
EUI
WORKING 
PAPERS IN 
ECONOMICS

EUI Working Paper ECO No. 91/51

Preferred Point Geometry 
and Statistical Manifolds

F rank C ritchley, Paul M arriott 
and

Mark Salmon

ropean University Institute, Florence

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



EUROPEAN UNIVERSITY INSTITUTE, FLORENCE 

ECONOMICS DEPARTMENT

EUI Working Paper ECO No. 91/51

Preferred Point Geometry 
and Statistical Manifolds

Frank Crttchley, Paul Marriott 
ana

Mark Salmon

BADIA FIESOLANA, SAN DOMENICO (FI)

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



All rights reserved.
No part o f this paper may be reproduced in any form 

without permission of the authors.

© Frank Critchley, Paul Marriott and M ark Salmon 
Printed in Italy in October 1991 
European University Institute 

Badia Fiesolana 
1-50016 San Domenico (FI)

Italy

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



by

Frank Critchley, Paul Marriott and Mark Salmon1.

Departments of Statistics and Economics,
University of Warwick,

and
+
Department of Economics,

European University Institute,
Florence.

Preferred Point Geometry and Statistical Manifolds.

A new  m athem atica l object called  a p re fe rred  p o in t geom etry  is 
in troduced  in  o rder to (a) p rov ide  a natural geom etric  fram ew ork  in 
w hich to  do  statistical inference and (b) reflect the d istinction  betw een 
hom ogeneous aspects (e.g. all points 0 in 0  are trea ted  equally) and  
preferred  po in t ones (e.g. w hen one point, is isolated i.e. if 0q is the true 
param eter). A lthough preferred point geom etry is applicable generally in 
statistics, w e focus here  on  its ability  to  encom pass and  ex tend  the 
theoretical structure of Statistical M anifolds developed by Lauritzen(1987), 
in  p a rticu la r to  A m ari's expected  geom etry . A sym m etric  cond ition  
characterises w hen a preferred point geom etry both  subsum es a Statistical 
M anifold and  sim ultaneously generalises it to  arb itrary  order; there are 
corresponding links to Barndorff-N ielsen's strings. The ra th e r unnatu ra l 
m ixing of m etric and  non-m etric connections in Statistical m anifolds is 
av o id ed  since all connections u sed  are sh o w n  to be m etric . A n 
in terpre tation  of duality  of Statistical m anifolds is g iven in term s of the 
relation betw een the score vector and the m axim um  likelihood estim ate.

American Mathematical Society 1980 subject classification. 
Primary: 53B99; Secondary: 62F05,62F12.

This work has been supported by an ESRC grant on 'Geodesic Inference, Encompassing 
and Preferred point Geometries in Econometrics'.
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Preferred Point Geometry and Statistical Manifolds

1. Introduction.

A great deal of recent research has been concentrated on the interface between differential 
geometry and statistics, see for example, the review papers by Bamdorff-Nielsen, Cox and Reid 
(1986) and by Kass (1987). One goal of this activity is to establish a natural and productive 
relationship between these two disciplines and hence to deepen our understanding of statistical 
methods. Some of the attractions are obvious, at least from the statistical side. The language, insight 
and intuition that geometry has to offer is invaluable in certain complex statistical issues. Moreover the 
two disciplines are clearly compatible in certain important senses. For example the coordinate free 
approach to geometry mirrors parameterisation invariance within statistical inference. The relationship 
has already shown itself to be productive, for instance the higher-order asymptotic theory of statistical 
inference as studied, for example, in Part II of the monograph by Amari (1985), and the invariant 
asymptotic expansions being developed by Bamdorff-Nielsen (1988) and co-workers .

This developing relationship has not been all one-sided. In particular, it has produced new 
mathematical objects worthy of study in their own right. These include string theory as introduced by 
Bandorff-Nielsen (1988) in connection with invariant asymptotic expansions, and also Statistical 
manifolds as formalised in Lauritzen (1987). These manifolds include as a special case the expected 
geometry of Amari (1985) as well as the observed geometry of Barndorff-Nielsen (1988) and the 
minimum contrast geometry of Eguchi (1983).

Notwithstanding the progress already made a number of fundamental issues remain. Two 
in particular stand out. First, Bamdorff-Nielsen, Cox and Reid (1986) end their review of the role of 
differential geometry in statistical theory with the following sentence. (The italics are ours:)

'While the introduction of more specifically geometrical notions has considerable 
potential, it remains a challenging task to introduce such ideas in a way that is 
statistically wholly natural.'

Equally, whatever their elegant properties, Lauritzen's Statistical manifolds are not wholly natural 
geometrically, at least in the tautological sense that no pure geometer had ever dreamed them up 
before!

Secondly, in the traditional geometric approach, all points in a manifold are treated equally. 
No point is singled out for special treatment, in which case we say that the geometry is homogeneous. 
Current géométrisations of statistics follow this homogeneous approach. From some points of view 
this is natural statistically, for example when all points 0 in the parameter space 0  share the possibility 
of being the unknown 0O giving rise to the observed data. From other points of view it is not; 
frequently in statistics a single point has a special or 'preferred' status in © which could for instance 
correspond to the (hypothesised) true value or the maximum likelihood estimate. In such cases it is 
natural to consider defining a geometry on the whole manifold which reflects the status of the 
preferred point.

With these considerations in mind, we introduce in this paper a new mathematical object 
called a preferred point geometry. Its definition and use are guided by two principles: to be as natural 
and simple as possible from both the statistical and the geometric viewpoint and, where appropriate, 
to reflect the special status of the preferred point. The expectation is that by providing a natural 
geometric framework for statistical inference, preferred point geometries will provide a productive 
way to conduct statistical inference in practice.

A preferred point geometry essentially is a Riemannian structure. Riemannian geometries 
are generalisations of Euclidean geometry for curved spaces in which the metric tensor determines the

1
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Preferred Point Geometry and Statistical Manifolds

whole geometry. The metric enables us to define the length of any curve in the manifold. In particular, 
it is natural to use the metric or Levi-Civita connection whose geodesics are curves of minimum 
length. The idea behind preferred point geometry is to follow this path but to use a metric which 
depends upon the choice of preferred point. One statistically natural such choice of inner product or 
metric is the covariance of the score vector, or the inverse of the covariance of the maximum 
likelihood estimate, taken with respect to the true distribution. In such a case the true distribution will 
play the role of preferred point.

In this paper we develop the relationship between preferred point geometry and Statistical 
manifolds, often focussing for illustration on the expected geometry of Amari (1985). Wider uses of 
preferred point geometry in statistical inference are outlined in the final section. Any preferred point 
geometry has a homogeneous geometry associated with it. We show that, if and only if a certain 
symmetry condition holds, this homogeneous geometry subsumes a Statistical manifold structure 
while at the same time naturally generalising it to arbitrary order. There are corresponding links with 
Bamdorff-Nielsen's strings. The geometrically rather unnatural mixing of metric and non-metric 
connections that occurs in Statistical manifolds is avoided by following a preferred point approach as 
all connections are shown to be metric based. Statistically natural preferred point metrics are provided 
for the expected geometry case, where the duality between connections can be interpreted as reflecting 
a certain duality between the score vector and the maximum likelihood estimate. Duality theorems for 
arbitrary preferred point manifolds are also given.

The plan of the paper is as follows. Section 2 briefly reviews some necessary differential 
geometrical background. Section 3 gives a short summary of Statistical manifold theory and identifies 
aspects of it that can be seen as shortcomings. Section 4 introduces preferred point geometries 
formally and gives examples. These are used as running examples throughout the paper. Section 5 
discusses the derivation of Statistical manifolds from preferred point geometries. Section 6 deals with 
duality in preferred point geometry. Section 7 follows through the earlier examples paying particular 
attention to the full exponential family case. Section 8 shows how asymptotic links between the 
distribution of the score vector and of local approximations to the distribution of the maximum 
likelihood estimate throw light on the nature of duality in Amari's expected geometry. The natural 
extension of Statistical manifolds to higher order is discussed in Section 9. The final section reviews 
extensions and further work.

2. Some differential geometric background.

We briefly review the differential geometric constructions used in this paper. Amari (1985) 
and Bamdorff-Nielsen, Cox and Reid (1986) are two sources which cover the differential geometry 
used in the current Statistical literature. Murray and Rice (1987) and Murray (1988) give a more 
mathematical treatment and cover the higher order covariant derivatives and covariant Taylor series 
which are used in this paper.

We shall assume familiarity with the concept of a tensor, a manifold, a vector field, a 
metric, a Riemannian manifold, (M,g) where M is the manifold and g any metric defined on this 
manifold and a connection V defined on the tangent bundle TM of the manifold. Also the Riemann- 
Christoffel curvature tensor and the concept of a fla t metric and affine coordinate system are used. 
Definitions of these can be found in Bamdorff-Nielsen, Cox and Reid (1986). Also we shall use the 
concept of an n-form, and a covariant derivative, definitions of which will be found in Murray and 
Rice (1987).

Given a coordinate system (0) on a manifold M and a metric gij(0), we define the Levi- 
Civita or metric connection by its Christoffel symbols,

2
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Preferred Point Geometry and Statistical Manifolds

dgjk(9) | 3gik(0) t)gjj(6) 
90; 90; 90tV 1 J K t

For a Riemannian manifold this is the natural connection and it is characterised by the property that, 
if we denote the metric by < , >, then

X( Y, Z) = (Vx Y, Z) + (Y, Vx Z)

where X,Y,Z are vector fields and V is the Levi-Civita connection. It also has the property that the 
geodesics of the Levi-Civita connection are curves of minimum length among those paths that lie in 
the manifold.

Of course not all connections are metric or derived from metrics in this way. It is one main 
purpose of this paper to show that all the connections used in Statistics are in fact metric connections 
and to show how the metrics which generate these connection are statistically very natural.

A connection V allows us to differentiate tangent vectors and covariant tensors. Such a 
derivative is known as a covariant derivative. It also induces the covariant derivative of differential 
forms and so allows the covariant version of Taylor's theorem. Following Murray and Rice (1987) 
we denote this induced connection by V. Although the mathematics is similar this must not be 
confused with the dual connection of a Statistical manifold which is defined below and is used 
extensively in this paper. V is defined by its Christoffel symbols f  where if the Christoffel symbols 
of V are T we have

Thus given a function f on a manifold its 'first derivative’ is a one form df, and its covariant second 
derivative is the two form V df where

Vdf : v  a 2f
k ì i 3 e k00'

d0k <8Ü0‘+ £  - ^ f j f d 0 j ® d0k
k,l=l00

evaluating on the tangent vectors 9k and 9, will give the formula

Vdf(9^,9;) 92f 9f r k
30k301 30k jl

which we shall call the covariant hessian of the function f. It has the property that it is a two tensor 
unlike the standard hessian which is a tensor if and only if

9f_
30'

= 0 V i,

when in fact the two formulas agree.

3
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Preferred Point Geometry and Statistical Manifolds

We finish this short review by stating Murray and Rice’s formula for a covariant version of 
Taylor's theorem, which has the advantage that each term in the series is a tensor, thus invariant to 
reparametrisation, unlike the standard Taylor's series expansion. Let f  be a function on a manifold 
with connection V. Let y(t) be a geodesic, then if p = y(0) and v = y'(0) we have the following 
expansion

°° .k
f(Y(t)) = f(Y(0))+ ^ ~ ~ ^ k - Idf(v,..., v) 

k=lk!

where the higher order covariant derivatives are defined inductively.

3. Statistical manifold theory.

We briefly recall here the definition of a Statistical manifold and some basic properties. 
Lauritzen (1987) proposed the following mathematical structure for a Statistical manifold as a 
unification of earlier work notably by Amari, Barndorff-Nielsen, and Eguchi.

Definition. A Statistical manifold (M,g,T) is a manifold, M, with a metric, g, and a covariant 3- 
tensor, T, symmetric in all indices, called the skewness.

From the mathematical point of view the new element of this geometric structure is its one 
parameter family of (non-metric) connections, Va , called a -connections. For each a  (eR ) its 
connection is defined by the Christoffel symbols given by

T-OC   T—0   tX
1 ijk 1 ijk 2 1 ijk

where T0 are the Christoffel symbols for the Levi-Civita connection of the metric g.

Amari (1985), Barndorff-Nielsen (1988) and Chentsov (1972) have all shown the 
fundamental importance of these connections in statistical theory. Also the statistical curvature in an 
exponential family defined by Efron (1975) can be seen as the curvature associated to Amari's +1- 
connection. A number of significant results about these connections do exist without a complete 
theoretical framework. For example, one important property is that of duality or conjugacy.

Definition. Two connections V and V* are dual (or conjugate) with respect to a metric, < , >, if for 
all vector fields X,Y,Z we have

(vxY,z) = X<Y,Z>-<Y, VXZ)

See Lauritzen (1987, page 181). A remarkable result here is that a Statistical manifold is flat with 
respect to V if and only if it is flat with respect to V*.

This concept of duality gives an equivalent way of defining a Statistical manifold.

Definition. A Statistical manifold (M, g, V)is a manifold, M, with a metric g, and a torsion free 
connection V whose dual connection V* is also torsion free.

4
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Preferred Point Geometry and Statistical Manifolds

The relationship between the two definitions of a Statistical manifold is given by the 
Christoffel symbols of the connection and its dual. These are

r,jk “  ~  Tijk and + — Tijk, respectively.

Lauritzen noted that the dual connection is torsion free if and only if the tensor T is symmetric.

Definition. In this paper our examples are particularly concerned with the expected geometry 
version of a Statistical manifold, where the metric, g, is the (expected) Fisher information and T, the 
skewness, is defined by

Tiik(0) = Ee [^ - ln P(x,0)-T^-lnP(x,e).—̂ -ln p(x,0)]. 
oUj dUj

Amari (1985) and (1987) has considered this example of a Statistical manifold where the 
manifolds are parametric families of distributions satisfying certain regularity conditions stated in 
Amari (1985, page 16). We shall assume all parametric families in this paper satisfy these same 
conditions.

We offer the following remarks about certain aspects of Statistical manifolds which the 
present paper sets out to clarify by adopting a preferred point perspective:

(a) Statistical manifolds are homogeneous geometries. No point is singled out for special 
treatment. For example the expected geometry reflects the fact that all parameter values share the 
property that they could represent the true data generation process. Flowever it does not reflect the fact 
that in any particular problem only one of them represents the true parameter.

(b) Statistical manifolds mix metric and nonmetric connections within a single structure. 
This is less than natural and unusual from a geometric perspective.

(c) The statistical meaning and implications of duality, and of the results concerning it, are 
far from clear.

(d) As Lauritzen (1987) points out, Statistical manifolds are limited to third order 
structures. For example in the expected geometry case, they deal with the second and third moments 
of the score vector only. This limits the information which they contain. It is therefore natural to 
enquire about higher order extensions.

4. Preferred point manifolds.

The application of statistical methods naturally requires some assumption regarding the true 
distribution. This induces an asymmetry between the true model and other points in the manifold 
which represent alternative models. Existing Statistical manifold theory does not adequately capture 
the formal structure required to properly analyse statistical methods since the geometry does not reflect 
this asymmetry. The new geometric structure which we introduce takes account of this asymmetry by 
treating one point as being different or preferred. In fact the preferred point need not correspond to the 
true distribution since this may not lie in the manifold of models being currently considered. This is 
particularly important since we rarely ever know the true data generation process. Taking this view of 
the preferred point enables us to consider the properties of estimators when the true data generation 
process does not necessarily lie in the assumed model set, (see inter alia White (1982), Gourieroux,

5
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Monfort and Trognon (1984)). In addition the preferred point structure enables us to consider 
problems of misspecification, and testing within the context of separate families following Cox 
(1961), in a proper geometric framework.

In this section we extend the existing notion of a Riemannian manifold by adapting its 
geometric structure to recognise the importance of a preferred point thereby bringing the geometric 
basis for inference into line with statistical methodology.

Definition. A preferred point manifold (or geometry) is a pair, (M, g^(0)), where M is a manifold, 
and g^(0) a symmetric covariant 2-tensor on M which is positive definite in a neighbourhood of 0= <|> 
and defined smoothly as a function of the (preferred) point, <J) e  M.

Thus, in a neighbourhood of 0, g^(0) is a metric whose value is defined as a smooth 
function of the preferred point 0 as well as 0. Clearly it is enough for the preferred point metric to be 
positive definite at the preferred point, due to the smooth dependence on 0.

When considering a specific preferred point, 0O, we shall use the notation (M, g6°(0), 0O). 
If the manifold M is a p-dimensional object then the full preferred point manifold (M, g<*,(0)) is 
essentially 2p-dimensional, since the geometric structure at a point 0 depends on the value of both 0 
and 0. However once the value of the preferred point is fixed at 0O, (M, ge°(0), 0O) is again p- 
dimensional.

We show in Section 5 that the relationship between preferred point manifolds and 
Statistical manifolds can be seen by examining what happens on the diagonal. That is, when 0 = 0. 
We shall see that on the diagonal the preferred point metric can agree with the metric in the Statistical 
manifold, while its Levi-Civita connection will agree with the +1-connection. We call such a preferred 
point manifold +l-compatible. There will in fact be infinitely many preferred point manifolds 
compatible with any Statistical manifold. It is an important question, therefore, whether there are 
compatible preferred point geometries which are natural and compelling in their own right. The 
following examples, which we develop throughout the paper, show that the answer is in the 
affirmative for Amari's expected geometry.

Reference to the context will avoid confusion in using the same symbol g^(0) for a general 
preferred point metric and also for that used in Example 1:

Example 1. Consider the preferred point geometric structure, (M, g<*’(0)), where M is a (regular) 
parametric family of densities (p(x,0)), 0 e M is the preferred point, and the preferred point metric is 
given by

Preferred Point Geometry and Statistical Manifolds

Sij(0) = -p(x,0 ) ^ - ln p (x ,0 ) .^ - ln p (x ,0 )
d0j O0j

This metric is just the second moment of the score vector with respect to the distribution 
labelled by 0. This differs from the Fisher information metric simply by the fact that all expectations

6
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Preferred Point Geometry and Statistical Manifolds

are taken consistently with respect to the preferred point. We see that when 0 is evaluated at the 
preferred point <]> the metric is just the Fisher information at that point. The Christoffel symbols for the 
Levi-Civita connection for the preferred point metric g^(0) are given by

ryk(0) = e p(x,<D) ^ l np(X’e)' 4 lnP(X’0)

At 0 = <j> the connection agrees With the +l-connection in Amari's Statistical manifold. See Amari 
(1985 page 39). Thus (M, g^(0)) is +l-compatible with Amari's Statistical manifold. We immediately 
see the power of the preferred point method as we can now rationalise the +1 connection as a metric, 
or Levi-Civita, connection for this (preferred point) metric. Thus we can bring the concept of metric 
connection back into the core of statistical geometry.

Example 2. Consider a related preferred point metric which is the p(x,<|)) covariance of the score 
vector.

Clearly this reduces to the Fisher information when 0 = <(>. The Christoffel symbols of the Levi-Civita 
connection in this case are

2 2
r iV 0) = EP (x ,< t.)[^^ :lnP(x' e ) ^ lnP(x.0) ] - Ep(x,1t1) [ ^ ^ ; ln p ( x ,0 ) ] E p(x>(tl)[^ - ln p (x ,0 ) ]

We can immediately see that by evaluating 0 at the preferred point they agree with the +1-connection 
of Amari, as in the non-central moment case. Thus (M, g*(0)) is also +1-compatible with Amari's 
expected geometry. It is, perhaps, more natural to consider the central moments, since away from the 
preferred point

-p(x,<ÿ) 00,
In p(x,0) *0 .

The previous two preferred point geometries can be seen as generalisations of the Fisher 
information when it is written in the form

Ep (x ,e ) [^ lnP(x.0) ^ lnP(x.0)]- 

We could however also generalise the second derivative form

_Ep(x'0)[a ^ lnp(x,e)1
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Preferred Point Geometry and Statistical Manifolds

Example 3. If we took the expectation of the hessian about some fixed preferred point we would 
not get a tensor since it does not transform correctly under a change of coordinates. Rather we have to 
look at the covariant version of the hessian which was defined in the introduction. We obtain the 
following preferred point metric which clearly reduces to the Fisher information when 0 = tjt:

h?j(0) = -E p (x ,0 )[g ^ ln p (x ,e )-(g V rr ^ (e )^ -ln P(x,0)]

where g ^ rsis the inverse of the preferred point metric from Example 1 and r* is its Christoffel
<j)

symbol. In this case the Levi-Civita connection of hy equals that of the O-connection when 0 = <j> (see 
Theorem 4). We note we get the same compatibility if, in the formula, we replace the metric of 
Example 1 with that of Example 2, as long as we change to the corresponding Christoffel symbol.

Examples 1, 2 and 3 generate the +1 and 0 connections of Amari when evaluated at the 
preferred point. We give below preferred point metrics that are -1-compatible with Amari’s expected 
geometry. Indeed we will show later that these are dual to their +1-compatible counterparts in a sense 
that reflects a certain duality between the score vector and the maximum likelihood estimate.

We have seen the preferred point generalisation of two different forms of the Fisher 
information matrix. We can also consider the form of this matrix in the case of misspecification (see 
White (1982) or Gourieroux, Monfort and Trognon (1984). If 0 lies outside our manifold and the 
maximum likelihood estimate on the manifold converges to 0*, then the form of the information 
matrix at 0* is

E ef 30s90j
lnp(x,0*)] Ee[r^-lnp(x,0*)-^-lnp(x,0*)| E el 90t30j

lnp(x,0*)]

which may be compared with the corresponding preferred point metrics developed below. 

Example 4. Consider the formulas

k$(0) = gis(e)g<t> St(e)gjt(6) and ljj(0) = hfs(0)g® st(0)hj’t(0) j

where g is the Fisher information and g* and h* are defined in Examples 1 and 3. Then k®(0) and

*jj(0) are both preferred point metrics which reduce to the Fisher information at 0 = tjt.Theorems 3 and 
4 below show further that they are -1-compatible with Amari's expected geometry. Again as in the 
case of Example 3, we get the same results if we replace the metric of Example 1 everywhere with that 
of Example 2.

5. The derivation of Statistical manifolds from preferred point geometry.

Having observed these links with the particular case of Amari's expected geometry, this 
section considers the general relationship between Statistical manifolds and preferred point 
geometries.

In Section 3 we noted two different ways of viewing a Statistical manifold, either as 
(M, g, V) or as (M, g, T ) . We shall look at both of these interpretations in turn and see how they can 
be understood in terms of preferred point geometry. We start with (M, g, V ).
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Preferred Point Geometry and Statistical Manifolds 

5.1 Homogeneous structures.

Any preferred point geometry (M, g*(0)) has twice the dimension of its underlying 
parameter space. Let M be p-dimensional. We can then view the preferred point geometry as a 
geometric structure on MxM as we let both 0 and <j> vary independently. We can recover a p- 
dimensional geometric structure on M by choosing some fixed value of the preferred point 0O and 

looking at the Riemannian manifold (M, g6°(0)). However this is not the only way of recovering a p- 
dimensional structure. Consider Figure 1, the diagram denotes the preferred point manifold as MxM 
with the vertical axis representing the range in the preferred point (j> and the horizontal axis the range in 
the parameter 0. Thus the p-dimensional structure defined by fixing a value of the preferred point at 
0O is represented by a horizontal line. Consider the p-dimensional structure defined by the diagonal 
0=<t>.

Definition. A p-dimensional substructure of (M, g*(0)) can be defined by taking geometric objects 
in the preferred point geometry and restricting to the diagonal ((>=0, as <|> varies across M. Such a 
structure is called homogeneous. This name is used since in these geometric structures all points are 
given the same importance and no one point is singled ou t.

Theorem 1 below shows there is a Riemannian structure induced by a preferred point
4> 6

geometry (M, g (0)). This is the one given by (M,g (0)), called the homogeneous Riemannian 
structure.

Example 5. If we are working in any of the preferred point geometries given by Examples 1, 2, 3 or 
4 then the homogeneous Riemannian structures are all given by the Fisher metric. This follows at 
once from properties noted above.
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In a preferred point manifold we can define other homogeneous structures apart from the 
Riemannian one. We shall now show, in theorem 1 below, how a Statistical manifold can be seen as a 
'homogeneous connection geometry' of a preferred point manifold.

Definition. Let us define V^(0) to be the Levi-Civita connection of g*(0) evaluated at 0, and define 
V (0) to be the Levi-Civita connection of the homogeneous Riemannian metric.

Theorem 1. (i) Let (M, g*(0)) be a preferred point manifold. The homogeneous structure (M,ge(0)) 
defines a Riemannian manifold, which we will denote by (M, g).

(ii) V®(0) is a homogeneous connection structure. In particular V®(0) defines a 
torsion free connection on M.

(iii) Then (M,g,V®(0)) is a Statistical manifold iff

T (0)=2(V (0)-V e(0))

which is a three tensor, is symmetric. In this case we call T the Skewness of the 
preferred point manifold, following Lauritzen.

Preferred Point Geometry and Statistical Manifolds

Proof, (i) Defining g(0)=ge(0), we need to show that g is a metric on M. Clearly it is a symmetric, 
positive definite, bilinear form. Thus we need to show that it transforms as a tensor. Since for each 
fixed preferred point 0O we know the transformation rule for the metric g °(0) is given by

g ij° (0 )w |^ (0 ) . |^ - (0 )g r t(0 )
9Vi 3\|/j

setting 0O=0 we get the result. Thus (M,g) = (M,ge(0)) is a Riemannian manifold.

(ii) Denote the Christoffel symbol for the Levi-Civita connection of the preferred point 
6 6

metric g °(0) by 1 ^ (0 ) . The homogeneous connection information is defined by the Christoffel 
symbols

r Uk(6)
0for each 0. As for the metric case we can easily check that 1 ^ (0 )  transforms as a Christoffel symbol

0for a connection. Furthermore for all 0O, r^COHs a Levi-Civita connection and hence torsion free.
0

That is its Christoffel symbols are symmetric in i and j. Therefore the Christoffel symbols 1 ^ (0 ) are 
also symmetric in i and j, and so represent a torsion free connection.

(iii) The final part of this theorem follows from a result by Lauritzen (1987 pagel83) 0

We give as a corollary some conditions under which the preferred point connection and the 
homogeneous connection of a preferred point geometry agree everywhere, not just at the preferred 
point. This result is used in Section 7 in the exponential family case.
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Preferred Point Geometry and Statistical Manifolds

Corollary. Let (M, g*(0)) be a preferred point manifold such that g*(0) is a flat metric for each 
value of the preferred point. Suppose, further, that there exists a coordinate system \j/ 
which is affine for g*(0), for all <|>. Then for each <|> the preferred point connection,

O
, agrees with the homogeneous connection, V (0), at all points 0.

Proof. Working in ^-coordinates, the Christoffel symbols for the homogeneous connection at 0 are 
those of the preferred point connection when 0 is the preferred point. These are zero since the 
Christoffel symbols for V*(0) are identically zero for all 0 and <j> in the ^-coordinate system. 
Consider the two connections V^(0) and V®(0). As both their Christoffel symbols are zero 
everywhere and they are both torsion free they must be identical. 0

Example 6. The preferred point geometry of Example 2 generates Amari's expected Statistical 
manifold. We have already seen that the homogeneous Riemannian structure is given by the Fisher 
metric. We therefore look at the second order homogeneous or connection structure. We have already 
seen that this is given by the +l-connection of Amari. Therefore we simply need to check that the 
symmetry condition on T holds. The 3-tensor in this case is given by the tensor

Eeo[4 lnp(x’0)4 lnP(X’e)^ lnP(X’0)]|eo=e
which is clearly symmetric.

Example 1 will also generate Amari's expected Statistical manifold in exactly the same 
way. Thus this demonstrates that there is not a one to one correspondence between preferred point 
geometries and Statistical manifolds. Furthermore it is easy to construct preferred point geometries for 
which the skewness is not symmetric. Thus for both these reasons preferred point geometries should 
be considered as a more general construction.

5.2 Correction terms.

In this section we look at the relationship between the second form of the Statistical 
manifold structure, (M, g, T ) , and that of preferred point geometries. We show that there is a direct 
geometric interpretation of Amari's skewness tensor in the preferred point geometry.

As we saw in the previous section a Statistical manifold is a homogeneous structure. It is 
important to understand how a homogeneous structure differs from a preferred point one at the 
preferred point. Consider, as an example, the contrast between the homogeneous Riemannian and 
preferred point metric structures. At the preferred point, 0othe two metrics agree. They only differ at 
other points. It is therefore in their derivative at 0O that they could disagree. To demonstrate this 
consider the preferred point metric as a perturbed version of the homogeneous metric.

Q Q
We define a perturbation of a preferred point metric gjj°(0) to be py (0) where

gij(e ) =  g?j°(e)+p?j ° (0 ), P jj°(0 o) =  o
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Preferred Point Geometry and Statistical Manifolds

and g is the homogeneous metric. Thus the perturbation is a symmetric 2-tensor which is zero at the 
preferred point. The difference in the derivatives of the homogeneous structure and the preferred point 
metric are given by the derivative of the perturbation. We therefore define the first order correction to 
the homogeneous Riemannian structure to be

tlJk(e) = a e 7 ‘JO(e)|0o=e

Theorem 2. T(0)is a homogeneous three tensor. Further if T(0) is symmetric in all its indices then 
we have that T(0) = T(0), defined above, and so the symmetry condition of 
Theorem 1 holds.

Proof. Since we are evaluating on 0O=0 we see that T(0) is homogeneous. Under a change of 
variable, (0 —» \|/), p transforms as

PijO(0 )M |^ (0 ) .|5 i.(0 )p ® °(0 ) 
1 dVi dVj

thus —  Pjj°(9) transforms as
t)0 J

d_
30 k Pij°(6) f * - ? ( 0 ) - f ^ ( e ) | ^ ( 0 ) | r  Pn0(6) + Prt ( 6 ) | ^ ( e ) ^  J chj/j 3\j/j 3\j/k 30s 3\|/k 30, l r (e)- l r (e)'3Vj )

Hence evaluating on the diagonal 9=0O and using pfj°(9o) = 0 we have the transformation rule

Tljk(9) W |® L (0 ).|® l(0 )|® L (0 )frsl(0). 
9Vi 3¥ j 3¥k

Thus it is a tensor.

Calculating the Christoffel symbols of the Levi-Civita connection of g^O) and evaluating 
at 9 =0O we see that

1 ògjk , 3g,k 3g,j' 1Jf._
f an®o -, e0 

3pjk 3P,k 3pjj°'
2 30i 30j 30k 2 30; 30; 

J
30k

/

— r ijk + ^(^kij + Tjki -  Tjjk)
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Preferred Point Geometry and Statistical Manifolds

where I' is the Christoffel symbol for the homogeneous metric. Thus if T(9) is symmetric we see that 
it must equal T(0) and so T itself must be symmetric. 0

Example 7. Consider the preferred point metrics of Examples 1 and 2. Both these examples 
generate Amari’s geometry. We calculate that in both cases T(0)equals

Ee[^ - ln p (x ,0 )^ - ln p (x ,0 )^ - ln p (x ,0 ) ]
dUj doj ddfc

In other words, the skewness as defined by Amari. (We have the symmetry condition required and 
T(0)= T(0) as calculated above.)

We need to use this first order correction if we are calculating the homogeneous connection 
structure from the homogeneous Riemannian one. The homogeneous metric gives us (Lauritzen's) 0- 
connection, but by adding the first order correction we get

r ijk “  ~  (Tkij + Tjid -  Tjjic)

which, under the right symmetry conditions, is a +l-connection.

Thus we have seen that the homogeneous structure of a preferred point geometry generates 
a triple of the form (M, g, T), i.e. the manifold, its homogeneous metric and the first order correction 
to the derivative of the homogeneous metric. Lauritzen (1987) shows that if we have such a structure 
and T is symmetric, then we have a Statistical manifold and it can be written as (M,g,V) where V is 
the +l-connection generated by g and T. We have shown that if we have Lauritzen's symmetry 
condition then the preferred point geometry which generates (M, g, T) generates the same Statistical 
manifold (M, g, V).

6. Duality in preferred point manifolds.

Thus a preferred point geometry can generate the basic structure of a Statistical manifold in 
both its forms. The internal mathematical structure of a Statistical manifold also has an interpretation 
in preferred point geometry theory. In particular the significance of the dual connection can be 
understood very clearly using our new techniques. We first develop the mathematical framework of 
duality in preferred point geometries. In Section 8 statistical interpretations are given for our 
constructions. Recall that Examples 1 and 2 generate Amari's +l-connection in a natural way, 
Example 3 generates the 0-connection and Example 4 generates the -1-connection. This section shows 
how this behaviour can be generalised.

Definition. Let the preferred point geometry (M, g") generate the Statistical manifold (M,g,V) 
assuming the symmetry conditions stated above. We call V, the homogeneous connection, the +1- 
connection of this structure, following Lauritzen. Let

kf/0) = gis(0)g<!> st(0)gjt(9)
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Preferred Point Geometry and Statistical Manifolds

where g1̂ ^(0) is the inverse of gjj(6) and g is the homogeneous metric for the preferred point 
geometry.

Theorem 3. With the above definition k9°(0) is a preferred point metric whose connection at 

0=0O equals the dual connection to V.

Proof, k* is a preferred point metric since it is an asymmetric two tensor which is positive definite 
when evaluated at the preferred point. Consider differentiating and evaluating at 0=0O.

= s : <6i-<ei)5J + s ; <Bi' ie il8 ' * B“ l9 ,e ,‘<0ls i <8' ’ “ (e)>
Now

gfs°(0)g6°st(0) = 8‘
So differentiating gives

-|~ (g® o(0))ge°st(0) + g®°(0)-^-(g9°st(0)) = 0 
OQk 00^

At 0=0O

4 - ( g e°St(0)) = - ^ - ( g i Bi°(0))g Si(0)gtj(6)
0 /.e„.

00 30k ‘J

Hence substituting into the original equation we get

- (^ - (gij(e))-T ijk)g si(e )glj(e )
dUk

aek k^°“  a0k (g'j(9))+T,jk

Therefore the Christoffel symbols for this metric are, using the symmetry condition

ruk + ̂ Tijk

in other words we have the dual connection to V since its Christoffel symbols are I\jk -  ~Tjjk _

Thus if a preferred point metric generates a +1-connection there exists a related preferred 
point metric which generates the -1-connection. This method of constructing the dual connection is 
however not entirely consistent with the preferred point philosophy since the dual preferred point
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Preferred Point Geometry and Statistical Manifolds

metric is constructed using a homogeneous object. The following construction is appropriate to 
expected geometries will also produce a preferred point metric which generates the dual connection. 
In Section 8 we shall see how the first can be viewed as simply a special case of the following 
method.

As recalled in Section 2, Murray and Rice (1987) give a clear exposition of the way 
connections can be used to calculate invariant Taylor series using the higher order covariant 
derivatives of a function. This gives us an interpretation of the metric in Example 3. It is simply the 
expected value of the covariant hessian using the connection defined by Example 1. We generalise this 
construction in the following theorem which shows that for the expected geometry case any preferred 
point geometry whose homogeneous connection is the +l-connection will also generate a preferred 
point metric which is the generalisation of the hessian form of the Fisher information. This metric will 
generate the O-connection as its homogeneous connection structure. Furthermore, from these two a 
third preferred point metric can be constructed which generates the -1-connection.

Theorem 4. Let g* be a preferred point metric which generates Amari's expected Statistical
manifold (M,g,V) where g is the Fisher information, and V is the +1-connection. 
Then

2

hf/0) = ~e p(x, ^ ^ -  ln p(x>0) -  (g<t,)Srr^>s^ | - ln p(x,0)]

is a preferred point metric whose homogeneous connection is the O-connection. 

Further,
l ^ h t f g V h ?1J 1SV=  )  " u -

is also a preferred point metric and its homogeneous connection is the -1-connection. 

Proof. By calculation

32
aeidOj

lnp (x ,e )-(g 't,)srr ^ l n p ( x , 0 )

is a 2-tensor and hence so is h-. Further at <(> we see that h^ is positive definite since at (j) it equals the 

Fisher information. Therefore h jj is positive definite in a region of 0 thus is a preferred point metric.

At 0=<J> we see that

301
-hjjfOflg^ E p(x ^[-

^0i^ 0 7 0 ^ lnp(x’,^)]+^^ )•E p(x^ ^ M ^ lnp(x’(,,)]■g' ,

-E^ -« [3 0 ^ lnp(X̂ )]- ^ (̂
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Preferred Point Geometry and Statistical Manifolds

" ■ 3 ^ E><‘-9,I3 ^ e ]1”p<:‘'6>1le"*" S I 8®1!11"*

Thus its homogeneous connection agrees with the O-connection.

The proof that hj^(g^)Ish|. is a preferred point metric with homogeneous metric g and 
connection the -1 -connection exactly mirrors that of Theorem 3. 0

We note that if g* and h* are any two preferred point metrics generating the +1 and 0- 
connections, then 1* constructed as above generates the -1-connection. Again, if g /  and g2* are 
preferred point metrics generating the a ,  and a 2-connections then, for any real number X,

Xgf + (1 -  X)g| is another preferred point metric that generates the ^otj + (1 -  X)a2 connection. 
However rather than pursue such purely formal matchings of preferred point metrics, we prefer to 
concentrate on results such as Theorem 3 and 4 for which a clear statistical interpretation is available.

We can now summarise the content of these theorems as they relate to Amari's expected 
geometry. There are four triples of natural preferred point metrics which generate the (+1, 0, -1) 
connections respectively. They are (g*, h*, k*) and (g*, h*, 1*) with g 'as in Example 1, and the two 
further triples that result by replacing throughout g* by g^ of Example 2 to obtain (g^, h^, k^1) and 
(g*̂ , h1̂, I1*1). Thus there are two choices to make in this 2x2 classification of possibilities:

(a) g* or g'*’? (We have already indicated that is preferred.)

(b) the k or 1 form of duality?

To make this second choice requires a clearer statistical grasp of what is involved. Before doing so in 
Section 8 we consider in more detail the preferred point metrics in the particular case of the full 
exponential family

7. Examples in the full exponential family case.

We consider the full exponential family whose density with respect to some carrier 
measure can be written

p(x,0) = exp {x,8i — \jr(0)}

Here 0 is the canonical or natural parameter. Amari (1985) introduces the expectation parameter T) 
with general element q i = £ p(x eyfxj]- It is immediate that in this case
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Preferred Point Geometry and Statistical Manifolds

Because of our preferred point geometry context, and in order to be able to generalise to arbitrary 
likelihoods, we introduce the preferred point expectation parameter p* with general element

nf(0) = Ep(x>lWh ^ lnp (x ,e )]

In the exponential family case, these two parametrisations are related by:

Ilf (®) = T|iW ~ TU(0).

In particular, pe (0) vanishes identically in 0. When <)> is evident from the context, we write p,(0) for 

P*,(0).

Proposition. Let g,,(0) denote the form of the Fisher information in the 0-coordinate system and 
g^S) its inverse, in the same coordinates. Consider the above exponential family. We recall that

s»<6)- S ^ <e>-

Then we have the following results:

(1 ) In the 0-coordinate system, gjj(6) = gij(<t>) + tifdj*

(2) In the 0-coordinate system, gjj(0) = gij(<S>), a constant, independent of 0.

(3) In the p-coordinate system, i^ (p )= g'^W, a constant, independent of p.

(4) In the 0-coordinate system, hy(0) = gjj(0)

(5) ljj(9) = kjj(0), thus a constant in the p-coordinates.

~0In particular for each 0O, Example 2, (M, gjj°, 0q), is flat and the natural ©-coordinates are affine,
- Q  -.0

and its dual preferred point manifold (M, ky0, 0O),which in this case equals (M, ly°, 0O), is also flat 

and the expected p-coordinates, are affine.

Proof. (1) and (2). These parts follow by a simple calculation.
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Preferred Point Geometry and Statistical Manifolds

(3) Amari (1985) notes that the change of basis matrix for the reparametrisation {0}—>{r)} 
is given by the inverse of the Fisher information matrix. Clearly, that for the reparametrisation
{tj}—>{|i} is minus the identity matrix. But, by definition k-j(9) = gis(®)g<*>St(®)Stj(®). Thus in the p-

coordinate system (3) has the form g‘*lst(0(p)), i.e., the inverse of the form of (2) in the 0-coordinate 
system. The result now follows from (2).

(4) Since the metric in (2) is flat, the associated Christoffel symbols vanish in the 0- 
coordinate system. So the covariant hessian equals the standard hessian in this coordinate system. 
Moreover in the present exponential family

Hence,

32
30i30j

lnp(x,9) = - 32\|/
30i30j

(0) =  - gij(0)

h$(0) = - E p{M)[-g ij(0)-O ] = gij(0)

(5) Given (4), this is immediate. 0

Amari has shown that the exponential family is +1 -flat and that the 0-coordinates are +1- 
affine. We remark that this follows at once from part (2) of the above proposition, when we recall the 
corollary to Theorem 1, since the 0-coordinates are affine for all values of the preferred point, and the 

fact that the homogeneous connection for (M, gy(0)) is the +l-connection. By part (3) of this 
proposition, similar remarks apply to Amari’s result that the exponential family is -1-flat and that the 
expected coordinates are -1-affine.

Finally we note that the preferred choice g gives neater results than g. Explicit formulae for 
h,k and 1 are not given here.

8. Duality and asymptotic statistics.

In this section we take an asymptotic statistical look at duality in Amari's expected
geometry.

The preferred point metric in Example 2 has a direct statistical interpretation in the space of 
random variables spanned by

Amari identifies this space with the tangent space to the manifold at the point 0. Consider a random 
sample x = {x ,,... , x„) and let the data generation process lie in our manifold of distributions with 
parameter 90. Under these conditions the score vector for the sample x will be the sum of the scores 
for each x,. So we can consider it in the vector space spanned by these vectors or in the representation 
of the tangent space. We can apply the Central Limit Theorem immediately and see that the score for x 
has an asymptotic normal distribution
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Preferred Point Geometry and Statistical Manifolds

^ ir lnp(Xs’e) ■ N(n(̂ 0)’ n̂ °)
9 ~0where |X| °is defined in the previous section and g " is the covariance is given by the preferred point 

metric from Example 2.

Having found a statistical interpretation for the metric of Example 2 in terms of the score 
vector we now show a direct statistical interpretation of the duality of a Statistical manifold in both the 
special case of an exponential family, and then in generality. We shall show that the duality in fact 
corresponds to the relationship between the asymptotic distributions of two random variables, the 
score and the maximum likelihood estimate.

It is helpful to first recall the derivation of the asymptotic normality of the maximum 
likelihood estimate from Cox and Hinkley (1974 page 294). The asymptotic distribution of the 
random variable (9 -  9) is derived under the assumption that 9 is the true parameter. Asymptotically 
the relationship between the maximum likelihood estimate and the score test is given by the 
approximation.

V ng(9)(e-9)‘ * - ^ = £ ^ - l n p ( x s,9) (1)
Vn s 99;

where we have an i.i.d. sample vector (x,, x2,...xn) and g(9) is the Fisher information at 9. The key 
to the calculation is the approximation of the maximum likelihood estimator with a sum of i.i.d. 
random variables which are score vectors. Under the assumption that 9 is the true parameter value the
asymptotic distribution of each of the individual elements of the score vector is N(0,g(9)) Thus (1) is

I  ..
used to calculate the asymptotic distribution of n 2(9 -  9) as N(9,g_1(9)).

Denoting the true parameter value by 90 consider the distribution of (9 -  9) for all possible
9. We have a choice over which set of linear i.i.d. random variables to approximate (9 - 9 ) .  We 
could use as in the standard derivation the score at 90.

X 4 - lnp(xs,90)

or we could in fact use the score at any other point 9,

l | : l n p ( x s,9).

The first course will give the same derivation as the classical case (except for a trivial 
translation). Following the second choice and expanding the score at the m.l.e. in a Taylor expansion 
we get
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Preferred Point Geometry and Statistical Manifolds

r) (ft * 0
0 = -In P(xs-e) + (0 -  e)JX ^ 3 Z _lnp X̂s,e +̂ ° ^ 8 “ e^ 's w0i s dUjdUj

Thus for small values of (9 -  0) we will have a good approximation

eft d
- ( 0 - 0 ) j£ — —  lnp(xs,0) = £  — lnp(xs,0)- 

s dUjdUj s dUj

Note the difference in the approximation arguments between this and the standard case. There the 
approximation between the two random variables is due to the fact that asymptotically (0 -  ©o) 
converges to zero since we have assumed that 0O is the true distribution. Here we are using a different 
condition, simply that if the m.l.e. lies in a small neighbourhood of 0 then our approximation will be 
a good one. Note that if

|(0 - 0 ) | « | ( 0 - 0O)|

it will be this second approach that provides a more accurate approximation to the distribution of the 
maximum likelihood estimator than the standard asymptotic approximation. A priori we would expect 
this condition to hold in a number of cases, for example in the case of mispecifted models where 
0 -  0O may never be small since the true data generation process does not lie on the manifold.

We can now use this different approach to give us an approximation to the distribution of 
the maximum likelihood estimate in a small region of the point 0, whether or not this is the true 
parameter. We call this method the local approximation to the distribution.

We shall first complete this calculation the exponential family case. We have, working in 
the natural coordinates 0, the formula that

■ T ? s | s ; lnp<’‘' e )* e»<9>

the Fisher information. Hence we get the approximation for small (0 -  0)

n V2g(0)(0 -  0) -  n~ V2£  A  In p(xs, 0). (2)
s

This approximation is then used to locally approximate the asymptotic distribution of the m.l.e. since 
the asymptotic distribution of the score is known. Thus using (2) from our preferred point analysis 
above we find that

nV2( 0 - 0 ) ;  N(nV2g->(0).(nfo), (k®0)-1) 

In particular the covariance of the asymptotic distribution of n^2(0 -  0) is
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Preferred Point Geometry and Statistical Manifolds

~ Q
which is the inverse of the preferred point metric from Example 4, ky°. Note that when 0 is 0O this 
local approximation reduces to the standard one.

We can work in the better coordinates for this preferred point metric, ky°, that is its affine 

coordinates, which are the expected p coordinates. We have already seen that in this parametrisation 
the preferred point metric has the constant form ^(©o). Further the mean of the normal approximation
will transform to be n’/2p, since from Amari (1985) the change of basis formula is given by the 
Fisher information matrix. Thus in this coordinate system the variance will be a constant and the mean 
will simply be a translation from the preferred point for each different point of evaluation, i.e. the 
local approximation will be

nV2( p - p ) i  N(-nV2(p?0)’ gU(0O))

We can also ask the question what formulation do we get outside the full exponential 
family case? The approximation (1) is based on the Taylor expansion

0 = £  In p(xs,0) + (0 -  0)jX  In p(xs,0) + O((0 -  0)2) 
s s

which is not a geometrically well behaved since it depends on the coordinates used, as is pointed out 
in Barndorff-Nielsen (1989) or Murray and Rice (1987). It is more natural to use the covariant 
version of Taylor's Theorem with respect to the metric we have on the space of the scores. This 
would give the formula

°  = S g r lnP ( ^ e )  + ( ê - 0 ) JS
s i s

0 l n p l x ^ - g ^ T ^ ^ - l n p l x , © )
30j 30 j ‘Js 90r

+ o ( ( 0 - 0 n

For large values of n we can use the approximation

r a2

" 7

"'p(*.0o) 90 30 ln P(X,0) “  ® ° " rij,”(0) 3 ( f ln P(X,9) = h*°(0)

Note that in the case of a full exponential family this approximation will reduce to (2) and the same 
analysis follows through.

Thus for large n and small (0 -  0) we would find the inverse of the covariance of this 
distribution is given by the metric

’ = hfs(g‘*’)rsh jr
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Preferred Point Geometry and Statistical Manifolds

as in Theorem 4. We have shown that in this general case we have the duality between the preferred 
point metric for the score and the metric for the local approximation of the distribution of the m.l.e. 
This duality corresponds exactly to that between the +1 and -1 connections when evaluated at the 
preferred point. We sum up the key points in the above developments in the following theorem.

Theorem 5. Let 0 denote any point in a parametric family (p(x,0)) and let (|> denote the point which 
is the true data generation process.

(i) The covariance of the (asymptotic) distribution of the score vector at 0 is given by 
the preferred point metric

n.g®"(0) = n.Ep(I .e>)[ ( ^ - ln  P(x,0) -  M ^ ; ln P(x-e ) "  l1;)] 

whose homogeneous connection is Amari's +1-connection.

(ii) If the family is a full exponential family then the local approximation to the 
distribution of n1/,2(0 - 0 )  around 0 is

n^2( 0 - 0 ) ^  N |n^2g_1(0).(p®°), (k f jT 1)

Its covariance is the inverse of the preferred point metric

ke°(0) = g(0)(ie°(0))_Ig(0)

where g is the Fisher information. The homogeneous connection for this metric is 
Amari's -1-connection.

(iii) In the full exponential family both these metrics are flat and their affine 
parametrisations are the natural and expected parameters respectively.

(iv) In the expected coordinate system the local approximation of the distribution of 
n '/2(0 -  0) has the constant variance form

nV2(£-nH  N(-nV2(n?°), gij(0O>)

(v) In a general parametric family the distribution of n'^2(0 -  0) which is constructed 
using the score at 0 is given by

nV2(0 -0 )f NjnVVVOMu?0), (T®0)-1)
where

l,j°(0) = h?s°(ge°)rsh®0 
and
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Preferred Point Geometry and Statistical Manifolds

*1*0) = -p(x,(t>) aoiaoj
h tp (x ,0 )-g * rer £ ^ - ln p ( x ,0 )

fy r are the Christoffel symbols for g^(0) the preferred point metric in (i). Again 
the homogeneous connection for this preferred point metric is Amari's -1-connection.

(vi) In the full exponential family, l e°(0) is flat for each 0oand the p-coordinates are 
affine. The homogeneous connection for this preferred point geometry is Amari's -1- 
connection.

9. Higher order extensions of Statistical manifolds.

In this section we demonstrate a natural way to extend the definition of a Statistical 
manifold to higher order via preferred point theory and note the consequent connections with string 
theory as developed by Barndorff-Nielsen (1988) and co-workers.

We consider first the (M, g, V) form of a Statistical manifold. A natural way of extending 
the definition of a Statistical manifold structure beyond third order is to take the higher order 
homogeneous structures given by a preferred point geometry. For each preferred point, <J), consider 
the higher order covariant derivatives at 0. We obtain the homogeneous structure by simply 
calculating these on the diagonal where 0 is set to <|>. Thus we could propose the following definition 
for the generalisation of a Statistical manifold.

Definition. Denote the k* order covariant derivative induced by the Levi-Civita connection of the 
preferred point metric g* by

(V*)(k)(0)

and the corresponding homogeneous object by

V(k)(0) = (v e)(1°(0).

Definition. We define a k* order Statistical manifold generated by the preferred point geometry 
(M, g*) to be the k-tple

(M, g, V.......V(k“2>(0)).

One of the most important uses of differential geometry in statistics has been in its 
application of methods which are invariant under a change of coordinates or reparametrisation. This 
property can be seen as the defining property of geometry. A particular consequence of using these 
invariant methods has been highly developed in Barndorff-Nielsen (1988) with his use of strings. For 
example one use of these new geometric objects is the construction of invariant Taylor series and the 
connected problem of choosing coordinates around a point in the manifold. Murray and Rice (1987) 
and Murray (1987) give a good account of this application, and demonstrate the importance of the non
metric a-connection in this theory. It is therefore clear that the klh order statistical manifold will
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Preferred Point Geometry and Statistical Manifolds

contain enough information to calculate the first k terms of a covariant Taylor expansion around 9 
working under the assumption that 9 is the true parameter.

We can also consider extending the alternative (M, g, T) Statistical manifold structure to 
higher order. We recall that the skewness was defined as the covariant derivative of the difference 
between the homogeneous metric and the preferred point one. Thus the higher order generalisation 
would include tensors which give the higher order covariant derivatives of this difference. Also it 
would include the covariant derivatives of the difference between all order homogeneous structures 
and their corresponding preferred point versions. We do not give an explicit form for the k;h-order 
version here since we feel the definition above is more natural. However Bamdorff-Nielsen (private 
correspondence) has proposed that two tensors are required to extend the Statistical manifold structure 
to fourth order via (expected) yoke theory. These tensors do not have a classical interpretation. We 
now show how to generate both these tensors from preferred point geometry and how it gives them 
direct geometric interpretations and also allows a coordinate free derivation.

In Amari's Statistical manifold the next important correction term will be the covariant 
derivative of the difference between the Christofffel symbols of the homogeneous connection and the 
preferred point connection. This is simply twice the covariant derivative of the skewness. Thus this 
correction term is

V$T(9)|e=$ = V+1T(9)|e=  ̂

since on the <j>=9 diagonal we have the identification

V^f (9)|0=<|> = V+1f(9)|e=(j)

The right hand side is one of the tensors which Bamdorff-Nielsen identifies, see Bamdorff-Nielsen, 
Blassild, Pace and Salvan (1990).

We have shown above that the first order correction term for the preferred point geometry,
,  (j)
hjj, is zero. Therefore it is natural to look at the second derivative of the difference between the 

homogeneous metric and the preferred point one. We calculate this evaluated at <|) to be

Ep(x,<t>)ta uln P(x,<t>)a?s In p(x,<j>) + 3ylnp(x,<|>)ar ln p(x,(j>)3slnp(x, ((>)]- g^ ln'rj}11r “Jn

and this agrees with the second of Bamdorff-Nielsen’s fourth order tensors, which he denotes by 
Tij;is see Bamdorff-Nielsen, Blssild, Pace and Salvan (1990).

It will be interesting to develop invariant asymptotic expansions following the higher order 
preferred point route and compare these with the work of Bamdorff-Nielsen and others.

10 Conclusion and further work.

In this paper we have developed the theory of preferred point geometry and its application 
to statistical inference. In doing so we have extended the existing notions of a Statistical manifold and 
show how this may be developed from our preferred point structures. We have provided a clear 
theoretical basis for the non-metric connections used previously by Amari which may now be seen as 
particular preferred point metric connections. In doing so we have provided a formal basis for a 
statistical methodology which rests on the need to condition inference on some particular point in the
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Preferred Point Geometry and Statistical Manifolds

parameter space. We have explored the duality inherent in the statistical manifolds structure and 
shown that in the expected geometry case it corresponds to a duality between the maximum likelihood 
estimate and the score vector.

The statistical interest of preferred point manifolds is by no means limited to the light they 
throw on Statistical manifolds and Amari's expected geometry. In this final section we briefly indicate 
further work in progress.

One obvious development is to consider Bamdorff-Nielsen's observed geometry rather 
than Amari's expected geometry. One possible way of doing this is to work with distributions which 
are conditional on the value of some ancillary statistic. The preferred point metrics may then be 
calculated via conditional expectations rather than the unconditional used in this paper.

Turning to more general applications of preferred point geometry, consider first the 
fundamental asymmetry between null and alternative hypotheses. This asymmetry finds no expression 
in homogeneous geometries, whereas preferred point geometries are ideally suited for this purpose. 
This aspect is developed in another paper on asymmetry and the differential geometry of parameter 
spaces, Critchley, Marriott and Salmon (1991a). In this paper we also examine the role of divergence 
functions such as the Kullback Leibler distance which can be shown to be compatible in a certain 
natural sense with particular preferred point metrics. There are understandably clear strong links here 
with Bamdorff-Nielsen's yoke theory. There is the possibility of developing a preferred point 
geometry for nonparametric or 'distribution free’ statistics when the particular manifold is embedded 
in a higher dimensional function space.

A major feature of preferred point geometries is their Riemannian nature. This allows us to 
speak of geodesic distances and not just projections along geodesics curves. Indeed, given that we 
can establish a preferred point manifold in a way that is statistically natural, there are grounds to 
believe that the geometrically natural quantity of geodesic distance will serve as a useful test statistic, 
see Critchley, Marriott and Salmon (1991b).
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