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Abstract. In structural vector autoregressive (SVAR) models identifying re-
strictions for shocks and impulse responses are usually derived from economic
theory or institutional constraints. Sometimes the restrictions are insufficient
for identifying all shocks and impulse responses. In this paper it is pointed
out that specific distributional assumptions can also help in identifying the
structural shocks. In particular, a mixture of normal distributions is consid-
ered as a plausible model that can be used in this context. Our model setup
makes it possible to test restrictions which are just-identifying in a standard
SVAR framework. In particular, we can test for the number of transitory and
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1 Introduction

Structural vector autoregressive (SVAR) models are a standard tool for em-
pirical economic analysis. The basic underlying model is usually a vector
autoregressive (VAR) or vector error correction (VEC) model in reduced
form. If one wants to use these models for impulse response analysis, struc-
tural information is required to identify the relevant shocks and impulse
responses. Such information usually comes from economic theory or from
structural and institutional knowledge related to a specific model setup or
the variables involved. If some of the variables are integrated or cointegrated,
long-run restrictions may also be derived from the cointegration properties of
the data. In some cases there is not enough information from such sources,
however, to fully identify all shocks and impulse responses. In that case dif-
ferent plausible restrictions are sometimes considered and the robustness of
the main results with respect to uncertain identifying assumptions may be
investigated.

In this study it is argued that distributional assumptions can be helpful
in identifying shocks of interest and in particular they may be substituted for
missing identifying information from other sources. We use an idea put for-
ward by Lanne and Saikkonen (2005) in the context of multivariate GARCH
models and consider a mixture of normal distributions for the error terms
of our basic model. In VAR analyses it is not uncommon that nonnormal
residuals are found. Thus, it is plausible to specify more general distribu-
tions explicitly. A mixture of normal distributions is plausible, for instance,
if there are different regimes operating within the sample period, one with
a smaller and one with a larger variance. For example, if there is a period
with high volatility or if there are some outliers which may be generated
by a different distribution than the remaining observations such a model is
appealing. Another example may be a system which reacts differently in
expansionary periods and recessions.

In the following, conditions will be discussed which ensure identification
of shocks if they have a mixture of two normal distributions. We will also
discuss how such identifying restrictions can be combined with restrictions
from other sources. Thereby it becomes possible to test restrictions which
are just-identifying in the usual SVAR framework. For example, if cointe-
grated systems are considered, the number of shocks with transitory effects
is often assumed to be identical to the number of cointegration relations and,
accordingly, the number of permanent shocks equals the number of common
trends. In our framework such an assumption can be checked by testing the
implied restrictions even if the shocks are not identified in a standard SVAR
model. We will discuss tests for the number of transitory and permanent

1



shocks in a cointegrated SVAR model and we will also consider tests of other
restrictions which are just-identifying in the standard setup.

Two examples will be considered to illustrate SVAR modelling with mix-
ture normal residuals. The first one is based on a well-known data set from
King et al. (1991) consisting of three US macroeconomic variables. It pri-
marily serves to illustrate some advantages of the mixed normal SVAR model
relative to the standard approach. The second example considers a data set
from Brüggemann and Lütkepohl (2005) consisting of two European and
two US interest rates. We will be able to test some of the assumptions of
the previous analysis and find that they are not supported in our modelling
framework. As in the previous study, we find support for the view that US
monetary policy has a stronger impact on European interest rates than vice
versa.

Our study is structured as follows. In the next section the general model
setup is presented and identifying restrictions are discussed. Estimation of
the models is considered in Section 3 and the two examples are presented in
Section 4. Extensions and conclusions are provided in Section 5. A result
related to mixture normal distributions is given in the Appendix.

2 The Model Setup

2.1 The Reduced Form

Consider the following n-dimensional reduced form VAR model of order p,

A(L)yt = Wwt, (2.1)

where A(L) = In − A1L − · · · − ApL
p is a matrix polynomial in the lag

operator L with (n×n) coefficient matrices Aj (j = 1, . . . , p) and In denotes
the (n×n) identity matrix. Here W is a nonsingular (n×n) parameter matrix
and the n-dimensional error term wt is a mixture of two serially independent
normal random vectors such that

wt =

{
e1t ∼ N (0, In) with probability γ,
e2t ∼ N (0, Ψ) with probability 1− γ.

(2.2)

The parameter matrix Ψ is a diagonal matrix, that is, Ψ = diag(ψ1, ..., ψn)
with positive diagonal elements ψj (j = 1, . . . , n). Notice that the jth com-
ponent of wt has a standard normal distribution if ψj = 1. Hence, there may
be some components of wt which do not have a mixture distribution and, in
fact, wt ∼ N (0, In) if Ψ = In. In other words, a model with normal errors
is a special case of our model setup. Notice also that wt has mean zero and
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covariance matrix γIn + (1 − γ)Ψ, that is, wt ∼ (0, γIn + (1 − γ)Ψ). In our
setup the mixture probability γ, 0 < γ < 1, is also a parameter of the model.
This kind of mixture normal distribution was used in a multivariate GARCH
modelling context by Lanne and Saikkonen (2005).

In (2.1) deterministic terms are neglected for simplicity. They can be
added easily to the model without affecting the essential parts of the following
discussion. We have dropped them from the model because they do not have
a role in structural modelling and impulse response analysis.

If some of the variables are I(1), then a VEC version of the VAR process
is often more useful in structural analysis because it separates the long-run
from the short-run movements of the variables and therefore makes it easy to
impose restrictions on the long-run behavior of some or all of the shocks. The
VEC representation of the model (2.1) is (see Lütkepohl (2005, Sec. 6.3))

∆yt = αβ′yt−1 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + Wwt, (2.3)

where ∆ = 1 − L is the differencing operator, β is an (n × r) cointegration
matrix with cointegrating rank r < n, α is an (n × r) loading matrix for
the cointegration relations, that is, αβ′yt−1 is the error correction term with
long-run relations β′yt and the Γj are (n× n) short-run coefficient matrices.
The parameters in (2.3) may be obtained from A(L) in (2.1) by rearranging
terms such that A(L) = In − αβ′L− Γ1∆L− · · · − Γp−1∆Lp−1.

2.2 Structural Short-run Restrictions

The structural shocks, say εt, are usually defined such that they are zero mean
uncorrelated random variables with unit variances, that is, εt ∼ (0, In). In a
so-called B model setup they are related to the reduced form errors ut = Wwt

by the relation
ut = Bεt

(see Lütkepohl (2005, Chapter 9) for a detailed introductory account of these
models). Clearly, E(utu

′
t) = Σu = BB′ and B is not unique in general. Thus,

to identify the structural shocks, restrictions have to be imposed on B. Be-
cause the elements in B represent the instantaneous effects of the shocks
on the variables, economic theory or institutional knowledge sometimes sug-
gests zero restrictions for B. In other words, some shocks do not have an
instantaneous impact on some of the variables.

A popular way to choose B is to consider a triangular matrix which
may be obtained from a Choleski decomposition of Σu. The shocks then
have a recursive structure where for a lower triangular matrix B the first
shock can have an instantaneous impact on all the variables, whereas the
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second one may only influence the second to last variables instantaneously
and so on. Although such a triangular orthogonalization of the residuals
may occasionally be justified on theoretical grounds, it is sometimes chosen
because no firm theoretical constraints are available.

If no restrictions are present for B but a mixture of normals can be
justified for the reduced form errors, local identification can be obtained
according to the proposition given in the Appendix if all diagonal elements
of Ψ are different. In that case, W and Σw = E(wtw

′
t) = γIn + (1− γ)Ψ can

be estimated and B = WΣ
−1/2
w . Local identification is all we can hope for in

SVAR modelling because all signs in a column of B can always be reversed
without changing the product BB′.

Occasionally there are firm restrictions which identify some but not all of
the shocks. Suppose that m shocks are identified by directly restricting B or,
equivalently, W and assume without loss of generality that they are placed in
the first m positions of wt. Then, for just-identification of all shocks, only the
last n−m components of wt need to have mixture normal distributions and
the first m elements may have a multivariate standard normal distribution.
In that case

E(wtw
′
t) =

[
Im 0
0 γIn−m + (1− γ)Ψn−m

]
, (2.4)

where Ψn−m is an ((n−m)× (n−m)) diagonal matrix with distinct diagonal
elements. Thereby all structural shocks εt are identified by the Proposition
in the Appendix. Note, however, that identification is obtained even if Ψn−m

has one diagonal element which is one as long as all diagonal elements are
different. If wt has the covariance matrix given in (2.4), the first m compo-
nents of εt are identical to the corresponding components of wt whereas the
last n−m components of εt are obtained from the last n−m components of
wt by dividing by the respective standard deviations (the diagonal elements
of [γIn−m + (1− γ)Ψn−m]1/2).

If some of the first m components also have mixture normal distributions,
the shocks are actually over-identified. Such a model nests the one implied
by (2.4) and restrictions can be tested as long as the shocks remain identified.
For example, the restrictions ψ1 = · · · = ψm = 1 can be tested. Moreover, if
wt has a general normal mixture distribution with covariance matrix γIn +
(1−γ)Ψ, where all diagonal elements of Ψ are distinct, identifying restrictions
for the shocks from other sources can be tested.

Although we have just discussed the B model for ease of exposition, simi-
lar considerations apply for the more general so-called AB-model of Amisano
and Giannini (1997) (see also Lütkepohl (2005, Chapter 9)). In that case the
structural shocks are such that ut = A−1Bεt and identifying restrictions may
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be placed on both A and B. In the previous discussion, B may just be
replaced by A−1B.

2.3 Models with Cointegrated Variables and Long-run
Restrictions

If some variables are integrated, the long-run effects of the structural shocks
can be shown to be ΞB in the B-model, where

Ξ = β⊥

[
α′⊥

(
IK −

p−1∑
i=1

Γi

)
β⊥

]−1

α′⊥. (2.5)

The symbols α⊥ and β⊥ denote orthogonal complements of α and β, respec-
tively (see Johansen (1995) for the derivations and Lütkepohl (2005, Chapter
9) for an introductory discussion). Because α and β both have rank r, the
matrix Ξ and, hence, ΞB must have rank n− r. It follows that at most r of
the shocks may have transitory effects only and, hence, they are associated
with zero columns in the long-run matrix ΞB. If such an assumption can be
justified, zero restrictions on the long-run matrix may be imposed and used
for identifying the structural shocks. In some cases this may even result in
just-identified shocks. If there is more than one transitory shock or more
than one permanent shock, additional restrictions will be needed, however.
If they are not available from other sources, the mixture normal distribution
may be helpful again.

Suppose that there are r transitory shocks, εt
t, and n − r permanent

shocks, εp
t , and they are arranged such that ε′t = (εp′

t , εt′
t ). Hence, ΞB =

[Φn×(n−r) : 0n×r], where Φn×(n−r) is an (n × (n − r)) matrix. Further-
more, suppose that there are no other zero restrictions available for B and
ΞB. Then identification of the shocks is obtained according to the Propo-
sition in the Appendix if the corresponding subvectors of wt, say wp

t and
wt

t have independent mixture normal distributions with covariance matrices
E(wp

t w
p′
t ) = γIn−r + (1− γ) Ψn−r and E(wt

tw
t′
t ) = γIr + (1− γ) Ψr, respec-

tively, where Ψn−r and Ψr must both have distinct diagonal elements, whereas
some of the diagonal elements of Ψn−r may be the same as those of Ψr.

If wt has a fully general mixture normal distribution as in (2.2), the
zero constraints on ΞB are, in fact, over-identifying restrictions which can
be tested. Hence, in this case we can test for the number of transitory
and permanent shocks. Denoting the number of transitory shocks by r∗,
we can, for example, test the null hypothesis H0 : r∗ = r or, equivalently,
H0 : ΞB = [Φn×(n−r) : 0n×r] against the alternative hypothesis H1 : r∗ < r,
that is, ΞB is unrestricted. Alternatively, we may test against H1 : r∗ = r−1,
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that is, ΞB = [Φn×(n−r+1) : 0n×(r−1)]. We can also test a sequence of null
hypotheses H0 : r∗ = r, H0 : r∗ = r − 1, . . . , H0 : r∗ = 1 to determine the
number of transitory shocks. The testing sequence stops and the number of
transitory shocks is chosen accordingly if one of the null hypotheses cannot
be rejected.

3 Estimation

Because a specific distribution for the reduced form error term is used, max-
imum likelihood (ML) is a plausible estimation method. The error term wt

has density

φw (wt) = γ (2π)−n/2 exp

{
−1

2
w′

twt

}

+ (1− γ) (2π)−n/2 det (Ψ)−1/2 exp

{
−1

2
w′

tΨ
−1wt

}

and, neglecting the constant terms, the conditional distribution of yt given
yt−1, yt−2, . . . , has a density

ft−1 (yt) = γ det(W )−1

× exp

{
−1

2
(A(L)yt)

′ (WW ′)−1 (A(L)yt)

}

+ (1− γ) det(Ψ)−1/2 det(W )−1

× exp

{
−1

2
(A(L)yt)

′ (WΨW ′)−1 (A(L)yt)

}
.

Collecting all the parameters in the vector ϑ, the log-likelihood function can
be written as

lT (ϑ) =
T∑

t=1

log ft−1(yt),

where an additive constant is dropped. If ϑ is identified, lT (ϑ) can be maxi-
mized with standard nonlinear optimization algorithms.

For stationary processes we can appeal to standard ML theory and con-
clude that the estimators have the usual limiting properties, that is, they are
consistent and asymptotically normal. Restrictions can be tested by likeli-
hood ratio (LR) tests using the usual χ2 limiting distributions if the model
is identified under both the null and alternative hypotheses.

For VEC models the cointegration relations may be estimated in a first
step by the Johansen (1995) reduced rank regression which is equivalent to
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ML for a Gaussian model but is just a quasi ML procedure under the present
mixture normal assumption. In a second step we may then condition on
the estimated cointegration relations and maximize the log likelihood with
respect to the other parameters. Such a procedure will be used in the next
section where examples are considered.

4 Examples

In this section the previously discussed results will be illustrated with two
examples. The first one uses a small system of US macro variables from King
et al. (1991). The second example considers a system of four interest rate
series from the US and Europe. It uses data which were analyzed earlier by
Brüggemann and Lütkepohl (2005).

4.1 US Macro Model

The first example is based on quarterly US data for the period 1947Q1 −
1988Q4 from King et al. (1991) for the three variables log consumption (ct),
log investment (it) and log private output (qt) (all multiplied by 100).2 These
series were also used as an example by Lütkepohl (2005, Chapter 9) who
treated all of them as I(1) and found evidence for r = 2 cointegration re-
lations. He fitted a VEC model with a constant term, cointegrating rank
r = 2 and one lagged difference of the variables, that is, p− 1 = 1 in a model
such as (2.3). Moreover, only one shock was assumed to have permanent
effects. This restriction identifies the permanent shock while an additional
restriction is required for identifying the two transitory shocks. There is no
guidance from economic theory for the present system how to impose such a
restriction. Therefore using some distributional assumption to obtain identi-
fication may be an option. In fact, standard Jarque-Bera nonnormality tests
reject the normality hypothesis for the residuals of the present model. Hence,
there is some support for using a nonnormal residual distribution.

We have used the cointegration relations obtained from a reduced rank
regression and we have estimated several models with mixture normal dis-
tributions conditionally on these cointegration relations.3 Some results are
presented in Table 1. Since some of the models are over-identified, we can
actually test the restrictions. Test results are presented in Table 2.

Model (1) is identified by distributional assumptions only. The estimated
ψ̃i’s are all different although, given their standard errors, it is not clear that

2The data are available at the website http://www.wws.princeton.edu/∼mwatson/.
3All computations were done with GAUSS programs.
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they are actually significantly different. For illustrative purposes we will
assume, however, that Model (1) is identified. Adding the restriction that
the first shock is the only one with permanent effects while the second and
last shocks have transitory effects only, the model is over-identified and the
restriction that two shocks are transitory can be tested. The test of Model
(2) versus Model (1) is the first one reported in Table 2. Based on the χ2(2)
null distribution the p-value is 0.34 and hence the restriction is clearly not
rejected at common significance levels. Notice that the six zero restrictions
imposed on ΞB to exclude permanent effects of the last two shocks account
for two linearly independent restrictions only because the matrix ΞB has
rank one (see Lütkepohl (2005, Section 9.2)). Therefore there are only two
degrees of freedom in the limiting null distribution.

Under our assumptions we can also test whether one of the diagonal ele-
ments of Ψ is one and, thus, the corresponding residual has actually a normal
distribution. Recall that the model is identified if all diagonal elements are
distinct. Thus, anyone of the elements may be one as long as only one of
them has this particular value. In Models (3) and (4) we have restricted
one of the ψj’s to one. Testing these models against Model (2), ψ1 = 1 is
clearly rejected, whereas ψ2 = 1 is not. Given the estimates and their stan-
dard errors in Model (2), this outcome is not surprising. Note, however, that
the first shock is identified by the assumption that it is the only permanent
one. Thus, rejecting ψ1 = 1 indicates that the permanent shock is not well
modelled with a normal distribution.

The final four tests in Table 2 check zero restrictions on the instantaneous
effects, that is, zero restrictions on the last two columns of B. In a classical
model setup with normal residuals one such restriction is required to just-
identify the two transitory shocks. Hence, such a restriction cannot be tested
in that framework. In the present mixture normal setup a test becomes
possible, however, because the restrictions are now over-identifying. In Model
(5) the second transitory shock cannot have an instantaneous impact on
consumption (the first variable in the system), that is, b13 = 0. Testing this
restriction together with the constraint that the last two shocks are transitory
against a model which is identified purely by the mixture normal distribution
(Model (5) versus Model (1)), the restrictions clearly cannot be rejected at
common test levels. Moreover, testing b13 = 0 only (Model (5) against Model
(2)) the restriction is not rejected at the 5% level.

In contrast, testing that the third shock has no instantaneous effect on
output, the third variable in our system (b33 = 0) is clearly rejected at a 5%
level of significance. The p-values of both tests, (6) versus (1) and (6) versus
(2) are clearly smaller than 0.05. Thus, utilizing the nonnormality of the
residual distributions allows us to discriminate between restrictions which
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cannot be tested in a classical normal SVAR setup.
It may also be of interest to compare the impulse responses implied by

the different identifying assumptions for the shocks. Impulse response func-
tions corresponding to some of the models in Table 1 are therefore depicted
in Figures 1 - 3 with 95% confidence intervals. The confidence intervals are
based on 2000 bootstrap replications using the method referred to as Hall’s
percentile method by Benkwitz, Lütkepohl and Wolters (2001). These con-
fidence intervals are presented here because they have a better theoretical
foundation than the ones more commonly used in impulse response analysis.

In Figure 1 impulse responses obtained in a standard SVAR setup with
normal residuals are depicted for comparison purposes. Here the identifying
restrictions are the same as in Model (5), except that the residuals are now
treated as normally distributed. Hence, the restrictions are just-identifying
here and they were not rejected in the mixture normal setup. The corre-
sponding impulse responses from Model (5) with mixture normal residuals
are depicted in Figure 2. Not surprisingly they look very similar to those
in Figure 1 because they satisfy the same identifying long-run and short-run
restrictions. They are just estimated using a different likelihood function
which allows for mixture normal residuals. The main implication is that the
confidence intervals around the impulse responses in Figure 2 tend to be a
little wider than the corresponding ones in Figure 1. This is a reflection of
the more general residual distribution underlying Figure 2. Exceptions to
this general outcome are the confidence intervals for the responses of i and q
to the second transitory shock which are wider under the normality assump-
tion (see εt2 → i and εt2 → q). In particular the responses of investment
have much wider confidence intervals initially (note the difference in scales
in Figures 1 and 2, respectively).

Using the mixture normal distribution the transitory shocks remain iden-
tified if the restriction b13 = 0 is removed. The resulting impulse responses
based on Model (2) are depicted in Figure 3. Apart from the fact that the
second transitory shock now has an instantaneous impact on consumption,
nothing much has changed relative to Figure 2. This outcome is expected,
of course, because the restriction b13 = 0 was not rejected by the LR test in
Table 2. Notice, however, that the instantaneous response of consumption
to the second transitory shock is significant when judged on the basis of the
bootstrap confidence interval although it was not significant at the 5% level
when Model (5) was tested against Model (2) with the LR test. Because
we do not know much about the small sample properties of our statistical
methods it is an advantage that we do not have to rely on these procedures
and can relax the restriction b13 = 0 in our setup.

As a final remark regarding this example it may be worth emphasizing
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again that the main purpose of the previous discussion is to illustrate the
issues related to identifying shocks in structural VEC models by a mixture
normal distribution. The model may not be a perfect one for the present data
set because there may be some autocorrelation left in the residuals. Also, if
the mixture normal distribution is in fact a good one for the residuals, the
inference procedures used in specifying the model may not be the best ones.
For example, results of Lucas (1997) and Boswijk and Lucas (2002) suggest
that Johansen’s LR tests may not be the best tools for determining the coin-
tegrating rank in this case. Developing better instruments for other stages
of a structural VEC analysis under nonnormality assumptions is beyond the
scope of this paper, however.

4.2 US and European Interest Rates

Brüggemann and Lütkepohl (2005) considered euro area and US short-term
and long-term interest rates and found support for both the expectations
hypothesis of the term structure and the uncovered interest rate parity.
More precisely, they analyzed four monthly interest rate series for the pe-
riod 1985M1 − 2004M12. The series are a euro area three months money
market rate rEU

t , a euro area 10-year bond rate REU
t , a US three months

money market rate rUS
t and a US 10-year bond rate RUS

t .4 Brüggemann
and Lütkepohl (2005) found that all four variables are I(1) whereas the two
spreads RUS

t −rUS
t and REU

t −rEU
t as well as the two parities RUS

t −REU
t and

rUS
t − rEU

t are stationary and, hence, there are three linearly independent
cointegration relations in the system of four series.

Therefore Brüggemann and Lütkepohl (2005) used a VEC model for
yt = (RUS

t , rUS
t , REU

t , rEU
t )′ with a constant term, three lags of ∆yt and a

cointegrating rank of r = 3 to investigate the impact of monetary shocks
in the US and in Europe. Because the cointegrating rank is r = 3 they re-
stricted three shocks to have transitory effects only. Thereby they identified
the permanent shock. It is not obvious why there should be three transi-
tory shocks, however. The fact that there are three cointegration relations
implies that there can be at most three transitory shocks. Of course, there
could be fewer such shocks. Moreover, there is no firm theory that suggests
how to identify the transitory shocks. Because, based on standard Jarque-
Bera tests, there is some evidence that the model residuals are nonnormal,
using a more general distribution is plausible. Admittedly, the nonnormality
may be due to ARCH effects in the present system of variables. A mixture

4The European interest rate series are constructed from German interest rates until
the end of 1998 and the corresponding euro area rates afterwards. For more details on the
data and their sources see the data appendix.
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of normal distributions may still not be implausible here because it can rep-
resent observations coming from two regimes with different volatility which
is not untypical for interest rate series. In fact, such periods with different
volatility are actually present in the series under investigation here, as can
be seen in Figure 4, where the first differences of all four series are plotted.

We have estimated different models with mixture normal residuals and
present some results in Table 3, where the number of transitory shocks (i.e.,
the number of zero columns in ΞB) is denoted by r∗. Clearly, the ψ̃i’s are
quite different in all models, although they are not in all cases significantly
different in the sense that two-standard error confidence intervals around the
estimates would overlap. This is true in particular for the fully unrestricted
Model (1). Thus, it is unclear whether the model is actually identified, that is,
the W matrix may not be locally unique. Admittedly, we don’t know much
about the small sample properties of our estimators and in the following
we assume again that the underlying ψi’s are distinct so that Model (1) is
identified.

Notice that some of the ψ̃i’s in Model (1) are in fact quite large. Three
of them are substantially larger than one. Hence, thinking of the two mixing
normal distributions as representing different regimes, the regime represented
by N (0, Ψ) is clearly one with higher volatility in three of the four compo-
nents than the one represented by a standard normal N (0, I4) distribution.
The unnormalized wt and the normalized εt shocks are identified purely by
their stochastic properties in Model (1). Therefore it is difficult or impossible
to interpret them as economic shocks without further assumptions or restric-
tions. Hence, in the following we will investigate different sets of restrictions
which may help to attach economic meaning to the shocks.

When some of the shocks are restricted to be transitory as in Models (2)
- (6), the ψ̃i’s partly change considerably, depending on the positioning of
the permanent and transitory shocks. In all the models one of the ψ̃i’s is
substantially larger than the others. In other words, one of the shocks has a
much larger variance than the others. For example, in Model (1) ψ̃2 = 128.8
which is more than 10 times larger than the second largest ψ̃i. In contrast,
when only one impulse is allowed to have permanent effects as in Model (2),
the largest ψ̃i shifts to the first position which corresponds to the permanent
shock. In other words, the unnormalized permanent shock is the one with
the largest variance. In this case the difference in size of the ψ̃i’s is not
quite as dramatic as in Model (1) which suggests that the observations are
associated with the two regimes in a different way in Models (1) and (2),
respectively. This is also reflected in the fact that the estimated mixture
probabilities γ̃ are quite different for the two models. We will see shortly,
however, that Model (2) is rejected by the data. In fact, all models which
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are not rejected by the data in the following tests (Models (3), (4) and (5))
have one very large ψ̃i corresponding to a transitory shock and the estimated
mixture probabilities are quite similar. They are in fact identical up to two
significant digits (γ̃ = 0.32 for Models (1), (3), (4) and (5)). We will turn to
tests of the restrictions imposed on the models now.

Based on the results in Table 3 we can test for the number of transitory
shocks as explained in Section 2.3. The relevant results are given in Table 4.
Both tests, H0 : r∗ = 3 versus H1 : r∗ < 3 and H0 : r∗ = 3 versus H1 : r∗ = 2
have very small p-values and clearly reject at common significance levels.
In other words, three transitory shocks are clearly rejected. Testing a model
with only two transitory shocks, the result is more favorable. Both alternative
tests have p-values that indicate compatibility of two transitory shocks with
the data in our setup.

If one accepts that there are two transitory shocks and one places them
in the last positions of the vector of shocks, the discussion in Section 2.3
suggests that identification is ensured if ψ1 6= ψ2 and ψ3 6= ψ4. Given the
estimates and their standard errors, this may well hold in Model (3). In any
case, two-standard error confidence intervals around the respective estimates
do not overlap.

In the lower part of Table 4 we also give results of tests of other restric-
tions of potential interest. Clearly, as three transitory shocks are rejected by
the data, it does not make sense to test the validity of the identifying restric-
tions for the transitory shocks used by Brüggemann and Lütkepohl (2005).
Because monetary policy shocks are sometimes thought of as being transitory
(e.g., Evans and Marshall (1998)), the two transitory shocks in our system
may represent monetary policy shocks in Europe and the US, respectively.
Without further restrictions they could, of course, both be mixtures of such
shocks. One way to associate them uniquely with one of the two currency
areas would be to impose suitable restrictions. Therefore we used models
with two transitory shocks and restricted the instantaneous impact of one of
them to be zero for the US interest rates (Model (5)) and the other one has
no instantaneous impact on the European interest rates (Model (6)). Clearly,
the US monetary shock should be allowed to have an instantaneous impact
on US interest rates. Thus, restricting the first transitory shock (the third
shock in the εt vector) to have no instantaneous effect on US interest rates it
cannot be the US monetary policy shock and, hence, must be the European
monetary shock if indeed each of the two transitory shocks represents one
of the monetary policy shocks. Consequently, the third shock in our system
is viewed as the European monetary policy shock and the fourth shock is
regarded as US monetary policy shock.

In Table 4 the corresponding restrictions are tested and it turns out that
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the constraints imposed on the instantaneous impacts of the first transitory
shock cannot be rejected at the 10% level of significance whereas the re-
strictions on the effects of the second transitory shock are clearly rejected at
common significance levels. Thus, Model (5) is the preferred one and the first
transitory shock can clearly be associated with European monetary policy.
Moreover, European monetary policy shocks do not seem to affect US inter-
est rates instantaneously. On the other hand, US monetary policy has an
immediate impact on European interest rates because there is no transitory
shock which affects only US interest rates instantaneously. Note, however,
that in Model (5) which is not rejected by the data, ψ̃4 is much larger than all
other ψ̃i’s (see Table 3). Thus, the last transitory shock is composed of two
regimes one of which has a much larger volatility than the other one. Notice
in Figure 4 that in the late 1980s the volatility in the US short-term interest
rate is larger than in other periods. This larger volatility may be captured
by the high variance regime of the fourth shock. In roughly the same period
there is also higher volatility in the EU short-term rate. Thus, it is possible
that the fourth shock captures a mixture of US and EU monetary policy. On
the other hand, the increased volatility in the European interest rate may
be due to increased volatility in the US. Therefore we will assume in the
following that the last shock represents a US monetary policy shock.

The finding that US monetary policy may have an instantaneous impact
on European interest rates but not vice versa is in line with the conclusion
of Brüggemann and Lütkepohl (2005) that US interest rates have a stronger
impact on European monetary policy than vice versa. In their framework
they could not formally test this result, however. Although also in our frame-
work some assumptions are necessary (e.g., we assume that monetary policy
shocks are transitory), statistical tests can carry us one step further in check-
ing restrictions that are not over-identifying in the standard framework and,
hence, cannot be tested in that setting.

We have also computed the impulse responses for the two transitory
shocks and show them in Figure 5 together with 95% bootstrap confidence
intervals. It turns out that a contractionary EU shock leads to an increase in
the US long-term rate, although not instantaneously. There is no significant
reaction of the US short-term rate, however. In contrast, a contractionary
US monetary shock has a significant instantaneous and longer lasting impact
on the EU short-term rate and there is also a potentially significant impact
on the EU long-term rate. Thus, overall the impulse responses are in line
with the conclusion that US monetary policy may be more important for
Europe than vice versa.
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5 Conclusions and Extensions

In this paper we have used distributional assumptions for the residuals of a
VAR model to identify some or all shocks to be used for an impulse response
analysis. Specifically we have used a mixture of two normal distributions
to obtain fully identified shocks. We have also shown how such nonnormal
error distributions can be combined with restrictions from other sources to
identify the shocks and impulse responses. For example, they can be com-
bined with restrictions derived from the cointegration properties of a system
of variables. Two empirical examples have been used to illustrate the virtue
of the approach for applied work.

Although in practice it will be easy to justify nonnormal distributions
for many econometric models, our approach has some limitations that de-
serve further consideration in future work. First of all, we have considered
mixtures of two normal distributions only. This may be reasonable if two dif-
ferent regimes are a plausible assumption for the sample period. Sometimes
it may be more natural to allow for more than two regimes, however, and,
hence, mix more than two normal distributions. Second, we have allowed
for just one mixture probability. In other words, the mixture probabilities
are assumed to be identical for all components of the vector of innovations.
Again this may not always be a realistic assumption. Third, although we
have argued that a mixture normal distribution is often a plausible extension
of the usual normal distribution, there may be alternative appealing distri-
butions which are worth considering in this context. For example, Siegfried
(2002) argues that monetary policy shocks may be leptokurtic and he con-
siders a logistic distribution. He also presents an algorithm for estimating
independent rather than just uncorrelated shocks. Generally, the potential
of other distributions for identifying the shocks in a structural VAR model
may be worth investigating. Finally, for the structural analysis a reduced
form model has to be found which describes the data generation process
well. Specification and inference procedures which account for residuals with
mixture normal distributions may be worth exploring. Moreover, given the
large number of parameters in full VAR models, ML estimation may be a
computational challenge in some cases and it may be worth considering other
estimation methods. We leave these issues for future research.

Appendix

In this appendix we present a proposition which is useful in dealing with the
mixture normal distribution.
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Proposition. Let u = Ww, where W is a nonsingular (n× n) fixed matrix
and the random vector w is a mixture of two normal random vectors such
that

w =

{
e1 ∼ N (0, In) with probability γ,
e2 ∼ N (0, Ψ) with probability 1− γ

with 0 < γ < 1 and Ψ = diag(ψ1, ..., ψn) is a diagonal matrix with positive
diagonal elements. Then the columns of W are uniquely determined up to
multiplication by −1 if and only if all ψj are mutually different. ¤

Proof: Because u ∼ (0, W [γIn + (1− γ) Ψ] W ′), we have to show that W is
unique in the covariance term up to multiplication of its columns by −1.

To show the “if” part of the proposition, let Q be a matrix such that

W [γIn + (1− γ) Ψ] W ′ = WQ [γIn + (1− γ) Ψ] Q′W ′. (A.1)

We have to show that the only feasible Q matrix is a diagonal matrix with
diagonal elements ±1. Multiplying (A.1) from the left by W−1 and from the
right by its transpose gives

γ(In −QQ′) = (1− γ)(QΨQ′ −Ψ). (A.2)

This holds for all γ from the unit interval only if both sides are zero and,
hence, QQ′ = In. In other words, Q has to be orthogonal. Moreover, Ψ =
QΨQ′ or, equivalently, ΨQ = QΨ. Denoting the ijth element of Q by qij,
the last matrix equality means that ψiqij = ψjqij and, hence, qij = 0 for
i 6= j because ψi 6= ψj. Consequently, Q must be a diagonal matrix with ±1
on the diagonal because the diagonal elements of a diagonal matrix are its
eigenvalues and the eigenvalues of an orthogonal matrix are all ±1.

It is also easy to show that W is not unique if at least two of the diagonal
elements of Ψ are equal. Hence, the “only if” part follows. Thereby the
proposition is proven.

Data Appendix

The data used in the example of Section 4.2 are the same ones used by
Brüggemann and Lütkepohl (2005). In the following we reproduce the data
sources given in that article.

Monthly data for the period 1985M1− 2004M12 are used. Euro area in-
terest rate series correspond to German interest rates for the period 1985M1−
1998M12 and to euro area interest rates for the period 1999M1− 2004M12.
Monthly values are averages over all business days. The data are taken from
the sources listed below:
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1. US long term interest rate (RUS): 10-year T-Bill rate taken from
FRED II database. Series ID: GS10.

2. US short term interest rate (rUS): 3-month money market rate
taken from FRED II database. Series ID: CD3M.

3. Euro area long term interest rate (REU): 1985M1−1998M12: 10-
year government bond rate (Umlaufsrendite) taken from Deutsche Bun-
desbank database. Series ID: WU0004. 1999M1 − 2004M12: 10-year
euro area government benchmark bond yield. Source: ECB monthly
bulletin, T04.07 c5.

4. Euro area short term interest rate (rEU): 1985M1−1998M12: 3-
month money market rate taken from Deutsche Bundesbank database.
Series ID: SU0107. 1999M1 − 2004M12: 3-month money market rate
(EURIBOR). Source: ECB monthly bulletin, T04.06 c3.
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Table 2: LR tests based on results from Table 1

Hypotheses LR statistic Assumed p-value
H0 H1 distribution
(2) (1) 2.18 χ2(2) 0.34
(3) (2) 15.39 χ2(1) 0.00
(4) (2) 0.43 χ2(1) 0.51
(5) (1) 5.15 χ2(3) 0.16
(5) (2) 2.97 χ2(1) 0.08
(6) (1) 10.27 χ2(3) 0.02
(6) (2) 8.09 χ2(1) 0.00
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Table 4: LR tests based on results from Table 3

Hypotheses LR statistic Assumed p-value
H0 H1 distribution

r∗ = 3 r∗ < 3 17.24 χ2(3) 0.0006
r∗ = 2 r∗ < 2 1.57 χ2(2) 0.46
r∗ = 3 r∗ = 2 15.65 χ2(1) 7.63× 10−5

r∗ = 2 r∗ = 1 1.20 χ2(1) 0.27

(5) (3) 4.22 χ2(2) 0.12
(6) (3) 18.13 χ2(2) 0.0001
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εp → c εt1 → c εt2 → c

εp → i εt1 → i εt2 → i

εp → q εt1 → q εt2 → q

Figure 1: Impulse responses of output, consumption, and investment with
95% Hall percentile bootstrap confidence intervals based on 2000 bootstrap
replications (identification: normal residuals, ΞB = [Φ : 03×2], b13 = 0)
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εp → c εt1 → c εt2 → c

εp → i εt1 → i εt2 → i

εp → q εt1 → q εt2 → q

Figure 2: Impulse responses of output, consumption, and investment from
Model (5) with 95% Hall percentile bootstrap confidence intervals based
on 2000 bootstrap replications (identification: mixture normal distribution,
ΞB = [Φ : 03×2], b13 = 0)
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εp → c εt1 → c εt2 → c

εp → i εt1 → i εt2 → i

εp → q εt1 → q εt2 → q

Figure 3: Impulse responses of output, consumption, and investment from
Model (2) with 95% Hall percentile bootstrap confidence intervals based on
2000 bootstrap replications (identification: mixture normal residuals, ΞB =
[Φ : 03×2])
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∆RUS ∆rUS

∆REU ∆rEU

Figure 4: First differences of interest rate series.
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EU shock

→ RUS

US shock

→ RUS

→ rUS → rUS

→ REU → REU

→ rEU → rEU

Figure 5: Responses of interest rates to EU and US monetary shocks based
on Model (5) from Table 3 with 95% Hall percentile bootstrap confidence
intervals based on 2000 bootstrap replications.
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