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Abstract

The thesis consists of three essays in the �elds of international �nance and applied econo-

metrics. The �rst chapter analyzes the co-movement of market premia for rare adverse events,

addressing the important issue of contagion. The second chapter studies the impact of rare

adverse events on the estimates of the risk-aversion coe�cient and on household's portfo-

lio composition. This chapter shows that the threat of a rare disaster justi�es household's

positive bond holdings. Finally, the last chapter studies if the information not contained

in the domestic yield curve, but contained in the foreign yield curve helps to predict future

dynamics of domestic yields.

The �rst chapter proposes a novel approach to assessing volatility contagion across equity mar-

kets. More speci�cally I decompose the variance risk premia of three major stock indices into: crash

and non-crash risk components and analyse their cross-market correlations. I �nd that crash-risk

premia exhibit higher correlations than non-crash risk premia, implying the existence of volatility

contagion. This suggests that investors believe that equity returns will be more highly correlated

across countries during market crashes than during more normal times. The main result of the

analysis holds when I apply other measures of co-movement as well as when I allow correlation to

be time varying. Moreover I document that crash-premia constitute a large portion of the overall

variance risk premia, highlighting the importance of crash-risks. Unlike the existing literature, my

approach to testing the existence of volatility contagion does not rely on short periods of �nancial

distress, but allows for crash-risk premia to be computed in tranquil times.

The second chapter assesses the impact of the Peso problem on the econometric estimates of the

risk aversion coe�cient. Rietz (1988) and subsequently Barro (2006) showed that the introduction of

the crash risk allows the canonical general equilibrium framework to generate data consistent equity

premia even under low risk aversion of the representative agents. They argue that the original data

used to calibrate these models su�er from a Peso problem (i.e. does not encounter a crash state).

To the best of my knowledge the impact of their Peso problem on the estimation of the risk aversion

coe�cient has not to date been evaluated. This chapter seeks to remedy this. I �nd that crash states

that are internalized by economic agents, but are not realized in the sample, generate only a small

bias in the estimates of the risk aversion coe�cient. I also show that the introduction of the crash

state has a strong bearing on the household's portfolio composition. In fact, under the internalized

crash state scenario, households exhibit positive bond holdings even in a frictionless environment.

In the third chapter, co-authored with Andrew Meldrum and Peter Spencer, we show, using

data on government bonds in Germany and the US, that `overseas unspanned factors' - constructed

from the components of overseas yields that are uncorrelated with domestic yields - have signi�cant

3



ABSTRACT 4

explanatory power for subsequent domestic bond returns. This result is remarkably robust, holding

for di�erent sample periods, as well as out of sample. By adding our overseas unspanned factors

to simple dynamic term structure models, we show that shocks to those factors have large and

persistent e�ects on domestic yield curves. Dynamic term structure models that omit information

about foreign bond yields are therefore likely to be mis-speci�ed.
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CHAPTER 1

Volatility contagion: new evidence from market pricing of volatility

risk

Abstract

This paper proposes a novel approach to assessing volatility contagion across equity markets. I

decompose the variance risk premia of three major stock indices into: crash and non-crash risk

components and analyse their cross-market correlations. I �nd that crash-risk premia exhibit higher

correlations than non-crash risk premia, implying the existence of volatility contagion. This sug-

gests that investors believe that equity returns will be more highly correlated across countries during

market crashes than during more normal times. The main result of the analysis holds when I apply

other measures of co-movement as well as when I allow correlation to be time varying. Moreover

I document that crash-premia constitute a large portion of the overall variance risk premia, high-

lighting the importance of crash-risks. Unlike the existing literature, my approach to testing the

existence of volatility contagion does not rely on short periods of �nancial distress, but allows for

crash-risk premia to be computed in tranquil times.

Keywords: Financial contagion, variance risk premium, tail-risk, equity co-movement, volatility

co-movement.

JEL classi�cation: C58; F36; G12; G13; G15
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1.1. Introduction

The recent �nancial crisis highlighted the high degree of co-movement between interna-

tional stock markets during crisis periods. This paper studies this comovement by decompos-

ing international 'variance risk premia' i.e. the di�erence between expected market volatility

and the volatility implied by equity options (for example in the case of S&P500, the VIX is

the implied volatility index) - into two components: one capturing compensation for crash

risk and another capturing compensation for 'non-crash' risk. More precisely, I de�ne mar-

ket crash risk as the risk of an event where the market jumps by at least -10% within one

trading day and non-crash risk is de�ned as any market moves which are not considered to

be a market crash. The analysis shows that crash risk premia exhibit higher correlations

internationally than non-crash risk premia. This suggests that investors believe that equity

returns will be more highly correlated across countries during market crashes than during

more normal times.

This paper therefore contributes to the literature on asset price `contagion' across coun-

tries, which - following Forbes and Rigobon (2002) � is de�ned as an increase in cross-market

correlation1 during times of crisis. While a number of papers have found evidence of this

form of contagion (e.g. for equity returns, King and Wadhwani (1990) and Longin and Sol-

nik (1995); for realized equity volatilities, Diebold and Yilmaz (2009); Cipollini et al. (2013);

and for option-implied equity volatilities, Cipollini et al. (2013)), other studies, after cor-

recting for estimator biases (e.g. Forbes and Rigobon (2002), Longin and Solnik (2001), and

Corsetti et al. (2005)) �nd no evidence of contagion. Dungey and Zhumabekova (2001) point

out that the primary di�culty is that periods of turmoil are usually short and consequently

span only a small portion of the observed sample. Moreover the choice of dates for the

�nancial turmoil 'regime' might also lead to inconsistent or ine�cient estimates.

The novel approach developed in this paper avoids many of the drawbacks associated

with distinguishing changes in correlation during short crisis periods. This is due to the

fact that I look directly at market pricing of crash risk, which can be computed durign

tranguil or crisis period. More precisely, I decompose variance risk premia2 into components

compensating for crash and non-crash states in the United States, the United Kingdom and

euro area, by applying a modi�ed version of the method of Bollerslev and Todorov (2011)

to the S&P500, FTSE100 and Eurostoxx50, respectively. This allows me to compare the

co-movement of premia that compensate for crash events with the co-movement of premia

1Traditionally correlation of stock market indices or asset prices were analyzed, but in this study I focus on
the co-movement of volatilities of major stock market indices.
2Variance Risk Premium is the premium that markets require for the risk of a change of uncertainty. This
premium is calculated as a di�erence between the statistical measure of market volatility (empirically mea-
sured by the realized volatility) and the risk neutral implied volatility (empirically measured by the options
implied volatility index, ex. VIX).
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for the remainder of the variance risk (i.e. `non-crash risk premia').3 I �nd that crash risk

premia exhibit higher cross-country correlation than non-crash risk premia. This suggests

that investors believe that the correlation of equity returns will be higher in tail events than

in more normal times, which provides strong evidence for the market contagion hypothesis.

Morever, crash-risk premia correlations are elevated, relative to the correlation of non-

crash risk premia, even when I account for time-varying correlation using the Dynamic Con-

ditional Correlation model of Engle (2002). Hence the main result of the paper is robust to

possible time-variation in the strength of international relationships. In fact, cross-country

correlations of crash-risk premia are time-varying, yet they remain quite stable over time. I

�nd that even though individual market crash risk premia are very sensitive to adverse mar-

ket events (e.g. Russian default, LTCM collapse, Lehman Brothers bankruptcy, Sovereign

default crisis, etc.), their international co-movement remains relatively stable.

Aside from providing important evidence for market contagion in times of crisis, the high

correlation of tail risk premia has important implications for both �nancial market practition-

ers and policymakers. First, it shows that the potential gains from portfolio diversi�cation

are smaller than would be expected when not accounting for tail-dependency, as cross-country

hedging will not be e�ective during times of crisis. Models that do not capture this feature

seem likely to overestimate the gains from international diversi�cation and the degree of

investors' home bias.

Second, policymakers are likely to be particularly concerned with the impact of domestic

monetary policy on perceptions of crash-risks. Hattori et al. (2015) studied the impact of US

quantitative easing (QE) on crash risk perceptions, �nding that QE resulted in a statistically

signi�cant decrease in crash premia. My analysis shows that policy that reduces crash-risk

premia is likely to have a global impact. This implies that US QE might have large spillover

e�ects on other equity markets and consequently on other economies through its impact on

reducing global crash risk premia. The analysis developed in this study suggest that an

interesting direction for future research is to investigate this particular global aspect of QE.

The remainder of the paper is organized as follows. Section 2 brie�y describes the method

and Section 3 characterizes the dataset used for the analysis. Section 4 describes the results

and Section 5 concludes.

1.2. Methodology

The methodology of this study composes of three parts. First, I de�ne the concept of

Variance Risk Premium (VRP) and I show how it is measured using daily data on options

and 5-minute frequency intra-day data on index futures prices. Second, I describe how to

3Bollerslev et al. (2013) or Londono (2014) show that the Variance Risk Premia are dominated by a global
component, yet they do not look into the split of the VRP into the tail- and non-tail risk related premia.
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decompose VRP into the part related to crash risk and the part related to non-crash risk,

using techniques developed by Bollerslev and Todorov (2011). Given that my S&P500 options

data di�er from theirs (in that my option dataset exhibits longer average maturities) and that

I am also extending their calculations to new datasets, namely FTSE100 and Eurostoxx50, I

also describe my modi�cation of the original methodology. Finally I describe the co-movement

measures used in the study. Speci�cally, I use the Dynamic Conditional Correlation model of

Engle (2002) to analyse potentially time-varying correlations between premia across equity

markets.

1.2.1. Variance Risk Premium (VRP). Many �nancial studies have shown that not

only equity returns, but also volatilities (risks) of those returns are time-varying. This basic

fact of non-constant volatility means that this is an additional source of investment risk. The

Variance Risk Premium (VRP) is the compensation that market requires for this additional

risk. In fact, �nancial markets have already developed tools to hedge the risk of volatility

increase. VRP can be traded using variance swaps (see Demeter� et al. (1999) for details).

These instruments simply swap future unknown realized variance for current option implied

variance.

In technical terms, the VRP is measured as the di�erence between the physical expec-

tation (the P-measure) of the realized quadratic variation of returns and the risk-neutral

expectations (the Q-measure) of the quadratic variation of returns.

(1.1) V RPt =
1

T − t

(
EP
t (QV[t,T ])− EQ

t (QV[t,T ])
)

The physical expectations (the P-measure) of the quadratic variation is simply best sta-

tistical T − t periods ahead forecast. Quadratic variation under P is measured as the realized

variance (RV ) based on 5-minute frequency intra-day prices of index futures.4 This approach

has been strongly advocated by Liu et al. (2015), who showed that this is the best variance

estimator. Moreover in this study, following Bollerslev et al. (2009), I use simple naïve expec-

tations of the realized variance as a proxy for the forecast of realized variance. This approach

should be e�ective as variance exhibits large persistence, exempli�ed by volatility clustering.5

4In order to adjust for the overnight price changes daily realized variance is re-scaled by the constant pro-
portion of overnight change.
5More recently, however Bekaert and Hoerova (2014) or Kaminska and Roberts-Sklar (2015) show that the
naïve forecast can be improved if the forecasting method models separately the continuous and the jump
part of the volatility. Furthermore the forecast might be improved even more by the use of option implied
volatility data. Yet, given that the focus of this study is the decomposition and cross correlation of VRPa,
it seems that simple naïve expectations forecast would work well.
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(1.2) EP
t (QV[t,T ]) =

t∑
i=t−(T−t)

RVi

Risk-neutral expectations of the quadratic variation (the Q-measure) are measured using

daily data on the panel of options. Those data enable us to calculate the model-free option-

implied variance of future prices. This type of variance measure re�ects the expected variance

implied by option prices under the assumption of risk neutral market pricing. In more

technical terms this measure is derived under the assumption that the stochastic discount

factor is constant and equal to the inverse of the risk-free interest rate. This means that

the Q-measure of the variance combines investors' expectations of the future variance with

their risk preferences (see Figlewski (2012)).6 The most classical example of a model-free

Q-measure of volatility is the VIX index.7

My Q measure of the quadratic variation only slightly di�ers from the VIX index.8 Both

measures use approximation to calculate implied volatility for a �xed time horizon. Yet,

unlike the VIX which uses only two di�erent option maturities to calculate approximated

values, I use the whole available set of di�erent option maturities. Moreover, in contrast to

the VIX methodology which approximates linearly quadratic volatility, I approximate option

prices using Carr and Wu (2003) polynomial and based on theoretical option prices I calculate

the implied volatility.9 This change in the calculation method is motivated by two factors.

First, the set of data used in this study, su�ers from a small number of very close to maturity

options, hence the VIX methodology would imply linear extrapolations from the two options

with quite distant maturities. This seems inappropriate, especially when dealing with options

capturing large jump probabilities. Second, I wanted to keep my measure consistent with

the decomposition of the VRP presented in the next subsection.

Equation 1.3 describes the formula for the Q-measure of the quadratic variation, once the

theoretical 14-day to maturity options are calculated:

6Simple coin �ipping game might be a great example to understand the di�erence between Q- and P-measure
of the probability distributions. Say, the game pays EUR 100 in case the �ip yields heads and 0 in the other
case. The P �measure would correspond to the actual distribution, hence both events have probabilities
equal to 0.5. In order to determine the Q-measure of probabilities we need to know the price of the game.
Say, an economic agent is willing to pay EUR 30 for that game. Under the assumption of risk-neutrality this
would mean that the distribution of the probability should be 0.3 for heads and 0.7 for tails. The di�erence
between those two measures of probabilities simply re�ects agents risk aversion.
7To obtain implied variance, VIX index has to be divided by 100 and squared.
8In fact the correlation of my measures with volatility indices: VIX, VFTSE and VStoxx is very high and
amounts roughly to 95%.
9Please refer to the Appendix A for more details on the approximation.
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(1.3) EQ
t (QV[t,T ]) =

2

T − t
∑
i

∆Ki

K2
i

e(T−t)rQ(Ki)−
1

T − t

[
F

K0

− 1

]2

In my calculations an option's time to maturity T − t is �xed to 14 days (it is always quoted

as a fraction of a year). The forward index level F is calculated based on the index level at

a given moment and the respective (14 day) risk-free interest rate r. K0 denotes the �rst

strike price below the forward index level F of the panel of options. Ki is the strike price of

ith out-of-the-money option; a call if Ki > K0 and a put if Ki < K0; both put and call if

Ki = K0. ∆Ki is simply a mid-point between two strike prices: Ki−1 and Ki+1. The price of

the option Q(Ki) for a given strike price is either a price of the call option C(Ki) if Ki > K0

or a price of a put option P (Ki) if Ki < K0. The entire equation 1.3 is exactly the same as

the one used to calculate the VIX index (see Chicago Board Options Exchange White Paper

(2009)).

Finally, as shown in equation 1.1, VRP is measured as the di�erence between the two

expectations, hence it re�ects investors' attitude towards the risk � the so called risk appetite.

The decomposition of this risk enables us to understand what drives the VRP: crash-events

or more �normal� type of equity return movements. In the next section I describe the basic

assumptions needed to calculate how much of the VRP is attributed to market crash risk.

1.2.2. Tail-premia measures. The Bollerslev and Todorov (2011a) methodology, which

is applied in this paper, requires that the underlying asset price follows a very general jump-

di�usion process.10 It implies that the asset price dynamics (in case of this study price of

futures for the underlying index Ft) follows a stochastic di�erential equation:

(1.4)
dFt
Ft

= αtdt+ σtdWt +

ˆ
R

(ex − 1)µ̃(dt, dx)

where αt denotes the drift, σt denotes the instantaneous volatility and Wt is a standard

Brownian motion. The �rst two elements of the sum depict the continuous part of the

dynamics. The third part of the sum describes jumps or discontinuities of the asset price

dynamics, where the µ̃(dt, dx) is the so-called compensated jump measure. The jump part

may for example follow a Poisson process as in the Merton (1976) model. But in case of

this study there is no need to limit ourselves to any parametric distribution - neither for the

10This type of process is very common in the �nancial literature, mainly due to the fact that it �ts the
actual data very well. Moreover, it allows prices to exhibit discontinuous patterns, which in turn, justi�es
the existence of markets for �nancial options in theoretical �nance models (for some discussion of merits of
jump-di�usion models please refer to Tankov and Voltchkova (2009)).
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continuous, nor for the jump part. In fact, for our analysis, the most important feature of

this model is the additive separability of the continuous and the jump components.

Both the di�usion and the jump part of the asset price dynamics will have their parallels

in the process describing asset price variance. Consider the quadratic variation of the logs of

asset prices over the [t,T] time interval:

(1.5) QV[t,T ] =

ˆ T

t

σ2
sds+

ˆ T

t

ˆ
R

x2µ(ds, dx)

where the �rst component
´ T
t
σ2
sds is the volatility of the continuous process and the second

component
´ T
t

´
R
x2µ(ds, dx) denotes the volatility generated by the discontinuous part. In

principle the �rst part should be responsible for the volatility generated by the �smaller�

(continuous) movements in the asset prices, whereas the second part would depict volatility

generated by the �larger� asset price movements (jumps).

Quadratic variation equation 1.5 implies that the VRP, de�ned by equation 1.1, will

simply be a sum of two di�erences: the di�erence between P and Q expectations of the

continuous part of the quadratic variation and the di�erence between P and Q expectations

of the jump part of the quadratic variation:

(1.6)
V RPt = 1

T−t

(
EP
t (
´ T
t
σ2
sds)− E

Q
t (
´ T
t
σ2
sds)

)
+ 1
T−t

(
EP
t

´ T
t

´
R
x2µ(ds, dx))− EQ

t (
´ T
t

´
R
x2µ(ds, dx))

)
I need all the above presented structure to de�ne the variance risk premium solely at-

tributed to the market crash risk � V RP (k̃). This measure describes the contribution to

the respective P- and Q- measures of quadratic volatility by asset price drops higher than a

certain threshold k. In my study I de�ne market crash as a state when asset prices fall by

at least 10%. This implies that my threshold level k = ln(0.9) and consequently k̃ = 0.9.

The price change of 10% can de�nitely be considered as a large move, hence it will only be

re�ected by the discontinuous part of the VRP. Consequently my VRP(k) measure depends

only on the jump parts:

(1.7)
V RPt(k̃) = 1

T−t

(
EP
t

(´ T
t

´
x<k

x2vPs (dx)ds
))

− 1
T−t

(
EQ
t

(´ T
t

´
x<k

x2vQs (dx)ds
))

Finally on the basis of the VRP(k) and the total VRP, I can also de�ne a truncated

volatility measure VRP(tr). This measure will capture the part of the variance risk premium

that is atributed to the remaining non-crash risk:

(1.8) V RPt(tr) = V RPt − V RPt(0.9)
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Having de�ned tail-risk premia, the next two sub-sections brie�y describe how to calculate

Q- and P- measures from the data.

Risk-Neutral (Q) Measures. The most di�cult part of the Q-measure estimation is to pin

down the process of the time-varying jump density vQt (dx). In order to construct a time-

varying measure with as few assumptions regarding its structure as possible, I estimate it

non-parametrically from the options data. Therefore I assume the following for jump density:

(1.9) vQt (dx) = (ϕ−t 1{x<0})v
Q(x)dx

where ϕ−t denotes an unspeci�ed stochastic process of temporal variation of the jump arrivals

and vQ(x) is an unspeci�ed time-invariant density. Yet, the methodology of Bollerslev and

Todorov (2011) allows us to estimate tailvolatilities EQ
t

(´ T
t

´
x<k

x2vQs (dx)ds
)
even under

those very general assumptions. First of all they calculate model-free risk neutral measures

from the panel of options data. Second, using the Extreme Value Theory (EVT) those

measures are used to estimate Generalized Pareto Distribution (GPD) parameters (namely:

scale (σ) and shape (ξ) parameters) and the average jump intensities E( 1
T−tE

Q
t (
´ T
t
ϕsds))

through a just identi�ed GMM system. This allows us to fully describe the time invariant

part of the jump intensity vQ(x) for large price changes. Third, using �xed parameters for

the GPD, the time varying jump intensities are backed out to ful�ll exactly the moment

conditions. Finally, using the estimated parameters the Q-measure of the tail-volatility is

calculated for a given threshold k.

I describe the risk neutral jump-tail measures in detail as here I deviate slightly from the

original Bollerslev and Todorov (2011) framework. They propose a model-free risk-neutral

jump tail measure:

(1.10) LTQt (k) =
erPt(K)

(T − t)Ft
where k = ln(K

F
) is the log-moneyness, Pt(K) is a price of put option, K is the option

strike price and Ft is the price of the underlying futures. This measure captures solely the

jump risk as long as two conditions are ful�lled. First the options have to be deeply out of

the money. Bollerslev and Todorov (2011) use moneyness levels of {0.9000 0.9125 0.9250},
which should guarantee enough distance from the underlying to capture only the jump risk.

Second the option needs to be close to maturity. Bollerslev and Todorov (2011) use options

that have median of 14 days to maturity. In my calculations I follow the same levels of

option moneyness, but the dataset used in this study has much longer median maturity of

options (see Table A.1in Appendix A). This means that my model-free risk-neutral jump tail
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measures might be 'contaminated' by the di�usive part of the process. In fact, when I applied

the exact Bollerslev and Todorov (2011) methodology, my jump tail measure for S&P500 was

substantially larger when the options had longer maturities relative to the original study.

In order to circumvent this problem I use a panel of options with di�erent maturities for

a given moneyness level to �t the polynomial describing the timedecay plot of option price.

Carr and Wu (2003) show that this polynomial should approximate the time-decay of options

no matter whether the underlying process contains jumps or not. This approximation allows

me to calculate the theoretical price of the 14-days-to-maturity option. Appendix A provides

details on the approximation method as well as some robustness checks.

Once I have the theoretical 14-days-to-maturity option price, I construct the same risk-

neutral jump tail measure. In this case the pattern of my jump tail measure closely resembles

the original one of Bollerslev and Todorov (2011b).

Generalized Pareto Distribution (GPD) parameters are estimated using the simple non-

linear GMM procedure of Hansen and Singleton (1982). The exact moment conditions are

described in the Appendix B. The basic principle is that for left tail I have 3 parameters to

estimate and jump-tail measures for 3 di�erent levels of moneyness, hence the system is just

identi�ed.

Objective (P) Measures. Analogous to the Q-measure estimation, the key issue in estima-

tion of the P-measure is to pin down the time-varying jump density vPt . Unfortunately it is

not possible to estimate the intensity fully non-parametrically, simply because I do not have

three di�erent points of the curve on the same day. Consequently I assume an a�ne model

of the jump intensity. Following Bollerslev and Todorov (2011a) I assume that the temporal

variation of the volatility is a function of the stochastic volatility σ2
t of the continuous part:

(1.11) vPt (dx) = (α−0 1{x<0} + α−1 1{x<0}σ
2
t )v

P (x)dx

This implies that I have to estimate four parameters that are constant across time

(namely: scale (σ) and shape (ξ) parameters of the GPD that characterizes vP (x), and

α0 and α1). Moreover I have to get the estimate of the time-varying stochastic volatility σ2
t .

Here again, I follow closely Bollerslev and Todorov (2011) framework.

First I estimate continuous volatility using Mancini (2001) idea of truncated volatility.

All intra-day asset price movements below a certain threshold contribute to the continuous

volatility whereas the ones above the threshold contribute to the jump volatility. The trunca-

tion threshold is time-varying to capture the e�ects of the volatility clustering. The threshold

is a function of the past continuous volatility. Moreover the daily pattern of volatility is also

taken into account. For each index I estimate the average volatility for a given time. On that

basis I calculate the time of the day volatility multiplier that either increases or decreases the
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threshold. For more details on the realized volatility calculations please refer to the Appendix

C.

Second I select a threshold level, which is always higher than the maximum threshold

used to determine continuous volatility. I select a threshold of 0.6% for all the indices. On

the basis of this threshold I can mark observations that are de�nitely jumps in the whole

sample. Then I use estimated continuous volatility along with matrices indicating jumps (the

ones determined by 0.6% threshold) to estimate all four parameters in question. Again the

estimation is done using the GMM framework (for details on the exact moments speci�cation

please refer to the Appendix D).

Finally, once all the parameters are calculated I calculate the tail-volatilities

EP
t

(´ T
t

´
x<k

x2vPs (dx)ds
)
for the threshold of ln(0.9) to match the tail-volatilities for the

Q-measure.

1.2.3. Co-movement measures. The main result of this analysis is based on the mea-

sures of co-movement of V RP (0.9) as well as V RP (tr) across equity markets (i.e. three

indices: S&P500, FTSE100 and Eurostoxx50). In order to keep the analysis simple and yet

powerful the main result is based on the simple r-Pearson correlation coe�cient. The main

�nding is based on comparison unconditional correlations of crash risk premia to uncondi-

tional correlations of non-crash risk premia.

The correlation coe�cient is known to be sensitive to outliers however, which is why I also

report two non-parametric measures of co-movement: Kendall's τ and Sperman's ρ. Those

measures are used as a robustness check of the main �nding.

Market correlations are renowned to be time varying, hence as a �nal robustness check

to my main correlation matrix I allow correlation to be time-varying. In order to capture a

more complex dynamic correlation structure, I apply the Dynamic Conditional Correlation

(DCC) model of Engle (2002). This model helps me not only to overcome the problem of

time-varying correlation, but to control for the heterogeneity of individual shocks. The model

looks at the conditional correlations of innovations, enabling me to gauge how shocks co-move

across markets and is given below:

(1.12) yt = C+
K∑
k=1

Akyt−k + εt

(1.13) Et−1(εtε
′
t) = Σt

(1.14) Σt = DtRtDt
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(1.15) Rt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2

(1.16) Qt = (1− λ1 − λ2)R̄ + λ1ε̃t−1ε̃
′
t−1 + λ2Qt−1

(1.17) R̄ = E[ε̃tε̃t
′]

(1.18) ε̃t = D−1
t εt

The DCC model requires the level equation to be parsimonious, hence in the benchmark

case I use VAR(SIC) processes to describe variables' levels (see equation 1.12), where the

number of lags is selected on the basis of Schwartz information criteria.11 The vector of

variables in equation 1.12 contains either all three crash-risk VRP(0.9) or all three non-

crash-risk VRP(tr).

The conditional covariance matrix (equation 1.13) is decomposed into the matrix of indi-

vidual conditional standard deviations Dt and conditional correlation matrix Rt (see equation

1.14). Conditional standard deviation matrix Dt is a diagonal matrix where each element on

the diagonal simply represents a square root of individual variances which are modelled as

the GARCH(1,1) process. Transformation of the conditional correlation matrix (see equation

1.15) guarantees that the matrix has ones on the diagonal. Quasi conditional correlation (see

equation 1.16) is a weighted average of the unconditional sample correlation R̄ (see equation

1.17) and the previous period cross product of 'corrected' innovations (see equation 1.18) and

the previous period conditional quasi correlation. The speci�cation of the equation 1.16 nests

the Constant Conditional Correlation (CCC) model of Bollerslev (1990), hence allowing for

direct testing of the time varying correlation assumption. Should λ1 and λ2 parameters were

jointly statistically insigni�cant, then the correlation between innovations would be constant

over time.

1.3. Data

The dataset used in this study allows me to replicate US results of Bollerslev and Todorov

(2011) as well as to extend their calculations to the UK and euro-area. Accordingly, US

calculations are based on the S&P500 index, UK on the FTSE100 index and euro-area on

11As an additional robustness check I have also used other models, namely: AR(1), AR(SIC) and VAR(1),
but this changes did not yield qualitatively di�erent results.
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the Eurostoxx50 index. The Q-measure (implied distribution) is based on a daily panel of

options, whereas the P-measure (statistical measure) is based on intra-day (5 minutes) data

on traded futures, obtained from Thomson Reuters. Finally, correlation calculations are

conducted on the weekly averages, as the daily data contained too much noise.

1.3.1. Options. I use options data collected by the Bank of England from Chicago Mer-

cantile Exchange (CME), Eurex Exchange and London International Financial Futures and

Options Exchange (LIFFE) for S&P500, Eurostoxx50 and FTSE100 index options, respec-

tively. The data are sampled with a daily frequency. The data for S&P500 and FTSE100

options span January 1995 to December 2013. Unfortunately the data span for the Eu-

rostoxx50 is shorter and covers only January 1999 to December 2013. This sample still

allows me to cover major period of market turmoil (for US and UK only: LTCM, Russian

and Asian crises and for all three markets: dotcom bubble burst, accounting scams and the

great recession period for all indices).

I apply a standard set of �lters on the options data before any calculations take place.

The set of �lters is based on programmes used by the Bank of England which are in line with

the ones used in Carr and Wu (2009).

1.3.2. Intra-day data of index futures. I use the intra-day data provided by Thomson

Reuters. The data are sampled at a 5-minutes frequency. This frequency allows me to capture

price jumps limiting the impact of the microstructural noise. In fact Liu et al. (2015) show

that realized variance based on 5-minute frequency data is the best estimator of the realized

variance across di�erent assets.

For S&P500 and FTSE100 I use the data spanning January 1996 to December 2012,

whereas for Eurostoxx50 the data only spans January 1999 to December 2012. The range

of the dataset for the S&P500 is unfortunately shorter than in the Bollerslev and Todorov

(2011) paper, hence the parameter estimates might di�er. In terms of trading time during

each day, for each series I have tried to pick a time period for which I had data throughout

all the dates. Consequently, my time windows are: for S&P500 - 81 observations (from

8.30 to 15.10), for FTSE100 - 94 observations (from 8.15 to 16.00) and for Eurostoxx50 - 81

observations (from 9.15 to 15.55).

1.4. Results

Before I go to the main result of the paper, i.e. the analysis of the co-movement of

risk premia across equity markets, I would like to describe brie�y the estimates of the GPD

parameters under Q and P probability measures.
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1.4.1. Q-measure. Table 1.1 summarizes parameter estimates for the risk-neutral Q-

measure. Parameters are precisely estimated, as can be seen from standard errors. The �rst

two parameter estimates describe the time-invariant parameters of the GPD, ξ- the shape

parameter and σ- the scale parameter. The larger those parameters are the thicker the tails

of the distributions.

It is clear that, according to my estimates, the tail of the FTSE100 index distribution

is the thinnest, as all parameters are the smallest from all three indices. In case of S&P500

and Eurostoxx50 the results are more ambiguous. The scale parameter is marginally bigger

for the Eurostoxx50, but the shape parameter is bigger for the S&P500. This means that,

even though for smaller values Eurostoxx50 tail is thicker, for larger jumps the S&P500 tail

is thicker.

The estimates of the average jump intensity parameters αυ, calculated at -7.5% price

jumps, are only comparable between S&P500 and FTSE100, as Eurostoxx50 estimates were

calculated on the di�erent sample. Yet, again those estimates show that FTSE100 options

exhibit the smallest tail-risk.

It is easier to interpret annualized average jump intensities presented in Table 1.2, as they

swiftly summarize the impact of all three parameters on the tails. For example, the results

in Table 1.2 read that we should expect about 3 jumps of -10% in four years for S&P500

index. All those numbers indicate that those probabilities are higher than the actual, even

extreme, price changes observed on the futures markets. Actually, a -10% index jump has

not been observed in any of the analysed samples. This is likely to be a manifestation of the

fact that risk premia are embedded in the Q distribution.

Moreover it is also very interesting to note that the crash contribution (index jump of at

least -10%) to the overall Q-measure of variance is 41%, 33% and 46% for S&P500, FTSE100

and Eurostoxx50, respectively. Of course those numbers are averages speci�c to the analysed

samples.

One could also enquire how those estimates for the left tail compare to those of the right

tail. Analogue calculations for the right tail can be found in the Appendix F. It is worth

noting that under Q-measure tail distributions are highly skewed to the left, manifesting the

so called volatility 'smile'.

1.4.2. P-measure. Table 1.3 summarizes estimation results for the objective, 'physical',

P-measure. The �rst two parameters describe the time-invariant shape (ξ) and scale (σ) of

the GPD, similarly as in case of the Q-measure. Unfortunately those estimates are not

directly comparable with the ones from the Q-measure, as they were calculated at a di�erent

thresholds.
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Table 1.1. Q-measures estimation results

S&P500 Eurostoxx50 FTSE100

ξ
0.2744 0.2693 0.2313
(0.0092) (0.0096) (0.0094)

σ
0.0563 0.0590 0.0527
(0.0007) (0.0007) (0.0006)

αv
1.2425 1.4751 1.1012
(0.0152) (0.0208) (0.0138)

Notes: The table reports estimated parameters of the generalized Pareto distribution under the risk neutral

Q-measure: ξ is the estimate of the shape parameter and σ is the estimate of the scale parameter. αυ is the

estimate of the average annualized jump intensity of -7.5% jump in the price level. The estimates are based

on S&P500 and FTSE100 options data from January 1996 to December 2013 and Eurostoxx50 options data

from March 2002 to December 2013. The log-moneyness of options used to estimate parameters were 0.9000,

0.9125 and 0.9250. Estimates standard errors are reported in parentheses.

Table 1.2. Q-measure: annualized jump intensity estimates

Jump Size S&P500 Eurostoxx50 FTSE100

<-7.5% 1.2425 1.4751 1.1012
<-10% 0.7554 0.9153 0.6445
<-20% 0.1393 0.1764 0.0999

Notes: The table reports annualized average jump intensities under the Q-measure i.e. implied by option

prices. Jump sizes are in terms of percentage changes in price levels. In the case of S&P500 and FTSE100

averages are calculated from January 1996 to December 2013, and for Eurostoxx50 averages are calculated

from March 2002 to December 2013. All the reported �gures are based on generalized Pareto distribution

estimates reported in Table 1.1.

Estimates of those two parameters do not di�er substantially across analysed markets.

In contrast to estimates of the Q-measure, under the P-measure the FTSE100 tail seems to

be the thickest. This might be partially explained by the fact that this market is considered

to be the least liquid of the three.

The α0 and α1 parameters describe the a�ne process driving jump-intensities under the

P-measure. The signicance of the estimates of α1 parameters for all three markets indicate

that jump-intensities are in fact time varying and closely connected to the actual continuous

volatility.

As in the case of Q-measure, it is worth looking at the average jump intensities for the

P-measure. Table 1.4 shows that a single day -10% market crash is an extremely rare event.

In the case of the FTSE100 index, for which the P-measure is the most leptokurtic, estimated

annualized jump intensities imply that we would only observe 1 such crash in 100 years. This

is even more striking when compared to roughly 55 such events in 100 years implied by the

Q-distribution. This yet again underscores the impact of the risk-aversion on the Q-measure.
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Table 1.3. P-measure estimation results

S&P500 Eurostoxx50 FTSE100

ξ
0.2500 0.2305 0.2596
(0.0766) (0.0701) (0.0406)

100σ
0.1594 0.1819 0.1624
(0.0155) (0.0164) (0.0083)

α0

-0.0016 -0.0016 -0.0025
(0.0001) (0.0001) (0.0001)

α1

0.0329 0.0346 0.0406
(0.0005) (0.0006) (0.0007)

Notes: The table reports estimated parameters of the generalized Pareto distribution under the physical

P-measure: ξ is the estimate of the shape parameter and σ is the estimate of the scale parameter. α0

and α1are estimates of the parameters in equation 1.11 which links jump intensities to the time-varying

continuous volatilities. The estimates are based on high-frequency 5-minute futures prices from January 1996

to December 2012 for S&P500 and FTSE100, and from January 1999 to December 2012 for Eurostoxx50.

Estimates standard errors are reported in parentheses.

Table 1.4. P-measure: annualised jump intensity estimates

Jump Size S&P500 Eurostoxx50 FTSE100

<-7.5% 0.0069 0.0082 0.0343
<-10% 0.0020 0.0022 0.0102
<-20% 0.0001 0.0001 0.0004

Notes: Table reports annualized average jump intensities under the P-measure i.e. based on the high fre-

quency data estimation. Jump sizes are in terms of percentage changes in price levels. In the case of S&P500

and FTSE100 averages are calculated from January 1996 to December 2012, and for Eurostoxx50 averages

are calculated from January 1999 to December 2012. All the reported �gures are based on generalized Pareto

distribution estimates reported in Table 1.3.

Moreover, the contribution of market crash to the total variance under the P-measure

is much smaller that under the Q-measure and amounts to 0.05%, 0.01% and 0.11% for

S&P500, Eurostoxx50 and FTSE100, respectively. This implies that the compensation for

crash events is larger than that for the 'regular' volatility.

Finally, Appendix G contains analogous results for the right tail of the distribution.

Interestingly I �nd that the tails under P-measure are also skewed to the left, but much less

than under the Q-measure. This contrasts with the Bollerslev and Todorov (2011a) �ndings,

which note a skew towards the right tail. It can be explained by the fact that the sample I

use also covers the period of the great recession.

1.4.3. Variance Risk Premia, Tail Risk Premia and Investor Fears Indices. All

the observed Variance Risk Premia (VRP) are on average negative (see Table 1.5). This is

due to the fact that option implied variances (Q-measures) are on average larger than realized

variances (P-measures). Moreover VRP are also volatile and persistent. These results show
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Table 1.5. Summary statistics for Variance Risk Premia

S&P500 Eurostoxx50 FTSE100

VRP
Mean -0.0368 -0.0537 -0.0281
Median -0.0250 -0.0390 -0.0185
Std dev. 0.0373 0.0511 0.0366

VRP crash
Mean -0.0336 -0.0433 -0.0249
Median -0.0132 -0.0237 -0.0114
Std dev. 0.0579 0.0622 0.0463

VRP tr
Mean -0.0032 -0.0104 -0.0032
Median -0.0087 -0.0136 -0.0060
Std dev. 0.0296 0.0186 0.0139

Notes: The table reports summary statistics for Variance Risk Premia (VRP), crash-risk VRP(0.9) and

non-crash-risk VRP(tr). VRP is de�ned as the di�erence between the statistical expectations (P-measure)

of variance and option implied (Q-measure) variance, calculated on the basis of high frequency 5-minute

futures prices data and daily option prices data, respectively. On average VRP is negative, indicating that on

average implied variance is higher than the statistically expected variance, showing that market participants

are risk averse. Crash-risk VRP is the part of the premia that is required solely to hedge market crash risk,

de�ned here as a -10% jump in the underlying index. VRP(tr) is the residual premium that is required for

non-crash risk. Calculations are based on weekly averages from March 2002 to December 2012.

that markets are charging signicant and time-varying premia for the risk of future changes

of the variance of the asset prices.

VRP seem to be quite closely co-moving across those three equity markets, hinting that

the premium might be globally driven. Premia magnitudes are also very sensitive to major

market events, such as accountancy scandals, Bear Sterns melt down, Lehman Brothers'

bankruptcy or sovereign default crisis (see Figure 1.1).

VRP(0.9) attributed solely to the market crash seem to exhibit the same features as the

total VRP. They are also negative, persistent and volatile. They also react sharply to major

market events. Actually one may easily note that VRP and crash VRP(0.9) are co-moving

for all three indices. This is not surprising as crash VRP(0.9) constitute large fractions of

the total VRP.

In fact, on average, it captures 91%, 81% and 89% of VRP for S&P500, Eurostoxx50 and

FTSE100, respectively. Those results are in line with the study of Bollerslev and Todorov

(2011) who found that 88% of the S&P500 VRP is driven by the crash premium. It should

be also noted that these results are driven by premia values during market turmoil times,

as ratios of median crash VRP(0.9) to median total VRP are much smaller, though still

substantial. More precisely, they amount to 53%, 61% and 62% for S&P500, Eurostoxx50
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Figure 1.1. Variance Risk Premia

Notes: The �gure shows evolution of Variance Risk Premia (VRP) over time for S&P500, Eurostoxx50 and

FTSE100. Labels depict major global market events. Missing data for S&P500 and Eurostoxx50 are due to

gaps in the options datasets. The �gure represents weekly averages of VRP.

and FTSE100, respectively. Yet both sets of numbers clearly indicate high importance of

crash premia in the total risk compensation.

The result of high impact of crash risk on the market compensation for risk is in line with

rare disasters literature. Rietz (1988) and subsequently Barro (2006) and Wachter (2013)

highlight this phenomenon in theoretical macro-�nancial models. From that perspective my

�nding simply empirically reinforces their analysis.

1.4.4. New evidence on contagion. The main question of this paper is the existence

of the volatility contagion. This question is answered by the comparison of cross-market

correlations of crash risk premia VRP(0.9) against correlations of the non-crash risk premia

VRP(tr).

Table 1.6 summarizes the key result of this paper - crash risk premia co-move by more

than the premia for non-crash risk across all three equity indices. This indicates

that large negative events (market crashes) have more global impact than other 'regular'

events. This proves the existence of volatility contagion on equity markets. It should be once

more underlined that, in contrast to the existing literature, this test for market contagion

does not depend on a crash event, but is based on market pricing of crash risk.

Moreover, crash premia VRP(0.9) seem to be driven by a common factor. In fact, simple

principal component analysis indicates that the �rst principal component of three crash
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Figure 1.2. Crash-Risk Variance Risk Premia (0.9)

Notes: The �gure shows evolution of crash-risk VRP(0.9) (i.e. the premium for holding volatility risk

associated with a -10% jump in the price of the underlying index futures) for S&P500, Eurostoxx50 and

FTSE100. Labels depict major global market events. Missing data for S&P500 and Eurostoxx50 are due to

gaps in the options datasets. The �gure represents weekly averages of VRP(0.9).

Table 1.6. Pairwise correlations of the VRP(0.9) and VRP(tr)

Pearson`s correlation

VRP(tr) VRP(0.9)
S&P500 Eurostoxx50 0.5214 0.9559
S&P500 FTSE100 0.3026 0.9631
FTSE100 Eurostoxx50 0.2508 0.9624

Notes: The table reports pairwise correlations of three index pairs for two measures: crash-risk VRP(0.9)

(i.e. the premium for holding volatility risk associated with a -10% jump in the price of the underlying index

futures) and non-crash-risk VRP(tr) (i.e. the premium for holding volatility risk not related to the market

crash). Pairwise correlation are calculated on a common sample of weekly data for all three indices from

March 2002 to December 2012. The table clearly shows that correlations of crash-risk premia VRP(0.9) are

substantially higher than correlations of the non-crash risk premia VRP(tr).

premia VRP(0.9) describes 97% of total data variability, whereas in case of the reminder of

the volatility premia VRP(tr) it amounts to 87%.

Crash premia VRP(0.9) are quite volatile and susceptible to market adverse events (like

the collapse of Lehman Brothers), hence one might suspect that the high correlation results

are driven solely by outliers. In order to check whether presented results are robust to

outliers, I also look at two non-parametric measures of dependence, namely Kendall's τ and

Sperman's ρ. Table 7 shows that even under those measures of dependence, crash premia
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Table 1.7. Non-parametric dependence measures of VRP(0.9) and VRP(tr)

Kendall`s τ Spearman`s ρ

VRP(tr) VRP(0.9) VRP(tr) VRP(0.9)
S&P500 Eurostoxx50 0.5648 0.7972 0.7154 0.9430
S&P500 FTSE100 0.3919 0.7996 0.5334 0.9475
FTSE100 Eurostoxx50 0.3088 0.7888 0.4120 0.9369

Notes: The table reports non-parametric pairwise dependence measures of three index pairs for two premia

measures: crash-risk VRP(0.9) (i.e. the premium for holding volatility risk associated with a -10% jump

in the price of the underlying index futures) and non-crash-risk VRP(tr) (i.e. the premium for holding

volatility risk not related to the market crash). Two non-parametric measures are Kendall's τ and Sperman's

ρ. These measures are used as they should be more robust to outliers than the simple correlation coe�cient.

Dependence measures are calculated on a common sample of weekly data for all three indices from March

2002 to December 2012. The table con�rms �ndings documented by a simple correlation coe�cient in Table

1.6.

VRP(0.9) are more closely co-moving than the non-crash premia VRP(tr). This reinforces

the existence of volatility contagion.

Kendal's τ for crash premia are markedly lower than in the case of Pearson's correlations,

but still higher than the correlations of non-crash premia, whereas Sperman's ρ dependence

measures are in line with Pearson's correlation numbers. If anything, this simple robustness

exercise indicates that the outliers are rather decreasing the non-crash premia correlations,

but still they are always lower than the correlation of crash premia.

Market correlations are perceived to be unstable over longer periods of time. In order to

overcome this problem, as the last robustness check, I have extended my analysis to allow

for the dynamic correlations. A simple rolling window analysis, presented in Appendix H,

shows that correlations in question are indeed unstable. Moreover, Forbes and Rigobon

(2002) pointed out that this type of simple analysis might be biased due to heterogeneity of

individual shocks.

As mentioned earlier, I solve both issues by looking at the VAR(SIC)-DCC(1,1) model,

as it allows for time varying: correlations and individual volatilities. The number of lags

for each series is determined by the Schwartz information criteria. The models shows that

the conditional correlation of dynamic innovations are indeed time-varying, for crash risk

premia VRP(0.9) as well as for non-crash premia VRP(tr). In fact, the data rejected the

Constant Conditional Correlation model of Bollerslev et al. (1988) that is embedded in the

DCC speci�cation.

Even though correlations are time-varying the main result of the paper remains in place as

correlations of crash premia VRP(0.9) are always higher than correlations of non-crash premia

VRP(tr) (see Figure 1.3). Finally, the result of higher co-movement of crash premia also holds
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when the level equation follows di�erent processes, namely AR(1), AR(SIC), VAR(1).12 This

highlights the robustness of the key result.

1.5. Conclusions

In this study I showed that the volatility premia investors require to compensate for

crash risks are more closely co-moving across di�erent equity markets than volatility premia

required for non-crash risks. This result implies that investors perceive crash risks to have

more global impact than other risks, hence pointing to market contagion. This study uses

a novel approach to assess the volatility contagion. Unlike previous studies that compare

market co-movement in crisis times with co-movement in 'tranquil' times, I compare co-

movement of market variance premia for market crash risk with co-movement of non-crash

risk variance premia. This allows me to circumvent many of the econometric issues that

existing studies su�er from. More precisely, I do not have problems with dating crisis periods

or having short crisis data samples. Finally, it should be underlined again that the main result

of the paper is robust to di�erent measures of premia co-movement as well as to possible time

variation in correlations.

12Graphs of dynamic correlations under di�erent level equations, can be found in Appendix
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Figure 1.3. Time varying conditional correlations calculated on the basis of
weekly data by VAR(SIC)-DCC(1,1) model

Notes: Figures show the dynamic correlations of three index pairs for two premia measures over time: crash-

risk VRP(0.9) (i.e. the premium for holding volatility risk associated with a -10% jump in the price of the

underlying index futures) and non-crash-risk VRP(tr) (i.e. the premium for holding volatility risk not related

to the market crash). Dynamic correlations are calculated using the Dynamic Conditional Correlation model

of Engle (2002). The model is based on a common sample of weekly data for all three indices from March

2002 to December 2012. The level equation of either VRP(0.9) or VRP(tr) for all three indices is modelled

jointly as a VAR process, where the number of lags is selected using Bayesian information criterion.
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Appendix A - Time-decay approximation

The dataset used in this study has one substantial drawback - the time to maturity of

options is much longer than in the Bollerslev and Todorov (2011) study (see Table A.1), except

for FTSE100. Consequently the estimator of the tail measure could be contaminated by the

di�usion process. This in turn may bias my estimates of the Generalized Pareto Distribution

leading to an inaccurate inference about tail-risk premia. In order to circumvent this problem

I use all available maturities of options to estimate the time-decay patterns. This allows me

to calculate the theoretical value of option that has 14 days to maturity. I choose this number

of days to maturity to match exactly the median number of days to maturity in the Bollerslev

and Todorov (2011) study.

Table A.1. Maturities of the closest to maturity options

Index Minimum Maximum Median

BT: S&P500 5 x 14
S&P500 6 75 33
FTSE100 5 29 15
Eurostoxx50 5 74 36

Notes: The table reports minimum, maximum and median days-to-maturity of the closest to maturity option

used in my dataset as well as options used in the original Bollerslev and Todorov (2011) study. Only the

median days to maturity for the FTSE100 roughly matches the one of Bollerslev and Todorov (2011).

Out-of-the-money options at the maturity have zero value. However, the order of con-

vergence over time to that value depends largely on the process governing the underlying

asset's price dynamics. Carr and Wu (2003) showed that the time decay (or the order of con-

vergence) of out-of-the money options is dominated by the presence of jumps. They showed

that if the price of the underlying asset follows a jump process or a jump-di�usion proces,

then the value of the out-of-the-money option will converge more slowly to zero than in the

case of a strict di�usion process. They also showed that the time decay of option prices can

be closely approximated by the following polynomial:

(A.1) ln

(
P

T

)
= a(lnT )2 + b(lnT ) + c

This approximation equation is valid regardless whether the underlying process exhibiting

jumps or not. If the underlying equity process has no jumps the �tted line should have a

greater slope close to the zero maturity (as the price of the option is falling faster than the

time to maturity), whereas if it exhibits jumps the time-decay plot should be �atter (see

Figure A.1). In this study I �t this polynomial for each day of the data - since the perception

of the jump probability might change over time. The �tted line allows me to calculate the

theoretical option value for the exact 14 days to maturity.
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Figure A.1. Time-decay plots with �tted polynomial. Source: Carr and Wu (2003)

Notes: Figures depict time-decay plots for FTSE100 index options. Markers represent actual option prices

while lines represent the �tted polynomial (see equation A.1). The left panel shows time-decay of FTSE100

index options on the 9th of April 1999, a very tranquil period when jumps were very unlikely. The right panel

shows time-decay FTSE100 index options in 3rd of May 2000, a more volatile period when jumps were more

likely. The dates are chosen to match the graph in Carr and Wu (2003) article so as to make a comparison. In

each �gure the three lines, from the bottom to the top, represent three moneyness levels of out-of-the-money

option prices: -10% (red, solid line), -8.75% (blue, dashed line) and -7.5% (green, dotted line).

Table A.2. The proportion of maturity nodes in the data

Number of options S&P 500 FTSE 100 Eurostoxx 50

6 17% 91% 86%
5 18% 9% 7%
4 65% 0% 6%

Notes: The table reports the structure of available options data used in this study. For S&P500 and FTSE100

options data ranges from January 1996 to December 2013 with many missing points for S&P500 in the earlier

part of the sample. The Eurostoxx50 options data ranges from March 2002 to December 2013, and also

exhibits missing data in the earlier part of the sample. Missing data points are due to the fact that for those

dates only 3 options with di�erent maturities were available. Those data points were discarded.

The number of options used in the approximation varies over time and is driven by the

data availability. I use 3 to 6 option maturities to �t the polynomial - Table A.2 shows details

for each index.13 I should expect to get the best results for the FTSE100 index as its option

data displays the highest quality - shortest maturities and most of the dataset is covered by

6 maturities. However given that the S&P500 index is the only one present in the original

Bollerslev and Todorov (2011) study I will use this to start my robustness check.

First of all it might be noted that the dynamics of tail measures calculated on the bias

of the approximation follows nearly the same pattern as the one of Bollerslev and Todorov

(2011) (see Figure A.2). The two biggest di�erences are a jump in the tail measure in the

early 1996 that is only present in my calculation and a more pronounced response of my

tail measure to the 'dotcom bubble' burst in the late 2001. Unfortunately I do not have

13It should be noted that for certain periods I only had 3 options at my disposal. Those data-points were
removed from the dataset, leading to signicant number of missing datapoints for S&P500 and Eurostoxx50
series especially visible before 2003.
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Table A.3. GMM estimates of the Q-tail parameters

BT: S&P500 S&P500
LT RT LT RT

ξ
0.2581 0.0793 0.2570 0.0615
(0.0282) (0.0147) (0.0130) (0.0161)

σ
0.0497 0.0238 0.0513 0.0242
(0.0021) (0.0010) (0.0009) (0.0006)

αv
0.9888 0.5551 1.1431 0.7266
(0.0525) (0.0443) (0.0142) (0.0156)

Notes: The table compares parameter estimates obtained by Bollerslev and Todorov (2011), the BT: S&P500

column, and estimates obtained in this article where I use approximated 14-day to maturity options. LT and

RT denote estimates for the left tail and right tail, respectively. Estimates are based on the same sample

ranging from January 1996 to June 2007. It should be noted that the sample used by me has some missing

data points prior to January 2003, moreover in the main article the calculations are based on the more

up-to-date sample. Standard errors are reported in parenthesis.

Table A.4. Annualized jump intensities implied by the Q-tail distributions

Jump Size BT:S&P500 S&P500

>7.5% 0.5551 0.7266
>10% 0.2026 0.2666
>20% 0.0069 0.0082
<-7.5% 0.9888 1.1431
<-10% 0.5640 0.6627
<-20% 0.0862 0.1052

Notes: The table compares estimated average jump intensities over January 1996 to June 2007 sample

obtained by Bollerslev and Todorov (2011), the BT: S&P500 column, and estimates obtained in this article

where I use approximated 14-day to maturity options. Jump sizes are in terms of percentage changes in price

levels. It should be noted that the sample used by me has some missing data points prior to January 2003,

moreover in the main article the calculations are based on the more up-to-date sample.

the original time-series data of tail measures computed by Bollerslev and Todorov (2011),

so I cannot calculate any goodness-of-�t measure. Yet, I can compare the GMM estimation

results (see Table A.3). The estimates of the GPD are very close to each other especially for

the left tail, as this tail is estimated with a higher accuracy. The only substantial di�erence

is slightly higher estimates of the jump intensity parameters. However as one may note from

the �nal results of the structure of the jump probabilities, the di�erences are not very large

(see Table A.4). Judging by the sole comparison of my results to the ones of Bollerslev and

Todorov (2011), it appears that the approximation does a very good job.

Yet, it is still important to see how well the approximation does with other indices. Here

I cannot rely on others results, as to the best of my knowledge I am the �rst one to estimate

those measures for other indices, namely Eurostoxx50 and FTSE100. Consequently I have

looked at two �t measures and the volatility of the theoretical prices for di�erent sets of
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Figure A.2. Tail measures comparison between Bollerslev and Todorov
(2011) study and this article.

Notes: Figures depict tail measures for the left LTQ(k) and the right tail RTQ(k) calculated from S&P500

options, where k = 0.9 and k = 1.1 for the left and the right tail, respectively. The �rst two panels are from

the Bollerslev and Todorov (2011) article, where available closest-to-maturity options were used. Last two

panels are based on my own calculations, where theoretical 14-day-to-maturity options are used to calculate

tail measures.

maturity structures (see Table A.5 and Figure A.3). The simple goodness-of-�t measure

(R2) does not seem to be a good metric. It is exceptionally high for all indices as the dataset

has only a small number of nodes. The MAPE of the �t evaluated only at the 14-days to

maturity also seems to be very small, except for the FTSE100. In that case the MAPE value

is ballooned by having a denominator very close to zero. It is very di�cult to drive any
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Table A.5. The �t of the time-decay polynomial

S&P 500 FTSE 100 Eurostoxx 50
R2 of the polynomial for 6 di�erent moneyness levels

Minimum 98.95% 86.04% 99.53%
Average 99.99% 99.91% 99.99%
Percentage error of predicted price for 14-days to maturity option
MAPE 0.25% 2.86% 0.36%
Maximum 3.47% 56.43% 3.81%

Notes: The table reports di�erent measures of �t of 14-day to maturity option prices by the estimated

polynomial. The top part of the table reports minimum and average determination coe�cients R2 of the

daily regressions of the option time decay polynomial. The bottom part reports average and maximum

observed percentage error of polynomial implied 14-day to maturity option price relative to the actual 14-day

to maturity option price. Naturally, the bottom part uses only the observations where the actual 14-days-to-

maturity options data were available.

conclusions from those simple �t metrics as they are based on an insu�cient number of data

points for each polynomial.

In order to overcome the problem of an insu�cient number of data points I have looked

at volatilities of theoretical 14-days to maturity option prices approximated using option

prices with di�erent maturities. In principle the volatility of the theoretical price should not

depend on the set of nodes uses in the approximation (at least not to much). Of course if I

extrapolate the 14-days price from a big distance the error of �t might generate a higher error

than if I use actual maturities very close to the 14 days. Nonetheless it seems informative to

investigate how much of the extra volatility is being caused by having distant maturities while

performing the approximation. Figure A.3 presents inter-quartile ranges for theoretical 14-

days prices.14 The volatility of the theoretical price rises across minimum volatility pointing

to certain losses caused by the approximation, but the increase does not seem to be excessive.

All in all it seems that the approximation is giving a good proxy for the original method

especially as the estimates do not di�er too much from the original study.

Appendix B - GMM conditions to estimate GPD parameters in the Q-measure

The aim of the GMM estimation for the Q-measure is to �nd the following vector of

parameters for each tail:

θQ = [α±Qv̄
Q±
ψ (tr±); ξ±Q ;σ±Q]

Those parameters are found by ful�lling the following three moment conditions:

14Inter-quartile range is being used instead of standard deviations to make the measure robust to outliers.
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Figure A.3. Inter-quartile ranges of the theoretical 14-day to maturity option
prices for di�erent set of maturities used in the approximation

Notes: Figures depict inter-quartile ranges of the approximated (theoretical) 14-day to maturity option price.

For all indices -10% out of the money options were approximated and used for the approximation. Horizontal

axis denotes the shortest maturity used for the approximation. Inter-quartile ranges are used instead of

standard deviations to circumvent the impact of outliers. For S&P500 and FTSE100 data ranged from

January 1996 to December 2013 with many missing points for S&P500 in the earlier part of the sample. For

Eurostoxx50 data ranged from March 2002 to December 2013, also exhibiting missing data in the earlier part

of the sample.
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E(LTQt (k)) = α−Qv̄
Q−
ψ (tr−)

ξ−Q
ξ−Q + 1

(
ek
)1+1/ξ−Q

(
ξ−Q
σ−Q

)−1/ξ−Q

∗

∗2F1

1 +
1

ξ−Q
;

1

ξ−Q
; 2 +

1

ξ−Q
;
tr−

ξ−Q
σ−Q
− 1

e−k
ξ−Q
σ−Q


E(RTQt (k)) = α+

Qv̄
Q+
ψ (tr+)

σ+
Q

1− ξ+
Q

(
1 +

ξ+
Q

σ+
Q

(ek − 1− tr+)

)1−1/ξ+
Q

where 2F1 is a hypergeometric function and E(LTQt (k)) and E(RTQt (k)) are sample aver-

ages of the introduced tail-measures for right and left tails respectively. Standard errors of

estimates are obtained using the delta method.

Parameter estimates for the right tail are presented in the Appendix F.

Appendix C - Realized and continuous variation

In order to compute P-measure components of the VRP and the crash risk VRP(k) we

need to compute realized variance (RV) and extract the continuous variation (σ2
t ) from it.

Daily RV is computed using 5-minute high frequency intra-day data on prices of index

futures (Ft). More specically, RV is a sum of squared changes of log prices of index futures

(ft) scaled-up by the average overnight contribution O:

RVt =

[
n−1∑
i=1

(
ft+i∆ − ft+(i−1)∆

)2

]
∗O

where n is the number of daily prices available in the data, ∆denotes the 5- minute

time increment, and the overnight scaling factor O is computed in the following way: O =

1 +

T∑
t=1

(ft−ft−1+(n−1)∆)/T

T∑
t=1

(
n−1∑
i=1

(ft+i∆−ft+(i−1)∆)
)
/T

.

In calculating continuous variation (σ2
t ) I follow directly the methodology suggested by

Mancini (2001). Essentially the calculations resemble those for RV, with the exception that

only the change in log prices that are smaller than the time-varying threshold αt are added:

σ2
t =

[
n−1∑
i=1

(
ft+i∆ − ft+(i−1)∆

)2 I{|ft+i∆−ft+(i−1)∆|≤αt}

]
∗O

where I is an indicator function amounting to one if the absolute change falls below the

threshold αt and zero otherwise.

The time-varying threshold α should take into account the intra-day volatility patterns

as well as time varying volatility across days. In order to control for the �rst one I estimate
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daily volatility patterns for each futures index. First I set a general truncation level ᾱ for

the whole dataset, so that my calculations are not biased by outliers. The general truncation

level ᾱ is based on the average sample volatility for 5-minute log-price change, measured by

the bi-power variation:

ᾱ = 3

√
π

2

√√√√ 1

T

T∑
t=1

n−1∑
i=2

|ft+i∆ − ft+(i−1)∆||ft+(i−1)∆ − ft+(i−2)∆|
(

1

n

)0.49

In turn, this threshold is used to calculate the average log-price variation for every 5-

minutes of the trading day (only for the data falling below the threshold):

V ari =

T∑
t=1

(
ft+i∆ − ft+(i−1)∆

)2 I{|ft+i∆−ft+(i−1)∆|≤ᾱ}
T∑
t=1

I{|ft+i∆−ft+(i−1)∆|≤ᾱ}
Finally, in order to obtain the time-of-day factor (TODi) I normalize each 5-minutes

variation (V ari) by the total sample truncated variation (V arTOT ):

V arTOT =

T∑
t=1

n−1∑
i=1

(
ft+i∆ − ft+(i−1)∆

)2 I{|ft+i∆−ft+(i−1)∆|≤ᾱ}
T∑
t=1

n−1∑
i=1

I{|ft+i∆−ft+(i−1)∆|≤ᾱ}

TODi =
V ari

V arTOT
Figure C.1 plots TOD factors for all three analyzed indices on the standardized GMT

scale. All time of day volatility patterns roughly exhibit a U shape, showing that most of the

volatility comes at the beginning and closing of trading time. In addition European indices,

Eurostoxx50 and FTSE100, also experience a large increase in volatility at the opening time

of the New York Stock Exchange. Whereas the closure of the European trading has a rather

minuscule impact on the S&P500 daily volatility pattern.

The daily dynamic pattern for the time-varying threshold is captured by linking threshold

value αt with lagged values of estimated continuous volatility per 5 minute log-price change

σt−1/
n−1∑
i=1

I{|ft−1+i∆−ft−1+(i−1)∆|≤αt−1}. Taking both time-of-day factor and lagged continuous

volatility I obtain formula for the time-varying threshold:

αt,i = 3
σt−1(

n−1∑
i=1

I{|ft−1+i∆−ft−1+(i−1)∆|≤αt−1}

)0.49TODi
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Figure C.1. Time-of-day factor

Notes: The �gure shows the estimated time-of-day factor for the S&P500, FTSE100 and Eurostoxx50, the

x-axis is GMT. The estimates are based on 5-minute high frequency data on futures prices from January 1996

to December 2012 for S&P500 and FTSE100, and from January 1999 to December 2012 for Eurostoxx50.

Appendix D - GMM conditions to estimate GPD and intensity parameters in

the P measure

The aim of the GMM estimation of the P measure is to �nd the following vector of

parameters for each tail:

θP = [α±0 v̄
±
ψ (tr±);α±1 v̄

±
ψ (tr±); ξ±;σ±]

The four moments conditions are as follows:

1

N

N∑
t=1

n−1∑
j=1

φ±i
(
ψ±(∆n,t

j p)− tr±
)

1{ψ±(∆n,t
j p)>tr±} = 0 i = 1, 2

1

N

N∑
t=1

n−1∑
j=1

1{ψ±(∆n,t
j p)>tr±} − α

±
0 v̄
±
ψ (tr±)− α±1 v̄±ψ (tr±)CVt = 0

1

N

N∑
t=2

(
n−1∑
j=1

1{ψ±(∆n,t
j p)>tr±} − α

±
0 v̄
±
ψ (tr±)− α±1 v̄±ψ (tr±)CVt

)
CVt−1 = 0

where:

φ±1 (u) = − 1

σ±
+

ξ±u

(σ±)2

(
1 +

1

ξ±

)(
1 +

ξ±u

σ±

)−1

φ±2 (u) =
1

(ξ±)2
ln

(
1 +

ξ±u

σ±

)
− u

σ±

(
1 +

1

ξ±

)(
1 +

ξ±u

σ±

)−1
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Appendix E - A short guide on how to get VRP(k) from the GMM estimates

This is a very short and basic instruction on how to derive VRP(k) for any given threshold

k based on estimates. All of the following results are based on the derivations presented in

the appendix of the Bollerslev and Todorov (2011) paper.

Let us have a look at the tail volatility measure �rst. The measure can be presented as

a sum of two components:

ˆ
x>k

x2v(x)dx = 2v̄+
ψ (tr+) ∗K1 + k2v̄+

ψ (ek − 1)

The �rst part of the sum is directly determined by my estimates. For the selected thresh-

old of tr+ = 0.075 I have estimated the value directly:

v̄+
ψ (tr+) = α+

Qv̄
Q+
ψ (0.075)

The multiplier K1 is also directly de�ned by the estimated parameters:

K1 = e−k/ξ
+
ξ+
(
ξ+

σ+

)−1/ξ+

[ξ+
3F2

(
1
ξ+ ,

1
ξ+ ,

1
ξ+ ; 1 + 1

ξ+ , 1 + 1
ξ+ ;

ξ+

σ+ (tr++1)−1

ek ξ
+

σ+

)
+k2F1

(
1
ξ+ ,

1
ξ+ ; 1 + 1

ξ+ ;
ξ+

σ+ (tr++1)−1

ek ξ
+

σ+

)
]

The second part of the sum can be obtained from the approximation to the GPD. Fol-

lowing Bollerslev and Todorov (2011) I assume that for a large threshold value the following

approximation holds with equality:

1−
v̄+
ψ (u+ x)

v̄+
ψ (x)

= G(u;σ+, ξ+)

where G() denotes a GPD. Assuming that x = tr+, u = ek − 1 − tr+ and tr+ = 0.075, it is

quite straight forward that:

v̄+
ψ (ek − 1) =

[
1−G

(
ek − 1− tr+;σ+, ξ+

)]
v̄+
ψ

(
tr+
)
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Appendix F - Q-measure estimates of the right tail

Table F.1. Q-measure: estimation results for the right tail
S&P500 Eurostoxx50 FTSE100

ξ
0.1530 0.1143 0.1015
(0.0115) (0.0114) (0.0122)

σ
0.0278 0.0329 0.0272
(0.0006) (0.0006) (0.0004)

αυ
0.8049 1.1443 0.7383
(0.0184) (0.0258) (0.0156)

Notes: The table reports estimated parameters of the generalized Pareto distribution of the right-tail under

the risk neutral Q-measure: ξ is the estimate of the shape parameter and σ is the estimate of the scale

parameter. αυ is the estimate of the average annualized jump intensity of +7.5% jump in the price level.

The estimates are based on S&P500 and FTSE100 options data from January 1996 to December 2013 and

Eurostoxx50 options data from March 2002 to December 2013. The log-moneyness of options used to estimate

parameters were 1.1000, 1.0875 and 1.0750. Estimated standard errors are reported in parentheses.

Table F.2. Q-measure: annualized jump intensity estimates for the right tail
Jump Size S&P500 Eurostoxx50 FTSE100

>7.5% 0.8049 1.1443 0.7383
>10% 0.3462 0.5523 0.3065
>20% 0.0262 0.0488 0.0170

Notes: The table reports annualized average jump intensities under the Q-measure i.e. implied by the option

prices. Jump sizes are in terms of percentage changes in price levels. In the case of S&P500 and FTSE100,

averages are calculated from January 1996 to December 2013, and for Eurostoxx50 averages are calculated

from March 2002 to December 2013. All the reported �gures are based on generalized Pareto distribution

estimates reported in Table F.1.
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Appendix G - P-measure estimates for the right tail

Table G.1. P-measure: estimation results for the right tail
S&P500 Eurostoxx50 FTSE100

ξ
0.2088 0.1648 0.2218
(0.0671) (0.0739) (0.0415)

100σ
0.1834 0.1955 0.1714
(0.0161) (0.0189) (0.0092)

α0

-0.0020 -0.0013 -0.0028
(0.0001) (0.0001) (0.0001)

α1

0.0396 0.0291 0.0402
(0.0006) (0.0005) (0.0006)

Notes: The table reports estimated parameters of the generalized Pareto distribution of the right-tail under

the physical P-measure: ξ is the estimate of the shape parameter and σ is the estimate of the scale parameter.

α0 and α1 are estimates of parameters of equation 1.11 linking jump intensities to the time-varying continuous

volatilities. The estimates are based on high frequency 5-minute futures prices from January 1996 to December

2012 for S&P500 and FTSE100, and from January 1999 to December 2012 for Eurostoxx50. Estimated

standard errors are reported in parentheses.

Table G.2. P-measure: annualized jump intensity estimates for the right tail
Jump Size S&P500 Eurostoxx50 FTSE100

>7.5% 0.0062 0.0016 0.0187
>10% 0.0016 0.0003 0.0052
>20% 0.0001 0.0000 0.0002

Notes: The table reports annualized average jump intensities under the P-measure i.e. based on the high

frequency data estimation. Jump sizes are in terms of percentage changes in price levels. In case of S&P500

and FTSE100 averages are calculated from January 1996 to December 2012, and for Eurostoxx50 averages

are calculated from January 1999 to December 2012. All the reported �gures are based on generalized Pareto

distribution estimates reported in Table G.1.
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Appendix H - Rolling Window correlations

Figure H.1. Time varying correlations of VRP(tr) and VRP(0.9) for di�erent
index pairs

Notes: Figures show time patterns of the 50-week rolling window r-Pearson correlation coe�cients between

di�erent indices for crash-risk premia VRP(0.9) and non-crash-risk premia VRP(tr). Correlation coe�cients

are calculated on a common sample of weekly data for all three indices from March 2002 to December 2012.
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Appendix I - Dynamic correlations with di�erent level equations

Figure I.1. Dynamic conditional correlations on pure de-meaned data

Notes: Figures show time patterns of the dynamic correlations of three index pairs for two premia measures:

crash-risk VRP(0.9) (i.e. the premium for holding volatility risk associated with -10% jump in the price of the

underlying index futures) and non-crash-risk VRP(tr) (i.e. the premium for holding volatility risk not related

to the market crash). Dynamic correlations are calculated using Dynamic Conditional Correlation model of

Engle (2002). The model is based on a common sample of weekly data for all three indices from March 2002

to December 2012. The level equation of either VRP(0.9) or VRP(tr) for all three indices is modelled as

a constant, i.e. each level equation only de-means the data and does not account for any individual index

persistence.
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Figure I.2. Dynamic conditional correlations, where the level equation is
modelled as an AR(1) process

Notes: Figures show time patterns of the dynamic correlations of three index pairs for two premia measures:

crash-risk VRP(0.9) (i.e. the premium for holding volatility risk associated with -10% jump in the price of

the underlying index futures) and non-crash-risk VRP(tr) (i.e. the premium for holding volatility risk not

related to the market crash). Dynamic correlations are calculated using Dynamic Conditional Correlation

model of Engle (2002). The model is based on a common sample of weekly data for all three indices from

March 2002 to December 2012. The level equation of either VRP(0.9) or VRP(tr) for all three indices is

modelled individually as an AR(1) process.
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Figure I.3. Dynamic conditional correlations, where the level equation is
modelled as an AR(SIC) process

Notes: Figures show time patterns of the dynamic correlations of three index pairs for two premia measures:

crash-risk VRP(0.9) (i.e. the premium for holding volatility risk associated with -10% jump in the price of

the underlying index futures) and non-crash-risk VRP(tr) (i.e. the premium for holding volatility risk not

related to the market crash). Dynamic correlations are calculated using Dynamic Conditional Correlation

model of Engle (2002). The model is based on a common sample of weekly data for all three indices from

March 2002 to December 2012. The level equation of either VRP(0.9) or VRP(tr) for all three indices is

modelled individually as an AR(SIC) process, where the number of lags is selected using Bayesian information

criterion.
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Figure I.4. Dynamic conditional correlations, where the level equation is
modelled as a VAR(1) process

Notes: Figures show time patterns of the dynamic correlations of three index pairs for two premia measures:

crash-risk VRP(0.9) (i.e. the premium for holding volatility risk associated with -10% jump in the price of

the underlying index futures) and non-crash-risk VRP(tr) (i.e. the premium for holding volatility risk not

related to the market crash). Dynamic correlations are calculated using Dynamic Conditional Correlation

model of Engle (2002). The model is based on a common sample of weekly data for all three indices from

March 2002 to December 2012. The level equation of either VRP(0.9) or VRP(tr) for all three indices is

modelled jointly as a VAR(1) process.



CHAPTER 2

The Rietz-Barro crash risk: Does it bias the estimates of the risk

aversion coe�cient?

Abstract

This paper assesses the impact of the Peso problem on the econometric estimates of the risk aversion

coe�cient. Rietz (1988) and subsequently Barro (2006) showed that the introduction of the crash

risk allows the canonical general equilibrium framework to generate data consistent equity premia

even under low risk aversion of the representative agents. They argue that the original data used

to calibrate these models su�er from a Peso problem (i.e. does not encounter a crash state). To

the best of my knowledge the impact of their Peso problem on the estimation of the risk aversion

coe�cient has not to date been evaluated. This paper seeks to remedy this. I �nd that crash states

that are internalized by economic agents, but are not realized in the sample, generate only a small

bias in the estimates of the risk aversion coe�cient.

I also show that the introduction of the crash state has a strong bearing on the representative agents

portfolio composition. In fact, under the internalized crash state scenario, agents exhibit positive

bond holdings even in a frictionless environment.

Keywords: Equity Premium Puzzle, Risk Aversion, Crash Risk, GMM, Monte-Carlo, Peso Prob-

lem.
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2.1. Introduction

The Equity Premium Puzzle (originally proposed by Mehra and Prescott (1985)) remains

an important puzzle of modern �nance literature. The key problem is the fact that only

under implausibly high values of risk aversion parameter are general equilibrium models able

to generate the equity premia observed in the data.

Rietz (1988) and, subsequently, Barro (2006) showed that introducing a crash state (a

severe, albeit unlikely, drop in consumption) into a simple general equilibrium model can

justify 'excessive' returns even under a reasonable risk aversion coe�cient. Moreover, they

point out that the crash itself is not observed in the standard samples analyzed pointing to

the Peso problem.

As a consequence of the Peso problem we should expect that the estimates of a risk

aversion coe�cient will be biased upwards and potentially be high. However, studies focusing

on the Euler equation estimation do not necessarily show this. For example, Hansen and

Singleton (1982) get a low risk aversion coe�cient estimate (c.a. 1), whereas Hall (1988) gets

a much higher estimate (c.a. 10), but still lower than the value needed in a classical general

equilibrium calibration (above 50, see Cochrane (2009)).

In this paper I assess the potential impact of the anticipated crash risk by consumers on

the estimate of a risk aversion coe�cient. The study is based on a battery of Monte-Carlo

experiments assessing the size of the bias in the risk aversion estimate induced by a Rietz-

Barro crash state. Two estimation techniques are applied in the study, the one of Hansen

and Singleton (1982) as it should be resilient to di�erent distribution assumptions, and the

simple OLS as it is a natural benchmark.

I �nd that the values of the average bias generated by sizable crash risks (of the magnitude

suggested by Rietz (1988)) is very small. Moreover, it turns out that even under classical

assumptions i.e. without the Peso problem, the linear estimator does very poorly whereas

the Hansen and Singleton (1982) estimator is e�cient.

I also address another important puzzle linked to the Equity Premium Puzzle, the problem

of portfolio composition. Heaton and Lucas (1997) claim that under canonical assumptions,

economic agents never hold positive amounts of bonds, even though it clearly stands in

contrast with the stylized facts. Their partial equilibrium model generates policy functions

under which agents only use equity investments as bu�er savings. Bonaparte et al. (2012)

show that one may achieve positive bond holdings if equity investment is subject to portfolio

adjustment costs. My model, in contrast to the existing literature, shows that the presence of

tail dependent crash in endowment and equity income may generate positive bond holdings

even in a frictionless environment.

The remainder of the paper is organized as follows. Section 2 discusses the literature on

equity premia. Section 3 presents households portfolio decision problem with tail dependent
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crash . Section 4 elaborates on numerical solutions of the model under di�erent parametriza-

tions. Section 5 discusses the Monte Carlo experiment and its results. Finally, Section 6

concludes.

2.2. Literature

Mehra and Prescott (1985) have showed that the average return to equity investment

over the years 1889-1978 amounted roughly 7.0%, whereas a return to holding short term

bonds was only 0.8%. This observation led to an Equity Premium Puzzle (EPP) that states

that the equity premium (di�erence between the average equity return and bond return)

cannot be justi�ed as the sole compensation for risk under plausible levels of a risk aversion

parameter. More speci�cally Mehra and Prescott (1985) use a simple Lucas-tree type of

economy (see Lucas Jr (1978)) with a power utility function to calculate the prices of equity

and bonds in the general equilibrium set-up. They take the data on consumption for the US

and assume that they represent the true stochastic consumption process of a representative

household.1 They �nd that the model is unable to generate the equity premium observed in

the data under any values of parameters in the utility function from plausible domains i.e.

risk aversion γε(0, 10) and βε(0, 1). They �nd that the maximum size of equity premium that

can be justi�ed amounts to around 2p.p., which obviously stands in contrast to the data.

Cochrane (2005) points out that a value of at least γ > 50 for the risk aversion coe�cient

would be needed to attain the observed premium, and an even higher value to explain low

returns to bonds2.

Rietz (1988) showed that the EPP disappears if we introduce an extra state ('crash

state') of consumption to the original model. The crash state is characterized by a very low

consumption value and by a low probability attached to that state. Rietz argued that the data

used for a Mehra and Prescott (1985) study are biased and if we had been able to use a dataset

containing events like revolutions or wars, or at least better re�ecting Great Depression, we

would have observed substantial but rare drops in consumption and consequently in equity

prices.

The problem of an anticipated negative event, though not present in the data, is known as

a Peso problem and was originally used to explain excessive returns to currency speculation

(see Lewis (1994)). Rietz's solution, although very convincing and simple, was largely criti-

cized by the literature (see Mehra and Prescott (1988)). First of all, other researches found

it implausible and di�cult to prove that the Peso problem really exists in a dataset covering

100 years of data. Secondly, addressing the idea of revolutions and wars in other countries

Campbell (2000) points out that it is di�cult to believe that in such events bonds will still pay

1They approximate the process by two and �ve discrete states of consumption.
2For a more detailed analysis of the EPP puzzle please refer to a splendid survey by Kocherlakota (1996).
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the promised values3. It seems that these two issues have been successfully resolved. Ursúa

(2011) presented a new global dataset on consumption and equity returns showing that crash

type of events occurred in the last century. Second, Bollerslev and Todorov (2011) for equity

and Jurek (2014) for currency speculation showed that deep out-of-the-money options that

could only protect investment from crash states, are quite valuable. Hence implying that the

excessive premia are mainly a reward for exposure to a crash risk. This empirical evidence

also showed that market participants internalize a possibility of equity or currency market

crash. At the same time one could notice that US CDS (i.e. instruments protecting from

bonds default) do not discount any reasonable possibility of default in the US treasuries.

It seems straight forward that as a Peso problem has such a deep impact on a gen-

eral equilibrium model it should have a parallel e�ect on the estimates of the risk aversion

parameter. However, contrary to calibrated general equilibrium models, estimation of risk

aversion parameter based on either linearized Euler equation or on Hansen and Singleton

(1982) methodology leads to ambiguous results. For example, Hansen and Singleton (1982)

on the base of aggregate data �nd the risk aversion parameter to be close to 1, whereas Hall

(1988) using microdata �nds this coe�cient to be c.a. 10.4 Hence still substantially below

the general equilibrium prediction. This �nding turns us to the key question of this paper,

i.e. What is the size of the bias in the risk aversion coe�cient estimate that can be attributed

to a crash-Peso event?

Literature has also proposed solutions other than Rietz's. The EPP was addressed mainly

along the lines of di�erent utility functions, habit formation, borrowing constraints and taxes,

and heterogeneous agents with incomplete markets. In case of utility function modi�cations,

most notable is the usage of Epstin-Zin-Weil (EZW) preferences that allows for a split of

the elasticity of intertemporal substitution and the risk aversion coe�cient (see Epstein and

Zin (1991)). Barro (2006) combines the crash risk with EZW preferences showing that his

model closely tracks the actual data processes, but also claiming that EZW preferences

cannot address the EPP by itself. Campbell and Cochrane (1999b) focus on habit formation

and show that time varying risk aversion could potentially address the EPP. Their model

predicts that risk aversion is time varying and highly counter cyclical, which might be a

disputable �nding. Another solution may lie within the relaxation of the market completeness

assumption. Mankiw (1986) showed that idiosyncratic risk could make the representative

consumer seem more risk averse than he actually is. The additional departure from the basic

representative household might be due to borrowing constraints varying over the lifecycle,

for example Constantinides et al. (2002) show that an age varying budget constraint makes

3The same point on the constant return to bonds in the crash state was also made by DeLong in reference
to Barro (2006) article.
4It should be noted that Hall (1988) estimates the Elasticity of Intertemporal Substitution, which for the
given utility function is just an inverse of the risk aversion.
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equity and consumption paths change over the lifecycle. However, most of those solutions

point to a failure of a representative household framework which is contrary to Rietz (1988),

who shows that the baseline model still can be saved.

2.3. The Model

In this section I describe in detail the decision theoretic model of portfolio choice. This

model is used to analyze the impact of rare events on portfolio composition under di�erent

model parametrizations. It is also used as a tool to obtain a Data Generating Process (DGP)

for key variables used in the Monte-Carlo study of the risk aversion estimator.

2.3.1. Household decision problem. I build a simple portfolio choice model to obtain

policy functions determining the demand for bonds and equities and households consumption

patterns. Since I am interested in household's portfolio allocation under di�erent stochastic

processes for endowment and equity returns, I focus on a partial equilibrium framework. In

fact, my model very closely resembles the one of Heaton and Lucas (1997). In that model

stock and bond returns as well as endowment5 are treated as exogenous stochastic variables

that will be de�ned precisely in one of the following sections. But their model does not

internalize a potential crash. Let us �rst look at the household optimization problem.

Household maximization problem. Households choose sequences of consumption (Ct), eq-

uity holdings (At) and bond holdings (Bt) that maximize their expected lifetime utility:

(2.2) maxCt,At,Bt E0

∞∑
t=0

βtU(Ct)

Future utility is discounted at the time-invariant rate β. The household's maximization prob-

lem is subject to a sequence of budget constraints:

(2.3) Ct = Yt +Rf
tBt−1 +Re

tAt−1 − At −Bt

In each period expenditure on consumption (Ct) is �nanced by an endowment Yt, the gross

return on bonds RfBt−1 and equities Re
tAt−1, both bought in the previous period (t−1), less

current period (t) investment in bonds (Bt) and equities (At). In this model I assume that

the gross return on bonds (Rf )6 is time-invariant, while endowment (Yt) and gross return on

equities (Re
t )

7 are both stochastic. Hence I have two sources of uncertainty in the model.

In addition, it is also assumed that households cannot borrow nor take short positions on

equities at any point in time:

5In Heaton and Lucas (1997) article endowment is referred to as labor income, but there is no labour supply
choice in the model.
6Rf = 1 + rf where rft denotes the return on bonds.
7Rt = 1 + rt where rt is the stochastic return to investment made in period t-1.
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(2.4) Bt ≥ 0

(2.5) At ≥ 0

Following a vast literature on portfolio choice I assume contemporaneous utility to be

described by a constant relative risk aversion (CRRA) function:

(2.6) U(Ct) =
C1−γ
t − 1

1− γ
where γ denotes the risk aversion parameter. The greater the γ, the more risk averse the

household is. Please note that Heaton and Lucas (1997) also consider the case of habit

persistence in the utility function, but as I will show later there is no need for habit persistance

to generate positive bond holdings.

2.3.2. Stochastic environment. Since I opted for a partial equilibrium framework,

endowment and equity returns are treated as exogenous stochastic variables. Consequently,

I need to specify the joint stochastic process generating the endowment and gross returns on

equities.

I model equity returns as a simple AR(1) process. Parameters of the process are set to

the exact same values as in the study of Heaton and Lucas (1997):

(2.7) Re
t = α + λRe

t−1 + ε ε ∼ N(0, σε)

where parameters are found to be: α = 1.0775, λ = 0.0 and σε = 0.157. This means that

in the base scenario I do not allow for any persistence in equity returns. Yet, I keep this

formulation of the stochastic process as I will allow for persistent equity returns in one of the

auxiliary scenarios.

The endowment process is also described by a simple AR(1). Yet again, I follow Heaton

and Lucas (1997) and apply the parametrization estimated by them:

(2.8) log(Yt) = αY ∗ (1− λY ) + λY log(Yt−1) + εY εY ∼ N(0, σεY )

where parameters are estimated to be: αY = log(100), λY = 0.53 and σεY = 0.24. The

average income does not match any actual data, it is treated as the numeraire of the model.

Both processes are discretized using the Tauchen (1986) algorithm. Equity returns are

described by NR states with corresponding Markov transition matrix ΠR. Endowment is
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represented by NY states with ΠY Markov transition matrix8. Finally, as pointed out by

Heaton and Lucas (1997) or more recently by Bonaparte and Cooper (2009), the endowment

is not correlated with equity returns. Consequently, I assume that the two processes are

independent in 'normal' times, hence the joint stochastic process is described by NR ∗ NY

states with Markov transition matrix being a simple Kronecker product of the two underling

Markov matrices: Π = ΠR ⊗ ΠY .

The crash state is introduced as an additional possible state. In the baseline scenario this

state occurs simultaneously for the endowment and the gross equity return. Following Rietz

(1988) and Barro (2006), I introduce the crash to be equally probable from any 'normal' state.

Moreover, in the period directly following the crash, any state of nature may happen with

equal probability except for another crash. I assume that there cannot be two subsequent

crashes. This is why the �nal stochastic process is described by NR ∗NY + 1 states and the

following Markov transition matrix:

(2.9) ΠCrash =

[
(1− p) ∗ Π p

1
NR∗NY

0

]
The crash is fully de�ned by two parameters: its probability p and the size of the crash state

de�ned by a multiplier of standard deviation mcrash. More precisely, the return to equity

investment or endowment in a crash state is de�ned as its mean value minus mcrash times the

standard deviation of the original process. Following Rietz (1988), in the baseline scenario

the crash probability is set equal to p = 3 and the multiplier is set to mcrash = 3. This

formulation means that the crash state is fully tail-dependent i.e. if a crash occurs in the

endowment it also occurs in the equity return.9

2.3.3. Solution method. The household's optimization problem described by the set

of equations from 2.2 to 2.6, along with it's stochastic environment described by equations

from 2.7 to 2.9 can be solved using many di�erent techniques. For example, one could use

value function iterations, policy function iterations or policy function approximation using

Chebyshev polynomials. Heaton and Lucas (1997) use both - methods based on policy

function iterations and on policy function approximations. In contrast, I use the method of

value function iterations due to its robustness. This method guarantees to �nd an optimal

policy function even if this function is highly non-linear and/or the stochastic set-up is very

non-Gaussian.10 The latter is de�nitely the case in the presence of rare crashes. In order to

8In the baseline scenario I assume both processes to have 5 states. The exact numbers for 5 states under
baseline scenario are available in the Appendix A
9An alternative formulation of the crash risk could model the crash in endowment and in the equity market
separately and join their distribution with some form of dependency, for example using Gumbel copula.
10Figures B.1 and B.2 in Appendix B represent sample policy functions for the average level of endowment
Y = 100 and average return on equity Re = 1.0775.
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use the value function iteration method, I need to re-formulate the maximization problem

into it's recursive representation.

The household's problem in recursive form can be written as:

v(Y,Re, A,B) = maxA′,B′{u(Y +RfB +ReA− A′ −B′) +(2.10)

+βEY ′,R′|Y,Rv(Y ′, R′e, A′, B′)}

Please note that I have combined the maximization problem from equation 2.2 with the

budget constraint given by equation 2.3. The value function is a function of four state

variables. Current endowment (Y ) and return on equity (Re) are the two exogenous state

variables, while equity holdings (A) and bond holdings (B) are the two endogenous state

variables. Households decide on the future equity (A′) and bond (B′) holdings, hence they

are their choice variables. It should be also noted that no borrowing and no short-sale

constraints are in place, hence A′ ≥ 0 and B′ ≥ 0. The value function depicted by equation

2.10 simply states that the current value function is equal to the maximum of the sum of

current utility and the expected discounted value function of the next period. Expectations

are conditional on the current realization of exogenous state variables, Y and Re. In fact in

our baseline parametrization expectations are going to be solely conditional on endowment

since equity returns are independent.

The recursive problem formulated by equation 2.10 along with the no borrowing and

no short-selling conditions is a standard portfolio allocation problem. As shown in Adda

and Cooper (2003) this problem su�ces the Blackwell su�cient conditions for contraction

mapping, hence it can be solved using value function iterations. The solutions to the model

are two policy functions A′ = g1(Y,A,B,Re) and B′ = g2(Y,A,B,Re), which determine

equity and bond investments, respectively.

There is however one caveat that has to be stated before we proceed. The problem is

bounded as long as the model has a su�ciently low discount rate. As shown in Chamberlain

and Wilson (2000) in the case of the stochastic endowment, β ∗ Rf < 1 to guarantee that

the model is bounded. Unfortunately, to the best of my knowledge, there is no simple rule

on how to set β in the case of both the stochastic endowment and the stochastic return on

equity. That is why, in the baseline parametrization, I set β = 0.88. This number is lower

than the one proposed by Heaton and Lucas (1997) - β = 0.9, but is in line with the value

estimated by Bonaparte and Cooper (2009).

2.4. Numerical solutions

It is di�cult to investigate policy functions as they are multidimensional objects - in-

vestment decisions depend on exogenous and endogenous state variables. Hence, in order

to evaluate the impact of crash-risk as well as to understand model's sensitivity to di�erent
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Table 2.1. Baseline simulation results

Gamma 1 2 3 4 5
Median bond holdings 0.00 0.15 0.21 18.61 47.27

(0.00) (0.67) (0.96) (1.92) (1.13)

Median equity holdings 22.94 65.71 103.66 127.60 125.56
(2.57) (6.16) (9.87) (17.27) (16.45)

Std. dev. of consumption 19.47 17.52 17.32 17.35 16.90
(0.66) (0.89) (1.18) (1.35) (1.46)

Notes: The table reports averages across 1000 simulations of descriptive statistics for each time series.

Simulations are based on a model with a discount rate β = 0.88 and tail-dependent crash risk. For each

simulations 1100 exogenous observations were drawn, but �rst 100 observations were discarded to minimize

the impact of initial conditions. The numbers in brackets report standard errors.

parametrizations, I use model simulations. More precisely I report summary statistics on

equity and bond holdings and on average volatilities of consumption. I run 1000 separate

simulations. For each simulation I draw 1100 realizations of stochastic exogenous state vari-

ables: endowment and equity returns. Using these stochastic realizations and calculated

policy functions, I calculate bond and equity investment time-series as well as the corre-

sponding consumption time-series. In order to minimize the e�ects of initial equity and bond

holdings I drop the �rst 100 data points for each series. Since both bond and equity holdings

are bounded by zero, which may lead to the skew in their distributions, I decided to report

time-series medians rather than means. All tables report averages and standard deviations

of medians for each time-series with the exception of consumption for which the average

standard deviation is reported.11

Since the focus of this paper is on the e�ect of the Peso problem, all the stochastic

realizations are generated by stochastic processes without crash states, i.e. in none of the

simulations the crash actually occur. But the policy functions are calculated, assuming that

agents factor into their decisions the potential crash risk, unless stated otherwise.

Baseline parametrization. The baseline model parametrization consists of: the discount

rate set to a relatively low level β = 0.88, 'normal' times endowment and equity returns

described by independent AR(1) processes with parameters set to match the values of Heaton

and Lucas (1997), and the fully tail dependent crash risk characterized by the probability

of crash p = 3% and the size of crash de�ned as the expected value less three standard

deviations of the standard shock. Table 2.1 gives summary statistics for the baseline model

under di�erent levels of risk aversion. I am treating these results as the benchmark results

for alternative parametrizations.

Crash-risk. First let us look at the impact of the crash risk on the average portfolio

structure. Panel (a) in Table 2.2 reports average positive bond holdings for higher levels of

11In case the reader is interested in mean values rather than medians, they can refer to Appendix C, where
mean values are reported.
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risk-aversion. This stands in contrast with �ndings of Heaton and Lucas (1997) who were

unable to generate positive bond holdings, however they did not consider a tail-dependent

crash event. In fact panel (a) in Table 2.2 shows that if households do not internalize

crash risk they will not hold any bonds in their portfolio, which is in line with the existing

literature. The large impact of crash risk on agents portfolio composition might have two

sources. The �rst source is related to the fact that crash risk increases equity volatility as

well as it decreases the expected payo� (in our baseline calibration expected equity return

falls from 7.75% to 6.38% ). The second source comes from the fact that crash risk is tail

dependent i.e. both endowment and equity crash happens at the same time, hence equity

savings are not the best tool to hedge against endowment crash risk. Panel (b) in Table

2.2 reports average bond holdings if households internalize crash risk, but they assume that

crash risks are independent of each other. In this scenario households do not hold any bonds,

hence the decrease in equity premium does not generate bond holdings. This shows that

the tail-dependency e�ect is the most important for generating positive bond holdings in a

simple framework.

It should be also noted that the existence of additional risk - in the form of crash - increases

average wealth holdings as agents require a higher bu�er for potential crises periods.

Variation in risk-aversion coe�cient γ. Tables 2.1 and 2.2 show clearly that �nancial

wealth is a positive function of the risk aversion coe�cient, under models with and with-

out internalized crash risk. For example, in the baseline scenario, Table 2.1 when γ = 1,

household's �nancial wealth holdings amount only to 23% of the average endowment, while

when γ = 5 households �nancial wealth holdings amount to 172% of the average endowment.

An increase in the risk aversion also increases consumption smoothing as basic bu�er-saving

theory would predict. Moreover it is notable that one needs a risk-aversion coe�cient of at

least 4 to obtain signi�cant bond holdings, keeping other parameters constant.

Increase in discount rate β. The model is sensitive to the choice of the discount rate.

Table 2.3 reports summary statistics for two models with higher than the baseline discount

rates β = {0.9, 0.92}. These results show that an increase in households patience leads to a

large increase in average �nancial wealth holdings. For example, when households exhibit a

medium level of risk aversion, γ = 3 under baseline discount rate (β = 0.88), their average

�nancial wealth amounts to 104% of the average income, while under a high discount rate

(β = 0.92) the average �nancial wealth increases to 178%. This is in line with the common

sense as more patient households are more willing to invest. In addition, an increase in the

discount rate changes portfolio shares as agents have higher stocks of equities and they tend

to keep lower bu�er bond savings. However for higher values of risk aversion they exhibit

positive bond holdings.
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Table 2.2. Simulation results under di�erent stochastic process

Gamma 1 2 3 4 5

(a) No crash risk

Median bond holdings 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00)

Median equity holdings 9.87 33.72 57.55 81.55 105.30
(1.48) (4.28) (7.12) (10.11) (12.93)

Std. dev. of consumption 20.89 18.05 17.00 16.69 16.76
(0.59) (0.79) (1.01) (1.20) (1.34)

(b) Crash risk without tail dependency

Median bond holdings 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00)

Median equity holdings 18.66 51.08 84.04 118.52 152.69
(2.10) (4.61) (7.92) (11.77) (15.01)

Std. dev. of consumption 19.98 17.56 16.90 16.99 17.47
(0.63) (0.82) (1.08) (1.29) (1.41)

Notes: The table reports averages across 1000 simulations of descriptive statistics for each time series.

Simulations are based on a model with a discount rate β = 0.88. For each simulations 1100 exogenous

observations were drawn, but �rst 100 observations were discarded to minimize the impact of initial conditions.

The numbers in brackets report standard errors. Panel (a) reports descriptive statistics where agents do not

internalize crash neither in endowment nor in equity returns. Panel (b) reports descriptive statistics where

agents internalize crash risk in endowment and equity returns, but assume that these crash states happen

independently.

Decrease in the probability or the size of crash. At the beginning of this section I showed

the importance of tail-dependency of crash for the size and composition of �nancial wealth.

Since the parametrization of the crash risk itself is done in an ad-hoc way, it is also informa-

tive to see what happens to the baseline model when the probability or size of crash risk is

lower. Panel (a) of Table 2.4 reports average equity and bond holdings if the crash probability

is 2%, instead of 3% used in the baseline parametrization. In this case we get much lower

average bond holdings. In fact only under high levels of risk aversion (γ = 5) do households

exhibit positive bond holdings. Lower probability of crash risk, also makes equities more

attractive as the expected equity return increases and returns volatility decreases. Conse-

quently panel (a) reports higher equity holdings for large levels of risk aversion than in the

baseline parametrization. Panel (b) of Table 2.4 reports average equity and bond holdings,

when households internalize tail-dependent crash risk with the probability of 3%, but with

the size of crash limited to -2.5 standard deviations of the average shock. This change has a

very big impact on portfolio composition - under any of the considered levels of risk aversion

households on average do not hold positive amounts of bonds. All in all, this exercise shows
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Table 2.3. Simulation results under higher levels of discount rate

Gamma 1 2 3 4 5

(a) Moderate discount rate: β = 0.9

Median bond holdings 0.00 0.00 0.00 9.57 42.71
(0.00) (0.00) (0.00) (2.23) (1.95)

Median equity holdings 38.79 89.87 135.31 174.92 167.54
(3.66) (7.82) (12.95) (17.23) (14.22)

Std. dev. of consumption 18.16 17.09 17.46 18.04 18.00
(0.75) (1.09) (1.34) (1.43) (1.51)

(b) High discount rate: β = 0.92

Median bond holdings 0.00 0.00 0.00 4.56 41.68
(0.00) (0.00) (0.00) (3.02) (4.69)

Median equity holdings 71.86 132.65 178.21 211.61 196.72
(6.87) (12.77) (15.95) (12.89) (8.45)

Std. dev. of consumption 16.92 17.24 18.21 19.04 19.39
(1.01) (1.32) (1.43) (1.44) (1.49)

Notes: The table reports averages across 1000 simulations of descriptive statistics for each time series.

Simulations are based on models with endowment and equity returns processes as in the baseline scenario

and with tail-dependent crash. The table presents simulation results for higher discount rate than in the

baseline scenario. For each simulation 1100 exogenous observations were drawn, but the �rst 100 observations

were discarded to minimize the impact of initial conditions. The numbers in brackets report standard errors.

that not only the tail-dependency but also the size and severity of the crash is important to

generate positive bond holdings.

Di�erent equity returns process. In the baseline parametrization equity returns follow

exactly the same process as in Heaton and Lucas (1997), where equity returns are indepen-

dently distributed with average returns: E(Re) = 1.0775 and standard deviations of shocks

to returns amounts to σε = 0.157. In addition, under the baseline scenario the risk free

rate is equal to Rf = 1.02. As an additional scenario I look at the impact of equity returns

parametrized to match Mehra and Prescott (1985) data. This parametrization is based on US

equity returns from 1889 to 1978. Under that parametrization equities exhibit lower average

returns: E(Re) = 1.0698, higher standard deviations of shocks to returns: σε = 0.166 and in

particular some equity return persistence λR = 0.11. This would make equities less attrac-

tive, but in Mehra and Prescott (1985) calibration bond returns are also lower: Rf = 1.008,

leading to the overall equity premium being higher than in the Heaton and Lucas (1997)

parametrization. Table 2.5 reports summary statistics for simulations where equities follow

the Mehra and Prescott (1985) calibration. It is apparent that lower returns to equities

decreased substantially overall equity holdings. Moreover households decided to hold more

bonds than in the baseline scenario even though returns to bonds are negligible.
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Table 2.4. Simulation results under di�erent crash probabilities and di�erent
crash sizes

Gamma 1 2 3 4 5

(a) Probability of the crash decreased to 2%

Median bond holdings 0.00 0.00 0.00 0.00 13.42
(0.00) (0.00) (0.00) (0.00) (2.39)

Median equity holdings 18.88 60.74 96.96 134.17 164.47
(2.40) (5.22) (8.66) (12.75) (17.88)

Std. dev. of consumption 19.78 17.44 17.18 17.47 17.89
(0.64) (0.87) (1.13) (1.33) (1.42)

(b) Size of the crash reduced to −2.5 ∗ σ
Median bond holdings 0.00 0.00 0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00)

Median equity holdings 15.81 51.11 84.58 120.09 155.79
(1.88) (4.86) (8.32) (12.35) (15.63)

Std. dev. of consumption 20.11 17.46 16.89 17.07 17.54
(0.63) (0.84) (1.11) (1.32) (1.43)

Notes: The table reports averages across 1000 simulations of descriptive statistics for each time series.

Simulations are based on a model with a discount rate β = 0.88, endowment process as in the baseline

scenario and tail-dependent crash. The equity process is parametrized to match 1889-1978 data for US as in

Mehra and Prescott (1985): Rf = 1.008, E(Re) = 1.0698, λRe = 0.11 and σε = 0.166. For each simulation

1100 exogenous observations were drawn, but the �rst 100 observations were discarded to minimize the impact

of initial conditions. The numbers in brackets report standard errors.

Table 2.5. Simulation results for Mehra and Prescott (1985) parametrization
of equity returns

Gamma 1 2 3 4 5

Median bond holdings 0.00 5.81 13.95 31.12 55.02
(0.00) (2.47) (2.65) (1.57) (2.53)

Median equity holdings 16.10 49.89 78.94 91.75 96.56
(2.38) (7.54) (10.97) (13.12) (14.38)

Std. dev. of consumption 19.85 17.67 17.27 17.00 16.86
(0.64) (0.88) (1.14) (1.33) (1.49)

Notes: The table reports averages across 1000 simulations of descriptive statistics for each time series.

Simulations are based on a model with a discount rate β = 0.88, an endowment process as in the baseline

scenario and a tail-dependent crash. The equity process is parametrized to match 1889-1978 data for US as

in Mehra and Prescott (1985): Rf = 1.008, E(Re) = 1.0698, λRe = 0.11 and σε = 0.166. For each simulation

1100 exogenous observations were drawn, but the �rst 100 observations were discarded to minimize the impact

of initial conditions. The numbers in brackets report standard errors.
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2.5. Monte-Carlo experiment

2.5.1. Simulation. The Monte-Carlo experiment aims to gauge the bias of the risk-

aversion coe�cient attributed to the Peso problem. This type of experiment is comprised

of two parts: one that simulates an arti�cial environment and another that uses simulated

numbers to estimate the parameters in question. Simulations of time series closely resemble

experiments done in the previous section. The key di�erence is that for each parameter

scenario I simulate a time series for the model where crash risk is and is not incorporated by

household expectations.

More speci�cally, the simulation scenario is comprised of 10000 replications. For each

replication I draw two series: one for returns to equity and one for endowments.12. Each

series contains T observations. It is very important to note that both stochastic processes

are drawn from processes not containing crash states, hence crash never happens in my

sample. Once the exogenous stochastic process is set, I apply two types of policy functions:

the one not internalizing the crash state and the one internalizing the crash state. This allows

me to compare estimates where there are no internalized crashes with estimates where there

is a Peso problem. Once I have generated arti�cial data I can use them to compute a set of

risk aversion estimates. The next subsection describes in detail the estimators used.

2.5.2. Estimation methods. In my exercise I focus solely on the estimation of the risk

aversion coe�cient γ, assuming that the discount factor β is known. I focus on two meth-

ods: the Hansen and Singleton (1982) non-linear generalized method of moments (GMM)

estimator of the Euler equation and the simple ordinary least squares (OLS) regression of

the log-linearized Euler equation. I use the GMM estimator as it uses the Euler equation

directly and does not impose any binding assumptions on the stochastic part of the model.

The OLS is used as the natural benchmark, but as noted by Carroll (2001), it performs very

poorly.

Euler equations. From the optimization problem described by 2.2 and 2.3 we can easily

derive the �rst order conditions with respect to equity (known as the Euler equation):

(2.11) βE0[
u′(Ct+1)

u′(Ct)
Re
t ] = 1

In addition, in the case of the CRRA utility function, the Euler equation simpli�es to a

relationship of the expected consumption growth and the expected equity return. Moreover

the theory predicts that agents should use all the available information Ωt while forming

12In addition to T observations, there are 100 extra draws treated as a burn in for the process, just to decrease
the impact of initial conditions.
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expectations, hence we can re-write (2.11) as:

(2.12) E[βRe
t

[
Ct+1

Ct

]−γ
− 1|Ωt] = 0

The Hansen and Singleton (1982) method exploits directly the above presented condition

using it as a key moment in the GMM set up. Moreover, they also form additional moments

using the orthogonality condition to the available information. In this paper I apply two

versions of the Hansen and Singleton (1982) estimator. In the �rst one I only use the Euler

equation and I do not use any additional orthogonalization conditions i.e. I assume that

Ω consists only of a constant. Consequently I estimate one parameter using one moment

condition. This means that my estimator is just identi�ed. In the second GMM estimator

I use lagged values of consumption, equity returns and endowment to enrich the structure

of the information set Ω. In this case I have four moment conditions and one parameter to

be estimated hence the model is over-identi�ed, therefore I weigh moments with an optimal

weighting matrix obtained using the �true� parameters. It should be noted that in the baseline

parametrization only endowment is a strong instrument, as it is persistent.

The second estimation method is just an OLS estimation of the following equation:

ln

(
Ct+1

Ct

)
= α0 + α1ln(Rt+1) + ξt+1

where α1 is the estimate of the Elasticity of Intertemporal Substitution (EIS), which is just

the inverse of the risk-aversion parameter. In addition, the constant is calibrated, and not

estimated, as it exhibits information on the discount rate. As mentioned earlier this method

was applied by Hall (1988), yielding a relatively high risk aversion coe�cient. In my set-

up the key issue with this method is that the assumption of log normal distribution of the

underlying variables is de�nitely violated. Carroll (2001) has largely criticized the use of the

log-linearized Euler equations to estimate the risk-aversion coe�cient and my results con�rm

his �nding.

2.5.3. Results. Table 2.6 reports average estimates of the risk aversion coe�cient for

the canonical model without crash risk for di�erent parametrizations and di�erent sample

sizes. Surprisingly an upward bias of the estimated risk-aversion parameter is noticeable, in

the case of GMM estimators - see panels (a) and (b). Adda and Cooper (2003) attribute

this fact to the no-borrowing/no-short sale constraint, as at the constraint we have a corner

solution in our optimization problem, hence the Euler equation might not hold. GMM

estimators are also consistent, since the increase in the sample sizes leads to the decrease

in estimates variance. Looking at variance of the estimators allows us to notice additional

feature - over-identi�ed GMM estimator is more e�cient than the single condition GMM.
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Table 2.6. Monte Carlo estimates of the risk aversion coe�cient for model
without crash risk

(a) Just identi�ed GMM
β 0.88 0.90
γ 2 3 4 2 3 4
T=100 Mean(γ̂) 1.92 3.50 4.45 1.68 2.96 3.80

Std dev.(γ̂) 1.86 1.17 1.14 2.11 1.99 1.89
T=400 Mean(γ̂) 2.07 3.43 4.26 1.35 3.25 3.87

Std dev.(γ̂) 1.53 0.39 0.50 2.08 0.80 0.77
T=1200 Mean(γ̂) 2.40 3.39 4.22 1.60 3.28 3.83

Std dev.(γ̂) 0.87 0.23 0.28 1.84 0.28 0.30
(b) Over-identi�ed GMM
β 0.88 0.90
γ 2 3 4 2 3 4
T=100 Mean(γ̂) 2.40 3.37 4.24 2.26 3.03 3.61

Std dev.(γ̂) 0.65 0.90 1.07 1.17 1.47 1.69
T=400 Mean(γ̂) 2.36 3.25 4.09 2.30 3.06 3.55

Std dev.(γ̂) 0.28 0.40 0.51 0.45 0.70 0.92
T=1200 Mean(γ̂) 2.33 3.22 4.05 2.29 3.08 3.54

Std dev.(γ̂) 0.16 0.23 0.28 0.22 0.29 0.34
(c) Ordinary Least Squares
β 0.88 0.90
γ 2 3 4 2 3 4
T=100 Mean(γ̂) 4.62 5.36 6.07 4.40 5.29 4.98

Std dev.(γ̂) 7.81 19.27 11.92 12.09 5.50 6.83
T=400 Mean(γ̂) 4.00 4.72 5.06 4.23 4.78 4.85

Std dev.(γ̂) 0.78 0.82 0.85 0.72 0.70 0.71
T=1200 Mean(γ̂) 3.90 4.63 4.92 4.16 4.72 4.79

Std dev.(γ̂) 0.38 0.43 0.40 0.39 0.41 0.39

Notes: The table reports average values, as well as their standard deviations, of the estimated risk-aversion

coe�cent for the model where households do not internalize crises. For each parameter values 10000 time

series of length T are simulated. These series are used to estimate risk aversion parameter. Panel (a) reports

Hansen and Singleton (1982) estimates, obtained using only one-moment condition. Panel (b) reports Hansen

and Singleton (1982) estimates, obtained from over-identi�ed model, where past values of consumption, equity

returns and endowment where used as instruments. Panel (c) reports estimates obtained by ordinary least

squares.

This estimator feature is especially pronounced for small samples (T=100) and fades away

once the sample is big.

Table 2.6 also reports OLS estimates for the canonical model without any crash risk.

Clearly estimates obtained from OLS are biased and the sign of the bias cannot be easily

determined. In addition, even though the variance of the estimates decreases when the size

of sample increases, it is much larger than the variance for corresponding GMM estimates.
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Table 2.7 reports estimates of the risk-aversion coe�cient from the data simulated by the

model with the Peso problem (households anticipate crash risk, but it never happens in the

sample). Panels (a) and (b) show that the GMM estimates of the risk aversion coe�cient are

biased upwards (as we expected). Moreover, even though the estimates of the risk aversion

coe�cients are getting tighter when the sample size increases, the bias does not diminish.

This means that the bias induced by the Peso problem is not a small sample phenomenon.

It is rather a manifestation of the fact that sample misses important information.

Panel (c) in Table 2.7 reports OLS estimates, surprisingly these estimates have smaller

bias than the estimates of the model without the Peso problem. Still, the results con�rm

that the OLS estimator of the log-linearized Euler equation does not have good properties

and should not be used to estimate risk aversion coe�cient.

Figure 2.1 shows distributions of risk aversions coe�cients estimates obtained from the

over-identi�ed GMM estimator for the model with and without Peso problem. Even though

the distributions show the aparent bias in the average estimate of the risk aversion coe�cient

due to the Peso problem, their shapes do not di�er substantially. Distributions of the risk

aversion estimates obtained from small samples (T = 100) are wide and have a small positive

skew. Yet, both of these estimator features diminish when the sample size increases.

Let us look again at the estimator bias generated by the Peso problem. Table 2.8 reports

that the average bias ranges 0.65 to 1.71, depending on estimation method, size of the

underlying risk aversion coe�cient and the sample size. It is easy to note that on average

the over-identi�ed method produces a smaller bias. This might be related to an increased

e�ciency of the over-identi�ed estimator. Table 2.8 also implies that the higher the true

risk aversion coe�cient the lower the bias of the estimate. In order to understand this

phenomenon it is informative to look again at the Euler equation 2.12. If we could observe

the true distribution of equity returns, the Euler equation would hold with the true gamma,

but since we do not observe the crash state our average equity return is biased upwards.

Consequently, for the Euler equation to hold, the E

[(
Ct+1

Ct

)−γ]
has to decrease. Since we

observe the positive growth rate of consumption, the estimate of γ gets biased upwards. In

case of higher �nancial wealth holdings, the growth rate of consumption is higher. This in

turn means that the γ has too be less biased to ful�ll the Euler condition.

These observations raise another issue. In our set-up the crash risk pushes highly risk-

averse agents to hold bonds rather than equities. This could potentially decrease the con-

sumption growth rate and again increase the bias of the risk aversion coe�cient. In order to

assess this e�ect I compare the biases for the model with Peso problem where crash risk is tail

dependent (Table 2.8) to the model where crash risks are independent (Panel (a) of Table

2.9). Note that the �rst model exhibited signi�cant bond holdings for high risk aversion

levels and the second model did not exhibit any bond holdings. In fact pairwise biases of
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Table 2.7. Monte Carlo estimates of the risk aversion coe�cient for model
with anticipated crash risk

(a) Just identi�ed GMM
β 0.88 0.90
γ 2 3 4 2 3 4
T=100 Mean(γ̂) 3.62 4.69 5.38 3.10 3.89 3.92

Std dev.(γ̂) 0.89 1.03 1.31 1.69 1.88 2.29
T=400 Mean(γ̂) 3.63 4.58 5.17 3.43 4.09 4.01

Std dev.(γ̂) 0.31 0.42 0.61 0.55 0.64 1.15
T=1200 Mean(γ̂) 3.60 4.55 5.10 3.43 4.08 4.01

Std dev.(γ̂) 0.18 0.25 0.36 0.22 0.32 0.43
(b) Over-identi�ed GMM
β 0.88 0.90
γ 2 3 4 2 3 4
T=100 Mean(γ̂) 3.36 4.44 5.04 3.00 3.57 3.35

Std dev.(γ̂) 0.75 0.99 1.42 1.36 1.83 2.49
T=400 Mean(γ̂) 3.36 4.35 4.81 3.14 3.65 3.27

Std dev.(γ̂) 0.32 0.45 0.71 0.56 0.97 1.61
T=1200 Mean(γ̂) 3.33 4.32 4.71 3.15 3.69 3.36

Std dev.(γ̂) 0.19 0.26 0.44 0.22 0.37 0.75
(c) Ordinary Least Squares
β 0.88 0.90
γ 2 3 4 2 3 4
T=100 Mean(γ̂) 3.71 4.23 4.43 3.75 4.08 3.90

Std dev.(γ̂) 1.37 1.55 1.38 1.08 1.76 1.16
T=400 Mean(γ̂) 3.49 3.97 4.20 3.57 3.83 3.74

Std dev.(γ̂) 0.44 0.47 0.59 0.39 0.42 0.47
T=1200 Mean(γ̂) 3.44 3.93 4.12 3.56 3.80 3.70

Std dev.(γ̂) 0.23 0.27 0.29 0.22 0.25 0.27

Notes: The table reports average values, as well as their standard deviations, of the estimated risk-

aversion coe�cient for the model where households internalize crises, but it never happens in the

analyzed sample - Peso problem. For each parameter values 10000 time series of length T are

simulated. These series are used to estimate risk aversion parameter. Panel (a) reports Hansen and

Singleton (1982) estimates, obtained using only one-moment condition. Panel (b) reports Hansen and

Singleton (1982) estimates, obtained from over-identi�ed model, where past values of consumption,

equity returns and endowment where used as instruments. Panel (c) reports estimates obtained by

ordinary least squares.

the model with non tail dependent crash exhibits smaller bias, but the di�erences in biases

is very small and could be attributed to numerical error. It seems that, even though the tail

dependency has a substantial e�ect on the household's portfolio composition it has hardly

any e�ect on the estimate of the risk aversion coe�cient.

Finally, let us look at the risk aversion coe�cient bias reported for the Mehra and Prescott

(1985) parametrization (see panel (b) of Table 2.9). It is very easy to notice that the average
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Table 2.8. Pairwise bias of risk aversion coe�cient estimates

Just-identi�ed GMM Over-identi�ed GMM
γ 2 3 4 2 3 4
T=100 Average bias 1.71 1.23 0.93 0.97 1.07 0.80

Std of the bias 1.51 0.78 1.00 0.29 0.51 1.08
T=400 Average bias 1.58 1.16 0.91 1.00 1.10 0.72

Std of the bias 1.36 0.18 0.47 0.08 0.21 0.59
T=1200 Average bias 1.18 1.17 0.88 1.00 1.11 0.65

Std of the bias 0.73 0.09 0.28 0.04 0.12 0.37

Notes: The table reports average pairwise bias of the risk-aversion coe�cient, as well as its standard

deviation, due to the Peso problem. All calculations are done for the model with low discount

rate β = 0.88. Each parametrization is replicated 10000 times. For each parametrization two

set of series are produced, one where households do not internalize crash and one in which they

internalize tail dependent crash. On the basis of these simulated data two risk-aversion coe�cients

are estimated and the table reports the di�erence between these parameters. Two estimators are

applied: just-identi�ed GMM where we use Euler equation as the only moment condition, and

over-identi�ed GMM where we use past values of consumption, equity returns and endowment as

additional orthogonalization conditions.

Table 2.9. Pairwise bias of risk aversion coe�cient estimates

Just-identi�ed GMM Over-identi�ed GMM
γ 2 3 4 2 3 4
(a) Model with independent crash risks
T=100 Average bias 1.36 0.98 0.80 0.66 0.82 0.70

Std of the bias 1.53 0.77 0.74 0.30 0.36 0.71
T=400 Average bias 1.28 0.93 0.84 0.69 0.86 0.70

Std of the bias 1.38 0.14 0.31 0.07 0.14 0.39
T=1200 Average bias 0.88 0.94 0.84 0.69 0.87 0.68

Std of the bias 0.73 0.07 0.19 0.04 0.08 0.25
(b) Model with Mehara-Prescott (1985) parametrization
T=100 Average bias 1.42 0.98 0.87 0.80 0.85 0.80

Std of the bias 1.41 0.68 0.63 0.29 0.40 0.67
T=400 Average bias 1.25 0.93 0.87 0.83 0.88 0.77

Std of the bias 1.17 0.14 0.29 0.08 0.15 0.37
T=1200 Average bias 0.95 0.94 0.86 0.83 0.88 0.75

Std of the bias 0.52 0.08 0.17 0.05 0.09 0.24

Notes: The table reports average pairwise bias of the risk-aversion coe�cient, as well as its standard

deviation, due to the Peso problem. All calculations are done for the model with low discount

rate β = 0.88. Each parametrization is replicated 10000 times. For each parametrization two

set of series are produced, one where households do not internalize crash and one in which they

internalize tail dependent crash. On the basis of these simulated data two risk-aversion coe�cients

are estimated and the table reports the di�erence between these parameters. Two estimators are

applied: just-identi�ed GMM where we use Euler equation as the only moment condition, and

over-identi�ed GMM where we use past values of consumption, equity returns and endowment as

additional orthogonalization conditions.
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Figure 2.1. Distributions of risk aversion coe�cient estimates
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Notes: The �gure depicts distributions of risk aversion coe�cient estimates obtained using over-

identi�ed GMM. The underlying model used for simulations has a discount rate set to β = 0.88 and

the risk aversion parameter set to γ = 3. For the model with incorporated crash risk, the probability

of crash is p = 3% and the size of the crash is determined by a negative shock of three standard

deviations, m = 3.

bias is small. This clearly stands in contrast with the change of the calibrated risk aversion

coe�cient for the general equilibrium model with and without crash state.

2.6. Conclusions

This paper investigates the impact of a tail-dependent crash event on portfolio composi-

tion and bias of the estimates of the risk-aversion coe�cient. I show that tail-dependent crash

risk, i.e. crash risk that hits at the same time the equity market and household's endowment,

leads to positive bond holdings in the canonical households investment-saving choice model.

I also �nd that the Peso problem (the fact that households internalize Barro-Rietz type of

crash, but this crash is never observed in the actual empirical sample) biases the Hansen and
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Singleton (1982) estimates of the risk aversion coe�cient. However, the size of this bias is

small relative to the change of the risk aversion coe�cient needed to generate realistic equity

premium in general equilibrium models. Therefore, estimates of the risk aversion coe�cient

su�er less from Peso problem. Moreover, the fact that empirical analyses �nd moderate esti-

mates of risk aversion coe�cient does not necessarily rule out the possibility that households

internalize market crash. Finally, the analysis con�rms that the OLS estimator is a very bad

tool to estimate risk aversion coe�cient as previously noted by Carroll (2001).
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Appendix A: Baseline state variables and Markov matrices

In the baseline parametrization I discretize endowment into �ve following states:

Y =


57.55

78.77

100.00

121.23

142.45


The minimum state is established as 1.5 endowment standard deviation from mean en-

dowment (100). Markov transition matrix associated with that state is:

πY =


0.35 0.34 0.23 0.07 0.01

0.20 0.32 0.30 0.14 0.04

0.09 0.24 0.34 0.24 0.09

0.04 0.14 0.30 0.32 0.20

0.01 0.07 0.23 0.34 0.35


.

The process for equity returns is discretized into �ve states as well:

Re =


0.842

0.960

1.078

1.195

1.313


where, just like in the case of endowment, the lowest state is calculated as average equity re-

turn minus 1.5 standard deviation of average equity return. The associated Markov transition

matrix is:

πR =


0.13 0.22 0.30 0.22 0.13

0.13 0.22 0.30 0.22 0.13

0.13 0.22 0.30 0.22 0.13

0.13 0.22 0.30 0.22 0.13

0.13 0.22 0.30 0.22 0.13


As it is easy to notice, the transition matrix has all rows the same, as in the baseline cali-

bration equity returns are assumed to be independent.

Finally the additional crash state is parametrized as additional endowment state YCrash =

[15.1] and Re
Crash = [0.607], both are de�ned as the average state minus three standard

deviations of the underlying process.
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Appendix B: Sample policy functions

Figure B.1. Equity investment policy function
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Notes: The �gure depicts equity investment policy function for the model with tail dependent crash risk, low

discount factor β = 0.88 and moderate risk aversion γ = 4. Represented policy function is for endowment

set to 100.

Figure B.2. Bond investment policy function
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Notes: The �gure depicts bond investment policy function for the model with tail dependent crash risk, low

discount factor β = 0.88 and moderate risk aversion γ = 4. Represented policy function is for endowment

set to 100.
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Appendix C: Numerical results - mean

Table C.1. Baseline simulation results
Gamma 1 2 3 4 5
Mean bond holdings 0.28 6.32 9.59 21.69 50.66

(0.04) (0.75) (1.28) (1.59) (1.55)

Mean equity holdings 27.22 66.83 105.69 129.77 123.25
(2.08) (5.99) (9.79) (11.88) (11.13)

Std. dev. of consumption 19.47 17.52 17.32 17.35 16.90
(0.66) (0.89) (1.18) (1.35) (1.46)

Notes: The table reports averages across 1000 simulations of descriptive statistics for each time series.

Simulations are based on a model with a discount rate β = 0.88 and tail-dependent crash risk. For each

simulations 1100 exogenous observations were drawn, but �rst 100 observations were discarded to minimize

the impact of initial conditions. The numbers in brackets report standard errors.

Table C.2. Simulation results under di�erent stochastic process

Gamma 1 2 3 4 5

(a) No crash risk

Mean bond holdings 0.00 0.01 0.23 1.06 2.63
(0.00) (0.04) (0.27) (0.71) (1.25)

Mean equity holdings 15.67 42.62 68.70 93.35 115.64
(1.49) (4.26) (7.06) (9.31) (10.86)

Std. dev. of consumption 20.89 18.05 17.00 16.69 16.76
(0.59) (0.79) (1.01) (1.20) (1.34)

(b) Crash risk without tail dependency

Mean bond holdings 0.00 0.03 0.68 3.05 7.55
(0.00) (0.07) (0.52) (1.33) (2.29)

Mean equity holdings 23.01 58.78 94.63 127.85 155.22
(1.72) (4.59) (7.73) (9.81) (10.48)

Std. dev. of consumption 19.98 17.56 16.90 16.99 17.47
(0.63) (0.82) (1.08) (1.29) (1.41)

Notes: The table reports averages across 1000 simulations of descriptive statistics for each time series.

Simulations are based on a model with a discount rate β = 0.88. For each simulations 1100 exogenous

observations were drawn, but �rst 100 observations were discarded to minimize the impact of initial conditions.

The numbers in brackets report standard errors. Panel (a) reports descriptive statistics where agents do not

internalize crash neither in endowment nor in equity returns. Panel (b) reports descriptive statistics where

agents internalize crash risk in endowment and equity returns, but assume that these crash states happen

independently.
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Table C.3. Simulation results under higher levels of discount rate

Gamma 1 2 3 4 5

(a) Moderate discount rate: β = 0.9

Mean bond holdings 0.09 3.98 8.76 19.77 48.66
(0.02) (0.68) (1.50) (2.34) (2.20)

Mean equity holdings 44.21 95.87 137.21 162.45 152.98
(3.36) (8.13) (11.01) (11.59) (10.88)

Std. dev. of consumption 18.16 17.09 17.46 18.04 18.00
(0.75) (1.09) (1.34) (1.43) (1.51)

(b) High discount rate: β = 0.92

Mean bond holdings 0.18 4.87 12.01 23.41 48.91
(0.19) (1.32) (2.31) (3.22) (2.90)

Mean equity holdings 80.50 137.97 171.09 189.06 179.13
(6.73) (10.32) (10.90) (9.96) (9.42)

Std. dev. of consumption 16.92 17.24 18.21 19.04 19.39
(1.01) (1.32) (1.43) (1.44) (1.49)

Notes: The table reports averages across 1000 simulations of descriptive statistics for each time series.

Simulations are based on models with endowment and equity returns processes as in the baseline scenario

and with tail-dependent crash. The table presents simulation results for higher discount rate than in the

baseline scenario. For each simulation 1100 exogenous observations were drawn, but the �rst 100 observations

were discarded to minimize the impact of initial conditions. The numbers in brackets report standard errors.
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Table C.4. Simulation results under di�erent crash probabilities and di�erent
crash sizes

Gamma 1 2 3 4 5

(a) Probability of the crash decreased to 2%

Mean bond holdings 0.00 2.71 5.90 9.24 20.38
(0.00) (0.39) (0.92) (1.52) (2.10)

Mean equity holdings 24.09 64.95 101.93 135.85 155.42
(1.91) (5.41) (8.88) (10.96) (11.79)

Std. dev. of consumption 19.78 17.44 17.18 17.47 17.89
(0.64) (0.87) (1.13) (1.33) (1.42)

(b) Size of the crash reduced to −2.5 ∗ σ
Mean bond holdings 0.00 0.23 2.26 5.18 10.35

(0.00) (0.08) (0.57) (1.35) (2.35)

Mean equity holdings 21.16 58.24 93.43 126.88 154.51
(1.75) (4.81) (8.27) (10.55) (11.13)

Std. dev. of consumption 20.11 17.46 16.89 17.07 17.54
(0.63) (0.84) (1.11) (1.32) (1.43)

Notes: The table reports averages across 1000 simulations of descriptive statistics for each time series.

Simulations are based on a model with a discount rate β = 0.88, endowment process as in the baseline

scenario and tail-dependent crash. The equity process is parametrized to match 1889-1978 data for US as in

Mehra and Prescott (1985): Rf = 1.008, E(Re) = 1.0698, λRe = 0.11 and σε = 0.166. For each simulation

1100 exogenous observations were drawn, but the �rst 100 observations were discarded to minimize the impact

of initial conditions. The numbers in brackets report standard errors.

Table C.5. Simulation results for Mehra and Prescott (1985) parametrization
of equity returns

Gamma 1 2 3 4 5

Mean bond holdings 1.92 10.22 17.53 33.73 54.95
(0.16) (0.77) (1.08) (1.27) (1.43)

Mean equity holdings 21.75 56.49 86.97 102.88 106.33
(1.85) (5.55) (8.76) (10.16) (10.62)

Std. dev. of consumption 19.85 17.67 17.27 17.00 16.86
(0.64) (0.88) (1.14) (1.33) (1.49)

Notes: The table reports averages across 1000 simulations of descriptive statistics for each time series.

Simulations are based on a model with a discount rate β = 0.88, an endowment process as in the baseline

scenario and a tail-dependent crash. The equity process is parametrized to match 1889-1978 data for US as

in Mehra and Prescott (1985): Rf = 1.008, E(Re) = 1.0698, λRe = 0.11 and σε = 0.166. For each simulation

1100 exogenous observations were drawn, but the �rst 100 observations were discarded to minimize the impact

of initial conditions. The numbers in brackets report standard errors.



CHAPTER 3

Overseas unspanned factors and domestic bond returns

joint with Andrew Meldrum (Bank of England) and Peter Spencer (University of York)

Abstract

Using data on government bonds in Germany and the US, we show that `overseas unspanned factors'

- constructed from the components of overseas yields that are uncorrelated with domestic yields -

have signi�cant explanatory power for subsequent domestic bond returns. This result is remarkably

robust, holding for di�erent sample periods, as well as out of sample. By adding our overseas

unspanned factors to simple dynamic term structure models, we show that shocks to those factors

have large and persistent e�ects on domestic yield curves. Dynamic term structure models that omit

information about foreign bond yields are therefore likely to be misspeci�ed.

Keywords: return-forecasting regressions, dynamic term structure models.
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3.1. Introduction

Using data on government bond yields in Germany and the USA, this paper shows that

a factor extracted from the part of overseas yields that is orthogonal to domestic yields can

explain a substantial part of subsequent domestic bond returns. Moreover, this `overseas un-

spanned factor' has signi�cant additional predictive power for domestic bond returns relative

to the information contained in the domestic yield curve. The result is remarkably robust,

holding for di�erent sample periods as well as out-of-sample.

A large number of studies have demonstrated that most of the variation in government

bond yields over di�erent maturities within a single country can be explained by the �rst

three principal components of domestic yields (typically labelled as level, slope and curva-

ture - e.g. Litterman and Scheinkman (1991)). Models of the term structure that specify

bond yields as linear functions of three or more principal components are therefore likely to

achieve a high in-sample �t to the cross section of yields. That does not, however, imply that

three domestic principal components are su�cient for modelling the time-series behaviour of

yields. Previous studies have shown that other variables, unspanned by level, slope and cur-

vature, have signi�cant explanatory power for USexcess returns. These include other factors

extracted from domestic bond yields (Cochrane and Piazessi (2005) and Du�ee (2011b)) and

macroeconomic variables (Joslin et al. (2014)). This paper extends this emerging literature

on unspanned factors in the term structure by demonstrating that an `overseas unspanned

factor' extracted from overseas yields but unspanned by domestic yields is an important

predictor of future domestic yields.

We use a simple two-stage regression-based method to construct our overseas unspanned

factors. We �rst regress bond yields from the `foreign' country on a cross-section of yields

from the `domestic' country, thereby obtaining the components of foreign yields that are

orthogonal to domestic yields. We then construct our overseas unspanned factor as a linear

combination of these orthogonal components at di�erent maturities, with the weights chosen

to maximise �t to excess bond returns averaged across maturities.

To assess the information content of this factor, we include it in two sets of empirical

exercises: (i) return-forecasting regressions; and (ii) dynamic factor models of bond yields.

We highlight the following results from these empirical exercises. First, in return-forecasting

regressions with a twelve-month holding period, the overseas unspanned factor has a statis-

tically signi�cant coe�cient for all maturity returns; and excluding it results in substantially

worse in-sample �t, particularly for German returns and at short maturities. Second, these

results are remarkably robust and do not appear to be a result of in-sample over-�tting: they

hold for alternative samples, out-of-sample and if we extend the analysis to consider returns

on UK bonds. Third, in the dynamic factor model for German yields, a one standard devia-

tion shock to our overseas unspanned factor is followed by a decline in yields of up to 70 basis
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points; in the model of US yields, the largest reaction is somewhat smaller but still reasonably

substantial, at around 40 basis points. And fourth, shocks to the overseas unspanned factors

also account for a substantial portion of the unexpected variation in long-term bond yields

- for example, they account for around 40-50% of forecast error variance of German yields

over a ten-year forecast horizon. This proportion is lower for the US but still non-negligible

(around 15%).

Our approach to constructing our overseas unspanned factor is similar to that used by

Cochrane and Piazessi (2005). They construct a `return-forecasting factor' as a single linear

combination of US forward rates and then show that this factor can explain a substantial part

of US excess bond returns. Dahlquist and Hasseltoft (2013) �nd similar results to Cochrane

and Piazessi (2005) for Germany, Switzerland and the UK (as well as for the US); and

that a global factor constructed as a GDP-weighted average of the local return-forecasting

factors raises the explanatory power of return-forecasting regressions relative to versions that

only include the local return-forecasting factors - for countries other than the US.1 There

are, however, three important di�erences between Dahlquist and Hasseltoft (2013) and the

present study. First, we show that there is information in foreign yields which is not re�ected

in any linear combination of domestic yields (not just the single linear combination they

use as a domestic return-forecasting factor). Second, our overseas unspanned factor contains

no information extracted from domestic yields, whereas the Dahlquist and Hasseltoft (2013)

global factor is a weighted average of local factors from the di�erent countries. So it is clear

in our case that the return-forecasting ability of the overseas unspanned factor does not

derive from its containing information about current domestic yields. And third, Dahlquist

and Hasseltoft (2013) �nd that their global factor does not help to explain excess returns

in the US, whereas we show that there is information in overseas yields that is relevant for

explaining US returns. These three di�erences are particularly important when building

dynamic term structure models, since our paper clearly demonstrate that we cannot capture

all of the information relevant for modelling the time-series dynamics of yields simply by

adding more factors extracted from domestic yield curves, even for the US.

Our dynamic factor models of yields - which we estimate separately for yields in each

country - are broadly similar to the model of Diebold and Li (2006) in that they model

the time-series dynamics of the factors driving bond yields using a Vector-Autoregression

and have a simple cross-sectional mapping between factors and yields. The non-standard

feature of our model is that we incorporate the respective overseas unspanned factors as

state variables alongside principal components of local yields. We can motivate this by

appealing to a no-arbitrage term structure model with unspanned factors, similar to Joslin

et al. (2014) (we provide further detail on this point in Appendix A). While we do not impose

1Zhu (2015) shows that such a global return-forecasting factor can predict returns out of sample for Germany,
Japan, the UK and the US.
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no-arbitrage restrictions on the cross section of yields,2 this is unlikely to imply a materially

di�erent mapping between the factors and bond yields, however, so such an exercise would

add little to the contribution of this paper (Du�ee (2011a) provides a discussion of the impact

of no-arbitrage restrictions on yield forecasts from dynamic term structure models).

Our interest in overseas unspanned factors can be motivated by the fact that they allow

us to achieve a partial identi�cation of directional e�ects in interdependent global markets.

While a number of studies have found that yields in multiple countries can be explained

by a small number of factors extracted from the pooled data set, sometimes interpreted as

`global factors' (e.g. Diebold et al. (2008) and Kaminska et al. (2013) among others), it is

hard to identify what structural shocks drive these factors. Such models beg the question

of whether the international correlations and factors re�ect common shocks or spillovers

from one country to another. Re�ecting this problem, recent research on global business

cycle models has moved away from reliance upon global factors to developing multi-country

models with explicit cross-country spillover e�ects (e.g. Diebold and Yilmaz (2015)). Our

focus on unspanned factors allows us to identify similar cross-country spillovers. We should

acknowledge, however, that our identi�cation of spillover e�ects is only partial, since the

domestic yield curve factors in our models inevitably re�ect the impact of global factors that

are spanned by domestic yields as well as genuinely domestic in�uences. Ciccarelli and Garcia

(2015) use Stock and Watson (2005) techniques to decompose these factors into global and

domestic components, but we do not attempt to make this distinction in this paper, simply

identifying directional e�ects from the unspanned components.

Section 2 of this paper summarizes the US and German data sets we use and demonstrates

the extent to which these is unspanned information in overseas yields. The return-forecasting

regressions including several robustness checks are presented in Section 3 and the dynamic

term structure model in Section 4. Section 5 concludes.

3.2. The unspanned component of overseas yields

3.2.1. Data. Our data set consists of estimates of German and US end-month zero-

coupon yields from January 1990 until December 2014, with maturities of 6 months and 1, 2,

3, 5, 7 and 10 years. For the US, we use the estimates of Gürkaynak et al. (2007) using the

Svensson (1994) parametric method, which are updated and published by the Federal Reserve

Board.3 For Germany, we use estimates published by the Bundesbank, also estimated using

the Svensson method.4 In Sections 4 and 5 we also report results of extensions to cover the

2For example, as the a�ne term structure models of Du�e and Kan (1996) and Du�ee (2002). Dahlquist
and Hasseltoft (2013) estimate no-arbitrage term structure models that include their global factor.
3Available at: http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html.
4Available at: http://www.bundesbank.de/Navigation/EN/Statistics/Money_and_capital_markets/
Interest_rates_and_yields/Term_structure_of_interest_rates/term_structure_of_interest_rates.html.
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UK; estimates of UK zero-coupon yields are published by the Bank of England and computed

using the smoothed cubic spline method of Anderson and Sleath (2001).5

Table 3.1 reports summary statistics of the US and German yields at selected maturities.

As is well known, the average term structures are upward sloping, the volatility of yields de-

clines slowly with maturity and yields are highly persistent, with autocorrelation coe�cients

close to one for all maturities. For example, the average US six-month and ten-year yields

are approximately 3.3% and 5.1% respectively; whereas the equivalent averages for Germany

are 3.5% and 4.8%. The average German yield curve is therefore a little �atter than the

average US yield curve (the average spread between the ten-year and six-month yield is 1.9

percentage points in the US and 1.4 percentage points in Germany). The standard deviation

of the US six-month and ten-year yields are 2.3% and 1.8% respectively; with corresponding

standard deviations of 2.6% and 2.0% in Germany.

Table 3.1. Summary statistics of nominal zero-coupon yields

Maturity (months) 6 12 24 36 60 84 120
(a) United States
Mean 3.275 3.406 3.673 3.923 4.365 4.729 5.135
Minimum 0.089 0.099 0.188 0.306 0.627 1.007 1.552
Maximum 8.382 8.568 8.780 8.863 8.909 8.919 8.924
Standard deviation 2.338 2.373 2.343 2.264 2.087 1.939 1.781
AR(1) coe�cient 0.992 0.992 0.990 0.989 0.988 0.987 0.987
(b) Germany
Mean 3.472 3.528 3.695 3.883 4.238 4.525 4.841
Minimum -0.113 -0.125 -0.124 -0.095 0.032 0.231 0.615
Maximum 9.630 9.470 9.130 9.089 9.240 9.286 9.229
Standard deviation 2.623 2.572 2.506 2.444 2.317 2.193 2.027
AR(1) coe�cient 0.994 0.995 0.994 0.995 0.996 0.997 0.998

Notes: All numbers except for the AR(1) coe�cients are in annualized percentage points. The AR(1)

coe�cient reports the �rst-order autocorrelation coe�cient from an AR(1) model including an intercept,

estimated using OLS. The sample ranges from January 1990 to December 2014.

Table 3.2 reports correlations of domestic yields across maturities for the two countries

separately. As is well known, yields of nearby maturities within a single country are strongly

correlated - for example, the seven- and ten-year yields have a correlation greater than 0.995

in both the US and Germany. The correlations between very short and very long maturity

yields are somewhat weaker but are still positive - for example, the correlations between the

six-month and ten-year yields are 0.85 in the US and 0.90 in Germany.

Table 3.3 reports correlations of yields across countries. Cross-country correlations are

strongly positive for all pairs of yields and are generally higher for longer maturity yields.

5Available at: http://www.bankofengland.co.uk/statistics/pages/yieldcurve/default.aspx.
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Table 3.2. Correlations of yields across maturities within a single country

Maturity (months) 6 12 24 36 60 84 120
(a) United States
6 1.000 0.997 0.983 0.965 0.927 0.890 0.845
12 0.997 1.000 0.994 0.981 0.948 0.915 0.874
24 0.983 0.994 1.000 0.996 0.976 0.951 0.916
36 0.965 0.981 0.996 1.000 0.991 0.973 0.945
60 0.927 0.948 0.976 0.991 1.000 0.995 0.979
84 0.890 0.915 0.951 0.973 0.995 1.000 0.995
120 0.845 0.874 0.916 0.945 0.979 0.995 1.000
(b) Germany

6 12 24 36 60 84 120
6 1.000 0.998 0.989 0.977 0.953 0.931 0.903
12 0.998 1.000 0.996 0.988 0.966 0.945 0.918
24 0.989 0.996 1.000 0.997 0.984 0.967 0.943
36 0.977 0.988 0.997 1.000 0.994 0.982 0.963
60 0.953 0.966 0.984 0.994 1.000 0.997 0.986
84 0.931 0.945 0.967 0.982 0.997 1.000 0.996
120 0.903 0.918 0.943 0.963 0.986 0.996 1.000

Notes: The table reports r-Pearson pairwise correlation coe�cients computed for end-month values of the

considered maturities for the period January 1990 to December 2014.

For some maturities, we note that the foreign yield with the highest correlation does not

necessarily have the same maturity. In particular, German yields are generally more highly

correlated with longer maturity US yields than with the US yield of the corresponding matu-

rity. This suggests that when we are analyzing the extent to which foreign and domestic yield

curves contain the same information we cannot just focus on bivariate correlations between

yields of the same maturity; rather, we should consider whether a given yield is spanned

by the full set of maturities in the other country. We return to this issue in the following

sub-section.

3.2.2. Unspanned overseas information. The simple correlation analysis above demon-

strates a high degree of co-movement of bond yields across the two countries. But the fact

that the cross-country correlations are less than one shows that there is nevertheless some

information in yields that is speci�c to individual countries. To isolate the information in

the yields of country j that is not (linearly) spanned by yields in country i 6= j, we regress

yields in country j on yields from country i:

(3.1) y
(j)
n,t = β0 + β6y

(i)
6,t + β12y

(i)
12,t + ...+ β120y

(i)
120,t + u

(j)
n,t,

for n = 6, 12, 24, 36, 60, 84, 120 and where y
(i)
n,t is the time-t, n-period yield for country i.
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Table 3.3. Correlations of yields across countries

Germany \ United States
Maturity (months) 6 12 24 36 60 84 120
6 0.711 0.731 0.767 0.797 0.840 0.864 0.880
12 0.733 0.754 0.790 0.820 0.861 0.884 0.899
24 0.758 0.780 0.819 0.848 0.889 0.911 0.926
36 0.771 0.796 0.836 0.866 0.907 0.930 0.944
60 0.781 0.808 0.850 0.882 0.924 0.947 0.964
84 0.780 0.807 0.851 0.884 0.927 0.952 0.969
120 0.771 0.800 0.845 0.878 0.923 0.948 0.968

Notes: The table reports r-Pearson pairwise cross-country correlations of monthly yields for US and Germany

computed for end-month values of the considered maturities for January 1990 to December 2014. German

yields are in rows and US yields are in columns. For example, the number 0.758 from the third row and �rst

column reports the correlation between 24-month German yield and the 6-month US yield.

Panel (a) of Table 3.4 reports the R2 statistics for these regressions. These are consistent

with the general pattern observed in the cross-country correlation analysis reported above.

Yields in the foreign country can explain a large proportion of the variation in domestic long-

term yields: the R2s for the ten-year yields are both close to 0.95. At shorter maturities, the

R2s are lower: regressing the six-month US yield on German yields gives an R2 of 0.66; and

regressing the six-month German yield on US yields gives an R2 of 0.81.

Panel (b) of Table 3.4 reports results from restricted versions of (3.1) in which the only

regressors are a constant and the matched maturity yield in country i (i.e. regressing y
(j)
n,t

on y
(i)
n,t). The R

2 statistics are substantially lower and F-tests of the implied zero restrictions

suggest that they should be strongly rejected in all cases. Similar to the correlation anal-

ysis in the previous sub-section, this shows that when analyzing the common information

in international term structures, we cannot necessarily just consider bivariate relationships

between yields that have the same maturity.

3.3. Return regressions

3.3.1. An unspanned overseas return-forecasting factor. As discussed above, when

specifying a dynamic term structure model, it may be important to include variables un-

spanned by the yield curve - and which therefore do not improve the cross-sectional �t of

the model - but are nevertheless important for predicting future yields (Joslin et al. (2014));

and we can use simple reduced-form return-forecasting regressions to provide an indication

of whether there are such unspanned factors in the yield curve (Appendix A provides future

motivation for these regressions). In this section, we therefore turn to the question of whether

the information in the foreign yield curve that is orthogonal to domestic yields is nevertheless

useful for explaining domestic excess returns.
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Table 3.4. Regressions of domestic yields on foreign yields

Maturity (months) 6 12 24 36 60 84 120
(a) Multivariate regressions
United States R2 0.66 0.70 0.76 0.81 0.88 0.92 0.95
Germany R2 0.81 0.84 0.88 0.91 0.95 0.96 0.96
(b) Univariate regressions
United States R2 0.50 0.57 0.67 0.75 0.85 0.90 0.94

F-test (p-values) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Germany R2 0.50 0.57 0.67 0.75 0.85 0.90 0.94

F-test (p-values) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Notes: Panel (a) of the table shows R2 statistics for regressions of yields in the relevant country on a constant

and yields with maturities of 6,12, 24, 36, 60, 84 and 120 months from the other country (equation (3.1)).

Panel (b) shows the R2 statistics for regressions of yields in the relevant country on a constant and the single

yield from the other country with the same maturity. Figures in brackets in panel (b) show the p-values of

F-tests of the restrictions that all omitted regressors included in the regressions reported panel (a) are equal

to zero. The sample ranges from January 1990 to December 2014.

With seven di�erent maturities for each country, the dimensions of the orthogonal in-

formation contained in the seven residuals u
(j)
n,t for n = 6, 12, 24, 36, 60, 84, 120 from (3.1) is

clearly large. But it turns out that the large majority of the information contained in those

residuals that is relevant for forecasting country i returns can be summarised in a single

`overseas unspanned factor' (OUF).

Note �rst that the excess return from holding a country i n-month bond between times

t and t+ 12 is de�ned as

(3.2) rx
(i)
n,t,t+12 = log

(
P

(i)
n−12,t+12

)
− log

(
P

(i)
n,t

)
− y(i)

12,t,

where P
(i)
n,t is the time-t price of an n-period bond. To construct a single linear combination

of the information in the residuals from (3.1), we regress the average excess return on country

i bonds of di�erent maturities between times t and t + 12 on the time-t components of all

foreign yields orthogonal to domestic yields (i.e. u
(j)
n,t):

(3.3) rx
(i)
t,t+12 = γ0 + γ′u

(j)
t + ε

(i)
t,t+12,

Here, rx
(i)
t,t+12 denotes the average 12-month excess return on 2-, 3-, 5-, 7- and 10-year bonds

and u
(j)
t =

[
u

(j)
6,t , u

(j)
12,t, u

(j)
24,t, ..., u

(j)
120,t

]′
. Our return-forecasting factor, which we denote z

(j)
t

below, is given by the �tted value from this regression (z
(j)
t = γ̂u

(j)
t ). This is similar to the

procedure in Cochrane and Piazessi (2005), although their regressors are domestic forward

rates.
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We can evaluate how well this single-factor speci�cation explains excess returns on bonds

across di�erent maturities in a second step, by running separate regressions of the form

(3.4) rx
(i)
n,t,t+12 = α0 + αnz

(j)
t + ε̃

(i)
n,t,t+12

for n = 24, 36, 60, 84, 120. The R2s from these regressions are in the region of 0.1-0.2 for

the US and 0.2-0.4 for Germany (Table 3.5). In both cases, there is information in overseas

yields, unspanned by domestic yields, which can explain a substantial part of the variation

in domestic excess returns.

Table 3.5. R2 of regression of excess bond returns on single and multiple
unspanned factors

Maturity (months) 24 36 60 84 120
(a) United States
Single-factor speci�cation 0.107 0.138 0.166 0.171 0.161
Unrestricted 0.172 0.176 0.173 0.172 0.179
(b) Germany
Single-factor speci�cation 0.335 0.351 0.338 0.296 0.223
Unrestricted 0.357 0.363 0.340 0.296 0.228

Notes: The table reports R2 statistics for two models. The `single-factor speci�cation' refers to regressions of

excess bond returns on a constant and the overseas unspanned factor (3.4). The `unrestricted' speci�cation

refers to regressions of excess bond returns on a constant and the components of all considered domestic

yields orthogonal to overseas yields (3.5). The sample ranges from January 1990 to December 2014.

Fitting a model with a single-factor obtained from the two-step procedure of estimating

(3.3) and then (3.4) does of course involve some loss of information. To evaluate how well

our single factor captures the relevant information contained in all the residuals u
(j)
n,t, we can

also estimate the unrestricted version of (3.4):6

(3.5) rx
(i)
n,t,t+12 = γ0,n + γ′nu

(j)
t + ε

(i)
n,t,t+12

for n = 24, 36, 60, 84, 120. The R2s from these regressions are also shown in Table 3.5 (the

rows headed `unrestricted'). In almost all cases, these are very similar to those obtained from

the single-factor model (3.4), i.e. there is little information lost by using the single-factor

speci�cation.

3.3.2. Does the overseas unspanned factor contain information for predicting

returns relative to the domestic yield curve? We next assess the extent of the marginal

information in the unspanned portion of overseas yields - relative to the information contained

in the domestic term structure - by estimating regressions of the form

(3.6) rx
(i)
n,t,t+12 = κ0 + κ′y

(i)
t + αnz

(j)
t + η

(i)
n,t+12

6This is similar to the approach taken by Cochrane and Piazessi (2005) when considering the return-
forecasting information in domestic forward rates.
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where y
(i)
t =

[
y

(i)
6,t, y

(i)
12,t, ..., y

(i)
120,t

]′
denotes a vector of all considered yields for country i.

Return-forecasting regressions usually have fewer explanatory variables than this, so it is

worth emphasizing that the point we are making here is not necessarily that a model with

so many variables is desirable in absolute terms; rather, the point of the exercise is to show

that no linear combination of the considered domestic yields can replicate the information

contained in the overseas unspanned factor - hence why we include all seven as explanatory

variables.

Table 3.6 reports results from estimating (3.6) and from a version with αn restricted to

zero. For both the US and Germany as the domestic country i, the increase in the explanatory

power of the regression, measured by its R2, is substantial - from about 0.35 to 0.5 for US

returns and from about 0.2 to 0.5 for German returns. In both cases, the change in the R2

is strongly signi�cant based on the bootstrap procedure by Bauer and Hamilton (2015) (our

implementation of this bootstrap is explained in detail in Appendix B). And the coe�cients

on the overseas unspanned factor αn are also individually strongly statistically signi�cant.

In summary, therefore, there is clearly statistically and economically signi�cant information

in overseas yield curves, unspanned by domestic yields, which is nevertheless important for

predicting future domestic bond returns.

3.3.3. Interpreting the overseas unspanned factor. Clearly, the way in which our

overseas unspanned factor is constructed by regressing returns on many di�erent orthogonal

components of overseas yields (3.3) means that it is not straightforward to attach an inter-

pretation. However, it turns out that they are reasonably highly correlated with spreads

between observed yield curve factors. The US overseas unspanned factor (which we include

in regressions explaining German excess returns) is highly correlated with the spread between

the �rst principal components of yields (i.e. the `level factors') in the two countries (Figure

3.1; we provide further details on these principal components in Section 4). And the German

overseas unspanned factor (which we include in regressions explaining US excess returns) is

highly correlated with the spread between the third principal components (i.e. the `curvature

factors') in the two countries (Figure 3.2).7

3.3.4. Robustness tests. Our paper is not the �rst to �nd a variable which appears

to predict future bond returns. In general, however, a problem in this literature is a lack of

robustness: results are particular to the considered sample period or disappear out-of-sample.

This may be a particular concern in our case, given the high colinearity of the regressors

7We have considered whether any the OUFs co-move with several important �nancial market or macroeco-
nomic variables: a measure of implied equity market volatility (the VIX); a measure of banking sector credit
risk (TED spreads); and a real activity indictor (industrial production). In simple bivariate regressions, none
of these potential explanatory variables have signi�cant coe�cients (at 5% signi�cance level). Of course the
above list of �nancial/macroeconomic indicators does not cover all the possibilities, but it seems that it is
di�cult to match any of our OUF with �nancial market or macroeconomic variables.



3.3. RETURN REGRESSIONS 85

Table 3.6. Regression of excess bond returns on domestic yields and the
unspanned overseas factor

Maturity (months) 24 36 60 84 120
(a) United States
αn 0.24 0.52 1.01 1.39 1.81
t-statistics (7.5) (8.6) (9.8) (10.0) (9.4)

[-4.3,4.1] [-4.3,4.1] [-4.3,4.1] [-4.3,4.1] [-4.2,4.1]
R2 including OUF 0.47 0.49 0.52 0.52 0.50
R2 restricted αn = 0 0.37 0.35 0.35 0.35 0.34
∆R2 0.10 0.14 0.16 0.17 0.16

[0.04] [0.04] [0.04] [0.04] [0.04]
(b) Germany
αn 0.30 0.61 1.08 1.36 1.58
t-statistics (13.6) (14.5) (14.1) (12.7) (10.5)

[-4.9,4.9] [-4.9,4.9] [-4.9,4.9] [-4.9,4.8] [-4.9,4.8]
R2 including OUF 0.50 0.54 0.54 0.50 0.46
R2 restricted αn = 0 0.17 0.20 0.21 0.21 0.24
∆R2 0.33 0.34 0.33 0.29 0.22

[0.06] [0.06] [0.06] [0.06] [0.06]

Notes: The table reports estimated parameters from regressions of excess bond returns on a constant, seven

domestic yields and the overseas unspanned factor (αn), i.e. equation (3.6). Numbers in parentheses report

the values of t-statisitcs and numbers in brackets refer to the 95% con�dence interval for these t-statistics

obtained using the Bauer and Hamilton (2015) bootstrap procedure. The �nal two rows of each section (a)

and (b) report the R2 statistics from models with and without the overseas unspanned factor (`Including

OUF' and `Restricted' respectively). Numbers in brackets refer to the 95% critical value for the change in

the R2. The sample ranges from January 1990 to December 2014.

in the construction of the return-forecasting factor (3.3). Viewed in that light, however,

our results appear to be remarkably robust. Most importantly, the overseas unspanned

factor signi�cantly improves forecasts of returns out-of-sample. Our results also hold across

a number of di�erent sub-samples and when we consider alternative domestic yield curve

variables. While the results are weaker if we consider a six-month investment horizon, our

overseas unspanned factors can still provide a statistically signi�cant improvement in the

predictability of domestic returns. Finally, we also show that very similar results apply if we

extend our analysis to include the UK as a third country in our analysis.

Di�erent sample periods. A potential concern about the results reported above is that

the sample period we use contains two obvious potential structural breaks: the introduction

of the euro in January 1999 and the fall in short-term nominal interest rates close to the

zero lower bound during the recent �nancial crisis. Consequently we �rst consider three

sub-sample periods: (i) the pre-euro period (January 1990-December 1998); (ii) the post-

euro period (January 1999-December 2014); and (iii) the pre-lower bound period (January

1990-December 2007). Tables 3.8 and 3.8 report R2s for models including and excluding the
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Figure 3.1. Overseas unspanned factor extracted from US yield curve.
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Notes: The �gure depicts the overseas unspanned factor (OUFUS) extracted from US yield curve, i.e. the

component of the US yield curve that is unspanned by German yields. F1DE − F1US depicts the di�erence

between �rst principal components ('levels') of German and US yield curve, respectively.

overseas unspanned factor for the di�erent sub-samples. The goodness of �t varies across

samples, yet the overall R2s remain high for models including the overseas unspanned factor,

ranging from 47% to 82%. Most importantly, in all cases the �t of the regressions that exclude

the overseas unspanned factor are worse, particularly for German short-maturity returns. The

coe�cients on the overseas unspanned factor are strongly statistically signi�cant in all cases.
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Figure 3.2. Overseas unspanned factor extracted from German yield curve.
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Notes: The �gure depicts the overseas unspanned factor (OUFDE) extracted from German yield curve, i.e.

the component of the German yield curve that is unspanned by US yields. F3US−F3DE depicts the di�erence

between third principal components ('curvature') of US and German yield curve, respectively.
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Out-of-sample performance. We next evaluate whether the increase in explanatory power

from including our overseas unspanned factors holds out of sample. In our forecasting exer-

cise we estimate the models using rolling windows of 120 monthly observations to generate

168 forecasts. More precisely, we start by estimating the model using the ten-year period

January 1990-December 1999 and construct a twelve-month ahead forecast of returns for the

period ending December 2000. We then move the estimation period on by one month (i.e.

February 1999 to January 2000) and repeat. Table 3.9 reports root mean squared forecast

error (RMSFE) statistics from this forecasting exercise for di�erent maturities, computed

across all the resulting 168 forecasts.

The RMSFE for the model including the unspanned overseas factor is lower than for the

restricted model for all maturity returns in both countries. Giacomini and White (2006)

tests of the statistical signi�cance of the improvements in forecasting performance show that

models including the unspanned overseas factor perform signi�cantly better at forecasting

returns, with the single exception of German ten-year bonds. The model including the

overseas unspanned factor even out-performs a random walk for US seven- and ten-year

bonds and for all maturities for Germany. In summary, therefore, our results are remarkably

robust out of sample, which should substantially alleviate concerns that they are an artefact

of in-sample over-�tting.
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Table 3.9. Root Mean Squared Forecast Error of out-of-sample excess return predictions

Maturity (months) 24 36 60 84 120
(a) United States
Random walk 1.16 2.35 4.70 7.08 10.62
Restricted αn = 0 2.15 4.18 7.26 9.63 12.54
Including OUF 1.78** 3.22** 5.24** 6.77** 8.79**
(b) Germany
Random walk 1.34 2.60 4.80 6.60 8.85
Restricted αn = 0 1.41 2.73 4.79 6.18 7.55
Including OUF 0.78*** 1.56*** 3.12*** 4.59** 6.51

Notes: The table reports Root Mean Square Forecast Errors for excess bond returns for three di�erent

forecasting models: a random walk i.e. a simple naive forecast; and our benchmark model both including

the overseas unspanned factor and excluding it (`Restricted' and `Including OUF' respectively). All model

parameters, as well as the OUFs are computed using 10-year rolling samples (i.e. 120 months). All numbers

reported are in annualized percentage points. Asterisks indicate signi�cance levels from Giacomini-White

test (see Giacomini and White (2006)) assessing the di�erence of forecasting power between the models

excluding and including the overseas unspanned factor: ***,**, * denote signi�cance at p = 0.01, p = 0.05

and p = 0.1 respectively for the best performing model. The sample ranges from January 1990 to December

2014, implying a forecasting period of January 2000 to December 2014.

Alternative domestic yield curve variables. As explained above, the primary purpose of

our return-forecasting regression (3.6) is to demonstrate that there is information contained

in the overseas unspanned factor which is not re�ected in any linear combination of the

considered domestic yields - i.e. it is not necessarily to show that this is the `best' forecasting

model of yields. Indeed, it is plausible that a more parsimonious model would deliver superior

out-of-sample forecasts of returns to those presented in Section 3.4.2. In this sub-section we

show that our speci�cation nevertheless performs favourably out-of-sample compared with

three more parsimonious alternatives.

All of the alternative models we consider here can be written as

(3.7) rx
(i)
n,t,t+12 = κ̃0 + κ̃′x

(i)
t + α̃nz

(j)
t + η̃

(i)
n,t+12,

where x
(i)
t is a vector of variables constructed from domestic yields for country i. In all cases

we also consider versions of the models that exclude the overseas unspanned factor (z
(j)
t ).

The �rst alternative model uses the �rst three principal components of domestic yields,

which is fairly standard number in the dynamic term structure literature. The second uses a

purely domestic return-forecasting factor constructed a broadly similar way to Cochrane and

Piazessi (2005) - i.e. regressing average excess returns on ex ante domestic forward rates.

Speci�cally, we �rst regress average excess returns on bonds with 2, 3, 5, 7 and 10 years to
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maturity on a vector of domestic forward rates f
(i)
t =

[
f

(i)
12,t, f

(i)
24,t, f

(i)
36,t, f

(i)
60,t, f

(i)
84,t, f

(i)
120,t

]′
:8

(3.8) rx
(i)
t,t+12 = θ0 + θf

(i)
t + ε

(i)
t,t+12.

The domestic return-forecasting `CP factor' is the �tted value from this regression. The

third alternative model includes both the �rst three domestic principal components and the

domestic CP factor. Table 3.10 reports the results of out-of-sample forecasting exercises for

these more parsimonious alternative models, reporting the RMSFE for di�erent maturity

excess returns from the di�erent models. We adopt two coding schemes to assist in reading

the table. First, a bold number indicates the best performing model out of our benchmark

speci�cation and the three alternatives. A box round a number indicates which is the best

performing model if we also include a random walk in the set of considered models.

We highlight the following results. First, in most cases, our benchmark speci�cation is

actually the best performing model; the only exceptions are for German long yields returns,

although the di�erences compared with the benchmark model are small in these cases. Sec-

ond, in almost all cases the versions of the models that include the overseas unspanned factor

perform signi�cantly better than the versions that exclude it, according to Giacomini and

White (2006) tests of their comparative predictive ability. Here, the only exception is the

model of US returns based on three domestic principal components, which performs slightly

better if the overseas unspanned factor is excluded, although in this case the di�erences are

not statistically signi�cant. Third, our speci�cation compares quite favourably with a ran-

dom walk. For Germany, the benchmark model substantially out-performs a random walk at

all maturities, whereas for the US it does so for the longer-maturity returns (seven and ten

years).

Di�erent investment horizons. In our analysis above, we have focused on twelve-month

excess returns, in line with much of the literature on return predictability, including the

related studies by Cochrane and Piazessi (2005) and Dahlquist and Hasseltoft (2013). In

this section, we examine whether our results hold if we consider shorter holding periods.

Speci�cally, we assess the information content of domestic and overseas unspanned factors for

one- and six-month excess returns by estimating (3.6) with left-hand side variables changed

to one- and six-month excess returns respectively.

Tables 3.11 and 3.12 report R2 coe�cients for models with di�erent investment horizons.

For the 6-month investment horizon, both domestic yields and unspanned overseas factors still

contain substantial information about future excess returns, although the gain from including

the unspanned overseas factor (in terms of the increase in R2) is around half that for the

12-month horizon. At the one-month investment horizon return predictability is generally

substantially lower and there is negligible gain from including the overseas unspanned factor.

8The data sources for forward rates are the same as those described in Section 3.
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Table 3.10. Root mean squared forecast error of excess returns predictions
from di�erent models estimated over 10 years of data

Maturity (months) 24 36 60 84 120
(a) United States
Random walk 1.163 2.353 4.698 7.076 10.619
7 Local factors 2.153 4.175 7.263 9.628 12.540
7 Local factors and z 1.782** 3.223** 5.238** 6.772** 8.786**
3 Local factors 2.221 4.257 7.144 9.117 11.359
3 Local factors and z 2.369 4.495 7.382 9.157 10.838
CP factor 2.202 4.351 7.649 10.009 12.536
CP factor and z 1.797** 3.502** 6.089*** 7.924*** 9.890**
3 Local factors and CP factor 2.405 4.614 7.746 9.887 12.315
3 Local factors and CP factor and z 1.976** 3.667** 5.918** 7.412** 9.189**
(b) Germany
Random walk 1.336 2.597 4.800 6.597 8.853
7 Local factors 1.407 2.732 4.788 6.185 7.552
7 Local factors and z 0.784*** 1.561*** 3.125*** 4.588** 6.509
3 Local factors 1.305 2.521 4.405 5.717 7.102
3 Local factors and z 0.808*** 1.616*** 3.176*** 4.603** 6.486
CP factor 1.260 2.484 4.550 6.174 8.125
CP factor and z 0.856** 1.642** 3.144*** 4.568** 6.575**
3 Local factors and CP factor 1.392 2.709 4.763 6.152 7.491
3 Local factors and CP factor and z 0.802** 1.575*** 3.068*** 4.432** 6.227

Notes: The table reports Root Mean Square Forecast Errors for excess bond returns for �ve forecasting mod-

els: (i) a random walk; (ii) the benchmark model including seven domestic yields and the overseas unspanned

factor (z); (iii) a model with three domestic principal components and the overseas unspanned factor; (iv) a

model with our `CP' factor and the overseas unspanned factor; and (v) a model that includes three domestic

principal components, our CP factor and the overseas unspanned factor. All model parameters, as well as the

domestic principal components and overseas unspanned factors are computed using 10-year rolling samples

(i.e. 120 months). All numbers reported are in annualized percentage points. Asterisks indicate signi�cance

levels from Giacomini-White test (see Giacomini and White (2006)) assessing the di�erence of forecasting

power between the considered model and the version without the overseas unspanned factor: ***,**, * denote

signi�cance at p = 0.01, p = 0.05 and p = 0.1 respectively for the best performing model. The sample ranges

from January 1990 to December 2014, implying a forecasting period of January 2000 to December 2014.

This clearly indicates that the information content of unspanned overseas factors is more

substantial for longer horizons, which is consistent with previous studies showing that bond

return predictability increases with the holding period (e.g. Fama and Bliss (1987)).
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Table 3.11. Regression of excess bond returns on domestic yields and the
unspanned overseas factor for 1-month holding period

Maturity (months) 24 36 60 84 120
(a) United States
αn 0.20 0.31 0.36 0.20 -0.15
t-statistics (1.0) (0.9) (0.6) (0.3) (-0.1)

[-2.0,2.0] [-2.0,2.0] [-2.0,2.0] [-2.0,2.1] [-2.0,2.1]
R2 including OUF 0.10 0.09 0.08 0.08 0.07
R2 restricted αn= 0 0.09 0.09 0.08 0.08 0.07
∆R2 0.01 0.00 0.00 0.00 0.00

[0.00] [0.00] [0.01] [0.01] [0.01]
(b) Germany
αn 0.44 0.72 1.17 1.45 1.67
t-statistics (3.0) (3.1) (3.1) (2.9) (2.4)

[-2.1,2.0] [-2.1,2.0] [-2.1,2.0] [-2.1,2.0] [-2.1,2.0]
R2 including OUF 0.12 0.09 0.07 0.06 0.04
R2 restricted αn= 0 0.09 0.05 0.03 0.03 0.02
∆R2 0.03 0.04 0.04 0.03 0.02

[0.00] [0.01] [0.01] [0.01] [0.01]

Notes: The table reports results from regressions of one-month excess bond returns on an intercept, seven

domestic yields and the overseas unspanned factor - i.e. equation (3.6). For each holding period the table

reports the estimate of the coe�cient on the overseas unspanned factor (αn). Numbers in parentheses report

the values of t-statisitcs and numbers in brackets refer to the 95% con�dence interval for these t-statistics

obtained using the Bauer and Hamilton (2015) bootstrap procedure. The �nal two rows of each part of the

table report the R2 statistics from models with and without the overseas unspanned factor (`Including OUF'

and `Restricted' respectively). Numbers in brackets refer to the 95% critical value for the change in the R2.

The sample ranges from January 1990 to December 2014.

Incorporating the UK into the analysis. In this sub-section, we show that similar results

hold if we extend the analysis to cover the excess returns on UK bonds. We �rst estimate

two overseas unspanned factors using the procedure explained previously: one each from the

components of US and German yields that are orthogonal to UK yields. More precisely, we

�rst estimate (3.1) and then (3.3) with the US as country j and the UK as country i to obtain

an overseas unspanned factor z
(US)
t . We then repeat the process with Germany as country j

to obtain an overseas unspanned factor z
(DE)
t . We then assess whether either of these factors

contains information for predicting UK returns relative to the information contained in the

UK term structure by estimating extended versions of (3.6):

(3.9) rx
(UK)
n,t,t+12 = κ0 + κ′y

(UK)
t + αn,USz

(US)
t + αn,DEz

(DE)
t + η

(UK)
n,t+12

Table 3.13 reports R2 coe�cients from versions of this regression with di�erent combina-

tions of the overseas unspanned factors. Including either of the overseas unspanned factors

causes the R2 to rise substantially, particularly at short maturities, although the di�erence
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Table 3.12. Regression of excess bond returns on domestic yields and the
unspanned overseas factor for 6-month holding period

Maturity (months) 24 36 60 84 120
(a) United States
αn 0.41 0.76 1.36 1.81 2.34
t-statistics (5.8) (6.5) (6.9) (6.8) (6.4)

[-3.6,3.6] [-3.6,3.6] [-3.7,3.6] [-3.6,3.7] [-3.6,3.7]
R2 including OUF 0.32 0.32 0.33 0.32 0.30
R2 restricted αn= 0 0.24 0.22 0.22 0.21 0.20
∆R2 0.08 0.10 0.11 0.09 0.10

[0.03] [0.04] [0.04] [0.04] [0.04]
(b) Germany
αn 0.48 0.83 1.37 1.71 2.00
t-statistics (9.3) (9.6) (9.4) (8.7) (7.6)

[-3.7,3.7] [-3.8,3.8] [-3.9,3.8] [-3.9,3.9] [-4.0,4.0]
R2 including OUF 0.36 0.36 0.33 0.30 0.27
R2 restricted αn= 0 0.17 0.15 0.12 0.11 0.11
∆R2 0.19 0.21 0.21 0.19 0.16

[0.05] [0.06] [0.06] [0.06] [0.06]

Notes: The table reports results from regressions of six-month excess bond returns on an intercept, seven

domestic yields and the overseas unspanned factor - i.e. equation (3.6). For each holding period the table

reports the estimate of the coe�cient on the overseas unspanned factor (αn). Numbers in parentheses report

the values of t-statisitcs and numbers in brackets refer to the 95% con�dence interval for these t-statistics

obtained using the Bauer and Hamilton (2015) bootstrap procedure. The �nal two rows of each part of the

table report the R2 statistics from models with and without the overseas unspanned factor (`Including OUF'

and `Restricted' respectively). Numbers in brackets refer to the 95% critical value for the change in the R2.

The sample ranges from January 1990 to December 2014.

is greater when the US factor is added. For example, the model with no overseas unspanned

factors has an R2 of 0.23 for the excess return on the two-year bond; this rises to 0.51 for

the model including the US unspanned factor; or 0.37 for the model including the German

factor. Including both overseas factors raises the R2 a little further.

Table 3.14 reports results from an out-of-sample forecasting exercise for UK returns, anal-

ogous to those reported in Section 3.4.2. The best performing model for all maturities is the

one that includes both the US and German overseas unspanned factors and the improvement

relative to a model that only includes domestic yields is strongly statistically signi�cant ac-

cording to Giacomini and White (2006) tests. The model with both overseas unspanned

factors even out-performs a random walk for maturities longer than �ve years.

3.4. A dynamic term structure model

3.4.1. Model. In this section, we use our preceding results to motivate a simple dynamic

term structure model. Speci�cally, for each country we consider a �rst-order VAR of the form:
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Table 3.13. United Kingdom excess bond returns regressions

Maturity (months) 24 36 60 84 120
αn,US 0.274 0.529 0.860 1.049 1.188
t-statistics (10.4) (11.3) (10.5) (9.0) (7.1)

[-4.5,4.6] [-4.5,4.6] [-4.5,4.6] [-4.5,4.7] [-4.6,4.7]
αn,DE 0.157 0.382 0.740 0.934 0.996
t-statistics (4.9) (6.8) (7.4) (6.6) (5.0)

[-3.9,3.9] [-3.9,3.9] [-3.9,3.9] [-3.9,3.9] [-4.0,3.9]
(a) Including zUSt and zDEt 0.547 0.605 0.610 0.580 0.529
(b) Restricted αn,DE = 0 0.508 0.540 0.533 0.513 0.487
(c) Restricted αn,US = 0 0.372 0.422 0.457 0.457 0.442
(d) Restricted αn,DE = 0 and αn,US = 0 0.231 0.231 0.255 0.288 0.332
∆R2 = R2

(a) −R2
(d) 0.316 0.374 0.355 0.292 0.197

[0.066] [0.071] [0.075] [0.076] [0.075]

Notes: The table reports results from regressions of UK excess bond returns on a constant, seven domestic

yields and two overseas factors for US and Germany - i.e. equation (3.9). The table reports the estimates of the

coe�cients on the overseas unspanned factors (αn,US and αn,DE). Numbers in parentheses report the values

of t-statisitcs and numbers in brackets refer to the 95% con�dence interval for these t-statistics obtained

using the Bauer and Hamilton (2015) bootstrap procedure. The �nal four rows report the R2 statistics from

models with di�erent combinations of the two overseas unspanned factors. Numbers in brackets refer to the

95% critical value for the change in the R2. The sample ranges from January 1990 to December 2014.

Table 3.14. Root mean squared forecast error of out-of-sample UK excess
return predictions

Maturity (months) 24 36 60 82 120
Random walk 1.376 2.533 4.657 6.742 9.607
Restricted αn,DE= 0 and αn,US= 0 2.273 4.055 6.330 7.689 8.854
Including zDEt 1.890** 3.355** 5.269** 6.489** 7.732**
Including zUSt 1.778*** 3.122*** 4.944*** 6.203*** 7.657**
Including zUSt and zDEt 1.589*** 2.767*** 4.399*** 5.591*** 7.108***

Notes: The table reports Root Mean Square Forecast Errors for UK excess bond returns for �ve forecasting

models: a random walk and four restricted and unrestricted versions of equation (3.9). All model parameters,

as well as the OUFs are computed using 10-year rolling samples (i.e. 120 months). All numbers reported

are in annualized percentage points. Asterisks indicate signi�cance levels from Giacomini-White test (see

Giacomini and White (2006)) assessing the di�erence of forecasting power between the considered model and

the version without either overseas unspanned factor: ***,**, * denote signi�cance at p = 0.01, p = 0.05 and

p = 0.1 respectively for the best performing model. The sample ranges from January 1990 to December 2014,

implying a forecasting period of January 2000 to December 2014.

m
(i)
t = µ+ Φm

(i)
t−12 + Σvt(3.10)

vt ∼ i.i.d. (0, I) .
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Here, the 4 × 1 vector mt =
[
x

(i)′
t , z

(j)
t

]′
collects the �rst three principal components of

domestic yields (x
(i)′
t ) and the overseas unspanned factor (z

(j)
t ); and Σ is a lower triangular

matrix. We use a lag of twelve months in the VAR, rather than the more standard single

month lag in the dynamic term structure literature. We justify this choice by appealing to

the results in the previous section: return predictability is substantially stronger at lags of

twelve months than one month. We estimate the model using our benchmark sample (i.e.

January 1990-December 2014), which means that we have 288 overlapping sample points

with which to estimate the model.

We can motivate the choice of three domestic principal components - which is standard in

the term structure literature - by referring to a preliminary principal components analysis of

domestic yields. In both countries the �rst three principal components collectively account for

more than 99.9% of the variation in the considered bond yields (Table 3.15). As is standard,

the loadings on the �rst (`level') principal component have the same sign and are relatively

constant across maturities. For the second (`slope') principal component, the loadings are

increasing with maturity, while for the third (`curvature'), the loadings are higher at very

short and very long maturities.

Table 3.15. Principal component analysis of domesetic bond yields

Cum. prop. explained PC loadings (maturities in months)
(Percentage) 6 12 24 36 60 84 120

(a) United States
PC1 96.444 0.403 0.414 0.414 0.401 0.366 0.334 0.298
PC2 99.859 -0.506 -0.386 -0.153 0.034 0.288 0.435 0.546
PC3 99.985 0.551 0.069 -0.403 -0.480 -0.215 0.130 0.485
PC4 99.998 0.409 -0.408 -0.365 0.086 0.489 0.249 -0.474
PC5 100.000 -0.313 0.604 -0.168 -0.418 0.168 0.447 -0.328
PC6 100.000 0.112 -0.348 0.524 -0.215 -0.436 0.562 -0.200
PC7 100.000 -0.035 0.150 -0.456 0.616 -0.528 0.324 -0.072
(b) Germany
PC1 97.604 0.412 0.407 0.400 0.391 0.368 0.345 0.313
PC2 99.852 -0.501 -0.387 -0.170 0.016 0.281 0.434 0.551
PC3 99.994 0.589 0.013 -0.421 -0.463 -0.208 0.101 0.456
PC4 99.999 -0.430 0.548 0.278 -0.201 -0.432 -0.158 0.431
PC5 100.000 -0.202 0.537 -0.323 -0.368 0.294 0.439 -0.390
PC6 100.000 0.080 -0.291 0.556 -0.344 -0.350 0.560 -0.213
PC7 100.000 0.022 -0.104 0.378 -0.583 0.589 -0.389 0.087

Notes: Table reports the cumulative proportion of the variation in the considered yields explained by suc-

cessive principal components (PCs) and loadings of PC on di�erent maturity bond yields. The sample used

ranges from January 1990 to December 2014.
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The model (3.10) speci�es the time-series dynamics of the factors that drive bond yields,

analogous to (A.9) in a standard no-arbitrage term structure model. Given that the domestic

yield curve factors are principal components of yields, our model also has an a�ne cross-

sectional mapping between the factors and current yields:

(3.11) y
(i)
t = A(i) + B(i)x

(i)
t + w

(i)
t .

Here, y
(i)
t =

[
y

(i)
6,t, y

(i)
12,t, ..., y

(i)
120,t

]′
is a 7 × 1 vector of bond yields observed at time t; the

coe�cients A(i) and B(i) are determined by the relevant principal component loadings; and

w
(i)
t is a measurement error.

We identify the impact of shocks to the overseas unspanned factor using a Cholesky

factorization, ordering it last in the VAR (3.10). While Cholesky identi�cation is sensitive

to the ordering of variables in the VAR, ordering the overseas unspanned factor last makes

intuitive sense in this case, given that it is orthogonal to domestic yields by construction:

the assumption that Σ is lower triangular means that a shock to the �nal element of vt is

one that has an impact on the overseas unspanned factor but no contemporaneous impact

on domestic yields.

3.4.2. Results. Our results suggest that the impact of shocks to overseas unspanned

factors on domestic bond yields can be substantial and persistent. Figure 3.3 shows impulse

response functions for the local principal components from the model with Germany as the

domestic country. Following a one standard deviation shock to the overseas unspanned factor

the �rst principal component (i.e. the level of the yield curve) falls and the second and third

principal components (i.e. the slope and curvature) rise, although the e�ect on the level is

much larger and more persistent than on the other domestic principal components. Figure

3.4 translates this into the reaction of yields of di�erent maturities. The shock is followed

by a drop in domestic yields (as explained above, there is no contemporaneous reaction by

construction). This reaction is largest for short maturity yields: six-month to three-year

yields all fall by around 50 basis points twelve months after the shock, while the fall in the

ten-year yield is only about 30 basis points. The peak impact on short maturity yields comes

after two years but longer maturity yields continue to fall for four years after the shock.

After about seven years, the remaining e�ect is roughly equal across the yield curve (as the

impacts on the slope and curvature factors have largely died out).
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Figure 3.3. German yield curve factors response to an innovation in the un-
spanned overseas factor.
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Notes: The �gure depicts impulse responses of the �rst three principal components of German yield curve

(1st PC, 2nd PC and 3rd PC) and unspanned overseas factor (OUF) to a one standard deviation shock to

the unspanned overseas factor.
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Figure 3.4. German yields response to an innovation to the unspanned over-
seas factor.
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Notes: The �gure depicts impulse response of di�erent maturity German yields to a one standard deviation

shock to the unspanned overseas factor (OUF).

Figure 3.5 decomposes the variance of forecast errors for selected maturity yields into the

contributions from innovations to di�erent factors, for di�erent forecast horizons.9 Panel (a)

shows results for the one-year yield, panel (b) for the �ve-year yield and panel (c) for the

ten-year yield. At short forecast horizons, the majority of the forecast errors are explained

by the level factor, with a smaller contribution from the slope and a negligible contribution

from the curvature. The contribution of the overseas unspanned factor grows with maturity;

at the ten-year forecast horizon it accounts for more than 40% of the variance of forecast

horizons, with the largest contribution at shorter maturities. At forecast horizons longer than

three or four years (depending on the maturity) the overseas unspanned factor accounts for

more of the forecast error variance than the level factor.

Figures 3.6 and 3.7 report the equivalent impulse response functions from the model

with the US as the domestic country. Similar to the case of Germany, the US level factor

falls following the shock to the overseas unspanned factor, although the impact is much less

persistent. The peak response of all yields (around 30 to 40 basis points) comes twelve

months following the shock. The forecast error variance decompositions are also somewhat

di�erent for the US (Figure 3.8): the proportion explained by the overseas unspanned factor

is somewhat smaller than for Germany, although it still reaches about 15% for the ten-year

9Appendix A explains how these are computed.
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Figure 3.5. Forecast error variance decomposition of German yields.
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Notes: The �gure depicts forecast error variance decompositions for three di�erent yields for forecast horizons

of up to 10 years. Panels (a), (b) and (c) report decompositions for 1-year, 5-year and 10-year German yields,

respectively. Each panel shows the proportion of the yield forecast error variance accounted by the �rst three

principal components (1st PC, 2nd PC and 3rd PC) of the German yield curve and the unspanned overseas

factor (OUF).

forecast horizon (with shocks to all of the domestic yield curve factors playing a relatively

more important role in explaining forecast errors).
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Figure 3.6. US yield curve factors response to an innovation in the unspanned
overseas factor.
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Notes: The �gure depicts impulse responses of the �rst three principal components of US yield curve (1st

PC, 2nd PC and 3rd PC) and the unspanned overseas factor (OUF) to a one standard deviation shock to the

unspanned overseas factor.

Figure 3.7. US yields response to an innovation to the unspanned overseas factor.
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Notes: The �gure depicts impulse response of di�erent maturity US yields to a one standard deviation shock

to the unspanned overseas factor (OUF).
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Figure 3.8. Variance decomposition of US yields.
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Notes: The �gure depicts forecast error variance decompositions for three di�erent yields for forecast horizons

of up to 10 years. Panels (a), (b) and (c) report decompositions for 1-year, 5-year and 10-year US yields,

respectively. Each panel shows the proportion of the yield forecast error variance accounted by the �rst three

principal components (1st PC, 2nd PC and 3rd PC) of the US yield curve and the unspanned overseas factor

(OUF).

3.4.3. Robustness: a dynamic term structure model for the UK. In this sub-

section, we examine whether we obtain similar results if we estimate a dynamic term structure

model of UK yields that includes both US and German unspanned factors, constructed as

described in Section 3.4.4. The US factor is the penultimate variable in the time-series VAR

and the German variable is the �nal variable; this implies that shocks to the US factor can

have a contemporaneous impact on the German factor but not vice versa. First, Figures 3.9

and 3.10 show the responses of UK yields following a one standard deviation shock to the

US and German unspanned factors respectively. Similar to the results for the two-country

models reported above, yields fall following the shock - in this case, by up to about 50 basis

points - and the e�ect is persistent. The overseas unspanned factors explain a substantial

part of the forecast error variance of yields (Figure 3.11). For example, for the ten-year yield

each accounts for 10-20% of the variance of ten-year ahead forecast errors.
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Figure 3.9. UK yields response to an innovation to the German unspanned
overseas factor.
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Notes: The �gure depicts impulse response of di�erent maturity UK yields to a one standard deviation shock

to the German unspanned overseas factor (zDEt ).
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Figure 3.10. UK yields response to an innovation to the US unspanned over-
seas factor.
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Notes: The �gure depicts impulse response of di�erent maturity UK yields to a one standard deviation shock

to the US unspanned overseas factor (zUSt ).

3.5. Conclusions

The recent literature on unspanned factors in the term structure of interest rates argues

that there is a non-trivial portion of information that is not contained in the yield curve, but

helps to predict yields' dynamics. This article argues that there is important information

contained in foreign yields, which is not contained in (spanned by) domestic yields and that

helps to predict future moves of domestic yields.

More speci�cally, we show that there is important information spanned by the German

yield curve, but unspanned by the US yield curve, which helps forecasting future dynamics

of US yields and vice versa. We use simple return-forecasting regressions to prove that the

overseas unspanned factors matter, both in- and out-of-sample. We also show that this

result is robust to di�erent sample selections as well as to di�erent speci�cation of domestic

yield curve factors. In addition, we �nd that it is not only a US-DE phenomenon. We

also show that US and German factors unspanned by the UK yield curve have substantial

predictive power for UK yields. An advantage of the modular structure of our approach

for adding di�erent countries mean that this analysis would be straightforward to extend to

other countries.

Our results are especially important for dynamic factor models of bond yields. Current

state of the art models focus only on domestic yields, hence, in the light of our �ndings,
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Figure 3.11. Variance decomposition of UK yields.
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Notes: The �gure depicts forecast error variance decompositions for three di�erent yields for forecast horizons

of up to 10 years. Panels (a), (b) and (c) report decompositions for 1-year, 5-year and 10-year UK yields,

respectively. Each panel shows the proportion of the yield forecast error variance accounted by the �rst three

principal components (1st PC, 2nd PC and 3rd PC) of the UK yield curve and the two unspanned overseas

factors, namely: the German unspanned overseas factor (z
DE
t ) and the US unspanned overseas factor (z

US
t ).

they lack important information and are potentially misspeci�ed. In fact, when we enrich

simple dynamic term structural model, consisting of the �rst 3 principal components, with

overseas unspanned factor we �nd that shocks to this factor drive sizeable portions of future

yields variation. This e�ect is especially pronounced for German and UK yields, but is also

signi�cant for US yields.
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Appendix A - Motivation for the dynamic term structure model

Although we do not estimate no-arbitrage term structure models in this paper, we can nev-

ertheless motivate our empirical exercises by appealing to the standard Gaussian dynamic

no-arbitrage a�ne term structure models (ATSM) of Du�e and Kan (1996) and Du�ee

(2002). These models have four basic building blocks. First, the assumption of no arbitrage

implies that the price at time t of an n-period default-free zero-coupon bond (P
(n)
t ) is given

by

(A.1) P
(n)
t = EQ

t

[
exp (−rt)P (n−1)

t+1

]
,

where rt is the risk-free one-period interest rate and expectations are formed with respect to

the risk-neutral probability measure, denoted Q. Second, the short-term interest rate is an

a�ne function of a K × 1 vector of unobserved pricing factors (xt):

(A.2) rt = δ0 + δ′1xt.

Third, the pricing factors follow a Gaussian Vector Autoregression (VAR) under Q:

xt+1 = µQ + ΦQxt + ΣvQ
t+1(A.3)

vQ
t+1 ∼ i.i.d.N (0, I) .

Under these assumptions, n-period bond yields turn out to be a�ne functions of the state

variables:

(A.4) y
(n)
t = − 1

n
logP

(n)
t = − 1

n
(an + b′nxt) ,

where the coe�cients an and bn follow the recursive equations

an = an−1 + b′n−1µ
Q +

1

2
b′n−1ΣΣ′bn−1 − δ0(A.5)

b′n = b′n−1Φ
Q − δ1.(A.6)

Finally, the Radon-Nikodym derivative which relates the time-series and risk-neutral dy-

namics takes the form

(A.7)

(
dP
dQ

)
t+1

= exp

[
−1

2
λ′tλt + λ′tvt+1

]
where the prices of risk (λt) are a�ne in the pricing factors, as proposed by Du�ee (2002):

(A.8) λt = Σ−1 (λ0 + Λ1xt) .

This implies that the factors also follow a Gaussian VAR(1) under the time-series measure:

xt+1 = µ+ Φxt + Σvt+1(A.9)

vt+1 ∼ i.i.d.N (0, I) ,
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where

µ = µQ + Σλ0(A.10)

Φ = ΦQ + ΣΛ1.(A.11)

In a model with unobserved factors, we must impose additional identi�cation restrictions.

Here we consider the normalization of Dai and Singleton (2000),10 where δ1 = 1, µQ = 0, ΦQ

is a diagonal matrix and Σ is lower triangular.11 All other parameters are unrestricted.

To capture the case where we have some factors that are unspanned by current yields, we

can partition the vector of factors into Ks < K factors that are spanned by the yield curve

(xst) and K − Ks unspanned factors (xut ), i.e. xt =
[

xs′t xu′t

]′
, as in Joslin et al. (2014).

Given the normalization that ΦQ is diagonal, the assumption that xut is unspanned implies

zero restrictions on the elements of δ1 corresponding to the unspanned factors, i.e. δ1 =[
1′Ks×1 0′(K−Ks)×1

]′
(where we have also imposed that the elements of δ1 corresponding to

the spanned factors are normalized to one, as explained above). It is not possible to identify

the prices of unspanned factors in such a model, so we can set the corresponding elements of

the prices of risk to zero, i.e.:

λ0 =

[
λs0

0(K−Ks)×1

]

Λ1 =

[
Λss

1 Λsu
1

0(K−Ks)×Ks 0(K−Ks)×(K−Ks)

]
.

The one-period excess return on an n-period bond is de�ned as

(A.12) rx
(n−1)
t+1 = logP

(n−1)
t+1 − logP

(n)
t − rt.

Using (A.2), (A.4)-(A.6) and (A.9)-(A.11) in (A.12) gives12

(A.13) rx
(n−1)
t+1 = −1

2
b′n−1ΣΣ′bn−1 + b′n−1Σλ0 + b′n−1ΣΛ1xt + b′n−1Σvt+1.

The �rst two terms on the right-hand side of (A.13) are constant. The �nal term is

the unexpected component of excess returns. The third term captures the time-variation in

expected returns, which depends on the price of risk parameters (Λ1). Taking expectations

of both sides of (A.13) gives

(A.14) Et

[
rx

(n−1)
t+1

]
= −1

2
b′n−1ΣΣ′bn−1 + b′n−1Σλ0 + b′n−1ΣΛ1xt

10Other normalizations are feasible, e.g. the scheme proposed by Joslin et al. (2011).
11Hamilton and Wu (2012) show that identi�cation also requires an additional restriction on the ordering of
the elements of ΦQ.
12Abrahams et al. (2015) provide a fuller derivation of the following equation.
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which is equivalent to equation (15) in Cochrane and Piazessi (2008). Our reduced-form

regressions reported in Section 3 involve regressing excess returns of di�erent maturities

on a constant and various factors, some of which are extracted from domestic yields and

some of which are unspanned by domestic yields by construction. We can motivate these

regressions by appealing to (A.14): if an unspanned factor has a non-zero slope coe�cient in

these unrestricted regressions, this factor must a�ect the price of one or more of the spanned

factors.13 And if an unspanned factor enters the price of risk, it must also enter the time

series dynamics of yields (A.9), which have an analogous speci�cation to that of the dynamic

factor model reported in Section 4 (as explained above, the only di�erence between an ATSM

and our factor model is in the cross-sectional relationship between factors and yields, which

is unlikely to make a material di�erence to our results).

Appendix B - Bauer and Hamilton (2015) bootstrap procedure

In this appendix, we explain how we implement the procedure for computing con�dence

intervals for the return-forecasting regressions proposed by Bauer and Hamilton (2015). Our

return-forecasting regressions take the general form

(B.1) rx
(i)
n,t,t+h = κ0 + κ′y

(i)
t + αnz

(j)
t + η

(i)
n,t+12

Bauer and Hamilton propose a bootstrap procedure to simulate the distribution of the coe�-

cient on the unspanned factor (i.e. αn) and the increase in the R2 of (B.1) resulting from the

inclusion of the unspanned factor z
(j)
t under the null hypothesis that αn = 0. In our imple-

mentation of their procedure, we �rst estimate separate VAR(1) models for the spanned yield

curve factors for country i (in our case, y
(i)
t =

[
y

(i)
6,t, y

(i)
12,t, y

(i)
24,t, ..., y

(i)
120,t

]′
) and the unspanned

factor for country j z
(j)
t :

y
(i)
t+1 = µy + Φyy

(i)
t + v

(i)
t+1(B.2)

z
(j)
t+1 = µz + φzz

(j)
t + w

(j)
t+1(B.3)

We assume that yields with maturities other than those included in y
(i)
t (such as the

six-year yield) are given by a�ne functions of y
(i)
t , i.e.

(B.4) y
(i)
n,t = an + b′ny

(i)
t + e

(i)
n,t

Given these assumptions, we use a residual bootstrap to produce 10,000 draws of the do-

mestic yields for country i and the country-j unspanned factor. In each bootstrapped sample,

13We can illustrate this easily using a 2 × 2 example in which the second factor is unspanned (i.e. the
loading on this factor is bn−1,2 = 0 for all n). In this case, the third term simpli�es to b′n−1ΣΛ1xt =
bn−1,1σ11 (λ11x1,t + λ12x2,t). A non-zero slope coe�cient on x2,t in a regression of excess returns on a
constant and the factors requires that λ12 6= 0, i.e. that the unspanned factor a�ects the price of the spanned
factor.
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the country-j unspanned factor has no predictive power for domestic returns by construction

(consistent with the null hypothesis). For each bootstrapped sample, we compute 12-month

returns on domestic yields with maturities of 1, 2, ..., 10 years, obtaining the required yields

not included in y
(i)
t using (B.4).14 We then estimate (B.1) for each bootstrapped sample, as

well as a restricted version with αn = 0. The critical values for αn and the increase in R2

reported in the text are the 97.5th percentile of the bootstrapped distributions.

Appendix C - Forecast error variance decompositions

Forecast error variance decomposition is another useful tool to assess the impact of unspanned

overseas factors. In order to compute variance decomposiotions of yields' forecast errors, we

assume that there is no measurement error in (3.11). Using our factor speci�cation we can

then re-write (3.10) as:

(C.1) y
(i)
t = A(i) + B̃(i)f

(i)
t ,

where B̃ =

[
Bi

0

]
. This allows us to map forecast variance error decomposition of di�er-

ent factors into forecast variance decomposition of yields. As we look at annual forecasting

horizons, for simplicity we drop monthly time notation and denote time in annual units, ex.

t+1 means t plus 1 year. Taking into account (equation C.1), we can de�ne h-year forecast

Mean Squared Forecast Errors matrix as:

(C.2) Ωy(h) =
h−1∑
i=0

(
B̃ΦiΣΣ′(Φi)′B̃′

)
.

Note that ΦiΣ is simply the i-th parameters of the VMA representation of VAR(3.10).

More importantly diagonal elements of Ωy(h) are the h-year MSFE of the j-th yield - Ωyj(h).

The contribution of innovations in factor k to the h-year MSFE of yield j is given by:

(C.3)
h−1∑
i=0

(
e′jB̃ΦiΣek

)2

,

where ej is the j-th colum of the identity matrix. Dividing the contribution (C.3) by

total h-year MSFE of j-th yields we obtain the proportion of the h-year ahead forecast error

variance of yield j accounted by an innovation to the k-th factor:

14Unlike Bauer and Hamilton (2015), we ignore the measurement error on these yields in the bootstrap.
Given that we are e�ectively estimating a seven-factor yield curve model, these measurement errors will be
tiny.
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(C.4) ωj,k,h =

∑h−1
i=0

(
e′jB̃ΦiΣek

)2

Ωyj(h)


