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Abstract. Structural vector autoregressive (VAR) models are in frequent use for impulse

response analysis. If cointegrated variables are involved, the corresponding vector error

correction models offer a convenient framework for imposing structural long-run and short-

run restrictions. Occasionally it is desirable to impose over-identifying restrictions in this

context. Some related problems are pointed out. They result from the fact that the over-

identifying restrictions have to be in the admissible parameter space which is not always

obvious. Conditions are given that can help in avoiding the problems.

Key Words: Cointegration, vector autoregressive process, vector error correction model, im-

pulse responses

JEL classification: C32
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1 Introduction

In structural vector autoregressive (SVAR) modelling long-run restrictions are often used in

addition to short-run restrictions to identify the shocks and impulse responses of interest. In

particular, if cointegrated variables are present, the cointegration properties may be useful

in specifying the number of shocks with permanent and transitory effects. Vector error

correction models (VECMs) and the framework laid out by King, Plosser, Stock & Watson

(1991) offer a possible setup for imposing identifying restrictions. In this note I will argue that

these restrictions require some care in doing inference for impulse responses. In particular,

certain over-identifying restrictions are not possible because they imply a singular residual

covariance matrix which is usually ruled out by assumption and is also not plausible from

a theoretical point of view. In other words, some over-identifying restrictions may not be

possible because they are outside the admissible parameter space. This of course also means

that associated t-ratios cannot be interpreted in the usual way. Unfortunately, it is not always

obvious which over-identifying restrictions are possible and which ones are not admissible.

Therefore I will discuss conditions that will help to see more easily which restrictions are not

feasible. It may be worth pointing out that the problem also affects the impulse responses.

In particular, the interpretation of confidence intervals around impulse response functions

needs some care. This issue will also be discussed in the following.

The study is structured as follows. In the next section the model setup for structural

modelling with cointegrated VAR processes will be presented. Estimation of the models is

discussed in Section 3. An example based on U.S. macroeconomic data from King et al.

(1991) is presented in Section 4 and conclusions follow in Section 5. The structural VECM

framework of the present article was proposed by King et al. (1991) and is also discussed in

detail in Lütkepohl (2005, Chapter 9).

A variable will be called integrated of order d (I(d)) if stochastic trends or unit roots can

be removed by differencing the variable d times and a stochastic trend still remains after

differencing only d−1 times. A variable without a stochastic trend or unit root is sometimes

called I(0). To simplify matters, in the following all variables are assumed to be either I(0)

or I(1). A set of I(1) variables is called cointegrated if a linear combination exists which

is I(0). A K-dimensional system of variables yt is called I(1) if at least one component is

I(1). In that case, any linear combination c′yt which is I(0) is called a cointegration relation.

Using this terminology it can happen that a linear combination of I(0) variables is called a

cointegration relation. In the present context, this terminology is convenient, however.
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The following general notation will be used. The natural logarithm is abbreviated as log.

For a suitable matrix A, rk(A), det(A) and A⊥ denote the rank, the determinant and an

orthogonal complement of A, respectively. Moreover, vec is the column stacking operator

which stacks the columns of a matrix in a column vector and vech is the column stacking

operator for symmetric square matrices which stacks the columns from the main diagonal

downwards only. The (n×n) identity matrix is signified as In and 0n×m denotes an (n×m)

zero matrix.

2 The Model Setup

As mentioned earlier, it is assumed that all variables are at most I(1) and that the data

generation process can be represented as a VECM of the form

∆yt = αβ′yt−1 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + ut, t = 1, 2, . . . , (2.1)

where yt is a K-dimensional vector of observable variables and α and β are (K× r) matrices

of rank r. More precisely, β is the cointegration matrix and r is the cointegrating rank of

the process. The term αβ′yt−1 is sometimes referred to as error correction term. The Γj’s,

j = 1, . . . , p − 1, are (K × K) short-run coefficient matrices and ut is a white noise error

vector with mean zero and nonsingular covariance matrix Σu, ut ∼ (0K×1, Σu). Moreover,

y−p+1, . . . , y0 are assumed to be fixed initial conditions.

Although in practice there will usually also be deterministic terms such as nonzero means

or polynomial trends, it will be assumed in the following that such terms are absent. They

do not play a role in impulse response analysis which is the focus of this study. The main

results are unaffected by such terms. Therefore they are omitted.

2.1 The Identification Problem

Impulse responses are often used to study the relationships between the variables of a dy-

namic model such as (2.1). In this context, identifying structural innovations which induce

responses of the variables reflecting the actual ongoings in a system is an important task.

In the present VECM framework, the so-called B-model setup is typically used (Lütkepohl

(2005, Chapter 9)). It is assumed that the structural innovations, say εt, have zero mean

and identity covariance matrix, εt ∼ (0K×1, IK), and they are linearly related to the ut such

that

ut = Bεt.
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Hence, Σu = BB′. This relation represents 1
2
K(K + 1) independent equations because the

covariance matrix is symmetric. For a unique specification of the K2 elements of B we need

at least 1
2
K(K − 1) further restrictions. Some of them may be obtained via a more detailed

examination of the cointegration structure of the model, as will be seen in the following.

According to Granger’s representation theorem (see Johansen (1995)), the process yt has

the representation

yt = Ξ
t∑

i=1

ui +
∞∑

j=0

Ξ∗jut−j + y∗0, t = 1, 2, . . . , (2.2)

where the term y∗0 contains the initial values and the Ξ∗j ’s are absolutely summable so that
∑∞

j=0 Ξ∗jut−j represents a stationary process where shocks have transitory effects only, that

is, Ξ∗j → 0 for j → ∞. The term
∑t

i=1 ui, t = 1, 2, . . . , is a K-dimensional random walk.

Thus, the long-run effects of shocks are represented by the term Ξ
∑t

i=1 ui which captures

the common stochastic trends. The matrix Ξ is of the form

Ξ = β⊥

[
α′⊥

(
IK −

p−1∑
i=1

Γi

)
β⊥

]−1

α′⊥

and has rank K − r. Thus, there are K − r independent common trends. Substituting Bεi

for ui in the common trends term in (2.2) gives Ξ
∑t

i=1 ui = ΞB
∑t

i=1 εi so that the long-run

effects of the structural innovations are given by ΞB.

The structural innovations εt have nonsingular covariance matrix and, hence, the matrix

B must also be nonsingular. Thus, rk(ΞB) = K−r and there can be at most r zero columns

in the matrix ΞB. In other words, at most r of the structural innovations can have transitory

effects and at least K−r of them must have permanent effects. From this fact it follows that

a just-identified system can be obtained by imposing r(r − 1)/2 additional restrictions on

the transitory shocks and (K − r)((K − r)− 1)/2 restrictions on the permanent shocks (see,

e.g., King et al. (1991), Gonzalo & Ng (2001)). The transitory shocks may be identified, for

example, by placing zero restrictions on B directly and thereby specifying that certain shocks

have no instantaneous impact on some of the variables. Generally, identifying restrictions

are often of the form

CΞBvec(ΞB) = cl and Csvec(B) = cs, (2.3)

where CΞB and Cs are appropriate selection matrices to specify the long-run and contem-

poraneous restrictions, respectively, and cl and cs are vectors of suitable dimensions. In

practice, the latter vectors are typically zero. In other words, zero restrictions are specified

in (2.3) for ΞB and B. The first set of restrictions can be written alternatively as

Clvec(B) = cl, (2.4)
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where Cl ≡ CΞB(IK ⊗ Ξ) is a matrix of long-run restrictions on B. Precise conditions for

local just-identification may be found in Lütkepohl (2005, Proposition 9.4).

3 Estimation

Assuming that the lag order, p − 1, the cointegrating rank, r, and structural identifying

restrictions are given, a VECM can be estimated by concentrating out the reduced form

parameters and then estimating B as described in the following.

Estimators of the reduced form parameters of the VECM (2.1) are available via the

Johansen (1995) Gaussian maximum likelihood (ML) procedure. Replacing the reduced

form parameters by their ML estimators gives the concentrated log-likelihood function

log lc(B) = constant− T

2
log |B|2 − T

2
tr(B′−1B−1Σ̃u), (3.1)

where Σ̃u = T−1
∑T

t=1 ûtû
′
t and the ût’s are the estimated reduced form residuals. Maximiza-

tion of this function with respect to B subject to the structural restrictions has to be done

by numerical methods because a closed form solution is usually not available (see Lütkepohl

(2005, Chapter 9) for details).

Under usual assumptions, the ML estimator of B, B̂ say, is consistent and asymptotically

normal, √
Tvec(B̂ −B)

d→ N (0, ΣB̂). (3.2)

Expressions for the covariance matrix of the asymptotic distribution in terms of the model

parameters can be obtained by working out the corresponding information matrix (see Vlaar

(2004)). For practical purposes, bootstrap methods are in common use for inference in this

context.

The result in (3.2) implies that the t-ratios of elements with regular asymptotic distri-

butions can be used for assessing the significance of individual parameters, provided the

corresponding over-identifying zero restriction is a valid one. In other words, the zero value

of the corresponding parameter must be within the admissible parameter space. This is not

always obvious as we will argue in the following. Clearly, the asymptotic distribution of B̂

is singular, because of the identifying restrictions that have been imposed on B. Therefore

F -tests will in general not be valid and have to be interpreted cautiously.

The problem related to the asymptotic properties of B̂ comes about because it is not

obvious which over-identifying restrictions are admissible, that is, which over-identifying
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restrictions result in a nonsingular matrix B, due to the way the long-run restrictions are

set up. It may be instructive to look at an example to see this problem more clearly.

Consider a three-dimensional system (K = 3) where all variables are I(1) and which has

cointegrating rank r = 1. Then there can be at most one transitory shock which is identified

without further restrictions (except that its position and sign must be specified). If there

is indeed a transitory shock, there are just two permanent shocks which are identified by

one further restriction. Suppose the corresponding identifying restrictions are specified as

follows:

ΞB =



∗ ∗ 0

∗ ∗ 0

∗ ∗ 0


 and B =



∗ 0 ∗
∗ ∗ ∗
∗ ∗ ∗


 . (3.3)

In these matrices the asterisks denote unrestricted elements. Thus, the last element in εt

is the transitory shock and the first two elements are permanent shocks. One restriction is

placed on B to identify the two permanent shocks. The way it is specified, the second shock

does not have an instantaneous effect on the first variable.

In this example it can be shown that any zero restriction placed on the last column of B

will make the matrix singular and is therefore inadmissible (see Proposition 1 below). One

implication of this result is that asymptotic (or bootstrap) t-ratios attached to the elements

in the last column of B cannot be used to test whether the corresponding parameters are

significantly different from zero. As a further implication, all instantaneous responses to the

transitory shock must be nonzero as a consequence of the identifying restrictions imposed

in (3.3). Thus, zero instantaneous responses are ruled out and, hence, the asymptotic or

bootstrap confidence intervals cannot be used to assess whether there is no instantaneous

response of some variable even if zero is included in the confidence interval set up in the usual

way. Clearly, the latter situation is possible and can even occur if bootstrap methods are

used. An example will be provided in Section 4. I will now present a criterion for deciding

on inadmissible restrictions. A proof is given in the Appendix.

Proposition 1

In the model (2.1), suppose the (K × (K − r)) matrix α⊥ is such that all sets of K − r

rows are nonsingular ((K − r) × (K − r)) matrices and there are r∗ ≤ r transitory shocks.

Then the number of admissible zero restrictions placed on a column of B associated with a

transitory shock cannot be greater than r − 1. ¤
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Clearly this proposition confirms what was discussed in the context of the previous ex-

ample. If r = 1 and there is one transitory shock (i.e., r∗ = r), then there cannot be any

zero restriction on the column of B corresponding to the transitory shock. If r = 2 and

there are two transitory shocks, there can be at most one zero restriction on each of the two

columns of B corresponding to the transitory shocks. For example, in a three-dimensional

system with just-identifying restrictions

ΞB =



∗ 0 0

∗ 0 0

∗ 0 0


 and B =



∗ ∗ ∗
∗ ∗ 0

∗ ∗ ∗


 (3.4)

the last two shocks are transitory. Hence, there can only be at most one zero restriction

on each of the last two columns of B. Thus, no further zero restriction can be imposed

on the last column because there is already one identifying zero restriction on this column.

Moreover, only one zero restriction can be imposed on the second column of B.

If r = 2 and there is only one transitory shock (r∗ = 1), say the last one in εt, then we

may have just identifying restrictions of the form

ΞB =



∗ ∗ 0

∗ ∗ 0

∗ ∗ 0


 and B =



∗ 0 ∗
0 ∗ ∗
∗ ∗ ∗


 . (3.5)

In this case again only one over-identifying zero restriction can be imposed on the last column

of B.

It may be worth commenting on the condition that all sets of K−r rows of α⊥ have to be

nonsingular ((K−r)×(K−r)) matrices. Because α is assumed to be estimated unrestrictedly,

the condition will be satisfied for the corresponding estimator α̂⊥ with probability one. Thus,

in practice the condition will be satisfied if no restrictions are imposed on α in the reduced

form estimation procedure. The situation may be different, however, if weak exogeneity

restrictions are imposed, for example.

So far short-run restrictions for instantaneous effects have been dealt with. A similar

problem also arises for the long-run restrictions imposed on ΞB, however. The next propo-

sition deals with this case. It is also proven in the Appendix.

Proposition 2

In the model (2.1), suppose that each ((K − r) × (K − r)) submatrix of β⊥ is nonsingular

and there are r transitory shocks. Then the number of admissible zero restrictions placed
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on a column of ΞB associated with a permanent shock cannot be greater than K − r− 1. ¤

Note that in this proposition it is assumed that the number of transitory shocks is identi-

cal to the cointegrating rank r. Otherwise placing zero restrictions on individual elements of

ΞB may not be possible. Consider, for instance, the example in (3.5) where the cointegrating

rank is two whereas there is only one transitory shock. Then the first two columns of ΞB

form a matrix of rank one. Thus, no single element can be restricted to zero individually.

For the examples (3.3) and (3.4), where the number of transitory shocks is identical to

the cointegrating rank, Proposition 2 applies, however. It implies that in (3.4) no further

valid zero restriction can be imposed on ΞB because K − r − 1 = 0. Moreover, in (3.3)

at most one zero restriction can be imposed on each of the two first columns of the ΞB

matrix because in that case K − r − 1 = 1. Note that the nonsingularity condition for the

submatrices of β⊥ is not a critical one if an estimated β matrix is considered and no specific

restrictions are placed on β for the reasons discussed in the context of Proposition 1 with

respect to α⊥.

Clearly, the propositions also have implications for more general tests for over-identifying

restrictions in structural VECMs. An LR test is a standard tool in this context. Suppose

there are over-identifying restrictions for B. In that case, B̂B̂′ will not be equal to the

reduced form white noise covariance estimator Σ̃u and the LR statistic is

λLR = T (log |B̂B̂′| − log |Σ̃u|). (3.6)

It has an asymptotic χ2-distribution with degrees of freedom equal to the number of over-

identifying restrictions, if the null hypothesis holds and the restrictions are admissible. If

inadmissible restrictions are imposed, this will result in a zero determinant term |B̂B̂′| and

a program used to compute the LR statistic should return an error message because the log

cannot be evaluated. Thus, making an error here is perhaps not likely. Still Propositions 1

and 2 can be helpful to indicate how to avoid problematic restrictions in the first place.

Another implication of the propositions is that inference for certain impulse responses

may be problematic. In particular, the usual confidence intervals for the instantaneous

responses may be misleading and cannot be interpreted in the standard way if the confidence

intervals contain zero. In the next section these issues will be illustrated by means of an

example based on real data. It will also be shown that the usual bootstrap confidence

intervals may in fact contain zero even if zero is not an admissible value of the response to

a particular impulse.
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4 An Example

I use the King et al. (1991) data for the three quarterly U.S. variables log private output

(qt), consumption (ct), and investment (it) (all multiplied by 100) to illustrate the theoretical

points of the previous section.2 Data are available for the period 1947Q1–1988Q4. These

data are also used in Chapter 9 of Lütkepohl (2005) where a reduced form VECM with one

lagged difference, cointegrating rank r = 2 and an unrestricted intercept term is fitted. I use

the same model in the following.

Because r = 2, there can be two transitory shocks and it is assumed that in fact the

last two components in the εt vector are transitory shocks. An identifying zero restriction is

imposed on B as in (3.4). In other words, the just-identifying zero restrictions on ΞB and

B are the same as in (3.4). The following ML estimates are obtained with standard errors

based on 2000 bootstrap replications in parentheses underneath the estimates:

Ξ̂B̂ =




−0.71
(0.91)

0 0

−0.76
(0.98)

0 0

−0.69
(0.89)

0 0




, B̂ =




0.08
(0.18)

1.03
(0.25)

−0.45
(0.57)

−0.60
(0.82)

0.43
(0.10)

0

0.26
(0.42)

1.96
(0.37)

1.00
(0.50)




. (4.1)

Although all standard errors of the elements in the first column of Ξ̂B̂ are large relative to

the estimated long-run effects of the permanent shock, according to Proposition 2 we cannot

conclude that any one of the effects is not significantly different from zero because no zero

restriction can be imposed on the first column of ΞB. Moreover, because r = 2, there can

be at most one zero restriction in each of the last two columns of B which correspond to

the transitory shocks (see Proposition 1). As there is already one identifying zero restriction

placed in the last column, we cannot test whether the other two elements are significantly

different from zero. On the other hand, we can test the three elements in the second column

individually.

To illustrate the implications for an impulse response analysis, the structural impulse

responses are depicted in Figure 1 together with 95% confidence intervals generated by 2000

bootstrap replications. These are Efron percentile intervals in the terminology of Benkwitz,

Lütkepohl & Wolters (2001) and may not be the best possible confidence intervals in the

present context.3 They are used here because they nicely illustrate the issues discussed in

2The data are available at the website http://www.wws.princeton.edu/mwatson/.
3Computations were done with JMulTi (Lütkepohl & Krätzig (2004)).
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εp → q εt1 → q εt2 → q

εp → c
εt1 → c εt2 → c

εp → i εt1 → i εt2 → i

Figure 1: Responses of output (q), consumption (c), and investment (i) to a permanent shock

(εp) and two transitory shocks (εt1 and εt2) with 95% Efron percentile bootstrap confidence

intervals based on 2000 bootstrap replications.

the previous section and they are perhaps the most commonly used confidence intervals for

impulse responses in practice. Although most of the instantaneous effects have confidence

intervals which include zero, some of them cannot be zero because a zero effect would imply

a singular B matrix. For example, the second transitory impulse must have a nonzero

instantaneous effect on the first variable (εt2 → q) although the corresponding confidence

interval includes zero (see the last panel in the first row of Fig. 1). Clearly, the confidence

interval is misleading or at least does not permit a standard interpretation. It may also be

worth noting that one implication of the identifying zero restriction on the last column of B

is that the instantaneous effects of the second transitory shock on the first and last variables

(εt2 → q and εt2 → i) are nonzero. This implication may not always be desired or apparent

when one thinks about the identifying restrictions.
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5 Conclusions

In this note I have pointed out a problem with imposing over-identifying restrictions in

structural VECMs with cointegrated variables and long-run restrictions. It is shown that

they may result in a singular reduced form residual covariance matrix without this being

obvious. Therefore some care is necessary in imposing over-identifying restrictions in these

models. Moreover, inference regarding the instantaneous and long-run effects of structural

shocks can be problematic. In particular, interpreting t-ratios in the usual way as indicators

of the significance of the instantaneous or long-run effects may not be meaningful. These

results also have obvious implications for impulse response analysis. For example, confidence

intervals of some impulse responses have to be interpreted with great care. Conditions were

derived that can help in overcoming these problems and an empirical example is presented

which illustrates the theoretical issues.

Appendix. Proofs

Proof of Proposition 1

Without loss of generality suppose that the r∗ transitory shocks are the last r∗ elements of

εt. Thus, ΞB = [Θ : 0K×r∗ ] and, taking into account the structure of Ξ, α′⊥B = α′⊥[B1 :

B2] = [α′⊥B1 : 0K×r∗ ], where B1 and B2 are (K × (K − r∗)) and (K × r∗) submatrices of B,

respectively. Thus, α′⊥B2 = 0(K−r)×r∗ .

Suppose b is an arbitrary column of B2 and there are r zero elements in b. Moreover,

suppose that Λ is a permutation matrix such that

Λb =


 b∗1

0r×1




and note that Λ is an orthogonal matrix. Then

0(K−r)×1 = α′⊥Λ′Λb = α′⊥Λ′


 b∗1

0r×1


 = α′⊥Λ′


 IK−r 0(K−r)×r

0r×(K−r) 0r×r





 b∗1

0r×1




implies b∗1 = 0(K−r)×1 because

α′⊥Λ′


 IK−r

0r×(K−r)
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is nonsingular by assumption. Hence, if there are r zero elements in b, it follows that

b = 0K×1 which contradicts the fact that B is nonsingular and, thus, cannot have a zero

column. Thereby we have shown that none of the columns associated to transitory shocks

can have r zero elements and, hence, Proposition 1 is proven.

Proof of Proposition 2

Define the (K×(K−r)) matrix η = β⊥
[
α′⊥

(
IK −

∑p−1
i=1 Γi

)
β⊥

]−1
and note that each ((K−

r)× (K − r)) dimensional submatrix of η is nonsingular by the assumptions of Proposition

2. Suppose that the last r shocks are transitory. Hence,

ΞB = ηα′⊥B = ηα′⊥[B1 : B2] = [Θ : 0K×r],

where B1 and B2 are (K×(K−r)) and (K×r) matrices, respectively, and Θ is (K×(K−r)).

Let θ be a column of Θ with K−r zeros and denote by η∗ the ((K−r)× (K−r)) submatrix

of η consisting of the same rows where the zeros appear in θ. Then η∗α′⊥b = 0, where b is

the column of B1 corresponding to θ (i.e., Ξb = θ). Due to the nonsingularity of η∗, α′⊥b = 0

so that b ∈ span(α). However, B2 is a basis of span(α). Hence, B must be singular because

one of the columns of B1 is in span(B2). This contradicts the assumptions of the model and

thereby proves Proposition 2.
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