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Dealing with Financial Instability under a DSGE modeling
approach with Banking Intermediation: a forecastability analysis

versus TVP-VARs
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Abstract

Recently there has been an increasing awareness on the role that the banking sector can play in
macroeconomic activity, especially within the context of the DSGE literature. In this work, we present a
DSGE model with �nancial intermediation as in Gertler and Karadi (2011). The estimation of the shocks
and of the structural parameters shows that time-variation can be crucial in the empirical analysis. As
DSGE modelling fails to take into account inherent nonlinearities of the economy, we introduce a
novel time-varying coe¢ cient state-space estimation method for VAR processes, for homoskedastic and
heteroskedastic error structures (TVP-VAR). We conduct an extensive empirical exercise to compare
the out-of-sample forecastability of the DSGE model versus standard ARs, VARs, Bayesian VARs and
TVP-VARs. We �nd that the TVP-VAR provides the best forecasting performance for the series of
GDP and net worth of �nancial intermediaries for all steps-ahead, while the DSGE model with the
incorporation of a banking sector outperforms the other speci�cations in forecasting in�ation and the
federal funds rate at shorter horizons.
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1 Introduction

The recent �nancial crisis made it clear that disruptions in �nancial markets could have considerable

e¤ects on both the dynamics of the business cycle and on the underlying equilibrium growth path. In the

dynamic stochastic general equilibrium (DSGE) literature the links between �nancial and real sectors have

mostly been neglected until recently, when there has been an increasing awareness on the role that �nancial

frictions and the banking sector can play in macroeconomic activity (Bean, 2010 among others). Much

of the macroeconomics literature with �nancial frictions stemming from Bernanke et al. (1999) (BGG)

emphasizes credit market constraints on non-�nancial borrowers and treats �nancial intermediaries largely

as a veil.

The literature o¤ers di¤erent contributions on DSGE models featuring a banking sectors, such as Good-

friend and McCallum (2007), Curdia and Woodford (2010) and Gerali et al. (2010), which are interesting

but require a relatively high degree of computational tractability. The former introduce di¤erent short-term

interest rates. The authors show that ignoring the di¤erences between short-term interest rates could lead

to policy mistakes. Curdia and Woodford (2010) consider a DSGE model in which two sources of "purely

�nancial�disturbances: i) originating loan is a costly activity; ii) intermediaries are unable to distinguish

between borrowers who will default from those who will repay, and so must o¤er loans to both on the

same terms. In this framework IS curve will depend on measure of the ine¢ ciency of the intra-temporal

allocation of resources as a consequence of imperfect �nancial and on a weighted average of two interest

rates. Gerali et al. (2010) include in a DSGE model with borrowing constraints à la Iacoviello (2005) and

real and nominal frictions à la Smets and Wouters (2007) an imperfectly competitive banking sector that

collects deposits and then, subject to the requirement of using banking capital as an input, supplies loans

to the private sector.

Gertler and Karadi (2011) present a model with some real and nominal frictions à la Smets and Wouters

(2007), where �nancial intermediaries (not exposed to the possibility of runs) are the source of �nancial

frictions. This feature is particularly interesting since in the recent crisis �nancial frictions mainly originated

from and within the �nancial intermediation sector, as shown by Galati and Moessner (2011). The agency

problem creates: (i) a wedge between lending rates and risk free rates; and (ii) a limit to the �nancial

intermediaries ability to acquire assets, and hence, to lend to the private sector. Therefore, �nancial

intermediaries play an active role in the transmission mechanism of the shocks hitting the economy. Overall,

their model is fairly elegant and computationally fairly tractable (Cole, 2011). In addition, the introduction

of the �nancial intermediation sector as a source of shocks, helps understand a number of ampli�cation and

propagation mechanisms deriving from the endogeneity of credit spreads, and/or of banks�balance sheets.

Notwithstanding these contributions, research is still ongoing to fully account for �nancial instability in

DSGE models.

During the �nancial crisis, conditions in �nancial markets deteriorated sharply. Figure 1(a) shows the

growth rate of bank real estate loans. Data on commercial real estate loans are available only from 2004

onwards. It is evident that in the aftermath of the �nancial crisis there has been a severe contraction of

bank real estate loans. Figure 1(b) shows the evolution of three alternative measure of credit spreads:

(i) Baa minus 10-year Treasury constant maturity rate (TCM); (ii) Moody�s Baa minus Aaa yield; and

(iii) the bank prime loan rate minus the quarterly Treasury bill rate as in Melina and Villa (2014). All

the proxies are clearly countercyclical. In particular, during the �nancial turbulence the credit spreads

increased reaching the peak in the �nancial crisis.
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Figure 1: Financial data

Note: Both data on real estate and commercial real estate loans of all commercial banks and on spreads are
extracted from the FRED database. Baa corporate bond yield relative to yield on 10-Year Treasury Constant
Maturity (Baa-10yTCM) and Baa minus Aaa corporate bond yield are reported on the left axis, while the bank
prime loan rate minus 3-month Treasury bill is reported on the left axis.

Furthermore, the evolution of estimated shocks and parameters show that the time variation of the

parameters should be crucial in any attempted empirical analysis (Cardani et al., 2015). However, even

rolling-window DSGE estimation and modelling usually fails to take into account inherent nonlinearities of

the economy, especially in crisis time periods. Del Negro and Schorfheide (2009; 2012) and Wolters (2013)

provide rationale as to whether DSGEs fail to demonstrate a good forecasting behavior in crisis regimes.

Basically, the DSGEs lack a good calibration outside "normal" times. This could be an after-e¤ect of the

imposition of tight restrictions on the data by the simple DSGEs. If the data rejects these restrictions,

large stochastic shocks are needed to �t the model to the dataset which results in high shock uncertainty.

Under average exogenous shocks the DSGE models return back to a steady state, albeit they could not

predict recessions and booms as signi�cantly larger exogenous shocks are required to capture these. Even

though hybrid models relax these restrictions and the estimated variance of shocks is lower - a fact that

provides more accurate predictions - nevertheless, they do not seem to outperform time varying VAR models

as demonstrated in our study. Obviously, the use of time-varying parameters seems to be an attractive

alternative as well as in terms of capturing nonlinear economic relationships. Primiceri (2005) uses them

extensively in analyzing macroeconomic policy issues. The time-varying parameter autoregressive model

(TVP-VAR) enables capturing a possible time-varying nature of underlying structure in the economy in

a �exible and robust manner. In this paper, a novel time-varying multivariate state-space estimation

method for TVP-VAR processes is proposed both for homoskedastic and heteroskedastic error structures.

As an alternative to the homoskedastic TVP-VAR we assume that the error structure of the state space

Kalman �lter is dependent on state variables, which are unobserved discrete-time, discrete-state Markov

process, thus providing a Markov-switching heteroskedasticity. While a simple Markov-switching variance

model fails to incorporate the learning process of agents, the classic TPV-VAR model fails to incorporate

uncertainty that changes due to future asymmetric random shocks. In this work we consider a more general

model in which both types of uncertainty are incorporated. For the TVP-VAR models, the parameters are

estimated using a multivariate speci�cation of the standard Kalman set-up (Harvey, 1990) with extended

quasi-optimal �ltering in particular for the TVP-VAR with Markov-switching heteroskedasticity. The

likelihood estimation of the TVP-VAR is performed with a suitable multivariate extension of Kim (1993)

and Kim and Nelson (1999a, 1999b) method.
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In this work, we consider a DSGE model for the US economy with standard frictions à la Smets and

Wouters (2007) augmented with �nancial intermediaries as in Gertler and Karadi (2011). We use rolling-

window DSGE estimation and modelling as well as TVP-VARs to account for parameter instabilities

especially in crisis time periods. Moreover, we conduct an exhaustive empirical exercise that includes the

comparison of the out-of-sample predictive performance of the estimated DSGE model with that of standard

ARs, VARs, Bayesian VARs as well as of two time-varying parameter autoregressive models (TVP-VAR)

models with homoskedastic and heteroskedastic errors in an attempt to investigate inherent nonlinearities

of the economy that cannot be captured by the VAR and DSGE class models. Our main goal is to compare

di¤erent econometrics strategies in evaluating a DSGE economy, but mainly to stress the importance of

considering �nancial variables in particular for the US economy during and after the recent �nancial crisis,

and their incorporation in DSGE and TVP-VAR models. We use time series data in the form of 20-year

rolling windows for the period 1984Q1-2013Q4 in order to capture changes in parameters (regime shifts) as

discussed in Gürkaynak et al. (2013). The DSGE model is estimated for the US using �nancial observable

variables in addition to standard macroeconomic variables.

The remainder of this paper is organized as follows: Section 2 describes the proposed DSGE model with

�nancial frictions and banking intermediation. In Section 3 the standard (benchmark) VAR and Bayesian

VAR models are presented. Section 4 presents the time-varying multivariate state-space homoskedastic

TVP-VAR model as well as a Markov-switching heteroskedastic set-up. In Section 5 the data and the

DSGE estimation procedure are described. In addition, the evolution of estimated shocks and parameters

is displayed. Next, the empirical results of the comparative forecasting evaluation are illustrated and

analyzed in Section 6. Finally, Section 7 concludes.

2 The DSGE model with Banking Intermediation

This section brie�y describes the linearized version of the DSGE model, which features �nancial interme-

diaries as in Gertler and Karadi (2011) in an otherwise setup of Smets and Wouters (2007). The economy

is composed by households, labor unions, labor packers, �nancial intermediaries, a productive sector and a

monetary authority. Households consume, accumulate government bonds and supply labor. A labor union

di¤erentiates labor and sets wages in a monopolistically competitive market. Competitive labor packers

buy labor services from the union, package and sell them to intermediate goods �rms. The presence of an

agency problem limits the ability of �nancial intermediaries to obtain deposits from households. This, in

turn, a¤ects the leverage ratio of �nancial intermediaries. Output is produced in several steps, including

a monopolistically competitive sector with producers facing price rigidities. The monetary authority sets

the short-term nominal interest rate according to a Taylor rule. We report below the list of equilibrium

conditions in their log-linear form1

ct =
h=


1 + h=

ct�1 +

�
1� h=


1 + h=


�
Etct+1+

(�c � 1) (w�l�=c�)
�c (1 + h=
)

(lt � Etlt+1)�
1� h=


�c (1 + h=
)

�
rt � Et�t+1 + ebt

�
(1)

1All variables are log-linearized around their steady state balanced growth path and starred variables represent steady
state values.
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wt =
1

1 + �
1��c
wt�1 +

�
1� 1

1 + �
1��c

�
(Etwt+1 + Et�t+1)�

1 + �
1��c�w
1 + �
1��c

�t

+
�w

1 + �
1��c
�t�1 �

�
1 + �w�


1��c
�
(1� �w)

(1 + �
1��c) �w [(�w � 1) ew + 1]
�wt + e

w
t (2)

�w = wt �
�
�llt +

1

1� h (ct � hct�1)
�

(3)

yt = �p [� (kt�1 + ut) + (1� �) lt] + eat (4)

ut =
(1�  )
 

zkt (5)

�t =
�p

1 + �
1��c�p
�t�1 +

�
1��c

1 + �
1��c�p
�t+1��

1� �
1��c�p
� �
1� �p

�
(1 + �
1��c�p) �p

��
�p � 1

�
ep + 1

��pt + ept (6)

�p = � (kt�1 + ut � lt) + eat � wt (7)

zkt = � (kt�1 + ut � lt) + wt (8)

it =
1

(1 + �
1��c)
it�1 +

�
1� 1

(1 + �
1��c)

�
Etit+1 +

1


2' (1 + �
1��c)
qt + e

x
t (9)

Etr
k
t+1 =

zk�
rk�
Etz

k
t+1 +

(1� �)
rk� + (1� �)

Etqt+1 � qt (10)

kt =
(1� �)



kt�1 +

�
1� (1� �)




�
it +

�
1� (1� �)




� �
1 + �
1��c

�

2'ext (11)

rept = Etr
k
t+1 � (rt � Et�t+1) (12)

qt + kt = levt + nt (13)

levt = �t +
v

�� v vt (14)

�t =
$�


�c
z�
�
Et�t+1 � �t + zt + Et�t+1

�
(15)

zt =
lev�r

k
�

z�
rkt + r� (1� lev�) (rt�1 � �t) + lev�

�
rk� � r�

�
levt�1 (16)

vt =
$�


�c
z� (Et�t+1 � �t + xt + Etvt+1) +

(1�$)�

�c���

rk�r
k
t � r� (rt�1 � �t)

�
+
(1�$)�

�c��

�
rk� � r�

�
(Et�t+1 � �t) (17)

xt = levt � levt�1 + zt (18)

nt =
ne�
n
net +

nn�
n
nnt (19)

net = net�1 + zt + e
n
t (20)
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nnt = �lev�(qt + kt) (21)

rt = �rrt�1 + (1� �r)
�
���t + �y (yt � y

p
t )
�
+ ��y

�
(yt � ypt )�

�
yt�1 � ypt�1

��
+ eit (22)

yt = (1� gy � iy) ct + iyit +
zk�k�
y�

zkt + eg (23)

Equation (1) is the Euler consumption equation: h measures the degree of habits in consumption, 
 is

the steady state growth rate and �c is the relative risk aversion coe¢ cient. Equation (2) represents the

Calvo staggered wage setting, � is the households discount factor, �w measures wage stickiness, while �w

denotes the degree of wage indexation. The wage mark-up, �wt , de�ned in equation (3), is determined as

the di¤erence between the real wage and the marginal rate of substitution between working and consuming.

Equation (4) captures the production technology with �xed costs �p and capital share �. Capital is

augmented by the capital utilization rate, ut, whose optimality condition is given by equation (5), where

 represents the positive function of elasticity of the capital utilization adjustment cost and zkt is the

marginal product of capital. Staggered price stickiness is incorporated into the model through limiting the

ability of �rms to reset their prices every period with a probability equal to �p, as shown by equation (6),

where �p governs the degree of price indexation. The price markup dynamics obtained under monopolistic

competition is described by (7). Cost minimization by �rms, equation (8), implies that the marginal

product of capital is negatively related to the capital-labor ratio and positively to real wages. Investment

dynamics is described by equation (9), where qt is the current value of capital stock and ' is the elasticity of

the investment adjustment cost. The arbitrage condition for the value of capital is given by equation (10),

where Etrkt+1 is the external cost of funding. The law of motion of installed capital is given by equation

(11).

Financial intermediaries raise funds from households and grant loans to intermediate �rms producers.

Due to a moral-hazard costly enforcement problem,2 the presence of �nancial intermediation leads to an

endogenous credit spread, captured by equation (12), as a di¤erence between the cost of funding state con-

tingent asset of non-�nancial �rms, Etrkt+1 , and gross nominal interest rate paid on deposits to households,

rt . As described by equation (13), the maximum amount of lending by �rms depends on the total net

worth, nt and on the ratio of loan asset to equity capital, levt. The leverage is endogenously determined by

equation (14) and depends on the the gain of increasing one unit of net worth, �t, on the gain of expanding

assets, vt, and on the fraction � that bankers could divert from the project and transfer it back to their

household. The gain of having net worth, equation (15), hinges on the stochastic discount factor, �t, as-

sociated to the household problem, the probability of bankers�surviving in the next period, $, and on the

gross growth rate of net worth, zt, whose law of motion is given by equation (16). The gain of expanding

assets, equation (17), is mainly a¤ected by the gross growth rate in assets, xt, which evolves as in equation

(18). Total net worth is given by the sum of net worth of existing bankers, net and of new bankers, n
n
t ,

equation (19). Net worth of existing bankers equals earnings on assets held in the previous period and the

growth of the net worth, as speci�ed by equation (20), while net worth of new banks takes into account

the �start-up� funds from the households to which they belong to, equal to the fraction � of total assets,

as indicated by equation (21).3

2 In this model at the beginning of each period the banker can choose to divert the fraction � of available funds from the
project and instead transfer them back to the household. Depositors can force the intermediary into bankruptcy and recover
the remaining fraction 1 � � of total assets. However, costly enforcement implies that it is too costly for the depositors to
recover the diverted fraction of funds by the banker.

3As argued by Cole (2011), a critical assumption of the model by Gertler and Karadi is that �nancial intermediaries do
not e¢ ciently hedge their risk. This is a general assumption in the mainstream DSGE literature on �nancial frictions (see,
for example, the seminal contribution of Bernanke et al. (1999) and can be an avenue for future research. In addition, the
model can get closer to the data if �rms borrow to �nance some fraction of their labor as well as their capital.
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The monetary authority follows a Taylor rule, equation (22): rt �r, ��, �y and ��y are policy parameters

referring to interest-rate smoothing, and the responsiveness of the nominal interest rate to in�ation devia-

tions, to the output gap and to changes in the output gap, respectively. Finally, the resource constraint,

equation (23), completes the model.

The model features eight exogenous disturbances: total factor productivity, eat ; price mark-up, e
p
t ; wage

mark-up, ewt ; investment-speci�c technology, e
x
t ; risk premium, e

b
t ; net worth of �nancial intermediaries,

ent ; exogenous spending, e
g
t ; and monetary policy shocks, e

i
t. All the shocks follow an AR(1) process, but

the price and wage mark-up shocks following an ARMA(1,1) process.

Our general estimation and calibration strategy follows the procedure proposed by Smets and Wouters

(2007) adapted to a model with �nancial intermediation. In particular, the parameters that cannot be

identi�ed in the data and/or are related to steady state values of variables are calibrated as follows: the

discount factor, �, is set equal to 0:99. The depreciation rate of physical capital, �, is set equal to 0.025.

The Kimball aggregators in the goods and labor market are equal to 10, and the steady state gross wage

mark-up is set to 1:5. The share of government to GDP is equal to 0:18. Similarly to Villa (2014), the

�nancial parameters �$, � and � �are calibrated to target an average working life of bankers of almost a

decade, a steady state spread of 150 basis points and a steady state leverage ratio of �nancial intermediaries

equal to 4. The remaining parameters governing the dynamics of the model are estimated using Bayesian

techniques. The locations of the prior mean correspond to those in Smets and Wouters (2007).

3 Benchmark models

The classical unrestricted VAR, as suggested by Sims (1980), has the following form

Yt = ZtB+ ut (24)

where Yt is a (T � n) matrix; Z is a (T � k) matrix (k = 1 + np; p =number of lags) with rows Z 0t =

[1; Y 0t�1; :::; Y
0
t�p];B is a (k � n) = [B0;B1;:::;Bp]

0, while the one-step ahead forecast errors ut have a

multivariate N(0;�u) conditional on past observations of Y: The Bayesian VAR, as described in Litterman

(1981), Doan et al. (1984), Todd (1984), Litterman (1986) and Spencer (1993) has become a widely popular

approach to overcoming overparameterization. One of main problems in using VAR models is that many

parameters need to be estimated, although some of them may be insigni�cant. This overparameterization

problem, resulting in multicollinearity and a loss of degrees of freedom, leads to ine¢ cient estimates. Instead

of eliminating longer lags, the BVAR imposes restrictions on these coe¢ cients by assuming that they are

more likely to be near zero than the coe¢ cients on shorter lags. Obviously, if there are strong e¤ects from

less important variables, the data can counter this assumption. Usually, the restrictions are imposed by

specifying normal prior distributions with zero means and small standard deviations for all coe¢ cients, with

a decreasing standard deviation as the lags increase. The only exception is the coe¢ cient on a variable�s

�rst lag, which has a mean of unity. Litterman (1981) used a di¤use prior for the constant. The means of

the prior are popularly called the "Minnesota Priors". The basic principle behind the "Minnesota" prior is

that all equations are centered around a random walk with drift. This idea has been modi�ed by Kadiyala

and Karlsson (1997) and Sims and Zha (1998). In Ingram and Whiteman (1994), a real business cycle model

is used to generate a prior for a reduced form VAR, as a development of the "Minnesota" priors procedure.

Formally speaking, these prior means can be written as Bi � N(1; �2Bi
) and Bj � N(0; �2Bj

);where Bi

denotes the coe¢ cients associated with the lagged dependent variables in each equation of the VAR, while

7



Bj represents any other coe¢ cient. The prior variances �2Bi
and �2Bj

specify the uncertainty of the prior

means, namely Bi = 1 and Bj = 0. The speci�cation of the standard deviation of the distribution of the

prior imposed on variable j in equation i at lag m, for all i; j and m, denoted by s(i; j;m), is speci�ed as

s(i; j;m) = (w� �(m)�T (i; j))(�̂i=�̂j). The tightness T (i; j) of variable j in equation i relative to variable
i is T (i; j) = 1 if i = j and T (i; j) = kij otherwise (0 � kij � 1): By increasing the interaction it is possible
for the value of kij to loosen the prior (Dua and Ray, 1995). The ratio �̂i=�̂j consists of estimated standard

errors of the univariate autoregression, for variables i and j. This ratio scales the variables to account

for di¤erences in the units of measurement, without taking into account the magnitudes of the variables.

The term w measures the standard deviation on the �rst lag, and also indicates the overall tightness. A

decrease in the value of w results in a tighter prior. The function �(m) = m�d; d > 0 is the measurement

of the tightness on lag m relative to lag 1, and is assumed to have a harmonic shape with a decay of d,

which tightens the prior on increasing lags. Following the standard Minnesota prior settings, the overall

tightness (w) is set equal to 0.1, while the lag decay (d) is 0.5 and the interaction parameter (kij) is set

equal to 0.1. This Bayesian setting is very similar to the model used in Liu et al (2009) and Gupta and

Kabundi (2010).

4 Multivariate State-Space Time-Varying Parameter VAR mod-

els

Time varying parameter autoregression could easily form a state space model with the parameters of

the TVP-VAR as state variables. The state space model has been well studied by Harvey (1990) and

Durbin and Koopman (2002). According to Kalman (1960, 1963), in a state-space representation the

signal extraction is implemented through a model that links the unobserved and observed variables of

the system. Kalman �ltering involves sequentially updating a linear projection on the vector of interest.

For the standard homoskedastic TVP-VAR models, the parameters are estimated using a multivariate

speci�cation of the standard Kalman �lter (Harvey, 1990; Bekiros and Paccagnini, 2013). The likelihood

estimation requires repeating the �ltering many times in order to evaluate the likelihood for each set of

the time-varying parameters until the maximum is reached. This is performed with a suitable multivariate

extension of the Kim and Nelson (1999a, 1999b) method. The calculation of the Hessian for the estimation

of the variance-covariance matrix is done with the Broyden-Fletcher-Goldfarb-Shano (BFGS) optimization

algorithm.4

4.1 MVSS-TVP-VAR model with Homoscedastic errors

The standard homoskedastic TVP-VAR (MVSS-TVP-VAR) can be expressed as

yt = B0;t +B1;tyt�1 + � � �+Bp;tyt�p + ut (25)

in which B0;t is a k � 1 vector of time-varying intercepts, Bi;t (i = 1; : : : ; p) are k � k matrices of time-

varying coe¢ cients and ut are homoscedastic reduced-form residuals with a covariance matrix 
t. This

could be transformed into a multivariate state-space form. Consider the following state-space system

4Other algorithms can also be used with the same results, e.g., the DFP and the Levenberg-Marquardt. The parameters
could be also estimated with the use of the Zellner g-prior both for homoskedastic and heteroskedastic TVP-VARs and in this
case the numerical evaluation of the posterior distributions is performed with Gibbs sampling (Kim and Nelson, 1999b).
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yt = Zt�t + "t (26)

�t = Tt�t�1 + �t (27)

The �rst equation is known as the measurement or observation equation and presents that part of the

system than can physically be measured, while the second is the state equation �t the vector of state

variables. Zt is a matrix of known or unknown time varying coe¢ cients and matrix Tt, the state transition

matrix. Finally, "t is N
�
0; �2

�
while �t in multivariate normal with an expected value of zero and a

homoscedastic covariance matrix of Q. The unknown parameters (hyperparameters) are the elements of

the matrices and the variances of the noise processes to be estimated. This is accomplished by maximizing

the likelihood function which is presented below for one time period

Lt = �
1

2

TX
t=1

ln 2� � 1
2

TX
t=1

ln ft �
1

2

TX
t=1

�2t
ft

(28)

where �t is the one�step ahead residual at time t and ft is its variance. It is calculated recursively using

the following equations

�tjt�1 = Tt�t (29)

Ptjt�1 = TtPtT
0
t +Q (30)

�tjt�1 = yt � Zt�tjt�1 (31)

ftjt�1 = ZtPtjt�1Z
0
t + �

2 (32)

�tjt = �tjt�1 +Ptjt�1Z
0
t�t=ft (33)

Ptjt = Ptjt�1 �Ptjt�1Z0tZtPtjt�1=ft (34)

Hence, Equations (29) to (34) that generate an estimate of the state vector and its covariance matrix

Pt are known as the Kalman �lter. Given starting values, an estimate of the unknown regression coef-

�cients is obtained. Then using this information in the likelihood function, one may then estimate the

hyperparameters of the model. Once these estimates have been obtained, an estimate of the state vector,

the recursive residuals and their variance is obtained, and also an estimate of the updated residual vector

�tjt�1 = yt � Zt�tjt�1 is generated.
The framework for a multivariate version of the Kalman �lter is provided by Harvey (1990), based

on a time series analogue of the seemingly unrelated regression equation (SURE) model introduced into

econometrics by Zellner (1963). Harvey (1990) refers to it as a system of seemingly unrelated time series

equations (SUTSE) model. The simplest SUTSE model is the multivariate random walk plus noise process

yt = �t + "t; t = 1; : : : ; T (35)
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�t = �t�1 + �t (36)

where �t is an N � 1 vector of local level components and "t, and �t are vectors of multivariate white
noise with mean zero and covariance matrices �" and �� respectively. As in the univariate model, "t and

�t are assumed to be uncorrelated with each other in all time periods. The variables are linked via the

o¤-diagonal elements �" and ��. A linear time-invariant univariate structural model can be written in the

SUTSE state space form for N variables

yt = (z
0 
 IN )�t + "t (37)

�t = (T
 IN )�t�1 + (R
 IN )�t (38)

with V ar("t) = �" and V ar(�t) a block diagonal matrix with the blocks being �k, k = 1; :::; g. For

example, in the four-variate case (as in this study) the variance of the error component in the state equation

is

V ar (�t) =

266664
�� 0 0 0

0 �� 0 0

0 0 �! 0

0 0 0 �


377775 (39)

A more general formulation of the SUTSE model does not constrain V ar (�t) to be diagonal, hence V ar (�t)

need not be block diagonal. Indeed the SUTSE formulation can be generalized further to allow quantities

such as z;�";T;R and V ar (�t) to change deterministically over time. As shown in Harvey (1986), the

time-domain treatment still goes through. The Kalman �lter may be applied to (37) and (38), the number

of sets of observations needed to form an estimator of �t , with �nite MSE matrix being the same as in the

univariate case. The conditions for the �lter to converge to a steady state are an obvious generalization of

the conditions in the univariate case. Given normality of the disturbances, the log-likelihood function is of

the prediction error decomposition form.

The decoupling of the Kalman �lter is related to the result which arises in a SUTSE system where OLS

applied to each equation in turn is fully e¢ cient if each equation contains the same regressors. Hence, all

the information needed for estimation, prediction and smoothing can be obtained by applying the same

univariate �lter to each series in turn. If we consider the multivariate random walk plus noise model and

a signal-to-noise ratio q (i.e., ��=�" = q), the Kalman �lter for this model is written as

�t+1jt = �tjt�1 +Kt

�
yt ��tjt�1

�
; t = 2; : : : ; T (40)

and

Pt+1jt = Ptjt�1 �Ptjt�1F�1t Ptjt�1 + q�" (41)

where

Kt = Ptjt�1F
�1
t (42)

and

10



Ft = Ptjt�1 +�" (43)

Let wt denote a positive scalar for t = 2; : : : ; T and suppose that Ptjt�1, the MSE matrix of the N � 1
vector �tjt�1, is proportional to �", i.e. Ptjt�1 = wt�". It then follows from (41) that Pt+1jt is of the

same form, that is, Pt+1jt = wt+1�" with wt+1 = (wt + wtq + q) = (wt + 1). Furthermore if Ptjt�1 = wt�"

the gain matrix in (40) is diagonal, that is

Kt = wt�" (wt�" +�")
�1
= [wt= (wt+1)] IN (44)

Consider that the above Kalman �lter is started o¤ in such a way that P2j1 is proportional to �"; that is

P2j1 = p
2j1�", where p2j1 is a scalar. As Ptjt�1 must continue to be proportional to �", it follows from (44)

that the elements of �t+1jt, can be computed from the univariate recursions. It also follows that wt, must be

equal to p
tjt�1 for all t = 2; : : : ; T . The starting values �2j1 = y1 and P2j1 = �� +�" = (1 + q)�" equally

correspond to the use of a di¤use prior, and the use of these starting values leads to the exact likelihood

function for y2; : : : ;yT in the prediction error decomposition form

logL = � (T � 1)N
2

log 2� � 1
2

TX
t=2

log jFtj �
1

2

TX
t=2

v0tF
�1
t vt (45)

where vt = yt � bytjt�1; t = 1; :::; T . The decoupling of the Kalman �lter allows the elements of vt to be

computed from the univariate recursions. Furthermore

Ptjt�1 = p
tjt�1�" (46)

and so

Ft = Ptjt�1 +�" = ft�"; t = 3; : : : ; T (47)

where ft =
�
p
tjt�1 + 1

�
. Substituting from (47) into (45) gives

logL = � (T � 1)N
2

log 2� +
(T � 1)
2

log
����1" ��� N

2

TX
t=2

log ft �
1

2

TX
t=2

1

ft
v0t�

�1
" vt (48)

Di¤erentiating (48) with respect to the distinct elements of ��1" leads to the ML estimator of �" being

~�" = (T � 1)�1
TX
t=2

f�1t vtv
0
t (49)

for any given value of q. The ML estimators of q and �" can therefore be obtained by maximizing the

concentrated likelihood function

logLc = �
(T � 1)N

2
log 2� � (T � 1)

2
log
���~�"���� N

2

TX
t=2

log ft (50)

with respect to q. Once the parameters have been estimated, prediction and smoothing can be carried out.

The predictions of future observations are obtained from the univariate recursions

MSE
�byT+ljT � = fT+ljT�"; l = 1; 2; : : : (51)
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where

fT+ljT = pT+ljT + 1 (52)

The decoupling of the Kalman �lter can be shown in a similar way for the time-varying system, as in

Bekiros and Paccagnini (2013)

yt = (z
0
t 
 IN )�t + "t; V ar ("t) = ht�� (53)

�t = (Tt 
 IN )�t�1 + (Rt 
 IN )�t; V ar (�t) = Qt 
�� (54)

where ht and Qt =diag(q1; : : : ; qk), with ht and q1; : : : ; qk non-negative scalars. The more general formu-

lation does not constrain Qt to be diagonal, although, as in the univariate model, restrictions are needed

on Qt for the model to be identi�able. All the results on estimation and prediction carry through, with

Pt+1jt = P
�
t+1jt 
��, where P�t+1jt is the MSE matrix for the univariate model (Harvey, 1986, 1990).

4.2 MVSS-TVP-VAR model with Markov-Switching Heteroscedasticity

As an alternative to the homoskedastic TVP-VAR we assume that "t and �t (i.e., �
2and Q) are dependent

on Hamilton�s (1988) state variable (St), which is an outcome of an unobserved discrete-time, discrete-state

Markov process. While the Markov-switching variance model fails to incorporate the learning process of

agents, the TPV model fails to incorporate uncertainty that changes due to future random shocks. In

this study we consider a more general approach in which both types of uncertainty are incorporated. An

important motivation for considering a state-space model with Markov-switching heteroskedasticity is due

to Lastrapes (1989), Lamoureux and Lastrapes (1990) and Kim (1993) who showed that failure to allow

for regime shifts leads to an overstatement of the persistence of the variance of a series. Moreover, in this

way we could incorporate di¤erent regimes in crisis periods.

Consider the following �rst-order, !-state Markov-switching model of heteroskedasticity

Qt = QSt = Q1�1t +Q2�2t + � � �+Q!�!t (55)

ht = hSt = h1�1t + h2�2t + � � �+ h!�!t (56)

where �jt = 1 if St = j and �jt = 0 if St 6= j (j = 1; 2; : : : ; !). The unobserved-state variable St evolves

according to a Markov process with the following transition probability matrix

p =

0BBBBB@
p11 p12 � � � p1!

p21 p22 � � � p2!
...

...
. . .

...

p!1 p!2 � � � p!!

1CCCCCA (57)

where pij = Pr [St = jjSt�1 = i], for i; j = 1; 2; : : : ; !, and
!P
j=1

pij = 1. Under a state-space form we consider

the time-varying-parameter model in Eqs. (27)-(28), in this case with a 2-state Markov-switching model of

heteroskedasticity
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Pr [St = 1jSt�1 = 1] = P11; Pr [St = 0jSt�1 = 1] = 1� P11;

Pr [St = 1jSt�1 = 0] = 1� P00; Pr [St = 0jSt�1 = 0] = P00

4.2.1 A Quasi-Optimal Filter for Approximation

Suppose that the parameters Qj , hj (j = 1; 2), Zt, Tt, and p are known for the model with a 2-state Markov-

switching heteroskedasticity that consists of Equations (26)-(27) and (55)-(57). Based on the assumption

that St�1 = i and St = j (i; j = 1; 2), the Kalman �lter can be written as follows

�itjt�1 = Tt�
i
t�1jt�1 (58)

P
(i;j)
tjt�1 = TtP

i
t�1jt�1T

0
t +Q

j (59)

�itjt�1 = yt � Zt�itjt�1 (60)

f
(i;j)
tjt�1 = ZtP

(i;j)
tjt�1Z

0
t + h

j (61)

�
(i;j)
tjt = Tt�

i
tjt�1 +K

(i;j)
t �jtjt�1 (62)

P
(i;j)
tjt =

�
I �K(i;j)

t Zt

�
P
(i;j)
tjt�1 (63)

K
(i;j)
t = P

(i;j)
tjt�1Zt

0
�
f
(i;j)
tjt�1

��1
(64)

where �itjt�1 is an inference of �t based on information up to time t � 1, given St�1 = i, P(i;j)tjt�1 is the

covariance matrix of �itjt�1, �
i
tjt�1 is the conditional forecast error of yt based on information up to t� 1,

given St�1 = i, and f (i;j)tjt�1 is the conditional variance of forecast error �
i
tjt�1, given St�1 = i and St = j.

Finally, K(i;j)
t is the Kalman gain given St�1 = i and St = j. If we iterate the preceding Kalman �lter

from t = 1 to t = T , the inferences on �T and its covariance matrix
�
�T jT and PT jT

�
for example, would

depend on the whole history of current and past states, S0; S1; : : : ; ST . Overall, we would have !T cases

to consider, which could be quite impossible to deal even with relatively few observations, especially in

case when we have an !-state Markov-switching model. That is because in each iteration of the preceding

�lter an !-fold increase is produced in the number of cases to consider. In our model, we have !T = 2T

cases to consider. However, we would like to reduce the dimension of the posteriors in (62) and (63) into

(2� 1) at the end of each iteration, hence only (2� 2) cases to consider for each iteration. The following
approximations are employed for this purpose; if �(i;j)tjt in (62) is represented as E [�tjSt�1 = i; St = j;  t],

and  t represents information up to time t, it is straightforward to show that

�jtjt =
2X
i=1

�t�
(i;j)
tjt (65)

where �t = Pr [St�1 = i; St = jj t] = Pr [St = jj t] and �
j
tjt would re�ect E [�tjSt = j;  t]. Hence, the
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covariance matrix of �t conditional on  t and on St = j could be derived as follows

Pjtjt = E
�
(�t � E [�tjSt = j;  t])� (�t � E [�tjSt = j;  t])

0 jSt = j;  t
�
= E

��
�t ��jtjt

��
�t ��jtjt

�0
jSt = j;  t

�
=

2X
i=1

�tE

��
�t ��jtjt

��
�t ��jtjt

�0
jSt�1 = i; St = j;  t

�

=
2X
i=1

�tE

��
�t ��(i;j)tjt +�

(i;j)
tjt ��jtjt

��
�t ��(i;j)tjt +�

(i;j)
tjt ��jtjt

�0
jSt�1 = i; St = j;  t

�

=
2X
i=1

�t

�
E

��
�t ��(i;j)tjt

��
�t ��(i;j)tjt

�0
jSt�1 = i; St = j;  t

�
+
�
�jtjt ��

(i;j)
tjt

��
�jtjt ��

(i;j)
tjt

�0�

+
2X
i=1

�t

�
E [�tjSt�1 = i; St = j;  t]��

(i;j)
tjt

��
�
(i;j)
tjt ��jtjt

�0
+

+
2X
i=1

�t

�
�
(i;j)
tjt ��jtjt

��
E [�tjSt�1 = i; St = j;  t]��

(i;j)
tjt

�0

=
2X
i=1

�t

�
E

��
�t ��(i;j)tjt

��
�t ��(i;j)tjt

�0
jSt�1 = i; St = j;  t

�
+
�
�jtjt ��

(i;j)
tjt

��
�jtjt ��

(i;j)
tjt

�0�
(66)

Here, if P(i;j)tjt in (63) represents E
��
�t ��(i;j)tjt

��
�t ��(i;j)tjt

�0
jSt�1 = i; St = j;  t

�
; then (66) could be

re-formulated as

Pjtjt =
!X
i=1

�t

�
P
(i;j)
tjt +

�
�jtjt ��

(i;j)
tjt

��
�jtjt ��

(i;j)
tjt

�0�
(67)

At the end of each iteration, Equations (65) and (67) are employed to "collapse" 2�2 posteriors in (62)
and (63) into 2 � 1 to make the �lter appropriate, as in Kim (1993). However these collapsed posteriors

involve approximations because �(i;j)tjt and P(i;j)tjt in (62) and (63) do not calculate E [�tjSt�1 = i; St = j;  t]

and E

24 �
�t ��(i;j)tjt

�
�
�
�t ��(i;j)tjt

�0
j

St�1 = i; St = j;  t

35 exactly. This is because �t conditional on  t�1; St = j and

St�1 = i is a mixture of Normals for t > 2. Exactly because this approximation is implemented, the

preceding �lter is called a quasi-optimal �lter. Eventually, the last thing that has to be considered to

complete the �lter is to calculate Pr [St�1 = i; St = jj t] as well as the other probability terms. Following
Hamilton (1988) with a slight modi�cation, we derive the equations below:

Pr [St�1 = i; St = jj t] =
Pr
�
yt; St�1 = i; St = jj t�1

�
Pr
�
ytj t�1

�
=
Pr
�
ytjSt�1 = i; St = jj t�1

�
� Pr

�
St�1 = i; St = jj t�1

�
Pr
�
ytj t�1

� (68)

where

Pr
�
ytjSt�1 = i; St = jj t�1

�
=

1q
2�f

(i;j)
tjt�1

e

(
�
(�itjt�1)

2

2f
(i;j)
tjt�1

)
(69)
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Pr
�
ytj t�1

�
=

2X
i=1

2X
j=1

Pr
�
yt; St�1 = i; St = jj t�1

�
(70)

and

Pr
�
St�1 = i; St = jj t�1

�
= Pr [St = jjSt�1 = i]� Pr

�
St�1 = ij t�1

�
(71)

with

Pr
�
St�1 = ij t�1

�
=

2X
St�2=1

Pr
�
St�2 = st�2; St�1 = ij t�1

�
(72)

Thus Equations (58)-(72) complete the quasi-optimal �lter. Next, based on the quasi-optimal �lter, the

approximated conditional log-likelihood function can be obtained from (70)

logL = log (Pr [y1; y2; : : : ; yT ]) =
TX
t=1

log
�
Pr
�
ytj t�1

��
(73)

In order to estimate the parameters of the model, we can maximize the log-likelihood function in Equation

(73) with respect to the underlying unknown parameters of the model.

Similarly to the homoskedastic TVP-VAR, the above model can be written in the SUTSE (multivariate)

state space form for N variables

yt = (z
0 
 IN )�t + "t (74)

�t = (T
 IN )�t�1 + (R
 IN )�t (75)

yet now V ar("t) = V ar(hjt ) = �hj and V ar(�t) = V ar(Qjt ) = �Qj are block diagonal matrices with the

blocks all of them following a 2-state Markov-switching heteroskedastic structure, namely in the four-variate

case, the variance of the error components in the state equation is

V ar
�
hjt

�
=

266664
�1hj 0 0 0

0 �2hj 0 0

0 0 �3hj 0

0 0 0 �4hj

377775 (76)

and

V ar
�
Qjt

�
=

266664
�1Qj 0 0 0

0 �2Qj 0 0

0 0 �3Qj 0

0 0 0 �4Qj

377775 (77)

Indeed the SUTSE formulation can be generalized further to allow quantities such as z;T;R and �hj ;�Qj

to change over time. The quasi-Kalman �lter for the heteroskedastic case may be applied to (74) and (75)

with the number of sets of observations needed to form an estimator of �t , and with �nite MSE matrix

being the same as in the univariate case. Moreover, the conditions for the �lter to converge to a steady

state de�ne a generalization of the conditions in the univariate case. The decoupling of the Kalman �lter is
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fully e¢ cient if each equation contains the same regressors. Thus, all the information needed for estimation,

prediction and smoothing can be obtained by applying the same univariate �lter to each series in turn. If

the signal-to-noise ratio is q (i.e., �Qj =�hj = q), the Kalman �lter for this model is

�it+1jt = �
i
tjt�1 +K

(i;j)
t

�
yt ��itjt�1

�
; t = 2; : : : ; T (78)

and

P
(i;j)
t+1jt = P

(i;j)
tjt�1 �P

(i;j)
tjt�1

�
�
(i;j)
Qjtjt�1

��1
P
(i;j)
tjt�1 + q�hj (79)

where

K
(i;j)
t = P

(i;j)
tjt�1Zt

0
�
�
(i;j)
Qjtjt�1

��1
(80)

and

�
(i;j)
Qjtjt�1 = P

(i;j)
tjt�1 +�hj (81)

Let again wt denote a positive scalar for t = 2; : : : ; T and suppose that P(i;j)tjt�1 = wt�hj , i.e, the MSE

matrix of the N � 1 vector �itjt�1, is proportional to �hj depending on the whole history of current and
past states, S0; S1; : : : ; ST . It follows from (79) that P(i;j)t+1jt is of the same form, that is, P

(i;j)
t+1jt = wt+1�hj

with wt+1 = (wt + wtq + q) = (wt + 1), and if P
(i;j)
tjt�1 = wt�hj the gain matrix in (78) is state-dependent

diagonal, that is

K
(i;j)
t = wt�hj (wt�hj +�hj )

�1
= [wt= (wt+1)] IN

In the heteroskedastic case the above Kalman �lter is started o¤ in the same way as in the standard

model. However, the use of these starting values now would not lead to an exact likelihood function for

y2; : : : ;yT in the prediction error decomposition form as in (45), but now to a multivariate version of the

approximated conditional log-likelihood function of the quasi-optimal �lter

LL = log (Pr [y1;yt2; : : : ;yT ]) =
TX
t=1

log
�
Pr
�
ytj t�1

��
(82)

based now on the following probabilities instead of the (69)-(70) for the univariate �lter

Pr
�
ytjSt�1 = i; St = jj t�1

�
=

1q
2��

(i;j)
Qjtjt�1

e

8<:� (fitjt�1)
2

2�
(i;j)

Qjtjt�1

9=;
(83)

Pr
�
ytj t�1

�
=

2X
i=1

2X
j=1

Pr
�
yt; St�1 = i; St = jj t�1

�
(84)

The predictions of future observations are obtained from the univariate recursions (as in the standard

model)

MSE
�byT+ljT � = fT+ljT�hj ; l = 1; 2; : : : and pij = Pr [St = jjSt�1 = i] ; i; j = 1; 2 (85)

Finally, the decoupling of the Kalman �lter can be extended in a similar way for a time-varying system
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with a 2-state Markov-switching model of heteroskedasticity, as in Bekiros and Paccagnini (2013)

yt = (z
0
t 
 IN )�t + "t; with V ar("t) = V ar(hjt )�� = �hj�� (86)

�t = (Tt 
 IN )�t�1 + (Rt 
 IN )�t; with V ar(�t) = V ar(Qjt )
�� = �Qj 
�� (87)

where again V ar("t) = V ar(hjt ) = �hj and V ar(�t) = V ar(Qjt ) = �Qj are block diagonal matrices,

although a more general formulation does not constrain them to be diagonal. However, as in the univariate

model, restrictions are needed on the matrices for the model to be identi�able. The previous results on

estimation and prediction apply, with P(i;j)�t+1jt = P
(i;j)
t+1jt 
 ��, where P

(i;j)
t+1jt is the MSE matrix for the

univariate model.

5 DSGE estimation procedure

We estimate the DSGE with banking intermediation model using Bayesian methods as in Smets and

Wouters (2007). The data we use in the estimation is in the form of 20-year rolling windows (80 quarter

observations). Rolling window estimates may help capturing changes in parameters (regime shifts) as

discussed in Gürkaynak et al. (2013). The �rst estimation period is from 1984Q4 to 2003Q4 and the last one

is from 1994Q1 to 2013Q4, for a total of 41 samples. The model is estimated for the United States using the

following variables: GDP, investment, consumption, wages, net worth of �nancial intermediaries, hours of

work, GDP de�ator in�ation and the federal funds rate. We include net worth of �nancial intermediaries as

a �nancial observable because the model features a net worth shock. Although observations on all variables

are available at least from 1973Q2 onward, we concentrate on this period because it is characterized by a

single monetary policy regime. Appendix A contains a detailed discussion of data sources, de�nitions and

transformations. The following set of measurement equations shows the link between the observables in

the dataset and the endogenous variables of the DSGE model
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Ît � Ît�1
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where �
 = 100(
 � 1) is the common quarterly trend growth rate of GDP, consumption, investment and
wages; �
N = 100(
N � 1) is the quarterly trend growth rate of net worth of �nancial intermediaries, as in
Gelain and Ilbas (2014); �h is the steady-state hours of work; �� is the steady-state quarterly in�ation rate;

and �rn is the steady-state quarterly nominal interest rate. A hat over a variable represents log-deviation

from steady state.

5.1 Evolution of estimated shocks and parameters

We report the evolution of the estimated shocks and parameters of the DSGE model based on rolling

estimation sample starting from 1984Q1-2003Q4 and ending with the sample 1994Q1- 2013Q4.
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Figure 2: Evolution of the shock processes

Note: Solid lines represent the posterior mean, while dotted lines con�dence intervals. Estimates are computed
based on rolling estimation sample starting from 1984Q1-2003Q4 and ending with the sample 1994Q1- 2013Q4.

Figure 3: Evolution of the most relevant parameters

Note: Solid lines represent the posterior mean, while dotted lines con�dence intervals. Estimates are computed
based on rolling estimation sample starting from 1984Q1-2003Q4 and ending with the sample 1994Q1- 2013Q4.

Figures 2 and 3 show that the time variation of the parameters is crucial in our empirical analysis.
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As discussed in Cardani et al. (2014), the literature o¤ers at least three di¤erent approaches to deal

with the issue of parameters instability. The �rst features time-varying coe¢ cients / stochastic volatilities

(Fernandez-Villaverde et al., 2010; Caldara et al., 2012; Bekiros and Paccagnini, 2013). Second, Eo (2009)

and Foerster et al. (2014), among others, propose Markov-switching DSGE modeling. Third, Castelnuovo

(2012) presents a rolling-window estimation for detecting instabilities in the structural parameters during

a long period with di¤erent monetary regimes, i.e. the years between 1965 and 2005. We follow the last

methodology, which has the advantage to be applied to a wide set of parameters while it does not force the

data to �discretize�the economy (Castelnuovo, 2012) �di¤erently from stochastic volatility approaches.

6 Comparative analysis of predictability

The DSGE model is estimated using a rolling window of 80 observations. We assess forecastability for

multi-step horizons h 2 (1; 2; 3; 4; 8). The �rst estimation sample 1984Q1-2003Q4 produces an out-of-

sample period starting in 2004Q1 and ending in 2012Q1 for the one-step-ahead, ending in 2012Q2 for two

step-ahead forecasts etc., and eventually until 2013Q4 for the eight step-ahead forecasts. We compare the

out-of-sample forecasting performance of VAR, BVAR and the homoskedastic and heteroskedastic MVSS-

TVP-VARs as well as of the DSGE model in terms of the Root Mean Squared Forecast Error (RMSFE) for

the optimal lag speci�cations (one to four) selected by the Schwartz Bayesian information criterion (SIC).

The forecasting investigation for the quarterly US data is performed over the one-, two-, three-, four and

eight�quarter-ahead horizon with a rolling estimation sample, based on the works of Marcellino (2004) and

Brüggemann et al. (2008) for datasets of quarterly frequency. In particular, the models are re-estimated

each quarter over the forecast horizon to update the estimate of the coe¢ cients, before producing the

quarter-ahead forecasts. The models are comparatively evaluated for the United States using the following

observables: GDP, the GDP de�ator in�ation (INF), the federal funds rate (FFR) and the net worth of

�nancial intermediaries (NWB). We include net worth of �nancial intermediaries as a �nancial observable

because the model features a net worth shock.

The RMSFE scores for the out-of-sample period are reported in Table 1 for all models and variables.

An exhaustive exercise was conducted on VAR and BVAR models with one to four lags based on the

Schwartz Bayesian information criterion (SIC). The results provide evidence that in general four lags is the

optimal number for these models. Moreover, the SIC for one to four lags (MLE and QMLE estimation)

was implemented in order to select the best speci�cation for the MVSS-TVP-VAR and the heteroscedastic

MVSS-TVP-MSVAR. In both cases one lag was chosen.

In particular, for the GDP series the MVSS-TVP-VAR clearly outperforms all models for all steps-

ahead. Next, the MVSS-TVP-MSVAR model is the best for all steps-ahead except only for the longest

horizon where the BVAR presents the lowest RMSFE. In general, the DSGE model provides the worst

out-of-sample behaviour compared to the simple VAR and BVAR models. Interestingly, in case of INF

the DSGE model with �nancial frictions and banking intermediation achieves the best score for the �rst

three horizons, namely one-, two- and three-quarters-ahead, thus clearly outperforms all other models.

The next lowest RMSFEs are produced by the MVSS-TVP-VAR and standard VAR models. However,

considering the longest horizons i.e., four- and eight-steps-ahead the homoskedastic and heteroskedastic

TVP-VAR respectively outrank the DSGE model. This result might be an indication of the match of two

states/regimes for the MVSS-TVP-VAR models. Possibly the MVSS-TVP-MSVAR because it picks out

the crisis period as the "high volatility" regime and the pre-crisis period as the low regime. Hence, the

heteroscedastic TVP-VAR attributes the crisis period to the "high volatility" state especially within 2009-
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2013 and hence shows a lower RMSFE compared to the "plain vanilla" TVP-VAR in the long forecasting

horizon of eight quarters. Consistently, the exact same "picture" emerges from the investigation of the FFR

predictability. The novel DSGE model attains the best score for the �rst three horizons, whilst the two

TVP-VARs show the lowest RMSFE for four- and eight-steps-ahead. The next best performer is the BVAR

compared to the simple VAR. Similarly, as in the case of INF, the two TVP-VARs produce very close scores

when compared to each other. Finally, for the NWB series the plain TVP-VAR is the outranking model

for all steps-ahead except for the long eight-quarters-ahead projection where the two-regime TVP-MSVAR

emerges as the best performer. Interestingly, the DSGE model with �nancial frictions generates the highest

RMSFEs among the other speci�cations. The VAR is better than the BVAR model, yet marginally in most

forecasting horizons.

Table 1: Root Mean Square Forecast Error (RMSFE) for GDP, INF, FFR and NWB

VAR BVAR DSGE MVSS-TVP-VAR MVSS-TVP-MSVAR
GDP
1 0.7879 0.7891 1.0290 0.5864 0.7087
2 0.7808 0.8056 1.0760 0.6706 0.7083
3 0.9022 0.7932 1.1442 0.5870 0.6416
4 0.8627 0.8116 1.1900 0.5283 0.5746
8 1.5286 1.4556 2.6628 1.0004 1.7117

INF
1 0.2652 0.3228 0.2030 0.2415 0.3093
2 0.2999 0.3451 0.2096 0.2236 0.2838
3 0.2932 0.3356 0.2063 0.2075 0.2750
4 0.2504 0.3152 0.2123 0.1837 0.2588
8 0.6883 0.5219 0.4967 0.5165 0.4680

FFR
1 0.6318 0.6147 0.0971 0.2063 0.2216
2 0.7599 0.6094 0.1831 0.2763 0.2880
3 0.9068 0.5975 0.2593 0.3015 0.3329
4 0.7419 0.5799 0.3321 0.3054 0.3386
8 0.9975 0.8696 0.9505 0.6898 0.6716

NWB
1 2.1596 2.5409 3.4061 2.0952 2.2386
2 2.1398 2.4797 3.1016 2.1315 2.1902
3 2.3212 2.4525 2.8447 2.1665 2.2258
4 2.2072 2.4303 2.6475 2.1936 2.3433
8 6.9893 10.4068 15.9382 7.4460 6.8902

The results for the out-of-sample behavior of the models during the �nancial crisis period concerning

in�ation and federal funds rate seem to be in accordance with the works by Del Negro and Schorfheide (2009;

2012) and Wolters (2013). The superiority of the TVP-VAR models for GDP and NWB against basically

the DSGEs can be attributed to the fact that the latter lack a good calibration in particular within crisis

times. In normal times these models exhibit a balanced forecasting performance. However, in crisis times

their predictability appears to weaken. Possibly, this is an after-e¤ect of the imposition of tight restrictions

on the data by the simple DSGEs. If the data rejects these restrictions, large stochastic shocks are needed

to �t the model to the dataset which results in high shock uncertainty. As mentioned in Wolters (2013),

DSGEs provide better results during normal times. Under average exogenous shocks the models return back
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to a steady state, albeit they could not predict recessions and booms as signi�cantly larger exogenous shocks

are required to capture these. As TVP-VARs relax these restrictions, misspeci�cation can be absorbed by

time-varying parameters and the estimated variance of shocks is lower, which results in somewhat tighter

predictive distributions. One potential explanation is that the forecasts are generated mostly after the

Great Moderation period whilst the estimation sample covers this period or before. According to Del

Negro and Schorfheide (2012) the shock standard deviations are estimated to capture the average of the

pre- and post-moderation volatility a fact that leads to overprediction of the volatility during the forecast

period.

7 Conclusions

In the aftermath of the Great Recession, the DSGE literature has extensively focused on the links between

�nancial and real sectors. Among the di¤erent contributions on DSGE models featuring a banking sector,

we follow Gertler and Karadi (2011). In such a model �nancial intermediaries face an endogenous balance

sheet constraint due to the presence of asymmetric information.

Rolling-window DSGE estimation and modelling usually fails to take into account inherent nonlinearities

of the economy, which are evident also from our estimation of shocks and structural parameters of the DSGE

model. The use of time-varying parameters seems to be an attractive alternative as well as in terms of

capturing nonlinear economic relationships (Primiceri, 2005). We propose a novel time-varying multivariate

state-space estimation method for TVP-VAR processes both for homoskedastic and heteroskedastic error

structures. As an alternative to the homoskedastic TVP-VAR we assume that the error structure of the

state space Kalman �lter is dependent on state variables, which are unobserved discrete-time, discrete-state

Markov process, thus providing a Markov-switching heteroskedasticity.

The DSGE model for the US economy features �nancial intermediaries as in Gertler and Karadi (2011) in

an otherwise standard setup à la Smets and Wouters (2007). We employ rolling-window DSGE estimation

as well as TVP-VARs to account for parameter instabilities, which can be particularly relevant towards

the end of our sample �which spans from 1984Q1 to 2013Q4. In addition, we conduct a comprehensive

empirical exercise to compare the out-of-sample predictive performance of the estimated DSGE model with

that of standard AR, VARs, Bayesian VARs as well as of two time-varying parameter autoregressive models

(TVP-VAR) models with homoskedastic and heteroskedastic errors in an attempt to investigate inherent

nonlinearities of the economy that cannot be captured by the VAR and DSGE class models. The main

purpose of the paper is to compare di¤erent econometric strategies in evaluating a DSGE economy, but

mainly to stress the importance of considering the banking intermediation in particular for the US economy

during and after the recent �nancial crisis, and their incorporation in DSGE and TVP-VAR models. Aside

from all standard observables, we include the net worth of �nancial intermediaries as a �nancial observable

because the model features a net worth shock.

The main results are as follows. The best forecasting performance for the GDP series is produced

by the TVP-VAR which clearly outperforms all models for all steps-ahead. The DSGE model provides

the worst out-of-sample behavior compared to the other models. Instead, in case of in�ation and federal

funds rate the DSGE model with �nancial frictions and banking intermediation achieves the best score for

the three short-term examined horizons, albeit for the longest horizons of four- and eight-steps-ahead the

homoskedastic and heteroskedastic TVP-VAR respectively and marginally outrank the DSGE model. One

explanation could be that the Markov-Switching heteroscedastic TVP-VAR attributes the crisis period to

the "high volatility" state especially within 2009-2013 and hence shows a lower RMSFE compared to the

21



plain TVP-VAR and DSGE in the long forecasting horizon of eight quarters. Finally, for the net worth

of �nancial intermediaries series the plain TVP-VAR is the outranking model for all steps-ahead except

for the long eight-quarters-ahead projection where the two-regime TVP-VAR emerges again as the best

performer. Interestingly, the TVP-VAR outranks the other models, whilst the DSGE model generates the

highest RMSFE among the other speci�cations. As proposed by the recent literature of forecasting with

DSGE models (Wolters, 2015; Kolasa and Rubaszek; 2015), an avenue for future research in our comparison

exercise is to assess the actual uncertainty of the estimated parameters by means of the density forecast.

Eventually, a �rst attempt is made via our work to �nd macro-�nancial micro-founded DSGE models as

well as adaptive TVP-VARs, which are able to deal with �nancial instabilities via incorporating banking

intermediation.
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8 Appendix

A Appendix: Data sources and transformations

This section discusses the sources of the eight observables used in the estimation and their transformation.

GDP, GDP de�ator in�ation, the federal funds rate, civilian population (CNP160V) and civilian employ-

ment (CE160V) are downloaded from the ALFRED database of the Federal Reserve Bank of St. Louis.

Private consumption expenditures and �xed private investment are extracted from the NIPA Table 1.1.5

of the Bureau of Economic Analysis. Net worth of banks is downloaded from the FRED database and it is

computed as the di¤erence between total assets of all commercial banks (TLAACBW027SBOG) and total

liabilities of all commercial banks (TLBACBM027SBOG). Average weekly hours worked (PRS85006023)

and compensation per hour (PRS85006103) are downloaded from the Bureau of Labor Statistics.

Data are transformed as in Smets and Wouters (2007). In particular, GDP, consumption, investment

and net worth are transformed in real per-capita terms by dividing their nominal values by the GDP

de�ator and the civilian population. Real wages are computed by dividing compensation per hour by the

GDP de�ator. As shown in the measurement equations, the observable variables of GDP, consumption,

investment, wages and net worth are expressed in �rst di¤erences. Hours worked are multiplied by civilian

employment, expressed in per capita terms and demeaned. The in�ation rate is computed as a quarter-

on-quarter di¤erence of the log of the GDP de�ator. The fed funds rate is expressed in quarterly terms.

Remaining variables are expressed in 100 times log. All series are seasonally adjusted.
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