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Abstract

The paper considers stochastic linear trends in series with a higher than 
annual frequency of observation. Using an approach based on A rima models, 
some of the trend models (or the model interpretation of trend estimation 
filters) most often found in statistics and econometrics are analysed and com­
pared. The properties of the trend optimal estimator are derived, and the 
analysis is extended to seasonally adjusted and/or detrended series. It is 
seen that, under fairly general conditions, the estimator of the unobserved 
component is noninvertible, and will not accept a convergent autoregressive 
representation. This has implications concerning unit root testing and VAR 
model fitting.

’ Department of Economics, European University Institute, Badia Fiesolana,
1-50016 S. Domenico di Fiesole (Fi), Italy, Tel.: +39-55-5092.347, Fax: +39-55-5092.202
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In tro d u ctio n :
T h e  C o n cep t o f  a Trend: M od el versu s E stim a to r

The concept of a trend component (in short, a trend) in an economic time series is far 
from having a precise, universally accepted, definition. Trends have been modeled as 
deterministic functions of time [see, for example, Fellner (1956)], as purely stochastic 
processes [in economics, a standard reference is Nelson and Plosser (1982)], or as a 
mixture of the two [Pierce (1978)]. This paper centers on strictly stochastic trends 
and the stochastic process generating the trend will be assumed linear. [Nonlinear 
extensions, such as the one in Hamilton (1989), will not be considered.]

The trend is associated with the underlying smooth evolution of a series, free 
from transitory or cyclical (seasonal or not) effects. In the frequency domain, this 
long-term evolution is, in turn, associated with the low frequencies of the spectrum. 
Let the frequency be measured in radians; the zero frequency, with a cycle of infinite 
length, undoubtedly should be part of the trend. A frequency ui — (.6)10—5 implies 
a period of 106 time units, and hence to all practical effects, indistinguishable from 
a trend. For uj =  .006, the associated period of 1000 years should probably still be 
considered part of the trend. As w increases and the associated period decreases, 
there will come a value which, clearly, should not be included in the trend. Since 
all economic series contain some degree of additive noise (with a flat spectrum), 
perhaps the most natural way to define a trend is, thus, by the spectral peak at the 
low frequencies; see Granger (1978) and Nerlove, Grether and Carvalho (1976).

In so far as the trend represents mostly the variation in some frequency interval 
(0,iuo), where ui0 is small, it is possible to construct bandpass filters with a close 
to 1 gain in that interval, and close to zero gain for other frequencies. These types 
of filters are often used to estimate trends. Important examples are the Henderson 
filter used by the program X I1 [see, for example, Gourieroux and Monfort (1990, 
p. 102-3)], and the Hodrick and Prescott (1980) filter. Both can be seen as the 
solution to a constrained least squares problem, where the constraints impose some 
degree of smoothness. Both provide linear moving average filters, similar to those 
obtained when the trend is estimated by approximating smooth functions with local 
polynomials in time [see Kendall (1976)]. These Moving Average filters have the 
advantage of computational and conceptual simplicity. They provide point estimates 
of the trend, but there is no underlying stochastic model for the component. As 
Prescott (1986) states, trend is thus “defined by the computational procedure used 
to fit the smooth curve through the data.”

The price paid for conceptual and computational simplicity can be, however, 
large. The designed filters always require fixing some arbitrary parameter, and 
this is done typically by judgement. The asymmetry of the filters implies a phase 
shift, which can be misleading, in particular for detecting and dating turning points. 
The fact that the filters are always the same, and do not depend on the stochastic 
properties of the series, simplifies matters, at the cost, though, of risking spurious 
detrending: in the limit, trends could be extracted from white-noise series. More­
over, since the estimate is, by definition, the trend, nothing in the procedure would 
detect those spurious trends or situations in which a given filter is not appropriate.
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Finally, the procedure does not allow for proper statistical inference; for example, 
one cannot obtain forecasts of the trend, let alone standard errors of the forecast.

Possibly fostered by the explosion in the use of ARIMA models [see Box and 
Jenkins (1970)] for economic time series, the last ten years have experienced a grow­
ing interest in modeling trends. Since the work of Beveridge and Nelson (1981), 
Nelson and Plosser (1982), Watson (1986), and many others, stochastic models for 
the trend have become widespread in economics [see Stock and Watson (1988)]. In 
statistics, several modeling approaches have been suggested. Within the context of 
linear stochastic processes, we shall mostly focus on two general ones. First, the 
so-called ARIMA-Model-Based (AMB) approach, in which the model for the trend 
is derived from the Arima model identified for the observed series [see Box, Hillmer 
and Tiao (1978) and Burman (1980)]. The other approach starts by directly speci­
fying a model for the trend; it has been denoted the Structural Time Series (STS) 
approach, and basic references are Harvey and Todd (1983), and Harvey (1985). 
Both approaches are closely related, and the models for the trend are also related, 
as we shall see, to those used by econometricians.

Since the trend component is never observed, one always works with estima­
tors. In the context of Arima models for the trend and for the observed series, 
(optimal) Minimum Mean Squared Error (MMSE) estimators are easily obtained. 
These estimators are also moving averages, similar to the ones encountered in the 
design of filters; in fact, often these latter filters can be interpreted as optimal estima­
tors for some particular models. Since the model-based approach offers a powerful 
tool for analysis, diagnosis, and inference, in the rest of the paper it will be used 
to analyse the models for the trends, and the properties of their MMSE estimators. 
First, section 1 presents the basic framework and some notation. Then, in sections 
2, 3 and 4, some models often used for the trend component are analysed and dis­
cussed, and related to the stochastic structure of the observed series. Trends, of 
course, are never observed, and section 5 looks at the properties of their estimators. 
Finally, section 6 presents some implications for applied econometric work.

1 T h e G en era l S ta tis tica l Fram ew ork

Let x, be a time series which is the sum of a trend, pt, and a nontrend component,
n t,

Xt =  P t + n t, ( 1)

where the two components are uncorrelated and each follows an Arima model, 
which we write in short as

M B )Pt = Sp(B)bt, (2)

<t>n(B)nt = 6n(B)ct-, (3)

2
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B  denotes the lag operator, <I>(B) and 9 (B) are finite polynomials in B that may 
contain unit roots, and bt and c( are orthogonal white-noise variables, with variances 
Vi and Vc. (Throughout the paper, a white-noise variable denotes a variable that is 
normally, identically, and independently distributed.) It is assumed that the roots 
of the autoregressive (AR) polynomials <t>p(B) and <t>n(B) are different; since AR 
roots for the same frequency should belong to the same component, this is not a 
restrictive assumption. Of course, the two polynomials in (2) and in (3) are prime.

The paper is mostly aimed at quarterly or monthly data, in which case nt can 
often be written as the sum of a seasonal component, s(, and an irregular one, ut, 
both the outcome of linear stochastic processes. Then (1) becomes

X| = Pt + S t + ut, (4)

where the seasonal component follows the model

<t>,(B)s, = 9,(B)e, (5)

with <i>s(B)  typically nonstationary, while ut is assumed a stationary process, uncor­
related with bt and e(.

Combining (1), (2), and (3), it is obtained that

<t>P(B) <P„(B)x, =  <t>n(B) 0P(B) bt + <t>p(B)On(B ) ct, 

and hence xt also follows an Arima model of the type

<t>(B) xt — 0(B) a,, (6)

where <t>(B) = 4>P(B) <t>n(B ), and 9(B) at is the moving average (MA) process such 
that

9(B) at = M B )  9p(B) bt + M B )  0„(B) c„ (7)

with at a white-noise variable with variance Va [see Anderson (1971, p. 224)]. 
Without loss of generality, Va is set equal to 1, so that the variances of the compo­
nent innovations will be implicitly expressed as fractions of Va, the variance of the 
one-period-ahead forecast error for the observed series. Since the sum of two uncor­
related MA processes [as in (7)] can only be noninvertible when the same unit root is 
shared by both MA polynomials, if we further assume that 9P(B ) and 9n(B) have no 
common unit root, it follows that model (6) will be invertible. However, given that 
the concept of a trend or a seasonal component is intimately linked to nonstationary 
behavior, models (2) and (3) will typically be nonstationary [see Hillmer, Bell, and 
Tiao (1983)]. We shall still use the representation

+(B) = 0(B)! K B )  (8)
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when the series is nonstationary, and similarly for ij)v(B). Further, letting u; denote 
frequency, the Fourier transform of >/>(B ) Va, where F  =  B~l , will be referred
to as the spectrum of x t, gx(u) [for nonstationary series, it is often called the “pseu­
dospectrum”; see Hillmer and Tiao (1982) or Harvey (1990)]. In a similar way, gp{u) 
will denote the spectrum of the trend.

Since observations are only available on xt, the AMB approach starts with 
model (6), which can be identified and estimated directly from the data using Box- 
Jenkins techniques; then, looks at which models for the trend, that capture the 
spectral low frequency peak, are compatible with (6). From the set of all admissible 
models, some additional requirements permit the selection of a unique one. The STS 
approach proceeds in an inverse maimer, by identifying a-priori models (2) and (3) 
for the components. Ultimately, since (2) and (3) imply a model of the type (6), 
both approaches are closely linked. The models, however, are different, since the 
identification restrictions are not the same.

Given that the components are never observed, one can only use estimators. 
For known models (an assumption that will be made throughout the paper), both 
methods obtain the trend estimator as E(pJ X t ), where X t = [xi, . . . , xt] repre­
sents the available sample. This conditional expectation can be efficiently computed 
with the Kalman or the Wiener-Kolmogorov (WK) filters. If the first one has the 
appeal of its programming easiness, the WK filter, as will become apparent, is par­
ticularly suited for statistical analysis. For the models we consider, the two filters 
provide MMSE estimators of the components; these estimators are considered in 
section 5.

2 S om e M od els  for th e  T rend C om p on en t

I shall consider some well-known Arima models, often encountered in practice when 
modeling monthly or quarterly economic time series. It will be seen what type of 
trend model is implicit in the overall Arima model, and the stochastic properties 
thereof. The trend model will be compared with several other statistical trend 
models, contained in well-known statistical packages. The comparison will also 
include the standard linear stochastic trend models used in econometrics.

Consider the general class of models for the observed series:

V V ,i ,  = «(B) a,, (9)

where V =  1 — B, Vs = 1 — B s, and s denotes the number of observations per year. 
Since V2 causes a peak for ui = 0 and S(B) generates the peaks for the seasonal 
frequencies in gx(u), let us factorize the polynomial VVS into

M B )  = (1 — B )2 = V2
M B )  = 1 + B + B2 + - -  + B - '  = S, (10)

The decomposition (1) can be expressed as

4
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( 11)
m

vv. ‘

Op(B)
V2 bt +

On(B)
5 C|’

or, removing denominators,

f>(£) a, =  S 0P(B) 6t + V2 «>„(£) c,. (12)

Let qp and q„ denote the orders of the MA polynomials 0 p(B ) and 0„(B), respectively. 
Equation (12) implies that q, the order of 6(B)at, will be equal to

q = max(<7p + s -  1, qn + 2).

From (12), (9 + 1) covariance equations can be derived; in the AMB approach 0(B) 
and Va are assumed known, and the parameters of 0P(B), 0„(B), as well as the 
variances VJ, and Vc, have to be derived from them. Since the number of unknowns 
is (qp +  q„ +  2), it follows that, when

+ 9» + 1 > q,

there will be an infinite number of solutions to the system of covariance equations, 
and the decomposition (11) will be underidentified. It is straightforward to find that

qp > 1 and q„ > s — 2,

are necessary and sufficient conditions for the decomposition (11) to be underiden­
tified. The AMB decomposition restricts the order of the AR and MA polynomials 
in model (2) for the trend to be of the same order. Therefore, qp = 2, and the trend 
model becomes an IMA (2,2), say

V2p( = (1 — o\ B  — a -2 B 2) bt. (13)

The decomposition (11) — or the models underlying it — is still underidentified, 
and a further condition is then imposed. Since the randomness of p, in (13) is 
caused by the variable bt, with variance V*, of all the models of the type (13) that 
are compatible with the stochastic structure of the observed series (i.e., with model 
(9)), the one with smallest Vt, is chosen. This yields the most stable trend, given 
the observed Arima model. As shown by Hillmer and Tiao (1982), minimizing Vj 
is equivalent to the requirement that it should not be possible to further decompose 
pt into p* +  u*, where u't is white-noise, orthogonal to p*. When a component 
satisfies this “noise-free” requirement it is termed “canonical”. The canonical trend 
is, therefore, uncontaminated by noise, and hence its spectrum should contain a 
zero, since otherwise, setting Var(u’) = min gp(u>), a further “trend plus noise” 
decomposition could be achieved. The zero in the spectrum represents a unit root 
in the MA polynomial of the trend. Since the spectrum of the trend should be 
monotonically decreasing with w, the zero should happen for ui =  II, i.e., the unit 
root of the MA is B = —1. The model for the trend can then be rewritten

5
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V2 pi =  (1 — aB)( l  + B) 6(, (14)

which contains two parameters, a and Vj. Now, the number of unknowns in the 
system of covariance equations is (qn +  3), and the number of equations > qn 4 3. 
The decomposition becomes, thus, identified, and there will be a unique model (14), 
which will represent the trend component contained in model (9).

The model for the trend in the basic Structural Model is a random walk with 
drift, with the drift being generated also by a random walk. In particular,

Vpi =  pi + u i,
Vpi = i>„ (15)

where ut and vt are mutually orthogonal white-noise variables. This trend model is 
also considered by Harrison and Stevens (1971) and, within a filter design approach, 
by Ng and Young (1990). It is immediately seen that the above model can be 
expressed as an IMA(2,1) model

V2 pi = (1 — 0B) bt, (16)

where f) and 14 depend on the variances of ut and vt. Model (16) represents an 
integrated of order 2, or 1(2), model, with two parameters. Notice, however, that 
the trend given by (16) does not have the canonical property, so that orthogonal 
white-noise can still be extracted from it, and the trend can be expressed as p( in 
(14) plus white noise [Maravall (1985)]. This difference between the two models 
is a consequence of the different assumptions used to reach identification. While 
the AMB approach uses the canonical (noise-free) condition, the STS approach, by 
imposing qp = 1, sets a priori some additional parameters equal to zero. If in simul­
taneous econometric models zero parameter constraints reflect, in principle, a priori 
information derived from economic theory, in the context of unobserved component 
models, no similar rationalization for the zero parameter constraint holds.

There is another difference between the STS trend and the canonical model- 
based one which is worth mentioning. Writing (15) as

V2p< =  vt + V u(,

it follows that the lag-1 autocovariance of V2 pt in the STS case is always negative, 
so that 0 in (16) has to be positive. As a consequence, a model such as

V2 Xt =  (1 + OB) at,

with 0 > 0, in the STS approach would not be a trend, nor would it be possible to 
extract a trend from it. (This would still be true if, more generally, ut is allowed to be 
colored noise.) In the AMB approach, x t above can be decomposed into orthogonal 
trend and noise, as in (1); for example, for 0 =  .2, the trend is given by

6
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V 2p, =  (1 -  .0925) (1 +  B) bt, (Vb =  .436),

and n( is white-noise with V„ =  .040. Therefore, the canonical trend in the AMB 
approach is less restrictive than that in the STS approach.

Moving on to other statistical procedures to estimate stochastic trends, con­
sider first the well-known X ll procedure. Cleveland and Tiao (1976) showed how it 
could be interpreted (approximately) as a MMSE estimator in an AMB approach, 
where the model for the trend is given by

V2p( =  (l + .4 9 £ -.4 9 B 2)6(. (17)

Therefore, the trend follows again an IMA(2,2); moreover, for B  =  —1, the MA 
polynomial is close to zero, and hence the model is not far from a canonical trend, 
with a zero in the spectrum for ui = II. [For a discussion of Henderson’s 13-term 
filter, see also Tiao and Hillmer (1978).] In a similar way, Tiao (1983) has shown 
how Akaike’s BAYSEA seasonal adjustment method can also be roughly interpreted 
as an AMB method, with the model for the trend given now by

V2p( = bt. (18)

This is, in fact, the same trend model obtained by Gersch and Kitagawa (1983) 
using an alternative STS formulation, and the trend implied in the model-based 
interpretation of the Hodrick-Prescott filter [Hodrick and Prescott (1980)]. Model 
(18) does not satisfy the canonical property, but it can be expressed as the sum of 
a canonical trend, given by

V2p]' = (1 — .1725) (1 + B) 6J,

with Var(b"t ) = .36414 , and an orthogonal white-noise variable, ut, with variance 
Vu =  14/16.

The four trend models (14), (16), (17), and (18), can be seen as particular 
cases of the IMA(2,2) model. These models and/or associated filters are routinely 
used on many hundreds of thousands of series (mostly for forecasting and seasonal 
ajdustment); they all represent trends that are 1(2) variables. This is apparently in 
sharp contrast with the standard linear stochastic model used to represent trends 
in econometrics, typically an 1(1) process, most often the random walk plus drift 
model:

Vp, = 6, + p, (19)

where p, the drift, is a constant [see, for example, Stock and Watson (1987) and the 
many references they contain]. While the statistical models that have been men­
tioned are mostly aimed at monthly and quarterly (unadjusted) series, the attention 
of econometricians when modeling trends has been directed to annual or quarterly
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seasonally adjusted data. Be that as it may, in so far as neither time aggregation, 
nor seasonal adjustment, should change the order of integration (at the zero fre­
quency), the differences in the type of data used do not explain the different order 
of integration typically used by statisticians and econometricians.

3 A  F req u en tly  E n cou n tered  C lass o f  M od els

It has been shown that a variety of statistical trend models can be expressed as (14) 
— perhaps with some added noise. The two parameters a and Vj, will allow for some 
flexibility, and will depend, of course, on the overall model for the series. To get a 
closer look at that dependence, consider the particular case of (9), for which

0(B) = ( 1 - 0 1B ) ( 1 - 0 SB S), (20)

with s =  12. This is the so-called Airline Model, discussed in Box and Jenkins 
(1970), which has been found appropriate for many monthly macroeconomic series. 
The range for the parameters is given by | < 1 and 0 < 0U < 1, in which case the 
model is invertible and accepts a decomposition as in (4), where the components 
have nonnegative spectra [Hillmer and Tiao (1982)].

Table 1 presents the values of the trend parameters a and Vj as functions of 
the parameters of the overall Arima. Since V„ is set equal to one, V), is expressed 
as a fraction of Va.

Table 1: Trend Model Parameters (Monthly Series)

a) Root a of the MA b) Variance V). of the innovation
012 012
J 5  J 5 ,25 J 5

-.75 .892 .976 .255 .592
-.25 .892 .976 .130 .302

01 .25 .892 .976 .047 .109
.75 .899 .976 .006 .012

A first striking result is the relative constancy of the MA trend root a. Its value is 
close to one, so that it nearly cancels out with one of the differences in model (14). 
It follows that the canonical trend implicit in the Airline Model is broadly similar 
to the model

Vp( =  (1 + B)b, + p, (21)

the difference being that p changes very slowly in time. The interpretation of (21) 
is straightforward. Let xt be the random walk
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Vx, = a,,

with Va =  1. Then it is easily seen that x t can be expressed as in (1), with pt given 
by (21), with p = 0 and Vi =  .25, and n, orthogonal white-noise with Vn =  .25 
(see fig. 1). Thus (21) represents the canonical trend in a random walk, in the sense 
that the latter is the former plus some orthogonal white-noise. (Notice that the 
random walk plus drift model has the same number of parameters as model (21).)

Therefore, for many series, the 1(2) trend model (14) turns out to be surpris­
ingly close to the 1(1) model (21), closely related in turn to the random walk plus 
drift structure. It would be unlikely that sample information could distinguish be­
tween the roots (1 — B) and (1 — .95B). This indeed explains the fact that, when 
STS models, such as (15), are fitted, the estimator of the variance of vt is quite fre­
quently not significantly different from zero [see Harvey and Todd (1983), or Harvey 
and Peters (1990)]. In this case, /? of equation (16) becomes 1, and the STS trend 
model yields directly the random walk plus drift model. Therefore, the 1(2) versus 
1(1) paradox can be reasonably explained in many cases.

Be that as it may, there still remains the question of which specificatin [(1(1) 
versus 1(2))] for the trend model should be used. The difference amounts to compar­
ing the effect of adding a constant to the 1(1) model versus imposing an additional 
difference and an MA factor with a root very close to 1. If the trend is directly 
estimated, the 1(1) model plus constant is likely to be obtained, since estimation 
would treat the two roots as overdifferencing. The specification (21) is simpler than 
(14), but if the overall Arima is efficiently estimated, derivation of the 1(2) trend is 
straightforward, and the close-to-one trend MA root brings no special analytical or 
numerical problems. Conceptually, model (14) is slightly more flexible, since it al­
lows for a slow adaptive behavior of p, without increasing the number of parameters. 
Yet, ultimately, the pretension of finding a unique, universally accepted, solution to 
the problem of modeling a trend seems unrealistic and possibly unnecessary. What 
is important is that the particular model used in an application be well specified, so 
that it can be properly understood and analysed, and that it agrees with the overall 
structure of the series.

An additional remark seems worth making: The paper is mostly concerned 
with monthly or quarterly data, and the models used are fundamentally short-term 
models (in fact, Box-Jenkins ARIMA models were meant for short-term analysis). 
While it is true that, in the short run, model (14) with a = .95 and model (21) 
can be indistinguishable, in the very long run the differences can be large. The 
implication is that models built to capture the short-term behavior of a series will 
likely be unreliable tools for analysing the very long term [a similar point is made 
by Diebold and Rudebusch (1991)].

Back to the results of table 1, since the value of a varies little for different values 
of the ^-parameters, differences in the trend model (14) will be due to differences 
in the variance in the trend innovation, Vj,. Table 1 shows that VJ is in fact very 
sensitive to changes in the ^-parameters. Since bt generates the stochastic variability 
in the trend, small values of VJ, are associated with stable trends, while large values 
will produce unstable ones. Given that the spectrum of pt will be proportional to
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14, a stable trend will denote a trend with a thin spectral peak, and hence a close 
to deterministic behavior. An unstable trend will display, on the contrary, a wide 
spectral peak, and hence more stochastic variability. It is seen in table 1 that, 
as moves from —1 to 1, 14 decreases and the trend becomes closer to being
deterministic, as could be expected. Figure 2 presents the spectra of xt for the two 
extreme cases considered in table 1. For 6i = .75, 012 = .25, the trend is very stable 
and the seasonal component is strongly stochastic, as can be seen from the width 
of the spectral peaks. For 0i = —.75, 0i2 = .75, the stochastic character of x t is 
dominated by the trend variation, while seasonality becomes more stable. As for the 
white-noise irregular, the minimum of gx(ui) is larger for the first model, and hence 
the irregular component will be more important in the first case. Table 2 evidences 
the behavior of the two models. The stable trend-unstable seasonal case presents 
a small trend innovation variance and a large variance of the seasonal component 
innovation. Also, the MA root (1 + .75B) implies, in the unstable trend-stable 
seasonal case, a very small irregular component.

Table 2: Innovation Variances: Two Extreme Cases

0! =  .75 
012 =  .25

0i =  -.75 
0i2 = .75

Variance of trend innovation .006 .592
Variance of seasonal innovation .222 .027
Variance of irregular .249 .012

Figure 3 displays the trend spectra for the two extreme cases mentioned above. 
They have similar shapes and what varies considerably is the area under the curve. 
Comparison of fig. 2 and fig. 3 illustrates one of the reasons in favor of a flexible 
model-based approach: the model used for the trend, and the estimation filter this 
model implies, should depend on the particular series under consideration. It would 
clearly be inappropriate, for example, to use the filter implied by the stable trend 
model to capture the low frequency peak in the spectrum of the series with unstable 
trend; the trend would be grossly underestimated.

4 E x ten s io n s  and E xam p les

When dealing with quarterly observations, s = 4 in expression (9), the identification 
conditions remain the same, and the canonical trend is, again, given by (14). When 
the MA polynomial of the overall model is of the type (20), computing the trend 
parameters a  and 14, table 1 is replaced by table 3. Both tables roughly tell the 
same story: the value of a is close to 1, and, if cancelled with one of the differ­
ences, the trend component in a random walk [model (21)] is obtained. The fact 
that the smallest seasonal frequency in monthly data (11/6) is closer to 0 than the 
corresponding one for quarterly data (11/2) constrains the trend spectrum of the 
monthly series to be closer to the ordinate axe; this explains the larger values of a
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obtained in the monthly case. The values of VI, in table 3 are slightly larger than 
those of table 1, in accordance with the obvious fact that a quarterly series allows 
for less seasonal variation than a monthly series, and hence the relative contribution 
of the trend increases.

Table 3: Trend Model Parameters (Quarterly Series)

a) Root a of the MA b) Variance 14 of the innovation
64 64

2̂5 J5 M  J5
-.75 .709 .931 .318 .621
-.25 .710 .931 .163 .317
.25 .712 .931 .106 .203
.75 .718 .931 .062 .114

As mentioned before, the model for the trend should depend on the overall 
model for the observed series, which can be directly identified from the data. If (9) 
is replaced by

Vsx, = 6(B) at, ( 22)

or by

V2 V, x, = 9(B) at, (23)

then, similar derivations to that in section 2 yield the canonical trend models

Vp, = (1 + B)b,, (24)
V3p, = ( l - 0 l B - a 2B2)( \  + B)bt, (25)

respectively. Therefore, the trend in (22) is the same as the trend in a random walk, 
an 1(1) process, while the trend in (23) is 1(3), with an MA(3) polynomial. To see 
an example of the latter, the model

V2 V u x, =  (1 -  .8255) (1 -  .787B12) a, (26)

explained well the monthly series of the Spanish consumer price index net of the 
energy component (for the period 1978-1988). Deriving the implied model (25) 
for the trend, Vj =  .204 and the MA polynomial (1 — a t B — a 2B2) factorizes into 
(1 — .985) (1 — .8255). Both roots are close to 1, and hence model (26) can be 
expressed as

Vp( — (1 T B) 6t +  po 4" Pi 1,
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where, both, p0 and fii are parameters that change very slowly in time. Therefore, 
although the trend is theoretically 1(3), again, it may be difficult to distinguish it 
from an 1(1) model on the basis of sample information.

Figure 4 displays the spectra of the trend models for several examples; these 
are the following:

(a) The component of the consumer price index, i.e., the 1(3) trend in model (26).

(b) The monthly series of Spanish tax revenues in the period 1979-1990, for which 
a model of the type (22) is appropriate. The 1(1) trend is as in (24), with 
Vb = .001.

(c) The monthly series of the Spanish monetary aggregate for the period 1973 
1985, discussed in Maravall (1988b). The overall model is of the type (9), with 
an 1(2) trend given by

V 2pt = ( l - M B ) { l  + B)b„ Vb =  .234.

(d) The consumer durable series in Harvey and Peters (1990). For this example, 
the trend estimated by Harvey and Peters with a frequency domain method 
is equivalent to an IMA(2,1) model of the type (16), with 0 =  .884 and inno­
vation variance .244. Removing the noise from this model yields a canonical 
trend with parameters a  = .884 and Vb = .061.

(e) The model-based approximation to the XI1 trend of Cleveland and Tiao 
[model (17)]. From their results, it is straightforward to find that Vj = .020.

Although the shapes are somewhat similar, they certainly represent different trends, 
whose stochastic nature is strongly linked to the variance of the trend innovation. 
These different models may capture, thus, different stochastic properties of the series 
having to do with different low frequency spectral peaks (as fig. 2 clearly illustrated). 
It is worth noticing in fig. 4 the relative proximity of the trend models in X ll, in the 
canonical trend hidden in the STS example, and in the monetary aggregate series 
example. The three spectra, moreover, lie in between those of the more stable 1(1) 
trend of example (b), and the more stochastic 1(3) trend of example (a).

5 T h e M M S E  E stim ator  o f  th e  T rend

In practice, the trend component is unobserved, and we are always forced to work 
with estimators. Once the models have been specified, for stationary series the 
MMSE estimator of pt can be obtained with the Wiener-Kolmogorov (WK) filter 
[see Whittle (1963)]. The filter extends easily to nonstationary series [Bell (1984) 
or Maravall (1988a)], and to finite realizations of the series by replacing unknown 
future and past observations with their forecasts and backcasts [Cleveland and Tiao 
(1976)]. Numerical computation, moreover, can be greatly simplified by using the 
Wilson algorithm described in Burman (1980). The WK filter provides a method to
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obtain the conditional expectation of the trend given the available series, equivalent 
to the usual Kalman filter [Harvey 1989)]. Both are computationally efficient; the 
WK formulation will allow us to derive easily the theoretical properties of the MMSE 
estimator.

Using the notation of section 2, and in particular the symbolic representation 
(8), the WK filter, for the case of a complete realization of the series (from —oo to 
oo), is given by

Pi =  Vi, m b ) M n  
MB) MF)

(27)

where F = B  1 is the forward operator. Replacing the ^-polynomials by their 
rational expressions, after cancelling common factors, (27) becomes

n r l f l F l r  y  6P(B) M B ) M F) M F ) ,Pt =  r ) X ,=  Vb ---- ---------------- ---------- x(.0(B) 0(F) (28)

The filter i/(B, F) is seen to be centered at t, symmetric, and convergent [due 
to the invertibility of 0(B)}. In fact, (28) shows that the filter is equal to the 
autocovariance-generating function of the stationary process

0(B) z, = 0P(B) <t>n(B) bt. (29)

(For a long enough series, since i/(B, F) is convergent in B  and in F, in practice, 
the results for the infinite realization will apply to the central years of the series.)
To illustrate what the filter (28) does, and how it adapts itself to the series, fig. 5 
plots the frequency domain representation of the trend filters v(B , F) for the two 
extreme examples of section 3 and fig. 2. For u> = 0 both present a gain of 1, and 
for all seasonal frequencies they present a gain of 0, associated with the seasonal 
unit roots in the MA part of (29). For the stable trend-unstable seasonal model, 
the filter is very close to the ordinate axe, captures very low frequency variations 
and little else. For the unstable trend-stable seasonal model, since most of the 
stochastic variation in the series is accounted for by the trend, the filter does not 
have to remove much, besides the zeros at the seasonal frequencies.

If, in (28), x( is replaced with (6), the MMSE estimator can be expressed as a 
linear filter in the series innovations (at):

pt = ((B ,F)a ,  = Vb 0P(B) 0,(F) U F )
M B )  0(F)

a t,

and hence the theoretical trend estimator follows the model

M B ) Pt = 0P(B) t)p(F) at, 

where rjp(F) is the forward filter:

( 30)
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VP(F) =  Vi
ep(F)

9(F)

Comparing (30) with model (2) for the trend, it is seen that:

(1) As has been often pointed out, the model for the theoretical component and 
that for its theoretical MMSE estimator are not the same (even for an infinite 
realization of the series). The dynamic properties of the component and of its 
MMSE estimator are structurally different.

(2) From (30) or (29) it is seen that the trend estimator depends not only on the 
trend model, but also on the nontrend component . For example, due to the 
(nontrend) roots in t](F), the trend estimator may display oscillatory behavior 
when the trend component model contains none.

(3) Both, the component and its estimator, share the same stationarity inducing 
transformation.

(4) The models for the component and for the estimator contain the same poly­
nomials in B.

(5) The difference between the two models is due to the presence of the forward 
polynomial tlP(F) in the model for the estimator. This polynomial expresses 
the dependence of pt on future values of x, and will cause revisions in prelimi­
nary estimators as new observations (and hence new innovations ar . k > 0) 
become available.

(6) When some of the nontrend AR roots of the overall model have unit modulus 
(i.e., when <j>n(B ) contains some unit roots), then the filter (28) and the model 
(30) for the trend estimator will be noninvertible. This will be, for exam­
ple, the case whenever the series presents nonstationary seasonality. Thus, in 
particular, the class of models (9), (22), and (23), as well as the basic STS 
model and the model version of XI1, all contain the nonstationary seasonal 
AR polynomial S  given by (10), so that the corresponding trend estimator will 
be noninvertible.

For example, for the class of models given by (9) with s = 12, the MMSE estimator 
(30) becomes

V2pt == ( l - a B ) ( l  + B ) Vp(F)at,

„  ( l - a F ) ( l  + F ) ( l  + F  + . . .  + F " )
Vv(F) = H -------------------- ^ -------------------- •

When 9(B) is given by (20), figs. 6 and 7 present the spectra of the models for the 
trend and its estimator, for the two extreme examples we have been considering.
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In the first case (stable trend-unstable seasonal), fig. 6a shows that the spectrum 
of the trend estimator is similar to that of the component, with a slightly narrower 
band width for the low frequency peak. In the unstable trend-stable seasonal case 
in fig. 7, the spectrum of the trend follows closely that of the theoretical component, 
except for noticeable dips at the seasonal frequencies (as shown in fig. 6b, when fig. 
6a is amplified, similar dips are found).

The departures from the theoretical component model implied by MMSE es­
timation are easily interpreted in the frequency domain. From (27), the spectrum 
of the estimator, (w), is given by

9p (<*>) = Æ2 M  gx M , (31)

where

R(u) 9p(u ) _  1
9x M  1 + 1 /r(w)’

(32)

and r(w) =  gp(u>) /  g„(uj). Since the trend is the signal of interest, r(tu) represents 
the signal-to-noise ratio. Therefore, when estimating the trend, what the MMSE 
method does is, for each u>, to look at the relative contribution of the theoretical 
trend to the spectrum of the series. If this relative contribution is high, then r(w), 
and hence iu), will also be high, and the frequency will be mostly used for trend 
estimation. For example, for u; = 0, r(0) goes to oo and R(0) =  1. This implies that 
the zero frequency will only be used for estimation of the trend. If the nontrend 
component contains seasonal nonstationarity, then, for u> equal to the seasonal fre­
quencies, r(tu) and R(uj) become both zero, and these frequencies are ignored when 
estimating the trend. Considering (31), these zeroes produce the dips in the spectra 
of figs. 6 and 7.

From (31) and (32), the relationship between the spectrum of the theoretical 
trend component and that of its MMSE estimator is found to be

9p M  =  R (u )  9pH  =
1

1 + 1 /r(u>) 9P{u)-

Since r((j) > 0, it follows that 0 < R{ui) < 1, and hence gp(w) < gp(u)) for every fre­
quency, so that the trend estimator will always underestimate the theoretical trend. 
This is clearly seen in figs. 6 and 7, and in table 4, which compares the variance of 
the stationary transformation of the trend and of its estimator, for different values 
of the 5-parameters. The estimator always has a smaller variance, and the ratio of 
the two variances get further away from 1 as the trend becomes more stable. There­
fore, the more stochastic the trend is, the less will its variance be underestimated 
(in relative terms). On the contrary, the variations of a very stable trend will be 
grossly underestimated. In summary, the estimator provides a more stable trend 
than the one implied by the theoretical model, and this effect will be particularly 
strong when the theoretical trend is already stable.

The difference between the dynamic properties of the theoretical component 
and its MMSE estimator can also be assessed in the time domain by comparing the
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Table 4: Variance of the Stationary Transformation: 
Trend Component and Estimator

012 0.25 0.75
0. -0.75 -0.25 0.25 0.75 -0.75 -0.25 0.25 0.75

Trend Component 0.460 0.235 0.085 0.011 1.157 0.590 0.213 0.024
Estimator 0.212 0.078 0.014 <0.001 0.956 0.349 0.058 0.001

correlations. In section 3 it was seen how, for reasonable values of the parameter 
61 and 012, the model for the trend derived from the Airline Model is an IMA(2,2), 
with MA roots B = — 1 and B = 1/.9, or, approximately

V2 p, = (1 + .IB — ,9B2) bt.

The Autocorrelation Function (ACF) of V2pt is, thus, px = .01, p2 — —.49, and 
Pk = 0 for k > 2. Table 5 compares this ACF with that of the estimator for different 
values of the ^-parameters, and for a few selected lags. The departures from the 
component ACF can be substantial, particularly for large values of 0j (associated 
with small values of Vj). Therefore, more stochastic trends (with large values of Vi,) 
will have estimators more in agreement with the ACF of the component. It is worth 
noticing that, although for the theoretical trend p12 =  0, the MMSE always displays 
a negative value which can be quite substantial.

Table 5: Autocorrelations of the Stationary Transformation: 
Trend Component and Estimator

Estimator (V2p<)
0\2 0i 0i 02 0 3 012
0.25 -0.75 0.04 -0.50 -0.01 -0.37

-0.25 0.18 -0.52 -0.14 -0.37
0.25 0.37 -0.37 -0.30 -0.37
0.75 0.61 0.05 -0.11 -0.36

0.75 -0.75 0.03 -0.52 -0.01 -0.13
-0.25 0.16 -0.54 -0.15 -0.13
0.25 0.35 -0.41 -0.33 -0.13
0.75 0.56 -0.07 -0.23 -0.14

Theoretical Component (V2p<) 0.01 -0.49 — —
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When tables 4 and 5 are put together, the following result emerges: If the 
series is the sum of two components with varying degrees of stability, the distortion 
in the variance and ACF of the components induced by MMSE estimation is stronger 
for the more stable one. For example, when most of the stochastic variation in the 
series is attributable to the presence of a stochastic trend, the underestimation of the 
variance and the induced autocorrelations in the estimator will be relatively minor; 
when the stochastic trend accounts for little, the distortions can be remarkably large. 
This result is somewhat comforting: the distortions are large when the component 
matters little.

The underestimation of the component variance when using the MMSE esti­
mator implies that, although the components are uncorrelated, their estimators will 
not be so, and crosscorrelations between them will appear. Table 6 displays the 
contemporaneous crosscorrelations between the trend estimator on the one hand, 
and the seasonal and irregular estimators on the other, for the case of the Airline 
Model with different values of the ^-parameters. Although none of the correlations 
is large, they are not negligible for relatively large values of 6\ .

Table 6: Crosscorrelation Between Estimators of Different Components

Trend and Seasonal Estimators Trend and Irregular Estimators
0\2 — 0.25 0.75 0.25 0.75
0X = -0.75 -0.14 -0.08 0.17 0.17

-0.25 -0.15 -0.08 0.08 0.08
0.25 -0.17 -0.10 -0.10 -0.09
0.75 -0.22 -0.12 -0.31 -0.30

One of the by-products of a model-based approach is that theoretical values 
of the estimator auto and crosscorrelations can be easily derived from the models. 
Comparison between these values and the ones obtained empirically in an application 
can provide a useful element for diagnosis [Maravall (1987)].

6 S om e Im p lica tio n s for E con om etric  M o d e lin g

The distinction between theoretical component and estimator, and the different 
dynamic properties they exhibit, has been on occasion a source of confusion in 
applied econometric work. Since the component is never observed, we can only use 
estimators; this has some important implications, which we proceed to discuss.

Consider the full decomposition into trend, seasonal, and irregular components 
given by (4). Denote by x“ the seasonally adjusted (SA) series, equal to

x“ = x, -  s, =  p, + ut.
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If, in (1), pt is replaced by and nt by s*, most of the previous discussion remains 
valid. Since is obtained by adding a stationary component to pt, if

(J)a{B) xat = 6a{B) dt

denotes the model for the SA series, it follows that (pa(B ) and <PP(B) have the same 
unit roots, and this will also be true of <t>s(B) and <f>n(B). In fact, the models for 
pt and x ’l often are similar, although the addition of ut will remove the canonical 
property from the SA series [it is indeed the case that a:“ tends to be closer to the 
“random walk plus drift” structure than pt\ see Maravall (1988b)].

The estimator of the SA series, is obtained, in a manner similar to that 
described in section 5 for estimation of the trend, with a centered, symmetric, and 
convergent filter. Expressing in terms of the series innovations, results (1) to (6) 
in section 5 remain basically unchanged. I shall continue to center the discussion on 
the trend estimator, bearing in mind that it is also valid for the estimator of the SA 
series.

Let X t =  (#1, • • • ,z r)  denote the observed series. Since the filter v(B, F) in 
(28) is convergent in both directions, we may assume that it can be safely truncated 
at some point. Let the number of terms in the truncated filter be (2 k + 1). When 
T — t < k, the estimator of pt (obtained by extending the series with forecasts) is not 
the estimator (30), but a preliminary one, which will be revised as new observations 
become available. As a consequence, the last k values of the series [p i,...,p r] , 
computed with X j , will be preliminary estimators; in a symmetric manner, the first 
k values require backcasts of the series, and will also differ from the estimator (28), 
with stochastic structure given by (30). The final estimator (28) will be denoted the 
“historical” estimator.

The preliminary estimators (p i,. ..  ,p*,PT-/t, • • • , Pt ) have different stochastic 
structures [see, for example, Pierce (1980) and Burridge and Wallis (1984)], different 
in turn from that of the historical estimator. Only the central values (pk+i , • • • iPt-k) 
can properly be assumed to be homogenous, being generated by the same process 
(30). The model-based approach permits us to compute the variance of any revision 
in the estimator of p*, and hence the value of k after which the revision can be 
neglected. For the range of models considered in section 3, it is found that, after 
three years of additional data, between 82 and 100% of the revision in the concurrent 
estimator of the trend has been completed; for XI1 the revision variance decreases 
by 95%. [It can be seen that slower rates of convergence to the historical estimator 
(i.e., large values of k) are associated with smaller revisions; when the revision is 
large, the estimator tends to converge fast.] Although the trend estimator converges 
always faster, a similar result holds for the SA series: After 3 years of additional 
data, for the models of section 3, between 80 and 100% of the revision variance has 
disappeared; for X I1 the proportion is roughly 80%.

Therefore, when fitting models to unobserved components, care should be 
taken to use an homogenous series of historical estimators. Although well-known, 
this is an often neglected correction. But, even if a homogenous series of historical 
estimators is used, there remain problems in some standard econometric practices
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having to do with fitting models to series of unobserved component estimators. 
In order to analyse these problems, consider again the decomposition (4), with 
nonstationary trend and seasonal components, and stationary irregular component. 
Thus, <t>r(B) will contain the factor V d, with d > 1, and <j>s(B ) will contain the 
factor S  with seasonal unit roots, typically given by (10). Thus we can write

Vdpt = A r(B)bt, (33)

Ss, = A ,{B)et, (34)

where AP(B) bt and \ S(B) et are stationary processes. Finally, let

ut = Xu(B)vt (35)

represent the stationary and invertible irregular component (in macroeconomics, 
often called the cyclical component). It is easily seen that (33), (34) and (35) imply 
that the overall model for the series can be expressed as

V dS x t = X(B)a„ (36)

where A(B) at is also a stationary and invertible process. (Invertibility is guaranteed 
by the fact that the component ut is invertible.)

Applying the WK filter and replacing xt with (36), the model for the trend 
estimator can be finally expressed as

V l pt = ap(B ,F )S (F )a t, (37)

where ap{B, F) =  V& AP(B) XP(F)/X(F) is a convergent polynomial in F  and in B. 
Consider now the decomposition of the series:

Xt —

Since = pt +ut, and ut is stationary, the model for the SA series can be expressed 
as

V d X* =  \ a(B) dt, (38)

where Aa(B)d t is a stationary and invertible process. Proceeding as in the case of 
the trend estimator, the MMSE estimator of x“ can be expressed as

V dxat = a a{B ,F )S(F )a t, (39)

where aa(B,F)  =  Ki Aa{B) Xa(F)/X(F) is also a polynomial convergent at both 
extremes.
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Consider, finally, the estimator of u*, the seasonally adjusted and detrended 
seris (i.e., the irregular, or cyclical, component). From (35) and (36) it is obtained 
that the MMSE historical estimator ut, expressed as a function of the series inno­
vations, can be written as

u, = au( B , F ) ( l - F ) d S(F)a„  (40)

where au(B, F) = Vv XU(B) XU(F)/X(F). Expressions (37), (39), and (40) imply 
that the historical estimators of the trend, of the SA series, and of the irregular 
component are all noninvertible series. The model for the three series contains the 
unit seasonal roots in the MA polynomial; for the series u<, the noninvertible factor 
(1 — F)d is also present.

More generally, it will be the case that the estimator of an unobserved compo­
nent will be noninvertible whenever at least one of the other components present in 
the series is nonstationary: the unit AR roots of this other component will appear 
in the MA polynomial of the model for the estimator. This result is valid for AMB 
methods, independently of whether the components are canonical or not. It applies 
equally to unobserved components obtained with STS methods, and, in general, to 
the estimators obtained with any filter that can be given an MMSE model-based 
interpretation (for symmetric filters, used for historical estimation, this requirement 
is relatively minor). As an example, for the model version of X ll, fig. 8 presents the 
spectrum of the SA series estimator, which contains the zeros at seasonal frequen­
cies; fig. 9 displays the nonconvergent weights of the (one-sided) AR representation 
of the SA series estimator.

In summary, whenever some nonstationarity is removed from the series in order 
to estimate a component, the estimator will be noninvertible. How restrictive can 
we expect this condition to be? Consider the estimators of p(, x“, and ut. In order 
to obtain the three, the seasonal component has been removed. If seasonality is 
stochastic, the sum of the seasonal component over a year span (i.e., S st) cannot 
be expected to be always exactly zero, since seasonality is moving. Still, the very 
concept of seasonality implies that its annual aggregate effect should not be too far 
from zero. This can be formally expressed as

Ss,  = wt, (41)

where wt is a zero-mean, stationary process (with small variance). Expression (41) 
is equivalent to (34); unit AR roots are thus a sensible requirement for a stochastic 
seasonal component. In fact, expression (41), with different assumptions for the 
stationary process wt, is overwhelmingly used as the specification of the seasonal 
component in model-based methods or model-based interpretation of filters [see 
Maravall (1989)].

From the previous discussion, two important implications follow;
A) Testing for unit roots in economic time series is often performed on seasonally 
adjusted data [examples can be found in Campbell and Mankiw (1987), Cochrane 
(1988), Perron and Phillips (1987), Schwert (1989), and Stock and Watson (1986)]. 
Comparing (33) with (37), or (38) with (39), it is seen that the distributions of
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the (stationary transformation of the) component and of its estimator are different, 
and this will have an eifect on unit root testing, as detected by Ghysels (1990) and 
Ghysels and Perron (1992) for the case of the seasonally adjusted series. The lag 
polynomials in the model for the estimator are more complex and of larger orders 
than those in the component model; their converging properties will be different, and 
so will be, for example, the spectral density at the zero frequency. In particular, for 
the important case in which nonstationary stochastic seasonality has been removed 
from the series (and that is what most moving average seasonal adjustment methods 
do), the estimator of the trend and SA series are noninvertible, and will not accept 
an AR representation. Therefore, unit root tests that rely on AR representations, 
such as the Augmented Dickey Fuller type [Dickey and Fuller (1979)], should not be 
carried on SA series, nor on trends, nor, in general, on any unobserved component 
estimator when the series contains another component which is nonstationary.
As for the Phillips (1987) type test, it is worth noticing that, as reported by Phillips 
and Perron (1988) and by Schwert (1989), the test performs very poorly when the 
MA part of the series model contains a root close to —1. Since B = — 1 is a root 
of S(F),  the noninvertible MA polynomial in the estimator model (37) or (39), one 
could expect a poor performance of the test when SA series or trends are used. For 
the first case, this is in fact what Ghysels and Perron (1992) find.
B) In the same way that a noninvertible series does not accept a univariate AR rep­
resentation, since the minimum of a VAR spectrum is strictly positive, no individual 
series in a VAR representation can be noninvertible. Again, thus, when the series 
contains nonstationary stochastic seasonal and trend components, expressions (37), 
(39) and (40) imply that VAR models would not be appropriate to model SA series, 
trends, or irregular (cyclical) components, not even as approximations. It follows, 
moreover, that these filtered series should not be used either in a Johansen-type test 
for cointegration. Fitting VAR models to SA series is, however, a standard practice, 
often aimed at reducing dimensionality of the VAR model. Among many examples, 
some important ones are Blanchard and Quah (1989), Liitkepohl (1991), Hendry 
and Mizon (1990), Sims (1980), and Stock and Watson (1991).

Notice that, when the series is simply the sum of a stochastic trend and a 
stationary component, the same conclusion applies to the detrended series (obtained, 
for example, with the Hodrick and Prescott filter). Due to the presence of the 
MA factor (1 — F)d, the detrended series will accept no convergent AR (or VAR) 
representation.

In the previous discussion, noninvertibility (i.e., the lack of a convergent AR 
representation, or, equivalently, the presence of a zero in the spectral density) is 
a property of the theoretical model that generates the estimator of the unobserved 
component. Of course, a particular finite realization from that model will not exactly 
satisfy it. This does not invalidate, however, the result that AR and VAR models, 
when applied to series from which a nonstationary stochastic component has been 
filtered out, contain a specification error. This error is due to the finite truncation of 
a nonconvergent filter. The departure from noninvertibility due to sample variation, 
mixed with the fact that (often) the SA series used is not the homogenous historical 
estimator, but contains preliminary estimators at both ends (as discussed at the 
beginning of section 6), may well explain why, in practice, the specification error

21

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



may easily pass undetected.

7 S u m m ary  and C onclusions

The paper deals with modeling and estimation of linear stochastic trends in economic 
time series, with a higher than annual frequency of observation (the series may, thus, 
contain seasonality). A model-based approach is followed, and section 1 describes 
the general framework. The observed series is the sum of a trend and an orthogonal 
nontrend component, where the components (and hence the series) follow Arima 
models. The model for the trend is aimed at capturing the low-frequency peak in 
the series spectrum; since different series will exhibit different peaks, the model for 
the trend should depend on the particular series being analysed, i.e., on the overall 
Arima model. (This point is illustrated throughout the paper.)

A fairly general class of models is considered: The one for which a transforma­
tion of the type V1* Vs produces a stationary and invertible process id = 0,1,2; s 
denotes the number of observations per year.) The nonstationary part of the trend 
model is then Vd+1, and the stationary part depends, on the rest of the overall 
model, and on some additional assumptions, needed to identify a unique decompo­
sition. It is seen how different identification assumptions yield different models for 
the trend. Section 2 presents some of the trend models most frequently encountered 
in the statistics literature (or the model interpretation of some trend estimation 
filters), looks at their properties and performs some comparisons. All the trend 
models considered can ultimately be expressed as the canonical trend obtained in 
an ARIMA-model-based method, plus some orthogonal white-noise.

An apparent paradox is that, while most statistical trend models (or filters) 
imply 1(2) trends, 1(1) trends are typically used in econometrics. Section 3 looks in 
more detail at a particular class of models for the observed series (with V V 12 as 
the stationary transformation), often reasonably appropriate for monthly macroeco­
nomic series. The trend models obtained for different values of the parameters are 
compared; they are IMA(2,2) models and present the common feature that the MA 
part always contains a root very close to 1. Thus, from an estimation point of view, 
the 1(2) trend would be indistinguishable from an 1(1) model with drift. Section 4 
extends the analysis in several directions: first, to quarterly data, and, second, to 
different values of d. It is concluded that the “order of integration” paradox is more 
apparent than real. Finally, some of the advantages and disadvantages of using the 
“1(1) plus drift” versus the 1(2) specification are discussed.

In the model-based approach there is an important distinction between the 
theoretical (unobserved) component and its estimator. The MMSE estimator is 
obtained with the Wiener-Kolmogorov filter applied to the observed series, and 
its properties are discussed in section 5. It is seen that the dynamic properties of 
the component and of its MMSE estimator are structurally different, and that the 
estimator will follow a model different from that of the theoretical component. The 
stationary transformation is preserved, but the spectrum and ACF will be different; 
for the estimator, they will depend on the structure of the nontrend component.

22

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



The estimator always yields a more stable trend, and this effect is more pronounced 
when the theoretical trend is already stable.

It is further seen that, when the nontrend component contains some nonsta- 
tionarity, the estimator of the trend and of the SA series is always noninvertible. 
Thus, for example, seasonal nonstationarity in the series implies that no convergent 
AR representation for the estimator of the trend, the SA series, or the irregular 
(or cyclical) component will exist. Heuristically, noninvertibility of these estimators 
will appear whenever the series has a stochastic seasonal component with the (most 
reasonable) property that the seasonal effect aggregated over a year is not far from 
zero. The result extends to estimators obtained with (noninvertible) “ad hoc” filters, 
such as the ones most often used to detrend or seasonally adjust economic series.

Since, in practice, we are forced to always work with estimators, section 6 
presents two important implications for econometric work: First, due to the sym­
metry of the filters, care should be taken to use an homogenous series of historical 
estimators. Perhaps more importantly, when the original series contains stochastic 
nonstationary trend and seasonal components, first, contrary to common practice, 
some popular unit root tests cannot be carried on SA series, nor on trends; second, 
contrary to standard practice, too, VAR models are not appropriate for modeling 
SA series, nor trends, nor detrended series.

Thanks are due to Fabio Canova, Grayham Mizon, Annalisa Fedelino, the 
Editor and four referees for their helpful comments. Some referees showed interest 
in computational details. All calculations have been made with a program I have 
baptized SEATS, which stands for “Signal Extraction in Arima Time Series”. The 
program originated from one developed by J. Peter Burman, for seasonal adjustment, 
at the Bank of England (1982 version); to him, thus, very special thanks are due. 
The program (jointly with the user manual) can be made available upon request.
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TREND FILTERS: TWO EXTREME CASES
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STABLE T R E N D  SPEC TR U M : M O D E L  A N D  ESTIM A TO R

t r e n d  e s t im a to r  
t r e n d  com ponent model

frequency in rad.
Figure 6.b

t r e n d  e s t im a to r  
t r e n d  com ponent model
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Figure 7

t r e n d  e s t im a to r  
t r e n d  com ponent model

3 3

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



X I 1 SA  SER IES SPEC TR U M : M O D E L  A N D  EST IM A T O R

SA s e r i e s  model

X I 1 SA SER IES ESTIM A TO R: O N E-SID E D  A R  W EIG H TS
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