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Abstract

This paper provides an introduction to the literature on �nancial contagion in net-

works. In the �rst part, we consider contagion via transmission of shocks, i.e. an

abrupt drop in the �ow of revenue to one �rm, which a¤ects other �rms connected to it

through �nancial linkages. We then study informational contagion, by which we mean

the process whereby a shock to one market is transmitted to other markets by means

of information revealed in the �rst market.

1 Introduction

The aim of this chapter is to provide an introduction to the literature on �nancial contagion

in networks. We aim to do this by focusing on a limited number of papers in some formal

detail, trying to illustrate their analogies and di¤erences as much as possible within a

common framework. We divide the discussion in two parts. In the �rst one, we consider

contagion via transmission of shocks, i.e. an abrupt drop in the �ow of revenue to one

�rm, which a¤ects other �rms connected to it through �nancial linkages. We then study

informational contagion, by which we mean the process whereby a shock to one market is

transmitted to other markets by means of information revealed in the �rst market.

In the �rst part we will consider mostly symmetric �rms, connected via �nancial linkages,

and symmetric networks of di¤erent kinds. The symmetry makes the analysis simpler and

easier to present and it also shows that systemic problems can arise even with symmetry.

This is important to note because much of the popular discussion about �nancial �rms has

been directed at �rms with �special�features, such as �too-big�or �too-interconnected�to

�Prepared for The Oxford Handbook on the Economics of Networks, Yann Bramoullé, Andrea Galeotti,

and Brian Rogers (Eds), Oxford University Press. We wish to thank the Editors as well as Daron Acemoglu,

Alireza Tahbaz-Salehi, Matt Jackson, Matt Elliott and Ben Golub for very helpful comments and discussions

on an earlier version of this paper.
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fail. We also mention the extension of the results to more general kinds of networks, and

to heterogeneous �rms. And we end by describing in less detail the results in a wider class

of papers.

The second part analyzes informational contagion. It is divided in two subsections: the

�rst one studies contagion between markets, the second one contagion between �nancial

�rms.

Informational contagion is in some cases related to contagion occurring through tran-

mission of shocks but it often ampli�es the e¤ect of the former. For example, imagine that

a shock can travel in a network through a path of at most length k. Then, if the �nancial

network and the origin of a shock are common knowledge among all market participants,

and if k is small with respect to the average network distance, the e¤ects of a shock will be

in general quite limited. But with imperfect information about the origin of a shock and

the network topology, a majority of �rms could optimally take protective measures to avoid

contagion once a shock arrives, something they would not do with complete information.

Informational contagion can also be independent from shock transmission. This hap-

pens, for example, when a price movement in one country a¤ects prices in a di¤erent country

for informational reasons. This is because traders in the latter country can infer some in-

formation related to common shocks from the price movements in the former.

2 Contagion through shock transmission

2.1 The model

Let there be N �nancial �rms (say, banks). Each �rm has liabilities, equal to l towards

external investors, and assets, given by claims to the returns on �projects�. There are N

projects and the return on each project i is subject to shocks: it is equal to R if there is

no shock, and to R � si 2 [0; R) if a shock hits. The analysis investigates the e¤ects of
the presence of �nancial linkages among �rms on their �nancial situation, and in particular

on their solvency. We can portray these linkages in a general, abstract way by saying that

the value vi of the assets of a �rm i may be related to the value vj of the assets of any

other �rm j 6= i as they both depend on the vector r which describes the realizations of the
returns of the N projects (for each i; ri = R� si if a shock hits the return of project i and
to R otherwise). This relationship is modeled as follows:

v = f(A; r);

where f : RN�N+ �RN+ ! RN+ and A is a N �N; non negative matrix with generic entry aij :
The matrix A describes the pattern of the linkages among the N �rms, and the function

f(:) the e¤ect of these linkages on the value of the �rms�assets.

If the value vi of the assets of �rm i is lower than the value l of its liabilities, the �rm

defaults. Because of the presence of linkages among �rms, default events are correlated.
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Since default of a �rm is costly (because of the destruction in value of the �rms�assets due

to the termination of its activities or to liquidation costs1), one of the main objectives of the

analysis is indeed to analyze the extent of default in the system and whether generalized

default, or contagion, may occur in the presence of such linkages.

In the literature we �nd di¤erent microfoundations for the map f(:) and the matrix A;

leading to di¤erent interpretations of the elements of this matrix and to di¤erent properties

of f(:): In particular, we present in what follows some alternative microfoundations that

lead f(:) to be a linear function of r, or nonlinear but still continuous, or even discontinuous,

and we will examine the consequences of these di¤erent properties.

In these microfoundations, the linkages among �rms may have a di¤erent nature. In

particular, in Cabrales, Gottardi and Vega Redondo (2014) [CGV] and Elliott, Golub and

Jackson (2014) [EGJ] they arise from the mutual ownership of the claims to the returns

of the underlying projects: that is, the returns on the assets of a generic �rm i are given

by a certain linear combination of the returns of the N projects, with weights given by the

i-th row of the matrix A:
P
j aijrj : In CGV the terms aij describe the ownership by �rm

i of claims entitling the owner to a fraction of the returns of project j. These claims are

obtained via a sequence of rounds of exchanges of assets by each �rm i; initially endowed

with full ownership of project i; with a subset of other �rms (constituting its immediate

neighbors). The pattern of exchanges at each round is described by the matrix B; where

the nonzero elements of row i describe i�s trades with its immediate neighbors. Hence we

have (when the number of rounds of these exchanges is given by K)

A = BK and f(A; r) = Ar: (1)

EGJ, on the other hand, consider a situation where �rms engage in exchanges of equity

among them (again starting from a situation where each �rm i fully owns project i). Letting

cji denote the fraction of the outstanding equity of �rm i sold to �rm j, and ĉii the fraction

that remains owned by external investors, we have ĉii = 1 �
P
j 6=i cji. As shown by EGJ

(in line with Brioschi, Buzzacchi, and Colombo (1989) and Fedenia, Hodder, and Triantis

(1994)), this ownership structure again entitles the owners of equity of the N �rms to a

linear combination of the returns of the underlying projects with weights given by the matrix

A = bC (I � C)�1 ; (2)

where Ĉ is the diagonal matrix with generic entry ĉii and C the matrix with generic entry

cij (and zero diagonal terms). The fact that the mutual ownership takes now the form of

equity and that, as we said above, the default of a �rm entails a cost, implies that any other

�rm that is owning equity of the bankrupt �rm must bear part of this cost, in proportion to

1We can think of r and l as revenues and payments due the subsequent period. The �rm�s assets generate

revenue also in later periods, but when liquidated the value of the �rm�s assets is zero, for simplicity (in any

case lower than the present value of future returns, hence the cost of default).
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the level of its equity ownership. Hence, letting � denote the (immediate) cost of default2

for a �rm, we have:

v = f(A; r) = A(r� �1fvi<lg); (3)

where 1fvi<lg denotes (with a slight abuse of notation) the vector of indicator functions

taking value 1 if vi < l and 0 otherwise, for i = 1; ::; N: We see from (3) that, as long as

� > 0, the value v of the �rms�assets is now a discontinuous function of r, that jumps

whenever some �rm defaults. Moreover, v is determined as a �xed point of the map de�ned

by (3), since the level of v also determines whether a �rm is solvent or not; if insolvent a

�rm has to pay the additional default cost, which in turn a¤ects the value of v, and so on.

To see this, take N = 2;

A =

"
0:7 0:3

0:3 0:7

#
;

R = 1 if no shock hits and ri = 0:5 if a shock hits, l = 0:8 and � = 0:5. Then, if project 2 is

hit by a shock (r2 = 0:5); not only �rm 2 defaults, but also �rm 1, because of the fraction

of default costs it must bear. In contrast, if ri = R for each i; there are two �xed point

solutions of (3), one where both �rms are solvent, and the other where both �rms default.

That is, simply the belief that a �rm may default su¢ ces to generate losses in the �rms�

value that trigger a default even when the returns on the underlying projects have not been

hit by any shock.

As we have seen, the approach in CGV and EGJ looks at the presence of linkages

among the assets of the di¤erent �rms given by cross holdings of claims to the returns on

projects.3 In contrast, Glasserman and Young (2015) [GY] and Acemoglu, Ozdaglar and

Tahbaz-Salehi (2014) [AOT] consider linkages among both assets and liabilities of �rms,

arising from mutual lending and borrowing relationships among them, via standard debt

contracts. In this case aij denotes the payments due from �rm i to �rm j. The value of

�rm i�s liabilities is then augmented now to include the value of the payments due to other

�rms, li +
P
j 6=i aij : Firm i is again endowed with a 100% share of the returns generated

by project i. The book-value value of its assets is similarly augmented by the book-value

of the loans it granted, ri +
P
j 6=i aji. To establish the solvency of �rm i however what

matters is not the book-value but the actual value of the �rm�s assets, which re�ects the

actual payments made by its debtors and may be less than the due payments when they

are in default. Hence the actual payments to �rm i depend on the value of the assets of this

�rm�s debtors, that is on the payments they in turn receive from their own debtors. This

creates an interdependence among the actual value of the assets of all �rms in the system.4

2Strictly speaking, in line with footnote 1, � should be viewed as the part of the cost that must be born

immediately, i.e. in the subsequent period. Also, a limited liability constraint could be added in (3) with no

change in the substance of the results.
3These claims could also be given by derivatives whose return is a more general, non linear function of

the yield of these projects.
4Such an environment is also considered by Shin (2009) to study the e¤ects of changes in credit volumes.
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AOT and GY resort to the analysis of Eisenberg and Noé (2011) to �nd a consistent

set of payments which can be made by �rms linked by mutual borrowing and lending

relationships when some of them default, while respecting the possible di¤erences in the

seniority of the �rms� liabilities. Suppose that all the liabilities among �rms have equal

seniority5 so that the total payments made by any given �rm to other �rms are distributed

to them pro rata, on the basis of the value of their claims towards this �rm. For any vector

r of realized returns, a �nal (equilibrium) repayment vector is then obtained as a solution

of the following system:

pi (r)

0@X
j 6=i

aij + l

1A =

0@X
j 6=i

aij + l

1A ^
0@X
j 6=i

pj (r) aji + ri

1A (4)

for all i: The actual payments made by �rm j to �rm i are then

pij (r) = pi (r) aij ; for all j:

Note that pi (r) 2 [0; 1] and pi(r) = 1 if �rm i does not default. Firm i defaults if the actual
value of its assets

P
j 6=i pj (r) aji + ri falls below the value of its liabilities

P
j 6=i aij + l.

As shown by Eisenberg and Noé (see also AOT and GY), in the environment considered

there is (generically) a unique solution of system (4) for a vector p(r) = (::; pi(r); ::): This

solution is a continuous function of r; it is however a nonlinear function of r; more precisely

it is piecewise linear. Consider for instance the case where only �rm i defaults: we have

pi(r) =
�P

j 6=i aji + ri
�
=
�P

j 6=i aij + l
�
and pj(r) = 1 for all j 6= i:

In the situation considered by AOT and GY the value of the �rms�assets net of their

internal liabilities is then given by

v = f(A; r) = r+ (AT �A)p(r) (5)

2.2 Contagion

The environment presented in the previous section can be used to study how the presence of

linkages among �rms may generate contagion, that is, shocks hitting one �rm may propagate

through the whole system and possibly generate widespread default. More speci�cally, what

we mean by a shock hitting �rm i is that ri < R; the size of the shock is then given by

the magnitude of si. The mechanism of contagion may then vary with the nature of the

linkages among �rms. In CGV it occurs because the presence of linkages implies that �rms

are exposed to the same shocks6, through a correlation in their portfolios. The same is true

in EGJ, but in this case there is also an element of a domino e¤ect, as the default of one

�rm constitutes an additional negative shock for the �rms with whom the �rm is linked.

5 In AOT external liabilities are assumed to be senior to internal liabilities. This has only minor qualitative

implications, that we discuss later on.
6E. Lazear, in http://online.wsj.com/news/articles/SB10001424052970203554104577003924075089102,

refers to this as the �popcorn mechanism�.
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A similar domino e¤ect constitutes the only contagion mechanism in AOT and GY.7 The

analysis in what follows will show however that the e¤ect of the pattern of linkages on

contagion, and more generally on the way in which shocks propagate through the system,

does not depend in a fundamental way on the mechanism which generates contagion.

Following the papers mentioned above, we address this issue by considering �rst the

case where all the N �rms are connected, either directly or indirectly. The presence of such

connections implies that all �rms in the system will be a¤ected, to various degrees, by a

shock hitting any one �rm, and for su¢ ciently large shocks, one or more �rms will default.

We also restrict our attention to regular networks, where each �rm is equally exposed to

other �rms in the system, that is,
P
j 6=i aji =

P
j 6=i aij for all i, and the pattern of exposure

is also the same (the matrix A is symmetric). In such a situation, the identity of the �rm

directly hit by the shock does not matter, and we can take it, w.l.o.g., to be �rm 1:

More precisely, following EGJ we can compute the minimal size of the shock s(j) hitting

�rm 1 such that j 2 f1; ::; Ng �rms default8. Let rj be the vector with elements (R �
s(j); R; ::; R)T such that f(A; rj) has j components less or equal to l (at least one of them

equal) and the other N � j strictly greater than l. This vector is uniquely de�ned, except
in the discontinuous framework of EGJ. Hence a shock of size s(j)+ ", for " small, will lead

to the default of j �rms. Studying how the values s(1); :::; s(N) vary with A; that is, with

the pattern of linkages among the �rms, allows to see how well di¤erent network structures

do in limiting the extent of contagion. Again following the papers mentioned above, we

focus most of our attention on the �extreme�cases - as far as the density of connections is

concerned - of a complete network structure, where each �rm is directly linked to any other

�rm in the system, and of the (one-directional) ring network, where each �rm is directly

linked to only one other �rm in the system.

We show in what follows that, with a complete network structure, either only one �rm

defaults (the one directly hit by the shock), or all �rms default. In contrast, with the ring

network structure we may have di¤erent thresholds for the size of the shocks leading to

1; 2; ::; N �rms defaulting. We will then compare the ring and the complete structure in

terms of their ability to limit defaults in the system and see which role the form of f(:),

that is, whether it is linear, piecewise linear or discontinuous, as discussed in the previous

section, plays in this comparison.

Let us now be more precise. In the CGV and EGJ framework, the complete and the

ring network are described,9 respectively, by the following speci�cations of the matrix A:

7Another mechanism of contagion sometimes mentioned in the literature (see, e.g. Cifuentes et al. (2005))

is the one occurring via the �re sales of the assets of defaulting �rms, which depress the value of other �rms.
8We assume that R > l so that in normal circumstances no �rm defaults.
9See the Appendix for details.
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AC =

266664
� 1��

N�1 � � � 1��
N�1

1��
N�1 � � � � 1��

N�1
...

...
. . .

...
1��
N�1

1��
N�1 � � � �

377775 ; AR =
26666664

� (1��)2
(1��N�1) � � � (1��)2

(1��N�1)�
N�2

(1��)2
(1��N�1)�

N�2 � � � � (1��)2
(1��N�1)�

N�3

...
...

. . .
...

(1��)2
(1��N�1)

(1��)2
(1��N�1)� � � � �

37777775 :
(6)

It is natural to assume that � > (1� �)2 =
�
1� �N�1

�
, which ensures that in both cases10

each �rm is more exposed to the returns of its own project than to the projects of the other

�rms.

Let sC(1) and sR(1) denote the minimal size of the shock leading to one �rm defaulting

(under the above assumption, the one directly hit by the shock), respectively for the matrix

AC and AR. It is immediate to see that the value of both sC(1) and sR(1) is obtained as a

solution to

� (R� s(1)) + (1� �)R = l; (7)

hence sC(1) = sR(1) > R � l: This property shows that in this framework the presence of
linkages to other �rms allows a �rm to withstand larger shocks to the returns on its project

without defaulting (when � = 1; s(1) = R� l), that is, o¤ers some insurance against these
shocks:

With a complete structure, since all the o¤-diagonal terms of AC are the same we have

sC(2) = :: = sC(N), there is then only one other threshold, sC(N); de�ning the minimal

shock leading to all the N �rms defaulting. This is obtained from11

1� �
N � 1

�
R� sC(N)� �

�
+

�
1� 1� �

N � 1

�
R = l: (8)

In contrast for the ring the o¤ diagonal terms of AR have di¤erent values (and decrease with

distance from the diagonal) and so we have a di¤erent threshold sR(j) for each j = 2; ::N;

obtained as a solution of0@ j�3X
i=0

�i

!
(1� �)2

(1� �N�1) (R� �) +
(1� �)2

(1� �N�1)�
j�2 �R� sR(j)� ��+

0@ N�2X
i=j�1

�i

1A (1� �)2

(1� �N�1)R+ �R

1A = l

(9)

From the above expressions we readily obtain some properties of the pattern of contagion

in the di¤erent network structures. The following result follows from the property that the

o¤ diagonal coe¢ cients of both matrices AC and AR are decreasing in N .

10We have in fact (1� �)2 =
�
1� �N�1

�
> (1 � �)=(N � 1); since this is equivalent to 1=(N � 1) <

1=
�
1 + :::+ �N�2

�
and hence to �+ :::+ �N�2 < N � 2 .

11Because of limited liability there is a natural upper bound at R for the admissible values of the size of

the shock s(j). If a solution satisfying the constraint s(j) � R does not exist, it is not possible that j �rms

default.
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Result 1 The minimal size of the shock leading to all �rms defaulting both in the complete

sC(N) and the ring structure sR(N) increases12 as N increases. The same property clearly

holds in the ring for all other values sR(j), for N > j > 1:

Hence the larger is the system (N), the more di¤use is the exposure of each �rm to the

returns on the projects of other �rms, and the more di¢ cult it is that a shock to the return

on the project of one �rm leads to contagion, with other �rms defaulting. That is, larger

systems are better at bu¤ering large shocks, but when shocks are so large that they cannot

be bu¤ered, the extent of default is clearly also larger.

The key di¤erence between the extent of contagion in the complete and ring structure

is that generalized default, by all �rms in the system, is harder with the ring than with

the complete structure, but with the ring intermediate levels of default are also possible.

Formally, recalling that � is the cost of default for a �rm, we have:

Result 2 When � equals zero or is su¢ ciently small, we have sR(2) < sC(N) < sR(N):

Since, as we saw sC(N) = sC(j) for all j > 1; this result shows that a ring structure

is better able to withstand large shocks, but does worse (i.e., has a larger number of �rms

defaulting) for shocks of intermediate size.13 Thus when we consider the extent of contagion

in ring and complete structures we face a tradeo¤.

On the other hand, when the cost � is large (that is, when the �jumps�in the value of

f(:) are su¢ ciently signi�cant), the situation is rather di¤erent:

Result 3 If � is su¢ ciently large, as soon as one �rm defaults all �rms default as well, both

for the ring and the complete structures: sk(N) � sk(1) for k = R;C:

That is, in this case a default of any �rm means an immediate default of all the �rms

in the system. To understand this result, and the di¤erence with respect to Result 2, note

that, when � = 0, the size of the shock that needs to be absorbed by the system is given

by s, that is, is equal to the size of the shock hitting �rm 1. In contrast, when � > 0 the

size of the shock the system must bear is bigger, since it also includes the cost of �rms

who default, and is larger the bigger is the number of defaults in the system. Thus we see

clearly the ampli�cation e¤ect generated by the presence of default costs that must be borne

(immediately) when the claims to projects�returns mutually owned by �rms are given by

equity. Furthermore, we can show that the property established in Result 2 is no longer

valid when � is large: generalized default is now easier in the ring than in the complete

structure. This is due to the fact that contagion in the ring is triggered by the default of

the direct neighbor of a �rm, and this entails the obligation to face not only a share of

12This is true as long as N is not so large that the system is able to withstand a shock of maximal size

(s = R) without having generalized default, in which case r(N) is not de�ned.
13The result follows immediately from the fact that, as noticed in footnote 10, the largest o¤-diagonal

term in AR is larger than the (common) o¤ diagonal term of AC ; while the smallest o¤-diagonal term in AR

is smaller.
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the shock, which declines with distance from the �rm directly hit, but also a share of the

default costs and these do not decrease, but actually increase with distance (as we see from

(9)).14

In the AOT and GY framework regular structures can be similarly described: for the

complete structure we have aij = aji = a=(N � 1) for some a > 0 all i, j, while for the ring
aii+1 = a for all i and aij = 0 otherwise. Focusing the attention, as in these papers, on the

case where � = 0; we can show that similar results to the ones obtained above still hold, in

particular Results 1 and 2 are both still valid15.

Result 4 In the AOT/GY framework, both in the complete and the ring structure the minimal

size of the shock sC(N) and sR(N) that induces default of all �rms is larger the larger the

number of �rms N , and the larger the �capital bu¤er�R � l: We also have (when all claims
have the same seniority), sR(N) > sC(N) > sR(2):

Hence the properties of contagion in these network structures are analogous to the case

where linkages are given by cross holdings of claims. There are two main di¤erences and

we shall focus here on them. The �rst one is an immediate consequence of (4):

Result 5 In the AOT/GY framework we have sC(1) = sR(1) = R � l; while in CGV/EGJ
sC(1) = sR(1) > R� l.

As already noticed, this property in CGV/EGJ readily follows from (7): it tells us that,

in that framework, a �rm can withstand a larger shock than the one that would trigger its

default in the absence of any linkage to other �rms (R � l), hence the presence of linkages
provides some insurance against the shock that may hit a �rm. This is not true in AOT/GY

as the entire value of the return ri generated by project i shows in the asset side of �rm i;

not only a fraction � as in (7); we can also view this as due to the use of debt, instead of

equity, in forming linkages. Hence in AOT/GY the presence of linkages among �rms does

not provide any insurance to a �rm against the shocks hitting the returns on the �rm�s own

project. These linkages cannot be motivated by risk sharing considerations, but from other,

e.g. technological or trade related, requirements.16

The second di¤erence is a consequence of the assumption in AOT that external claims

are senior to internal claims (that is, to other �rms in the network). Under that assumption

we have17:

14The details are in the Appendix.
15See the Appendix. In light of the previous discussion, it is useful to point out that the size of the shock

that needs to be absorbed by the system is still given by s (actually, now strictly smaller than s in the

presence of external claims with equal priority).
16These requirements must also preclude netting, which would otherwise be bene�cial in limiting the

spread of default.
17See Proposition 3 a) and b) in AOT. We also show this for completeness in the Appendix.
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Result 6 In the AOT/GY framework, when external claims are senior the minimal size of

the shock inducing all �rms to default is the same in the complete and the ring structure:

sC(N) = sR(N).

Since for the ring we also have, as shown in Result 4, sR(1) < sR(j) < sR(N) for

1 < j < N; for shocks of intermediate size, between sR(1) = R � l and sR(N); there are
multiple failures in the ring and only a single failure in the complete structure. Thus in

the environment considered by AOT there is no trade-o¤, and the extent of default and

contagion is always (weakly) larger in the ring than the complete structure. In this respect,

the ring structure is always dominated by the complete one. This is one place where the

seniority of external claims in AOT makes a di¤erence. Note the similarity of this result to

Result 3, obtained in the EGJ framework when � is large.

The extension of the above results to other network structures, exhibiting �intermediate�

densities of connections between the case of the ring and the complete structure, is discussed

by AOT and EGJ. In particular, AOT consider speci�cations of the matrix A given by

convex combinations of the matrix for the ring and the complete structure, obtaining results

somewhere in between those found for the ring and the complete (see, e.g., their Proposition

3 c).

2.3 Optimality

Once we have established the properties of networks with di¤erent densities of connections,

in terms of their ability to withstand shocks of di¤erent sizes, the obvious next step is to

determine the optimal network structure in a given environment. This has clearly important

implications in guiding policy interventions aiming to a¤ect the pattern of �nancial linkages

among �rms.

Regarding the notion of optimality to be considered, the papers reviewed have settled

mostly for considering the number of defaulting �rms as the key criterion to assess optimal-

ity. This can be justi�ed in light of the previous observation that the default of �nancial

�rms entails a deadweight cost, given by the destruction in value of the �rms�assets. Under

the assumption that the cost of default is the same for each �rm, the number of defaults is

thus proportional to the total welfare loss in the economy.

The results of the previous section yield a number of immediate corollaries when the

distribution of shocks has a single element in its support, denoted s�. From Results 2 and

4 we have that, both in the CGV/EGJ and the AOT/GY frameworks:

Result 7 a) If s� � sR(2) or s� > sR(N); then the ring and the complete networks are

equivalent.

b) If sR(2) < s� � sC(N), then the complete network dominates the ring.
c) If sC(N) < s� � sR(N), then the ring network dominates the complete.
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The intuition for the result is quite simple. If the shock is small enough that all �rms

(possibly except the one directly hit by the shock) survive, or big enough that they all

fail, independently of the network structure, there is no reason to prefer one structure over

the other one. If the shock is of intermediate size there are two possibilities: it can be

su¢ ciently large that some �rms fail in the ring network, but not large enough to make

more than one �rm fail in the complete one, which proves then superior. Alternatively, the

shock can be larger so all �rms in the complete network fail, while some �rms survive in

the ring, so the latter is better in this case.

In the previous result we compared network structures that only di¤ered in terms of

the density of connections among �rms. There are however other important aspects of

the network that play an important role in determining the number of �rms defaulting for

di¤erent shock sizes. The �rst one is the amount of integration of any �rm with (equivalently,

its degree of exposure to) the rest of the �rms in the economy, as captured by 1� � in the
EGJ/CGV framework, and by a in AOT/GY. In this respect it is immediate to verify, given

(7)-(9) and (10), (12), (13), that18

Result 8 The minimal size of the shock s(1) inducing one failure increases with 1 � � in
EGJ/CGV while it is invariant w.r.t. a in AOT/GY. In contrast, both in EGJ/CGV and AOT/GY

s(j) decreases with 1� � (resp. a), for all j > 1.

In other words, in the EGJ/CGV framework the presence of linkages allows �rms to

lower the probability of default when a shock hits them directly, providing so insurance

against this event, but these linkages also enhance the probability of contagion, that is the

probability that one �rm default when other �rms are hit. This trade-o¤ is similar to the one

observed when we discussed Result 2. The result is related to Proposition 2 in EGJ, which

states that higher integration makes contagion more likely. On the other hand, as already

noted after Result 5, in AOT/GY the degree of integration a unambiguously increases the

level of defaults in the system. Hence a cannot be viewed as a meaningful policy parameter

which could be varied, while � can.

In the analysis so far we ignored another important element that may allow to reduce

the extent of contagion, and is the possibility of segmenting the system of N �rms into

disjoint components. The possibility of segmentation may prove a more e¤ective instrument

than the weakening of connections in limiting contagion. It is in fact easy to verify that

in situations like the one of Result 7.c) the segmentation of the system of N �rms into

disjoint, complete components is typically superior to a single, ring structure. This poses

the more general question of whether the choice of weaker connections but in integrated

systems, versus that of denser connections in segmented systems, proves more e¤ective in

limiting the possibility of default by many �rms in the presence of intermediate but large

shocks. As the previous discussion makes clear, to properly analyze the pros and cons of

18The claim holds both for the complete and the ring structure, hence we omit the superscript R or C.
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segmentation versus density of connection it is important to go beyond the simple shock

distribution considered in Result 7 and to consider richer probability structures.

To �x attention, we follow CGV and focus on the case where shocks have a Pareto distri-

bution. More precisely, r = R� �, where � has support19 [1;1) and density 
=�
+1:Under
these conditions, Propositions 1 and 2 in CGV show that:

Result 9 When 
 < 1 the optimal network structure in CGV exhibits maximal segmentation

(i.e., components of minimal size, equal to 2, in which case ring and complete networks are

equivalent). When 
 > 1 the optimal network structure has minimal segmentation, with a

single, completely connected component.

This is again easy to understand in the context of Result 7. A Pareto distribution with


 < 1 exhibits fat tails, hence a su¢ ciently large mass of the distribution is concentrated on

large shocks s� such that s� > sR(N) and the only way to limit contagion and defaults in

these cases is to divide the system into components of minimal size. Similarly, when 
 > 1;

the mass of the distribution is concentrated on smaller shocks and hence it is likely to be

the case that s� < sC(N); so that a single, fully connected component allows to minimize

the extent of default in the system (as in this case the opportunities for risk sharing are

high). For these shock distributions, the break-up of the system into small components

turns again to be more e¤ective than a lower density of the connection among �rms in

limiting contagion. Similar results hold in the AOT/GY framework, as Proposition 5 in

AOT shows, for example, that when shocks are large, more segmented networks always

dominate the less segmented ones.

More nuanced results can be obtained with other distributions. For example, Proposition

4 in CGV states

Result 10 When the shock distribution is given by a mixture of a Pareto distribution with

parameter 
 > 1 and another Pareto distribution with parameter 
0 < 1, the optimal pattern

of segmentation for the completely connected structure in CGV is intermediate and symmetric,

with identical components of intermediate size.20

Also, in this case, interestingly, the complete structure still dominates the ring, but

Proposition 5 in CGV �nds yet other, less �regular�distributions for which a single, ring

component is optimal, that is for which less dense connections are more e¤ective than

segmentation.

EGJ in turn use random networks, which in principle encompass networks with varying

degree, and allow both for segmentation and di¤erent density of connections. Their main

result where this is studied is their Proposition 1, where it is shown that a necessary con-

dition for widespread contagion is that the average degree is bigger than 1, a well-known

19This distribution could be suitably truncated so as to satisfy the non-negativity constraint on r:
20More precisely, the result holds for an open set of values of the weights of the mixture.
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condition for a random network to have a giant component,21 but not too high.22 If in fact

the average degree is su¢ ciently high one basically reverts to a complete network, which

can be very robust and impedes large cascades if shocks are not too large.

Decentralized network formation may lead to departures from optimality, because of

the usual disconnect between e¢ ciency and stability of a network due to non-internalized

externalities (see e.g. Goyal 2007, Jackson 2009). In the present context CGV show (Propo-

sition 6) that these externalities may be induced by the feasibility constraint that operates

on admissible con�gurations: in the absence of side payments, �rms may then deviate to

form components of individually optimal size, without internalizing that �rms which are

left behind will be forced to ine¢ ciently small components.

2.4 Heterogeneity, asymmetries and other extensions

Even though in the previous discussion we focused our attention on the case where �rms

are, essentially, homogenous and on symmetric network structures, it is clearly important to

extend the analysis to allow for heterogeneity among �rms and asymmetries in the network.

Battiston et al. (2012) show in fact that real �nancial networks are quite asymmetric, with

a core-periphery structure, for example.

As already mentioned in the previous section, EGJ explore contagion in random net-

works, where asymmetries may also arise. EGJ also deal with core-periphery, homophily

grouped industries, and correlated shocks in their section IV. AOT also characterize the

pattern of contagion in general networks (in Proposition 7) and brie�y consider the impact

on contagion of the presence of �rms of di¤erent sizes, studying (in Proposition 10) the

threshold for contagion in that case.

CGV study the properties of the optimal network structure when �rms di¤er for the

probability distribution of the shocks they face, or for their sizes (with probability of shocks

that are proportional to size). In both cases they �nd (Proposition 7 and 8) that default

rates are minimized if �rms form homogeneous components, that is, there should be positive

assortative matching.

Loepfe, Cabrales and Sánchez (2013) extend CGV through numerical methods to envi-

ronments with more realistic features. They �nd that the implications of Results 2 and 9

extend to situations with heterogeneity in the �rms�size and in the distribution of linkages

among �rms,23 in the sense that less (more) dense networks are more robust when shocks

come from unbounded distributions that put more weight on large (small) shocks even with

asymmetric con�gurations. They also �nd that in the real-life network of corporate con-

trol studied by Battiston et al. (2012) the consequences of link removal (moving so to a

21See e.g. Jackson (2009) Ch. 4.
22To properly relate this result to the previous ones in this section, it is useful to point out that in a random

network segmentation and density of the connections cannot be separately controlled via the degree.
23The results prove also robust to the possibility that shocks hit simultaneously more than one �rm, and

to other kinds of shock distributions.
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less dense network) on the vulnerability of the system depend on the nature of the shock

distribution as suggested by the results in CGV.

Why real networks do exhibit asymmetries, and what are the consequences for contagion

and optimality is an important question to address in the future. For example, risk-sharing

may not be the only motive why �rms are connected. They also share information, which

can lead to a very centralized structure (see e.g. Guimerà et al. 2002), they provide services

to one another, and joint stakes are useful in the presence of incomplete contracts (Grossman

and Hart 1986, Hart and Moore 1990). This suggests that an important avenue for future

research would be to study optimal network formation in environments where risk sharing

and contagion are not the only tradeo¤s facing the �rms.

Also, a network is a complicated object and understanding the e¤ects of shocks could

thus be cognitively as well as informationally demanding. Another avenue for further re-

search is then to properly recognize these features in studying the formation of linkages and

the behavior of �rms in response to shocks. This might possibly lead to e¤ects that are

similar to the market freezes discussed in section 3.2, but it needs to be explored thoroughly.

Finally, in the papers considered the arrival of a shock is independent of the network

structure. But this need not be true in general, the network could in�uence the likelihood of

a shock. To illustrate this problem, EGJ have an example (in the Online Appendix section

3) in which the �rms manipulate the failure threshold to take advantage of neighbors. This

issue needs to be explored in more depth.

2.5 Additional literature

Allen and Gale (2000) is a seminal contribution to the study of contagion in interconnected

�nancial systems. They analyze a model in the Diamond and Dybvig (1983) tradition.

In their model a single completely connected component is the network structure that

minimizes the extent of default, but they study the tradeo¤s that occur when that structure

is not possible. With respect to the papers discussed in sections 2.2 and 2.3, the model

considered by Allen and Gale (2000) has more detail in terms of the microfoundation of the

linkages among banks and of the analysis of their decisions, but this is done at the price of

a rather simpli�ed network structure, as only four banks are present. Freixas, Parigi and

Rochet (2000) consider an environment where a lower density of connections, even though

it limits risk sharing, has the positive consequence of reducing the incentives for deposit

withdrawal. They study an aspect of the problem we have not discussed so far, since they

show that a ring induces more bank discipline than a complete structure, as the higher

exposure to a single debtor increases the incentives to control moral hazard.

Cifuentes, Ferrucci and Shin (2005) explore the issue of contagion due to liquidity shocks

in an Eisenberg and Noé (2001) framework where banks are required to maintain a certain

liquidity ratio, and sales by distressed banks can generate a cascade of failures through their

e¤ect on prices when the market�s demand for illiquid assets is less than perfectly elastic.
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They do not explore however the impact of di¤erent structures of exposures among �rms on

the likelihood of contagion. Greenwood, Landier and Thesmar (2015) also explore contagion

through �re sales. In addition to exploring theoretically this problem, they estimate its

impact using balance sheet data for European banks, and show how these estimates can be

useful to formulate policies. Another dynamic equilibrium model with cascading defaults

(through �re sales of assets) is Bluhm, Faia and Krahmen (2013), which also provides a

measure of systemic importance of institutions based on Shapley values.

Cohen-Cole, Patacchini and Zenou (2012) study contagion without defaults in a dynamic

model with strategic lending and borrowing. They show that in equilibrium small changes

in uncertainty, or behavior, can propagate through the network even without defaults, and

provide a measure of total systemic risk, related to Katz-Bonacich centrality24 (Chapter XX

in this handbook, by Yves Zenou, discusses other uses of Katz-Bonacich centrality in �key

player�policies). They also calculate the contribution of individual banks to this measure,

and verify its empirical usefulness.

Another line of literature studies the issue of contagion in the context of large, usually

random, networks. In many of these papers, the approach is numerical, based on large-scale

simulations. Gai, Haldane, and Kapadia (2011), for example, study a model of interbank

lending and show that complexity and concentration of the network of lending relationships

can amplify the fragility of the system25. Blume et al. (2011) add to these models a strategic

analysis of network formation. They assume that agents bene�t from the number of direct

contacts they have. But they also have a cost, arising from the fact that a shock to an

agent in the network is transmitted to all its contacts, direct but also indirect. They �nd

that social optimality is attained around the threshold where a large component emerges,

but individuals will generally want to connect beyond this point. This is due to the fact

that agents do not internalize the e¤ect on others of adding new channels (i.e. linkages)

that facilitate the spread of shocks26. Gofman (2013) calibrates a network-based model of

over-the-counter bilateral trades in the Federal funds market. He compares the calibrated

architecture to nine counterfactuals and shows the presence of nonmonotonicities in the risk

of contagion with respect to the maximum number of trading partners of an institution.

Finally, we should brie�y mention a large empirical literature whose main objective is

policy related. These papers explore which summary statistics of the network of �rms�

relationships are better able to predict contagion of shocks. For example, Battiston et al.

(2012) propose a measure of centrality (Debtrank) that is inspired by the measure of Pager-

ank centrality that Google uses to rank web-pages. Denbee et al. (2011) propose a measure

of centrality á la Katz-Bonacich and apply it to English data. Bonaldi, Hortaçsu and Kastl

(2014) propose a measure of systemicity based on the estimation of spillovers between fund-

ing costs of individual banks.. Of particular interest in this respect is Elsinger, Lehar and

24Katz (1953), Bonacich (1987).
25See also Nier et al. (2007), Kapadia et al. (2012) and Anand et al. (2012).
26This form of ine¢ ciency is di¤erent from the one discussed in Section 2.3.
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Summer (2011) who, using Austrian data, show that correlation in banks�asset portfolios is

the main source of systemic risk. A related emphasis on cross-ownership and investment has

been pursued as well by the literature on �balance sheet e¤ects� to understand the Asian

�nancial turmoil in the late 90�s (Krugman 1999) as well as the current crisis (Ahrend and

Goujard 2011).

3 Informational contagion

3.1 Contagion between markets

Informational contagion refers to the process whereby information about one market

has an impact on another market. The study of informational contagion did not originally

require the use of an explicit network, but the concept of a network is a natural framework

for the study of informational contagion. Two of the earliest studies, Kodres and Pritzker

(2002) [KP] and Pavlova and Rigobon (2008) [PR], illustrate the network structure that is

implicit in the study of informational contagion.

[KP] make use of the familiar rational expectations model of �nancial markets, in which

private information is aggregated in asset prices. They consider a model consisting of two

asset markets, A and B, and assume that traders in one market can observe the asset prices

in both markets. The presence of noise traders prevents prices from revealing information

perfectly. In fact, prices will re�ect a combination of noise and fundamentals. The funda-

mental values of the assets in the two markets are a¤ected by a combination of common

and market-speci�c shocks. Traders in market A, observing changes in the prices of as-

sets in market B, will try to infer information that is relevant to the valuation of assets

in market A. In this way, an increase in prices in market B may cause prices to rise in

market A if traders infer that the price increases in market B are due to a common shock

that has raised fundamental values in both markets. Since prices do not reveal information

perfectly, traders in market A may be fooled by price increases in market B that result ei-

ther from noise trading or from fundamental shocks that are irrelevant to market A. Thus,

the spillover from market B to market A may be unjusti�ed by the information originally

received by traders in market B.

Now suppose that there are three markets, A, B, and C, and that A and B have

a common factor, B and C have a common factor, but that A and C have no factors in

common. Contagion is possible between A and B and between B and C for the usual reasons

explained above. What is more surprising is that portfolio rebalancing allows �nancial

contagion between market A and market C. Even if there is no information asymmetry in

market B and no market speci�c shock, a shock to market A will spill over to market B and

a¤ect prices there. These price changes will be interpreted as the result of a shock common

to B and C and will thereby in�uence prices in market C.

In the simplest cases, the idea of a network structure is almost super�uous, but if one
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thinks of a larger number of markets, for example, capital markets in di¤erent countries, the

network concept arises quite naturally. Suppose the markets are indexed by i = 1; :::;m and

the factors a¤ecting asset values are indexed by j = 1; :::; n. Each market i is a¤ected by a

set of factors J (i). A pair of markets iA and iB will share some common factors JiA \ JiB
but each will also be a¤ected by speci�c factors JiAnJiB and JiBnJiA that do not directly
a¤ect the other. Two markets iA and iB are directly connected if JiA \ JiB is non-empty.
Of course, the �connection�between two markets is more complicated than the existence

of an edge between two nodes in a graph, but the analogy is clear.

[PR], like [KP], use the rational expectations framework, but seek to show how infor-

mational contagion can a¤ect economies that have no common shocks. They illustrate this

idea with the Brazilian �nancial crisis that followed the Russian default of 1998. The link

between the apparently unrelated crises in Russia and Brazil was the New York market,

which was linked to both. The Russian default caused New York banks to adjust their

portfolios because of institutional constraints designed to control risk exposures. This re-

allocation of wealth in turn caused changes in prices in the Brazilian market that signaled

a bad shock. Here the network is salient: New York constitutes the centre of the network
and Brazil and Russia represent two peripheral nodes.

These two papers also illustrate the di¤erence between pure information external-
ities and payo¤ externalities. In [KP] there is a pure informational externality: the

actions of traders in market B do not a¤ect the payo¤s of traders in market A. The only

reason that traders in market A pay attention to the actions of traders (or prices) in market

B is because of the information those actions (or prices) reveal. In [PR], on the other hand,

the actions of the traders in New York have a direct a¤ect on the traders in Brazil, through

their e¤ect on prices, in addition to the information revealed by the change in prices. Pure

information externalities are somewhat unusual in economics, but they are characteristic of

models of herd behavior (Banerjee, 1992; and Bikhchandani, Hirshleifer and Welsh, 1992).

In those models, a sequence of agents chooses a discrete action after observing a private

signal. One can think of the sequence of agents as forming a kind of network in which agent

N + 1 observes the actions of agents n = 1; :::; N , but not their private information. The

discrete action chosen by the preceding agents is a coarse signal of their private informa-

tion and this makes informational cascades possible, in which agents ignore their private

information and follow their predecessors, and herd behavior, in which agents choose the

same action inde�nitely. These ideas have also been applied in market settings. Avery and

Zemsky (1998) have shown that the informational role of prices can prevent the occurrence

of informational cascades and incorrect herds. Cipriani and Guarino (2008a, 2008b) have

found conditions under which cascades can exist in �nancial markets (this requires transac-

tion costs or gains from trade) and showed that contagion may occur between asset markets

(information revealed by prices in one market may cause a cascade in another market).

In [KP] and [PR], traders are assumed to observe prices in all markets, but prices are

not perfectly revealing because of the presence of noise. Other writers assume that agents
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in one location can only observe a subset of other locations. Examples include Gale and

Kariv (2003), Acemoglu, Dahleh, Lobel and Ozdaglar (2011), and Mueller-Frank (2013).

This literature is discussed in the chapter by Golub and Sandler, in this volume.

3.2 Contagion between banks

Informational contagion between banks has been explored in settings that do not call for

an explicit network structure. One example is the paper by Ahnert and Georg (2012),

in which the release of bad information about one bank provides information about other

banks, because of common asset holdings and common counterparty exposures. The paper

by Ahnert and Bertsch (2014) makes use of a di¤erent type of contagion, the �wake up

call.�Bad information about one bank causes depositors to obtain costly information about

another bank, because the depositors suspect a common shock. Even if it transpires that

the second bank was not subject to a common shock, the information revealed about the

second bank may, coincidentally, provoke a run. Thus, even in the absence of a common

shock, there is informational contagion.

These models, like those of [KP] and [PR] are interesting because they provide an

account of informational contagion between banks, but they do not make use of an explicit

network. It is easy to see how these informational contagion channels could be embedded

in a network framework to give a richer account of �nancial contagion. Two examples of

�nancial contagion in networks are described next.

Caballero and Simsek (2013) [CS] have exploited an explicit network formulation to

show how informational contagion can amplify the mechanical contagion that results from

counterparty exposures. Imagine a sequence of banks, indexed by i = 1; :::;m, arranged

in a circular network. Bank i owes one unit to bank (i� 1)modm. Banks are funded
by deposits and capital (equity) and the latter allows banks to su¤er some losses without

failing. If bank i fails completely (its assets become worthless), it cannot pay what it owes

bank i�1. Then bank i�1 can pay bank i�2 the amount min f1; eg, where e represents the
bank�s equity, bank i� 2 will be able to pay bank i� 3 the amount min fmin f1; eg+ e; 0g
and so on. If bank k is far enough away from bank i so that (i� k + 1) e � 1,27 it will

receive the full amount and bank k will not fail. Thus, a complete failure of bank i only

causes limited contagion within the network.

Now suppose that all banks know that some bank has failed completely but the identity

of the failing bank is unknown. Then every bank will have a positive probability of being

hit by the contagion and failing. In fact, if the probability distribution of any bank failing

is unknown and depositors have an extreme form of uncertainty aversion, they may assume

the worst case, i.e., that bank i is close to the failing bank and will also fail. In e¤ect,

uncertainty aversion collapses the network, making the failed bank every bank�s neighbor.

27The contagion ends at bank k if bank k � 1 can repay its debt in full and banks k � 2; :::; i cannot. In
that case, bank k � 1 can pay at most (i� k + 1) e and k will not fail if and only if (i� k + 1) e � 1.
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As a result, the banks take precautionary actions in the situation with uncertainty about

the identity of the failing bank, such as having more liquidity available, and they do it to a

considerably larger extent compared to what they do in the situation where they know the

structure of the network and which bank got hit by a shock.

Notice that the CS model is related to the ones in section 2.1 (most closely, to AOT

and GY), with the main substantial di¤erence being the incomplete information about

the network structure. Thus, as mentioned earlier, informational contagion in CS is an

ampli�cation mechanism, to be added to the one caused by exposure to other �rms in

section 2.1.

Alvarez and Barlevy (2014) [AB] have undertaken a more complex and nuanced analysis

of uncertainty about the location of bad banks. In their analysis, banks are randomly

assigned to locations on a network. Some of the banks are bad banks, which have received a

shock that makes it impossible for them to repay their debts in full. Other banks have not

received such a shock but may have counterparty exposure, directly or indirectly, to one of

the bad banks. As in [CS], bank i�s exposure depends on the distance between bank i and

the nearest bad bank. The complexity of the analysis derives partly from the generality of

the networks considered and the di¢ culty of characterizing the distribution of good and bad

banks. Each of the good banks has an investment option that can produce enough revenue

to keep the bank solvent but it requires investment that has to be externally funded. The

problem is that, because of the uncertainty of the location of good and bad banks, the debt

overhang discourages investors from investing in the good banks. [AB] show that, under

certain conditions, mandatory disclosure of banks� �nancial condition can permit some

banks to obtain external funding and return to solvency, whereas non-disclosure ensures

that none will receive the new investment they need to survive.

These two examples illustrate how �nancial contagion depends not only on the network

structure but also on the banks�knowledge and beliefs about that structure. This suggests

that providing information about or ensuring the transparency of the network structure,

may be a useful regulatory tool. Of course information and transparency may also have

implications for competition, as it may make tacit collusion easier. The interaction between

systemic regulation, whose main objective is �nancial stability and competition policy, is

another potentially important avenue for further research.
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4 Appendix

We present here some further details of the argument behind some of the claims in the main

text.

The expressions in (6) It is immediate to verify that the expression of AC is obtained

from (2) with the following speci�cation of the matrix of the cross-ownership of shares among

�rms28:

C =

266664
0 c= (N � 1) � � � c= (N � 1)

c= (N � 1) 0 � � � c= (N � 1)
...

...
. . .

...

c= (N � 1) c= (N � 1) � � � 0

377775
Similarly, AR is obtained from29

C =

266664
0 c � � � 0

0 0 � � � 0
...
...
. . .

...

c 0 � � � 0

377775 :

Contagion in ring and complete structures when � is large. The relationship

between sC(1) and sC(N) depends on the values of � and N . By subtracting (8) from (7)

we get

��sC(1) + 1� �
N � 1s

C(N) = � 1� �
N � 1�

From this expression it is immediate to see that there exists some ��C > 0 such that sC(N) <

sC(1) for � > ��C ; so that once the �rst default occurs, all �rms default. More explicitly ��C

is de�ned by the value of � for which sC(1) = sC(N); and hence satis�es

1� �
N � 1

�
sC(N)� sC(1)

�
=

�
�� 1� �

N � 1

�
sC(1)� 1� �

N � 1
��
C
= 0

Similarly for the ring, subtracting the expression of (9) for j from that for j � 1 we get

�sR(j)� sR(j � 1) = ���:
28The same is true for the speci�cation in (1), when the matrix B has equal o¤-diagonal terms.
29Similarly for (1) when

B =

266664
� 1� � � � � 0

0 � � � � 0
...

...
. . .

...

1� � 0 � � � �

377775
and K = N � 1:
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Proceeding by induction it is then easy to see that if sR(2) < sR(1), we have sR(j) <

sR(j � 1) for all j > 2; so the �rst �rm defaulting brings all other �rms down. Building on

this observation, the threshold value ��R such that sR(1) > sR(N) for � > ��
R is obtained

as the solution of

sR(1)� �sR(1) = ���R

Recalling that sR(1) = sC(1); we get

��
C

��
R
=
� (N�� 1)
(1� �)2

:

Hence ��C > ��R i¤

� >

p
4N � 3� 1
2N � 2

and this inequality always holds, under our assumption that � > (1� �)2 =
�
1� �N�1

�
;

when N � 6. Hence we can say that, provided N is not too small, ��C > ��
R and so

generalized default is easier in the ring than in the complete structure, that is obtains for

smaller values of � in the ring structure.

Results 1 and 2 in the AOT/GY framework (Result 4) The minimal shock

sC(N) leading to all �rms defaulting in a complete network structure in the AOT/GY

environment is again obtained by considering the case where only �rm 1 defaults, so that

p1 (a+ l) = a+R� sC(N)

while all the other �rms have just enough resources to ensure they can repay (pi = 1 for all

i 6= 1) :

R+

�
N � 2
N � 1

�
a+ a

a+R� sC(N)
(N � 1) (a+ l) = a+ l (10)

Solving30 (10) yields the value of sC(N).31 As one would expect the threshold sC(N)

increases (i.e. the shock has to be bigger) the larger the number of �rms N , and the larger

the �capital bu¤er�R� l (i.e., the di¤erence between the outside liabilities and the outside
assets of a �rm).

In a ring structure, denoting by r1 = (R�s;R; ::; R) the vector of realized returns where
�rm 1 is hit by a shock which leads it to default, we have

pi(r1) = min

�
api�1(r1) +R

a+ l
; 1

�
(11)

30Note that an admissible (s � R) solution of (10) exists i¤
a

a+ l
� R� l

l
(N � 1):

31The expression is stated for the case � = 0: It would not be di¢ cult to include extra costs of reorga-

nization with default (so that � > 0) in this framework. The e¤ects would be similar in this case, higher

threshold for default (smaller shocks su¢ ce to generate default) and multiple payment equilibria.
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for i > 1; with p1(r1) = (a+R� s)=(a+ l): It is immediate to verify that pi(r1) � pi�1(r1)
(with the inequality being strict as long as i � 1 defaults). When the shock is at the

threshold level sR(N) so that all the �rst N � 1 �rms default and the N -th �rm has just

enough resources to be able to repay, we also have apN�1(r1) + R = a + l and, for all

i = 2; ::; N � 1:

pi(r1) =
a

a+ l
pi�1(r1) +

R

a+ l
:

Hence

pN�1(r1) =

�
a

a+ l

�N�2�a+ r
a+ l

�
+

R

a+ l

 
1 + :::+

�
a

a+ l

�N�3!

=

�
a

a+ l

�N�2�a+ r
a+ l

�
+
R

l

 
1�

�
a

a+ l

�N�2!

so that sR(N) is obtained as solution of the following equation

R+ a

 �
a

a+ l

�N�2�a+R� sR(N)
a+ l

�
+
R

l

 
1�

�
a

a+ l

�N�2!!
= a+ l (12)

This clearly implies that sR(N) is also increasing in N , as well as in R� l.
From the above we also see that sR(2) is obtained as a solution of

R+ a
a+R� sR(2)

a+ l
= a+ l: (13)

Subtracting equation (13) from (10) yields

(N � 1) (a+ l) +R� sC(N)� l
(N � 1) (a+ l) �

�
a+R� sR(2)

a+ l

�
= 0;

or

(N � 2) l � sC(N)� (N � 2) (R� sR2 ) + sR(2) = 0;

and hence

sR(2)� sC(N) = (N � 2)
�
R� sR(2)� l

�
< 0;

thus verifying the property sC(N) > sR(2):

Finally, we verify the property sC(N) < sR(N): From equations (10) and (12) we get

�
a

a+ l

�N�2�a+R� sR(N)
a+ l

�
+
R

l

 
1�

�
a

a+ l

�N�2!
=

�
N � 2
N � 1

�
+

1

N � 1
a+R� sC(N)

(a+ l)

and hence�
a

a+ l

�N�2�sR(N)� sC(N)
a+ l

�
=
R

l

 
1�

�
a

a+ l

�N�2!
�
�
N � 2
N � 1

�
+
a+R� sC(N)

a+ l

"�
a

a+ l

�N�2
� 1

N � 1

#
:
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Thus sC(N) < sR(N) i¤�
R

l
� 1
� 

1�
�

a

a+ l

�N�2!
+

�
1� a+R� s

C(N)

a+ l

� 
1

N � 1 �
�

a

a+ l

�N�2!
> 0;

or, substituting for sC(N) and simplifying

�
R�l
l

��
1�

�
a
a+l

�N�2�
+
�
(N�1)(R�l)

a

��
1

N�1 �
�

a
a+l

�N�2�
> 0

,
�
a
l

��
1�

�
a
a+l

�N�2�
+

�
1� (N � 1)

�
a
a+l

�N�2�
> 0

The above inequality can be equivalently rewritten as

a+ l >

�
a

a+ l

�N�2
(a+ (N � 1) l), (a+ l)N�1 > aN�1 + (N � 1) laN�2: (14)

Note that when l = 0 (14) holds as equality, and its derivative w.r.t. l is strictly positive

for all N > 1, a > 0, l � 0, which establishes the validity of (14) and hence of the claimed
property.

Ring and complete in AOT/GY when external claims have priority (Result
6)

In this case the expression determining rC(N) has to be modi�ed as follows:

R+

�
N � 2
N � 1

�
a+

a+ rC(N)� l
a

a

N � 1 = a+ l; (15)

yielding

rC(N) = l � (N � 1) (R� l)

Similarly, in a ring structure (11) has to be modi�ed as follows

pi(r) = min

�
api�1(r) +R� l

a
; 1

�
for i > 1, with p1(r) = (a+ r � l)=a: At rN we have pi(rN ) = pi�1(rN ) + (R � l)=a for all
i = 2; ::; N � 1 so that pN�1(rN ) = (a + r � l)=a + (N � 2)(R � l)=a and hence rR(N) is
now determined as a solution of the following equation

R+ (N � 2) (R� l) + a+ rR(N)� l = a+ l (16)

or

rR(N) = l � (N � 1) (R� l) = rC(N):
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