, the VAR for the factors is

similar to that by Bernanke et al. [1997], except that we use estimated factors from mixed

frequency data as proxies for real variables and price movements. Using the Stock and

Watson [2005] test, discussed in the previous application, we estimate that the number

of dynamic factors is 5. The results are presented in Table 5. Hence, we can proceed

using the static factors for the structural identi�cation.

We then compute the IRFs to oil price shocks using a Cholesky identi�cation, as in

Bernanke et al. [1997]. The upper panel of Figure 11 reports the IRFs and the lower

panel the cumulated responses (with the 90% con�dence bands15). After an oil shock,

real GDP immediately declines and the GDP de�ator rises after a short period, in line

with economic intuition, though the responses are not statistically signi�cant. After

about six months the monetary policy reacts by raising the interest rate, causing the

prices to decline but also further depressing the economy.

An advantage of using a large dataset is that we can also consider the reaction of

other variables. For example, in the lower panel of Figure 11, we report the responses of

the CPI, IP, employment and hourly earnings. All the reactions are in line with economic

theory, since IP decreases, CPI increases, and employment and earnings decrease. This

provides additional support for the adopted identi�cation scheme.

Figure 12 presents the IRs obtained when we model the GDP and GDP de�ator as

a geometric mean of the underlying monthly series. As in the previous application, the

responses of monthly variables are more or less equivalent.

Kilian and Lewis [2011] criticize the work of Bernanke et al. [1997] on the basis that

their results are driven by a speci�c period and a speci�c type of shock. Namely, they

note that monetary policy response to an oil shock stems from the 1979 oil crisis period

and they show that oil price shocks have little impact on interest rate and real output

if one instead uses the sample from 1988 onward. In addition Kilian [2009] notes that

not all oil price shocks are alike. The response of the economy depends on whether the

oil shock is an oil supply shock, demand shock or oil production shock. The IRs that we

obtain in our application are qualitatively similar to the IRs that Kilian [2009] obtains

14We also estimated the model using 3 and 4 latent factors. This did not a�ect the results signi�cantly.
The responses to oil shocks were qualitatively similar to the responses in the model presented above. We
present the results from the two latent factors model to facilitate comparability with the VAR model
used in Bernanke et al. [1997].

15Con�dence bands were estimated using sampling with replacement in 500 bootstrap replications.
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for an oil supply shock. Further investigation should address the issues raised by Kilian

and Lewis [2011] and Kilian [2009]. Since this paper is primarily concerned with showing

how MF-S-FAVAR can be applied to a large variety of models, we do not further pursue

this issue here.

1.8.3 Ramey [2011] Government Expenditure Shocks

In the last application we investigate how monthly government expenditure shocks (de-

rived from a MF FAVAR with quarterly government expenditure and a set of monthly

indicators) a�ect several macroeconomic variables on a monthly level. Due to its novelty,

this application requires a more detailed description. Hence, we describe, in turns, the

related literature, the model we implement, and the results.

Related literature There is no consensus in the literature on the e�ects of government

expenditure shocks. Most researchers agree that GDP and total hours worked increase

(though the extent of their reaction is debated), while there is less consensus on the reac-

tion of consumption and real wages. Among others, Fatas and Mihov [2001], Blanchard

and Perotti [2002] and Pappa [2005] �nd that spending shocks raise consumption and

real wage. This response is consistent with the new Keynesian models of Rotemberg and

Woodford [1989], Devereux et al. [1996] and Gali et al. [2007].

Ramey [2011] argues that the positive response of consumption and real wages could

be due to timing issues. These arise because government spending changes are announced

and are therefore known in advance, before they are implemented. Hence, forward look-

ing agents react to changes in government spending before the changes really occur. If

one does not explicitly account for this timing issue in an empirical model, consump-

tion and wages could spuriously increase in response to a government expenditure shock.

For this reason, Ramey [2011] uses other variables (instead of government spending) in

her study. Speci�cally, she uses Ramey-Shapiro war dates and shocks to government

spending forecasts. Government spending forecasts are forward looking variables, there-

fore their sudden changes are truly unanticipated. Ramey-Shapiro war dates are instead

constructed using a narrative approach. They are characterized as episodes when news-

papers suddenly began to forecast large rises in government spending due to prospects

of a war. Changes in these variables are less likely to be anticipated. Once controlling

for expectations, Ramey [2011] �nds that consumption and real wages fall as a response

to a spending shock. This result is consistent with the analysis done in Ramey and

Shapiro [1998], Edelberg et al. [1999] and Burnside et al. [2004], and with the response

in neoclassical theoretical models (e.g., Aiyagari et al. [1992]).
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We now try to shed additional light on the e�ects of government expenditure shocks

based on our MF-S-FAVAR framework.

Our MF-FAVAR Model To investigate the e�ects of expenditure shocks we esti-

mate a MF-FAVAR model where the majority of the dependent variables are sampled at

monthly frequency but one of the observable factors, government expenditures, is quar-

terly. This enables us to reduce the aggregation bias that is inherent in quarterly models

and to avoid the loss of information of low dimensional VARs.

We depart by replicating the MF-FAVARmodel of Boivin et al. [2013], who investigate

the e�ects of credit shocks on the economy. However, since our observable factor is

the growth rate in quarterly government expenditure, to align it with the dynamics of

monthly variables, we assume that the growth rate of quarterly government expenditures

is the sum of three consecutive monthly growth rates. These are unobservable but can

be estimated by the Kalman �lter - smoother, as detailed below, and jointly modeled

with the other factors summarizing the dynamics of the economy.

The dataset, kindly provided to us by Boivin et al. [2013], consists of the 124 monthly

time series used in Bernanke et al. [2005], but extended to June 2009. As discussed in

the �rst empirical application, the data consists of various nominal, �nancial and real

indicators (such as consumer prices, producer prices, stocks, commodities and exchange

rates, consumption expenditure, production indicators, interest rates and spreads, etc.),

from which we extract the factors that describe the dynamics of the economy.

We extract three latent factors and impose two observable factors, the federal funds

rate and the real government expenditure growth rate. The tests for the number of static

factors favor excessive number of factors (over 15). We impose the same number of latent

factors as in Boivin et al. [2013]16. We choose the number of dynamic factors using the

Stock and Watson [2005] test, reported in Table 6. The test favors 5 dynamic factors

(therefore we can proceed with our structural analysis using the shocks to static factors).

The lag order p was set to 7.

We estimate the model with interest rate and government expenditure imposed as

observable factors:

st = Ast−1 +But, (15)

yt = Htst + ṽt, (16)

16Authors report that increasing the number of factors does not change the results qualitatively.
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where

st =


ft

ft−1

...

ft−p+1

 , ft =


GX∗t
f1
t

f2
t

f3
t

it

 , (17)

it is the federal funds rate, f it (i = {1, 2, 3}) the three latent factors, and GX∗t the un-

observable monthly real government expenditure. Monthly real government expenditure

is ordered �rst because we assume that other fundamental shocks do not a�ect govern-

ment expenditure in the same month. It takes longer than a month for a government

to implement a change in spending decision or for the automatic stabilizers to respond.

This assumption is often used in models estimated on a quarterly frequency. We believe

that it is even more plausible in a monthly model.

The observable quarterly growth rate (GXt) is modeled as the sum of three consec-

utive latent monthly growth rates (GX∗t ). Assuming that the ith row of the state space

model loadings matrix Ht corresponds to the quarterly growth rate, it is modi�ed as:

Hi,t =
[
Ci,tλi Ci,tλi Ci,tλi . . . 0

]
,︸ ︷︷ ︸

1×kp

(18)

where k = 5 (the number of static factors) and p the number of lags in the factor VAR.

This row contains three non-zero vectors (Ci,tλi, Ci,tλi, Ci,tλi) that multiply the vectors

of static factors (ft , ft−1 , ft−2). Each λi = [1 0 0 0 0] selects only the �rst element

of fi (where i = t, t − 1, t − 2), that is it selects the latent monthly growth rate (GX∗i ,

where i = t, t− 1, t− 2). Ci,t controls for missing observations17. The quarterly growth

rate for government expenditure (GXt) then amounts to a sum of three consecutive latent

monthly growth rates:

GXt = Ci,t[GX
∗
t +GX∗t−1 +GX∗t−2] + ṽi,t , (19)

We also restrict the VAR dynamics for government expenditure (only). Mariano and

Murasawa [2010] note that when they use higher order VARs to construct the monthly

GDP series, the monthly GDP series becomes too volatile. For this reason they model it

in a VAR(1) model. The reason for the excess volatility is that there are too many param-

eters in the model, for a variable with many missing observations. Therefore, the model
17It is equal to 1 when quarterly government expenditures is observed and 0 when it is not.
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is poorly identi�ed. We encountered a similar issue. The resulting estimated monthly

variable was too volatile and the impulse responses exhibited a volatile pattern. This

is why we restrict the autoregressive dynamics of the government expenditure equation

to a V AR(1).18 The model for the government expenditure growth rates then becomes

similar in spirit to a Chow and Lin [1971] model for interpolating temporally aggregated

series.

The blue line in Figure 13 plots the reconstructed quarterly government expenditures

growth rates, for each month, calculated with equation (19). The circles represent the

true quarterly government expenditure. The sum of three consecutive latent monthly

growth rates adds up to observed quarterly growth rate in months when the quarterly

rate is observable.

Empirical Results In this section we �rst compare the response of the core variables to

a monetary policy shock in our model with the ones obtained by Boivin et al. [2013]19 and

then investigate how the economy responds to a latent monthly government expenditure

shock.

Figure 14 plots the impulse responses of the core variables to a monetary policy

shock (with the 90% con�dence bands20), where the shock is identi�ed using a Cholesky

identi�cation. Figure 15 presents the original IRFs obtained by Boivin et al. [2013] (p.

49), using their identi�cation method. The IRFs in Figure 14 are similar to those in

Figure 15, though there are a few di�erences. Speci�cally, we have a slightly stronger

price puzzle than Boivin et al. [2013], but the response becomes negative earlier in our

case. Monetary aggregates (M1 and M2) decline on impact after an increase in the

interest rate, whereas they remain constant in Boivin et al. [2013] application, and then

increase in both models. The response of the treasury bills rate (3M TB and 5Y TB)

mimics the response of the federal funds rate (FFR), which is more persistent in our

model than in Boivin et al. [2013]. In terms of real variables, in our model the IRF of

industrial production shows a less persistent decline but somewhat stronger in magnitude.

However, we have a decline in capacity utilization, while the response is positive for a few

periods in Boivin et al. [2013]. The response of real personal consumption expenditure

(REAL PCE and RPCE SER) is negative in both models, but the drop is persistent in

Boivin et al. [2013] whereas it returns to zero in our application. For the labour market,

18The rest of the factors evolve in a V AR(p) model.
19We do so because Boivin et al. [2013] also introduce a new method to identify IRs. The focus of this

section is on the response of the economy to a government expenditure shock, we only compare the IRs
to a monetary policy shock in order to support the validity of our Choleski identi�cation method.

20Con�dence bands were estimated using sampling with replacement in 500 bootstrap replications.
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we both have a negative impact on unemployment and employment, but in our case there

is a slightly positive impact on hours worked, while the reaction in Boivin et al. [2013]

is negative, followed by a persistent negative reaction in both models. Even though we

stressed the di�erences in results, overall they are limited and generally not statistically

signi�cant. The responses we obtain are also very similar to those reported in the �rst

empirical application (compare Figure 7 with Figure 14).

Let us now assess the e�ects of a government spending shock. Figure 16 plots the

response of the core variables (with the 90% con�dence bands21). The impact e�ects are

generally negative but after few months prices increase while unemployment decreases

and employment and average weekly hours increase. Consumer expectations improve and

the number of housing starts increases. It is interesting to observe that employment reacts

more than industrial production. The reason could be that a large share of government

expenditure is devoted to buying services. The combination of higher prices and better

economic conditions triggers a (still delayed) increase in the federal funds rate. These

results are aligned with basic �ndings of economic theory.

The results from our model slightly di�er from the results obtained in Ramey [2011].

According to Figure 16, hourly earnings fall on impact and return to zero after a few

months. Variables that represent consumption fall on impact and then return to zero.

Therefore the response of earnings and consumption in our model is closer to the results

in Ramey [2011], than to the ones obtained by Fatas and Mihov [2001], Blanchard and

Perotti [2002] and Pappa [2005].Hence, this application further shows that using a MF-

S-FAVAR can shed interesting light on relevant economic issues.

Figures 17 and 18 present the IRs to an interest rate shocks and government expen-

diture shock (respectively), obtained when we model the government expenditure as a

geometric mean of the underlying monthly series. We observe from Figure 17 that the IRs

to a monetary shock are qualitatively similar to when we model government expenditure

as sum of 3 consecutive monthly growth rates. The main di�erence is in the con�dence

bands of the response of government expenditure to a monetary shock. From Figure 18

we observe that when government expenditure is modeled as a geometric mean, the re-

sponses of the variables have the same sign, but they exhibit a slightly oscillatory pattern

and are less pronounced, likely due to the di�erent type of aggregating that involves a

larger number of months.
21Con�dence bands were estimated using sampling with replacement in 500 bootstrap replications.
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1.9 Conclusions

In this paper we suggest to extend the FAVAR model to the mixed frequency case (MF-

FAVAR) and use it for structural analyses, in order to better exploit all the available

information, improve shock identi�cation, and avoid temporal aggregation and variable

omission biases.

We illustrate how the MF-FAVAR can be estimated using Kalman �lter based tech-

niques and show, by means of Monte Carlo experiments, that the resulting parameter

and impulse response estimators work reasonably well also in �nite samples.

We then use the MF-FAVAR to evaluate the e�ects of monetary, oil, and �scal shocks,

comparing the results with those in existing studies. Overall, we obtain reasonable

responses in economic terms, sometimes with interesting di�erences with respect to earlier

studies based on same frequency data.

The structural MF-FAVAR model can be applied in a variety of other contexts, and

therefore we believe that it is an important item to be added to the standard toolbox of

economists.

25



Appendix

Tables and �gures

Table 1: Trace statistic from MC experiments, varying n and T
n=50 d=20: Estimator\Time T = 50 T = 100 T = 200

PCA on full sample 0.9284 0.9524 0.9608
PCA on the reduced sample 0.9402 0.9531 0.9640

SW estimator 0.9554 0.9690 0.9740
DGR estimator 0.9541 0.9693 0.9752
MF estimator 0.9678 0.9792 0.9836

This table reports trace statistic - a measure of how well the estimated
factors track the true factors (eq.(14) on p.13). We �x the sample size
to n = {50}, the number of quarterly series to d = {20} and vary
sample length T = {50, 100, 200}. The DGP is described in Section 3.

n=100 d=20: Estimator\Time T = 50 T = 100 T = 200
PCA on full sample 0.9655 0.9760 0.9802

PCA on the reduced sample 0.9781 0.9835 0.9859
SW estimator 0.9820 0.9868 0.9891
DGR estimator 0.9800 0.9862 0.9888
MF estimator 0.9838 0.9890 0.9911

This table reports trace statistic - a measure of how well the estimated
factors track the true factors (eq.(14) on p.13). We �x the sample size
to n = {100}, the number of quarterly series to d = {20} and vary
sample length T = {50, 100, 200}. The DGP is described in Section 3.

n=200 d=20: Estimator\Time T = 50 T = 100 T = 200
PCA on full sample 0.9829 0.9882 0.9902

PCA on the reduced sample 0.9895 0.9919 0.9932
SW estimator 0.9913 0.9937 0.9948
DGR estimator 0.9901 0.9932 0.9946
MF estimator 0.9913 0.9941 0.9953

This table reports trace statistic - a measure of how well the estimated
factors track the true factors (eq.(14) on p.13). We �x the sample size
to n = {200}, the number of quarterly series to d = {20} and vary
sample length T = {50, 100, 200}. The DGP is described in Section 3.
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Table 2: Trace statistic from MC experiments, varying number of
quarterly series
T=200, n=200: Estimator \ Qrt. series d=20 d=100 d=180

PCA on the full sample 0.9902 0.9902 0.9902
PCA on the reduced sample 0.9932 0.9882 0.9519

SW estimator 0.9948 0.9920 0.9714
DGR estimator 0.9946 0.9905 0.9746
MF estimator 0.9953 0.9932 0.9841

This table reports trace statistic - a measure of how well the estimated
factors track the true factors (eq.(14) on p.13). We �x the sample size to
n = {200}, sample lenght to T = {200} and vary the number of quarterly
series d = {20, 100, 180}. The DGP is described in Section 3.

Table 3: Trace statistic from MC experiments, quarterly (unobservable)
factor
T=200, n=200: Estimator \ Qrt. series d=20 d=100 d= 180

PCA on full sample 0.9901 0.9901 0.9901
PCA on the reduced sample 0.9909 0.9836 0.9239

SW estimator 0.9910 0.9850 0.9350
DGR estimator 0.9913 0.9851 0.9545
MF estimator 0.9916 0.9869 0.9620

This table reports trace statistic - a measure of how well the estimated
factors track the true factors (eq.(14) on p.13). We �x the sample size to
n = {200}, sample lenght to T = {200} and vary the number of quarterly
series d = {20, 100, 180}. The observable factor is a quarterly variable.
The DGP is described in Section 3.
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Table 4: Number of dynamic factors in Application 1, Stock and Watson (2005) test
˙̂q \ Criteria PC1 PC2 PC3 IC1 IC2 IC3

1 0.9129 0.9144 0.9079 -0.0803 -0.0781 -0.0875
2 0.8719 0.8749 0.8620 -0.1203 -0.1159 -0.1347
3 0.8434 0.8479 0.8285 -0.1517 -0.1452 -0.1734
4 0.8193 0.8253 0.7994 -0.1836 -0.1749 -0.2124

This table reports the values of Bai and Ng (2002) information criteria used in the Stock and
Watson (2005) test for selecting the number of dynamic factors ( ˙̂q). Number of dynamic factors
is estimated to be the one with the smallest value of the information criteria.

Table 5: Number of dynamic factors in Application 2, Stock and Watson (2005) test
˙̂q \ Criteria PC1 PC2 PC3 IC1 IC2 IC3

1 0.9097 0.9116 0.9036 -0.0792 -0.0761 -0.0890
2 0.8374 0.8412 0.8253 -0.1541 -0.1479 -0.1737
3 0.8064 0.8121 0.7882 -0.1873 -0.1780 -0.2167
4 0.7836 0.7913 0.7594 -0.2154 -0.2030 -0.2546
5 0.7719 0.7814 0.7417 -0.2321 -0.2166 -0.2810

This table reports the values of Bai and Ng (2002) information criteria used in the Stock and
Watson (2005) test for selecting the number of dynamic factors ( ˙̂q). Number of dynamic factors
is estimated to be the one with the smallest value of the information criteria.

Table 6: Number of dynamic factors in Application 3, Stock and Watson (2005) test
˙̂q \ Criteria PC1 PC2 PC3 IC1 IC2 IC3

1 0.9178 0.9189 0.9139 -0.0717 -0.0699 -0.0778
2 0.8613 0.8636 0.8537 -0.1264 -0.1228 -0.1387
3 0.8141 0.8175 0.8026 -0.1797 -0.1743 -0.1980
4 0.7897 0.7942 0.7744 -0.2095 -0.2022 -0.2339
5 0.7673 0.7729 0.7482 -0.2421 -0.2331 -0.2727

This table reports the values of Bai and Ng (2002) information criteria used in the Stock and
Watson (2005) test for selecting the number of dynamic factors ( ˙̂q). Number of dynamic factors
is estimated to be the one with the smallest value of the information criteria.
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Figure 1: IRs to a unit shock in the observable factor of quarterly variables, comparison with Stock and Watson
(2005) procedure

IRs of the �rst 9 quarterly variables: true - solid black with dots, SW - solid red, ML - solid black, ML +/- 2 std.
dev. - dashed black. We �x the sample size to n = {200}, sample length to T = {200} and the number of quarterly series
to d = {100}. The DGP is described in Section 3.

29



Figure 2: IRs to a unit shock in the observable factor of monthly variables, comparison with Stock and Watson
(2005) procedure

IRs of the �rst 9 monthly variables: true - solid black with dots, SW - solid red, ML - solid black, ML +/- 2 std. dev.
- dashed black. We �x the sample size to n = {200}, sample length to T = {200} and the number of quarterly series to
d = {100}. The DGP is described in Section 3.
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Figure 3: IRs to a unit shock in the quarterly factor

IRs of the �rst 9 variables: true - solid black with dots, ML - solid black, ML +/- 2 std. dev. - dashed black. IRs
are reported on a monthly frequency. We �x the sample size to n = {200}, sample length to T = {200} and the number
of quarterly series to d = {0}. The DGP is described in Section 3.
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Figure 4: (Quarterly) IRs to a unit shock in the observable factor, quarterly variables

Figure displays the impulse responses of the �rst 9 quarterly variables to a unit shock in the observable factor, calculated
using monthly dataset (solid black line, dashed black lines are the +/- 2 std. dev. bands), mixed frequency dataset (solid
gray line) and quarterly dataset (solid red line). The true IRs are represented with a solid black line with dots. IRs are
reported on a quarterly frequency. Sample size is n = {200} and sample length is T = {200}. The number of quarterly
series in a mixed frequency dataset is set to d = {100}. The DGP is described in Section 3.
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Figure 5: (Quarterly) IRs to a unit shock in the observable factor, monthly variables

Figure displays the impulse responses of the �rst 9 monthly variables to a unit shock in the observable factor, calculated
using monthly dataset (solid black line, dashed black lines are the +/- 2 std. dev. bands), mixed frequency dataset (solid
gray line) and quarterly dataset (solid red line). The true IRs are represented with a solid black line with dots. IRs are
reported on a quarterly frequency. Sample size is n = {200} and sample length is T = {200}. The number of quarterly
series in a mixed frequency dataset is set to d = {100}. The DGP is described in Section 3.
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Figure 6: Comparison of the two factors estimates

Figure displays the factors estimated using the PCA approach (solid line) and the factors estimated with MF-S-FAVAR
(dashed black line), estimated on the Bernanke et al. (2005) dataset.
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Figure 7: IRs of selected variables to a monetary policy shock

Figure displays the IRs of selected variables to a monetary policy shock, estimated on the Bernanke et al. (2005) dataset.
Solid lines represent the IRs (and the con�dence bands) calculated using the Bernanke et al. (2005) method and the black
dashed lines the IRs estimated with MF-S-FAVAR.
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Figure 8: IRs of the industrial production index and monthly GDP to a monetary policy shock

Figure displays the IR of the industrial production index (solid line), calculated using the PCA approach, and of the latent
monthly GDP (dashed black line), estimated with MF-S-FAVAR. The IRs were estimated on the Bernanke et al. (2005)
dataset

36



Figure 9: IRs of selected variables to a monetary policy shock - GDP modeled as a geometric mean

Figure displays the IRs of selected variables to a monetary policy shock, estimated on the Bernanke et al. (2005) dataset.
Solid lines represent the IRs (and the con�dence bands) calculated using the Bernanke et al. (2005) method and the black
dashed lines the IRs estimated with MF-S-FAVAR.
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Figure 10: The e�ects of oil price shocks, Bernanke et al. 1997

IRs to an oil price shock using di�erent measures of oil prices, as reported in Bernanke et al. (1997).
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Figure 11: MF-S-FAVAR, the e�ects of oil price shocks

IRs to an oil price shock using the sample sample size as in Bernanke et al. (1997). The Bernanke et al. (2005) dataset was
used to extract latent factors. For each variable we plot the level (upper �gure) and cumulated (lower �gure) responses.
Con�dence bands are calculated using 500 bootstrap replications.
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Figure 12: MF-S-FAVAR, the e�ects of oil price shocks - GDP and GDP delator modeled as geometric means

IRs to an oil price shock using the sample sample size as in Bernanke et al. (1997). The Bernanke et al. (2005) dataset was
used to extract latent factors. For each variable we plot the level (upper �gure) and cumulated (lower �gure) responses.
Con�dence bands are calculated using 500 bootstrap replications.
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Figure 13: MF-S-FAVAR, reconstructed monthly government expenditure growth rates

Solid blue line represents the reconstructed monthly government expenditure growth rates (Section 4.3.2, eq. (19)) and
green dots the quarterly government expenditure growth rates
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Figure 14: MF-S-FAVAR, IRs to a monetary polcy shock

IRs of selected variables to a monetary policy shock. IRs are estimated using the Boivin et al. (2013) dataset. Blue lines
are the 95% con�dence bands estimated using 500 bootstrap replications.
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Figure 15: IRs to a monetary polcy shock, Boivin et al. (2013, p.49)

IRs of selected variables to a monetary policy shock as in Boivin et al. (2013). Dashed lines represent the 95% con�dence
bands.
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Figure 16: MF-FAVAR, IRs to a government expenditure shock - Cholesky identi�cation

IRs of selected variables to a monthly government expenditure shock. IRs are estimated using the Boivin et al. (2013)
dataset. Blue lines are the 95% con�dence bands estimated using 500 bootstrap replications.
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Figure 17: MF-S-FAVAR, IRs to a monetary polcy shock - Cholesky identi�cation, government expenditure
modeled as a geometric mean

IRs of selected variables to a monetary policy shock. IRs are estimated using the Boivin et al. (2013) dataset. Blue lines
are the 95% con�dence bands estimated using 500 bootstrap replications.
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Figure 18: MF-FAVAR, IRs to a government expenditure shock - Cholesky identi�cation, government expenditure
modeled as a geometric mean

IRs of selected variables to a monthly government expenditure shock. IRs are estimated using the Boivin et al. (2013)
dataset. Blue lines are the 95% con�dence bands estimated using 500 bootstrap replications.
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2 Chapter

We tests predictions of the rational inattention model put forward by Ma¢kowiak et al.

[2009] in a time varying environment. Their model explains how aggregate and sector

shock variances a�ect sector price impulse responses. We exploit the fact that variances

of aggregate shocks have varied greatly over time. We estimate a time varying parameter

factor model on US post-war data on macroeconomic variables and sector prices. We

identify impulse responses of sector prices to macroeconomic shocks, sector shock and

their respective variances. We then construct a panel of impulse responses and use

�xed e�ects regression to test the predictions of the rational inattention model. We

�nd empirical support for the main predictions of the model, while some are refuted

by the empirical model. We �nd that �rms do not trade o� between aggregate and

sector conditions in deciding which shocks to pay attention to, but do trade o� between

aggregate shocks, which is a new �nding in the empirical literature.

2.1 Introduction

Recently economists became interested in peculiar di�erences in the behavior of aggregate

and sector prices. Altissimo et al. [2009], Bils and Klenow [2002] and Clark [2006] �nd

that in�ation is more persistent at the aggregate level. Boivin et al. [2009], Ma¢kowiak

et al. [2009] and Baumeister et al. [2010] �nd that prices react with a delay to an aggregate

shock and with a full long run e�ect on impact to a sector speci�c shock.

Several theoretical models that try to explain these di�erences. Ma¢kowiak et al.

[2009] present three models that explain them. They consider: Calvo [1983] model of

staggered prices, Mankiw and Reis [2002] sticky information model and the rational

inattention mode of Ma¢kowiak and Wiederholt [2007] (hereafter the RIA model). They

show that in order to produce theoretical responses to shocks that are consistent with

those found in the data, one needs to impose unreasonable restrictions on the pro�t

maximizing prices in the Calvo [1983] and the Mankiw and Reis [2002] model, but not

in the RIA model22.

It is important for policy analysis and our understanding to have a good theoretical

model of price setting that has been tested extensively. The predictions of the RIA model

have only been tested on cross section datasets. Therefore we estimate a time varying

parameter model and test the predictions of the RIA model on a panel dataset.
22Carvalho and Lee [2011] presents a model that also produces the di�erent sector price responses

without unreasonable assumptions.
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In the RIA model the decision makers have limited ability to process information.

Because of their limited ability they need to decide which shocks to pay attention to,

in order to minimize the loses from being hit by shocks. It turns out that to minimize

the loses they allocate their attention to a shock in proportion to the variance of that

shock. This prediction of the model was tested in cross section by Ma¢kowiak et al.

[2009] and (implicitly) by Boivin et al. [2009]. They found empirical support in favor of

the model. In this paper we exploit the fact that aggregate and sector shock variances

do not only vary across sectors but also over time. The volatility of in�ation and output

has declined considerably after 70'. Several authors document this phenomena named

"The Great Moderation" and convincingly argue that it was caused by a decrease in

the variance of aggregate shocks. For example, Sims and Zha [2006] and Bernanke and

Mihov [1995] document a decline in the volatility of monetary shocks and Gambetti et al.

[2008] a decline in the volatility of demand and supply shocks. And due to the recent

�nancial crisis we are now again faced with turbulent times. In the RIA model this has

implications for how sector prices should respond to aggregate shocks over time. We

exploit this fact to test the predictions of the model.

Ma¢kowiak et al. [2009] test some predictions of the RIA theory by using a static

model. They decompose sector price variances on sector speci�c and aggregate variances.

They then regress sector price impulse response on aggregate and sector speci�c variances

to test if they can explain the shape of impulse responses. They �nd a�rmative answer.

But they only estimate a static model and a reduced aggregate shock. Reduced shock is

a mixture of structural shocks. Therefore one can argue that should they use structural

shocks the results could be di�erent. In this paper we test the theory by using identi�ed

structural shocks and in a time varying framework.

Boivin et al. [2009] decompose sector prices into a sector speci�c component and

component attributable to a monetary shock. They obtain similar results to Ma¢kowiak

et al. [2009]. Both, Boivin et al. [2009] and Ma¢kowiak et al. [2009], assume that price

responses to shocks have remained stable over time23. In contrast with them we explicitly

model changes in the variances of the shocks and allow for changes in the propagation

mechanism of the shocks. We do it because RIA model predicts that impulse response

of a price changes when the variance of a shock changes.

Similar to our model is the model of Baumeister et al. [2010]. Like us they model

changes in the transmission mechanism and the volatilities of the shocks. In contrast with

us they do not allow for changes in sector speci�c volatilities. They estimate impulse
23Boivin et al. [2009] perform a robustness check by estimating their model on subsample for post

1984 and �nd quantitative but not qualitative changes in the results.
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responses of sector price responses to a monetary shock and �nd that the dispersion of the

price responses has attenuated over time. They explain this result in a model with sticky

prices. In their model the price responses have attenuated because the �rms sensitivity

to the marginal costs of the interest rate has increased and because wage stickiness has

declined. We link the same changes to the changing variances of the shocks and provide

empirical evidence for this claim.

Because we are using a time varying model we are able to test more implications

of the RIA model than those that were tested by Ma¢kowiak et al. [2009] and Boivin

et al. [2009]. Similar to them we test if the increase in the variance of the aggregate

shock increases the speed and size of impulse response of sector price. Unlike them

we estimate a time varying model and test this claim with a panel dataset, where we

control for the individual e�ects. This reduces potential bias that could arise from sector

speci�c characteristics that do not change over time24. The relation between variances

of aggregate shocks and the speed of impulse responses that we �nd is not compatible

with the RIA theory of price setting. On the other hand, we �nd that the variance of

the aggregate shocks a�ect the size of impulse responses. Note that we do not test this

prediction on the reduced aggregate shocks only, but also by using identi�ed shocks. This

provides us with a more detailed test of the model predictions. We then add variances

of sector speci�c shocks to the regression and con�rm that the higher is the variance of

sector shock the smaller is the impulse response of price to an aggregate shock, but the

e�ect is small and often insigni�cant. These results are in accordance with the predictions

of the RIA model. We conclude that sector speci�c shocks do not seem to compete with

aggregate shocks, which is not what the RIA model implies.

Next, we test if the identi�ed aggregate shocks compete for the attention of the

decision makers in �rms in the same manner as idiosyncratic shocks should compete

with the aggregate shocks. We �nd this to be the case. The RIA model also implies

that the impulse response to aggregate shock should decrease if the variance of aggregate

shock fell. We con�rm this visually and by estimating a �xed e�ects model on two sub-

panels. Finally, we note that the dispersion of impulse responses to aggregate shocks

has decreased over time (up to the �nancial crisis). The RIA model is not compatible

with this fact. It predicts an increase in the dispersion of impulse responses, because

when �rms pay less attention to aggregate shocks the impulse responses to those shocks

become less uniform.

We estimated the impulses and shock variances in a dynamic factor model. They

have become popular tool because they allow one to use information on a large amount
24Such as competitiveness, openness to trade, durability of goods produced, etc...
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of data in a simple, compact model and can overcome the limited information problem.

There have only been a few applications of factor models in a time varying framework.

Most authors apply a FAVAR approach pioneered by Bernanke et al. [2005]. A FAVAR

approach is a convenient approach for identifying a monetary policy shock. One simply

appends the monetary policy variable to the factors and then identi�es structural shock

using conventional exclusion restrictions. The FAVAR approach was used in a time

varying framework by Baumeister et al. [2010], Liu et al. [2011], Mumtaz et al. [2011],

Eickmeier et al. [2011b] and Bianchi et al. [2009]. This approach is elegant but it has a

drawback. An assumption underlying the FAVAR approach is that the number of static

factors is the same as the number of structural shocks, which was rejected in our dataset.

In addition, the identi�cation restrictions are applied on the static factors in the FAVAR

approach, which is equivalent to applying them on the dynamic factors only in special

cases. To avoid this issue we implemented the Forni et al. [2009] approach25 to identifying

structural shocks. It allows us to identify structural shocks by using sign restrictions.

The remainder of this paper is organized as follows. Section 2 brie�y introduces the

RIA model and its implications for the sector price behavior. In Section 3 we introduce

the empirical model. Section 4 presents the data and section 5 the results. We o�er �nal

remarks in Section 6.

2.2 Rational inattention model of sector prices

We estimate a factor model in order to evaluate to what degree does the rational inat-

tention model of price setting comply with reality. We investigate the model for two

reasons. First, it is a relatively new and prospective model. Concept of rational inatten-

tion was �rst introduced by Sims [1998, 2003]. Sims argued that agents can not attend

to all information perfectly and proposed to model this as a constraint on the agent's

information �ow. Ma¢kowiak and Wiederholt [2007] use this mechanism to model the

trade o� that �rms need to make in tracking aggregate and idiosyncratic conditions. In

Ma¢kowiak et al. [2009] they model �rms to explain sector price behavior. If we are to

use this model to explain reality or for policy analysis, it should be thoroughly tested.

Second, Ma¢kowiak et al. [2009] test the implications of the model and show that their

model can reproduce realistic impulse responses to aggregate and sector speci�c shocks.

They test the model predictions in cross section. We note that the model also o�ers

predictions over time and therefore test them.

Note that the presented does not include a micro-founded model of consumers. A fully

micro-founded model is presented in Mackowiak and Wiederholt [2011]. Unfortunately
25Hereafter FGLS
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the focus of Mackowiak and Wiederholt [2011] is not on sector price behavior. Therefore

we use Ma¢kowiak et al. [2009] to present the main ideas and only refer to Mackowiak

and Wiederholt [2011] when appropriate.

This section brie�y introduces the model and its implications for sector price dynam-

ics. Due to space considerations we only present key equations and describe the intuition

behind them. This is enough to set ground for the empirical part that follows. For an in

depth treatment the interested reader should consult Ma¢kowiak et al. [2009].

Economy is populated with a continuum of sectors and in each sector there is a

continuum of monopolistically competitive �rms. Firms produce di�erentiated goods

and set prices to maximize the expected discounted sum of pro�ts. Decision makers in

�rms decide what to pay attention to. They can not perfectly attend to all information26.

This is limitation is modeled as a constraint on the information �ow:

H(p∗Aint|st−1
in )−H(p∗Aint|stin)︸ ︷︷ ︸

κA

+H(p∗Sint|st−1
in )−H(p∗Sint|stin)︸ ︷︷ ︸

κS

≤ κ (1)

where the LHS of the inequality represents the decision maker's information �ow (κA+κS)

and the RHS his information processing capability (κ). κ can be a �xed constant or a

convex function of costs. κA and κS represent information �ows concerning aggregate

and sector (or idiosyncratic) conditions. The inequality states that the two information

�ows can not exceed the decision makers information processing capability. p∗Aint is that

part of an optimal price (a pro�t maximizing price) of �rm i in sector n at time t that

is determined by aggregate conditions. p∗Sint is that part of an optimal price that is

determined by sector conditions. They sum into an optimal price, p∗int = p∗Sint + p∗Aint,

de�ned as the price that maximizes �rm's pro�ts. stin is the signal on the conditions in

the economy. H(X|f) is called conditional entropy of X given information set f . It is a

measure of conditional uncertainty in X. This is a standard measure of uncertainty used

in information theory. The di�erence H(p∗Xint |s
t−1
in )−H(p∗Xint |stin) represents the reduction

of uncertainty in p∗Xint , due to arrival of the new signal stin. The signal informs the �rm on

aggregate (sAint) and idiosyncratic conditions (sSint) and is a noisy measure of the pro�t

maximizing price:

sAint = p∗Aint + σεεt (2)

sSint = p∗Sint + σψψt (3)
26This is due to various reasons. There is to many information available to process them all, the

decision makers have limited ability in understanding the information (it is hard to understand the
consequences of rise in interest rate even for an economist). It might be to costly in terms of managerial
costs to process all of the information, etc...
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where εt and ψt are idiosyncratic unit variance Gaussian white noise processes inde-

pendent of ut and vt. It is assumed that the pro�t maximizing price follows a random

walk27:

p∗Aint = p∗Aint−1 + σAut (4)

p∗Sint = p∗Sint−1 + σSvt (5)

where ut and vt are unit variance Gaussian white noises. The �rm does not observe

the pro�t maximizing prices directly. She observes a noisy signal stin = [sAint, s
S
int]
′ on

the pro�t maximizing price. After observing this signal she sets the price to equal the

expected optimal price:

pint = E[p∗int|stin] (6)

Under simplifying conditions that are not crucial for the model's results28 the optimal

allocation of attention can be represented by the following equation:

2κS − 2−κS

2κA − 2−κA
=
σS
σA

(7)

The division of attention to aggregate κA and sector conditions κS is proportional to

the variances of aggregate and sector speci�c shocks. The intuition is simple. Ideally

the decision maker would set the pro�t maximizing price, and incur no loses due to

suboptimal price. In reality he is limited in his information processing capability and is

not able to process all information. He must decide on how much attention to devote to

aggregate and sector conditions. If the variance of sector shocks is high compared to the

variance of aggregate shocks, then not paying attention to sector conditions would result

in large deviations from the pro�t maximizing price and in high loses. Therefore the

decision maker will devote more attention to sector conditions. The converse holds for

the aggregate conditions. One can also show that given the distribution of the attention

the following price setting behavior holds:

p∗int − pint =

∞∑
l=0

[(2−2κA)l+1σAut−1 − (2−2κA)l(2−κ
A

)σAεint−l]

+

∞∑
l=0

[(2−2κS )l+1σSvnt−1 − (2−2κS )l(2−κ
S
)σSψint−l] (8)

27This simplifying assumption is relaxed in Ma¢kowiak and Wiederholt [2007]
28Authors assume a normal linear pro�t function, Cob-Douglass production function with only labor

input and that the �rms are required to satisfy demand (Ma¢kowiak et al. [2009], p. 588).
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LHS is the gap between the optimal price and an actual price. How fast the gap closes

depends on how the �rm distributed her attention to aggregate and sector conditions,

κA and κS . If sector shock variance is substantially higher than the aggregate shock

variance, then the �rm will focus her attention to sector conditions, and κS will be large

compared to κA. Prices will respond fast to a sector shock and the majority of the long

run response will occur on impact (second part of the RHS of eq.(8)). On the other hand,

price response will be dampened after an aggregate shock (�rst part of the RHS of eq.

(8)). Next we present testable implications of the RIA model.

2.3 Responses to shocks under RIA

RIA model o�ers a set of predictions that we match to actual sector price behavior.

The reader is reminded that we will decompose the variability of prices to aggregate and

sector speci�c components and inspect how they a�ect the size and speed of the sector

price impulse responses. The RIA model implies the following statements:

1. When the sector component of the sector price index is more volatile than the

aggregate component (this happens when σS > σA) the decision makers devote

more attention to sector conditions (7) and the sector prices respond faster to a

sector shock than to an aggregate shock (8).

2. The speed of response of sector price index to an aggregate shock depends positively

on the aggregate component variance of the price index (σA) and negatively on the

sector component variance of the price index (σS).

3. If the sector component of the pro�t maximizing price of sector price index is

more volatile than the aggregate, then the cross sectional variation in the speed

of response to sector shocks is smaller than cross sectional variation to aggregate

shocks. Intuitively what this says is that when �rms pay a lot of attention to sector

shocks their responses are similar. This is because the speed of response of prices

to a given shock is a concave function of the standard deviation of the shock.

4. If on average the sector component of the pro�t maximizing price is more volatile

than the aggregate component, then the e�ect of a change in the aggregate com-

ponent variance on the speed of responses of sector price to an aggregate shock

should be higher than the e�ect of a change in the sector speci�c variance.

5. If the variance of the aggregate component of the pro�t maximizing price decreases,

while sector component remains constant, then �rms allocate more attention to
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sector speci�c shocks and sector price indexes respond slower and less pronounced

to an aggregate shock. At the same time the response to sector shocks should at

least not become slower.

6. If the variance of the aggregate component decreases, while the variance of the

sector component stays constant, then the cross sectional variation in the speed of

responses due to aggregate shock should increase.

2.4 Empirical model

We estimate a a semi-structural empirical model instead of a fully structural model.

The reason is the following: the RIA model assumes that the decision makers have all

available information at hand. In the theoretical model this reduces to two types of

shocks, aggregate and sector speci�c shocks. The decision-makers in reality are faced

with a variety of shocks. By choosing to rather estimate an empirical model we can

accommodate for this fact. This also enables us to avoid a bias that could result from

using reduced shocks in the analysis. Imagine that there are two aggregate shocks, one

that causes a 100% of long run response on impact and one that causes a small and

delayed response. By mixing the two shocks, i.e. by estimating only a response to a

reduced shock, one could falsely estimate a response that has the same shape as the

response predicted by the RIA model.

The choice of speci�c empirical model was guided by the following criteria: i) the

model needs to admit a possibility that the variances of shocks are time varying, because

it is a well established fact that variances of aggregate variables have changed over time,

ii) the model needs to admit the possibility that other parameters are time varying

because the RIA model predicts changes in the shock propagation mechanism, when

shock variance changes, iii) a model needs to be able to handle a large set of information

because in the RIA model the decision makers have all the available information at hand

and we do not know in advance which they choose to disregard. The following two

sections explain how our model can address these issues.

2.4.1 Necessary characteristics of the model

Because the transmission mechanism and shock variances could have been changing over

time, we estimate a time varying parameter factor model. The estimated model is a syn-

thesis of the structural model presented in Forni et al. [2009] and a time varying FAVAR

model presented in Korobilis [2009]. Forni et al. [2009] proposed a structural factor model

where factors are driven by a few macroeconomic shocks. They show how to estimate
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the impulse responses to the structural shocks and derive the appropriate asymptotics.

Korobilis [2009] estimates a factor augmented VAR model (hereafter FAVAR) of the type

put forward by Bernanke et al. [2005]. He extends the model to allow for time varying co-

e�cients and stochastic volatilities in the state and in the observation equation. We build

on his time varying framework29, but add to this model a time varying autoregressive

idiosyncratic shocks.

Current approaches to time variability in the structural factor models are mostly

done using a FAVAR approach. FAVAR approach was used by Bianchi et al. [2009],

Baumeister et al. [2010], Korobilis [2009], Liu et al. [2011], Eickmeier et al. [2011b],

Eickmeier et al. [2011a] and Mumtaz et al. [2011]. This approach was (predominantly)

used to identify a monetary policy shock by adding an interest rate as an observable

factor. FAVAR approach has two potential shortcomings. First, it assumes that the

number of structural shocks is the same as the number of static factors. Tests have

rejected this in our application. Second, the restrictions are applied directly on the static

factors, which is not the same as applying them on the structural shocks when the number

of static factors and macroeconomic shocks di�er. Using Forni et al. [2009] approach we

identify the structural shocks by applying identifying restrictions directly on dynamic

factors.

We extend the Korobilis [2009] model. In this paper we exploit chaining volatilities

of macroeconomic and idiosyncratic shocks. If we estimated the model disregarding

the autocorrelation in the idiosyncratic shocks we would have biased the estimates of the

sector shock variances. Therefore we explicitly model the autocorrelation in the residuals.

This was previously done by Del Negro and Otrok [2008], Liu et al. [2011] and Eickmeier

et al. [2011b]. We also allow for time variability in the autocorrelations. Equation (15)

shows that the shape of a price response to a sector shock depends on the sector and

aggregate component variance. Since sector and aggregate variance can vary over time

we need to allow for the possibility that sector prices responses to sector shocks also

change over time. The resulting empirical model is thus fully capable of accommodating

all the implications of the theoretical model. The next section presents the model.

2.5 The model

Let xTn = {xit}i=1...n;t=1...T represent a panel of observations, where n stands for the

number of dependent variables and T for the time dimension of the panel. We assume

that each dependent variable can be decomposed into two parts, a common component
29In a sense that we allow for time variation in the parameters. We extend the model for serial

correlation in the idiosyncratic component. This however is not new.
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χit and an idiosyncratic component uit:

xit = χit + uit (9)

This equation is referred to as an observation equation. Idiosyncratic component captures

the e�ects of microeconomic shocks30 and measurement errors. It is assumed to be

uncorrelated with the factors (presented in the next equation) and mutually uncorrelated

for all leads and lags3132. The common component is a linear combination of r unobserved

static factors:

χit = a1itf1t + ...+ aritfrt = aitFt (10)

Static factors Ft = (f1t, ..., frt) are common for all the dependent variables. They repre-

sent the aggregate state of the economy. They are modeled in a VAR with p lags:

Ft = d1tFt−1 + ...+ dptFt−p + et (11)

et = Rtvt (12)

where et is an r×1 vector of reduced shocks and vt a q×1 vector of orthogonal white noise

structural shocks. The structural (macroeconomic) shocks are called dynamic factors.

The reduced shocks et are a linear combination of unit variance dynamic factors vt. r×q
matrix Rt de�nes the linear combination that translates the structural shocks into the

dynamic factors (where V AR(et) = Rt ∗ R′t = Ξt). The number of structural shocks is

lower or equal to the number of the reduced shocks (q ≤ r). Matrix Rt is unknown.

Forni et al. [2009] show that it can be estimated as the �rst q principal components of

the covariance matrix of the reduced shocks Ξt. Stock and Watson [2005] show that if

the true number of structural shocks is q, then the residual shocks are (asymptotically)

a linear combination of the q structural shocks. Therefore we estimate Rt as:

Rt = KtMt (13)

where Mt is a diagonal matrix with the square roots of the �rst q largest eigenvalues

of Ξt on the diagonal and Kt is an r × q matrix whose columns are are the eigenvectors

of Ξt, corresponding to the q largest eigenvalues.

We model the time varying coe�cients in the VAR for the factors as in Korobilis

[2014]. Korobilis [2014] proposes a Minnesota type of prior that is updated from the data.

30Or sector speci�c shocks should the LHS variable be a sector price.
31That is, E(uitFt) = 0 and E(uitujs) = 0, for all i, j = 1...n, j 6= i and s, t = 1...T
32This is a potential caveat in our application because we rule out sector spill over e�ects.
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He shows that such prior is quite robust to the selection of the shrinkage parameters that

a�ect the amount of time variation in the parameters. To facilitate estimation one has

to modify the exposition of the VAR parameters in the following way:

dit = d̄i + d̃it for i = 1, ..., p (14)

where the time varying VAR parameters dit is now a sum of a constant VAR parameter

d̄i and a deviation from the constant VAR parameter d̃it. This does not a�ect the model

in eq.(11). The two expositions are observationally equivalent. It does however simply

the introduction of the hyper priors (further details can be found in the Appendix).

Idiosyncratic shocks in (9) can be serially correlated. If we ignore the autocorrela-

tion, then the estimates of the idiosyncratic variances could be biased. For this reason

we choose to the take serial correlation explicitly into account and model it as an autore-

gressive process:

uit = θ1ituit−1 + ...+ θqituit−q + nit (15)

Note that we allow for time variation in the autoregressive parameters θjit (j = 1, ..., q).

This is necessary because the RIA model implies that a change in the idiosyncratic

variance could a�ect how prices respond to idiosyncratic (sector speci�c) shocks. We

restrict the AR model of the idiosyncratic shocks to be stationary.

The residuals in the observation equation nit and the state equation et are zero mean

and have time varying covariances:

nit ∼ N(0, ωit) (16)

et ∼ N(0,Ξt) (17)

where ωit is a scalar and Ξt an r × r matrix. nit is assumed to be independent from et

for all i and t. We parameterize Ξt in a standard way (as in Cogley and Sargent [2005]

or Primiceri [2005]):

Ξt = B−1
t ΣtB

−1
t
′ (18)

Bt =


1 0 · · · 0

β21t 1 · · · 0
...

...
. . .

...

βr1t βr2t · · · 1


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Σt =


σ2

1t 0 · · · 0

0 σ2
2t · · · 0

...
...

. . .
...

0 0 · · · σ2
rt


Let At represent all the factor loading vectors stacked one on top of another: At =

(a′1t, ..., a
′
nt)
′, where ait = (a1it, ..., arit) for i = 1, ..., n. Let Ωt = (ω1t, ..., ωnt)

′ be a

vector of stacked idiosyncratic variances.

Let D̃t = (vec(d̃1t)
′, ..., vec(d̃pt)

′)′ represent a stack of the time varying part of the factor

VAR parameters. Let Θt represent a stack of all θit's, Θt = (θ1t, ..., θnt), where θjt =

(θ1jt, ..., θqjt) for j = 1, ..., n. Ht represents a stack of all the diagonal elements of Σt,

Ht = (σ2
1t, ..., σ

2
rt)
′ and �nally let Tt represent a vector of all the entries bellow the

diagonal of the lower triangular matrix Bt, Tt = (β21t, ..., βr1t, ..., βrr−1t)
′. We assume

that the time varying parameters evolve as random walks33:

At = At−1 + ηAt (19)

Θt = Θt−1 + ηΘ
t (20)

log Ωit = log Ωit−1 + ηΩ
it (21)

D̃t = D̃t−1 + ηD̃t (22)

Tt = Tt−1 + ηTt (23)

log Ht = log Ht−1 + ηHt (24)

(25)

The random walk innovation vectors η's are assumed to be independent of each other:

V ar



ηAt
ηΘ
t

ηΩ
t

ηD̃t
ηTt
ηHt


=



QA 0 0 0 0 0

0 QΘ 0 0 0 0

0 0 QΩ 0 0 0

0 0 0 QD̃ 0 0

0 0 0 0 QT 0

0 0 0 0 0 QH


Block diagonal structure of the covariance matrix of the η's is standard. With so

many parameters one needs to make simplifying assumptions. In addition we assume

that the matrices QA and QΘ are also block diagonal. This implies that the factor
33This assumption is standard in this type of models because it eases the computational cost. Cogley

and Sargent [2005] and Primiceri [2005] show that it does not a�ect the results.
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loadings in equation for xit are not correlated with factor loadings in xjt, where j 6= i.

The same holds for θ's. They are only allowed to be correlated inside the ith equation.

The covariance matrices of log volatilities are also assumed to be diagonal (QH and QΩ).

In the VAR model the Tt accounts for the cross-correlation between factors. Presented

model is �exible enough to capture all the potential changes in the aggregate and sector

price dynamics over time.

2.6 Estimation

We estimate the static factors34 by extracting �rst few principal components from the

dataset. Let λ represent the static factor loadings. We identify the factors by assuming

that λ′λ = Ir, where Ir is an identity matrix of dimension equal to the number of

static factors. This is approach is standard in the literature. It was proposed by Stock

and Watson [2002b]. Stock and Watson [2002b] show that the principal components

(hereafter PCA) consistently estimate the space spanned by the factors when n is large

and the number of principal components is at least as large as the number of true factors.

Moreover, Banerjee et al. [2008] and Stock and Watson [2009] show that the factors are

estimated consistently even if there is some time variation in the factor loadings.

Besides possible time variation in the factor loadings, our model also admits stochastic

volatility in the factor variances. It is not obvious that PCA is a consistent estimator of

the factor space when time varying volatility is present. We found no reference to this

issue in the literature, therefore we conducted a small Monte Carlo study. We simulated

datasets of di�erent cross section and time lengths using an approximate factor model

with stochastic volatility in the residuals. Stochastic volatility was modeled as a random

walk model for the variances of the residuals (as in our empirical model). Note that this

is an extreme assumption because variances that evolve as random walks are explosive.

Explosive behavior of variances is prevented in the empirical model because the variances

are drawn conditional on the other parameters of the model, whereas in the simulation we

impose explosive behavior of variances. Despite explosiveness, the PCA estimates turned

out to be a consistent estimator of the factor space (details can be found in Appendix).

An alternative approach to PCA is to estimate the factors as latent variables by

either using maximum likelihood methods35 or by simulating them36. We chose the PCA
34This is a slight abuse of the term. We estimate the space spanned by the static factors.
35As a robustness check we also estimated the factors using a quasi maximum likelihood approach put

forward by Doz et al. [2011]. This was done on a subsample, excluding the �nancial crisis. This did
not change our results qualitatively, which comes as no surprise, since the correlation coe�cient between
PCE and QML estimates of the factors was above 0.98 for thew �rst two factors and 0.9 for the third
factor.

36This approach was used by Baumeister et al. [2010], Del Negro and Otrok [2008], Liu et al. [2011],
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approach for two reasons. First, it reduces the computational burden and second, it

enables us to avoid some identi�cation issues inherent in the factor models with time

varying parameters. This approach was also used by Korobilis [2009] and Eickmeier

et al. [2011b]. Observation equations were estimated equation by equation as in Korobilis

[2009].

We used several criteria to determine the number of static and dynamic factors in

the dataset. We use Deviance Information Criteria (hereafter DIC) as our main model

selection criteria.

DIC is a Bayesian model selection criteria that is especially suitable when one esti-

mates a model with time varying parameters. Conventional selection criteria (i.e. Akaike,

Hannan-Quinn or Schwartz criteria) penalize the model �t with the number of parameters

that are being estimated. It works well in a static model. In a time varying parameter

model the number of parameters that are being estimate can dominate such criteria. On

the other hand, the penalty function in DIC uses the number of e�ective parameters:

DIC = D̄ + pD (26)

where D̄ = E[−2ln(L(∆i))] is the expected likelihood evaluated at the draws of the

parameters (∆i) and pD = E[−2ln(L(∆i)) − (−2ln(L(∆̄))]] is the number of e�ective

parameters, calculated as the expected di�erence between the likelihood evaluated at the

draws and the likelihood evaluated at the expected parameter values (∆̄). The likelihood

was evaluated using a particle �lter as in Ellis et al. [2014]. We use particle �lter because

stochastic volatility errors do not distribute in a normal distribution and therefore the

model's likelihood function is not normal. With particle �lter one draws n states for each

draw of the parameters, calculates n likelihoods and averages over them to approximate

the true likelihood (details can be found in Ellis et al. [2014]).

To reduce the computational burden we �rst calculate the DIC for the number of

factors and then, conditioning on the number of factors, select the lag length of the

factor VAR and the number of dynamic factors. For the US data Bernanke et al. [2005]

estimates a model with 4 factors (with the 5-th factor being the interest rate), Korobilis

[2009] estimate a model with 5 factors (with the 5-th factor being the interest rate) and

Stock and Watson [2005] estimate the number of static factors to be 7. The DIC criteria

for up to 7 static factors is displayed in the �rst column of Table 1 in Appendix. Based

on the DIC a model with 5 factors is selected. Further we calculated DIC for the number

of lags in the factor VAR, for up to 5 lags. Based on the second column of Table 1

Mumtaz et al. [2011] and Bianchi et al. [2009]
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we should select a VAR with only 1 lag. Because the VAR with only 1 lag produced

unconventional impulse responses we decided to estimate a VAR with 2 lags, the second

best DIC.

We found no reference in the literature if DIC is applicable to selection of the number

of dynamic factors, therefore we used conventional tests. Both Bai and Ng [2007] test

statistics favored 3 or 4 dynamic factors and Stock and Watson [2005] test favored 5 or

3 dynamic factors. Tests on the two subsamples tests strongly favored 4 or less dynamic

factors. We decided to estimate 4 dynamic factors because it represents the mode of the

number of factors proposed by the tests. It also enables us to identify three preferred

dynamic factors and leave one dynamic factor unidenti�ed.

Bayesian techniques were used to estimate the posterior distributions of the parame-

ters of interest. We chose Bayesian approach because it easily handles high dimensional

non-linear models by using simulation methods, rather than using maximization meth-

ods, although the classical approach was successfully applied by Eickmeier et al. [2011b].

We imposed stationarity restrictions in the VAR model and invertibility restrictions on

the autocorrelated idiosyncratic shocks by rejecting the draws that implied explosive

behavior.

Priors for the initial states of the coe�cients, stochastic volatilities, covariances and

hyper parameters in both the measurement and state equations are assumed to be inde-

pendent of each other. The priors are standard, either normal-gamma or normal-Wishart.

We used priors as uninformative as possible while still assuring stability of the model,

though some priors are weakly informative. Cross check with the results obtained by

using a training sample priors revealed a small e�ect on the estimated IRs and regres-

sions, they do not a�ect the main conclusions of the paper, though some are changed.

Each time varying parameter was sampled with the Gibbs sampler. Conditional on the

static factors and the rest of the parameters each time varying parameter was casted

into a standard linear state space model, to which we applied the Carter-Kohn algorithm

(Carter and Kohn [1994]). We implemented a data-based Minnesota type of prior for

the TVP-VAR as described Korobilis [2014]. As shown by the authors an advantage of

using a data-based prior for the TVP-VAR is that it is less sensitive to the speci�cation

of the degree of time variation in the model, because the prior for the time variation is

updated from the data. The convergence was veri�ed using visual inspection and mean

tests for the draws. The main algorithm is presented in the Appendix.
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2.7 Identi�cation of structural shocks

The method that we use to identify the structural shocks was put forward, in a time

invariant framework, by Forni et al. [2009]. Examples of the method used in a non-time

varying setting using similar restrictions as in this paper are provided by Pellenyi [2012],

Forni et al. [2009] and Forni et al. [2010]. We found no application of the method used

in a time varying setting. Using equations (9)-(12) we rewrite the factor model in its

dynamic form:

xit = bit(L)vt + uit (27)

bit(L) = ait(1− d1tL− ...− dptLp)Rt (28)

where uit are the idiosyncratic shocks and vt unit variance dynamic factors. This rep-

resentation is unique only up to an orthogonal transformation. Let H represent a q × q
orthonormal matrix37. We can then multiplying the dynamic factors vt with matrix H

to obtain a new rotation of dynamic factors εt: Rtvt = Gtεt (where Gt = RtH
′ and

εt = Hvt); while the shock variance remains unchanged (V ar(Rtvt) = V ar(Gtεt) = Ξt).

This property is used to identify economically meaningful structural shocks εt.

Economic theory implies restrictions on a set of variables in the �rst few periods

after the shock. To get a set of admissible rotation matrices H we post-multiply the

non-structural impulse responses bit(L) with a candidate H matrix and then verify if the

rotated responses bhit(L) satisfy theory based restrictions. If the restrictions are satis�ed

we retain the drawn rotation matrix H.

We chose this approach because it places the restrictions directly on the dynamic

factors (vt) and does not require the assumption that the number of static factors is

the same as the number of dynamic factors (r = q). This was rejected in our dataset.

Furthermore, cleaning the factors of the in�uence of the fast moving variables, as in

Bernanke et al. [2005], could lead to loss of information and the underlying assumption

that monetary shocks have no contemporaneous in�uence on the real factors could be

too restrictive. We also wish to identify other shocks, besides the monetary policy shock,

to verify if the predictions of the RIA model also hold for other macroeconomic shocks.

We estimate three most commonly identi�ed shocks in the literature. The estimated

shocks are: monetary policy, demand and supply shock. Sign restrictions were imposed

on impact. The restrictions that we employ are compatible with a wide range of theoret-

ical models. They can be found in the majority of DSGE models, in a New Keynesian
37Orthonormal matrix is a matrix which when multiplied with own transpose forms an identity matrix:

H ′H = I.
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Table 2: Table of imposed sign restrictions

MON DEM SUP

RGDP ≤ 0 ≥ 0 ≤ 0
PCE Q ≤ 0 ≥ 0 ≤ 0
CPI ≤ 0 ≥ 0 ≥ 0
PCE P ≤ 0 ≥ 0 ≥ 0
M3TB ≥ 0 ≥ 0 ∗

models and in a Real Business Cycle models. Same or similar restrictions were used

in other applied work38. Table 2 summarizes the restrictions. We applied them on the

following six variables39: real gross domestic product (RGDP), personal consumption ex-

penditure quantity index (PCE Q), consumer price indices (CPI), personal consumption

expenditure price index (PCE P) and the three month treasury bill rate (M3TB).

We assume that the monetary policy shock increases the 3 month treasury bill rate

and decreases price indices (CPI, PCE P) and real output measures (RGDP and PCE

Q), on impact and in the �rst two periods40.

A positive demand shocks increases both real output and prices. We assume that

a central bank reacts to an increase in prices by raising the interest rate. A negative

supply shock is followed by an increase in prices and a decrease in real output. Therefore

the supply shock can proxy for a sudden increase in input prices41, or for a negative

technology shock. The in�uence of a supply shock on the treasury bill rate is left unre-

stricted. The reason is that monetary policy may react di�erently to di�erent types of

supply shocks.

We estimate a time varying model therefore the impulse responses need to take into

account that time varying parameters can drift over time. To deal we this issue we

estimated generalized impulse responses as put forward in Koop et al. [1996]:

E(xt+j |Ξi, µ)− E(xt+j |Ξi) (29)

38I.e. Gambetti et al. [2008], Canova and Nicoló [2002], Forni et al. [2010],...
39RGDP, CPI and M3TB were chosen because they are one of the most commonly restricted variables.

PCE P and PCE Q were chosen because they are the focus of subsequent analysis. We also experimented
by replacing the M3TB with the federal funds rate (FFR), PCE Q with industrial production index (IPI)
and PCE P with producer price index (PPI). The estimated impulse responses were similar.

40Since the price puzzle is sometimes present in the estimates of the impact of a monetary shock
on prices, we also experimented by leaving the e�ect of monetary policy shock on impact and in the
�rst quarter unrestricted. The results were qualitatively similar, but the responses were slightly more
pronounced.

41In example for an oil shock.
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where Ξi denotes the parameter of draw i and j the impulse horizon.

In addition, for each draw and time point in time we draw 100 rotation matrices.

Common practice is then to calculate a mean impulse response, averaged over 100 rotation

matrices, and use it as a representative impulse response. Fry and Pagan [2007] have

shown that this can bias the results. Therefore we follow their recommendation and only

retain the most representative rotation matrix. The most representative rotation matrix

is a rotation matrix that generates the impulse responses that are closest to the mean of

standardized impulse responses. The details on this procedure can be found in Fry and

Pagan [2007].

2.8 Data

We use data on 144 U.S. macroeconomic time series that range from 1959Q1 to 2014Q2.

We used similar dataset as in Korobilis [2009]. We chose it because it has been found to

contain su�cient information about the state of the economy. Complete description of

the series is given in the Appendix. Dataset contains time series on real variables (i.e.

real GDP, industrial production index, real �nal sales of domestic product...), nominal

variables (prices, wages, oil prices...) and �nancial variables (interest rates, yields, ex-

changes rates...). It also includes forward looking variables like commodity prices and

inventories. All the data were downloaded from FRED42 on-line database43. Quarterly

dataset was used for practical reasons. First, if we tried to get monthly data for the

selected time span, a lot of series were missing and second, the number of parameters

in a time varying model grows fast with the sampling frequency of the data. We do not

�nd this to be a shortcoming. Boivin et al. [2009] estimate the FAVAR model for sector

prices using monthly and quarterly data and �nd minor di�erences. Baumeister et al.

[2010] also estimate a factor model of sector prices using quarterly data. On average the

5 factors explain 58% of the variance of the 144 macroeconomic data series.

We augmented the dataset with disaggregated sector data on real personal consump-

tion expenditure indexes (hereafter PCE) and PCE price indexes. We collected the data

at the most disaggregated level and moved up to a higher aggregation level if at least one

of the series in the lower category had missing observations. We ended up with 203 cat-

egories of sector prices44. We excluded some sector series from the dataset, because they
42Federal Reserve Economic Data.
43Korobilis [2009] uses 157 variables. Six of those are not publicly available and 4 had missing values.

We also excluded some variables that could not be made stationary, since they exhibit extreme behavior
after the 2007 crisis.

44The di�erence in the number of categories in our dataset and Boivin et al. [2009] comes from the
di�erence in the frequency of the data. More categories are available with quarterly data. Also, some
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Table 3: Descriptive statistics for sector indices

PCE P PCE Q
Mean 0.83% 0.88%
Median 0.92% 0.90%
Std. 1.52% 3.29%
Skewness 0.75 0.12
Kurtosis 9.22 7.27
Statistics apply to growth rates.

either exhibit extremely unstable behavior45 or extremely implausible behavior. We ex-

cluded 7 sector price series and 4 quantity series. Sector quantity and price indexes were

transformed into quarter on quarter growth rates. Table 3 contains descriptive statistics

for the sector indices. On average the sector prices rose by 0.83% each quarter. Standard

deviation of sector prices growth rate is a 1.52%. Quantities rose on average each quarter

more than prices, by 0.88%. The standard deviation of sector quantities is almost twice

the standard deviation of the prices, 3.29%. This is consistent with price stickiness of

sector prices. Both distributions, of sector prices and quantities, are leptokurtic and

skewed. Sector data were downloaded from BEA46 on-line database.

The total dataset now includes 504 aggregate and disaggregated time series. Factors

explain 43% of variation in sector prices. We �nd this to be quite high47. This share falls

to 38%, if we estimate the factors only on the core macroeconomic variables. Since our

primary focus is on sector prices we use the enlarged dataset48. Extracted factor estimates

are plotted in Figure 1 in the Appendix. All variables were seasonally adjusted49 and

standardized before the estimation.

2.9 Results

To asses the plausibility of the identi�ed shocks we �rst present the results for macroe-

conomic variables. We proceed with the analysis on the sector price dynamics and link

them to the RIA model.

categories do not match perfectly.
45Extremely unstable series is de�ned as series that has more than 5 outliers, where outlier is de�ned

as an observation 5 standard deviations greater than the mean of the series (in absolute terms).
46Bureau of Economic Analysis.
47In Boivin et al. [2009] their factor model explains around 17% of the variance. The di�erence is due

to the frequency of the data.
48The �rst three factors extracted from core and enlarged dataset have correlation coe�cients over

0.9.
49Using X-12-ARIMA procedure for quarterly data.
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2.9.1 Aggregate variables

Table 2 in the Appendix contains average shares of explained variances for macroeconomic

variables: RGDP (real GDP), IPI (industrial production index), CPI (consumer price

index), PPI (producer price index), M3TB (3 month treasury rate), UR (unemployment

rate), PCE Q (real personal consumption expenditure), PCE P (personal consumption

expenditure price index) and FFR (federal funds rate). On average the common com-

ponent variances account for 63% of the total variability of these dependent variables.

Share of explained variance averaged over the three sub-periods50 does not show substan-

tial variability. But upon closer look, presented in Figures 2-5 in the Appendix, one can

observe that the shares of explained variances have varied greatly. We observe that the

total variances, common component variances and idiosyncratic variances have varied for

all the aggregate variables. This is especially true for PCE price index. We observe that

the total variance of the PCE price index has been steadily increasing from 60' to middle

of 70's, declined with the Volcker disin�ation period at the beginning of the 80', started

to increase again before the 2007 crisis and then decreased. Figure 5 plots the shares of

explained variances over time. We observe that the share of explained variance for PCE

price index increases during turbulent periods and decreases during calm periods. It in-

creases in volatile times to 97% such as during the 1975 oil crisis, Volcker's money stock

targeting and the recent �nancial crisis. It decreases to 91% during calm periods like

after the Volcker's disin�ation and in the �rst half of 2000. Te share explained variance

is especially high for the PCE price index, 95% on average. This comes as no surprise

since we have included time series, that comprise this index, in the dataset from which

we extracted the factors. This is important, because it assures us that the estimated

factors include all aggregate in�uences that a�ect sector prices.

Figure 6 plots normalized cumulative impulse responses of selected aggregate variables

(RGDP, PCE Q, CPI,PCE P and FFR), for the three shocks. The impulse responses

were normalized by dividing each impulse responses with the standard deviation of the

shocks. Standard deviations of the shocks were calculated as in Mumtaz et al. [2011]51.

We plot the impulse responses for 5 periods. Periods were chosen to correspond to

tranquil and volatile periods. Impulse responses have similar shapes in all periods, but
50Before the great moderation, the great moderation and the period of �nancial crisis.
51We cross-checked the results by normalizing the impulse responses with respect to a speci�c variable.

We normalized the impulse responses of the monetary policy shock with respect to the interest rate, the
supply shock, with respect to prices and the demand shock with respect to GDP. The results were similar
to the ones presented in this paper for all the shocks except the monetary policy shock, which exhibited
implausible behavior. We therefore decided to use the method presented in Mumtaz et al. [2011] to
calculate the variances of the shocks.
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they are more pronounced in the more volatile periods, such as in 70' (1973Q1) and

beginning of the 80' (1981Q1) and after 2007 (2008Q1). This holds especially for price

variables. Interesting, for the price variables, impulse responses shocks after 2007 are

on average less pronounced. This holds especially for supply and demand shock. The

responses are also (on average) smaller and �atter in less volatile times such as in 1965Q1

and 2000Q1 and more pronounced in 1974Q1 and 1981Q1. While this is a standard result

for quantities there is disagreement on how the response of prices has changed due to

a monetary policy shock. Some authors �nd no change (i.e. Sims and Zha [2006] and

Primiceri [2005]) and some authors �nd the response to increase over time (Baumeister

et al. [2010]). Like Eickmeier et al. [2011b] and Boivin et al. [2009]) we �nd that the

responses have slightly decreased in calm periods. The RIA model predicts this for the

prices. It is interesting that it also holds for the quantities.

Monetary policy shock has almost no a�ect on CPI and PCE P, on impact . The

response is slow and builds up gradually. The e�ect of a monetary policy shock on

price indexes diminishes after 20 quarters. Similar result holds for RGDP and PCE Q.

Monetary policy shock a�ects the M3TB rate strongly on impact and dies out quickly.

Except for a bit longer response horizons, this results are consistent with other studies

(Eickmeier et al. [2011b] also �nd long responses). Positive demand shock causes real

GDP and PCE Q to rise on impact, whereas prices respond little on impact. Note that

the quantities slowly return toward its initial level whereas price level remains higher.

Monetary authority responds to a demand shock with a rise in the M3TB, in a slightly

delayed fashion, which could re�ect lack of prompt information or reluctance to counter

the shock by monetary authority. Supply shocks a�ects prices mildly on impact and the

e�ect slowly builds up after the shock. Impact e�ect on real quantities is almost zero,

but builds up gradually. Monetary authority counters the shock by immediately raising

the interest rates. Figures 7-12 plot impulse responses to selected shocks for each point

in time. It recon�rms our �ndings that they were more pronounced before 70'-80' and

after the 2007 crisis. It is surprising how similar are the impulse responses to a monetary

shock using the method of Forni et al. [2009] compared to the ones obtained by using

the traditional Cholesky identi�cation.

We believe that in overall our structural factor model captures the macroeconomic

dynamics in the economy quite well. This is important if we want to decompose the

sector prices into an aggregate and sector speci�c component.
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2.9.2 Sector prices - variances

RIA model predicts that the sector price responses depend on the variances of aggregate

and idiosyncratic components of prices. Therefore we �rst decompose the variances of

sector prices on aggregate and sector components. Previous section showed that the

variances of aggregate variables varying over time. Therefore also the aggregate shock

variances have varying. If the sector component variances remained (approx.) stable this

would imply that the ratio of common component variance to idiosyncratic variance has

changed, which we can exploit in testing the RIA model.

Decomposition of sector price variances by explained and unexplained variance is

presented in Table 3 in the Appendix. We note that the share of aggregate component

variance in the median sector has declined in the great moderation period and rose again

in the 2007 crisis. It constituted for 51% in the 70's and the beginning of 80' (47%

in the full period before 1983Q4), declined to 44% in the great moderation period and

increased to 56% in the 2007 crisis. Figure 13 plots the common component variances

and idiosyncratic component variances for sector prices. We notice several things. First,

variances of the sector prices due to aggregate shocks show similar dynamics over time,

in all sectors. Second, variances of common components declined in the middle of the

80' and increased with the 2007 crisis. Inserted dashed black line presents the estimated

variance of the median sector. We can see that the aggregate component variance of the

median sector achieved its �rst peak in 1980Q4. At that point it achieved a value of

0.88, which is over 10 times the minimum median common component in 1963Q4 (0.07).

It achieved it's second peak just around the beginning of the Volcker disin�ation policy,

after which the common component variance decreased and remained low till 2007 crisis.

On the other hand sector component variances of the in�ation do not show a strong

pattern. Median variance of the sector component resembles a �at line implying that

sector speci�c components have remained stable over time. The drop in sector in�ation

variances after the 70' is due to a drop in the variances of common shocks hitting the

economy whereas sector speci�c variances remained stable. Figure 14 plots the total

variances of sector prices and the shares of common components over time. Common

component share of median sector was at its highest in 1980Q4, when it achieved 75%.

It was also high in 2009Q1 (74%), presumably due to the �nancial crisis. It was at its

lowest in 1965Q4 and 1997Q4, when it constituted less than 40% of the variance of the

median sector.
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2.9.3 Sector prices - responses to aggregate shocks

RIA predicts that sector price response to an aggregate shock depends on the sector price

aggregate component variance and the idiosyncratic component variance. Aggregate

shock variances have declined after the 70' and increased again with the 2007 crisis.

Therefore we expect that sector prices respond more strongly to shocks before the 70',

less after the 70', and more in the 2007 the crisis.

Figure 15 is composed of 9 plots. 5-th, 50-th and 95-th quantiles are sorted over

columns and rows represent a response to a monetary, demand and supply shock. We

begin with the description of the e�ect of demand and supply shock on sector prices,

as presented in the second and third row. Both shocks do not a�ect prices much on

impact (in all periods) but then slowly propagate through the economy and prices start

to respond. The e�ect of the shocks is quite persistent. Note that the price responses

are especially high around volatile years such as 1974Q1 and 1981Q1. This is consistent

with the RIA model. The response in tranquiler periods is roughly half the response in

the volatile periods. First row shows the median sector price response to a monetary

policy shock. As before they a�ects prices little on impact, but the e�ect builds over

time. The e�ect on impact is less than 5%, gradually builds up and stabilizes after 40

quarters. Figure 16 plots the responses of all sectors for selected periods. We note two

results. First, for all the shocks and periods there are a few sectors in which responses

to a shock have the opposite sign as the median responses. I.e. in some sectors prices

respond positively to a monetary policy shock. This might be due to di�erent channels

of monetary policy acting in di�erent sectors. Similar reasoning holds for other shocks.

Second, we note that the dispersion of responses declines in the tranquil periods and

increases in the volatile periods. This is seen as the plots get more narrow after the 80'

and widens again after 2007. We calculated average standard deviations of cross sectional

dispersion of sector price IRs to shocks, by periods. For every shock and for every impulse

horizon the average dispersion of IRs fell after the great moderation and increased again

in the 2007 crisis period. In the great moderation period (1984Q1-2007Q1) the dispersion

of responses to monetary shocks fell by 25% for the impulse response in the eight period

after the shock, relative to turbulent period (1970Q1-1983Q3), by 34% for a demand

shock and by 35% for the supply shock.With the 2007 crisis the dispersion for a response

to a monetary shock increased by 30%, by 52% for a demand shock and by 32% for the

supply shocks, relative to the great moderation period. This is consistent with results

in Boivin et al. [2009] and in Baumeister et al. [2010], but it is not consistent with the

RIA model. RIA predicts that the magnitude of the impulse responses should decrease

with a fall in the variance of the aggregate shocks, but that cross sectional variation in
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the responses to aggregate shocks should increase. This is because when �rms in the

RIA model pay less attention to aggregate conditions their responses should be more

dispersed.

2.9.4 Sector prices - responses to sector shocks

We now analyze how sector prices responded to sector shocks over time. The RIA model

predicts that if the idiosyncratic component of the sector prices became more important

over time, as it seems to be the case, then the sector prices should respond faster (or

at least not slower) and with a higher magnitude to a sector shock. Figure 17 plots

cumulative impulse responses of sector prices to sector shocks for all sectors and �gure

18 impulse responses for the median sector for all periods. It takes only a few quarters

for the 95% of the long run impact to realize in the median sector, after a sector shock

has hit the prices. Boivin et al. [2009] and Ma¢kowiak et al. [2009] report similar result.

Note that there is very little variation in sector price responses to sector shocks over

time. We also examined cross-sectional variability of prices responses to sector shocks,

over time. The di�erences were for all practical reasons negligible (a few percent) and

therefore we do not report them.

2.9.5 Regressions

In this section we describe the regressions that we use to test the predictions of the

RIA model. We use similar regressions as in Ma¢kowiak et al. [2009] and Boivin et al.

[2009]. What is di�erent is that we use a panel data-set with three identi�ed shocks. This

enables us to compare the results over time, space and shocks. Rich time variation in the

variances of reduced and structural shocks enables us to draw additional conclusion that

we could not if we ignored the time dimension. In addition, the identi�cation of speci�c

shocks assures that the e�ects of shocks are not mixing, which could cause false results.

Following Boivin et al. [2009] we regressed IRs on the variances by components (mon-

etary policy, demand, supply, one non-speci�ed component and the sector component)

and following Ma¢kowiak et al. [2009] we regressed the speed of impulse responses on

variances by components. Speed of impulse responses are de�ned as a ratio of average ab-

solute response to a shock in the �rst two years divided by the average absolute response

in the 4th-8th year:

ΛAjti =
1
8Σ8

Q=1|βtij |
1
8Σ32

Q=24|βtij |
(30)
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Periods were chosen to strike a balance between short term responses and the long

term response to the shocks52. βtij presents the size of the impulse response in sector n

to a shock j at time t. ΛAjtn presents the speed of response in sector i at time t to to a

j-th aggregate shock.

We run several panel regressions53. We have a reasons to believe that there are

sector speci�c missing explanatory variables that do not change over time that could

bias the results. This would include sector characteristics such as: level of competition

in a sector, durability of goods produced, average �rm size in a sector,... We estimate

�xed e�ects regression to avoid possible bias due to unobserved variables. Variables used

in the regression and accompanying summary statistics is are in the Appendix in Table

4.

Results

We �rst regressed the speed of impulse responses on common component variances due

to own shocks only (i.e. we regressed the speed of impulse responses to a monetary shock

on a common component variance that is attributable to the monetary policy shock).

Results are in Table 5. Two regressions were preformed for each shock. We regressed the

speed of response to a shock on the standard deviation of the sector price that can be

attributed to that speci�c shock (to ease expression we refer to them in the remainder

of this document as own standard deviations). In the second regression we regressed

the speed of response on own shock and (total) standard deviation of the remaining

shocks54. The RIA model predicts that the higher is the own standard deviation the

faster the price responds to that shock. The e�ect of the standard deviation of the

remaining shocks should be negative. Our panel results do not support this prediction.

Regressions on own shocks standard deviations came out signi�cant but the results are

sometimes counterintuitive.Increase in the variance due to own shock decreases the speed

of response for the supply shock. Note also that the overall coe�cient of determination

is low for all the regressions. This is not in accordance with the RIA model. We conclude

that we do not �nd clear support that the shocks variances a�ect the speed of impulse
52Other combinations of periods did not a�ect the results.
53Dependent and explanatory variables are estimated. Therefore we should have used bootstrap

estimates. Unfortunately the bootstrap is still running. Previous application with a time series prior
included bootstrap estimates. It did not change the main conclusions of the paper, though the con�dence
intervals on the coe�cients were wider.

54De�ned as a square root of sum of common component variances of all other shocks and the sector
speci�c shock.
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responses as predicted by RIA55.

Next we regressed the size of impulse responses on the variance attributable to com-

mon factors and the variance attributable to sector speci�c shocks. As a measure of the

size of the impulse response we took an average impulse response to a shock in the 3rd

year after the impact. This period is chosen because it lies between the short run and long

run response. The results, in Table 6, are partly in accordance with the RIA theory of

prices. An increase in the standard deviation of the variance, due to an aggregate shock,

decreases the monetary impulse response and increases the demand and supply impulse

response56. This is in accordance with the RIA model. On the other hand, an increase

in the standard deviation of the idiosyncratic shock increases the impulse responses of

monetary, demand and supply shocks. This is not in accordance with RIA. In the RIA

model idiosyncratic shocks compete with the aggregate shocks for the attention of the

decision makers and should therefore dampen the impulse responses to aggregate shocks.

Though these e�ects are small and insigni�cant. We also note that the coe�cients of im-

pulse responses to own standard deviations are substantially higher than the coe�cients

on standard deviations of the idiosyncratic shocks, as implied by the RIA model.

We next regressed the size of the impulse responses on own and other shock variance.

The RIA model predicts that own shock standard deviation a�ects the size of the impulse

response to that shock positively, whereas standard deviation of the remaining shocks

should dampen them. The results are in complete accordance with the RIA model (Table

7 in the Appendix). Standard deviation of prices due to a monetary policy shock a�ects

the size of the impulse response with a negative sign. This is in accordance with RIA,

since we estimated a negative monetary shock. Other shocks standard deviation increases

the impulse response to a monetary shock. Own standard deviation for supply and

demand shock increase the supply and demand impulse response. When we add other

shock standard deviations they dampen the impulse responses of demand and supply

shock, although they can be insigni�cant. This leads us to believe that the decision

makers in �rms understand di�erent aggregate shocks.

Both of the above regressions provide some insightful results. First they show that

idiosyncratic shocks are not very important for how sector prices respond to aggregate

shocks. Almost all the e�ects of the idiosyncratic shocks on the impulse responses (due

to aggregate shocks) were insigni�cant or small. In addition, other shocks variances seem

55The results did not change when we regressed the speed or responses on the standard deviation of
own shock variance and other sock's variance.

56Monetary shock in our model decreases prices and the demand and supply shocks increase them.
Note that in the 3D plots we plotted a negative demand shock. We did this so that the results are better
visible.
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to matter for impulse responses to aggregate shocks, as predicted by the RIA model. The

RIA model as presented in Ma¢kowiak et al. [2009] only models the price variances by

decomposing them to an aggregate and sector speci�c component. Because we identify

structural aggregate shocks we can also test if the identi�ed aggregate shocks compete

for the attention of the decision makers. Table 8 presents results where we regress each of

the impulse response on own standard deviation and standard deviation of other shocks.

As we observe from the table the predictions of the RIA model hold fairly well. The

monetary and demand shock do not compete for the attention of the decision makers

in the equation for the monetary shock. Other than this result shocks compete for the

attention of the decision makers, as predicted by RIA model. Note that Mackowiak

and Wiederholt [2011] model rational inattention in a fully micro-founded model where

they identify three structural shocks and provide some evidence for the trade-o� between

shocks. Unfortunately they do not yet present a detailed results on how sector speci�c

prices respond to shocks in their model. It would be interesting to see if the results

obtained in their model comply with the results presented here.

To conclude we restate the results. In our preferred speci�cation we found that an

increase in own standard deviation increases the impulse response of prices, and standard

deviation due to idiosyncratic shocks decreases them, as predicted by the RIA model

(though the later e�ect is small and sometimes insigni�cant). The reason could be that

the decision makers in �rms are very good at interpreting sector speci�c shocks and

thus the sector speci�c shocks do not compete with aggregate shocks (whose e�ect is

di�cult to predict even for economists). We also tested if the aggregate shocks compete

for the attention of the decision makers and concluded that they do (with one exception,

monetary shock does not seem to compete with the demand shock).

3 Conclusion

In this paper we implement the FGLS approach into a time varying framework in order

to create a panel dataset on price dynamics. We then tested the predictions of the RIA

model. Based on our empirical model we con�rm some of the predictions of the RIA

model and refute some.

We �rst con�rm the main prediction of the RIA model, that has been tested before,

but not with a panel data and not by using data on demand and supply shocks. This

prediction is that an increase in the (identi�ed) aggregate shock price variance increases

the size of impulse responses to the aggregate shock. We refute the prediction that an

increase in sector component variance decreases the size of impulse responses - in any
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signi�cant manner, which does not comply with the RIA model. The reason could be

that the decision makers in �rms are very good at interpreting sector speci�c shocks and

therefore do not have to devote much attention to them.

In addition we found that the impulse response to sector shocks have not changed

much over time, although their share in sector price variances has increased. One nar-

rative for this result is that managers who set prices simply understand sector shocks a

lot better than aggregate shocks and so always react to sector speci�c shocks, but only

react strongly to aggregate shocks when they are more important, that is in volatile peri-

ods. Operational macro model using the same mechanism as in the RIA a model should

account for this.

Next, the RIA model predicts that with the fall in the common component variances of

prices - while holding sector component variances constant -, the cross sectional dispersion

of sector price responses to aggregate shocks should increase. We estimate that the

common component variances of sector prices have indeed decreased over time, that the

sector speci�c components have remained constant (on average), but contrary to the RIA

model, the cross sectional dispersion of sector price responses to monetary, demand and

supply shock has decreased.

In the RIA model the �rms respond di�erently to di�erent shocks because their

importance (in setting the right price to maximize pro�ts) is di�erent. Prices respond

more to shocks with higher variance and less to shocks with lower variance. The source

of the shock is not so important, what is important is that the shocks "compete for the

decision maker's attention". One would therefore also expect that there is the same trade

o� between identi�ed aggregate shocks. This is indeed what we found in the data.

In this paper we focused on prices and leave detailed analysis of quantity responses

to further analysis. It will be interesting to see if the results also hold for quantities. We

leave this subject for future research.
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Appendix

Tables and �gures

Macroeconomic series

This section presents the macroeconomic data used in the application. First 144 U.S.

macroeconomic time series were downloaded from the FRED (Federal Reserve Eco-

nomic Data) database and the last two series from BEA (Bureau of Economic Analysis)

database. We collected similar data to the dataset used in Korobilis [2009]. Some series

were not available and some were excluded due to exhibiting large outliers (bank reserves

namely). The core data (macroeconomic variables) consists of 144 variables. The trans-

formation codes stand for: 1 - no transformation, 2 - �rst di�erence, 4 - logarithm and 5

- �rst di�erence in logarithms.

Num. Mnemonic Description TC
1 AAA Moody's Seasoned Aaa Corporate Bond Yield 1
2 AHECONS Average Hourly Earnings: Construction 5
3 AHEMAN Average Hourly Earnings: Manufacturing 5
4 AWHMAN Average Weekly Hours: Manufacturing 1
5 AWOTMAN Average Weekly Overtime Hours: Manufacturing 1
6 BAA Moody's Seasoned Baa Corporate Bond Yield 1
7 BORROW Total Borrowings of Depository Institutions from FED 5
8 BUSLOANS Commercial and Industrial Loans 5
9 CBI Change in Private Inventories 1
10 CIVA Corporate Inventory Valuation Adjustment 1
11 CMDEBT Households and NPO; Credit Market 5
12 CNCF Corporate Net Cash Flow with IVA 5
13 COMPNFB Nonfarm Business Sector: Comp. Per Hour 5
14 COMPRNFB Nonfarm Business Sector: Real Comp. Per Hour 5
15 CONSUMER Consumer Loans, All Commercial Banks 5
16 CP Corporate Pro�ts After Tax 5
17 CPIAUCSL CPI for All Urban Consumers: All Items 5
18 CPIENGSL CPI for All Urban Consumers: Energy 5
19 CPILEGSL CPI for All Urban Consumers: All Items Less Energy 5
20 CPILFESL CPI for All Urban Consumers: All Items Less Food & Energy 5
21 CPIUFDSL CPI for All Urban Consumers: Food 5
22 CPIULFSL CPI for All Urban Consumers: All Items Less Food 5
23 CURRCIR Currency in Circulation 5
24 CURRDD Currency Component of M1 Plus Demand Deposits 5
25 CURRSL Currency Component of M1 5
26 DDDFCBNS Demand Deposits Due to Foreign Commercial Banks 5
27 DDDFOINS Demand Deposits Due to Foreign O�cial Institutions 5
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Num. Mnemonic Description TC
28 DEMDEPSL Demand Deposits at Commercial Banks 5
29 DGI Federal Government: Real National Defense Gross Investment 5
30 DIVIDEND Corporate Pro�ts after tax: Net Dividends 5
31 EXPGSC96 Real Exports of Goods & Services, 3 Decimal 5
32 FEDFUNDS E�ective Federal Funds Rate 1
33 FGCE Federal Consumption Expenditures & Gross Investment 5
34 FGSL Federal government transfer payments: Grants-in-aid 5
35 FINSAL Final Sales of Domestic Product 5
36 FINSLC96 Real Final Sales of Domestic Product 5
37 FPI Fixed Private Investment 5
38 FSDP Final Sales to Domestic Purchasers 5
39 GDP Gross Domestic Product 5
40 GDPC96 Real Gross Domestic Product, 3 Decimal 5
41 GDPCTPI Gross Domestic Product: Chain-type Price Index 5
42 GDPDEF Gross Domestic Product: Implicit Price De�ator 5
43 GGSAVE Gross Government Saving 1
44 GS1 1-Year Treasury Constant Maturity Rate 1
45 GS10 10-Year Treasury Constant Maturity Rate 1
46 GS3 3-Year Treasury Constant Maturity Rate 1
47 GS5 5-Year Treasury Constant Maturity Rate 1
48 GSAVE Gross Saving 5
49 HCOMPBS Business Sector: Compensation Per Hour 5
50 HOABS Business Sector: Hours of All Persons 5
51 HOANBS Nonfarm Business Sector: Hours of All Persons 5
52 HOUST Housing Starts: New Privately Owned Housing Units Started 4
53 HOUST1F Privately Owned Housing Starts: 1-Unit Structures 4
54 HOUSTMW Housing Starts in Midwest Census Region 4
55 HOUSTNE Housing Starts in Northeast Census Region 4
56 HOUSTS Housing Starts in South Census Region 4
57 HOUSTW Housing Starts in West Census Region 4
58 IMPGSC96 Real Imports of Goods & Services, 3 Decimal 5
59 INDPRO Industrial Production Index 1
60 INVEST Securities in Bank Credit at All Commercial Banks 5
61 LOANINV Bank Credit at All Commercial Banks 5
62 LOANS Loans and Leases in Bank Credit, All Commercial Banks 5
63 M1SL M1 Money Stock 5
64 M2MOWN M2 Minus Own Rate 6
65 M2MSL M2 Less Small Time Deposits 5
66 M2SL M2 Money Stock 5
67 MANEMP All Employees: Manufacturing 5
68 MPRIME Bank Prime Loan Rate 1
69 MZMSL MZM Money Stock 5
70 NAPM ISM Manufacturing: PMI Composite IndexÂ c© 1
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71 NAPMII ISM Manufacturing: Inventories IndexÂ c© 1
Num. Mnemonic Description TC
72 NAPMNOI ISM Manufacturing: New Orders IndexÂ c© 1
73 NDGI Federal Nondefense Gross Investment 5
74 NDMANEMP All Employees: Nondurable goods 5
75 NONREVSL Total Nonrevolving Credit Owned and Securitized 5
76 OTHSEC Other Securities at All Commercial Banks 5
77 PCE Personal Consumption Expenditures 5
78 PCEPI Personal Consumption Expenditures: Chain-type PI 5
79 PFCGEF PPI: Finished Consumer Goods Excluding Foods 5
80 PPIACO PPI: All Commodities 5
81 PPICPE PPI: Finished Goods: Capital Equipment 5
82 PPICRM PPI: Crude Materials for Further Processing 5
83 PPIENG PPI: Fuels & Related Products & Power 5
84 PPIFCF PPI: Finished Consumer Foods 5
85 PPIFCG PPI: Finished Consumer Goods 5
86 PPIFGS PPI: Finished Goods 5
87 PPIIDC PPI: Industrial Commodities 5
88 PPIITM PPI: Intermediate Materials: Supplies & Components 5
89 PRFI Private Residential Fixed Investment 5
90 RCPHBS Business Sector: Real Compensation Per Hour 5
91 REALLN Real Estate Loans, All Commercial Banks 5
92 RENTIN Rental Income of Persons (CCAdj) 5
93 REQRESNS Required Reserves of Depository Institutions 5
94 RESBALNS Total Reserve Balances Maintained with FRB 5
95 SAVINGSL Savings Deposits - Total 5
96 SLEXPND State & Local Government Current Expenditures 5
97 SLINV State & Local Government Gross Investment 5
98 SRVPRD All Employees: Service-Providing Industries 5
99 STDCBSL Small Time Deposits at Commercial Banks 5
100 STDSL Small Time Deposits - Total 5
101 STDTI Small Time Deposits at Thrift Institutions 5
102 SVGCBSL Savings Deposits at Commercial Banks 5
103 SVGTI Savings Deposits at Thrift Institutions 5
104 SVSTCBSL Savings and Small Time Deposits at Commercial Banks 5
105 SVSTSL Savings and Small Time Deposits - Total 5
106 TB3MS 3-Month Treasury Bill: Secondary Market Rate 1
107 TB6MS 6-Month Treasury Bill: Secondary Market Rate 1
108 TCDSL Total Checkable Deposits 5
109 TGDEF Net Government Saving 1
110 TOTALSL Total Consumer Credit Owned and Securitized, Outstanding 5
111 TVCKSSL Travelers Checks Outstanding 5
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Num. Mnemonic Description TC
112 UEMP15OV Num. of Civilians Unemployed for 15 Weeks & Over 5
113 UEMP15T26 Num. of Civilians Unemployed for 15 to 26 Weeks 5
114 UEMP27OV Num. of Civilians Unemployed for 27 Weeks and Over 5
115 UEMP5TO14 Num. of Civilians Unemployed for 5 to 14 Weeks 5
121 USFIRE All Employees: Financial Activities 5
122 USGDCB U.S. Government Demand Deposits at Commercial Banks 5
123 USGOVT All Employees: Government 5
124 USGSEC Treasury and Agency Securities at All Commercial Banks 5
125 USGVDDNS U.S. Government Demand Deposits and Note Balances 5
126 USINFO All Employees: Information Services 5
127 USLAH All Employees: Leisure & Hospitality 5
121 USFIRE All Employees: Financial Activities 5
122 USGDCB U.S. Government Demand Deposits at Commercial Banks 5
123 USGOVT All Employees: Government 5
124 USGSEC Treasury and Agency Securities at All Commercial Banks 5
125 USGVDDNS U.S. Government Demand Deposits and Note Balances 5
126 USINFO All Employees: Information Services 5
127 USLAH All Employees: Leisure & Hospitality 5
128 USPBS All Employees: Professional & Business Services 5
129 USPRIV All Employees: Total Private Industries 5
130 USSERV All Employees: Other Services 5
131 USTPU All Employees: Trade, Transportation & Utilities 5
132 USTRADE All Employees: Retail Trade 5
133 USWTRADE All Employees: Wholesale Trade 5
134 sAAA Spread between AAA and Fedfunds 1
135 sBAA Spread between BAA and Fedfunds 1
136 sGS1 Spread between GS1 and Fedfunds 1
137 sGS10 Spread between GS10 and Fedfunds 1
138 sGS3 Spread between GS3 and Fedfunds 1
139 sGS5 Spread between GS5 and Fedfunds 1
140 sMPRIME Spread between Bank Prime Loan Rate and Fedfunds 1
141 sTB3MS Spread between TB3MS and Fedfunds 1
142 sTB6MS Spread between TB6MS and Fedfunds 1
143 PCEP Personal consumption expenditure price index (from BEA) 5
144 PCEQ Real Personal consumption expenditure (from BEA) 5
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Table 1: DIC criteria
No. Fac. static factors VAR lags
1 1.3445 -4.8524
2 1.3043 -3.9215
3 1.2693 -3.4576
4 1.2386 -3.1185
5 1.2205 -3.4642
6 1.3970 /
7 2.4403 /

This table reports the DIC criteria, a Bayesian model selection criteria, for the number of static
factors and number of lags. The model with the lowest DIC criteria should be selected. DIC is
de�ned as in eq.(26) on p.13. The DIC criteria for the number of static factors is in e+005 units.
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Table 2: Shares of explained variances

Period Variable Total Common Idiosyncratic Share of Common
Full RGDP 0.94 0.75 0.19 80.23%

IP 0.87 0.66 0.21 76.30%
CPI 0.72 0.66 0.06 92.17%
PPI 0.67 0.48 0.19 74.78%
M3TB 0.44 0.06 0.38 22.35%
UR 0.39 0.04 0.35 11.56%
PCE Q 0.88 0.70 0.18 78.20%
PCE P 0.74 0.71 0.03 95.20%

1959Q3-1983Q4 RGDP 0.71 0.51 0.20 73.50%
IP 0.77 0.41 0.36 59.41%
CPI 0.47 0.43 0.04 90.89%
PPI 0.41 0.34 0.07 82.64%
M3TB 0.12 0.02 0.10 27.78%
UR 0.39 0.02 0.37 5.60%
PCE Q 0.73 0.49 0.25 66.75%
PCE P 0.46 0.43 0.03 94.42%

1984Q1-2007Q2 RGDP 0.62 0.51 0.11 82.59%
IP 0.58 0.46 0.12 79.21%
CPI 0.49 0.44 0.05 91.63%
PPI 0.54 0.37 0.16 71.97%
M3TB 0.24 0.04 0.19 21.83%
UR 0.25 0.03 0.22 12.49%
PCE Q 0.63 0.49 0.14 78.02%
PCE P 0.50 0.47 0.03 94.51%

2007Q3-2014Q2 RGDP 1.16 1.05 0.11 90.45%
IP 1.12 0.97 0.15 86.95%
CPI 0.88 0.81 0.07 92.72%
PPI 1.01 0.53 0.49 54.16%
M3TB 0.34 0.11 0.22 37.60%
UR 0.53 0.08 0.45 17.61%
PCE Q 0.97 0.91 0.06 94.10%
PCE P 0.93 0.89 0.04 96.33%

This table displays posterior mean variance decompositions for selected aggregate variables,
where: Total stands for total variance, Common for common component variance (variance
explained with factor model), Idiosyncratic for idisyncratic component variance (variance left
unexplained with factormodel), Share of Common for share of common component variance
in total variance.
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Table 3: Variance decompositions of the median sector by period
Volatilities (means)

Period Total Common Idiosyncratic Share of Common
Full 0.64 0.23 0.40 46.71%

1959Q3Q1-1983Q4 0.71 0.27 0.43 46.59%
1984Q1-2007Q2 0.53 0.17 0.36 43.85%
2007Q3-2014Q2 0.74 0.31 0.43 55.83%

Table displays posterior variance decompositions for the median sector where: Period stands
for sample, Total for average total variance of the median sector (averaged over time period),
Common for average common component variance of the median sector (variance explaind by
the model averaged over time), Idiosyncratic for idiosyncratic component variance of the me-
dian sector (variance left unexplained by the model averaged over time) and Share of Common
for the median secotr avergae share of explained variance (avergaed over time).

Table 4: Summary statistics for speed of IRs and variance decompositions
Variable Mean Std. Dev. Min. Max.

Sector - - 1 197
Time - - 1 190

sp_mon 0.0100 0.0110 0.0001 0.1292
sp_dem 0.0075 0.0059 0.0002 0.0740
sp_sup 0.0129 0.0102 0.0001 0.3540
v_mon 0.0540 0.0363 0.0025 0.2918
v_dem 0.0699 0.0558 0.0030 0.5518
v_sup 0.0885 0.0811 0.0028 0.6693
v_nspec 0.0586 0.0430 0.0027 0.3229
v_idio 0.3481 0.5113 0.0000 13.3930
ir_mon -0.1817 0.0913 -0.5377 0.2078
ir_dem 0.3568 0.1812 -0.2220 1.2191
ir_sup 0.2344 0.1529 -0.3231 0.6593

Table 4 presents summary statistic for the variables used in the regression, where: sp (speed of
response), v (variance) and ir (impulse response) . Appended to the pre�x is a su�x. Su�x can
be one of the following: mon (monetary policy shock), dem (demand shock) or sup (supply
shock). nspec and idio stand for unidenti�ed shock and idiosyncratic shock.
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Table 5: Speed of impulse responses regressed on own standard deviation and standard
deviation of other shocks, 1959Q3 - 2014Q2.
Dependent \ Explanatory const sd(own) sd(other) R2 (overall)

spir_mon .0124* -.0109* 0.0200
( .0113 .0135) (-.016 -.006)

.0122* -.0130* .001 0.0218
( .0112 .0133) ( -.019 -.007) (-0.005 0.010)

spir_dem .0074 * .0007 0.0080
( .0071 .0077) ( -.0005 .0020)

.0075* .0017* -.0005* 0.0082
(.0072 .0078 ) ( .0002 .0031) (-.0009 -.0001)

spir_sup .0140* -.0040* 0.0234
(.0136 .0143) ( -.0053 -.0026)

.0138* -.0045* .0004 0.002
(.0133 .0143) ( -.0063 -.0027) ( -.0006 .0014)

Table 5 presents regressions where we regress speed of impulse response (spir) of mone-
tary (mon), demand (dem) and supply (sup) shocks on a constant, own standard deviation
(sd(own)) and standard deviation of the remaining shocks (sd(other)).

Table 6: Size of impulse responses regressed on aggregate standard deviation and stan-
dard deviation of the idiosyncratic variance, 1959Q3 - 2014Q2
Dependent\Explanatory const sd(agr) sd(idio) R2 (overall)

ir_mon -.101* -.177* .45
(-.109 -.093) (-.192 -.161)

-.100* -.176* -.002 .45
(-.109 -.092) (-.192 -.160) (-.009 .004)

ir_dem .202* .311* .48
(.197 .206) (.302 .320)

.200* .308* .007 .48
(.194 .205) (.280 .317) (-.002 .051)

ir_sup .193* .057* 0.14
(.180 .205) (.033 .082)

.189* .054* .009 0.12
(.177 .203) (.029 .079) (-.004 .021)

Table 6 presents regressions where we regress size of impulse response (ir) of monetary (mon),
demand (dem) and supply (sup) shocks on a constant, standard deviation of all aggregate shocks
(sd(agr)) and standard deviation of the idiosyncratic shocks (sd(idio)).
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Table 7: Size of impulse responses regressed on own standard deviation and standard
deviation of other sock's variance, 1959Q3 - 2014Q2.
Dependent\Explanatory const sd(own) sd(other) R2 (overall)

ir_mon -.0690* -.528* .49
( -.079 -.059) (-.573 -.485)

-.0697* -.5342* .0026 .49
(-.0797 -.0597) (-.5810 -.4874) (-.0035 .0089)

ir_dem .187* .666* .53
(.183 .191) (0.651 0.681)

.189* .676* -.006 .53
(.184 .193) (.656 .693) (-.015 .003)

ir_sup .152* .248* .24
(.145 .159) (.223 .272)

.162* .280* -.027* .26
(.153 .171) (.253 .308) (-.041 -.013)

Table 7 presents regressions where we regress size of impulse response (ir) of monetary (mon),
demand (dem) and supply (sup) shocks on a constant, own standard deviation (sd(own)) and
standard deviation of the remaining shocks (sd(other)).

Table 8: Size of impulse responses regressed on own standard deviations of prices due to
MON, DEM and SUP shock, 1970Q1-2006Q4
Dependent\Explanatory const sd(mon) sd(dem) sd(sup) R2 (overall)

ir_mon .281* -1.134* -.505* 1.218* .22
(.270 .293) (-1.279 -.988) (-.587 -.422 ) (1.154 1.283)

ir_dem 0.235* -.897* 1.328* -.054 .476
(.225 .245) (-.982 -.813) (1.292 1.364) (-.1107 .0023)

ir_sup .281* -1.158* -.522* 1.206* .224
(.269 .293) (-1.276 -1.039) (-.574 -.470) (1.127 1.285)

Table 8 presents regressions where we regress size of impulse response (ir) of monetary (mon),
demand (dem) and supply (sup) shocks on a constant, standard deviation of all aggregate
shocks and standard deviation of remaining shocks (not shown due to space considerations), for
the period 1970Q1 - 2006Q4.
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Figures

Figure 1: Factor estimates

Figure displays the factors estimated on U.S. pos-twar macroeconomic dataset, using the
PCA approach.
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Figure 2: Volatility of aggregate variables

Figure displays the posterior mean of variance for selected variables.
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Figure 3: Volatility of the common component of aggregate variables

Figure displays the posterior mean of the common component variance (variance ex-
plained by aggregate factors), for selected variables.
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Figure 4: Volatility of the idiosyncratic component for selected variables

Figure displays posterior the mean of the idiosyncratic component variance (variance left
unexplained by aggregate factors), for selected variables.
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Figure 5: Share of common component variance in the total variance of aggregate vari-
ables

Figure displays posterior the mean of the share of common component variance in the
total variance (share of variance explained by aggregate factors), for selected variables.
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Figure 6: IRs of selected aggregate variables to aggregate shocks for chosen periods

Figure displays posterior means of IRs of aggregate variables to the three identi�ed
shocks, for selected periods.

Figure 7: IRs of selected aggregate variables to a monetary policy shock
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Figure 8: IRs of selected aggregate variables to a monetary policy shock
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Figure 9: IRs of selected aggregate variables to a demand shock

Figure 10: IRs of selected aggregate variables to a demand shock
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Figure 11: IRs of selected aggregate variables to a supply shock

Figure 12: IRs of selected aggregate variables to a supply shock
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Figure 13: Aggregate and idiosyncratic component variance of sector prices

Figure displays posterior variance decompositions for sector prices. Upper panel draws
posterior means of sector price common component variances (part of sector price vari-
ance explained by the model) and lower the idiosyncratic component variances (part of
sector price variances left unexplained by the model). The black dashed line represents
the median sector.
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Figure 14: Total variances and share of common component variance of sector prices

Figure displays posterior variance decompositions for sector prices. Upper panel displays
posterior means of total variance of sector prices and lower the share of common compo-
nent variance in total variance. The black dashed line represents the median sector.
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Figure 15: Median sector impulse responses to aggregate shocks

Figure 16: Sector impulse responses to aggregate shocks for selected periods
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Figure 17: Cumulative sector price responses to sector shocks

Figure 17 presents posterior means of cumulative IRs of sector prices to sector speci�c
shocks for selected periods.

Figure 18: Median sector price response to sector shocks over time

Figure 18 presents posterior mean of cumulative IRs of sector prices to speci�c shocks.
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Estimation

This appendix presents the estimation algorithm and the priors. We �rst present the

estimation algorithm and then the priors. We estimate the following model:

xit = bitFt + uit (31)

uit = θ1ituit−1 + ...+ θqituit−q + ηit (32)

Ft = d1tFt−1 + ...+ dptFt−p + et (33)

Algorithm

The model in eq.(1)-(3) can be separated into two parts: a model for the observation

equation (eq.(1)-(2)) and a model for the VAR of the factors (eq. (3)). Factor VAR

model was estimated using the algorithm presented in Korobilis [2014]. To estimate (31)

and (32) we used the following algorithm:

Time varying parameters were estimated by transforming the model into a linear

state space model to which we applied the Carter-Kohn algorithm. For this reason we

�rst present a general state space model and then the manipulations of the equations

that enable us to apply the Carter-Kohn algorithm. The normal linear state space model

takes the following form:

yt = Xtβt + εt (34)

βt = βt−1Xt + at (35)

Where yt is a n × 1 vector of dependent variables, Xt a k × 1 matrix of explanatory

variables, βt a n × k matrix of time varying coe�cients and εt and at independent

Gaussian white noise vectors. How to estimate a normal linear state space model is

explained in Koop and Korobilis [2010]. We followed their approach so we only present

the basic steps:

1. Initialize all the variables with arbitrary values.

97



2. Calculate uit = xit − bitFt and form a state space with:

yt = uit (36)

Xt = [uit−1...uit−q] (37)

βt = [θ1it...θqit]
′ (38)

(39)

Draw [θ1it...θqit] and the corresponding variances.

3. Given [θ1it...θqit] multiply (31) with θ(L) = 1 − θ1itL − ... − θqitL
q, to obtain a

model with serially uncorrelated errors:

x∗it = bitF
∗
t + a∗it (40)

where x∗it = xit− θ1itxit−1− ...− θqitxit−q and F ∗it = Fit− θ1itFit−1− ...− θqitxit−q.
Form a state space model and draw bit:

yt = x∗it (41)

Xt = F ∗t (42)

βt = bit (43)

4. Calculate a∗it = x∗it − F ∗t . We assume that the errors distribute in a stochastic

volatility model a∗it =
√
ωtεt. This is a non-linear equation that can be transformed

into a linear equation. Square a∗it and take logarithms to linearize the model:

ln(a∗it
2) = 2ln(ωt) + υit (44)

ln(ωt) = ln(ωt−1) + ηt (45)

This is again linear state space model with: yt = ln(a∗it
2), Xt = 2 and βt = ln(ωt).

The only di�erence is that the residuals υit are not normally distributed. Their

distribution is approximated with a mixture of normals as in Koop and Korobilis

[2010].

5. Repeat (2)-(4) till convergence.
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Benchmark priors

The priors used in the benchmark case are slightly informative. Given the number of time

varying parameters, slightly informative priors stabilize the model. This is especially

important because we restrict the model to be stationary. Too much time variation

resulted in cases where virtually all the draws were rejected. We �rst present the priors

used in the observation equation and then the priors used in the factor VAR.

We use the following priors for each observation equation:

A0 ∼ N(0r×1, 4× Ir)) (46)

QA ∼ IW (k2
A(1 + r)Ir, 50 + r) (47)

Θ0 ∼ N(0q×1, 4× Iq) (48)

QΘ ∼ IW (k2
Θ(1 + q), 50 + q) (49)

log Ω0 ∼ N(−1.3863, 4) (50)

QΩ ∼ IW (k2
Ω, 2) (51)

(52)

Because we do not know in advance what should be the sign on the period zero factor

loadings and the error autoregressive coe�cients (A0 and Θ0) we set them to zero with

variance 4. This seems reasonable considering that in the empirical applications with

factor models the factor loadings of standardized variables are rarely higher than 2 and

considering because we assume that the autoregressive process for the residuals is sta-

tionary. We set kQ = kθ = 0.01. If we set it to kQ = kθ = 0.1 the algorithm had problems

converging and if we set it to kQ = kθ = 0.001 there was almost no variability in the

coe�cients. log Ω0 was set so that the explained variance of a standardized variable is

approx. 50%. In the benchmark application kΩ was set to 0.01.

The model for the factor VAR was taken from Korobilis [2014]. The prior the prior

variances for the VAR covariance matrix and the time varying VAR coe�cients are
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updated from the data. We still need to set the following priors:

D̄0 ∼ N(0(p×r2)×1, V ) (53)

D̃0 ∼ N(0(p×r2)×1, 0(p×r2)×(p×r2)) (54)

QD̃ ∼ IW (p× r2 + 2, k
QD̃ × V ) (55)

V = diag(τ1, ..., τ(p×r2)) (56)

τi = IG(κ1, κ2 ×
1

m2
) form = 1...p (57)

T0 ∼ N(O 1
2
r(r−1)×1, 10× I 1

2
r(r−1)) (58)

QTi ∼ IW (i+ 1, kTi × Ii) for i = 1...r − 1 (59)

log H0 ∼ N(0r×1, 10× Ir) (60)

QHi,i ∼ IG(8, 0.1) for i = 1...r (61)

(62)

We observe that the diagonal variance matrix V , that sets the variance of the constant

VAR coe�cients D̄0 and that of the time varying coe�cients D̃, has itÂ�s own prior τi
(for i = 1...r). This speci�cation allows for τi to be updated from the data. Note that

the scale parameter for τi is multiplied with an inverse of the square of the lag 1
m2 , which

shrinks the posterior estimates of parameters of distant lags toward zero. κ1 was set to

0.1 and κ2 to r × p+ 1. k
QD̃ and kTi were set to 0.01 in benchmark speci�cation.

Priors for the remaining time varying parameters (for t=1,...,T), are implicitly de�ned

by the structure of the model:

At ∼ N(At−1, V (At−1)) (63)

Θt ∼ N(Θt−1, kV (Θt−1)) (64)

log Ωt ∼ N(log Ωt−1, Ik) (65)

D̃t ∼ N(D̃t−1, V (D̃t−1)) (66)

log Ht ∼ N(log Ht−1, Ik) (67)

(68)

This completes the speci�cation of the priors. Posterior for model are presented in

Korobilis [2009] for the observation equation and in Korobilis [2014] factor VAR.
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Monte Carlo simulation

This appendix describes a simulation study used to verify consistency of the PCE es-

timator of factors in the presence of stochastic volatility. We follow Stock and Watson

[2002] in setting up the design of the experiment. Stock and Watson [2002] present a

general factor model data generating process where factors evolve in a VAR and the

idiosyncratic errors are allowed to be weakly cross correlated (for further details on the

model the reader is refereed to Stock and Watson [2002]):

Xt = λFt + Eit (69)

A(L)Ft = ut with ut i.i.d. N(0,Ωt) (70)

D(L)Et = vt with vt i.i.d. N(0, τ) (71)

AijL =

{
1− ρL if i = j i, j = 1...r

0 if i 6= j
(72)

DijL =

{ √
αi(1− dL) if i = j i, j = 1...n

0 if i 6= j
(73)

αi =
βi

1− βi
1

T
ΣT
t+1(Σr

j=1λijFjt)
2 with βi i.i.d.U(u, 1− u) (74)

τij = τ |i−j|
1

1− d2
i, j = 1...n (75)

λij i.i.d.N(0, 1) i = 1...n j = 1...r (76)

The only di�erence between the data generating process in Stock and Watson [2002] and

the data generating process used in this simulation study is how we specify the covariance

matrix of the factor VAR (Ωt in equation (2)). Stock and Watson [2002] assume that Ωt

is an identity matrix whereas we model it as a diagonal matrix, where each element on

the diagonal evolves as a random walk:

Ωii,t = σit i = 1...r (77)

log(σit) = log(σit−1) + ηt with ηt i.i.d. N(0, Q) (78)

Q and initial stochastic volatilities σi0 were calibrated so that they correspond the values

of the empirical model used in the paper. For a r = 5 variate VAR, estimated in

the body of the paper, the highest value of the posterior mean of Q was 0.0045 and

the lowest 0.0009. We present the results for Q = 0.001. We also experimented with

Q = 0.0001, Q = 0.100, which did not a�ect the results. Initial volatility was set to
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approximately correspond to the unconditional mean of log(σit), which is −2.0. We

simulated the model under the assumption of two factors, r = 2, no autocorrelation

in the idiosyncratic component57, D(L) = In, VAR lag length was set to one, p = 1,

VAR mean equations AR coe�cients were set to one half, A(L = 1) = 0.5 × Ir and

�nally, we set τ , the parameter that governs the amount of cross correlation between the

idiosyncratic components, to 0.5.

We simulated 500 samples under various time (T ) and cross section (n) lengths. As in

Doz et al. [2011] we calculated we calculated trace statistics for each simulated sample.

The trace statistic measures how well the PCE estimates of the factors correlate with the

true factors. A value of one indicates perfect correlation and a value of zero no correlation

between the true factors and the estimated factors58.

Table 9: Trace statistic from MC experiments, varying n and T
trpc n=10 n=100 n=1000
T=10 0.27 0.34 0.35
T=100 0.57 0.82 0.84
T=1000 0.70 0.96 0.98

Table presents trace statistics from the simulation experiment. Trace statistic mea-

sures how well the estimated factor �t the true factor. It is a multivariate version of R2.

In case of perfect �t it takes value of 1 and 0 in case of no correlation. We vary cross

sectionl dimension (in collumns) and time dimmension (in rows). The simulation shows

that increasing time and cross sectional dimension of the sample improves the perfor-

mance of the PCE estimates of the factors, when their variances are modeled as random

walks. PCE preforms poorly in small samples (T = 10). Increasing the cross sectional

dimension n and time dimension T helps in improving the estimates. In large samples

the PCE estimator estimates the factor space almost perfectly trpc = 0.98. Therefore

the PCE estimator of factors seems to be a consistent estimator of the true factor space,

even under the extreme assumption of explosive variance.
57As shown in Doz et al. [2011] ignoring the autocorrelation in the idiosyncratic component does not

bias the results.
58The trace statistic is a multivariate variant of the R2 coe�cient.
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