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Preferred point geometry and the local differential geometry
of the Kullback-Leibler divergence.
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The (asymmetric) Kullback-Leibler divergence function is ra tionalised  as 
being geom etrically a m easure of preferred po in t geodesic distance based 
on path-length . This distance function is defined no t on any particu lar 
param etric fam ily bu t in an infinite dim ensional function space in w hich 
all ou r finite dim ensional param etric statistical families are em bedded. In 
so doing we generalise results by Amari relating 'a-geodesic projection' to 
divergence functions. We are forced to consider concepts of flatness and 
em bedding  curvature. We develop a new  total flatness condition  u nder 
w hich our squared  geodesic distance corresponds to tw ice the Kullback- 
Leibler divegence. We show  th a t the space of densities itself possess a 
form  of cu rvatu re  w hich im plies in particular tha t only  a subset of the 
full exponential fam ilies m ay in fact be considered totally  flat. W e study  
the infinite dim ensional function space of finite m easures in w hich the 
Kullback-Leibler divergence is m ost naturally  view ed as a m etric based 
m easure of distance. We also propose a global m easure  of cu rvatu re  
w hich m ay be com pared  w ith  the pointw ise m easures o f E fron and  
A m ari.

American Mathematics Society Subject Classification. Primary: 53B99; Secondary 62F05,62F12.

This work has been surported by ESRC grant 'Geodesic Inference, Ecompassing and Preferred Point
Geometries in Econometrics'
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Ideas of distance in geometry have mostly been developments of the Euclidean axiom that 
the shortest path between two points is a straight line. The distance between these points is then 
defined as the length of this line. Following the developments which enable us to define what is meant 
by a straight line in spaces more complex than Euclid's plane, we find that we pass through most of 
the history of geometry itself. Indeed, many of the most important strides forward in mathematics 
occur in this journey and it involves the work of some of the greatest mathematicians: Euclid, 
Pythagoras's Theorem, Newton's calculus, Gauss's differential geometry, Euler's calculus of 
variations, through to Einstein's use of geometry in physics. Throughout this long history runs the 
central theme that we measure the separation of two points by finding the shortest path joining them. 
This use of minimum path lengths means that intuitive ideas of distance satisfy the following basic, 
now familiar, axioms. If D(m,n) is the distance from m to n then we would expect that

(1) Positivity: D(m,n)>0 with equality if and only if n=m,

(2) Symmetry: D(m,n)=D(n,m),

(3) The triangle inequality: D(m,n) < D(m,p)+D(p,n).

Condition (2) follows from the intuitive idea that if there exists a path from m to n then there also 
exists a return path, from n to m. Condition (3) derives from the idea that if we take the shortest path 
from m to p followed by the shortest path from p to n then we have taken a path from m to n and since 
pathlengths are assumed additive we have gone at least as far as the shortest path joining them.

There has also been a natural interest in statistics on how to measure the separation of two 
density functions, see for instance Rao (1945, 1987), Burbea and Rao (1982), Jeffreys (1948), 
Bhattacharrya (1943) and Kullback and Leibler (1951). The fundamental role played by Fisher's 
information matrix in Rao’s notion of distance may be contrasted with the Kullback-Leibler 
divergence function

The Geometry of the Kullback-Leibler Divergence

1. Introduction.

dkl(0,0') = Ee[ln p(x,0) -  In p(x,0')].

which is not based on any explicit metric measure of distance. This function and many other 
proposed divergence or discrimination functions, are apparently quite different from the more 
geometric ideas of distance. For example, they do not satisfy conditions (2) and (3) above. These 
functions do however reflect the asymmetry which is fundamental to statistical inference given the 
isolation of some particular density as representing either the true data generation process or the 
maintained hypothesis.

The past fifteen years has seen a substantial development in the relationship between 
differential geometry and statistics. See for example, the review papers by Bamdorff-Nielsen, Cox 
and Reid (1986) and by Kass (1989). In particular we note the work of Amari (1985) and his 
construction of an expected geometry on a parametric family of density functions. Using this 
geometry Amari was able to forge some links between the differential geometric concept of a geodesic 
and some common divergence functions from statistics, including the Kullback-Leibler measure. 
There also has been work on the 'Euclidean' geometry of the Kullback-Leibler divergence from a non 
differential geometric approach, see for example Cencov (1972), Csiszar (1975) and Loh (1983). 
Bamdorff-Nielsen (1989) and Bkesild (1988, 1990) have used the concept of a yoke, one of which is 
minus the Kullback-Leibler measure, to generate very general geometric structures. Marriott (1989) 
defined and introduced a new differential geometric construction called a preferred point geometry, 
which was further developed in Critchley, Marriott and Salmon (1991), where in particular if was 
shown how preferred point geometry encompasses Amari’s expected a-geom etries. Amari's 
projection theorem and generalised Pythagorean theorem are highlights of the theory of dually flat 
manifolds, such as the expected a-geometries. However it must be emphasised that since a-geodesic
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paths on which these theorems are based are non-metic constructions and there is no concept of a- 
geodesic distance unless a  = 0.

In this paper we show how preferred point geometry gives rise to an asymmetric geometric 
structure which is particularly relevant to statistics. It can rationalise asymmetric statistical divergence 
functions, in particular the Kullback-Leibler divergence, as being geometrically natural (squared) 
distances based on pathlengths. Thus putting metric and non-metric distance concepts on the same 
theoretical footing enabling us to make rigorous comparisions between these apparently distinct 
concepts. In so doing we generalise two key theorems of Amari mentioned above and are able to gain 
a greater understanding of the particular information captured in these alternative approaches. The 
difference in information may be summarised using measures of curvature that extend Efron's (1975) 
definition of statistical curvature. Further a number of model selection procedures such as Akaike's 
information criterion (1973) are based on the Kullback-Leibler notion of distance and hence our 
development clarifies to some extent how the use of these discrimination measures may be related to 
formal statistical hypothesis tests and decision theory.

In Section 2 we review some preliminary material covering the required differential 
geometric and statistical background including Amari's results on a-flatness and a-diveregence. In 
Section 3 we show how any divergence function can be interpreted locally as a squared geodesic 
distance in a preferred point geometry and how the concept of a preferred point geometry is 
considerably more general. In Section 4 we look at different measures of intrinsic and embedding 
curvature. We study in particular some preferred point metrics and define a strong concept of flatness 
for parametric families. We show the geometric relationship between the preferred point metrics and 
the Kullback-Leibler divergence through the embedding of a parameter space in a higher dimensional 
manifold and in particular show how this 'total flatness' condition is sufficient to force our squared 
geodesic distances and twice the Kullback-Leibler divergence to agree. This strengthens Amari's 
result on Kullback-Leibler projection. We further show that the space of densities itself possesses a 
form of curvature which prevents the extension of Amari's result to its most natural geometric form. 
In Section 5 we consider some global measures of curvature derived as the difference between the 
different distances. We consider the inherent curvature of a full exponential family using these new 
measures demonstrating that only a restricted subset of this family can be considered 'totally flat'. 
This implies that the Kullback-Leibler divergence will only in very particular cases be able to be 
treated as a metric based measure of distance. We also look at examples of the curvature of some 
curved exponential families and compare the new measures of curvature with those of Efron and 
Amari and explore the relationship to the Kullback-Leibler divergence. In Section 6 we show how 
preferred point geometry is particularly appropriate to the analysis of the Pythagorean properties of the 
Kullback-Leibler divergence.

The Geometry of the Kullback-Leibler Divergence

2. Geometric background.

Throughout, M=(p(x,0)} denotes a finitely parametrised manifold of probability density 
functions obeying the regularity conditions listed in Amari (1985, page 16)

Divergence Functions.

Following Cencov (1972) and Amari (1985) we adopt the following definition.

Definition. A divergence function d(0,0') is a smooth function on pairs of points in some 
parametric family (p(x,0)) which satisfies the following conditions: (i)

(i) d(0,0') > 0, and the equality holds when and only when 0=0'.
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The Geometry of the Kullback-Leibler Divergence

(ii) 3,0(0,0’) =0 at 0 = 0', where 3i=3/30i.

(iii) 3l3jd(0,0')lg=Ql = gij(0), the Fisher information matrix.

These conditions state that a divergence function is locally quadratic in 0 and 0', and in the 
local approximation, the hessian of the divergence function agrees with the Fisher information. 
Condition (ii) can be achieved with any distance function which satisfies (i) by squaring the function 
if necessary. Condition (iii) can be achieved by rescaling as long as the hessian of the divergence 
function is non-singular. There is a clear similarity in this definition to Bamdorff-Nielsen's concept of 
a normed yoke. See Bamdorff-Nielsen (1989), where condition (iii) is relaxed to be that the hessian 
must be non-singular.

Some well known examples of divergence functions include:

Kullback-Leibler:
dyfB,©') = E0[lnp(x,0) - ln p (x ,0')]

Hellinger:

dH(0,0') = 2J (VpOtiO) -  VpOtiO7) fd P

Renyi a-information:

d2(0,0') = ---- ----- log f {p(x,0))a {p(x,0')}1-otdP where 0 < a  < 1
a ( a  - 1) 1

A useful transformation of the Helliger divergence is the distance defined by 

Bhattacharrya distance:

dg(0,0') = 2 cos-1 1 7d H(e,0’)
4

This does not obey the axioms for a divergence, being a distance rather than a squared distance.
~ i 1 2 tHowever dgfB,©') = -jdg(0,0')is a divergence.

In all of the above P is some fixed dominating base measure.

As mentioned above one of the important features which distinguishes divergence 
functions from more geometric ideas of distance is that they do not necessarily have to be symmetric. 
From a purely geometric point of view of distance this might seem surprising but from a statistical 
point of view it is natural given, for example, the asymmetric role played in inference by a point null 
and a point alternative.

Riemannian Geometry.

Definition. A Riemannian manifold, (M, g-), is a manifold and a metric tensor, g,., which at each 
point 0 is a symmetric and positive definite bilinear form on the tangent space at 0, TMe . This bilinear 
form is a smooth function of 0.

The idea of putting a Riemannian structure on a finite dimensional parametric family goes 
back to Rao (1945). He noticed that the Fisher information is a metric tensor, thus it defines a 
Riemannian structure.This idea has intuitive appeal through the Cramer-Rao Theorem viewing the
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The Geometry of the Kullback-Leibler Divergence
Fisher information as a local measure of distance at the true parameter. In a Riemannian geometry the 
concept of distance is based on measuring the lengths of curves in the manifold. Given a metric 
structure g;j we can measure the length of any tangent vector with respect to the metric. Let yftj be a 
curve on our manifold. We can then define the path length of y(t), from t=a to the point t=b, by

A geodesic between two points is defined to be a curve joining them with the shortest pathlength, 
and this length is called the geodesic distance. We ignore the complications of this apparently simple 
construction for the moment: for details concerning these facts particularly the existence and 
uniqueness problem see Spivak (1970). However we note that all the geometry considered in this 
paper is local thus the above complications do not arise. Under the assumption of existence and 
uniqueness the geodesic distance between two points a and b, denoted by D(a,b), is symmetric and 
obeys the triangle inequality, i.e. conditions (2) and (3) above.

Given a coordinate system 0 on a manifold M and a metric g^G), we define the Levi-Civita 
or metric connection by its Christoffel symbols,

For a Riemannian manifold this is the natural connection and it is characterised by the property that 
the geodesics of the Levi-Civita connection are curves of shortest length with respect to the metric.

One of the main developments in the application of differential geometry to statistics has 
been the realisation that a Riemannian structure is insufficient to contain all the statistical information 
in a parametric family. The first implicit use of a connection not defined from the Fisher metric was by 
Efron (1975) in his analysis of the statistical curvature of a curved exponential family. This was 
explicitly recognised by Cencov (1972) and by Dawid (1975) who introduced the use of a one 
parameter family of connections. Amari (1985) developed the application of these connections (a- 
connections) in different areas of statistical theory in some detail and in particular established a 
relationship between the a-connections and a certain class of divergence functions. The observed 
geometry of Bamdorff-Nielsen (1989) and Blaesild (1988) also contains the a-connection structure 
and they are able to demonstrate the relationship to divergence functions via the observed yoke. This 
work was unified by Lauritzen (1987) who introduced the concept of a Statistical manifold which 
encompasses both expected and observed geometries.

Definition. A Statistical manifold (M,g,T) is a manifold, M, with a metric, g, and a symmetric 
three tensor T. Denoting by r°  the Christoffel symbol for the Levi-Civita connection of the metric g 
then the a-connections are defined by their Christoffel symbols

1 f dgjk(fl) | 3gik(9) 3gjj(6)"

Statistical Manifolds.
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Amari's geometric structure can then be viewed as a Statistical manifold (M, g, T) where g is the 
Fisher information and T is defined by

Tjjk(0) = Eq[ ^ -  In p(x, 0) In p(x,0) In p(x, 0)] 
doj du ; dojç

The Geometry of the Kullback-Leibler Divergence

The manifold will be given by a parametric family ((p(x,0)) which satisfies the regularity conditions 
of Amari (1985 pagelô). All manifolds in this paper will also be assumed to satisfy these conditions.

Curvature.

We also need the following basic differential geometric constructions.

Definition. The Riemann-Christoffel curvature tensor is defined by a metric, g, and a connection, 
with Christoffel symbols T, by the formula

'  i jkrn :
d t~s d i-s 

— 1 j k ~ — t i t30;
V 1 90; Ssm + ( f jk  Hrm

If and only if this tensor is identically zero does there exists an affine coordinate system in a torsion 
free manifold (such as we consider). That is a coordinate system 0 such that

r£(0) = 0 V0

In this case the space is said to be flat. If the connection was the Levi-Civita connection for the metric 
g, then in the affine coordinate system the metric tensor gtJ(0) is constant for all values of 0. Under 
these conditions the space and the metric are said to be flat.

Preferred Point Manifolds.

In view of the fundamentally asymmetric nature of statistical inference a natural 
question arises: does there exist an asymmetric differential geometric structure which reflects the 
statistical properties of the parametric family? In Marriott (1989) and Critchley, Marriott and Salmon 
(1991) a new geometric structure called a preferred point geometry was introduced and the 
relationship between it and Lauritzen's Statistical manifold structure was developed. In any statistical 
problem it is usually the case that some point in the parametric family is treated differently from the 
remaining points. A preferred point geometry explicitly recognises this asymmetry and conditions the 
geometry on the value of <(>. In particular it defines a Riemannian geometry on the parametric family 
conditionally on <j).

Definition. A preferred point geometry is a pair, (M, g^(0)), where M is a manifold and g^(0) is a 
metric which is defined as a smooth function of the preferred point <|>, as well as 0. In fact we shall 
often use the weaker condition that g^(0) is only a metric for 0 in an open neighbourhood of <(>.

The following result can be found in Critchley, Marriott and Salmon (1991).

5
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Example 1. Consider the preferred point geometric structure, (M, g^CS)), where M is a (regular) 
parametric family of densities (p(x,0)}, <j> e M is the preferred point, and the preferred point metric is 
given by

(g <t>)ij(®) =  E p(x,4>)f(~7 In p(x, 6 ) -  E p(x, , ) [ | -  In p(x,e)]). ( ~ -  In p(x,0) -  E p ^ ^  In p(x,0)])]

The Geometry of the Kullback-Leibler Divergence

We see that when 0 is evaluated at the preferred point <|> the metric reduces to the Fisher 
information.

We can calculate the Levi-Civita connection for this metric and observe its relationship with 
Amari's expected geometry. The Christoffel symbols r^k for the Levi-Civita connection for the 

preferred point metric g^(0) are given by

— 1n p( , .e ). ~ t a p<, . 6) ^(x.iM aOjôOj
lnp(x,0) 'P(x,iW 30i

-lnp(x,0)

When 0 equals <|> the connection agrees with the +l-connection in Amari's Statistical manifold. We 
immediately see something of the power of the preferred point method as we can now rationalise the 
+ 1 connection as a metric, or Levi-Civita, connection in this preferred point geometry. The preferred 
point structure can in fact also rationalise as metric connections both the 0 and -1-connections of 
Arnari as will be seen below and is formaly demonstrated in our earlier paper.

a-geodesics and divergence functions.

Amari (1985) considers the relationship between a-geodesics and a class of divergence 
functions, which he calls a-divergences, in the case of an a-flat family. We focus here on the -1- 
divergence which coincides with the Kullback-Liebler information dkl.

The following theorem gives both the projection and Pythagorean result in the special case a  = -1.

Theorem l.(I)[Amari (1985, page 90)]. If M is a full exponential family and N a submanifold of 
M, then for any point 0 in M, the point 0' in N which minimises (^,(0,0') is joined to 0 
via a - 1-geodesic which cuts N orthogonally in the Fisher metric at 0'.

(II)[Amari (1985, page 86)] Given three points 0, 0', and 0" in an a-flat manifold S, let 
c be the -1-geodesic connecting 0 and 0’ and c' be the +l-geodesic joining 0' and 0". If 
the angle between c and c' at 0' is n/2, measured in the Fisher metric, then

d u (0,0") = 3^(0 ,0’) + dut©', 0")

Thus we see that on a ± 1 -flat family (the full exponential family) the point on N closest in 
the Kullback-Leibler sense to a point in M is given by the -1-geodesic projection. There is a strong 
analogy between this and the result in Riemannian geometry which states that the point on a 
submanifold which is (geodesically) closest to a fixed point is found by dropping a geodesic which 
cuts the submanifold orthogonally. Thus there is a parallel between geodesic distances and
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divergences. However it is important to notice that since the a-geodesics are non-metric whenever 
a^O there is no concept of a-geodesic distance involved in Amari's results. In Theorem 3, by using a 
stronger flatness condition than ±l-flatness, we show how preferred point metrics generalise this 
theorem to the substantially stronger result that twice the Kullback-Leibler divergence will equal a 
squared geodesic distance. Thus the projection which minimises the divergence will also minimise the 
geodesic distance. Part (II) of the theorem also implies that the divergence acts as a squared measure 
of distance, thus again it is interesting to see when the divergence is equal to a squared geodesic 
distance. Theorem 4 shows us that this stronger flatness condition only holds in a small subset of 
proper statistical densities due to an inherent curvature necessarily induced by the requirement that the 
density integrate to unity. In Section 6 we develop the Pythagorean result in a general preferred point 
context.

The Geometry of the Kullback-Leibler Divergence

3. Geodesic Distances and Divergence Functions.

In view of Amari's results it is natural to consider the relationship between geodesic 
distance functions and those which come from statistically defined divergences. We now show how 
this can helpfully be seen in a preferred point context and how the concept of a preferred point 
geometry is general enough to encompass divergence function theory.

Definition. The preferred point distance between <)> and 9 is defined to be the geodesic distance 
from <J> to 9 using the g* metric, i.e. the metric which is conditioned on the preferred point <|>. We 
denote the squared preferred point geodesic distance by D(<j>,0).

The fundamental difference between Riemannian distances and preferred point distances 
can now be clearly seen — preferred point distances need not be symmetric. Consider D(<]),0) and 
D(0,<J>): the first is the minimum path length from <J> to 0 measured in the geometry defined by the 
metric g“, whereas the second is the minimum path length from 0 to <j> measured in the ge - geometry. 
In general both the geodesic paths and the pathlengths will be different in the different geometries.

We now show that given any divergence function there exists a preferred point metric 
locally compatible with it. This means that for all points in a neighbourhood of the preferred point the 
squared preferred point distance will agree with the divergence from the preferred point. The 
following construction generates a preferred point geometry from a divergence function. Note, 
however, this is not a canonical construction and the second part of the theorem shows that there are a 
great number of compatible preferred point geometries for each divergence function.

Theorem 2. (i) Let d(,) be a divergence function. Then there exists a preferred point metric g*(,)  
which is compatible with d, i.e. if D(<j),0) is the squared <|>-geodesic distance from <j) 
to 0, then

D(<(>,0) = d(<(),0)

for all 0 in some neighbourhood of <|>.

(ii)This preferred point metric can be chosen to be flat for each value of the preferred 
point. Further let g be an arbitrary metric on the manifold. Define

d,j>(0)=d(<t>,0)
i.e., consider <)) fixed. The gradient vector field of the function d^fO) with respect to 
the metric g, is given by
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Vi:= (grad(d4,))i(0) = g'J( e ) ~ ( d $) 
oQJ

Then there exists a preferred point metric which is flat and whose geodesics from <|> 
are the gradient flow lines of d^O).

Proof. See Appendix.

The Geometry of the Kullback-Leibler Divergence

This result states that there are many preferred point metrics compatible with a single 
divergence function. Our axiomatic definition of a divergence function in Section 2 is very general. 
None of the ideas have been particularly statistical in nature aside from the observation that statistics is 
fundamentally a preferred point subject and there exist statistically natural preferred point metrics like 
Example 1. In the rest of the paper we look at objects which are fundamentally statistical and move 
from the general theory of preferred point geometries and divergence functions to consider specific 
examples of both and their interrelationship. We concentrate on the Kullback-Leibler divergence 
function and three preferred point metrics which have a natural statistical intepretation which can be 
found in Critchley, Marriott and Salmon (1991). i

There is a basic property of the Kullback-Leibler divergence which is not reflected in our 
axioms. The axioms consider a divergence function defined on a (finite dimensional) parametric 
family. In fact the Kullback-Leibler divergence is defined consistently on a much wider class of 
functions.

Definition. Let S = (p(x)} be the set of all mutually absolutely continuous regular density functions 
on the sample space X with respect to a measure P on the sample space.

)
On S it is well known that the Kullback-Leibler divergence is well-defined, nonnegative, 

and if f,g e  S then, dkl(f,g) is equal to zero if and only if f=g almost everywhere. S is an infinite 
dimensional space in which the parametric families which we have been considering are embedded. 
This simple observation enables us to draw a clear distinction between the Kullback-Leibler 
divergence and the geodesic distance defined by the preferred point metric in Example 1. The geodesic 
distance between two points is not purely a function of these points but also of the particular, finite 
dimensional, manifold in which they are considered to lie. However the Kullback-Leibler divergence 
is purely a function of the points and independent of the manifold chosen. This distinction is 
demonstrated in the following example.

Example 2. Consider the example of a curved parametric family defined in Efron (1975). Let M be 
the 2-dimensional parametric family of bivariate normal distributions with covariance matrix I, the 
identity and parametrised by the mean value (n,, r|2). Let N be the subfamily of models with mean 
vector given by

where 0e  ( - 00,00).
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The Geometry of the Kullback-Leibler Divergence

We can consider two possible geodesic distancse between two points, say 0 = 0 and 1, 
when they are seen either as elements of N or as elements of M respectively. In M the preferred point 
metric g* of Example 1 above is easily shown to be I when 0=0 is the preferred point. It is a constant 
in the mean parameters (TL.Tij) and the geodesic is the straight line joining the two points. On the 
other hand the geodesic between the two points when regarded as elements of N is the relevant chord 
of the curve N itself and the geodesic distance reduces to the relevant arclength of N inside M. This is 
clearly a different distance. In contrast it is immediately clear that the Kullback-Leibler divergence 
between the two points is independent of the manifold in which they are considered to lie.

There is a fundamental trade off between these two approaches, one which exploits 
specific information about the assumed model and the other which is in some sense non-parametric in 
that it doesn't exploit this information. This trade off can be seen as reflecting the relative valuation of 
efficiency over robustness to mispecification which is present throughout statistical inference. 
Distances which are functions of the chosen manifold rather than just the end points clearly contain 
different information than non-parametric distance functions. Non-parametric functions may seem to 
be the more fundamental objects in the sense that they are defined independently from the non- 
canonical choice about the manifold in which statistical inference will be set. However it should be 
noted that many important statistical concepts, being defined relative to a finitely parameterised 
model, do depend on the choice of manifold, for example the distribution of both the score and 
maximum likelihood estimate.

4. Kullback-Leibler projection and total flatness.

The study of how one manifold can be embedded inside another is of fundamental 
importance to differential geometry and to ideas of curvature. From the above discussion it follows 
that in order to understand the geometry of the Kullback-Leibler divergence we need to consider this 
embedding. One method is through embedding curvature. In this and the following section we 
examine various measures of curvature associated with particular preferred point geometries and 
explore the corresponding notions of flatness. For illustration we look at the full exponential family 
case. Although exponential families can be considered flat in one sense we show that in general they 
do retain a form of curvature. This agrees with the remarks at the end of Section 3.3 of Amari 
(1985). We define this stronger form of curvature for a general family and show how it relates to the 
embedding of the parametric family inside an infinite dimensional function space. We are then able to 
define the geometric conditions under which the Kullback-Leibler divergence is consistent with our 
preferred point geodesic distance.
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The Geometry of the Kullback-Leibler Divergence

Since preferred point manifolds are generalisations of Riemannian manifolds we consider 
the metric, or Levi-Civita, connection as a measure of the curvature of the manifold. Denoting the
preferred point metric by Sij(9) where <|> is the preferred point, we define the preferred point Levi-

Civita connection by its Christoffel symbols 1 ^ (0 ) as in Section 2.

Using this definition we have a measure of the curvature associated with the metric 
structure of a parametric family. However the family is naturally embedded in the larger function 
space S which has its own geometric structure given by the Kullback-Leibler divergence. Thus it is 
important to also look at the curvature defined by this embedding. In classical differential geometry 
there is a general concept of embedding curvature; if a manifold A with some geometric structure is 
embedded in B another manifold with its own geometric structure, then the embedding curvature of A 
in B is essentially determined by the 'difference' between two geometries. Any measure of this 
embedding curvature would ideally reflect the tension between the two geometric structures, the 
intrinsic geometry of A and secondly that induced by B on A. A desirable property of an embedding 
curvature would be that it characterised when these two geometries agreed. In Critchley, Marriott and 
Salmon (1991) we justified the preferred point geometry induced by g* on the parametric family 
M={p(x,0)). In this section we shall use preferred point geometry to define a measure of embedding 
curvature comparing the g*-geometry on M with the Kullback-Leibler on S.

Consider first how the Kullback-Leibler divergence changes in the parametric family

Definition. A preferred point metric is a 2-form. Consider the preferred point 1-form given in 0- 
coordinates by

H?(0) : p̂(x.<&) - m p d c , 0)

This is a 1-form or covariant 1-tensor since under a change of coordinates it has the correct 
transformation properties and maps tangent vectors to the real numbers.

Lemma 1. If v is a tangent vector, the rate of change of the Kullback-Leibler divergence in the 
direction v is given by p*(v). That is the 1-form defined above applied to the tangent 
vector v.

Proof. In ©—coordinates we have

v =

Thus the rate of change of the divergence is given by

v(Ep(x ^)[ln p(x,<)>) -  in p(x,0)]) = v‘^ - E p(x (|))[ln p(x,<j>) -  In p(x,0)]

= - v ’E ^ ^ l n p C x , © ) ]

= t i V )
□

10

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



The Geometry of the Kullback-Leibler Divergence

Since dkl('<)>,<f)) = 0 the Kullback-Leibler geometry on N is determined by the one form p0 
Thus to compare the two geometries, and hence analyse the embedding curvature, we consider the 
rate of change of p° with respect to the g'’-geometry, in other words the g*-covariant derivative of p9.

Definition. Let h9 be the covariant derivative of p* with respect to the g'-preferred point metric. It is 
the following preferred point metric which clearly reduces to the Fisher information when 9 = ({>:

4 (0> = - E p ( x .^ [ g ^ : i n p ( x , e ) - r ^ ( 0) ( g V ^ - in p (x ,e ) ]

where g^ rsis the inverse of g® the preferred point metric from Example 1 and P  is its Christoffel 
symbol.This preferred point metric was first defined in Critchley, Marriott and Salmon (1991) where 
it was shown that its Levi-Civita connection equals that of the O-connection when 9 = <J>.

We will see that g9 and h9 provide via their Christoffel symbols the intrinsic and 
embedding geometry of N respectively. Following Critchley, Marriott and Salmon (1991) we now 
look at the full preferred point structure of a statistical space. To define this full structure we need to 
define the dual preferred point structure to g*.

Definition. Consider

k$(9) = hfs(0)g<,> st(0)h^(0).

where g* and h* are defined above. Then k-j(0) is a preferred point metric which reduces to the
Fisher information at 0 = (j). Further its Levi-Civita connection agrees with the -1-connection of 
Amari's expected geometry as shown in Critchley, Marriott and Salmon (1991).

As an example of this complete structure let us consider the case of a full exponential 
family and compare it to Amari's expected Statistical manifold structure.

Example 3. Consider an exponential family given by

p(x,0) = expfg't j(x) — \}/(0))

We can define two coordinate systems. The first given by the natural 9-coordinates and the second by

tif(0) = - E p(x,* )[^ ln p (x ,0 )]

There is a straightforward relationship between these coordinates and Amari's dual coordinate system 
(0, rj) on an exponential family where

Tli(0) = Ep(x,e,[ti(x)]

since in the full exponential family they differ simply by the translation

JAf(O) =  T|i(0 ) -  Tli(«t»).
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The Geometry of the Kullback-Leibler Divergence

The following is shown in Amari (1985) and Critchley, Marriott and Salmon (1991).

The full exponential family is both +l-flat and flat in the g*-metric, with the 0-coordinates
affine in both cases. In these affine coordinates g*(0) will have a form which is independent of 0, and 
is given by

where g- is the Fisher information.

Dually we see that the family is both -1-flat and flat for the k*-metric, with the g (and also 
T|) parameters affine in both cases. Again in the affine coordinates the representation of k* will be 
independent of p and is

kjj(0)
d2\Sf

30j30j

In an exponential family in the 0-coordinate system the Christoffel symbols of g,s are
zero. Hence the metric h ^  has the form

h $(0) = E p(x,<(>)[ 30i30j
lnp(x,0)]

By a simple calculation this is minus the change of basis matrix for the change of coordinates from 0
to g. This result will hold in any gfs-flat manifold as long as the 0-coordinates are affine. Thus the 
embedding geometry alone determines this important change of basis between the pair of affine 
coordinates.

□
From the above example is clear that a general exponential family will not in fact be flat 

with respect to hjs, despite its g* and k* (or ± 1) flatness, and there will be no affine coordinate system 
for h*. However we are now in a position to define a strong form of flatness in which all three 
preferred point metrics have the same affine coordinate system. We can then show this flatness 
condition ensures that the three squared preferred point geodesic distances and the Kullback-Leibler 
divergence are all equivalent. Thus the embedding curvature of the manifold in S will be zero in the 
sense that two geometries induced on the manifold, from the metric and the divergence on S, agree.

Definition. A parametric family is totally flat if for each value of the preferred point <|) there exists a 
single coordinate system which is affine for each of the three metrics g*, h* and k*. This coordinate 
system is called coaffine.

Total flatness is then implied whenever the statistical family has no intrinic (g*) curvature 
nor any embedding (h*) curvature relative to S.
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Lemma 2. If g* is flat and the 0-coordinates are affine then k" is flat and the [i-coordi nates are 
affine.

Proof. See appendix.

This lemma demonstrates that the key to the definition of total flatness is not that the two 
metrics g* and k* are flat on the same manifold since this always holds, rather it is that they have the 
same affine coordinates. The following lemmas shows that all that is needed is that the change of 
basis matrix, from 0 to |i, is a constant in the correct coordinate system.

Lemma 3. If there exists a coordinate system 0 which is affine for both g* and h* then the manifold 
is totally flat.

Proof. See appendix.

There is a dual result in which k* replaces g* in Lemma 3. We also have:

Lemma 4. If there exists a coordinate system 0 which is affine for both g* and k* then the manifold 
is totally flat.

Proof. See appendix.

Example 4. Generalising the statistical manifold, M, of Efron's example above, consider the family 
of p-variate non-singular normal distributions with constant covariance matrix X parametrised by their 
mean values = (T),,... .Tp. Apart from a constant, the log-likleihood is given by

l(Ti;x) = - l ( x  -  r D 'r k x  -  fi)

The Geometry of the Kullback-Leibler Divergence

Simple calculations then show that, whatever the preferred point <]>,

g^ri) = h^rj) = X- 1

As this is independent of T|, the T|-coordinate system is both g* and h® affine. Then by Lemma 3, this 
coordinate system is coaffine and the space is totally flat

We now show that total flatness is a sufficient condition for each of the geodesic measures 
and the square root of the Kullback-Leibler divergence to be equal. This result can be considered an 
extension to Amari's results, described above, which relates the Kullback-Leibler divergence to the 
+l-connection in a ±l-flat manifold. We have replaced the ±l-flatness with the stronger total flatness 
condition and prove the stronger result that half the squared geodesic distance equals the divergence.

We first make the following remarks. Suppose that M is a totally flat family and that the 0- 
coordinates are coaffine. Then recalling that the metrics g \  h* and k* each agree with the Fisher 
information g at the preferred point <|>, we have:

V 0 € M, g*(0) = h*(0) = k*(0) = g(<t>)
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The Geometry of the Kullback-Leibler Divergence
Thus, in coaffine coordinates in a totally flat manifold, all three preferred point geometries reduce to 
the Euclidean geometry determined by g(<(>). In particular their geodesics are the straight lines in 0- 
coordinates and the g \  h* and k*-geodesic squared distances from <)> to 0 are all simply

(e-<t>)igiJ«t>)(0-<t>)j

Theorem 3. Let a parametric family N be gLflat, and let the 0-coordinates be g^-affine. Then the 
following are equivalent:

(i) N is (locally) totally flat.

(ii) The Kullback-Leibler divergence (locally) agrees with half the squared g*-geodesic 
distance

(iii) The Kullback-Leibler divergence is (locally) an exact quadratic function of the 
©-coordinates given by

dt1(0) = ^(0i -<|)i)gij(<t>X0j -<t>j)

Proof. Because the Christoffel symbols of the Levi-Civita connection of the g°-metric vanish in 0- 
coordinates,

Now,

h$(0)
32

30j30j
dki«t>,0) ( 1)

(i) <=> h*(0) does not depend on 0 in ©-coordinates, (using Lemma 3)
<=> dkl(<(>,0) is quadratic in 0, (using (1))
<=> (iii) (using the axioms for a divergence)

Thus, recalling the remarks before the theorem, (i)=>(ii).

Finally (ii) => (iii) at once as g*(<]>)=g(<|>) by hypothesis

□
From this result we can see that there are two distinct reasons for curvature occuring in this 

statistical problem. The first is that the family may have intrinsic curvature in the sense that g* may not 
be flat. The second more subtle form is due to the dual nature of statistical geometry and that even a 
family flat in the first sense, e.g. a full exponential family, can be curved in the second sense. That is 
it may be g* and k* flat without being totally flat.

The above theorem gives a characterisation of totally flat manifolds if the manifold is g*- 
flat. It is natural to see if a more direct characterisation of totally flat spaces can be found. Below we 
give a solution to this problem in the case of full exponential families. However the complete 
characterisation of totally flat spaces remains an interesting open question.
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The Geometry of the Kullback-Leibler Divergence

Let us take Pe to be a p-dimensional full exponential family with canonical parameter 0 and 
with representation

= B(x)exp{0‘ti(x) -  \|K0)) 
dP

relative to some dominating measure P. Then the metric h* is

h£(e) = - ^ L ( e )  
,J a e ^ e /

Note that the fact that h* does not depend upon the preferred point <j> is a special property of full 
exponential families. In other words h*(9) equals h6(0) which is the 0-covariance of the canonical 
statistic t(x). Thus by Lemma 3 we have that Pe is totally flat if and only if

V(0) = ^A ij0i0j + bi0i + c

where A is a symmetric positive definite matrix and A,b and c are all independent of 0. Thus we have 
shown:-

Lemma 5. Consider the above full exponential family P9. The following are equivalent:

(1) P9 is totally flat.

(2) The covariance of the canonical statistic does not depend on the canonical parameter

(3) The log-likelihood is a quadratic function of the canonical parameter.

This last characterisation is of particular interest. Taking P to be Lesbegue measure X(x), we see that 
among the totally flat density functions are those of the form

B(x).Np(A0 + b,A)

where Np(A0+b,A) is the density of t(x), B(x) has the same support as B(x) and A and b are as
above. In the particular case B(x)=l and t(x)=x we recover Example 4, the p-variate nonsingular 
normals with constant covariance matrix parametrised by mean value.

Theorem 3 gives the relationship between the intrinsic and embedding geometries of a 
parametric family in the most straightforward case. In general however a parametric family will not be 
totally flat and there will be a complex interrelationship between the various preferred point geodesics 
and divergence functions. Ideally the Kullback-Leibler divergence in a Euclidean embedding space 
would induce the metric g* in the submanifold of interest, in which case the flatness of g* would be 
sufficient for the two distance measures to agree. Theorem 3 shows us that in general g*-flatness will 
not be sufficient but indicates that to understand the general case we need to consider how the g* and 
k* -geometries are affected by the embedding of the statistical family in the space of proper density 
functions S. In fact it is necessary to consider a larger family than S in which g* may be seen as the 
metric induced by the Kullback-Leibler divergence. This construction makes clear the fundamental 
observation that the space of densities S is itself curved and the implications of this must follow 
through the analysis of curvature in all statistical models. This fundamental curvature is shown below 
to be essentially due to the preferred point nature of statistical inference.
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The Geometry of the Kullback-Leibler Divergence 

Following Amari (1985) we make the definition.

Definition. Let S = (p(x)) be the set of all mutually absolutely continuous regular density functions 
on the sample space X with respect to a measure P. Then let S=(m(x)}, where

m(x) = c.p(x), c>0

be its extended set of finite measures. Further if M is a parametric family in S define 
Mby

M = (m(x) I m(x) = c.p(x), c > 0 and p(x) e  M)

We call M the cone defined by M.

By studying the preferred point geometry of such cones we can see the interrelationship 
between the g*, h* and k* preferred point metrics as a function of the embedding of M inside S. 
Further we will be able to see the general relationship between geodesics and divergences.

Lemma 6. Locally to a point in M, M is a parametric family of finite measures. If 0 is a 
parameterisation of M then the map

(0,K) t-> eK.p(x,0)

gives a local parameterisation of M .

Proof. This follows from the regularity conditions on M given in Section 2.

Definition. Following the notation of fibre and tangent bundles we define a submanifold of M 
which in (0,K)-coordinates has the form {0,K(0)) to be a section of M if K(0) is differentiable.

The result below shows that the g*-geometry of a parametric family is determined by the 
cone it lies in.

Lemma 7. (i) g* is a positive semi-definite 2-tensor on M .

(ii) All sections of M are gMsomorphic.

Proof. See appendix.

Although each section of the cone has the same g*-geometry the same is not true of the h*- 
geometry. Since

^-lnm (x ,0 ,(K 0)) = ^ -K (0 )  + 4 -ln p (x ,0 )
C/Uj C7v7 j d u  i

the one form pr* is given by

i P(x,ti) —-lnm(x,0,K(0))
dUj

= - - K ( 0 ) - E .p(x,<t>) 30 i
lnp(x,0)
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The Geometry of the Kullback-Leibler Divergence

Thus h* is given by

a2-------- K ( e ) - r rA e ) - — K (e)+ E D,x(b,
aejaej « aer p(x><w

and this is not independent of the choice of function K(9).

In other words, h* contains information about how M sits inside M . This remark leads to 
the following important insight. We can use the cone construction to prove a more general theorem 
than Theorem 3 which took place in S. Theorem 4 gives the conditions for the Kullback-Leibler 
divergence to be equal to half the squared g'-preferred point distance for embedding in the space S. 
To describe this we need to look at the Kulback-Leibler divergence in S . The following remarks show 
that the Kullback-Leibler acts in a linear way in S . It is the form of the restriction on S which turns it 
into a quadratic distance measure on the space of densities.

Proposition 1. If M is a parametric family with 9-parameterisation and Mis its cone with the 
(9,K)-parametrisation then the Kullback-Leibler divergence between (]) e M and 
(9,K) on Mis given by

djj(9, K) = -K  + d y  (0)

Proof. Immediate.

Note that this result shows that, contrary to its behaviour in S, d̂ , can be negative in S. 
Further S is closed under exponential mixing. In other words In S := (ln f I f e  S) is an affine space. 
Moreover, for each fe S, du maps In S to R in such a way that it preserves the linear structure on the 
affine subspaces passing through f. That is:

Proposition 2. If f,g s  S then f1Agl e S and

dL (f1- V ) = v d L ( g )

Proof. See appendix.

On S we have seen the Kullback-Leibler acts locally as a positive quadratic functional due 
to the axioms of a divergence. This follows from the fact the S is the set of densities and hence must 
fulfil the restriction that they integrate to unity. It is because the divergence is locally quadratic that it 
can be viewed as a geodesic quantity. We can use the greater flexiblity of the Kullback-Leibler on S 
to prove the following result which shows that the Kullback-Leibler divergence can always be 
intepreted as a squared g*-geodesic distance on a submanifold of S.

Theorem 4. Let M be any g*-flat parametric family of densities and assume <|> the preferred point 
lies in M. Then there exists M*, a parametric family in M such that

(i) d y  is a divergence on M*,
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(ii) M and M* have first order contact at <)>. That is <|> e M* and TM, = TM*#,

(iii) M* is g°-isomorphic to M, and

(iv) The Kullback-Leibler divergence on M* is equal to half the squared 
g°-geodesic distance.

(v) M* is totally flat.

Explicitely let M* be the section of the cone on N given by

exp[A(0)] p(x,0)

The Geometry of the Kullback-Leibler Divergence

where we choose A(0) by

A(0) = d{,(0) -  £g*»)(0  -  <t>)i(6 -  <l>)j

and 0 are the g* affine coordinates.

Proof. Straightforward using Lemma 7.
□

From Theorem 4 we see another form of curvature in statistical geometry which affects the 
relationship between parametric family based distance functions, such as geodesics, and those on 
more general infinite dimensional embedding space. By this theorem for a g* -flat family in S there 
will be agreement between the two forms of measurement if we have the condition that the preferred 
point 1-form is linear in the affine coordinates i.e.,

q?(0) = Ep(Xj<tl)[— lnp(x,0)] = K ^ - ^ ) ( 2)

This is a preferred point condition and varies with a different choice of <)>. We can compare this to the 
condition that M* lies in the subspace of density functions so that each measure in M* integrates to 
one. In view of the fact that <(> € M* this is equivalent to

Ep(x,e)[r|:lnp(x,0)] = O (3)

This is implied by (2) but is not equivalent to it since it is the restriction of (2) to the diagonal where 
0=<j>. This, in the language of preferred point geometry, is the homogeneous condition implied by (2). 
Thus the curvature comes from the preferred point geometry as the homogeneous condition (3) is not 
enough to fulfill the complete preferred point condition (2).

This curvature of S inside S , that is the fact that families obey (3) but not in general (2), is 
precisely the obstruction to Amari's projection theorem holding in its strongest form; i.e. that the 
Kullback-Leibler divergence agrees with the g’-squared geodesic distance in any g’-flat manifold.

5. Global measures of curvature.
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The previous section has shown how we get different measures of distance depending on 
which space we consider the points to be embedded in. We can now reverse this idea to use this 
difference to produce some global measures of the different types of curvature reviewed above.

Definition. Let N be a preferred point manifold embedded inside M another preferred point 
manifold. Define dN to be the N-geodesic distance and dM the M-geodesic distance. We can then 
define the geodesic difference function of N in M from $ to 0 to be

K((J>,0) = dN(<t>>0) - dM(<|>,e)

In our statistical geometry have a function of this form corresponding to the g*, h° and k'-geodesics. 

Definition. For a single family N we can define its geodesic difference function in S to be

K(<t>,0) = dN(<t>,0) -  V M P )  (4)

where dkl is the Kullback-Leibler divergence. Again we have functions of this form corresponding to 
the g \ h* and k*-geometries. We see that if N is totally flat then all these functions will be zero.

In this section we shall look at these functions as 'curvatures' in full and curved 
exponential family examples and compare them to the standard pointwise measures of curvature. Let 
us consider first the full exponential families which are often thought of as the flat 'Euclidean spaces' 
of statistics. The results above on total flatness show that while they are g*-flat and k’-flat (and also 
±1 -flat) they are not in general totally flat and do possess an embedding curvature which reflects the 
curvature of the dual geometry of a statistical manifold. In the language of differential geometry this 
curvature is an obstruction to the existence of a coaffine coordinate system. Thus recalling Theorem 3, 
it is convenient to use (4) with dN being the g*-geodesic distance as a measure of the curvature induced 
by duality.

The Geometry of the Kullback-Leibler Divergence

We can also apply these functions in curved exponential families.

Example 5. Consider again the model of Example 2. Let M be the 2-dimensional parametric family 
of bivariate normal models with covariance matrix I, the identity, and let N be the subfamily of 
models with mean vector given by

where 06 Efron (1975) defined the curvature at 0 to be

and this is the embedding curvature of the submanifold N in the classical geometric sense. We can 
therefore extend this definition of curvature to the function

K(<J>,6) = dN(<)>,0) - dM(<(i,0)

where d is the g*-geodesic distance. The following lemma demonstrates that the two different 
methods of measuring curvature are consistent in the following sense.
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The Geometry of the Kullback-Leibler Divergence 

Lemma 9. dN(<j>,0) - dM(<t>,0) = 0 if and only if ye = 0.

Proof. The geodesic distances will be equal if and only if N is totally geodesic in M. This holds if 
and only if the second fundamental form of N in M is zero and from a simple calculation this follows 
if and only if Efron's curvature is identically zero.

□

We also see that dM(<(>,0) = -̂ /dy(<}>,0) in this case which follows from Theorem 3 since 
M is totally flat.

In this one dimensional example we have an interesting difference between curvature in 
statistical geometry and in classical differential geometry. In classical differential geometry any one 
dimensional manifold will have no intrinsic curvature and we can always find an affine 
parametrisation. However as we can see from the above example in statistical geometry one 
dimensional families are not always totally flat due to the curvature of the dual structure. While we can 
find a g’-affine parametrisation and a k*-affine parameterisation, unless dN(<J),0 ) - dM(<|>,0) is 
identically zero these will not be the same. Lemma 9 shows that the amount of this curvature in this 
case is related to Efron's embedding curvature. However note that this case uses the property that M 
is a totally flat manifold and most curved exponential families will lie in full exponential families 
which do have curvature of their own. The following example shows that the more global measures 
of curvature can have useful applications in circumstances where pointwise measures of curvature 
have to be treated carefully.

Example 6. In the same full exponential family as above consider the curved exponential family 
given by the mean vector

Efron's curvature at the point 0 for a curve of the form (0, f(0)) is given by

Ye =

, 2
(f"(0))2

[l + ( f ( 0))2]3

Hence in our example

Ye =
144.04

[l + 16.06]

Thus the pointwise curvature at 0=0 is y0=0 and this will not detect the non-linearity of the function. 
However since the geodesic distance embedding curvatures between 0=0 and 0=1 are a function of 
the curvature at each value of 0e [0,1] the curvature inherent in the manifold will clearly be 
demonstrated.
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The Geometry of the Kullback-Leibler Divergence

6. The preferred point Pythagoras theorem.

Having looked at the projection theorem from the preferred point perspective we can now 
do the same for Amari’s generalised Pythagoras Theorem. Here we show how the preferred point 
analysis is particularly appropriate to this problem in general, and produces a different proof of 
Amari's result in the case of exponential families.

For a parametric family our geometry is determined by two preferred point objects: |T* and 
g*. It is important, for any preferred point tensor, to understand how the geometry depends on the 
preferred point. In this section we look at this issue, mainly in the case of a full exponential family.

For a full exponential family the dependence of the g4-geometry on the preferred point is 
very simple. We note that such a family is flat and has the same affine coordinates, 0, for all values
of ()>. Thus for each choice of preferred point the geometry is Euclidean and all that changes with a 
different preferred point is the value of the quadratic form which determine the Euclidean distance. 
This quadratic form is determined by

gy = gij(«t>)
that is the Fisher information at <|>.

The change in the preferred point 1-form is also simple in the full exponential family case. 
In 0-coordinates we have

P-f(O) = -ni(0 ) -r |i(«|>)

If <j>j and <J>2 are two choices of preferred point we have that the difference in the forms, which is also 
a 1-form, is

pf'(0) - p f - ( 0) = Ti1((t)2) - q i«|)1)

which is independent of 0, the point of evaluation. Thus the two 1-forms differ by a translation 
which is independent of 0.

We finally look at the dependence of h* on the preferred point.

Lemma 10. For a full exponential family the preferred point metric h*(0) is equal to the Fisher 
information, g(0) at all points.

Proof. This follows since both equal the hessian

32
3 0 ^

lnp(x,0)

in the natural 0-coordinates. □

One important consequence of Lemma 12 is that the curvature of h11, is independent of the 
preferred point for a full exponential family.
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The Geometry of the Kullback-Leibler Divergence

We can now consider the generalised version to Pythagoras' Theorem for the Kullback- 
Leibler divergence proved in Amari (1985) and Cencov (1972). The result we shall prove follows 
from the considerations of how our preferred point geometries depend on the value of the preferred 
point and so in the particularly simple case of the full exponential family we get the reduction to
Amari's neat result based on a-projections.

Definition. If m is a one form on M, a finite dimensional manifold, we define the null path of m 
through 0 to be the solution of the differential equation

which passes through 0. By the standard results on the existence and uniqueness of differential 
equations the null path will exist locally if m is non-singular at 0.

Lemma 11. Let <J»,, cf»2 and <j>3 be three points on a finite dimensional parametric family M. Define 
the 1-form ml by

mi(0) = p f ’(0) _  n f2(6)

Then if m is non-singular at <j>2 we have the Pythagorean relationship for the Kullback-Leibler 
divergence

dkl(<t>h<t>2) + dkl(<l)2’(tl3) = dklC't’l-W  

if <t>3 lies on a null path of m through <J>2.

Proof. If <j>3 equals <})2 then we clearly have the result. In general, write the above equation in the 
form

dkl((h>(l,2) -  dkl((h ’(l)3)- t l kl(<t,2’(t,3) (5)

The left hand side of this equation is constant with respect to <J>3 and the rate of change of the right 
hand side with respect to 4>3 is given by the one form

H?'(4>3) - n f 2«>3)

which is m ^ ) .  Thus equation (5) holds as <]>3 moves along the null path of the 1-form mr
□

In the case of the full exponential family the null paths of the above 1-form are particularly 
simple. We shall give an alternative proof of Amari's generalised Pythagoras’ Theorem in this case as 
a corollary to the previous Lemma.

Corollary. In the case of the full exponential family
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The Geometry of the Kullback-Leibler Divergence

dkl($l>02) + dki(02>4>3) -  dkl(01>03)

if <j>3 lies on a +l-geodesic through (J)2 which is Fisher orthogonal to the -1-geodesic joining <bL and (j)2

Proof. The one form m; is constant in ©-coordinates as shown above. Hence the null line is a 0- 
affine line or a +l-geodesic through <|)2. The direction is defined by the tangent vector v at 02 which 
satisfies

m(v)=0

or

(B?'(02) -  n f 2(02))[vi] = (Itf 1(02))[vi] = o (6)

The tangent to the -1 -geodesic joining 0, and 02 is calculated by using the change of basis matrix h* 
applied to the -1-geodesic p*. If we denote this tangent by w1 in ©-coordinates then (6) reduces to

wlgij(<l>2)vj = 0
□

7. Conclusions.

In this paper we have taken as our starting point Amari's projection and generalised 
Pythagoras’ Theorems and their applications to the relationship between geodesics and divergences, 
in particular the ±l-geodesics and the Kullback-Leibler divergence. We have used the tools of 
preferred point geometry to throw new light on the relationship between statistically motivated 
measures of 'distance' and those based on more geometrical foundations. For the projection theorem 
we begin by noting that divergences, despite their inherent asymmetry, can be viewed (locally) as 
preferred point geodesic distances. In Theorem 2 we show this in general using simply the axioms of 
a divergence function. Moving to the Kullback-Leibler divergence in particular we note that this has 
particularly nice embedding properties and defines a distance function not on any one particular 
parametric family but on an infinite dimensional space in which all our regular families are embedded. 
Theorem 3 shows necessary conditions on the preferred point curvature for the squared preferred 
point geodesic distance (being a function of the family in which we are working) to equal the non- 
parametric Kullback-Liebler distance. Theorem 4 shows that the relationship between the two 
concepts is best expressed in the larger infinite dimensional space of finite measures since this avoids 
problems of the curvature induced by restricting attention just to density functions rather than general 
measures.

It is interesting to consider the above in the light of Yoke theory. Firstly we note that 
squared preferred point geodesic distances give new examples of (negative) normed Yokes. Again it 
will be interesting to compare the theory of these yokes, which are defined as functions of particular 
parametric family, with the non-parametric examples of expected and observed Yokes used by 
Bamdorff-Nielsen and Blaesild. This latter will require an observed or, at least, a conditional version 
of preferred point geometry.

The discussion above also illustrates some different aspects of curvature in statistical 
theory. It is clear from the above that curvature can arise from separate although interconnected 
reasons;
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(i) In the first place by restricting attention to some finite dimensional parametric family of 
densities. This induces a form of embedding curvature in S the space of densities.

(ii) We have seen that the space S itself is embedded in a larger space of finite measures. 
This embedding will cause curvature as Theorem 4 shows. This curvature follows from the difference 
between the preferred structure of the geometry and the definition of S which is not fully preferred 
point but homogeneous.

(iii) There is also curvature induced by the dual nature of statistical geometry. Good 
examples of this are the full exponential families which although in many ways are flat they in general 
will posses this dependence. The one case where this curvature and the others above disappears is the 
totally flat case described and partially classified above.

We have also seen how by considering the different ways of measuring distances between 
points via different embeddings we can define global measures of curvature. These measures often 
agree with pointwise measures but have the advantage of ’intergrating' these measures over the area 
of interest.

The Geometry of the Kullback-Leibler Divergence

Finally we have seen how the preferred point approach is appropriate to the analysis of the 
generalised Pythagorean theorem of the Kullback-Leibler divergence.

Appendix.

Proof of Theorem 2. (i) By the positivity of the hessian of the divergence function at 0O we can 
apply Morse's lemma, see Poston and Stewart (1976). Let us fix 0O and treat the divergence function 
as a function of 0. We choose coordinates \y(0) such that locally

d(0o,0) = ^ I ij(0o)¥ i(0) ¥ j(e)

where Iu Fisher information at 0O.

Thus we can use this coordinate change to define a map from 0  to Rp by

¥ :  0 h-> ¥ (6)

We now define a metric on M by pulling back the standard metric on Rp via the map 'F. 
Thus we define g0° ( , ) by

ge°(v„v2) = c ^ v ,  ,'P*v2>

where < , > is the standard Euclidean inner product on Rp, and 'F*:TM-»RP is the lift of 'F to the 
relevant tangent spaces. By construction the squared geodesic distance will equal the divergence 
locally.

(ii)We view V;(0) as a smooth function from Rp to Rp. We show that the derivative of v is 
of full rank. By calculation the derivative at 0O equals
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The Geometry of the Kullback-Leibler Divergence

using the vanishing of the first derivative of the divergence at 0O. Thus since the metric is invertible at 
0O and the hessian of the divergence function is invertible we see that the derivative of v is invertible at

e„.

We apply Morse's lemma again. Choose coordinates \|/(0) such that we can write

Vj(0) =  V i ( 0 ) - V i ( 0 o )

In \|/ coordinates the gradient flow lines of the divergence function are just the affine lines 
from the origin.

We shall show that under this map the Euclidean spheres in 'E-space are the images of the 
level sets of the divergence function. We can see this since the value of the divergence function can be 
found intergrating the length of the divergence function along the integral curve of the gradient flow 
y(t). That is:

deo(6) = JY|vi(Y(t))|dt = J|grad(d0o(Y(t)))|dt 
Y

Thus in \|/ coordinates we see that the divergence function is constant on Euclidean spheres centred 
aorund 0O.

We therefore define the metric in 0-space by pulling back the standard (flat) Euclidean 
metric on \|/-space via the map q

Proof of Lemma 2. Since g* is flat, h* is the change of basis matrix for the change of coordinates 
from 0—>p. Thus we shall calculate k* in the p coordinates. By definition

k *= h*[g* ]~ V

Let us denote a tensor T in 0-coordinate by T- and in p-coordinates by T - and suppress the 
dependence on the preferred point for clarity. The form of k* in p-coordinates is

kij = hiaka phpj

= hiaha7g % h 0j

Thus the form of k* in p-coordinates equals the inverse of the form of g* in 0-coordinates. This form 
is independent of 0 since the 0-coordinates are affine for g*. Thus the form of k* in p-coordinates will 
be independent of p. That shows that the p coordinates are affine for k* and this metric is flat.
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Proof of Lemma 3. From the above lemma we see that there exists a set of coordinates p for 
which k° is constant, as well as 9 in which both g* and h* are constant. Since g° is flat we again use 
the fact that h° is the change of basis matrix between 0 and ^-coordinate. This matrix is independent 
of 9 and as the p-coordinates are affine for k* so are the 9 coordinates. q

Proof of Lemma 4. Since g* is flat the h°-metric is also the change of basis for the 0 and p 
coordinate systems. However since 9 is affine for both metrics the change of basis between must be a 
fixed affine map, and hence independent of 9. □

The Geometry of the Kullback-Leibler Divergence

Proof of Lemma 7. (i) By the chain rule we see that g* is a 2-tensor on M . If 9 is a coordinate 
system on M consider the coordinate system on M given by (0, K) where

m(x,0,K) = eKp(x,0)

In this coordinate system we calculate g0 to be

4 (0 ) 0
L o 0

Thus it is positive semi-definite.

(ii) Let us define a section of M by using the (0,K) coordinate system. Define this section 
to be (0,K(0)) for some real valued function K(9). Calculating the g"-preferred point metric:

4 -lnm (x ,0 ,K (0)) = ^ -[K (9 )  + lnp(x,0)] = A K(0) + A i np(Xi0),
oüj c/Oj dOj dUj

hence

0 lnm (x,0 ,K (0)).^ lnm (x ,9 ,K (0))
30j 90;

^ lnp(x,0).-^-lnp(x,9)
90 i 90;

or

gy(9»K(0)) = gy(0)

□
Proof of Proposition 2. If f  and g are absolutely continous with respect to our base measure P 
then it is clear that f1'lg>' is also. It follows from Loh (1983) that fl lgx has finite measure and hence 
lies in S .

Further

4 l ( f 1_ V )  = E f(x)[ln f -  ln f1- ^g^] = E f(x)[ln f -  (1 -  X)lnf -  Xln g] = X .d^g )

□
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The Geometry of the Kullback-Leibler Divergence
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