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Abstract 
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cross-subsidization across risk levels, (ii) dependence of offers on the risk distribution and (iii) price 
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1 Introduction

This paper provides a complete characterization of equilibria in a game-theoretic version of Roth-
schild and Stiglitz (1976)’s (henceforth, RS) model of competitive insurance with private informa-
tion. I allow for stochastic contract offers by insurance firms and show that a unique symmetric
equilibrium always exists, extending the classical result of RS to mixed strategies. The unique
equilibrium is explicitly presented and its comparative static results discussed. The equilibrium
simultaneously features: (i) cross-subsidization across risk levels, (ii) dependence of offers on the
risk distribution and (iii) price dispersion.

The literature on competitive insurance mostly restricts attention to equilibria with deterministic
contract offers.1 This restriction is problematic, as it rules out important economic phenomena
present in insurance markets.

First, the focus on deterministic contract offers implies that an equilibrium cannot feature cross-
subsidization.2 Cross-subsidization means that firms may make profits form low-risk agents in order
to subsidize high-risk agents. In a deterministic equilibrium, any such set of contracts is vulnerable
to cream-skimming deviations by one of the competing firms, which only attract low-risk agents and
leave the high-risks to its competitors. However, the construction of such cream-skimming deviations
hinges on firms knowing exactly which offer they are competing against, which is not true when
firms use mixed strategies. This observation is relevant for policy analysis. The fact that cross-
subsidization might be welfare improving has been used as a justification for government intervention
(see Bisin and Gottardi (2006)). In the model considered in this paper, cross-subsidization may arise
in equilibrium without governmental intervention.

Second, the absence of cross-subsidization means that the contract consumed by each risk type
is priced correctly. Hence equilibrium contracts are independent of the relative share of each risk in
the market. However, the dependence of market outcomes on risk distribution is a central theme in
the policy arena.3

We consider a competitive market where firms offer contract menus to an agent that is privately
informed about his own risk level. I follow Dasgupta and Maskin (1986) in modeling competition
as a simultaneous offers game with a finite number of firms. The consumer (or agent) has private
information about having high or low risk of an accident. Dasgupta and Maskin (86, Theorem

1See Rothschild and Stiglitz (1976); Dubey and Geanakoplos (2002); Dubey, Geanakoplos, and Shubik (2005);
Bisin and Gottardi (2006); Guerrieri, Shimer, and Wright (2010).

2This claim refers exclusively to static models of competitive insurance. In seminal papers, Wilson (1977), Miyazaki
(1977) and Riley (1979) obtain equilibria with cross-subsidization while considering non-standard equilibrium notions
incorporating anticipatory behavior typical of dynamic models.

3During the implementation of the health care exchanges following the approval of Affordable Care Act In the
United States, the presence of young adults with lower risk level was considered a necessary condition for the successful
rollout and “stability” of the program (for example, see Levitt, Claxton, and Damico (2013)). In regulated markets
such as the exchanges, observable conditions such as age and previous diagnostics are treated as private information
since they can affect the coverage choice of consumers while not being used (or having limited use) explicitly in pricing
contracts.

2



5) proved existence of equilibria for this game, but provided only a partial characterization and
present no results regarding multiplicity of equilibria. The main contributions of this paper are: (i)
to establish uniqueness of symmetric equilibria, (ii) to solve explicitly for this equilibrium and (iii)
to derive properties and comparative statics of the equilibrium.

In section 4 I explicitly describe an equilibrium for all prior distributions. Equilibrium offers
lie on a critical set of separating offers that generate zero expected profits in the market as a
whole, referred to as cross-subsidizing offers. The equilibrium offers coincide with the zero cross-
subsidization offers described in RS, whenever a pure strategy equilibrium exists. An equilibrium
in pure strategies exists whenever cross-subsidization cannot lead to pareto improvements. This
occurs whenever the probability of high-risks is sufficiently high4 (Corollary 1).

Equilibria necessarily involve mixed strategies whenever the RS menu of contracts cannot be
sustained as an equilibrium. If the RS separating contracts fail to be an equilibrium outcome,
the equilibrium involves each firm offering cross-subsidizing offers, with a random amount of cross-
subsidization between zero and a pareto efficient (positive) level. Offers in the support of equilibrium
strategies have the following properties: (i) high-risk agents always receive a full insurance contract;
(ii) low-risk agents always receive partial insurance, which leaves the high-risk agent indifferent
between this contract and his own; (iii) all the menus of contracts in the support of the equilibrium
strategy are ordered by attractiveness. The firm that delivers the most attractive menu of contracts
attracts the customer, no matter what his type is. Moreover, firms always earn zero expected
profits.5

The equilibrium distribution over the possible levels of cross-subsidization comes from a local
condition that guarantees that, for any menu offer in the support of the equilibrium strategy, there
is no local profitable deviation. I show that this condition implies there is no global profitable
deviation by a firm.

In section 5 I show that the equilibrium described is the unique symmetric equilibrium. Equi-
librium offers can be described by the utility vector they generate to both possible risk types. De-
scribing offers in terms of utility profiles means that the offer space is essentially two-dimensional.
The main challenge in the analysis lies in showing that equilibrium offers necessarily lie in a one-
dimensional subset of the feasible utility space. The crucial step uses properties of the equilibrium
utility distribution to show that expected profits are supermodular in the utility vector offered to the
consumer, i.e., there is a complementarity in making more attractive offers to both risk types. This

4The competitive equilibrium concept considered in RS is different from the (game-theoretic) equilibrium concept
considered here. Nevertheless, the RS pair of contracts is an equilibrium outcome of my game if and only if it is
an equilibrium of their model, provided that entering firms are allowed to propose pair of contracts. In their main
definition of competitive equilibrium (Section I.4), outside firms are only allowed to offer a single contract, while it is
acknowledged that a new pair of contracts might be more profitable than a deviating pooling contract (Section II.3).
As a consequence, the exact condition for existence of a pure strategy equilibrium is related to separating, and not
pooling, offers.

5In fact, each firm earns zero expected profits for any realization of its opponents’ randomization (but in expectation
with respect to the agent’s type).
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property is used to show that equilibrium offers are necessarily ordered in terms of attractiveness,
i.e., a more attractive offer provides higher utility to both risk types.

Since firms make zero profits, this ordering of offers implies they generate zero profits even if
they are accepted by both risk types with probability one. Hence, offers can be indexed by the
amount of subsidization that occurs across different risk types. The use of supermodularity and the
zero profits condition to reduce the dimensionality of the equilibrium support is non-standard in
the literature.

Our uniqueness result allows us to discuss comparative static exercises in a meaningful way.
Exploiting the explicit characterization of the equilibrium, I analyze two relevant comparative statics
exercises: with respect to the prior distribution and the number of firms. With respect to the prior
distribution over types, equilibrium offers have monotone comparative statics. If the probability
of low-risk agents increases, firms make more attractive offers, in the sense of first order stochastic
dominance. Both agent types are better off. This means that, in a large market, a higher prior
probability of low-risk is beneficial to both types of agents.

Equilibrium strategies are continuous with respect to the prior belief. More specifically, the
equilibrium outcome converges to the complete information outcome as the prior converges to the
extreme points. When the probability of low risk agents converges to one, the distribution of offers
converges to a mass point at the actuarially fair full insurance allocation of the low-risk agent. When
the probability of low risk agent is sufficiently small, the RS pair of contracts are an equilibrium
and the vast majority of high-risk agents consume their actuarially fair full insurance contract.

Equilibrium strategies also feature monotone comparative statics with respect to the number
of firms, N ≥ 2. The support of the equilibrium strategies does not change with the number of
firms, but the distribution does. Surprisingly, the welfare of both types decreases with the number of
firms. Each firm’s offers converge to the worst pair of offers in the support, the pair of RS separating
contracts. The distribution of the best offer in the market converges, as N →∞, to the equilibrium
offer of a single firm in a duopoly. This result clarifies the impossibility of construction of mixed
equilibrium when there are infinitely many firms and sheds light on the non-existence results for the
competitive equilibrium concept considered in RS. All comparative statics results hold with strict
inequalities whenever the equilibrium involves mixed strategies.

As mentioned before, the presence of cross-subsidization in equilibrium is possible because firms
face uncertainty about competing offers. The link between uncertainty over competing offers and
cross-subsidization can be illustrated in other models, without the presence of mixed strategies.
The outcome presented in this paper can be obtained in a model with infinitely many firms and
consumers with limited search capacity. In this case uncertainty about competing offers is generated
by sampling made by the consumer from the set of available contracts, rather than mixed strategies.

The paper is organized as follows. The next section discusses the related literature. Section 3
formally describes the model. Section 4 describes a specific symmetric strategy profile and shows
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that it is an equilibrium. Section 5 shows that the constructed equilibrium is the unique symmetric
one. Section 6 presents the comparative static results discussed above. Finally, Section 7 concludes.

2 Related Literature

Several papers have considered alternative models or equilibrium concepts that deal with the non-
existence problem in the RS model. Maskin and Tirole (1992) consider two alternative models:
the model of an informed principal and a competitive model in which many uninformed firms offer
mechanisms to the agent. In the informed principal model, the agent proposes a mechanism to the
(uninformed) firm. The equilibrium set consists of all incentive compatible allocations that Pareto
dominate the RS allocation. The equilibrium outcome in my model is contained in the equilibrium
set of the informed principal model.

Maskin and Tirole (1992) also consider a competitive screening model in which firms simultane-
ously offer mechanisms to a privately informed agent. A mechanism is a game form, in which both
the chosen firm and the agent choose actions. The equilibrium set of this model is always large:
it contains any allocations that are incentive compatible and satisfy individual rationality for the
agent and firms. Hence the equilibrium set also contains the unique equilibrium outcome of my
model. 6

More recently, several models of adverse selection with price taking firms have been studied.
Bisin and Gottardi (2006) consider a general equilibrium model with adverse selection that always
has a unique equilibrium, which has the same outcome as RS. Dubey and Geanakoplos (2002)
and Dubey, Geanakoplos, and Shubik (2005) consider a general equilibrium model in which agents
trade shares of pools that combine the endowment of many agents. In their model, equilibrium
always exists and it coincides with the separating contracts presented in RS. Guerrieri, Shimer, and
Wright (2010) consider a competitive search model, in which the chance of an agent getting a given
insurance contract depends on the ratio of insurance firms offering and agents demanding it. They
also show that equilibrium always exists and reduces to the Rothschild and Stiglitz pair of contracts
in the two-types case. Both models have uniqueness results that depend on different sets of belief
refinements (on pools that are never traded or contract options that are not offered in equilibrium,
respectively).

A separate strand of the literature uses notions of anticipatory equilibria, incorporating dynamic
responses to a deviation by one firm, which guarantee existence. Wilson (1977) and Miyazaki
(1977) restrict deviating contracts to be attractive, even after the incumbent firms are allowed
to remove some of their contracts from the market. Both papers obtain equilibrium allocations

6The distinguishing feature of their model is the richness of the strategy set. A firm can react to moves by its
opponents by offering a mechanism that contains a subsequent move by it. In equilibrium, a firm can respond to a
“cream skimming” attempt by an opponent by choosing to offer no insurance, if the mechanism allows for such move
by the firm.
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that feature cross-subsidization and depend on the type distribution. These equilibrium notions
have been justified as equilibria of specific extensive forms with multiple stages by Hellwig (1987),
Mimra and Wambach (2011) and Netzer and Scheuer (2014). Alternatively, Riley (1979)’s model
allows incumbent firms to propose new contracts after a deviation and obtains the RS contracts as
the unique outcome, for any interior prior distribution. This outcome is obtained as equilibria in
dynamic games by Engers and Fernandez (1987) and Mimra and Wambach (2014).

Rosenthal and Weiss (1984) present an analysis of a competitive version of the Spence model
that shares several common feature with ours. They characterize a mixed equilibrium of the model,
whenever a pure equilibrium does not exist. They have no results regarding uniqueness and depen-
dence on the prior distribution. The effect of the number of firms on the constructed equilibrium
is discussed, and is very similar the one presented here. Chari, Shourideh, and Zetlin-Jones (2014)
characterizes a mixed strategy equilibrium in a linear competitive screening model where firms are
privately informed about their asset qualities.7

An important feature of the equilibrium characterized is that the distribution of offers and welfare
depend on the prior probability of types. Offers get strictly better as the probability of the good
type becomes large. This phenomenon is absent in models of static competition with deterministic
contracts. In Rothschild and Stiglitz (1976), the equilibrium is prior independent whenever it
exists. I show that the restriction to prior probabilities for which competitive equilibrium exists is
meaningful, since it is also the region for which the prior is not important for outcomes. Dubey and
Geanakoplos (2002), Guerrieri, Shimer, and Wright (2010) and Bisin and Gottardi (2006) obtain
the RS separating contracts as the unique equilibrium outcome for any distribution. This leads to
a discontinuity of the equilibrium at the perfect information case in which all agents have low risk
and there is efficient provision of insurance.

3 Model

A single agent faces uncertainty regarding his future income. There are two possible states {0, 1}
and his income in state 0 (1) is y0 = 0 (y1 = 1). The agent has private information regarding
his risk type, which determines the probability of each state. For an agent of type t ∈ {h, l}, the
probability of state 0 is pt. Assume that 0 < pl < ph < 1. This means that the l-type (low-risk)
agent has higher expected income than h-type agents (high-risk). The prior probability of type t
is denoted µt. Define p ≡ µlpl + µhph. There are N identical firms i = 1, . . . , N which compete in
offering menus of contracts.

I assume that the realization of the state is contractible. A contract is a vector c = (c0, c1) ∈ R2
+

that denotes the final consumption available to the agent in case any of the states is realized.
7They obtain a partial uniqueness result under while assuming that contract offers are ordered in terms of attrac-

tiveness. In my paper, this property is a central part of my analysis as it allows one to move from a two-dimensional
strategy space to a one-dimensional subset.
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Contracts are exclusive. A menu of contracts is a compact subset of R2
+ denotedMi. The set of all

compact subsets of R2
+ is defined as M ⊆ 2R

2
+ . A special case of a menu of contracts is a pair of

contracts. I show later that one can focus without loss on pairs of contracts, with each one of them
targeted for one specific type.

Timing is as follows. All firms simultaneously offer menus of contractsMi ∈M . Nature draws
the agent’s type according to probabilities µl and µh. After observing his own type t and the
complete set of contractsM1, . . . ,MN , the agent announces a choice a ∈

⋃
i

(
Mi × {i}

)
∪ {∅}. A

choice a = (c, i) indicates that contract c ∈ Mi is chosen from firm i, while choice a = ∅ means
that the agent chooses to get no contract (and will maintain his own income).

A final outcome of the game is
(
M1, ...,MN , t, a

)
(everything is evaluated before the income

realization is revealed). Given outcome
(
M1, ...,MN , t, (c, i)

)
, the realized profit by firm j is zero,

if j 6= i, and otherwise is
Π (c | t) ≡ (1− pt) (1− c1)− ptc0.

The agents have instantaneous utility function u (·), which is strictly concave, increasing and
continuously differentiable. Finally, the utility achieved by the agent is

U (c | t) ≡ (1− pt)u (c1) + ptu (c0) .

Given outcome
(
M1, ...,MN , t, ∅

)
the realized profit by all firms is zero and the utility achieved

by the agent is U (y | t).
A (pure) strategy profile is a menu of contracts for each firm

(
Mi
)
i
and a choice strategy for

the agent, which is a measurable function s : {h, l} × (×iM) →
(
R2

+ × {1, .., N}
)
∪ ∅ such that

s
(
t,
(
Mi
)
i

)
∈
⋃
i

(
Mi × {i}

)
∪ {∅}.

A mixed acceptance rule is a Markov kernel8

s : {h, l} × (×iM)→ ∆
[(
R2

+ × {1, . . . , N}
)
∪ ∅
]

with the restriction s
(⋃

i

(
Mi × {i}

)
∪ {∅} | t,

(
Mi
)
i

)
= 1 (with abuse of notation)

A mixed strategy profile is a probability measure over menus of contracts Φi for each firm i

and a mixed acceptance rule s.9 A mixed strategy profile defines a probability distribution over
outcomes in the natural way, expected profits are defined by integrating realized profits across
outcomes according to this probability distribution.

The equilibrium concept is subgame perfect equilibrium.10 This means that (i) each firm i

8The Markov kernel definition includes the requirement that, for any measurable set A ⊆ R2
+ × {1, . . . , N}, the

functions
(
t,M1, ...,MN

)
7−→ s

(
A | t,M1, ...,MN

)
is measurable.

9I endow M with the Borel sigma algebra induced by the open balls in the Hausdorff metric. I will only use two
properties from this sigma algebra: (i) it contains any single contract and (ii) the function that leads to the best
available utility to any fixed risk type must be measurable.

10In this game, perfect Bayesian equilibrium is outcome equivalent to subgame perfection. Considering a game
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maximizes expected profits, given the strategies used by its opponents and the acceptance rule by
the agent and (ii) the agent only chooses contracts that maximize his (interim) utility, i.e.,

(c, i) ∈ supp
(
s
(
t,
(
Mi
)
i

))
⇒ c ∈ arg max

c∈
⋃
iMi∪{y}

U (c | t) ,

and
∅ ∈ supp

(
s
(
t,
(
Mi
)
i

))
⇒ U (y | t) ≥ max

c∈
⋃
iMi

U (c | t) .

The optimization problem faced by the agent always has a solution because the set of available
contracts,

⋃
iMi ∪ {y}, is compact.

4 Equilibrium construction

In this section I construct an equilibrium of the described model. The existence issue raised in
Rothschild and Stiglitz (1976) is overcome by the use of mixed strategies by insurance firms. This is
the first characterization of a mixed strategies equilibrium in an insurance setting. The novel feature
of this equilibrium is the potential presence of cross-subsidization, which generates a dependence of
the equilibrium allocation on the risk distribution in this market. In section 5, this equilibrium is
shown to be unique. In the first part of this section I assume that N = 2. I show, in the end of this
section, how to adjust the equilibrium to the case N > 2.

4.1 Equilibrium offers

In equilibrium firms “compete away” profit opportunities. However, zero expected profits are con-
sistent with cross-subsidization from low-risk to high-risk agents: the presence of losses generated
from high-risk individuals, which in turn get subsidized by profits from low-risk individuals. In what
follows, I construct a family of offers, indexed by the amount of cross-subsidization across types,
and show that an equilibrium using these offers always exists.

Low-risk agents have higher expected income and as a consequence receive more attractive offers
from firms. The only way to respect incentive constraints is by offering partial insurance contracts
(i.e., with c1 > c0) to low-risk agents. High-risk agents, on the other hand, receive less attractive
contracts that do not conflict with incentive constraints. As a consequence they receive full insurance
contracts (i.e., c1 = c0). This implies that the set of contracts that arise in equilibrium lies in a
restricted locus, which is described in the following.

tree in which the firms act sequentially, each subgame perfect equilibrium has a corresponding PBE with the same
strategy profiles and firms’ beliefs, about the earlier firms’ play, given directly by equilibrium strategies. Notice that
the agent, moving last, has perfect information because he knows all the offers and his type as well.
In this game, the concept of Nash equilibrium allows the agent to behave “irrationally” to menu offers off the

equilibrium path. This enables many additional “collusive” equilibria. In fact, I can sustain any individually rational
allocation as a Nash equilibrium outcome.
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For a level k ∈ [0, ph − p] of subsidies received by high-risk individuals, the full insurance contract
received by high-risk agents has consumption c = 1 − ph + k, which is above their actuarily fair
consumption level by k. Also, define γ (k) = (γ1 (k) , γ0 (k)) to be the partial insurance contracts
that can be offered to the low-risk agent together with subsidy k to the high-risk agent. These
contracts leave the high-risk agent indifferent between partial and full insurance, which provides
incentives efficiently, and generate zero expected profits.

Formally, I define the following (set-valued) function γ : [0, ph − p]→ 2R
2
+ by

γ (k) ≡

c ∈ R2
++

∣∣∣∣∣∣∣
U (c | h) = u (1− ph + k) ;

µlΠ (c | l) + µh (−k) = 0;

c1 ≥ c0.

 .

Lemma 1. For any k ∈ [0, ph − p], γ (k) is a singleton, i.e., there exists a unique c ∈ R2
+ such that

c ∈ γ (k).

Proof. Let us define ζ = sup {c1|∃c0 such that U (c | H) = u (1− ph + k)}. The strict concavity of
u implies that ζ > 1 (ζ = ∞ is possible). Consider the path ι : I = [0, w] → R2 that starts at
(1− ph + k) (1, 1) and moves along the indifference curve of U (· | h) by increasing c1, i.e., ι1 (t) =

k+ t (w =∞ if ζ =∞). Let total profit generated by point t in the path, when the high-risk agent
consumes (1− ph + k) (1, 1) and the low-risk agent consumes ι (t), be denoted as π (t). We know
that π (0) ≥ 0 because k ≤ 1− p. If ζ <∞, continuity implies that

π (w) ≤ µl (1− pl) (1− ζ) < 0.

If ζ = ∞, it follows that limt→∞ π (t) = −∞. Therefore in both cases continuity of π (t) implies
that there is t0 such that π (t0) = 0. It also follows from concavity of u (·) that π′ (t) > 0 for all
t > 0, which means that π (t0) = 0 for at most one point t0.

From now on, I refer to γ (·) as a single-valued function. Figure 1 illustrates the locus of
{γ (k) | k ∈ [pl, p]}. From now on, I refer to offers

Mk ≡ {(1− ph + k, 1− ph + k) , γ (k)} ,

for k ∈ [0, ph − p], as cross-subsidizing offers. And also define the utilities obtained from cross-
subsidization level k as

Ul (k) ≡ U (γ (k) | l) ,

Uh (k) ≡ u (1− ph + k) .

The pair of contracts with zero cross-subsidization, coincide with the unique equilibrium alloca-
tion in RS. Given their importance on the analysis of this model, we introduce notation to refer to
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these contracts.
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Zero Profit h
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Figure 1: The contract space and the image of the γ (·) function. Notice that the RS partial
insurance contract, cRSl , is equal to γ (0) and coincides with the lowest level of cross-subsidization.
The other extreme point in the image of γ (·) is γ (ph − p), which features full insurance at the
correct price for the average population risk.

Definition 1. The Rothschild-Stiglitz (RS) contracts are the pair

{
cRSl , cRSh

}
≡M0,

we also define uRSt ≡ Ut (0), for t = l, h and uRS ≡
(
uRSl , uRSh

)
.

The pareto efficiency of cross-subsidization plays a crucial role in equilibrium analysis. Cross-
subsidization always benefits high-risk agents, since their complete coverage comes at lower prices.
What is more surprising is that low-risk agents can also benefit from cross-subsidization when the
prior probability of high-risk is sufficiently low. The reason for that it is that subsidizing high-risk
is cheap when the probability of such state is small. In the following lemma, we show that the gains
from cross-subsidization are negative for large subsidization levels, and potentially positive for low
subsidization levels.

Lemma 2. There exists k ∈ [0, ph − p) such that Ul (·) is strictly increasing for k < k and strictly
decreasing for k > k. More specifically, k is the unique peak of Ul (·) in [0, ph − p].
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Proof. The implicit function theorem implies that γ is continuously differentiable and satisfies

γ′1 = −
u′ (1− ph + k) + ph

pl
u′ (γ0 (k)) µhµl

ph

[
(1−pl)
pl

u′ (γ0 (k))− (1−ph)
ph

u′ (γ1 (k))
] ,

γ′0 =
(1− pl)
pl

 u′ (1− ph + k) + µh
µl

(1−ph)
(1−pl) u

′ (γ1 (k))

ph

[
(1−pl)
pl

u′ (γ0 (k))− (1−ph)
ph

u′ (γ1 (k))
]
 .

Which implies that γ′1 (k) < 0 and γ′0 (k) > 0. Simple differentiation gives us

U ′l (k) =


[
u′ (γ1 (k))−1 − u′ (γ0 (k))−1

]
(1− pl)u′ (1− ph + k)− µh

µl
1
ph

[
(1−pl)
pl
− (1−ph)

ph

]
ph

[
(1−pl)
pl

1
u′(γ1(k)) −

(1−ph)
ph

1
u′(γ0(k))

]
 .

The numerator in the last expression is strictly positive. The denominator is strictly decreasing for
k ∈ [0, ph − p] and negative for k = ph − p (in which case, γ1 (ph − p) = γ1 (ph − p) = 1− p).

Whenever cross-subsidization leads to interim efficiency gains, which happens when k > 0, quasi-
concavity of Ul (·) implies that the low-risk utility increases with the level of subsidization at any
level k ∈

[
0, k
]
. We define this restricted set of subsidization levels, which have the property that

low-risk agents benefit from it, as R:

R ≡
[
0, k
]
.

A comment on the literature is in order. The pareto efficient cross-subsidization level k defines
the separating allocation that maximizes the utility offered to the low-risk agent subject to zero
profits. It coincides with the allocation described by Miyazaki (1977), who obtains this allocation as
an equilibrium outcome when using a reactive equilibrium notion. As described in subsection 4.2,
the equilibrium described here generates all cross-subsidization levels between zero and the efficient
one.

If cross-subsidization is not optimal (k = 0), the no cross-subsidization contracts presented in
RS are indeed an equilibrium. This follows from the fact that there is no way that a firm can attract
both types of agents and make expected positive profits. However, when cross-subsidization leads
to interim gains (k > 0) then it has to arise in equilibrium. When facing contracts M0 with no
cross-subsidization a firm can offer a menu with optimal subsidizationMk that will generate zero
expected profits while leading to a strictly positive utility gain for both risk types. This means that
a slightly less attractive offer can make positive profits.

The presence of cross-subsidization in a pure strategy equilibrium is ruled out because they
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are vulnerable to cream-skimming deviations. If firms make positive profits from low-risk agent
and losses on high-risk agents, one firm can offer a contract with slightly less coverage that only
attracts low-risk agents while leaving the losses from high-risk agents to its competitors. The
construction of such deviations, however, only applies to pure strategies as a firm facing a non-
degenerate distribution of competing contracts is not able to design a local deviation that attracts
the low-risk agents with probability one while attracting high-risk agents with probability zero.
In fact, we show here that firms will randomize continuously between a pareto efficient level of
cross-subsidization k and the RS contracts, which feature zero cross-subsidization.

Formally, every firm mixes over menu offers

MR ≡
{
Mk | k ∈ R

}
.

The set MR has the property that, if all firms offer menus within this set, then all offers in
this set guarantee zero profits to a firm. This occurs because the firm that makes the offer Mk

with highest level of cross-subsidization attracts the agent, regardless of his risk type. However, the
defining property of cross-subsidizing offers is that they make zero expected profits if both types
consume the same menu. Firms that offer cross-subsidizing level below their opponents make zero
profits as they never serve the agent.

4.2 Equilibrium distribution

The goal of section is to describe the equilibrium distribution over cross-subsidization levels k ∈ R,
which is denoted as F , and to show that firms have no profitable deviations outside of MR.

The strategy set of firms contains all possible contract menus, and hence is very large. The first
step in our analysis is to describe menu offers by the expected utility it generates to each risk type.
This description is useful for the following reason. For each type, the utility generated by a menu
determines the probability with which it is chosen. This is the probability that the best alternative
offer is less attractive than the menu considered, which is determined in equilibrium. Also, within
the set of menus that deliver a specific utility profile, firms will only offer the one that minimizes
expected profits. This allows us to focus on a subset of menus that are indexed by utility profiles.
The profit, or loss, that is made from each type in case he joins a firm is determined by a cost
minimization problem that considers the utility vectors as constraints.

Define Υ as the set of incentive feasible utility profiles.11 For each risk type t ∈ {l, h} and utility
profile u = (ul, uh) ∈ Υ, define the ex-post profit function Pt (u) as the solution to the following

11The following notation is important for the proof. Let

Υ ≡
{

(ul, uh) ∈ R2 | U (ch | l) ≤ U (cl | l) = ul
U (cl | h) ≤ U (ch | h) = uh

for some cl, ch ∈ R2
+

}
.
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problem
max
c∈R2

+

Π (c | t)

subject to generating utility ut to type t:

U (c | t) = ut,

and respecting incentive constraints regarding type t′ 6= t:

U
(
c | t′

)
≤ ut′ .

Also, define as χ (u) = (χl (u) , χh (u)) the unique solution to problems Pl (u) and Ph (u) re-
spectively.

Contracts that maximize ex-post profits are the most profitable ones that deliver a specific utility
profile, which in a mixed equilibrium means that the probability of attracting each type is fixed.
The following properties of the optimal ex-post profit function are key to our results.

Lemma 3. (Ex-post profit characterization) The ex-post profit function has the following properties:
(i) it is continuously differentiable,
(ii) utility is costly: ∂Pt(u)

∂ut
< 0,

(iii) separation is costly:
∂Pt (u)

∂ut′
> 0, if ut > ut′ ,

and
∂Pt (u)

∂ut′
= 0, if ut ≤ ut′ ,

(iv) supermodularity: ∂Pt
∂ut

is continuously differentiable if ∂
2Pt(u)
∂ut∂ut′

≥ 0, and the inequality is strict
if ut > ut′ .

Proof. In the appendix.

From the point of view of a single firm, the offers made by other firms can be treated as a
stochastic type-contingent outside option to the agent. The distribution of outside options for a given
firm is determined by the equilibrium contract distribution in the following way. On the support
of equilibrium offers higher subsidization benefits both types, so the distribution is a monotone
transformation of the distribution over cross-subsidization level k ∈ R:

Gl (Ul (k)) ≡ F (k) ,

and
Gh (Uh (k)) ≡ F (k) ,
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also let Gt (u) = 0, for u < Ut (1− ph), and Gt (u) = 1 for u > Ut
(
k
)
.

The distributions Gl and Gh constructed in this section are absolutely continuous. In section
5, it is shown that this is necessarily the case in equilibrium. Expected profits are determined by
the probability of attracting each type, which is given by distributions (Gt)t=l,h, and the ex-post
profits made from each type, which is determined by function (Pt)t=l,h. Now we define this function
formally: for any u = (ul, uh) ∈ Υ

π (u) ≡ µlGl (ul)Pl (u) + µhGh (uh)Ph (u) .

When contemplating a more attractive offer to a specific type, firms have to consider the following
trade-off. When increasing the utility promised to such agent he will be attracted with higher
probability, which entails a gain if the firm makes profits out of such agent. On the other hand, in
order to make a more attractive offer it has to make less profits out of this agent, if indeed he ends
up trading with the firm. In equilibrium, firms can only make positive profits from low-risk agents.
For any utility pair u = (ul, uh) with ul ≥ uh, we define the marginal profit from attracting the
low-risk agent as:

M (u) ≡ ∂π (u)

∂ul
= µl

[
gl (ul)Pl (u) +Gl (ul)

∂Pl (u)

∂ul

]
, (1)

where gt (ut) ≡ G′t (ut) is the density of the equilibrium utility distribution.
In order for cross-subsidizing offers Mk, for k ∈ R, to arise in equilibrium it must be optimal

for a firm to offer utility profile
U (k) = (Ul (k) , Uh (k)) ,

for any k ∈ R.
This means that Gl has to satisfy the following equality

M (U (k)) = 0, for all k ∈ R. (2)

Hence, local deviations around any offer in the support should not be optimal. This is a necessary
condition to sustain an equilibrium with this support. Using the equality f (k) = gl (ul (k))u′l (k),
we define F as the solution to the differential equation implied by (2).

The necessary condition for an equilibrium with support MR is for F to satisfy:

f (k)

F (k)
=
−∂Pl(U(k))

∂ul
U ′l (k)

Pl (U (k))
, (3)

with final condition F
(
k
)

= 1.
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Lemma 4. The differential equation (3) has a unique solution. Moreover, F is given by

F (k) = exp

[
−
ˆ k

k
φ (z) dz

]
,

where

φ (z) =
−∂Pl(U(k))

∂ul
U ′l (k)

Pl (U (k))
.

Moreover, F puts no mass at zero if k > 0, i.e.,

F (0) = 0.

Proof. Integration of (3) implies that

1 = F
(
k
)

= F (k) exp

[ˆ k

k
φ (z) dz

]
.

Finally notice that Pl (U (k)) = Π (γ (k) | l) = µh
µl
k. This means that φ (z) is of the order of 1

k

around 1− ph.12 Then it follows that

lim
k→(1−ph)+

ˆ k

k
φ (z) dz =∞.

This implies that F (0) = limk→(0)+ F (k) = 0.

As mentioned, condition (3) implies that any offerMk is locally optimal, for k ∈ R. However in
equilibrium firms also consider non-local deviations. In order to rule out such deviations, we show
that the expected profits are supermodular in the utility pair offered to the agent. This means that
increasing the utility offered to the high-risk agent makes it more profitable, at the margin, to make
a higher utility offer to the low-risk agent.

Lemma 5. (Supermodularity of profits) For any u = (ul, uh) such that ul ≥ uh, we have that

M (ul, uh) is non-decreasing in uh,

and it is strictly increasing if ul > uh and Gl (ul) > 0.

Proof. Follows directly form the definition of M (·) in (1), properties (iii) and (iv) of Lemma 3.

The relevance of the supermodularity conditions is as follows. In equilibrium the firm must find
12Notice that U ′l (0) > 0 if k > 0, − ∂Pl(u(0))

∂ul
> 0 and both U ′l (·) and ∂Pl(u(·))

∂ul
are continuous.
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it optimal to offer levels of subsidization k, k′ ∈ R with k′ > k, which generate utilities

U (k) = (Ul (k) , Uh (k))�
(
Ul
(
k′
)
, Uh

(
k′
))

= U
(
k′
)
.

This mean that, in our candidate equilibrium, firms are indifferent between offering U (k) or
strictly increasing the utility offered to both types to U (k′). But then supermodularity implies that
increasing only the utility offered to the low-risk agent leads to a loss:

π
(
Ul
(
k′
)
, Uh (k)

)
− π (Ul (k) , Uh (k)) =

ˆ Ul(k
′)

Ul(k)
M (Ul (s) , Uh (k))U ′l (s) ds

<

ˆ Ul(k
′)

Ul(k)
M (Ul (s) , Uh (s)) ds = 0.

In the appendix we provide the complete proof that offering cross-subsidizing contracts according
to distribution F is indeed an equilibrium. The proof uses the supermodularity property of the profit
function in a similar way to show that all possible deviations are unprofitable.

Proposition 1. There exists a symmetric equilibrium such that: (i) every firm randomizes over
offers in

{
Mk | k ∈ R

}
, where k ∈

[
0, k
]
is distributed according to F (·); (ii) after observing menu

offers
(
Mk1 ,Mk2

)
with ki > kj the agent chooses according to

s
(
h,
(
Mk1 ,Mk2

))
= (1− ph + ki, 1− ph + ki) ,

s
(
l,
(
Mk1 ,Mk2

))
= γ (ki) .

After observing offers that are not of the form
(
Mk1 ,Mk2

)
, the agent chooses any arbitrary selection

from his best response set.13

4.3 Pure strategy equilibrium

The equilibrium described in Proposition 1 coincides with the pure strategy equilibrium character-
ized in Rothschild and Stiglitz (1976), whenever it exists. The equilibrium involves no mixing if,
and only if,

k = 0,

in which case the set of cross-subsidization levels offered in equilibrium is R = {0} and firms offer
the zero cross-subsidization menuM0, that coincides with the contract pair

{
cRSl , cRSh

}
.

Lemma 2 shows that the benefits from cross-subsidization, from the low-risk agent’s point of
view, are quasi-concave. As a consequence zero cross-subsidization is pareto optimal if, and only if,

U ′l (0) ≤ 0. (4)
13With the restriction that s is still a mixed strategy, as defined in Section 3.
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The uniqueness result, discussed in Section 5, implies that (4) is a necessary and sufficient
condition for existence of a pure strategy equilibrium. The exact condition in terms of the prior
distribution is presented in the following corollary.

Corollary 1. The equilibrium described involves pure strategies if, and only if,

u′
(
cRSh
) 1

u′
(
cRSl,1

) − 1

u′
(
cRSl,0

)
 ≤ µh

µl

[
ph
pl
− 1− ph

1− pl

]
. (5)

If this is the case, all firms offer pair of contracts
{
cRSl , cRSh

}
in equilibrium.

A pure strategy equilibrium fails to exist whenever the share of low-risk agents is sufficiently
high. In this case the cost of cross-subsidization is very low since there are few high-risk agents to
be subsidized.

4.4 The case N > 2

In the analysis of the duopoly case, I have shown that one can find a distribution over the set of
menu offers MR such that each firm finds it optimal to make any offer in this set.

This support MR has the following property: the utility obtained by both types, Ul (·) and
Uh (·), are strictly increasing in the cross-subsidization level k, for k ∈ R. This means that if firm
i = 1 faced two firms, 2 and 3, that were choosing offersMk according to continuous distributions F2

and F3, the relevant random variable for firm 1 would be k23 = max {k2, k3}, which determines the
only relevant threat to their offers. The distribution of this variable is given by F (k) = F1 (k)F2 (k).
This allows us to adapt the arguments above, by equalizing the distribution of the best among N−1

firms with the single firm distribution in the duopoly.

Proposition 2. In the game with N firms, the following is an equilibrium: every firm randomizes
over offer set MR with distribution over cross-subsidization level k ∈ R given by Fi (·), where

Fi (k) = F (k)
1

N−1 .

The equilibrium described has the following properties. First, whenever there is randomization,
ties occur with zero probability: there is always a firm that offers Mki such that ki > maxj 6=i kj .
The agent gets a contract from this firm, independent of which type is realized. If the type is
l, the agent ends up with contract (ki, ki). If the agent is of type h, he chooses contract γ (ki).
Second, whenever the pure equilibrium with the RS contracts exists, R = {1− ph} and the support
of strategies reduces to the RS contracts.

In the next section, I show that this is the unique symmetric equilibrium. Section 6 presents
monotone comparative statics results regarding the prior distribution and the number of firms.
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5 Uniqueness

In this section we show that the equilibrium constructed in section 4 is the unique symmetric
equilibrium. We start by showing that equilibrium offers can be fully described by the utility it
generates to both possible risk types. This means that describing the equilibrium strategies used
by firms reduces to describing the equilibrium distribution of utility levels generated by equilibrium
offers.

Describing offers in terms of utility profiles means that the offer space is essentially two-
dimensional. The main challenge in the analysis lies in showing that equilibrium offers necessarily
lie in a one-dimensional subset of the feasible utility space. The crucial step uses properties of the
equilibrium utility distribution and the ex-post profit functions to show that expected profits are
supermodular in the utility vector offered to the consumer. There is a complementarity in making
more attractive offers to both risk types. Supermodularity is used to show that equilibrium offers
are necessarily ordered in terms of attractiveness, i.e., a more attractive offer provides higher utility
for both risk types.

Firms in this market make zero expected profits (as shown in Proposition 3). The ordering
of offers is used to show that equilibrium offers necessarily generate zero profits even if they are
accepted by both risk types with probability one.14 Hence, offers can be indexed by the amount of
subsidization that occurs across different risk types. The remaining analysis follows standard steps
in the literature on games with one-dimensional strategy spaces (see Lizzeri and Persico (2000) and
Maskin and Riley (2003)).

For an arbitrary mixed strategy φ for insurance firms, we denote as G the distribution of the
highest utility for each type t ∈ {l, h} induced by N − 1 offers generated according to distribution
φ. Formally, define the utility obtained from offerM∈M by an agent of type t ∈ {l, h} as

uMt ≡ max {U (c | t) | c ∈M} ,

as for any u ∈ R2

G (ul, uh) ≡
[
φ
{
M∈M | uMt ≤ ut, for t ∈ {l, h}

}]N−1
.

In equilibrium, G is relevant because it determines the distribution of outside options that any
given firm faces when trying to attract a consumer. Also, we define as Gt the marginal of G over
ut, for t ∈ {l, h}. The equilibrium outcome distribution is denoted as P∗.

Proposition 3. (Zero profits) In any symmetric equilibrium:
(i) firms make zero expected profits.
(ii) Fix t ∈ {l, h}. If a firm i makes an offerM that generates utility profile u, then χt (u) ∈M

14Or alternatively, if they are accepted in the market as a whole.
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and this is the only possible offer accepted by type t from firm i: for any c ∈M\{χt (u)},

P∗
[(
t̃, s
(
t̃,
(
M,M̃−i

)))
= (t, c, i)

]
= 0,

(iii) firms make nonnegative profits from low-risk agents and non-positive profits from high-risk
agents: any equilibrium utility offer u satisfies u ∈ int (Υ), ul ≥ uh and

Pl (u) ≥ 0,

Ph (u) ≤ 0.

Proof. In the appendix.

The previous statement contains three main results. First, it shows that firms never make
positive expected profits in equilibrium. This follows from the assumption of Bertrand competition
without differentiation. The main challenge in the proof is to deal with the multidimensionality of
the offer space. Second, it shows that equilibrium offers can be described in terms of the utility
profile they generate. If an offerM generates utility profile u, then the only contracts from this set
that can be consumed in equilibrium are {χl (u) , χh (u)} ⊆ M. This comes from the fact that a
firm’s maximization problem can be split into choosing the attractiveness of the contract, given by
the utility levels, and the minimization of costs for a fixed level of utility.15 Finally, a consequence
of zero profits is that firms necessarily make (potentially zero) losses on high-risk agent and profits
on low-risk agents. The reason is that if an offer generates strictly positive profits from high-risk
agents, a firm can always guarantee ex-ante expected profits since low-risk agents are always at least
as profitable as high-risk agents.

Given Proposition 3, our uniqueness proof consists of showing that there exists only one possible
equilibrium utility distribution generated by each firm. From part (ii) of the proposition, describing
the distribution over utility profiles provides a description of equilibrium offers, namely χ (u).16

The following intermediary lemma provides a characterization of the equilibrium utility distribu-
tion G. It shows that this distribution is absolutely continuous except at one point, the utility level
generated by Rothschild-Stiglitz offers. Define, for each t = l, h, ut ≡ inf {u | Gt (u) > 0} as the
lowest equilibrium utility and similarly ut ≡ sup {u | Gt (u) < 1} as the highest equilibrium utility.

Lemma 6. (Utility distribution) In any symmetric equilibrium, the utility distribution G satisfies
the following:

(i) lower bound on utility: ut ≥ uRSt ,
15One has to consider the possibility of the agent being indifferent between two contracts. However, this is solved

in the proof of Proposition 3 by showing that a firm can always break such indifferences at infinitesimal cost.
16Obviously any equilibrium offer generating utility u can include other contracts beyond {χl (u) , χh (u)}, as long

as they are unattractive. This means they satisfy U (c | t) ≤ U (χt (u) | t). Proposition 3 shows that if such contracts
are present they are irrelevant, meaning they are never chosen on the equilibrium path.
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(ii) mass points for low-risk: Gl has support [ul, ul] and is absolutely continuous on [ul, ul] \
{
uRSl

}
,

(iii) mass points for high-risk: the only possible mass point of Gl is uRSl .

Proof. In the appendix.

From now on, we denote the density of Gt, whenever it exists, as gt.
Proposition 3 shows that offers can be described in terms of the utility generated by them.

Lemma 6 shows that mass points are not possible, except at the utility generated from Rothschild-
Stiglitz offers. This means that, if a firm makes a utility offer u�

(
uRSl , uRSh

)
in equilibrium then

its profits are given by
π (u) ≡ µlGl (ul)Pl (u) + µhGh (uh)Ph (u) .

In what follows, we show that the function π (·) is supermodular in (ul, uh). This means that it
satisfies an increasing differences property: the profit gains from making a more attractive offer to
low-risk agent is strictly increasing with the utility offered to high-risk agents.

In order for such utility offer to be optimal, there must be no alternative utility u′ that increases
expected profits. Consider utility offer u satisfying ul > uh and ul > uRSl . The marginal gain from
making a more attractive offer to low-risk agents is given by17

M (u) ≡ µl
[
gl (ul)Pl (u) +Gl (ul)

∂Pl (u)

∂ul

]
.

Where the first term captures the probability gain, which means that a more attractive offer has
a higher chance of attracting low-risk individuals who generate positive profits. The second term
captures the loss in profits that a firm faces in order to make a more attractive offer to low-risk
agents. Using simple properties of the ex-post profit function Pl (·) described in Lemma 3, we show
that the profit function satisfies supermodularity: the marginal profits from attracting low-risk
agents is increasing in the utility offered to the high-risk agents. The following result differs from
lemma 5 in that it deals with an arbitrary equilibrium distribution.

Lemma 7. (Supermodularity) For any feasible u satisfying ul > max
{
uRSl , uh

}
the function

M (ul, ·) is non-decreasing in uh. Moreover, if ul ∈ (ul, ul) then it is strictly increasing.

Supermodularity implies that there is a complementarity between how attractive an offer is to
low-risk and high-risk agents. This complementarity has an important implication for equilibrium
offers: more attractive offers to low-risk agents have to also be more attractive to high-risk agents.
In other words: equilibrium offers can be ordered in terms of attractiveness. This is formally stated
in the next result.

17Notice that ul > uh implies that
∂Ph (u)

∂ul
= 0.

This is true because the cost minimizing contract to be offered to the high-risk agent, χh (u), is efficient. This means
that χh (u) is equal to he full insurance contract c =

(
u−1 (uh) , u−1 (uh)

)
.
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Lemma 8. (Ordering of offers) In any symmetric equilibrium, if the support of the equilibrium
strategy includes an offer that generates utility profile u = (ul, uh), then

uh = ν (ul) ,

where the function ν : [ul, ul]→ R is strictly increasing.

Proof. Part 1. We first show that all equilibrium offers generating utility u =
(
uRSl , uh

)
satisfy

uh = uRSh , i.e.,
G
(
uRSl , uRSh

)
= Gl

(
uRSl

)
.

Suppose by way of contradiction that

G
(
uRSl , uRSh

)
< Gl

(
uRSl

)
.

And hence a given firm i makes with positive probability, namely q > 0, offers that generate
utility in the set

{
uRSl

}
×
(
uRSh ,∞

)
. For an arbitrary offer u =

(
uRSl , uh

)
in this set, we know that

Ph (uh) < 0.

So it is necessarily the case that the firm makes positive profits from low-risk agents, which means
that

Pl (u) > 0.

Since, at offer u, the firm makes positive profits from the low-risk agent, it must attract the low-risk
agent with probability Gl

(
uRSl

)
.18 But this leads to a contradiction: if firm j 6= i makes offers in{

uRSl
}
×
(
uRSh ,∞

)
, then it attracts the low-risk agent with probability at most

Gl
(
uRSl

)N−2
N−1

(
Gl
(
uRSl

) 1
N−1 − q

)
< Gl

(
uRSl

)
,

since it cannot attract the low-risk agent if firm i makes offer in the set
{
uRSl

}
×
(
uRSh ,∞

)
. Hence,

offer u cannot be optimal to firm j, a contradiction.
We now consider ul > uRSl .
Part 2. There is a unique uh ∈ R such that an offer generating utility vector u ≡ (ul, uh) is

offered. If an offer generating utility u is made, then optimality of u implies that

M (u) = 0.

However, since M (ul, ·) is strictly increasing, by Lemma 7, there is a unique uh that satisfies this
18If not, then offer u′ = u + (ε, 0) is strictly better for ε > 0 small since it attracts the low-risk agent with at least

probability Gl
(
U
(
cRS,l | l

))
while incurring an arbitrarily small extra cost (Ph is continuous).
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equality. We call this utility level ν (ul).
Part 3. The function ν (·) is non-decreasing for ul > uRSl . Suppose that both utility vectors

(ul, ν (ul)) and (u′l, ν (u′l)) are offered in equilibrium with u′l > ul. Optimality implies that

π
(
u′l, ν (ul)

)
− π (ul, ν (ul)) ≤ 0 ≤ π

(
u′l, ν

(
u′l
))
− π

(
ul, ν

(
u′l
))
,

however this implies that

ˆ u′l

ul

M (s, ν (ul)) ds ≤ 0 ≤
ˆ u′l

ul

M
(
s, ν

(
u′l
))
ds,

which implies that ν (u′l) ≥ ν (ul).
Part 4. ν (ul) > uRSh , for ul > uRSl . Suppose that an offer generating utility u = (ul, uh) with

ul > max
{
uRSl , uh

}
and uh = uRSh . By definition, we have that

Pt
(
uRSt

)
= 0, for t ∈ {l, h} .

Notice that Ph (u) ≤ 0 since the high-risk is receiving the utility generated by his actuarily fair
full insurance policy. Also notice that, since Pl (·, uh) is strictly decreasing, Pl (u) < 0. Hence, this
means that the offering firm makes strictly negative profits: low-risk agents are attracted by this
offer with probability Gl (ul) > 0.

Part 5. The function ν (·) is strictly increasing for ul > U
(
cRS,l | l

)
. Suppose that ul, u′l ∈ (ul, ul)

and that ν (ul) = ν (u′l) > uRSl , then we know, form part 1, that ν (s) = ν (ul) for any s ∈ (ul, u
′
l).

Hence it follows that
Gh (ν (ul)) ≥ Gl

(
u′l
)
−Gl (ul) > 0.

But if Gl (ul) > 0, then lemma 6 implies ul = U
(
cRS,l | l

)
. This contradicts Part 1.

This result reduces the set of equilibrium utilities to a one-dimensional subset of Υ, since all
offers can be indexed by the low-risk agent’s utility level. The zero profits result in Proposition
3 implies that offers can be indexed as well by the amount of cross-subsidization across different
types.

Corollary 2. In any symmetric equilibrium, all equilibrium offers generate utility profile in the set

{U (k) | k ∈ R} .

Proof. From Proposition 3, we know that firms make zero expected profits. Now if a firm makes
offer u = (ul,ν (ul)) with ul > ul, Lemma 8 implies that

Gh (ν (ul)) = Gl (ul) .
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Then profits are given by

π (u) ≡ Gl (ul) [µlPl (u) + µhPh (u)] = 0.

Function Pl (·, uh) is strictly decreasing and Pl (z, uh) → −∞ as z → limc→∞ u (c). So any
equilibrium offer utility u = (ul, uh) satisfies: (i) uh ∈

[
uRSh , Uh (ph − p)

]
, (ii) u = U (k) for

k = U−1
h (uh). To check (i) suppose that Uh > u (ph − p), then we have a contradiction since

µlPl (u) + µhPh (u) ≤ µhPh (uh, uh) + µlPl (uh, uh) < 0.

In order to check (ii) notice that, for any k ∈ (0, ph − p), Ul (k) maximizes the utility obtained by
the low-risk subject to delivering utility Uh (k) to the high-risk agent and generating zero expected
profits. Hence Ul (k) is the unique solution to

µhPh (ul, Uh (k)) + µlPl (ul, Uh (k)) = 0.

Finally, suppose by way of contradiction that ul > Ul
(
k
)
. Then take equilibrium utility offers

u = (Ul (k) , Uh (k)) and u′ = (Ul (k
′) , Uh (k′)) such that Ul

(
k
)
< Ul (k) < Ul (k

′) < ul. Lemma 8
implies that

Uh (k) < Uh
(
k′
)
⇒ k′ > k.

But the fact that k′ > k > k implies that

Uh
(
k′
)
< Uh (k) < Uh

(
k
)
,

since uh (·) is concave and k is its peak, a contradiction.

The importance in the previous lemma is in reducing the set of possible utility profiles to a one-
dimensional set, where offers are indexed by the amount of cross-subsidization occurring between
different risk types. This allows us to use standard tools from games with one-dimensional strategy
spaces in order to describe the unique possible equilibrium distribution over this feasible set.

Proposition 4. (Uniqueness) Consider any symmetric equilibrium. Then the set of utility profiles
generated by equilibrium offers by any single firm is:

{u (k) | k ∈ R} ,

where variable k ∈ R is distributed according to F ∗ = F
1

N−1 , where F presented in Lemma 4.

Proof. First we show that supp (G) = {U (k) | k ∈ R}. Suppose that ul = Ul (k) such that k < k.
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Then a firm can make utility offer
(
Ul

(
k+k

2

)
− ε, Uh

(
k+k

2

))
for ε > 0 satisfying

Ul

(
k + k

2

)
− ε > Ul (k) .

This would attract both risk types with probability one and make positive expected profits.
Now suppose that ul = Ul (k) > Ul (0). Then one firm can make utility offer

(Ul (k) + ε, Uh (k)− ε)

with ε > 0 sufficiently small so that

Pl (Ul (k) + ε, Uh (k)− ε) > 0.

This would attract the high-risk agent with zero probability, attract the low-risk agent with
positive probability and make positive expected profits.

Finally, let the distribution over k ∈ R be F ∗ and define F = (F ∗)N−1 as the distribution of
the highest draw from N − 1 levels of cross-subsidization. Notice that the distribution of the best
competing for a low-risk agent a firm faces satisfies Gl (Ul (k)) = F (k).

Since any offer in {u (k) | k ∈ R} must be optimal, the distribution over cross-subsidization
k ∈ R must satisfy

f (k)

u′l (k)
Pl (U (k)) + F (k)

∂Pl (U (k))

∂ul
= 0,

and F
(
k
)

= 1. But the unique solution to these conditions is given by lemma 4.

6 Comparative statics

Since our uniqueness result is valid for all possible number of firms and prior distributions over
types, an analysis of the the comparative statics with respect to these primitives of the model is
possible and informative.

6.1 Prior Distribution

One of the main advantages of considering an extensive form version of Rothschild and Stiglitz’s
model is to obtain equilibrium existence for all prior distributions. Here I consider how equilibrium
strategies change with the prior probability of the low-risk agent. The equilibrium distribution
of offers continuously changes with the prior distribution, converging to the RS contracts for µl
sufficiently small and converging to the full information full insurance offer (1− pl, 1− pl) as µl
converges to one. More specifically, this means that both agents benefit from a better pool of
agents. This result is in conflict with the ones obtained by Bisin and Gottardi (2006), Dubey
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and Geanakoplos (2002) and Guerrieri, Shimer, and Wright (2010), who consider extensions of the
original Rothschild-Stiglitz model.19 In these papers, equilibria generate the RS pair of contracts as
final outcome for any prior distribution. I will consider a fixed number N of firms, and I will define
F (µl) as the equilibrium distribution of offers by a single firm. Also, denote as F (µl) the equilibrium
distribution of the best offers, i.e., the distribution of k = max {k1, . . . , kN}.

Proposition 5. If µ′l > µl, then F (µ′l) first-order stochastically dominates F (µl) and F (µ′l) first-
order stochastically dominates F (µl). When µl → 1, F (µl) and F (µl) converge to a point mass at pl.
Moreover, the function µl 7−→ F (µl) is continuous (weak-convergence).

6.2 Number of firms

First, consider the number of firms in the market. These results are reminiscent of the ones presented
in Rosenthal and Weiss (1984) for the Spence model. Since the distribution of the best offer among
any N − 1 firms is independent of N , it follows that as more firms are present in the market, each
firm will pursue a less aggressive strategy, i.e., with offers that are less attractive to both types of
the agent, in the sense of first order stochastic dominance.

Let F (N) denote the equilibrium distribution over k ∈ R that defines the equilibrium distribution
over contracts

{
Mk | k ∈ R

}
.

Proposition 6. The distribution F (N) first-order stochastically dominates F (N+1) . In case k > 0,
the dominance is strict. Additionally, F (N) converges weakly to a Dirac measure at the zero cross-
subsidization level as N →∞.

Proof. Just notice that
F (N) = F (k)

1
N−1 ≤ F (k)

1
N = F (N+1).

In case k > 1− ph, there is continuous mixing over
[
0, k
]
, so that the inequality is strict for any

k ∈
(
0, k
)
.

Finally, if the distribution F is a point mass at zero, the convergence of F (N) is trivial. In case
F is continuous on

[
0, k
]
, notice that for any k ∈

(
0, k
)

F (k) ∈ (0, 1)⇒ F (k)
1

N−1 →N→∞ 1.

Since the utility provided by offer Mk is increasing in k, for both types, the first part of the
proposition implies the utility delivered by a single firm decreases as N increases. However, for

19As mentioned in the introduction, continuity with respect to the distribution is present in the dynamic extensions
considered in Wilson (1977), Miyazaki (1977), Hellwig (1987), Mimra and Wambach (2011) and Netzer and Scheuer
(2014).
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higher number of firms, the agent is sampling a higher number of offers, so that the overall effect
seems unclear. But the distribution of the best offer among any N − 1 firms is fixed, it follows that
the distribution of the best among N firms is lower (first-order stochastic dominance) and converges
to F . Let F (N) be the distribution of maxi=1,...,N ki, where each ki is distributed according to F (N).

Proposition 7. The distribution F (N) first-order stochastically dominates F (N+1). Moreover,

F
(N) →w F (2),

as N →∞.

Proof. Just notice that F (N)
= F (2)F (N).

The consequence of the propositions above is that, when the RS pure equilibrium fails to exist,
the model with a continuum of firms cannot be simply taken as the limit of a model with N

firms, as N →∞. The problem is that as the number of firms grow, each firm provides worse offers.
However, they get worse “slowly” so that the best offer among N firms converges to a nondegenerate
distribution F . In the case of a continuum of firms, there is no way to obtain a nondegenerate
distribution for the best offer among all firms with independent symmetric randomization across
firms.

An important characteristic of the mixed equilibrium constructed is that an outside firm, facing
equilibrium offers in the market, can obtain positive expected profits.

Consider the duopoly case. An outside firm (called firm 3) faces two competing offers (from
firms 1 and 2) distributed according to F , so that the most attractive competing offer is distributed
according to G = F 2. If an outside firm considers any offer Mk, for k ∈ R, it would have zero
expected profits (by definition of γ (·)). However, since firms 1 and 2 have zero expected gains from
the local deviation aroundMk, when facing competing offer distributed according to F , firm 3 has
a strict gain from such deviation around γ (k) that attracts low-risk agents with higher probability.

It is quite surprising that firm 3, facing two competing offers distributed according to F , can
obtain higher expected profits than a firm facing a single competing offer distributed according to
F . In most competitive settings, such as auctions, a player always benefits from less aggressive offer
distribution from its competitors. In this model, cross-subsidization between contracts means that
the relative frequency with which an offer attracts both types is the important feature.

7 Conclusion

In this paper, I consider a competitive insurance model in which a finite number of firms simultane-
ously offer menus of contracts to an agent with private information regarding his risk type. I show
that there always exists a unique symmetric equilibrium. This equilibrium features firms offering
the separating contracts analyzed in Rothschild and Stiglitz (1976), whenever they can be sustained
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as an equilibrium outcome. When this is not the case, which occurs if the prior probability of
low-risk agents is too high, firms randomize over a set of separating pairs of offers. Firms obtain
zero expected profits in equilibrium.

The equilibrium features monotone comparative statics with respect to the prior over types and
the number of firms. As the probability of low-risk agents increases, firms offer more attractive
menus. The equilibrium is continuous with respect to the prior. As a consequence, equilibrium
outcomes converge to the perfect information allocation when the prior converges to both extremes.
Regarding the number of firms, the distribution of the best offer in the market and agent’s welfare
decrease as it grows. The distribution of the best offer converges to the mixed strategy of a single
firm in duopoly.

Due to the implicit nature of the equilibrium construction, I am not able to obtain clear compar-
ative statics results with respect to preferences. Numerical exercises suggest that higher constant
risk aversion leads to more aggressive offers by the firms and reduces the set of priors for which a
pure equilibrium exists.

An interesting issue is the extension of this equilibrium for an arbitrary number of types, since
the equilibrium existence problem presented by Rothschild and Stiglitz becomes more severe as the
number of types increases. For the limiting case of a continuum of types, a competitive equilibrium
never exists (see Riley (1979, 2001)). In the two types model considered here, every optimal pair of
contracts has to satisfy one local optimality condition, which is used to characterize the equilibrium
distribution. If there are n potential types, there are n − 1 such local conditions. All of these
conditions have to be simultaneously satisfied at any n-tuple offered in equilibrium. In the case of
two types, the region of offers is given by γ and corresponds to the pairs of separating contracts
that generate expected zero profits and is a one dimensional object. In the case of n risk types, it is
a n− 1 dimensional object, namely tuples that provide full insurance to the lowest type, leave any
given type indifferent between his allocation and the next higher type and generate zero expected
profits. The extra n−2 local optimality conditions characterize the one dimensional region in which
the randomization occurs. The local condition connected to the highest type would characterize
the equilibrium distribution. Given the complexity and relevance of the binary type analysis, this
paper restricts attention to this case.

The analysis presented here sheds new light on the classical results on competitive insurance
such as non-existence of equilibrium, uniqueness and the welfare impact of private information.
However, there are issues with the interpretation of equilibrium in the insurance market when it
involves mixed strategies. The outcome described here requires uncertainty with respect to the
competing offers each firm faces. In actual insurance markets, this uncertainty can be generated by
heterogeneity in pricing algorithms across firms or from a combination of price dispersion and limited
search by consumers. In both cases, cream-skimming deviations may be deterred by uncertainty
with respect to the exact offer a firm is competing against. In a scenario where all consumers
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and firms observe all contracts offered, the interpretation of this equilibrium offer distribution as
a stable one is problematic, since the best available set of offers is known and hence subject to
cream-skimming deviations. A systematic analysis of a dynamic competitive insurance model is
important, and fully understanding the equilibrium properties in the static model considered here
are a key step in this direction.

8 Appendix

8.1 Auxiliary lemmas

In this section we present auxiliary notation that will be used extensively in the proofs and a
characterization of the feasible set of utility profiles that can be generated by incentive compatible
contracts.

Denote si (t, (Mi)i) ∈ ∆R2
+ as the the probability of acceptance of firm i’s contracts, i.e., for

any measurable set A ⊆ R2
+ it is defined as follows

si (A | t, (Mi)i) = s (A× {i} | t, (Mi)i) .

Expected profits for firm i, from offerMi, is the following

πi (Mi) =

≡πi,h(Mi)︷ ︸︸ ︷
µh

ˆ [ˆ
Π (c | h) si

(
dc | h,Mi,M−i

)]
d
(
×jφ

(
M−i

))
+ µl

ˆ [ˆ
Π (c | l) si

(
dc | l,Mi,M−i

)]
d
(
×jφ

(
M−i

))
︸ ︷︷ ︸

≡πi,l(Mi)

.

Also denote as the ex-ante expected probability of acceptance of an offer form firm i, if the consumer
is of type t = l, h, as si,t (M) and the ex-ante average profit made from a type t = l, h agent
conditional on a contract from firm i being accepted as πEi,t (M). Define

uMt ≡ sup
c∈M

U (c | t) .

The following are consequences of equilibrium conditions. The acceptance rule always has to
satisfy the following:

c ∈ supp (si (t, (Mi)i))⇒ c ∈ arg max
c∈

⋃
iMi∪{Y }

U (c | t) ,
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which implies that
c ∈ supp (si (t, (Mi)i))⇒ Π (c | t) ≤ Pt

(
uMl , uMh

)
. (6)

and
G−t

(
uMt
)
≤ si,t (M) ≤ Gt

(
uMt
)
, (7)

where G−t (u) ≡ limk↗uG (k) is the left limit of distribution Gt.
Firms maximize profits, i.e.,

πi (Mi) ≥ πi
(
M′i
)
,

for allMi ∈ supp (φ) andM′i ∈M.
The set of feasible utility profiles Υ has the following properties, which follow from standard

convexity arguments:
(i) Υ is convex,
(ii) (u (c) , u (c)) ∈ Υ, for all c ∈ R++,
(iii) u ∈ Υ⇒ u+ (ε, ε) ∈ int (Υ) for ε > 0 sufficiently small.
The following lemma is also important in the proof and eliminates the possibility of equilibrium

offers that are in the frontier of the set Υ.

Lemma 9. For any u ∈ Υ such that Ph (u) ≤ 0 and Pl (u) ≥ 0, then u + (ε,−ε) ∈ int (Υ) for
ε > 0 sufficiently small.

Proof. First, suppose that uh > ul. In this case the set20

co {u, (u (0) , u (0)) , (uh, uh)}

is contained in Υ since the three generating elements are in Υ. Finally notice that u + (ε,−ε) is in
the interior of this set for ε > 0 sufficiently small.

Second, if uh = ul then u is clearly in the interior of Υ.
Third, now consider uh < ul. Condition Ph (u) ≤ 0 implies that uh > u (1− ph) = uRSh . Define

C (u) ≡

{
(cl, ch) |

U (ch | l) ≤ U (cl | l) = ul

U (cl | h) ≤ U (ch | h) = uh

}
.

If there exists (cl, ch) ∈ C (u) such that cl ∈ R2
++, then u + (0, ε) ∈ Υ since(

ch, cl +

(
ph

ph − pl
ε,−(1− ph)

ph − pl
ε

))
∈ C (u + (0, ε)) .

20For any set A ⊆ R2, we use notation co (A) to denote the convex hull of set A.
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In this case we know that u ∈ int (Υ) since

u ∈ int {co {u + (0, ε) , (u (0) , u (0)) ,u + (ε, ε)}} .

But if (cl, ch) ∈ C (u) implies that cl = (0, k) for some k > 0, then it is necessarily the case that

(1− ph)u (k) = uh ≥ uRSh ,

But then k = u−1
(

uh
1−ph

)
≥ kRS ≡ u−1

(
uRSh
1−ph

)
. But allocation

(
0, kRS

)
generates utility uRSh to the

high-risk agent while introducing the maximal amount of risk, this implies that it generates utility
strictly above uRSl to the low risk agent. Since

(
0, kRS

)
generates utility above U

(
cRSl | l

)
= uRSl

and has higher risk than cRSl , it follows that

Π
((

0, kRS
)
| l
)
≤ Π

(
cRSl | l

)
= 0.

Hence the allocation (0, k) necessarily generates negative losses as it pays more than
(
0, kRS

)
.

And lastly, this lemma shows that weak incentive constraints can be turned into strict inequalities
with arbitrarily small cost.

Lemma 10. (Costless strict incentives) Consider u ∈ int (Υ). For any ε > 0, there exists a pair
of contracts (cεl , c

ε
h) such that

U (cεl | l) = ul > U (cεh | l) ,

U (cεh | h) = uh > U (cεl | h) ,

‖Π (cεt | t)− Pt (u)‖ ≤ ε, for t = l, h.

Proof. Fix ε > 0. Since u is in the interior of Υ and Pt (·) is convex (and hence continuous on the
interior of its finite domain), for γ > 0 sufficiently small

‖Ph (ul − δ, uh)− Ph (ul, uh)‖ < ε,

‖Pl (ul, uh − δ)− Pl (ul, uh)‖ < ε.

Then the pair (χl (ul, uh − δ) , χh (ul − δ, uh)) satisfies all the inequalities above.

8.2 Proof of Lemma 3

Proof. First notice that, if u satisfies ul ≤ uh, the optimal allocation is χl (u) = (z, z), where
u (z) = ul.

30



If u satisfies ul > uh, then both constraints bind in the optimal, and hence

χl (u) =

(
u−1

(
(1− pl)uh − ul (1− ph)

ph − pl

)
, u−1

(
phul − pluh
ph − pl

))
.

Hence, χl (·) is continuous, continuous differentiable if ul 6= uh and satisfies χ1
l (u) ≥ χ0

l (u),
with strict inequality if ul > uh. Function Pl (·) is equal to

Pl (u) = 1− pl −
[
plχ

0
l (u) + (1− pl)χ1

l (u)
]
,

and hence it is continuous and continuously differentiable in Υ+ ≡ {u ∈ Υ | ul > uh} and Υ− ≡
{u ∈ Υ | ul < uh}.

Direct differentiation leads to

dPl (u)

d (ul, uh)
=

[
− 1
u′(u−1(ul))

0

]
, if u ∈ Υ−,

and

dPl (u)

d (ul, uh)
=


− 1
ph−pl

[
(1−pl)ph
u′(χ1

l (u))
− pl(1−ph)

u′(χ0
l (u))

]

pl(1−pl)
ph−pl

[
1

u′(χ1
l (u))

− 1
u′(χ0

l (u))

]
 , if u ∈ Υ+.

Notice that dPl
du (u) is continuous at any point u with ul = uh, and hence Pl is continuously

differentiable.
Since u′ (·) is continuously differentiable, Pl is twice continuously differentiable in Υ+ and Υ−.
For any u ∈ Υ+, ∂2Pl

∂uh∂ul
is given by

∂2Pl
∂uh∂ul

= −pl (1− pl)
(ph − pl)2

[
(1− ph)u′′

(
χ0
l

)
u′
(
χ0
l (u)

)2 +
phu

′′ (χ1
l (u)

)
u′
(
χ1
l (u)

)2
]
> 0,

and, for any u ∈ Υ−, the function ∂Pl
∂uh

is identically zero and hence is continuously differentiable.

8.3 Proof of Proposition 1

Proof. Since in equilibrium, the distribution G of utility vectors generated by offers is continuous,
any offer M is dominated by offer χ (u), where u =

(
uMl , uMh

)
. Offer χ (u) attracts the agent

with same probability as M, and makes weakly more profits, conditional on attracting the agent.
Henceforth, we will focus on deviations of this form.

Case A) ul = Ul (k) and uh = Uh (k′), for some k, k′ ∈ R.
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Suppose that k′ > k, which implies that

uh = Uh
(
k′
)
> Uh (k) .

Hence it follows from lemma 5 that for any ũ ∈ (Ul (k) , Ul (k
′))

M (ũ, uh) > 0.

And hence, offer χ (Ul (k
′) , Uh (k′)) strictly dominates the original offer. An analogous proof follows

if k′ < k.
Case B) ul < Ul (0).
Any offer that generates utility below Ul (0) attracts a low-risk agent with zero probability. But

there are no profit opportunities on high-risk agents since their equilibrium utility is above uRSh .
Case C) ul > Ul (0) and uh < Uh (0)

By construction, the utility pair (Ul (0) , Uh (0)) satisfies Pl (Ul (0) , Uh (0)) = 0. Since Pl is de-
creasing in ul and increasing in uh, it follows that Pl (u) < 0. Since there are no profit opportunities
from high-risk agents, a firm cannot make positive profits by offering u.

Case D) ul > Ul
(
k
)

Any such offer is dominated by an offer with ul = Ul
(
k
)
, which offers strictly lower utility to

the low-risk agent while still attracting the agent with probability 1.
Case E) uh > Uh

(
k
)
and ul = Ul (k), for some k ∈ R.

If u ∈ int (Υ), then lemma 5 implies that

M (u) > 0,

and hence offer u is strictly dominated by offer u+(ε, 0) for ε > 0 small. If u+(ε, 0) is not feasible,
lemma 9 implies that Pl (u) < 0. Hence offer u cannot be profitable.

8.4 Proof of Proposition 3

I have separated the result in different three different lemmas.

Lemma 11. (Zero profits) In any symmetric equilibrium firms make zero expected profits.

Proof. Suppose, by way of contradiction that firm i makes expected profits π0 > 0 and define

ut ≡ inf {u ∈ R | Gt (u) > 0} .

The proof is divided into four sub-cases.
Case 1) Suppose that Gl (ul) = 0.
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There exists a sequence of on-path contractsMn such that ul,n ≡ uMn
l ↘ ul and Gl (ul) <

1
n .

Let uh,n ≡ uMn
h and un ≡ (ul,n, uh,n).

Expected profits from low-risk agents, πi,l (Mn), are at most µl
n (1− pl). It then follows that

π0 ≤
µl
n

(1− pl) + πi,h (Mn)⇒ πi,h (Mn) ≥ π0 −
µl
n

(1− pl) ,

and profits from high-risk agents are positive and bounded away from zero for n large. This means
that (1− pl)u (1) ≤ uh,n < u (1− ph) − k for some k > 0 and n large. Potentially passing to a
subsequence, uh,n converges to ũh ∈ [(1− pl)u (1) , u (1− ph)).
Also, for each n, the firm cannot deviate by offering (uh,n + ε, uh,n + ε) for ε > 0 small, which would
generate profits

µhGh (uh,n)Ph (uh,n, uh,n) + µlGl (un,h)Pl (uh.n, uh,n) .

Using the fact that profits from offerMn are at most

µl
n

(1− pl) + µhsi,h (Mn)Ph (ul,n, uh,n) ,

the firm is making positive profits on high-risk agents,

0 < πi,h (Mn) ≤ Ph (ul,n, uh,n) ≤ Ph (uh,n, uh,n) ,

and acceptance probability satisfies

si,h (Mn) ≤ Gh (uh,n) ,

we conclude that
‖Ph (uh,n, uh,n)− Ph (uh,n, ul,n)‖ →n→∞ 0.

Since limn uh,n = ũh, this implies that limn ul,n = ul ≥ ũh. High-risk agents must be receiving
their utility level with almost no risk, otherwise a firm can profit from a deviation that offers more
insurance.

Now, we show that Pl (ul, ũh) = 0.
First, Pl (ul, ũh) ≥ 0. If Pl (ul, ũh) < 0, then by continuity Pl

(
ul,n, uh,n

)
< 0 for n large. But

then one firm can profit by offering χ (uh,n + ε, uh,n + ε) for ε > 0 small. This offer makes weakly
more profits from the high-risk agents and guarantees non-negative profits from low-risk agents.

Second, notice that Pl (ul, ũh) ≤ 0. Suppose that Pl (ul, ũh) > 0.
Also, since

µhGh (uh,n) (1− ph) ≥ πi,h (Mn) ≥ π0 −
µl
n

(1− pl) ,

we know that Gh (uh,n) ≥ π0−
µl
n

(1−pl)
(1−ph)µh

→ π0
(1−ph)µh

as n→∞. This implies that Gh (ũh) > 0.
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Case 1.A) Suppose Gh has a mass point at ũh.
Then there exists offer M and a firm i, delivering u = (ul, ũh) with ul ≥ ul ≥ ũh and whose
acceptance probability satisfies (ties have to broken in a way that some firm gets the consumer with
probability smaller than one)

si,h (M) < Gh (ũh) .

Notice that Ph (u) > 0 since ul ≥ ũh and ũh < u (1− ph).
Also notice that for ε > 0 small

{(ũh + ε, ũh + ε) , (ul + ε, ũh + ε)} ⊆ int (Υ) .

Hence, following lemma 10, a firm can find offers that generate profits arbitrarily close to

µhGh (ũh)Ph (ũh, ũh) + µlGl (ũh)Pl (ũh, ũh)

and
µhGh (ũh)Ph (u) + µlGl (ul)Pl (u) .

The first profit level is leads to a strict improvement if Pl (u) < 0, while the second one leads to a
strict improvement if Pl (u) ≥ 0. Hence u is not optimal for firm i, a contradiction.

Case 1.B) Distribution Gh is continuous at ũh. This implies ũh > uh, since Gh (ũh) > 0. There
exists an equilibrium offer M generating utility u = (uh, ul) with ul ≥ ul and uh < ũh, which
implies

(ul + ε, ũh) ∈ int [co {u, (ul, ul) , (uh, uh)}] ⊆ int (Υ) .

And this implies that Pl (ul, ũh) = 0. By way of contradiction, suppose that Pl (ul, ũh) > 0. Then,
from lemma 10, we can find ε > 0 sufficiently small such that the following profit can be achieved
(using the fact that ul ≥ uh)

µhGh (ũh)Ph (ul + ε, ũh) + µlGl (ul + ε)Pl (ul + ε, ũh)

= µhGh (ũh)Ph (ul, ũh) + µlGl (ul + ε)Pl (ul + ε, ũh)

By continuity of Pl for ε small enough we have that

µlGl (ul + ε)Pl (ũh, ul + ε) > 0.

But µhGh (ũh)Ph (ul, ũh) weakly higher than the limit of πi (Mn) as n→∞. This means that offer
Mn is strictly dominated, a contradiction. Hence Pl (ul, ũh) = 0.

Given that Pl (ul, ũh) = 0, then there exists a firm and equilibrium offer M such that (i) it
generates utility generating utility u = (uh, ul) with ul ≥ ul and uh < uh; and (ii) si,l (M) > 0.
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But notice that πi,l (M) ≤ Pl (u) < 0 since Pl is strictly increasing in uh whenever uh < ul. This
means that the offerM cannot be optimal as it is dominated by offer χ (uh + ε, uh + ε) for ε > 0

small. This offer same (positive) profits from high-risk agents as M and guarantees non-negative
profits from low-risk agents.

Case 2) Suppose that Gl (ul) > 0.
Case 2.A) Suppose that there exists an equilibrium offerM generating utility u = (ul, uh) =

(ul, ũh) and Gh (ũh) > 0.
Suppose that Pl (u) , Ph (u) ≥ 0, with this inequality holding strictly for type t. Then consider a

firm i such that, when offeringM, has an offer accepted by a type t agent with probability strictly
below Gt (ut). Then u + (ε, ε) ∈ int (Υ) and, using lemma 10, this firm can obtain profit

µlGl (ul + ε)Pl (u + (ε, ε)) + µhGh (ũh + ε)Ph (u + (ε, ε))

→ε→0 µlGl (ul)Pl (u) + µhGh (ũh)Ph (u) .

And the second term is strictly higher than the profits atM since the firm has weakly lower profits
for each type and attracts both types with weakly higher probabilities (strictly for type t).

Suppose that Ph (u) , Pl (u) ≤ 0. This is impossible because offerM would generate non-positive
profits.

Suppose that Ph (u) > 0 and Pl (u) > 0. Then consider a firm that has offerM accepted by the
high-risk agent with probability strictly lower than Gh (ũh)N−1. This firm can profitably deviate
by offering χ (ũh + ε, ũh + ε) (it strictly increases profits from high-risk agents and guarantees non-
negative profits from low-risk agents).

Suppose that Pl (u) > 0 and Ph (u) < 0. Consider a firm i that, when offeringM, is accepted
by a low-risk agent with probability smaller than Gl (ul). From lemma 9, for ε > 0 small enough
we have that u + (ε,−ε) ∈ int (Υ). This means that the firm can guarantee profits

µlGl (ul + ε)Pl (u + (ε,−ε)) + µhGh (ũh − ε)Ph (u + (ε,−ε))

→ε→0 µlGl (ul)Pl (u) + µh

[
lim
u↗uh

Gh (u)

]
Ph (u) .

Which is strictly higher than profits atM since it makes less profits, conditional on acceptance by
both types and it attracts the low-risk agent with strictly higher probability while attracting the
high-risk agent with weakly lower probability.

Case 2.B) Suppose that there are at least two utility levels u1
h < u2

h such that: there are
infinitely many offers M (ι) that generate utility u = (ul, ι) with ι ∈

(
u1
h, u

2
h

)
and ι is not a mass

point of Gh.
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Consider an arbitrary such ι ∈
(
u1
h, u

2
h

)
. The utility profile (ul, ι) ∈ int (Υ) since

(ul, ι) ∈ int
[
co
{(
ul, u

1
h

)
,
(
ul, u

2
h

)
, (u (0) , u (0)) , (ul + ε, ul + ε)

}]
,

which is contained in int (Υ) for ε > 0 sufficiently small.
This means that offerM (ι) has to make zero profits on the low-risk agents, i.e., Pl (ul, ι) = 0.

Suppose that Pl (ul, ι) > 0 and Ph (ul, ι) ≥ 0. Consider a firm that, when offeringM (ι) has an offer
accepted by the low-risk agent with probability strictly below Gl (ul). Then (ul, ι) + (ε, ε) ∈ int (Υ)

for ε > 0 small enough and, from lemma 10, this firm can obtain profits

µlGl (ul + ε)Pl ((ul, ι) + (ε, ε)) + µhGh (ι+ ε)Ph ((ul, ι) + (ε, ε))

→ε→0 µlGl (ul)Pl (ul, ι) + µhGh (ι)Ph ((ul, ι)) ,

which is strictly higher than obtained with offerM (ι). This follows from the fact that both types
are attracted with higher probability strictly for the low-risk consumer) and the firm makes weakly
higher profits conditional on acceptance by each agent. The cases (i) Pl (ul, ι) > 0 and Ph (ul, ι) < 0,
(ii) Pl (ul, ι) < 0 and Ph (ul, ι) ≥ 0 lead to profitable deviations that exploit the interiority of utility
profile (ul, ι). The case where Pl (ul, ι) < 0 and Ph (ul, ι) < 0 leads to a contradiction since any firm
offering such menu would have non-positive profits.

Lemma 12. In a symmetric equilibrium, if a firm i makes an offerM that generates utility profile
u, then χt (u) ∈ M and this is the only possible offer accepted by type t from firm i: for any
c 6= χt (u)

P∗
[(
t̃, s
(
t̃,
(
M,M̃−i

)))
= (t, c, i)

]
= 0.

Proof. First remember that, for each t, problem Pt (u) has a unique solution. This implies that

U (c | t) = ut,

U
(
c | t′

)
≤ ut′ ,

implies
Π (c | t) ≤ Pt (u)

with this inequality holding strictly if c 6= χt (u). This implies that for any offer Mi delivering
utility profile u and any (Mj)j 6=i

c ∈ supp (si (t, (Mk)k))⇒ Π (c | t) ≤ Pt (u) ,
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with strict inequality if c 6= χ (u). Hence, we have that

πi,t (Mi) ≤ Pt (u) ,

with this expression holding as a strict inequality if

P∗
{(
t̃, s
(
t̃,
(
M,M̃−i

)))
6= (t, χt (u) , i)

}
> 0. (8)

Once again, we proceed by dividing the statement in cases.
Case 1) Assume that u ∈ Υ satisfies Pl (u) , Ph (u) ≥ 0 and consider an equilibrium offerM that

generates this utility profile, i.e., uMt = ut for t = l, h. For ε > 0 sufficiently small u+(ε, ε) ∈ int (Υ),
then lemma 10 implies that any firm can obtain profits

µlGl (ul + ε)Pl (u + (ε, ε)) + µhGh (uh + ε)Ph (u + (ε, ε))

→ε→0 µlGl (ul)Pl (u) + µhGh (uh)Ph (u) .

If (8) holds, then si,t (M) > 0 and πi,t (Mi) < Pt (u) . Then expected profits with offerM are given
by (we are not indexing everything byM for brevity)

µlsi,lπi,l + µhsi,hπi,h < µlsi,lPl (u) + µhsi,hPh (u)

≤ µlGl (ul)Pl (u) + µhGh (uh)Ph (u) .

Hence for ε > 0 sufficiently small this firm has a profitable deviation.
Case 2) Assume that u ∈ Υ satisfies Pl (u) ≥ 0, Ph (u) ≤ 0 and consider an equilibrium offer

M that generates this utility profile, i.e., uMt = ut for t = l, h. Lemma 9 implies that, for ε > 0

sufficiently small, u + (ε,−ε) ∈ int (Υ), then lemma 10 implies that any firm can obtain profits

µlGl (ul + ε)Pl (u + (ε,−ε)) + µhGh (uh − ε)Ph (u + (ε,−ε))

→ε→0 µlGl (ul)Pl (u) + µhG
−
h (uh)Ph (u) .

If (8) holds, then si,t (M) > 0 and πi,t (Mi) < Pt (u) . Then expected profits with offerM are
given by (we are not indexing everything byM for brevity)

µlsi,lπi,l + µhsi,hπi,h < µlsi,lPl (u) + µhsi,hPh (u)

≤ µlGl (ul)Pl (u) + µhG
−
h (uh)Ph (u) .

Hence for ε > 0 sufficiently small this firm has a profitable deviation.
Case 3) Assume that u ∈ Υ satisfies Pl (u) ≤ 0, Ph (u) ≤ 0 and consider an equilibrium offer

M that generates this utility profile, i.e., uMt = ut for t = l, h. If (8) holds, then si,t (M) > 0 and
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πi,t (Mi) < Pt (u) . Then expected profits with offerM are given by (we are not indexing everything
byM for brevity)

µlsi,lπi,l + µhsi,hπi,h < µlsi,lPl (u) + µhsi,hPh (u) ≤ 0,

since Pt (u) ≤ 0 for t = l, h. Hence firm i would make strictly negative profits by offering M, a
contradiction.

Case 4) Assume that u ∈ Υ satisfies Pl (u) ≤ 0, Ph (u) ≥ 0 and consider an equilibrium offerM
that generates this utility profile, i.e., uMt = ut for t = l, h. Utility profile (uh + ε, uh + ε) ∈ int (Υ)

for ε > 0 sufficiently small. Then lemma 10 implies that any firm can obtain profits

µlGl (uh + ε)Pl (uh + ε, uh + ε) + µhGh (uh + ε)Ph (uh + ε, uh + ε)

→ε→0 µlGl (uh)Pl (uh, uh) + µhGh (uh)Ph (uh, uh) .

Now notice that
Ph (uh + ε, uh + ε) ≥ Ph (u) ≥ 0,

Pl (uh, uh) ≥ Ph (uh, uh) ≥ 0.

If 8 holds, then si,t (M) > 0 and πi,t (Mi) < Pt (u) . Then expected profits with offer M are
given by (we are not indexing everything byM for brevity)

µlsi,lπi,l + µhsi,hπi,h < µlsi,lPl (u) + µhsi,hPh (u)

≤ µhsi,hPh (u)

≤ µhG
−
h (uh)N−1 Ph (uh, uh)

≤ µlGl (ul)
N−1 Pl (uh, uh) + µhG

−
h (uh)N−1 Ph (uh, uh) .

Hence for ε > 0 sufficiently small this firm has a profitable deviation.

Lemma 13. In any symmetric equilibrium, firms make nonnegative profits from low-risk agents
and non-positive profits from high-risk agents: any equilibrium utility offer u satisfies u ∈ int (Υ),
ul ≥ uh and

Π (χl (u)) ≥ 0,

Π (χh (u)) ≤ 0.

Proof. Any equilibrium offerM generating utility profile u = (ul, uh) ≡
(
uMl , uMh

)
satisfies

ut ≥ uRSt .

This means that the consumer always receives offers that are more attractive then the Rothschild-
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Stiglitz offers. Suppose this is not the case, which implies that G−t
(
uRSt

)
> 0 for at least one type

t = l, h.
Since

(
uRSl , uRSh

)
∈ int (Υ), if ut < uRSt for a type t = l, h, then firms can make profits by

offering utility
(
uRSl , uRSh

)
− (ε, ε). This offer guarantees positive profits on both types and attracts

one of them with positive probability for ε > 0 sufficiently small.
Since utility uRSh is the generated by an actuarily fair contract with full insurance for the high-

risk agents, it follows that Ph (u) ≤ 0 for any utility profile u generated in equilibrium. Also, if
there is an equilibrium offer that generates utility u such that Ph (u) < 0, then at least one firm
making such an offer makes strictly negative profits, a contradiction.

Finally, any equilibrium offer generating utility u = (ul, uh) such that uh > ul is strictly dom-
inated by offer χ (ul + ε, ul + ε) for ε > 0 sufficiently small. This deviating offer attracts high-risk
consumers with strictly lower probability, and makes strictly higher profits from them, while at the
same time attracting low-risk agents with higher probability and loses an arbitrarily small amount
of profits. To prove interiority, consider any equilibrium utility offer u ∈ Υ satisfying ul > uh. From
lemma 9 it follows that u + (ε,−ε) ∈ int (Υ) for ε > 0 sufficiently small, which implies that then
u ∈ co {(ul, ul) , (uh, uh) ,u + (ε,−ε)} ⊆ int (Υ).

Proposition 3 follows directly from Lemmas 11, 12 and 13 presented above.

8.5 Proof of Lemma 6

Proof. First, consider (i). If ut < uRSt for some t = l, h, then firms can make profits by offering
utility

(
uRSl , uRSh

)
− (ε, ε). This offer guarantees positive profits on both types and attracts one of

them with positive probability for ε > 0 sufficiently small.
Now we consider part (ii), and divide the proof in steps for clarity.
Part ii.1: Bounded derivative of π with respect to uh: sup {M (u) | u ∈ supp (φ)} <∞.
M is defined over {u ∈ Υ | ul ≥ uh} is continuous, and

supp (G) ⊆ Υ ≡

{
u ∈ Υ |

ul ≥ uh
uh ≤ u (1− pl)

}
,

which is a compact set. Hence sup {M (u) | u ∈ supp (G)} ≤M ≡ sup {M (u) | u ∈ Υ} <∞.
Part ii.2: For any n ∈ N, πn ≡ inf

{
Pl (u) | u ∈ supp (G) and ul ≥ ul + 1

n

}
> 0.

Fix n ∈ N and assume, by way of contradiction that there exists a sequence of equilibrium offers
{un} such that

Pl (u
n)→ 0.

This implies that expected profits from high-risk agents also converges to zero. From lemma 10,
firms can always break indifferences in order to attract high-risk agents with probability G−h (unh),

39



hence profits from high-risk agents is

Ph (un)G−h (unh)→ 0.

Suppose that Ph (un)→ 0. In this case we have that un →
(
uRSl , uRSh

)
since max {Pl (u) ,−Ph (u)}

has
(
uRSl , uRSh

)
as the only zero within the compact set {u ∈ Υ | Ph (u) ≤ 0, Pl (u) ≥ 0}. But this

is a contradiction with unl ≥ uh + 1
n > uRSh .

Now suppose that lim inf Ph (un) > 0 and G−h (unh) → 0. This implies that unh → uh and
Gh (uh) = 0. Considering a converging subsequence of {unl } and let its limit be ũl. We know that
Pl (ũl, uh) = 0 and ũl ≥ ul + 1

n (which means that Gl (ũl) ≥ Gl
(
ul + 1

n

)
> 0). Then for ε > 0 small

firms can make offer (ũl − ε, uh) and make profit

µlG
−
l (ũl − ε)Pl (ũl − ε, uh) > 0,

which is positive for ε > 0 sufficiently small, since Pl (·) is decreasing in ul.
Part ii.3: For any n ∈ N, Gl is Lipschitz continuous on

[
ul + 1

n , ul
]
, with constant Ln ≡

M
πn(N−1)Gl(ul+

1
n)

.

Consider any ul, u′l ∈
[
ul + 1

n , ul
]
such that u′l − ε ≤ ul ≤ u′l. Consider an equilibrium utility

offer u = (ul, uh). if a firm deviates, by offering utility u′ = (u′l, uh), its profits must not increase:

µlGl (ul)Pl (u) + µhGh (uh)Ph (u) ≥ µlGl
(
u′l
)
Pl
(
u′
)

+ µhGh (uh)Ph
(
u′
)
.

The fact that low-risk agents receive higher utility, i.e., u′l ≥ ul ≥ uh implies that Ph (u′) = Ph (u).
The inequality becomes

[
Gl
(
u′l
)
−Gl (ul)

]
≤ Gl

(
u′l
) [Pl (u)− Pl (u′)]

Pl (u)
≤ εM

πn
,

using lemmas 9 and 10 as well as the fact that Gl (u′l) ≤ 1.
Part ii.4: Now, for any n ∈ N, the restriction of distribution Gl to

[
ul + 1

n , ul
]
is absolutely

continuous, with density gnl . Hence, for any bounded non-negative measurable function f we have
that ˆ ∞

ul+
1
n

fdGl =

ˆ ∞
ul+

1
n

f (z) gnl (z) dz.

Let gl be the pointwise limit21 of {gnl } on (ul,∞) and consider any bounded non-negative measurable
function f .

21Since gn+1
l (z) = gnl (z), for any z ≥ ul + 1

n
, this pointwise limit is given by the function gl (u) = g

n(u)
l (u), where

n (u) ≡ inf
{
n′ | ul + 1

n′ < u
}
.
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Define
fn (u) ≡ 1[ul,ul+

1
n) (u) f (ul) + 1[ul+

1
n
,∞) (u) f (u) .

It follows from monotone convergence theorem that

lim
n→∞

ˆ
fndGl =

ˆ
fdGl.

But notice that
ˆ
fndGl = Gl

(
ul +

1

n

)
f (ul) +

ˆ ∞
ul+

1
n

fdGl

= Gl

(
ul +

1

n

)
f (ul) +

ˆ ∞
ul+

1
n

f (z) gnl (z) dz.

Taking limits on both sides, and using dominated convergence theorem once again on the second
term yields ˆ

fdGl = Gl (ul) f (ul) +

ˆ ∞
ul

f (z) gl (z) dz.

Part ii.5: Suppose that there exists a utility level ul in the support of Gl such that, for some
ε > 0, Gl (ul) = Gl (ul − ε) > 0. Consider an offer that generates utility u = (ul, uh) with ul > uh.
This offer is necessarily dominated. From Lemma 9 and 10 a firm can obtain, by making utility
offers close to u− (0,−δ) profits arbitrarily close to

µlGl (ul − δ)Pl (ul − δ, uh) + µhG
−
h (uh)Ph (uh, ul − δ) .

Which are strictly higher than equilibrium profits for δ < min
{
ε
2 ,

ul−uh
2

}
, since they attract the low-

risk agent with same probability as offer u and make strictly more profits from them. Alternatively,
any equilibrium utility offer (ul, ul) would be dominated by offer

(
ul − ε

2 , ul −
ε
2

)
.

Part (iii). Suppose that Gh has a mass point on some utility level uh > uRSh . There exists a firm
i and equilibrium offerM that deliver utility u = (ul, uh) that is attracted by the high-risk agent
with probability strictly higher than G−h (uh). From lemmas 9 and 10, for ε > 0 sufficiently small,
any firm can obtain profits

µlGl (ul + ε)Pl (u + (ε,−ε)) + µhGh (uh − ε)Ph (u + (ε,−ε)) ,

which converge, as ε→ 0, to

µlGl (ul)Pl (u) + µhG
−
h (uh) Ph (u) .

This profit is strictly higher than the equilibrium one since it attracts high-risk agents with strictly
lower probability and Ph (u) < 0 since ul > uRSl .
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8.6 Proof of Proposition 5

Proof. Since I will consider variation in µl explicitly, I will acknowledge dependence of each variable
on µl as a superscript in the notation, as in kµl .

First notice that, for each k ∈ R, γµl (k) is the solution γ = (γ1, γ0) (with γ1 ≥ γ0) to the
following system:

A1 (γ, µl, k) ≡

[
(1− µl) (−k) + µlΠ (γ | l)
U (γ | h)− u (1− ph + k)

]
= 0.

Then, since ∂A1
∂γ has full rank and A1 (·) is continuously differentiable, it follows that γµl (k) is

continuously differentiable in (µl, k). It is simple to show that ∂γ
µl
1 (k)
∂µl

> 0 and ∂γµl (k)
∂µl

< 0. From
lemma 2, I know that, if kµl > 0, kµl is defined implicitly as the solution to the following equation:

A2 (k, µl) ≡ u′ (1− ph + k) (1− pl)
[

1

u′ (γµl1 (k))
− 1

u′ (γµl0 (k))

]
− µh
µl

1

ph

[
1− pl
pl
− 1− ph

ph

]
= 0.

But we already showed that γµl (k) is continuously differentiable in (µl, k), and therefore so is A2.
Since ∂A2(k,µl)

∂k < 0, kµl is also continuously differentiable. Moreover, it follows from ∂A2(k,µl)
∂µl

> 0

that ∂k
µl

∂µl
> 0. Finally, for any µl (0, 1) and k ∈

[
0, ph − pµ̃l

]
, A2 (k, µl) > 0 for µl sufficiently high.

Hence, since pµl →µl→1 pl, k
µl → ph − pl as µl converges to one.

Also, notice that, after substitution:

φµl (k) ≡

phpl
ph−pl

{
u′ (1− ph + k) (1− pl)

[
1

u′(γ
µl
1 (k))

− 1
u′(γ

µl
0 (k))

]
− µh

µl
1
ph

[
1−pl
pl
− 1−ph

ph

]}
Π (γµl (k) | l)

. (9)

For any (µl, k) ∈ (0, 1)× [0, ph − p], Π (γµl (k) | l) satisfies

(1− µl) (−k) + µlΠ (γµl (k) | l) = 0. (10)

This implies that ∂Π(γµl (k)|l)
∂µl

< 0 and that , for any k ∈
[
0, k

µl
]
,

∂φµl

∂µl
> 0.

Also, since the numerator in (9) is increasing in µl and the denominator converges to zero as
µl → 1, we know that for all k ∈ [0, ph − pl]

φµl (k)→∞.

Now consider µ′l > µl. In case kµl = 0 the result is trivial; otherwise we have from the differential
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equation (3) satisfied by
[
F (µl)

]N−1, for any k ∈
[
0, k

µl
)

[
F (µl) (k)

F (µ′l) (k)

]N−1

= exp

ˆ k
µ′l

k
φµ
′
l (z) dz −

ˆ k
µl

k
φµl (z) dz


= exp

ˆ k
µ′l

k
µl

φµ
′
l (z) dz +

ˆ k
µl

k

[
φµ
′
l (z)− φµl (z)

]
dz

 > 1.

Monotone convergence, together with monotonicity of kµl and φµl (·), implies that for any k ∈
[0, ph − pl)

µl 7−→
ˆ k

µl

k
φµl (z) dz, is continuous,

and ˆ k
µl

k
φµl (z) dz →∞, as µl → 1.

Hence, it follows that, for any k ∈ [0, ph − pl), Fµl (k) is continuous in µl and Fµl (k) → 0 as
µl → 1.

The results for Fµl follow from F
µl = (Fµl)N .
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