

EUI Working Paper ECO No. 92/66

A Note on the Demand Theory of the Weak Axioms

Lugi Brighi

30001001352238

EUROPEAN UNIVERSITY INSTITUTE, FLORENCE ECONOMICS DEPARTMENT

EUI Working Paper ECO No. 92/66

A Note on the Demand Theory of the Weak Axioms

LUIGI BRIGHI

> All rights reserved.
> No part of this paper may be reproduced in any form without permission of the author.

© Luigi Brighi

Printed in Italy in March 1992
European University Institute
Badia Fiesolana
I-50016 San Domenico (FI)
Italy

A NOTE ON THE DEMAND THEORY

OF THE WEAK AXIOMS

By

Luigi Brighi*
European University Institute - Economics Department via dei Roccettini 5 - I-50016 - San Domenico (FI) - ITALY

December, 1991

Abstract

This note characterizes the Weak Weak Axiom of Revealed Preference and Wald's Weak Axiom for not necessarily differentiable demand functions. A theorem which generalizes a previous result of Kihlstrom, Mas-Colell and Sonneschein (1976) and Hildenbrand and Jerison (1989) is presented. It is also shown that the theorem cannot be extended to the set of not necessarily homogeneous demand functions. The method of proof used in this note is very simple and lends itself to an immediate geometrical interpretation; it is also shown that it can be usefully employed to obtain simpler proofs of other results found in this literature.

© The Author(s). European University Institute.
Digitised version produced by the EUI Library in 2020. Available Open Access on Cadmus, European University Institute Research Repository.

A NOTE ON THE DEMAND THEORY OF THE WEAK AXIOMS

Introduction

This note deals with essentially two properties of demand functions, the Weak Weak Axiom of Revealed Preference (WWA) and Wald's Weak Axiom (WALD). WWA is a milder version of Samuelson's Weak Axiom of Revealed Preference and was first introduced by Hicks (1956). Similarly, WALD is a milder version of a condition on aggregate excess demand functions proposed by A. Wald in the context of general equilibrium theory. The relevance of these two concepts is not confined to the theory of individual choice but also to equilibrium analysis. Although WWA and WALD are among the weakest conditions of consistency of consumer behaviour, when possessed by market demand they may turn out to be strong enough to ensure uniqueness of equilibrium.

This note characterizes WWA and WALD for demand functions which are not necessarily differentiable. In particular it provides a Theorem which extends a previous result of Kihlstrom, Mas-Colell and Sonneschein (1976) and Hildenbrand and Jerison (1989) which characterizes WWA in terms of price derivatives of demand functions and Slutsky compensated demand functions. ${ }^{1}$ By means of a

[^0]recent result of John (1991) and a numerical example it is also shown that the the Theorem cannot be extended to the larger set of not necessarily homogeneous demand functions.

At the same time, this note offers a somewhat more general approach to the analysis of the demand theory of the weak axioms which allows very simple proofs. The method of proof used in most of the results obtained in this note is very simple and lends itself to an immediate geometrical interpretation. It is also shown that this method can be usefully employed to obtain simpler proofs of others existing results found in this literature.

In the next section the basic notation and definitions are introduced and a preliminary result essentially taken from Hildenbrand and Kirman (1988) is presented. Section 2 contains the Theorem with a graphical illustration of the proof. Section 3 presents a result of John (1991) and a numerical example which show, among other things, that the Theorem cannot be extended. Finally, the last section gives another application of the method of proof proposed.

1. Notation and Definitions

A demand function is defined as a continuous function $\mathbf{f}: P \times \mathbb{R}_{++} \rightarrow$ \mathbb{R}_{+}^{ℓ}, where P is the set of strictly positive prices $P \subset \mathbb{R}_{++}^{\ell}$, satisfying budget equality, i.e. $\mathbf{p} \cdot \mathbf{f}(\mathbf{p}, w)=w$. A demand function is homogeneous if $\mathbf{f}(t \mathbf{p}, t w)=\mathbf{f}(\mathbf{p}, w)$ for $t>0$. The set of demand functions is
denoted by \mathcal{F}, the subset of homogeneous demand functions by \mathcal{F}_{h}. An analogous notation is introduced for continuously differentiable demand functions, i.e. respectively C^{1} and C_{h}^{1}.

The Slutsky compensated demand function at prices \mathbf{q} and relative to point $(\mathbf{p}, w) \in \mathbb{R}_{++}^{\ell+1}$ is defined by

$$
\mathbf{s}(\mathbf{q})=\mathbf{f}(\mathbf{q}, \mathbf{q} \cdot \mathbf{f}(\mathbf{p}, w))
$$

the vector $\mathbf{s}(\mathbf{q})$ is the consumption bundle that the consumer would demand if the prices changed from \mathbf{p} to \mathbf{q} and his nominal income were compensated so as to keep unchanged his 'real income'. The compensated income is $w^{\prime}=\mathbf{q} \cdot \mathbf{s}(\mathbf{q})=\mathbf{q} \cdot \mathbf{f}(\mathbf{p}, w)$ and recall that $\mathbf{s}(\mathbf{p})=\mathbf{f}(\mathbf{p}, w)$.

Here is a list of properties of demand functions that are needed in the sequel.

Definition 1. A demand function $\mathbf{f}(\mathbf{p}, w)$ in \mathcal{F} is said to satisfy property:

LD ('Law of Demand') if \mathbf{f} is monotone, i.e.

$$
(\mathbf{q}-\mathbf{p}) \cdot[\mathbf{f}(\mathbf{q}, w)-\mathbf{f}(\mathbf{p}, w)] \leq 0
$$

for all \mathbf{p}, \mathbf{q} and w.
GLD (Generalized Law of Demand) if the compensated demand function $\mathbf{s}(\mathbf{q})$ is monotone, i.e. ${ }^{2}$

$$
\mathbf{p} \cdot[\mathbf{s}(\mathbf{q})-\mathbf{f}(\mathbf{p}, w)] \geq 0
$$

[^1]for all \mathbf{q} and all (\mathbf{p}, w).
RM (Restricted Monotonicity) if \mathbf{f} is monotone on the set of prices $P_{f}=\{\mathbf{q} \in P \mid \mathbf{q} \cdot \mathbf{f}(\mathbf{p}, w)=w\}$, i.e.
$$
\mathbf{p} \cdot[\mathbf{f}(\mathbf{q}, w)-\mathbf{f}(\mathbf{p}, w)] \geq 0
$$
for all \mathbf{p} and w and for all $\mathbf{q} \in P_{f} .{ }^{3}$ Equivalently RM can be defined as
$$
\mathbf{q} \cdot \mathbf{f}(\mathbf{p}, w)=w \quad \text { implies } \quad \mathbf{p} \cdot \mathbf{f}(\mathbf{q}, w) \geq w .
$$

WWA if for all (\mathbf{p}, w) and (\mathbf{q}, \hat{w})

$$
\mathbf{p} \cdot \mathbf{f}(\mathbf{q}, \hat{w}) \leq w \quad \text { implies } \quad \mathbf{q} \cdot \mathbf{f}(\mathbf{p}, w) \geq \hat{w} .
$$

WALD (Wald's Weak Axiom) if for all \mathbf{p}, \mathbf{q} and w,

$$
\mathbf{p} \cdot \mathbf{f}(\mathbf{q}, w) \leq w \quad \text { implies } \quad \mathbf{q} \cdot \mathbf{f}(\mathbf{p}, w) \geq w
$$

It is evident from the definitions that when demand functions are homogeneous the properties WWA and WALD are exactly the same thing; so that in \mathcal{F}_{h} we will not make any distinction between them. Let us introduce three additional properties for demand functions in C^{1}.

Definition 2. A demand function $\mathbf{f}(\mathbf{p}, w)$ in C^{1} is said to satisfy property:
${ }^{3}$ Clearly we have exploited the fact that $\mathbf{q} \cdot[\mathbf{f}(\mathbf{q}, w)-\mathbf{f}(\mathbf{p}, w)]=0$ for $q \in P_{f}$.
$\partial \mathrm{LD}$ if the matrix of price derivatives of the demand function, $\partial_{p} \mathbf{f}(\mathbf{p}, w)=\left[\partial f_{i}(\mathbf{p}, w) / \partial p_{j}\right]_{i, j}$, is negative semi-definite, i.e.

$$
\mathbf{v} \cdot \partial_{p} \mathbf{f}(\mathbf{p}, w) \cdot \mathbf{v} \leq 0
$$

for all $\mathbf{v} \in \mathbb{R}^{\ell}$.
$\partial \mathrm{RM}$ if the matrix of price derivatives of the demand function, $\partial_{p} \mathbf{f}(\mathbf{p}, w)$ is negative semi-definite, on the hyperplane $T_{f}=$ $\left\{\mathbf{v} \in \mathbb{R}^{\ell} \mid \mathbf{v} \cdot \mathbf{f}(\mathbf{p}, w)=0\right\}$, i.e.

$$
\mathbf{v} \cdot \partial_{\mu} \mathbf{f}(\mathbf{p}, w) \cdot \mathbf{v} \leq 0
$$

for all $\mathbf{v} \in T_{f}$.
NSD if the matrix of substitution terms, $S(\mathbf{p}, w)$, i.e. the Jacobian of the compensated demand evaluated at $\mathbf{q}=\mathbf{p}$, is negative semi-definite,

$$
\mathbf{v} \cdot S(\mathbf{p}, w) \cdot \mathbf{v} \leq 0
$$

for all $\mathbf{v} \in \mathbb{R}^{\ell}$.

It is quite intuitive that the properties LD, RM and GLD are respectively the finite counterparts of properties $\partial \mathrm{LD}, \partial \mathrm{RM}$ and NSD. We shall make this statement precise.

Proposition 1. For demand functions in C^{1} the following propositions hold:
(a) $L D \Longleftrightarrow \partial L D$.
(b) $R M \Longleftrightarrow \partial R M$.
(c) GLD \Longleftrightarrow NSD.

The proof of Proposition 1 is in the Appendix and is essentially taken, with minor differences, from Hildenbrand and Kirman (1988). It is important to stress that homogeneity of demand functions is not required by Proposition 1.

In 1976 Kihlstrom, Mas-Colell and Sonnenschein characterized WWA in terms of price derivatives of demand functions; in particular they proved that, for demand functions in C_{h}^{1}, the properties WWA $\partial \mathrm{RM}$ and NSD are equivalent. ${ }^{4}$ By Proposition 1, it is clear that the above result can be rephrased by substituting RM and GLD respectively for $\partial \mathrm{RM}$ and NSD.

The main result is derived from two lemmas that we shall present separately since they are of interest of their own. Indeed, the lemmas have a greater generality since they do not require homogeneity of demand functions. Moreover, both of them can be seen as applications of the same method of proof. As will be seen in the last section, this method can also be used to obtain simpler proofs of other existing results. The following lemma characterizes the Weak Weak Axiom in terms of monotonicity of the Slutsky compensated demand.

Lemma 1. For demand functions in \mathcal{F} the properties $G L D$ and $W W A$ are equivalent.

Proof.

WWA \Rightarrow GLD. Let \mathbf{p} and \mathbf{q} be in P, and take $\mathbf{f}(\mathbf{p}, w)$ and $\mathbf{f}\left(\mathbf{q}, w^{\prime}\right)$ where $w^{\prime}=\mathbf{q} \cdot \mathbf{f}(\mathbf{p}, w)$, i.e. $\mathbf{f}\left(\mathbf{q}, w^{\prime}\right)=\mathbf{s}(\mathbf{q})$ the compensated demand. Since $\mathbf{q} \cdot \mathbf{f}(\mathbf{p}, w)=w^{\prime}$, WWA implies that $\mathbf{p} \cdot \mathbf{f}\left(\mathbf{q}, w^{\prime}\right) \geq w$, i.e. $\mathbf{p} \cdot[\mathbf{s}(\mathbf{q})-\mathbf{f}(\mathbf{p}, w)] \geq 0$.

GLD \Rightarrow WWA. We will show that when WWA is violated then GLD is not satisfied. Let us assume that WWA is violated, i.e. there exists (\mathbf{p}, w) and $\left(\mathbf{q}, w^{\prime}\right)$ such that $\mathbf{p} \cdot \mathbf{f}\left(\mathbf{q}, w^{\prime}\right) \leq w$ and $\mathbf{q} \cdot \mathbf{f}(\mathbf{p}, w)<w^{\prime}$ and consider the function

$$
g(t)=\mathbf{q} \cdot \mathbf{f}(t \mathbf{p}, w)
$$

for $t \in(0,1]$. From the above assumption one has $g(1)<w^{\prime}$. We want to show that there exists $t^{*} \in(0,1)$ such that $g\left(t^{*}\right)=$
$\mathbf{q} \cdot \mathbf{f}\left(t^{*} \mathbf{p}, w\right)=w^{\prime}$. This is not difficult to establish. First, notice that from the continuity of the demand function $g(t)$ is continuous.
Second, by budget equality,

$$
\mathbf{p} \cdot \mathbf{f}(t \mathbf{p}, w)=\frac{w}{t}
$$

then, since the above expression tends to infinity as t goes to zero and \mathbf{p} is finite, at least one of the components of $\mathbf{f}(t \mathbf{p}, w)$ goes to infinity as t goes to zero, which means that $g(t) \rightarrow \infty$ as $t \rightarrow 0$, since $q \gg 0$.
Then we have established that there exists $0<t^{*}<1$ such that $\mathbf{q} \cdot \mathbf{f}\left(t^{*} \mathbf{p}, w\right)=w^{\prime}$. Let us consider the effect on demand of a price change from $t^{*} \mathbf{p}$ to \mathbf{q} and notice that $\mathbf{f}\left(\mathbf{q}, w^{\prime}\right)$ is the compensated demand at point $\left(t^{*} \mathbf{p}, w\right)$, indeed $\mathbf{s}(\mathbf{q})=\mathbf{f}\left(\mathbf{q}, \mathbf{q} \cdot \mathbf{f}\left(t^{*} \mathbf{p}, w\right)\right)=\mathbf{f}\left(\mathbf{q}, w^{\prime}\right)$. We will show that GLD is violated, i.e.

$$
t^{*} \mathbf{p} \cdot\left[\mathbf{f}\left(\mathbf{q}, w^{\prime}\right)-\mathbf{f}\left(t^{*} \mathbf{p}, w\right)\right]<0
$$

In fact the left-hand side is equal to $t^{*} \mathbf{p} \cdot \mathbf{f}\left(\mathbf{q}, w^{\prime}\right)-w$, where t^{*} is strictly less than 1 and, by assumption, $\mathbf{p} \cdot \mathbf{f}\left(\mathbf{q}, w^{\prime}\right) \leq w$.

The proof of the proposition GLD \Rightarrow WWA can be given a very straightforward graphical illustration. Figure 1 shows a case where $\mathbf{f}(\mathbf{p}, w)$ and $\mathbf{f}\left(\mathbf{q}, w^{\prime}\right)$ violate WWA. The dashed line corresponds to the budget hyperplane at prices $t^{*} \mathbf{p}$ and income w. By construction the demand $\mathbf{f}\left(t^{*} \mathbf{p}, w\right)$ must lie at the intersection between the budget hyperplanes $T\left(t^{*} \mathbf{p}, w\right)$ and $T\left(\mathbf{q}, w^{\prime}\right)$. Therefore, the angle between the vector $t^{*} \mathbf{p}$ and the vector $\left[\mathbf{f}\left(\mathbf{q}, w^{\prime}\right)-\mathbf{f}\left(t^{*} \mathbf{p}, w\right)\right]$ must be greater than $\pi / 2$.

Figure 1.

The next lemma simply says that Wald's Weak Axiom amounts to requiring the monotonicity of the demand function on a particular subset of prices (precisely those prices which do not induce any income effect).

Lemma 2. For demand functions in \mathcal{F} the properties $R M$ and $W A L D$ are equivalent.

Proof.

That WALD \Rightarrow RM is immediate from the definitions. We shall prove the converse.
$\mathrm{RM} \Rightarrow$ WALD. Let us assume that $\mathbf{p} \cdot \mathbf{f}(\mathbf{q}, w) \leq w$; we have to show that $\mathbf{q} \cdot \mathbf{f}(\mathbf{p}, w) \geq w$. Consider the demand $\mathbf{f}(t \mathbf{q}, w)$ and define the scalar t^{*} from

$$
\mathbf{p} \cdot \mathbf{f}\left(t^{*} \mathbf{q}, w\right)=w
$$

Clearly if $\mathbf{p} \cdot \mathbf{f}(\mathbf{q}, w)=w$, then $t^{*}=1$; if $\mathbf{p} \cdot \mathbf{f}(\mathbf{q}, w)<w$, consider the following function

$$
g(t)=\mathbf{p} \cdot \mathbf{f}(t \mathbf{q}, w)
$$

which is continuous and $g(1)<w$. Using the same argument as that of Lemma 1 , one can prove that $g(t) \rightarrow \infty$ as $t \rightarrow 0$ so that there exists $0<t^{*}<1$. From RM and $\mathbf{p} \cdot \mathbf{f}\left(t^{*} \mathbf{q}, w\right)=w$ one obtains $t^{*} \mathbf{q} \cdot\left[\mathbf{f}(\mathbf{p}, w)-\mathbf{f}\left(t^{*} \mathbf{q}, w\right)\right] \geq 0$ so that

$$
t^{*} \mathbf{q} \cdot \mathbf{f}(\mathbf{p}, w) \geq w
$$

Then since $0<t^{*} \leq 1$ it must be $\mathbf{q} \cdot f(\mathbf{p}, w) \geq w$.
By virtue of Proposition 1, Lemma 1 and Lemma 2 allow to characterize WWA and WALD in terms of properties of the derivatives of demand functions.

Remark. For demand functions in C^{1}, (i) WWA is equivalent to NSD; (ii) WALD is equivalent to $\partial \mathrm{RM}$.

By noting that WWA and WALD are exactly the same thing when demand functions are homogeneous, Lemma 1 and Lemma 2 are sufficient to prove the following:

Theorem. For demand functions in \mathcal{F}_{h} the properties $W W A$, GLD and $R M$ are equivalent.

For later reference as well as to test the validity of the Theorem we shall present a result of equivalence between the properties of Restricted Monotonicity and Generalized Law of Demand.

Lemma 3. For demand functions in \mathcal{F} the property GLD implies $R M$. For demand functions in \mathcal{F}_{h} the properties $G L D$ and $R M$ are equivalent.

Proof.

GLD \Rightarrow RM. Let us take $\mathbf{q} \in P_{f}$; one has to show that when GLD holds the following expression is non negative,

$$
\mathbf{p} \cdot[\mathbf{f}(\mathbf{q}, w)-\mathbf{f}(\mathbf{p}, w)] \geq 0
$$

This is immediate, by noting that for $\mathbf{q} \in P_{f}$ demand is equal to compensated demand, i.e. $\mathbf{s}(\mathbf{q})=\mathbf{f}(\mathbf{q}, \mathbf{q} \cdot \mathbf{f}(\mathbf{p}, w))=\mathbf{f}(\mathbf{q}, w)$.
$\mathrm{RM} \Rightarrow$ GLD. Any vector $\mathbf{q}(t) \in P$ can be expressed as a linear combination of two vectors, i.e. $\mathbf{q}(t)=\mathbf{v}+t \mathbf{p}$, where $t>0$ and $\mathbf{v} \in T_{f}=\left\{\mathbf{v} \in \mathbb{R}^{\ell} \mid \mathbf{v} \cdot \mathbf{f}(\mathbf{p}, w)=0\right\}$, the subspace of vectors orthogonal to $\mathbf{f}(\mathbf{p}, w)$. Let us consider the following expression

$$
\mathbf{p} \cdot[\mathbf{f}(\mathbf{q}(t), \mathbf{q}(t) \cdot \mathbf{f}(\mathbf{p}, w))-f(\mathbf{p}, w)]
$$

we have to show that if RM is satisfied the above expression is nonnegative. By the definition of $\mathbf{q}(t)$ and orthogonality of \mathbf{v}, we have
that $\mathbf{q}(t) \cdot \mathbf{f}(\mathbf{p}, w)=t w$ and by applying homogeneity the above expression can be rewritten as:

$$
\mathbf{p} \cdot\left[\mathbf{f}\left(\frac{\mathbf{q}(t)}{t}, w\right)-f(\mathbf{p}, w)\right] ;
$$

furthermore, since $\mathbf{q}(t) / t \cdot \mathbf{f}(\mathbf{p}, w)=w$ one has that the price vector $\mathbf{q}(t) / t \in P_{f}$. Therefore, if RM holds the displayed expression must be non-negative.

It is important to notice that in the the proof of implication $R M \Rightarrow$ GLD we had to use homogeneity.

As the last remark notice that the Theorem and Proposition 1 establish the result of Kihlstrom et al. (1976). Indeed, since $C_{h}^{1} \subset$ \mathcal{F}_{h}, the Theorem implies that the equivalence also holds in C_{h}^{1}; part (b) and (c) of Proposition 1 do the rest.

3. Some Remarks on Homogeneity

As we have seen in the proof of Lemma 3, homogeneity plays its role in the implication $\mathrm{RM} \Rightarrow$ GLD; this is why we could not extend the equivalence established in the Theorem to the set of not necessarily homogeneous demand functions. Actually, as we shall see below, this equivalence cannot be extended to the set \mathcal{F}.

In a recent paper, John (1991) proved that WWA implies homogeneity. By following the same line of proof it is immediate that the same holds for GLD.

Proposition 2. For demand functions in \mathcal{F} both WWA and GLD imply homogeneity.

Proof. ${ }^{5}$
We have to prove that $\mathbf{f}(\mathbf{p}, w)=\mathbf{f}(\alpha \mathbf{p}, \alpha w)$, for $\alpha>0$. It is sufficient to show that

$$
\mathbf{q} \cdot[\mathbf{f}(\mathbf{p}, w)-\mathbf{f}(\alpha \mathbf{p}, \alpha w)] \leq 0,
$$

for all $\mathbf{q} \in P$. Let us normalize \mathbf{q} so that $\mathbf{q} \cdot \mathbf{f}(\alpha \mathbf{p}, \alpha w)=w$; therefore, to prove the proposition one has to show that $\mathbf{q} \cdot \mathbf{f}(\mathbf{p}, w) \leq w$. Consider the price vectors $\mathbf{q}(t)=t \mathbf{q}+(1-t) \mathbf{p}$, with $t \in[0,1]$. Clearly, $\mathbf{q}(t) \cdot \mathbf{f}(\alpha \mathbf{p}, \alpha w)=w$ so that both WWA and GLD imply

$$
\begin{equation*}
\mathbf{p} \cdot \mathbf{f}(\mathbf{q}(t), w) \geq w \tag{1}
\end{equation*}
$$

From budget identity and $\mathbf{q}(t) \cdot \mathbf{f}(\mathbf{q}(t), w)=w$ one gets

$$
t[\mathbf{q} \cdot \mathbf{f}(\mathbf{q}(t), w)-w]+(1-t)[\mathbf{p} \cdot \mathbf{f}(\mathbf{q}(t), w)-w]=0
$$

the above expression and inequality (1) imply that $\mathbf{q} \cdot \mathbf{f}(\mathbf{q}(t), w) \leq w$, then, letting t go to 0 , by continuity $\mathbf{q} \cdot \mathbf{f}(\mathbf{p}, w) \leq w$.

Clearly if one can show that Wald's Weak Axiom or Restricted Monotonicity do not imply homogeneity of the demand function then
${ }^{5}$ The proof is taken from John (1991).
the equivalence stated in the Theorem cannot be extended any further. Here is the example.

Example. Let us consider the function

$$
\mathbf{f}(\mathbf{p}, w)=\left(\frac{\log (w+1)}{p_{1}} \quad \frac{w-\log (w+1)}{p_{2}}\right)
$$

for all \mathbf{p} and w. It is easily seen that it is continuously differentiable, satisfies budget equality, but it is not homogeneous. Take the matrix of price derivatives,

$$
\partial_{p} \mathbf{f}(\mathbf{p}, w)=\left(\begin{array}{cc}
-\frac{\log (w+1)}{p_{1}^{2}} & 0 \\
0 & -\left(\frac{w-\log (w+1)}{p_{2}^{2}}\right)
\end{array}\right) .
$$

The matrix is clearly negative definite so that the demand function is strictly monotone and certainly satisfies RM and Wald's Weak Axiom.

This very simple example allows us to make some interesting remarks. In the first place, irrespective of whether demand functions are differentiable or not, even the 'Law of Demand' in its strongest version is not a sufficient condition for homogeneity. Therefore, if one is interested in modelling consumer behaviour but is not prepared to assume absence of money illusion one can still retain some degree of consistency of choice by adopting Wald's (Weak) Axiom or any other property related to the monotonicity of demand functions.

On the other hand, by Proposition 2, if one is interested in properties of demand functions related to the monotonicity of the Slutsky
compensated demand, such as WWA or Samuelson Weak Axiom of Revealed Preference, one is left less freedom in modelling consumer behaviour since he cannot help assuming implicitly homogencity.

4. Concluding Remarks

We have not drawn all the conclusions from the results presented in this note. Lemma 1, 2, 3, and Proposition 1 and 2 can be combined in various way in order to provide other results available in the literature. For example we have already deduced the above mentioned results of Kihlstrom et al. (1976) and Hildenbrand and Jerison (1989). Another example is Theorem 3 in John (1991) where it is established the equivalence between NSD and ∂ RM plus homogeneity. We do not need to prove this result. As one can easily verify it can be deduced by the Lemmas and the Propositions presented in this paper.

Let us conclude this work with a final remark which shows how the method of proof adopted in the Lemmas can be usefully applied to obtain simple proofs of other results available in the literature. The following definitions are needed.

Definition 3. A demand function $\mathbf{f}(\mathbf{p}, w)$ in \mathcal{F}_{h} is said to satisfy property:

SGLD (Strong Generalized Law of Demand) if the compensated demand function $\mathbf{s}(\mathbf{q})$ is strictly monotone for all w and all linearly independent \mathbf{p} and \mathbf{q}, i.e.

$$
\mathbf{p} \cdot[\mathbf{s}(\mathbf{q})-\mathbf{f}(\mathbf{p}, w)]>0
$$

for all (\mathbf{p}, w) and all $\mathbf{q} \neq \lambda \mathbf{p}, \lambda>0$.
WARP Weak Axiom of Revealed Preference if for all (\mathbf{p}, w) and (\mathbf{q}, \hat{w})

$$
\mathbf{f}(\mathbf{p}, w) \neq \mathbf{f}(\mathbf{q}, \hat{w}) \quad \text { and } \quad \mathbf{p} \cdot \mathbf{f}(\mathbf{q}, \hat{w}) \leq w
$$

imply

$$
\mathbf{q} \cdot \mathbf{f}(\mathbf{p}, w)>\hat{w}
$$

One more definition for continuously differentiable demand functions:

Definition 4. A demand function $\mathbf{f}(\mathbf{p}, w)$ in C_{h}^{1} is said to satisfy property
ND if the matrix of substitution terms, $S(\mathbf{p}, w)$, i.e. the Jacobian of the compensated demand evaluated at $\mathbf{q}=\mathbf{p}$, is negative definite on the hyperplane $T_{p}=\left\{\mathbf{v} \in \mathbb{R}^{\ell} \mid \mathbf{v} \cdot \mathbf{p}=0\right\}$, i.e.

$$
\mathbf{v} \cdot S(\mathbf{p}, w) \cdot \mathbf{v}<0
$$

for all $\mathbf{v} \in T_{p}$.

Remark. For demand functions in \mathcal{F}_{h} the property SGLD implies WARP.

Proof.
Take \mathbf{p} and \mathbf{q} such that $\mathbf{f}(\mathbf{p}, 1) \neq \mathbf{f}(\mathbf{q}, 1)$ and $\mathbf{p} \cdot \mathbf{f}(\mathbf{q}, 1) \leq 1$; one has to show that $\mathbf{q} \cdot \mathbf{f}(\mathbf{p}, 1)>1$. By using the same argument as in Lemma 1 , there exists $0<t^{*} \leq 1$ such that $\mathbf{p} \cdot \mathbf{f}\left(t^{*} \mathbf{q}, 1\right)=1$; therefore, $\mathbf{f}(\mathbf{p}, 1)$ is none other than the Slutsky compensated demand at point $\left(t^{*} \mathbf{q}, 1\right)$, indeed, $\mathbf{f}\left(\mathbf{p}, \mathbf{p} \cdot \mathbf{f}\left(t^{*} \mathbf{q}, 1\right)\right)=\mathbf{f}(\mathbf{p}, 1)$. Then SGLD implies $t^{*} \mathbf{q} \cdot \mathbf{f}(\mathbf{p}, 1)>1$, i.e. $\mathbf{q} \cdot \mathbf{f}(\mathbf{p}, 1)>1$.

The Remark is basically Lemma 2 of Kihlstrom et al. (1976). Moreover, by noting that for demand functions in C_{h}^{1}, ND implies SGLD it follows at once that ND is a sufficient condition for the Weak Axiom of Revealed Preference. This result is exactly Theorem 2 of Kihlstrom et al. (1976) or equivalently the Remark of Hildenbrand and Jerison (1989).

Appendix

Proof ${ }^{6}$ of Proposition 1.
We shall give a formal proof of part (a); the proof of (b) and (c) is very similar and is left to the reader. Let us show, first, that if $\partial_{p} \mathbf{f}$ is negative semi-definite then LD holds. For prices \mathbf{p} and $\mathbf{q} \in P$

[^2]define the vector $\mathbf{v}=\mathbf{q}-\mathbf{p}$ and consider the convex combination $\mathbf{q}(t)=t \mathbf{q}+(1-t) \mathbf{p}$, with $0 \leq t \leq 1$. Define the function
$$
g(t)=\mathbf{v} \cdot[\mathbf{f}(\mathbf{q}(t), w)-\mathbf{f}(\mathbf{p}, w)] .
$$

Since $\mathbf{q}(0)=\mathbf{p}$ and $\mathbf{q}(1)=\mathbf{q}$ one has, $g(0)=0$ and $g(1)=\mathbf{v}$. $[\mathbf{f}(\mathbf{q}, w)-\mathbf{f}(\mathbf{p}, w)$. Differentiating $g(t)$ yields

$$
g^{\prime}(t)=\mathbf{v} \cdot \partial_{p} \mathbf{f}(\mathbf{q}(t), w) \cdot \mathbf{v}
$$

Since the matrix $\partial_{p} \mathbf{f}$ is negative semi-definite, the function $g(t)$ is non increasing and taking into account that $g(0)=0$, the function cannot be positive, so that

$$
g(1)=\mathbf{v} \cdot[\mathbf{f}(\mathbf{q}, w)-\mathbf{f}(\mathbf{p}, w)] \leq 0
$$

To prove the converse notice that since $\mathbf{q}(t)-\mathbf{p}=t \mathbf{v}$, the function $g(t)$ can be rewritten as

$$
g(t)=\frac{1}{t}(\mathbf{q}(t)-\mathbf{p}) \cdot[\mathbf{f}(\mathbf{q}(t), w)-\mathbf{f}(\mathbf{p}, w)] .
$$

One has to prove that the matrix of price derivatives is negative semidefinite. If LD holds the function $g(t)$ cannot be positive, $g(t) \leq 0$, for $t>0$, and since $g(0)=0$ the slope of the function in $t=0$ must be non positive.

References

Hicks, R. J. [1956] A Revision of Demand Theory, Oxford: Oxford University Press.

Hildenbrand, W. and M. Jerison [1989] "The Demand Theory of the Weak Axioms of Revealed Preference", Economics letters, 29, pp. 209-213.

Hildenbrand, W. and A. P. Kirman [1988] Equilibrium Analysis, Amsterdam: North-Holland.

John, R. [1991] "The Weak Axiom of Revealed Preference and Homogeneity of Demand Functions", Discussion Paper N. A345, Bonn.

Kihlstrom, R. Mas-Colell, A. and H. Sonnenschein [1976] "The Demand Theory of the Weak Axiom of Revealed Preference", Econometrica, 44, pp. 971-978.
© The Author(s). European University Institute.
Digitised version produced by the EUI Library in 2020. Available Open Access on Cadmus, European University Institute Research Repository.

EUI WORKING PAPERS

EUI Working Papers are published and distributed by the European University Institute, Florence

Copies can be obtained free of charge - depending on the availability of stocks - from:

The Publications Officer
European University Institute Badia Fiesolana I-50016 San Domenico di Fiesole (FI) Italy

Please use order form overleaf

Publications of the European University Institute

Economics Department Working Paper Series

To	Economics Department WP European University Institute Badia Fiesolana I-50016 San Domenico di Fiesole (FI) Italy
From	Name
	Address. .
	(Please print)
\square Plea \square Plea \square Plea \square Plea	nter/confirm my name on EUI Economics Dept. Mailing List end me a complete list of EUI Working Papers end me a complete list of EUI book publications end me the EUI brochure Academic Year 1992/93

Please send me the following EUI ECO Working Paper(s):
No, Author
Title:
No, Author
Title:
No, Author
Title:
No, Author
Title:

Working Papers of the Department of Economics Published since 1990

ECO No. 90/1
Tamer BASAR and Mark SALMON Credibility and the Value of Information Transmission in a Model of Monetary Policy and Inflation

ECO No. 90/2
Horst UNGERER
The EMS - The First Ten Years
Policies - Developments - Evolution
ECO No. 90/3
Peter J. HAMMOND
Interpersonal Comparisons of Utility:
Why and how they are and should be made

ECO No. 90/4
Peter J. HAMMOND
A Revelation Principle for (Boundedly)
Bayesian Rationalizable Strategies
ECO No. 90/5
Peter J. HAMMOND
Independence of Irrelevant Interpersonal
Comparisons
ECO No. 90/6
Hal R. VARIAN
A Solution to the Problem of Externalities and Public Goods when
Agents are Well-Informed
ECO No. 90/7
Hal R. VARIAN
Sequential Provision of Public Goods
ECO No. 90/8
T. BRIANZA, L. PHLIPS and J.F. RICHARD
Futures Markets, Speculation and Monopoly Pricing

ECO No. 90/9
Anthony B. ATKINSON/ John MICKLEWRIGHT
Unemployment Compensation and Labour Market Transition: A Critical Review

ECO No. 90/10
Peter J. HAMMOND
The Role of Information in Economics

ECO No. 90/11
Nicos M. CHRISTODOULAKIS
Debt Dynamics in a Small Open
Economy
ECO No. 90/12
Stephen C. SMITH
On the Economic Rationale for
Codetermination Law
ECO No. 90/13
Elettra AGLIARDI
Learning by Doing and Market Structures
ECO No. 90/14
Peter J. HAMMOND
Intertemporal Objectives
ECO No. 90/15
Andrew EVANS/Stephen MARTIN Socially Acceptable Distortion of Competition: EC Policy on State Aid

ECO No. 90/16
Stephen MARTIN
Fringe Size and Cartel Stability
ECO No. 90/17
John MICKLEWRIGHT
Why Do Less Than a Quarter of the Unemployed in Britain Receive
Unemployment Insurance?
ECO No. 90/18
Mrudula A. PATEL
Optimal Life Cycle Saving With
Borrowing Constraints:
A Graphical Solution
ECO No. 90/19
Peter J. HAMMOND
Money Metric Measures of Individual and Social Welfare Allowing for Environmental Externalities

ECO No. 90/20
Louis PHLIPS/
Ronald M. HARSTAD
Oligopolistic Manipulation of Spot Markets and the Timing of Futures Market Speculation

ECO No. 90/21
Christian DUSTMANN
Earnings Adjustment of Temporary
Migrants
ECO No. 90/22
John MICKLEWRIGHT
The Reform of Unemployment
Compensation:
Choices for East and West
ECO No. 90/23
Joerg MAYER
U. S. Dollar and Deutschmark as Reserve Assets

ECO No. 90/24
Sheila MARNIE
Labour Market Reform in the USSR:
Fact or Fiction?
ECO No. 90/25
Peter JENSEN/
Niels WESTERGARD-NIELSEN
Temporary Layoffs and the Duration of Unemployment: An Empirical Analysis

ECO No. 90/26
Stephan L. KALB
Market-Led Approaches to European
Monetary Union in the Light of a Legal
Restrictions Theory of Money
ECO No. 90/27
Robert J. WALDMANN
Implausible Results or Implausible Data?
Anomalies in the Construction of Value Added Data and Implications for Estimates of Price-Cost Markups

ECO No. 90/28
Stephen MARTIN
Periodic Model Changes in Oligopoly
ECO No. 90/29
Nicos CHRISTODOULAKIS/ Martin WEALE
Imperfect Competition in an Open Economy

* * *

ECO No. 91/30
Steve ALPERN/Dennis J. SNOWER Unemployment Through 'Learning From Experience'

ECO No. 91/31
David M. PRESCOTT/Thanasis STENGOS
Testing for Forecastible Nonlinear
Dependence in Weekly Gold Rates of Return

ECO No. 91/32
Peter J. HAMMOND
Harsanyi's Utilitarian Theorem:
A Simpler Proof and Some Ethical Connotations

ECO No. 91/33
Anthony B. ATKINSON/
John MICKLEWRIGHT
Economic Transformation in Eastern
Europe and the Distribution of Income
ECO No. 91/34
Svend ALBAEK
On Nash and Stackelberg Equilibria when Costs are Private Information

ECO No. 91/35
Stephen MARTIN
Private and Social Incentives
to Form R \& D Joint Ventures
ECO No. 91/36
Louis PHLIPS
Manipulation of Crude Oil Futures
ECO No. 91/37
Xavier CALSAMIGLIA/Alan KIRMAN
A Unique Informationally Efficient and
Decentralized Mechanism With Fair Outcomes

ECO No. 91/38
George S. ALOGOSKOUFIS/
Thanasis STENGOS
Testing for Nonlinear Dynamics in Historical Unemployment Series

ECO No. 91/39
Peter J. HAMMOND
The Moral Status of Profits and Other
Rewards:
A Perspective From Modern Welfare Economics

ECO No. 91/40
Vincent BROUSSEAU/Alan KIRMAN
The Dynamics of Learning in MisSpecified Models

ECO No. 91/41
Robert James WALDMANN
Assessing the Relative Sizes of Industryand Nation Specific Shocks to Output

ECO No. 91/42
Thorsten HENS/Alan KIRMAN/Louis PHLIPS
Exchange Rates and Oligopoly
ECO No. 91/43
Peter J. HAMMOND
Consequentialist Decision Theory and Utilitarian Ethics

ECO No. 91/44
Stephen MARTIN
Endogenous Firm Efficiency in a Cournot
Principal-Agent Model
ECO No. 91/45
Svend ALBAEK
Upstream or Downstream Information Sharing?

ECO No. 91/46
Thomas H. McCURDY/
Thanasis STENGOS
A Comparison of Risk-Premium
Forecasts Implied by Parametric Versus
Nonparametric Conditional Mean
Estimators
ECO No. 91/47
Christian DUSTMANN
Temporary Migration and the Investment into Human Capital

ECO No. 91/48
Jean-Daniel GUIGOU
Should Bankruptcy Proceedings be Initiated by a Mixed
Creditor/Shareholder?
ECO No. 91/49
Nick VRIEND
Market-Making and Decentralized Trade
ECO No. 91/50
Jeffrey L. COLES/Peter J. HAMMOND Walrasian Equilibrium without Survival: Existence, Efficiency, and Remedial Policy

ECO No. 91/51
Frank CRITCHLEY/Paul MARRIOTT/ Mark SALMON
Preferred Point Geometry and Statistical Manifolds

ECO No. 91/52
Costanza TORRICELLI
The Influence of Futures on Spot Price Volatility in a Model for a Storable Commodity

ECO No. 91/53
Frank CRITCHLEY/Paul MARRIOTT/ Mark SALMON
Preferred Point Geometry and the Local Differential Geometry of the KullbackLeibler Divergence

ECO No. 91/54
Peter MØLLGAARD/
Louis PHLIPS
Oil Futures and Strategic
Stocks at Sea
ECO No. 91/55
Christian DUSTMANN/
John MICKLEWRIGHT
Benefits, Incentives and Uncertainty
ECO No. 91/56
John MICKLEWRIGHT/
Gianna GIANNELLI
Why do Women Married to Unemployed Men have Low Participation Rates?

ECO No. $91 / 57$
John MICKLEWRIGHT
Income Support for the Unemployed in Hungary

ECO No. 91/58
Fabio CANOVA
Detrending and Business Cycle Facts
ECO No. 91/59
Fabio CANOVA/
Jane MARRINAN
Reconciling the Term Structure of
Interest Rates with the Consumption
Based ICAP Model
ECO No. 91/60
John FINGLETON
Inventory Holdings by a Monopolist Middleman

ECO No. 92/61
Sara CONNOLLY/John
MICKLEWRIGHT/Stephen NICKELL
The Occupational Success of Young Men
Who Left School at Sixteen
ECO No. 92/62
Pier Luigi SACCO
Noise Traders Permanence in Stock Markets: A Tâtonnement Approach. I: Informational Dynamics for the TwoDimensional Case

ECO No. 92/63
Robert J. WALDMANN
Asymmetric Oligopolies
ECO No. 92/64
Robert J. WALDMANN /Stephen
C. SMITH

A Partial Solution to the Financial Risk and Perverse Response Problems of Labour-Managed Firms: IndustryAverage Performance Bonds

ECO No. 92/65
Agustín MARAVALL/Víctor GÓMEZ
Signal Extraction in ARIMA Time Series
Program SEATS
ECO No. 92/66
Luigi BRIGHI
A Note on the Demand Theory of the Weak Axioms
© The Author(s). European University Institute.
Digitised version produced by the EUI Library in 2020. Available Open Access on Cadmus, European University Institute Research Repository.

[^0]: ${ }^{1}$ Specifically, we refer to Theorem 1 and 3 in Kihlstrom et al. (1976) and to Theorem 1 in Hildenbrand and Jerison (1989).

[^1]: ${ }^{2}$ We have used the fact that, by construction, $\mathbf{q} \cdot[\mathbf{s}(\mathbf{q})-\mathbf{f}(\mathbf{p}, w)]=0$.

[^2]: ${ }^{6}$ This proof was adapted from the proof of Lemma 6.1, in Hildenbrand and Kirman (1988), p. 220.

